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We want to clarify some points in a recent Letter by Jaroszewicz!. In our opinion
this author missed some important facts and recent results on the subject.

1) The classical Lagrangian in Eq.(2) of Ref.1 is not the correct one to be used in the
corresponding path integral. Following our general theory as described in Refs.2-4 1t
rather must be replaced by the effective Langrangian:
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where the path integral is defined in the “product form” * (real time}:
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In the last step standard path-integration methods where applied (Fourier transfor-
mation in ¢). The variable ¢ has to be interpreted as lving on the multisheeted plane,
see Eq.(3) of Ref.1. vis given by v = v/ A + k%, and the functional measure p,[r] reads
as given in Refs.2 and 9:
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The additional “quantum potential” AV = — —— is of crucial importance in order
that the path integral in polar coordinates (r, ¢) is well defined. The necessity of such
gquantum corrections was already observed by DeWitt®; for the special case discussed
here it was first calculated by Arthurs’.

2) The space-time transformation vielding Eq.(10) of Ref.1 is not correct. The au-
thor’s remark that higher order terms in the transformation do not contnibute 1s
wrong. In contrary: Again an additional quantum potential Vi, = g appears if
the prescription of Ref.2 is applied; in fact, the resulting path integral which i1s nothing
but the path integral for Liouville quantum mechanics was completely solved in Ref.3.
However, the quanturmn potential coming from the space-time transformation cancels
exactly the quantum potential AV of the effective Lagrangian. so that Eq.(10) of
Ref.1 is correct by chance. Furthermore, the author did not really calculate (and did
not claim to do so} any path integral so that his discussion concerning path integrals
seems at least incomplete to us. In Ref.3 we computed the path integral for Liouville
gquantum mechanics by performing a space-time transformation yielding a radial path
integral with generalized angular momentum. The latter could easily be solved using
well-known path integral identities®:®.

3) The author’s claim that path integrals contain inore information than the corre-
sponding differential equation is rather misleading. The path integral as the kernel
of a unitary operator corresponds to a self-adjoint Hamiltonian and implies a spe-
cific Schrodinger equation which is defined on some domain D in some Hilbert space



H. The problem of self-adjointness is, of course. one of the hardest tasks in Hilbert
space theory, see e.g. Ref.10 and 11. However, the correct path integral is not de-
termined entirely by the action but requires in addition a careful definition of the
path-integration measure which in turn depends on the correct boundary conditions.
Of course, for particular examples it might be easier to analyse these boundary con-
ditions from the path integral prescription than from the operator formalism.

4) Following our prescription given in Refs.2-4 we can immediately write down the
path integral solution of the path integral for the original problem of Ref.1 yielding
(we restrict ourselves to the case D = 2):
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where an integral relation for Bessel functions!® (Re(r) > —1) has been used. As
noted by Jaroszewicz the sign ambiguity in the order of the Bessel functions J, must
be clarified for values of i lying in the intervall 0 < | < 1. According to Eq.(8) of
Ref.1. an additional term containing Bessel functions J, with negative order implies
an additional contribution sin =k, instead of only I, in Eq.(4) above. Because a
term like this is absent in the first line of Eq.(4}, one immediately concludes v > 0
and the sign is fixed. Therefore the path integral formalism gives the correct solution
of the original potential problem in a unique way.
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