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Abstract

The periodic-orbit theory of Gutzwiller is the only known semiclassical quantization scheme that
can he applied to non-integrable systems. We present a generalization of this theory that leads to
absolutely convergent periodic-orbit sum rules, using as an example strongly chaotic billiard systems.
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A semiclassical technique that is often used in studies of energy spectra of non-integrable quantum
systems is the periodic-orbit theory of Gutzwiller.* It is derived from Feymman’s path integral and
culminates in an expansion of the density of states as a surn over all periodic orbits of the corresponding
classical system. One fundamental problem of this theory is the fact that the sum over pertodic orbits
is at best conditionally convergent. In this Letter we show that for a large class of non-integrable
systemns generalized periodic-orbit sum rules can be written down that are absolutely convergent. As
an explicit example we discuss the Gaussian level density, 1. e. a smeared level density using a Gaussian
smearing.

We consider a quantum system with two degrees of freedom, whose corresponding classical system
has only isolated unstable hyperbolic periodic orbits. Then the density of states of the system with
Hamiltonian operator H can semiclassically (A — 0) be represented as
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Here < d{ E'} > is the mean level density corresponding to the Thomas-Fermi approximation. v labels
all primitive {oriented) periodic orbits and ¥ is the number of their multiple traversals. = § pdg

(1)

is the classical action around v for the given energy E, and T, = 8E is the period of 7. The phases
v, depend on the focussing of trajectories close to the perlodlc orbit 4, and M., is a 2 X 2 matrix
which describes the stability properties of 7. In case of unstable hyperbolic orbits, M., has eigenvalues
A2 = eT¥, where u, > 0 is the stability exponent.* This means

\/1‘ Trjl}q = 2 sinh (}‘2 ) . (2)

In general the double sum on the right-hand side of Eq. (1) is not absolutely convergent. The usual
way to ensure convergence is to introduce complex energies £ — I + i%. This corresponds to a
substitution of the é-functions by Breit-Wigner curves
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I.e. a smoothing of the level density. In general it turns out, however, that the smoothing parameter
I' has to be a function of the energy F in order to ensure absolute convergence.

To keep the discussion as simnple as possible, from now on we confine ourselves to plane billiard
systeins with elastic reflections at the boundary. In this case &, = pl, and T, = 2[,, where [, is the

length of the orhit 4 and p = v2mE is the momentum of the ‘houncing ball’ with mass m. The phases
v, are twice the number of reflections from the boundary. The stability exponents u, depend only
on geometrical quantities and are energy-independent. Then the introduction of a positive imaginary
part of p corresponds to an exponential damping of the contribution of orbits with large length I,. In
order to estimate under what conditions the periodic-orbit sum converges ahsolutely we consider
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where in the last step we assumed that w, ™ wmm » 0 for all v. The last double sum converges if the
sum over terms with & = 1 converges. Assuming that the average number N (!) of periodic orbits with



length L. smaller than [ increases asymptotically like an exponential®
N ~—,1—- x, 5

where 7 > 0 denotes the topological entropy, and further that the stability exponents satisfy asymp-
totically
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the sumn is convergent if the integral
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converges. This leads to the condition
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for the imaginary part of p.% Eq.(8) is a condition on the minimum width T, of the Breit-Wigner
curves (3) of the smoothed level density, I' > T',,;, := 40Rep. For billiards with finite area A the
mean leve] spacing is asymptotically constant. When I',,.;, gets larger than the mean level spacing it
is impossible to resolve different peaks. Therefore it would be favourable to have a different kind of
smoothing which leads to convergent sums but with no condition on the minimum width of the peaks.

An example of a strongly chaotic system for which an absolutely convergent periodic-orbit the-
ory exists is the Hadamard-Gutzwiller model,”%* a quantum mechanical system which describes the
motion of a particle on a surface of constant negative curvature. For this model the periodic-orbit
sum rules are even exact, i.e. they are valid not only in the semiclassical limit A --+ 0, but hold for
all values of A, since they can be rigorously derived from the Selberg trace formula,’® a celebrated
theoremn in the mathematics of compact Riemann surfaces. Into these sum rules there enters a general
‘smearing function’ h{p) which ensures absolute convergence.

In analogy to the Selberg trace formula we can derive a similar trace formula for our billiard
systems, that we call generalized periodic-orbif sum rule and which is given by
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where d(p) 1= £ <d(E) >, p, = V2mE,, xy = exp{-iv, 3} € {1, -1} and
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A rigorous derivation of Eq. (9) that uses only convergent sums leads to the following three conditions
for the otherwise arbitrary function h{p}:

® A{p) is an even function of p
» h(p) is analytic in the strip Imp| < ¢ 4 ¢ for some ¢ > 0, where o is defined in Eq.(8)
o |h(p}| < alp| %% for some & > 0,a > 0, {p| — o .

Under these conditions all series and the integral in Eq. (9} converge absolutely.

The ‘trace formula’ (9) is the main result of this Letter. For any choice of an admissible ‘smearing
function’ h(p} one obtains a nicely convergent periodic-orbit swin rule which establishes a striking and
‘apparently paradoxical’ dualiiy relation between the quantal energy spectrum {E,} and the length
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spectrum {/,} of the classical periodic orbits. These sum rules provide a substitute, appropriate for
quantum systems with hard chaos, for the Bohr-Somunerfeld-Einstein (WEKB) quantization rules.

In Ref.9 we have presented first numerical results based on the generalized periodic-orbit sum
rule (9) for the Hadamard-Gutzwiller model. For this model the trace formula {9) is exact with!!
d(p) = %p tanh(#p), A = area of the compact Riemann surface, u, = L,, v, = 0, 7 = I, L.e. x4 = 1,
% = 1 and & = }. It was found in Ref. 9 that a very useful smearing function is
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For this choice we obtain from Eq.(9) the Gausstan level density
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which is absolutely convergent for any ¢ > 0 because of the Gaussian damping of orbits with large
length I,. For small ¢ the left-hand side of Eq.(12) represents a series of delta like functions of width
/\p ~ +/2¢ having peaks exactly at the level positions p = p,. If ¢ is made smaller, more and more
terrns in the sum over classical orbits on the right-hand side of (12) contribute with faster oscillations
until eventually they sum up to give peaks at the quantal energies. Each periodic orbit v contributes
an oscillation to the smeared spectral demsity, which has a ‘wavelength’ Ap ~ 2xh/l,, which implies
that a resolution of order Ap ~ v/2¢ requires a summation over the length spectrum up to lengths of
order I, ~ v27h/e. In Ref. 9 we have demonstrated numerically for the Hadamard-Gutzwiller model
that the Gaussian level density (12) can indeed be used to determine the energy eigenvalues.

In summary, we have presented in this Letter the generalized periodic-orbit sum rule {9} which is
absolutely convergent and thus avoids the divergencies of the original periodic-orhit theory.
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