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How to avoid imperfection spin resonances
in a proton ring with snakes

K. Steffen
Deutsches Elektronen-Synchrotron DESY, Hamburg

Abstract

The coupling of spin motion to the corrected closed orbit in a model ring
with snakes is investigated as a confined walk problem. and a closed orbit re-
laxation scheme is proposed for avoiding imperfection resonances even at S5C
energies. Specific orbit corrections for suppressing specific coupling modes
are also suggested.
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1. Introduction

The question of whether polarized proton beams can be accelerated to very high
energies, say 20 Te'V in the SSC, has recently become the focus of more intense stu-
dies. In a recent workshop ou Siberian snakes for the SSC collider ring{1]; it appeared
that the intrinsic spin resonances caused by betatron oscillations can be avoided by
mnserting 15-23 snake pairs in a strongly spin matched pattern|2,3]. but that, on the
other hand, the imperfection resonances due to the errors remaining in a corrected
vertical closed orbit are a subject of great concern. K. Yokoya[4] estimated that, to
avoid these resonances. the remaining closed orbit amplitudes must be kept below
80 pm, a value almost impossible to achieve in practice.

Will this prevent the acceleration of polarized beams to 20 TeV? I believe it will
not, and will try to display in this note the reasons for being optimistic. Employing
a simplified ring model for the sake of clarity, I will calculate the coupling of the spin
to a corrected closed orbit that is bound between limits, using a confined walk ana-
lysis, and will then show how this coupling can be significantly reduced by further
straightening the orbit in a simple relaxation procedure. With realistic alignment
tolerances, assuming careful engineering, the coupling in the SSC will then be well
below the threshold for imperfection spin resonances. For added safety, I will recom-
mend specific orbit corrections as a cure for those specific coupling modes that might
still be strong after orbit relaxation.

2. Coupling of the spin to the vertical closed orbit

In linear approximation the rotation of the spin away from the periodic 7#-axis due
to a vertical closed orbit z(s) is given by the spin orbit coupling integral

I(o) ~ va - f ) M g)d (1)

0

where the real and imaginary parts represent the two orthogonal phases v(s) of the
spin precession, with

s 1 E|GeV
¥(s) = ﬂya.-/(; p(s)ds and ~va = 5&£—33£ (2)

1/p 1s the strength of the main bending magnets in the ring.

Let us take a ring where all bending magnets are perfectly aligned in the horizontal
plane and where a vertical correcting magnet is placed at each quadrupole. Then,



due to the correctors and vertical quadrupole displacements. the vertical closed or-
bit will be kicked at the guadrupoles only and will be straight in between, and the
coupling integrals (1} may be written

I, = vaX | cosuy - Az (3)
I, =~vaY" | siney; - Az
where the index i refers to the i*" quadrupole. Assuming a periodic ring structure
with evenly spaced gquadrupoles. we have between kicks a constant spin precession
phase advance &y which is proportional to energy and which, during acceleration in
the SSC for example, rises from d¢* == 3 - 27 at 1 TeV to 6y = 60 - 27 at 20 TeV.

In this case the coupling integrals become:

Lt

Io=~a¥0 | sin(f— 1)éw - Az

= n ] p — b Az
I, =~a¥ 7., cos(i— 1)6¢ - Az 4)

To evaluate them, let us focus on a set of particular precession frequencies labeled
by the index m, where the same fractional phase repeats after a sequence of m kicks,
1.e.

by = 27 - ﬂ, p integer (5)
m

Then, it immediately appears that for spin frequencies with 12 = 1 the coupling in-
tegrals (4) will vanish over one revolution since there is au iuteger number of spin
precessions between kicks, and the kicks will add up coherently to zero due to the fact
that the orbit is closed. This is, however, only the case if the ring does not contain
more than one phase jump in spin precession, as induced by the Siberian snakes. The
influence of the snake configuration will be reviewed in the next section.

For m = 2 and odd p, on the other hand, the integral will be the alternating sum of
the kicks and we have the case of strongest coupling. In section 4, we shall therefore
try to carefully evaluate this alternating sum by using an orbit model that takes fully
into account the confined nature of the closed orbit after correction.

3. Effect of the snake configuration on spin orbit coupling

The general properties of snakes and snake configurations are given in ref. [2]. Each
snake rotates the spin by 180° about the transverse horizontal axis, and subsequently
by an angle a about the vertical axis. a is called the precession angle of the snake.
Snakes composed of transverse bending magnets can be built for any value of a. Use-
ful species, as chosen e.g. for the SSC snake configurations of ref. [3], are snakes with



a o+ =180” and a = =90° in contrast to snakes with o = 0° which would be less com-
pact. If. while approaching a snake in the ring. the spin precession angle increases. it
will. behind the snake. decrease after having encountered a phase jump o in the snake.

Rememberiug now that there are two orthogonal coupling integrals I¢ and I5 (eq. 3)
which refer to orthogonal precession phases and both must be kept small, we can
distribute the effect of all kicks in the ring equally onto I¢ and I by designing the
precession phase in half of the ring to be at 90° with respect to the precession phase in
the other half. By choosing proper snake precession angles a, it is possible to do this,
either in complete half rings, or alternating in smaller subsections of equal length.
The suin IZ + IZ? will then be minimal, and in case of m = 2. i.e. with ¢ = 7 between
quadrupoles. each integral will see only half of the kicks, thus being kept a factor
of 1/1'2 helow the maximum. When designing the SSC sample configurations|3], I
was not vet aware of this aspect, and they might now call for a small revision. which
should be easy to make.

4. Spin coupling to the corrected closed orbit as a confined walk problem

After the vertical closed orbit has been subjected to a thorough correction routine, we
assuiie that its remaining deviation from the median horizontal plane will nowhere
exceed the amplitude z 4. If. for example, the quadrupoles would deviate from this
plane by less than a,. and the beam monitors from the quadrupoles by less than a,..
being mechanicallv attached to them. and if all monitor readings were reduced to
zero by the correction routine. we would have ¢ = a, + a,,. With a practical limit of,
say a, & a,, & 0.2 mm, we then have ¢ = 0.4 ram for example. The maximum orbit
kick that may oceur within the band of width 24 is

2a

{

g =2

(6}
where ( is the distance between quadrupoles.

Let us assume that in each quadrupole the closed orbit can assume any one out
of q discrete amplitudes which are equally spaced over the band width 24 and that,
starting from the previous quadrupole, the orbit can go to any one of these amplitudes
with equal probability. With n quadrupoles in the ring. there are then g" possible
closed orbits, all equally probable. Examples of these discretized closed orbits are
shown in Fig. 1 for q = 2. 3, and 4. The orbit kick at the " quadrupole is then
proportional to

(@i — a;) — (@i — a,-1)



with a; being the discrete normalized amplitude at posttion 1, and the alternating
sum {section 2} of all kicks in the ring 1s, except for a factor ¢ = 4a/(, given by

s 237 (1) a for even n (7)
- . 7
ay +a, ~2 37 (~1) a; foroddn.
where a; can assume any one of the values
r—1 1 )
a; = - — , with »=1,2, .. ¢q. (8}
g—1 2

With n quadrupoles in the ring. the alternating sum (7) can now be evaluated for
each of the ¢” possible closed orbits, and we find the distribution of these sums in a

sample set of ¢" machines.

The result is composed in Tab. 1 for
S=a—(-1)"a. +2 Y (~1) a (9)
=1

For each q, we can calculate the numbers N(S) of sample machines that have a
particular value of the alternating sum, S. We can then arrange the N(S) in a
pyramid in which each line gives the distribution of S in a ring with n kicks. and n
increases toward the base. The generation of these pyramids is beautifully simple:
Each number is the sum of those q interleaved numbers in the line above which are
located symmetrically. This is indicated in Tab. 1, where the square is the sum of
the q circles above. For each line, 1.e. for each distribution of §, Tab. 1 gives the

mean square value of §

1
— Y S§*.N(S) (10)
qn

2

0'2:

and we see that, for ¢ = 2, we have ¢° = n — 3/2 = n for large 1, and that for higher
q the o*-values are the same except for a common, g-dependent reduction factor. For

n = 2 we have

)= 2 S gy Lp L (1)
=G 1y & 6 3g-1)

which, for large q, goes to 1/3 of its value at q = 2, and we may therefore, in large
rings, generally assume
a¥(n) = (12)

With this result, we can now evaluate the spin orbit coupling integral (4) for the
worst case m = 2, when the kicks add up with alternating signs. Using eqs. (6}, (7):

Toms(m=2) 4a /r (13
rms = =7a- — - = s g .
m ¥ 7 o= "a V3 )

[ ]



where 1 is half the number of quadrupoles in the ring if Io and I¢ are made equal
by the snake configuration, and ¢ = 4a/{ the maximum kick. For the SSC with
a = 04 mm. (=120 m and n = } - 700. for example. at 20 Te\” the model yields the
spiu orbit coupling integral

Iims(m=2) = 5.5 rad = 315

which is larger than can be tolerated. K. Yokoyal4| has calculated the spin tune shift
due to the orbit errors to be

— 1 2 42
Avins = = |(va)* @1, n) (14)

Tmas

which, after replacing 2 -n by €2 - n/3, gives
Alpms(m=2) = 2.4

with the parameters of our example. If, in the ring without errors, the fractional
spin tune is set to 0.5 by the snakes, the spin tune shift due to errors must remain
below this value in order to avoid resonance excitation. To keep the spin tune shift
below, say, 0.3 in our example, we would have to reduce the maximum kick by a
factor of 3 and could then expect that more than 80 % of the sample machines would
not suffer resonance depolarization caused by quadrupole errors. Fortunately, it is
possible to obtain an even bigger reduction factor by applying the closed orbit relax-
ation technique proposed in the next section. On top of that, spin orbit coupling can
even be further reduced by devising specific orbit corrections for specific precession
frequencies, as outlined in section 8.

5. Principle of closed orbit relaxation

Instead of accepting, in the quadrupoles of our orbit-corrected model ring, the max-
imum kick ¢ = 4a/( as given in eq. (6), it is helpful to observe that the actual kick
g; 1n each quadrupole is known by measurement with an accuracy

where a,, 1s again the offset of the monitor from the quadrupole and f is the modulus
of the focal length, alike in all quadrupoles. Denoting the monitor reading in the ith
quadrupole by d; and the deflecting angle of the corresponding correction magnet by

a;, the actual kick is

{ ] in the F-quads (16)

?l
4 d .
? ] in the D-quads



For a betatron phase advance @ per cell. we have

{
A ———— 17
1% Seme)2 17
1e. f=1{for @ = 60° and f = f/\/‘é for ¢ = 90°. With a,, = @/2 and ¢ = 90°, as in
our 55C model for example, we have the relative measuring accuracy

1)

§_ V2 _ L (18)
£ 8 5.66
and thus we suggest to decrease the vertical kicks by this factor by reducing the
measured orbit angles ¢; to zero reading in a way similar to that which we had for-
merly used to reduce the measured orbit amplitudes d; when applying the standard
orbit correction techniques. To do this, the following closed orbit relaxation scheme

1s proposed.

6. Closed orbit relaxation scheme

What we suggest is, in principle, a local superposition of a closed beam bump that
involves 3 consecutive correction magnets and, at the inner corrector (i), shifts the
orbit half-way toward its average vertical position between the two outer correctors
(i—1) and (i+1}):

Q Q Q
4;
1 )
(.} : \\ A|+1
| > | —

(i-1) {i) {i+1)

If, before relaxation, we have measured the kicks ¢;, the angles A, in the bump are
chosen to be

A = -

A1 =81 = =& (19)

-J



Instead of applving the bumps one after another. we suggest to relax the closed
orbit as a whole by simmltaneously applying the appropriate beam bump at every

quadrupole. going in one step from the measured kicks ¢'” )

to a new set of kicks ¢!’
as given by
1 .
o = o (=0 267+ D) (20)
This relaxation scheme converges very quickly and would, after a few steps, reduce
all kicks to alinost zero and make the closed orbit approach an almost straight line
almost paralle]l to the median plane if the monitors were perfectly centered on the
quadrupoles. In that case, even the first relaxation step alone would reduce the
maximum deflection by a factor of 4. This is seen as follows: Denoting the initial
orbit amplitudes by ¢!°), we have e.g. the imtial kick

1
0 o 0 0 0
£~ e - o) (ol )
1 4
= 7(a.(20] — 2a.§0) + aff)) : | AR | < — a (21)
{ £
and after the first relaxation step
1
47 = el g 2a® s o)
{1} 1 1 1
i = gad 208+ o)
= 2 o) e g (22)
4 s

Since the sum of a guadrupole and a dipole field may be viewed as a translated
quadrupole, the relaxation procedure may be viewed as a vertical repositioning of
the initially misaligned quadrupoie fields onto a smooth beam line by superposing in
situ the required corrector dipole fields.

In the real world, the monitors are not perfectly centered; they have displacements

of up to a,, and thus, for zero reading, permit kicks of up to § — am/f. After a few

relaxation steps, we will therefore essentially be left with an upper limit ¢ = & for

the orbit kicks: a

I (23)
f

Note that ¢ does not depend on the alignment accuracy a, of the quadrupoles any

n,

more, but only on the centering of the monitors; a remarkable, very useful result!



Then, in our SSC example after orbit relaxation, withf{ = 85 mand ¢ = 0.2 mum/85 m

= 2.4 prad. we have the spin orbit coupling integral {eq. 13)
Loms(m=2) = 0.97 rad = 36°
and the spin tune shift due to orbit errors (eq. 14)
Avpm,(m=2) = 0.075

These confortably small values indicate that closed orbit relaxation. applied after
standard closed orbit correction, may be a sufficient tool to avoid depolarization by
orbit imperfections even up to SSC energies. In addition, however, there remains
the possibility of devising specific orbit correction schemes which decouple the spin
motion from the orbit at specific precession frequencies, as described in section 8.

The relaxation scheme. slightly modified and somewhat less effective, can also be
applied in a ring where a beam position monitor and a vertical correction magnet are
only available at every vertically focusing quadrupole, i.e. at every second quadrupole
along the circumnference3). In that case, the upper limit for the kicks will be instead

Gy Mo (24)

TV

where q, 1s again the maximum offset of the quadrupoles from the median horizontal
plane. Here, £ depends on q, since the offset of the D-quads cannot be compensated

by a correction magnet in situ.
We have here discussed closed orbit relaxation only for the vertical motion. It should,

of course, also be applied in the horizontal plane in order to reduce the variations in
spin precession phase that are generated by horizontal closed orbit kicks.

7. Effect of dipole magnet misalignment

In our ring model, we have so far ignored the additional vertical kicks due to the
bending magnets between quadrupoles. By carefully building these magnets, their
roll angle, i.e. the variation of field direction over the length, can be kept below, say,
+1 mrad. It can be measured as a function of s, and the average orientation of the
magnet can then be levelled in the tunnel to an accuracy of, say, £0.2 mrad. It is
essential to note here that. due to the stiffness of coil and magnet structures and due
to the smoothness of stacking fixtures, the roll of the magnet will not be a rapidly
varying function of s but will. most probably, resemble a sine wave of not more than



about one full oscillation per magnet length. On the other hand. there will be many
Spin precessions per magnet at very high energyv, and the effect of the roll on the spiu
will thus partially cancel.

In the SSC, for example, there are 10 spin precessions per magnet at 20 TeV, and we

see from
‘ 11 1 . 10
1 /cos 10z cosadz | = | = (% sinila + = 517191:) | < —
2111 9 99
that the effective kick ¢p given to the spin by each magnet will be about an order
of magnitude smaller than the maximum roll angle suggests. Thus. with a bending

angle of 1.6 mrad in the SSC magnet, and 6 magnets hetween guadrupoles
EBrms = 0.2-107°.1.6-107% . /6 = 0.8 pyrad

which 1s reasonably small as compared to the maximum kick ¢ = 2.4 urad that
remains in the SSC quadrupoles after orbit relaxation. The proposed closed orbit
relaxation scheme will therefore work with similar effectiveness when the roll of bend-
Ing magnets is included.

8. Compensation of spin orbit coupling modes

With the spin precession phase advance §¥ = 2rp/m between successive quadrupoles,
the strength of the spin orbit coupling mode {m, p) can be determined in a way sim-
ilar to that used for the worst case m = 2 in section 4. We have done this here only
for a few more examples with p = 1

3 4 6
S 2 156 1

(LB N

m |
=2

where the mean square value of the orbit-induced spin rotation per revolution happens
to go down approximately as 1/m. For a given snake configuration the calculation
of coupling mode strengths should include the jump and sign inversion of the spin
precession phase in each snake (section 3). One can then select the modes (m, p)
with the strongest coupling and devise for each of them a specific orbit correction
pattern. This pattern can be applied after acceleration to the corresponding energy
by empirically adjusting its strength for maintaining maximum polarization. Once
compensation has been achieved for a certain mode (m, p), it will be effective at a
large number of equidistantly spaced energies, e.g. in the SSC at ca. 57 different
energy levels, at least.

How, in principle, the correction can be individually addressed to a certain m-value

10



is explained in Fig. 2 for the examples of m = 2, 3. ... 9 1n a ring with a betatron
phase advance of 45" per half cell. Over a certain part of the ring. a kick of same
sign is applied at every m'" quadrupole, and the orbit distortion generated by each
kick is cancelled again by another one of these kicks which is (4 + 8n) half cells
apart, since then the betatron phase advance is an odd multiple of 180° between
them. For some values of m, the orbit-cancelling chain of kicks gets rather long
and might not fit any more into one interval between snakes. In these cases, the
chain might be subdivided, or extended over one or two snakes, and if these methods
do not work, a more complex scheme of kicks with orbit cancellation must be devised.

Compensation of spin orbit coupling is rather difficult for m = 8 because orbit can-
cellation would demand the kicks to alternate between every 8% half cell, while for
the compensation they are required to be equal. A solution is provided by centering
the kicks about a 180° snake which inverts the spin and adds a 1807 spin precession,
because that particular spin oscillation which has its maximum amplitude in the
snake will there be subjected to a 180° phase jump, and the subsequent kicks on the
other side of the snake must then be inverted.

So far. we have only addressed the compensation of spin orbit coupling for that
particular spin phase which has its maximum amplitude at the guadrupoles of our
selected chain of kicks. spaced m half cells apart. Obviously, another compensation
must be provided for the orthogonal spin phase which is not coupled to these kicks.
This is somewhat complicated by the fact that, at the positions of the m quadrupoles
within a period of m half cells. cos 27 p/m and sin 27 p/m assume different amph-
tude patterns depending on the value of p. However. the number of these different
patterns is <= m since, with increasing p, the patterns repeat themselves periodically.
If, for the k** amplitude pattern, the precession amplitudes in the m quadrupoles are
composed into the vector @ and if the 1" correction mode provides the kick ¢é; at
only the it" guadrupole, we need an independent correction sum b = ¥, ai; & for

each pattern and thus have the set of linear equations

A S by
G- & b,

(25)
am -8 = by

which can be solved for the m1 components é; of the vector 3

11



Admittedly. more work is needed 1o better understand the offerings and shortcom-
ings of such mode correction 16]. but I believe that schemes can be found to make
1t a practicable concept for curing the small number of modes that might still be
dangerous after orbit relaxation.

9. Conclusions for the SSC

The workshop report ref.[1} concludes that 7... the key to the feasibility of polarized
beams in the SSC will be how to overcome the tolerance problem”. With alignment
tolerances of £0.2 mm for the quads and for the position monitors with respect to
the quads, and with an average roll of bending magnets not exceeding +0.2 mm, I
believe that the proposed method of closed orbit relaxation suffices to bring the spin
orbit coupling well below the threshold for imperfection resonances. This assumes
that the SSC will be equipped with a vertical position monitor and correction magnet
at every quadrupole. As an added safety against coupling modes that might still be
strcTng;ft»er orbit relaxation, the recommended patterns for specific orbit corrections
may be applied.
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Tab. 1 Distributions of the alternating sum S of kicks for a confined closed orbit

with n kicks, approximated by q discrete amplitude levels. For each distri-

bution, i.e. each line, the mean square deviation ¢* = 1/¢

n Y § N(S)is

given. Each element N(S) in the pyramids (e.g. in the square) is the sum
of the q symmetrically located interspaced elements in the line above (e.g.

in the circles).
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