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Abstract

It is shown how a variety of periodic—orbit sum rules can he used to extract information about a
quantum mechanical system. whose classical counterpart is completely chaotic, from knowledge onlv
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of the quantal energies in the low energyv region are studied. where we restrict ourselves to the level
spacing and spectral rigidity.
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I Introduction

After three decades of research on classical chaos there is still no clear--cut answer to the question which
typical properties betray a quantum mechanical system as one with a chaotic classical counterpart.
Quanium chaology has been defined [1] as the study of semiclassical (A — 0), but non-classical,
behaviour characteristic of systems whose classical motion exhibits chaos, i.e. neighbouring trajectories
in phase space diverge at an exponential rate and so the time evolution depends infinitesimally on
the initial conditions. In quantum mechanics Heisenberg’s uncertainty relation prevents an exact
determination of the initial conditions in phase space. So one may wonder how a given chaotic system
might hehave in the transition region between classical and quantum mechanics.

Already in the age of the “old” quantum mechanics Einstein [2] recognized the lack of a substitute
for the Bohr-Sommerfeld guantization rules for systems without invariant tori in phase space on which
one has to apply these rules. The ahsence of such tori is a characteristic of chaotic systems. Today the
periodic-orbil theory is considered to be this substitute for the Bohr-Sominerfeld quantization rules.
The periodic-orbit theory was originally derived from semiclassical considerations by Gutzwiller 3]
(see also [4-6)) and culminates in an asvinptotic periodic-orbit sum rule (POSR) which can be written
symbolically as

Z(quantal erergies) = Z(classical periodic orbits) , hA—0 . (1)

(In general, the POSR (1) is at hest conditionally convergent. A generalization, that leads to absolutely
convergent sum rules, has been worked out recently [7].)

In this paper we consider a conservative Hamiltonian system with two degrees of freedom which is
strongly chaotic. Two degrees of freedom are the minimum for a svstem to be chaotic. In this sense such
systems are the simplest ones for the study of manifestations of classical chaos in quantum mechanical
svstems. The system considered by us is the symmetrical Hadamard-Gutzwiller model [8,9], for which
one can derive infinitely many exact POSRs of the type (1}). The Hadamard-Gutzwiller model can be
considered as a billiard on a surface of negative curvature, which is saddle point shaped everywhere. In
contrast to “planar hilliards” it has the advantage that the POSRs are mathematically exact relations
and not only semiclassical approximations. In the mathematical literature the generalized POSR
is known as Selberg’s trace formula, a deep theorem of harmonic analysis and hyperbolic geometry
[10,11]. We shall show that the quantal energies can be determined by the classical periodic orbits
with a momentum resolution Ap ~ 2—,’5, where [ is the length of the largest classical periodic orbit taken
into account in the sum rule (1). Vice versa, we shall demonstrate that the quantal energies “know”
about the length spectrum of the classical periodic orbits. Thus we shall present an exact approach to
quanium chaology of spectra. A preliminary announcement of our results has already appeared [12].

II The Hadamard-Gutzwiller model

The Hadamard-Gutzwiller model is governed by the following classical Lagrangian and Hamiltonian,
respectively
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where p; = mg,-jég—fti and g;; = ﬁ%étﬁ (1,7 = 1,2). The dynamical system (2) describes the
1 2

classical motion (geodesic flow) of a particle of mass m sliding freely on a surface M of constant
negative Gaussian curvature, A = — —E%—,_,, the so-called pseudosphere. In this paper we use the Poincare
disc endowed with the metric g;; as a model for the pseudosphere, where the pseudosphere is mapped
into the unit circle on the complex plane: = = 23 + iz, 22 + 2 < 1. The energy E = H = L is
the only constant of motion. There are no invariant tori in phase space, and neighbouring trajectories
diverge with time at the rate e“!, i.e. the classical orbits are unstable, a typical property of chaos.

The Liapunov exponent w is given by w = \/2E/m (For a recent review, see [13]).



In this paper we consider the simplest case. where the particle moves on a compact Riemannian
surface M of genus 2 and area 4 = 47 R* which is topologically a double doughnut. In addition,
this surface is chosen to possess the highest possible symmetry. In the Poincaré disc, M is repre-
sented by a regular hyperholic octagon, see fig.2, the fundamental region of a discrete subgroup & of
SU(1,1)/{£1}. (The latter group represents the three-dimensional Lorentz group). The “octagon
group” G leads to a tessellation of the pseudosphere in terms of octagons by identifying the points =
and ', where ' = bz and b € G. The tessellation can be viewed as cutting out a piece of the whole
pseudosphere and gluing together opposite edges, which then leads to the imagination of a double
doughnut. On the Poincaré disc, the boosts & € G can be represented by 2 x 2 matrices

— a B 2 1912 -
b_()@‘ Q*) } |a| hB| =1, |Tl‘b|/2 3

and their action on a point z is defined hy the linear fractional transformation

az + 3
ﬁ*z_+_at-

d=bz= \
where every product of boosts b;'s corresponds to the product of their representing matrices. To
construct the regular octagon one has to choose the four generators by , k¥ = 1,2, 3, 4, of the “octagon

group” & with
i lo

! .
ap = coshéq =1+v2 and SBi= ¢’ sinh r
where [ denotes the length of the shortest periodic orbit. One can associate a periodic orbit with
each boost b € G, whose length [(b) is given by [14]

[(b) = 2arcosh|Trd! . | (3)

This is a very important relation for the calculation of the length spectrum of periodic orbits.

The gquantum mechanics of the Hadamard-Gutzwiller model is determined by the Schrédinger
equation

B2
 2mR?

where A = ¢ 1/28,(¢*/2¢%9;) is the Laplacian on M, g = det{g;;). Eq.(4) has to be solved with
periodic boundary conditions, i.e. ¥, (bz) = ¥, (z) for all b € G. There is then only a discrete energy
spectrum {E,} with a non—degenerate zero mode: 0 = Ey < Eq7 < £, < ---. A possible degeneracy of
the quantal energy F, is denoted by d,, € N. For n — o we have £, ~ %’Tn (Weyl’s law), if d,, = 1
for all n. Since the eigenvalues scale as E,, = %@/\n, where A, is dimensionless and independent
of h,m and R, we use from now on the following units : h = 2m = R = 1. Then the Schrédinger
equation simply reads

AV, (z) = E,¥,(z) (1)

AT, (z) = E ¥, (z) with A=o(1 22 23 LA (5)
i) T Bl : A L WP SRR Pr Y '

IIT The length spectrum

The length spectrum {I,} of the periodic orbits in the regular octagon is of crucial importance as the
“classical” input in the Selberg trace formula which will be discused in section V. The computation
and some surprising properties of the length spectrum {/,} have already been presented in {14]. Here
we only mention that we calculated the length spectrum by computing the conjugacy classes of the
“octagon group” & and then used eq.{3) which yields the connection between a group element b € G

| ]
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Figure 1: Huber’s asymptotic law, eq.(6), (dotted line) is shown in comparison with the staircase
function N(1)

and the length of its associated periodic orbit. The length spectrum {I,} proliferates exponentially
according to Huber’s law [15] which is typical for chaotic systems

¢ (! M-
N~ — — 4 = I —
-~ < (2 ol )) R (6)
where
N(l):= E Gn i ¢n is the multiplicity of the length {, . (7)

<l

Figure 1 shows the staircase function N(/) in comparison with Huber’s law, where we have taken into
account correction terms up to M = 3. The figure reveals that the spectrum is nearly completely
known up to lengths of order 14.5. In principle we are able to compute even more lengths, but the
computer titne increases very rapidly with increasing lengths. This is a consequernce of Huber’s law: the
exponential proliferation of long lengths forces one to be content with this computed length spectrum.
Nevertheless. it already suffices to vield very important results as will be discussed in sect.V.

IV  The energy spectrum

Now let us turn to the numerical solution of the Schrédinger equation (5). There exist various compu-
tational methods to solve a partial differential equation like eq.(5). The special difficulty in solving our
problem are the periodic boundary conditions as described in section 1I. These boundary conditions
can be incorporated in the two well elaborated methods of finite differences and finite elements. We
have chosen the latter one because of its higher flexibility. In this method one can describe more easily
curved boundaries as they occur in our model. Here we only give a short description of the method
of finite elements hecause there exists an extensive literature on this subject.

The method of finite elements is based on the variational principle, which in our case states that



Figure 2: The tessellation of the fundamental domain is depicted which is used for the method of
finite elements. It leads to matrices of dimension 3518 if one uses ansatz—functions of second order in
the triangles.

an eigenfunction ¥ of the equation

&’ % 4F
dz3 9zl (1 2% - i)

¥ =0 (8)

minimizes the variational integral

av 2 p 2 4E
L= Fve TN T Y deydey o
./ /octagon {(8&‘1) + ((9;[’.2) (1 _ 1'% _ ‘r%)g } Iy ddig ( )

To evaluate this integral the fundamental domain is tessellated by finite elements (fig.2) for which we
choose triangles. On each triangle ¥ is approximated by a polynomial of low order. In the following
description we restrict ourselves to polynomials of second order, where the ansatz reads as

2 2
Yoy, 23) = €16 + 02,627 + Ca3e22 + €427 + 502122 + C,e T3 (10)

with distinct coefficients ¢; . on each element e. The ansatz (10) must be continuous on adjacent
elements which connects the coefficients ¢; . of an element with the corresponding ¢;.’s of the neigh-
bouring elements. This is accomplished by expressing the 6 coeflicients ¢; . by the 6 values u; which
¥ takes at the corners and the centres of the edges of the triangle. The ansatz function along an edge
is then uniquely determined by the three values u; belonging to this edge. Therefore the function 1s
continuous between neighbouring triangles because they share the common edge points u;.

Then one goes into eq.(9) which yields a generalized eigenvalue problemn

Aii = E Bi . (11)



where A and B are real symumetric matrices and in addition B is positive definite. The vector «
consists of the values u; of ¥ at the boundary of the triangles. The eigenvalue problem (11} is solved
by a standard NAG-routine.

In table 1 we list the first 100 eigenvalues which are calculated at the HLRZ Jillich on a CRAY X-
MP. In this calculation the matrices A and B have the dimension 3518 where we used the polynomial
(10) as the ansatz-function in the triangles. In this table the last figure of the eigenvalues may be a
bit too high, hecause our variational procedure vields upper bounds for the eigenvalues.

E; d; | note on the group E; d; | note on the group i
0 1 9] 50.55 | 3 ¥y
| 3.8388 | 3 | o 57.59 | 4
5.353 | 4 | 59.58 | 4
8.249 | 2 ¥ and 9} 61.02 | 2 91 and 9}
14.728 | 4 62.63 | 3 93
15.048 | 3 9} P 67.61 | 3 91
18.658 | 3 th 71.59 | 4
20.526 | 4 73.66 | 2 9} and 9}
23.078 | 1 9} 7492 | 1 U
1 28.079 | 3 93 75.53 | 3 9]
130,850 | 4 75.9 | 4
132,673 | 1 9} 86.4 | 4
| 36.238 | 2 ¥ and ¥} 86.7 | 3 o h
M 39.00 | 4 91.4 | 1 3
L4001 03 93 93.8 | 4 |
i 42,90 | 4 97.8 | 3 9}
G44.01 | 3 91 100.7 | 3 9}

Table 1: The first 100 eigenvalues of the regular octagon

Fig.3 shows the staircase function
N(E) = #{Eq.|E. < E} (12)

in comparison with Weyl’s law N(E)~ E,E — oo. As can be seen the asymptotic law describes well
the staircase down to the smallest eigenvalues.

Most of the eigenvalues are degenerated, as a close look on table 1 reveals (d; denotes the degeneracy
of level E;). At first sight this seemns to be incompatible with the expected “level repulsion” for quantum
svstems with a classical chaotic counterpart. But these degeneracies are due to the symmetry the
svstem possesses as will be explained in section VI. The column “note on the group™ describes the
membership of an eigenvalue to a one—dimensional group representation as will be explained in section
V1 too. The remaining eigenvalues helong to two-dimensional representations.

V Periodic-orbit sum rules

V.1 The Selberg trace formula

The Selberg trace formula {10,11] is an exact relation between the classical length spectrum {[,} of
the periodic orbits and the quantum mechanical energy spectrum {E,.}. If one expresses the energy
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Figure 3: The staircaise function /N(E) is shown in comparison with Weyl's law N{(E) ~ E, F — .

E.. by the momentum p, via E,, = % + pZ than the Selberg trace formula can be written as

S o ttpn) = St [ dpp tanh(np) p) + LS

{pn} aw {ln}h=1

Gn L
1 & in glh ) (13)
ZSth

where {/,} denotes a summation over all primitive periodic orbits with length /,, ordered as 0 < I <
Iy < I3 < ... and associated multiplicities ¢,, whereas the k-summation counts multiple traversals
corresponding to periodic orbits of length ki,, & > 1. The multiplicities of p, are denoted by d,, and
glx) is the Fourier transform of h{p):

o) = = [ dp costap) hip) - (1)

T

To ensure the absolute convergence of the series and the integral in eq.(13) h{p) must obey the following

three restrictions:
e h(p) is even : h{p) = h(-p)
e h{p) is holomorphic in the strip | Imp| < 2 +¢ 5 ¢ >0
o [h(p)| < a{l +[p[*)"1° {a > 0)in this strip.

This formula is the hasis of the perodic—orbit theory which yields infinitely many periodic-orbit sum
rules (POSRs). An analogous formula can be found for general systems, chaotic or not, but it is then
only semiclassically valid [3-7], i.e. there are unknown correction terms of order A°. In contrast in our
case of compact Riemann surfaces of constant negative curvature this relation is exact. This makes it
possible to study the POSRs even with an incompletely known length spectrum. Knowing only part
of the length spectrum is a handicap conunon to almost all applications of periodic—orbit theory. In
other physical systems this is somewhat troublesome because there the formulas are only semiclassically

6
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Figure 4: The heat kernel ©(t) is computed using the lenght spectrum (full line) and using the first
115 eigenvalues (dashed line)

valid, i.e. either one needs very high eigenvalues of the corresponding Schrédinger equation. which are
very hard to obtain, or one has to cope with low eigenvalues hut then the unknown correction terms
of order A% may be important.

In the following subsections we discuss various functions A(p) constructed for different applications.

V.2 The heat kernel

As our first example of an exact POSR let us consider the trace of the heat kernel (partition function)
defined by O(f) = tr{e H’) H = —A.,t > 0. For this application we have to use

hip) = e (3tP)t = Bt (15)

Then the Selberg trace formula yields

e Area( F ~1/4 it €3 = gnl (ki 2
= dne_En — / db A ntn e m 16
n_; (4mt) 3/2 Slnh b 4 p {df:}i; sinh %n ; (16)
where we have used )
1 f== si
tanh(m-p) _ A/‘ db ﬂ,n(pb) (1?)
T Jo sinh 2

It follows from Selberg’s theorem that the PO sum in (16) converges absolutely. This can also be
seen directly from the fact that the exponential proliferation of the length spectrum (see eq.(6))
is compensated nicely by the Gaussian suppression factor in eq.(16). Fig.4a shows the heat kernel
obtained from the length spectrum {{, } {full line) using the first 200000 lengths and from the eigenvahie
spectrum {F,} (dashed line). The small-t behaviour of the heat kernel ©(7) is determined by the
integral term in eq.(16} and is given by (the coefficients b,, are explicitly known, see [11])

82

Area(F) e '/4 foo  he” i 1 & N
T W S db = = Ot : 18
(47t)3/2 /0 sinh 2 t Z:: o ) e

Reinsertion of £ in eq.(16) can be accomplished by the replacement ¢ — ht. Thus the semiclassical
limgt (h — 0) corresponds to the limit ¢ — 0 ( E,, — oo). It then follows that © diverges as (At)~? from

i



which one derives immediately Weyl’s law. The terms b,,(ht)™,m > L. correspond to semiclassical
perturbation theory. i.e. to an asymptotic expansion in h analogous to higher WKB approximations
in the case of non—chaotic systems. In addition, the PO sum (16) contains an infinite number of
terms proportional to exp[w(fgt)z} which are entirely of non-perturbative nature. The crucial point
to notice is that by eq.(16) one has succeeded in summing up not only perturbation theory but also
all non-perturbative contributions.

While the small-t behaviour of ®(t) corresponds to the semiclassical limit, the large—t behaviour
gives us information on the ground state and low excited levels according to O(t) ~ 1+dye~E1t(t — o).
In fig. 4b we have plotted the function In[O{t) — 1] for 0 < ¢ < 3.5 as obtained from the r.h.side of
eq.{16) using the first 200000 lengths. One observes a strong exponential fall off as expected. From
a fit we obtain E; = 3.83 asswming d; = 3 in nice agreement with our results from finite elements.
The main conclusion to be drawn from fig. 4b is that there are no “small” eigenvalues (apart from the
ground state Fy = 0) which are defined by 0 < E, < % (= s:i‘?? j. The question of “small” eigenvalues
is of great importance for number theory. In our special case of the octagon group the exclusion of
“small” eigenvalues implies that the analogue of the Riemann hypothesis is true for the Selberg zeta
function Z(s) defined in eq.(20) below. By the very definition of the heat kernel it is clear that ©(t}
is a monotonously decreasing function of t and thus by itself not suitable to show any direct signature
of chaos. (See, however, the “modulated heat kernel” defined in eq.(30) helow.)

V.3 The resolvent and Selberg’s zeta function

Another spectral function of great importance in quantum mechanics is the energy—dependent Green’s
function (resolvent). We start with

hip) = 1 1 _ 1 _ 1
(p‘p2+(04%)2_p2+(5u%)2 T s(1-s)-E o(i-o)-E ~

(19)

which is an admissible function in the Selberg trace formula for Rec > 1 and Res > 1. The trace
formmla can be conveniently expressed by the Selberg zeta function which for Res > 1 1s defined in
analogy to the Riemann zeta function {(s) by the following Euler product over the length spectrum

{ln} N
[I[-etrh]™ (20)

k=0

z(s) = 1]
{t=)

Z(s) is an entire function of s whose non-trivial zeros at s = sy, := % + ip, (n > 1) are exactly given
by the momenta p, related to the quantal energies by E, = p + % = 5n(1 — 8,,). (We define pp = 3,

Z'{s
pn > 0forn =1,2,.--}. Thus Z((s))

exactly at the quantal energies E,. The Selberg trace formula yjelds for h(p) of eq.(19)

is a meromorphic function of s whose non-trivial poles are located

3 ! 1 _ Area(F)
:‘:‘U & L(l —§)-E, oc(1-0)- En] - —5, — (¥(s) — ¥()]
S Z%”+ L_Z1o) (21)

2s -1 Z(s) | 20 -1 Z(o)

I'(s)

B is the digamma function. Isolating the ground state ko = 0,

where ¥(s) =

XI}_T) + idn L(l—.:)*En-O'(l_;)“E”] B

Areal F'} 1 Z(s) 1 Z'(o) 1
T 2s-12Z(s) 20-12Z(g) o(1-0)

. (22)



Figure 5: The Breit-Wigner smeared level density is shown as explained in the text

one can eliminate o by taking the limit ¢ — 1+ because the limit

lirn [

g—14

1 Z'(e) 1 } _ 12Z7(1) Areal( F)

20 -1 Z{a) | o(l- o) 2z LT et 5 ) (23)

exists where we have defined the so—called generalized Euler constant v4. (For the regular octagon
we obtain 74 = —0.595..-.) Finally we arrive [11] at the following sum rule for the regularized trace
of the Green’s function expressed in terms of the logarithmic derivative of Z(s) (E = s(1 - s))

1 & 1 11 Area(F) 1 Z'(s)
E+Zdn[E-En+E_n}—7A+ 2n w[s)_Qsle(s) ) (24)

n=1

Unfortunately at present this sum rule cannot be used to determine the eigenvalues E,, by searching

for the poles of the r.h.side of eq.(24), i.e. the non-trivial zeros of Z(s), because they occur on the

critical line Res = % where the Euler product {20) diverges. What is lacking is an analogue of the

Riemann-Siegel formula which would allow an analytic continuation of Z{s) to the critical line.

V.4 The Breit-Wigner smeared level density

A formula which can be used to locate the eigenvalues E, can be derived from eq.(24) nevertheless.

The possible way out is to work with a smeared Green’s function which can be obtained from eq.(24)
by making the replacement E — E + iav/E (E > 1.0 > 1} and then taking the imaginary part of

both sides of the equation. Then we end up with the following exact (and convergent !) POSR for



the smeared spectral density

= o*Ed, _
Z%JE—E)z—O—a?E - _2‘1@1111‘1’ +A~ 1Ay} +
n=
gulac= A= ‘
A1+A2 ZZ T A oA ) A (4 k1)(25)

where AL = 2“1/2{\/(E — 1%+ a?E£ E3 3}1/2, The Lh. side of eq.(25) is a sum over “Breit-Wigner
resonances” with individual maxima at £ = E,, and maximum values equal to the degeneracies d,,.
Unfortunately one has to choose an energy—-dependent smearing av'E, because an energy—independent
smearing would result in a divergent POSR.

In figs. 5a,c we show the smeared spectral density (25) for £ < 100 choosing a = 1 and « = 0.3,
respectively. The r.h.side of eq.(25) has been computed using 200000 primitive orbits (full line),
whereas the .h. side has been obtained from the first 115 quantal energies (dashed line). The agreement
is impressive. In fig. 5b,d we show our evaluation of the r.h.side of eq.(25) in a very large energy range
extending up to E = 1000 using again a = 1 and a = 0.3. The graphs shown in figs. 5a~d show
a bumpy structure, as expected. Since the energy resolution goes as AE ~ av/E, it is clear that
for @ > 1 the Breit-Wigner smeared spectral density is too coarse and therefore not well adopted
for calculating individual levels. The situation improves if & can be made smaller than the critical
value 1, assuming that the series are still conditionally convergent. Figs.5¢c,d show, indeed, that the
resolution becomes better if « is lowered from 1 to 0.3. The spectral function (25) gives a collective
property of the quantal spectrum, namely a clustering with scale AE. For a = 0.3 (fig. 5¢) one sees a
close correlation between the humps obtained from the periodic orbits and the quantal energies.

To keep things as simple as possible, let us discuss in more detail only the critical value o = 1,
as in figs. 5a,b. It is easy to see that in this case the r.h. side of {25) requires the knowledge of the
Selberg zeta function at s = 1 — ivVE, i.e. Z(1 — ivE) (see eq.(24)). Thus the chaos in the motion of
the particle manifests itself in the dependence of the Selberg zeta function on the energy. The graphs
shown in fig. 5 look totally unpredictable and their explicit calculation is certainly quite difficult for
large values of E. This is just what is expected in view of the number-theoretical similarity between
Z(s) and the Riemann zeta function {{s).

V.5 The Gaussian smeared level density

There remains the challenge to find a method which allows us to make the scale AF smaller and smaller
until eventually all details of the quantal spectral density can be obtained (at least in principle) by
sumrnming classical periodic orbits, The smeared spectral density of the previous subsection has the
disadvantage that ebsolute convergence can only be proved for a > 1, i.e.for a < 1 one must compare
the curve obtained from the length spectrum with that from the eigenvalue spectrum to be sure that
the sum rule works even for o < 1. Nevertheless, one can arrive at a POSR which is absolutely
convergent for an arbitraryly small smearing parameter, if one uses a Gaussien instead of a Breit-
Wigner smearing. Inserting

i _@+r)?
h(p') = e = +e =7 (26)

in eq.(13) one arrives at

i (p=pn)? _ipten)? oo _'p (' +p)
Z dn [ev T e Ta ] = 2/ dp' p' tanh(=p') [e TR e
0

+

82 2
23 S e
VT {7k sinh 5

10
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Figure 6: The Gaussian smeared level density is shown as explained in the text

Here p = /E — 41 > 0 denotes the momentum. It follows from Selberg’s theorem that all series and
the integral in the POSR (27) converge absolutely for any € > 0.

For small € the Lh.side of eq.(27) represents a series of delta-like functions of width Ap ~ V2
having peaks at the exact level positions p = p, (n > 1) and e-independent height d,. Away from the
maximum of the peaks the curve declines exponentially as can be read off from eq.(27) in contrast to
the Breit-Wigner smeared level density where the fall off is only %3 If ¢ is made smaller, more and
more terms in the sum over classical orbits on the r.h.side of (27) contribute with faster oscillations
until eventually they sum up in a magic conspiracy to give peaks at the guantal energies. Each
periodic orbit b contributes an oscillation to the smeared spectral density which has a “wave length”
Ap ~ %, which implies that a resolution of order Ap ~ v/2¢ requires a summation over the length
spectrum up to lengths of order I{b) ~ ‘—/_f—“ ~ 29 for € = 0.15. In fig. 6b we show the Gaussian level
density (27) for € = 0.15 as a function of the energy E for E < 1000 taking into account the first
200000 primitive periodic orbits corresponding to {{b) < 28.6275. Fig. 6a shows the same result at low
energies in comparison with the result computed from the first 115 quantal energies as obtained from
our finite element method (dashed line). The agreement between the two results is excellent. One
sees beautiful peaks at the quantal energies which can be read off directly with an energy resolution
AE = 2p Ap from figs. 6a,b together with their degeneracies. (At finer scales, the degeneracies may
dissolve in near—degeneracies.) In figs. 6¢c,d we present the smeared level density for very large energy
ranges for which is no realistic hope to get the eigenvalues from a direct solution of the Schrodinger
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Figure 7: The smoothed staircase N(E), eq.(28), is shown in comparison with the “true” staircase
function N(E) obtained from the quantal energies

equation. The resolution of the peaks is somewhat coarser in this case as explained above, but the
unpredictable behaviour of the curves seems to be the same.

In order to illustrate the crucial role played by the multiplicities {g,} of the length spectrum {i.},
we have evaluated the POSR (27) taking into account the first 10000 primitive periodic orbits with
the exact lengths but replacing g, by the mean value 8+/2¢t»/2/l,,, as derived in [14]. It turns out that
the nice agreement for the Gaussian level density (27) is destroyed, since one obtains a graph which
shows very large but regular oscillations, i.e.the chaotic peaks seen in fig.6 are completely washed
out.

V.6 The smoothed staircase

The staircase function N(E) can be obtained from eq.(27), too:

N(E) = 1+f dE'S" d, 6(E' — E,)
1/4

n=1
E_“_ ’ = ! ’
= 1+ /; dp' Y dy [6(p' — pa) + 6(' + pn)]

= VE-1 ' 42”12
= 1+ lmp dn f dp' f(p',pa)  with  fe(p',p { T te @ } ,
E—Ongl 0 ) ) \/—G
where the 1 arises from the zero-mode. For ¢ > 0 we get a smoothed staircase function N(FE) with
lime_g N(E)= N(E) and (E > 1)

\/f_;'w—i— 2 Foaft B 12+ "2
N{E) = Tre / dp” p’ tanh p” / dp’ cosh —sz e &
1 > Gn Sll’l '\/ kln ei:! )2 (28
S z
T {lz},; k sinh ﬁﬂ ' )
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The result of the numerical evaluation is shown in fig. 7 in comparison with the “true” staircase
obtained from the quantal energies. We have used ¢ = 0.45, a value which is too small to vield an
accurate curve for the Gaussian level density. However, in the case of N (F) it leads to a reasonable
approximation because here the integration smoothes the non- physmal oscillations, which occur in
the case of too low €’s in the smeared Gaussian level density.

V.7 The cosine—modulated heat kernel

In the preceding subsections the main question was how one can extract the locations of the eigenvalues
from the length spectrum {I,}. But one can reverse the question and ask for the length spectrum as
determined by the eigenvalues. For this purpose we consider

- 1
h(p) = cos(pL)e™™ , E =7 +p’ (29)
which yields the following POSR
L —Ent DR -p’t
cosh— + Zd cos(pp,L)e ' = 2e 4] dp p tanh(xp) cos(pLje™”
n=1 0
{L—klx)? _[L-H:!-n)z}
+ € 1t € Y] 30
smhﬂll [ (30)

{I}kl

Fort > 0,L € R, eq.(30) is an exact representation of the cosine-modulated heat kernel (compare
with eq.(16)). Va.rymg L for fixed but small , the r.h.side of (30} generates Gaussian peaks of width
AL ~ 2+/2t exactly at the lengths I, of the classical periodic orbits. In fig. 8 we show the modulated
heat kernel for ¢ = 0.01. The full line corresponds to the r.h. side of (30} evaluated with 10000 primitive
periodic orbits, whereas the dashed line represents the 1.h. side computed from the first 115 eigenvalues.
The two curves show for L > 2.5 a very similar structure with an equal number of peaks at nearly the
samne positions. The peaks are less pronounced in the curve computed from the eigenvalues which is
not surprising due to the relatively small number of eigenvalues used in the calculation. Nevertheless,
one can nicely resolve the lengths [, of the four shortest primitive periodic orbits having lengths 3.057,
4.897, 5.828 and 6.672, respectively.

The peak near 7.2 corresponds to the two next shortest lengths at 7.107 and 7.263, respectively.
Since for ¢t = 0.01 the length resolution is only AL ~ 0.3, we cannot expect to resolve these two
lengths. Above these two lengths up to L = 9 there are altogether 8 lengths which, however, overlap
appreciably. The two bumps near 8.2 and 8.8 correspond to the two lengths at 8.225 and 8.872
whose multiplicities g, are 192 and 288, respectively. These multiplicities are much higher than the
corresponding average multiplicity which is around 100, and since the two lengths are separated by
AL = 0.65, they cause the two bumps seen in fig.8. For L > 9 the length spectrum becomes denser
and denser according to the law AL ~ 8\/§€_L/2, and one expects with our resolution a smooth
behaviour given by cosh(%), the first term on the Lh.side of eq.(30). If the resolution AL ~ 2+/2t is
improved by making ¢t smaller and smaller, the graph of the modulated heat kernel looks more and
more chaotic. Although the lengths themselves obey a simple law, their multiplicities show a very
chaotic behaviour with large fluctuations around the average value ~ 8/2¢L/2/L as can be seen from
fig.5 and table 1 in [14].

V.8 Periodic—orbit theory with a finite number of lengths

Until now, we only considered sum rules in which infinitely many orbits contribute to the sum, but
one can construct sum rules with a finite number of orbits or even without any orbit! This can be
achieved by choosing h(p) with a parameter L in such a way, that its Fourier transforin g(z) vanishes
for L < Iy, where lp is the shortest length of the length spectrum {l.}. Then the sum over the
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Figure 8 The cosine-modulated hLeat kernel (30) betrays the length spectrum

length spectrum cannot contribute to the sum rule. Thus one gets a sum rule where the sum over the
eigenvalue spectrum is only determined by the integral contribution. Let us first consider

N
h(p) = [EL sianL] , N =3,4,5,--- (31)
P
which leads to
oN LY N\N & [sinzgE]"
|:—L— sinh é—J\—r] + (f) ngldn [ o = (32)
Area(F) (N\N = dp . pL
o (L) /; o tanh(7p} [smﬁ] + 222 nhun glk L) .

{in} k=1

The sum over the length spectrum vanishes for L <« Iy = 3.057--- yielding a parameter—free sum
rule for the eigenvalues. Remarkably the integral term depends only on the area of the fundamental
domain Area(F') = 4w(g — 1)}, where g is the genus. Thus the r.h.side of eq.(32) is the same for all
octagons in spite of their different shapes and quantal energies. Only the range of validity depends on
the shape which determines the shortest length l,. We have checked the sum rule and found a nice
agreement again.

Another choice for a function A(p) yielding a sharp cut off in the surnmation over the length
spectrum is

' sin(L(p’' - sin{L(p' +
Ay = 2P =p)) | sn(L(p'+ p)
p-=p r+p
which produces the following POSR. for g = 2 :

P >0,L>0 (33)
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i [sin(L(p,, - ph N sin{ L{px. ‘f“P))] _
n=0 Pn =

n r Pn + P
L sin(pr) cos( Lp) S gnl
. dr +2—"20 4 — It " cos(pkl, )0 (L — E*IZ) . 34
p/uL sinh § : sinh% %g:] 25inhk—,j’L (pkln) ( ) (34)

(Here ©(z) denotes the Heaviside step function and must not he confused with the heat kernel (16).)
Again one has for L < Iy a parameter—free sum rule only for the eigenvalues. If one chooses the
parameter L so that one takes into account only the first few lengths one gets a curve with nice peaks
in the momentum p but the resolution is very bad if L is too small. One can get peaks resolving
the eigenvalues only for very large L, but then the zero mode Eq = 0, l.e. pg = %, causes numerical
difficulties, which are absent in the Gaussian—smeared level density, for example. To see this note that
the zero mode gives the dominant contribution

' -2 (1 L L
h (%) =5 {gsinh 5 cos(Lp) + pcosha sin(Lp)}
where the amplitudes of the oscillations in p increase exponentially with L. Therefore in order to
get information on the eigenvalues E,, > Ep one must subtract two large terms and only the minute
difference arises fromn the eigenvalues E,, > Ep.

VI Statistical properties of the energy spectrum

VI.1 Desymmetrization

To study the statistical properties of the energy spectrum in view of a possible signature of quantum
chaos one must desymunetrize the system, because one is not interested in correlations of the spectrum
due to symmetries.

A look on fig. 9 reveals that the fundamental domain of the regular octagon is mapped onto itself
by rotations in steps of T and by reflections along the symmetry axes (dotted lines in fig. 9). One such
reflection and one rotation by § are the generators of the Dieder—group Ds.

To obtain the eigenvalues for a definite symmetry class, one has to transform the matrices A and
B in eq.(11) to a basis of vectors, which belongs to the irreducible representations of the group Ds.
In eq.(11) each basis vector describes the values u; at one point in the finite element mesh. Now the
synunetry operations connect those points which can be mapped onto each other by operations of
Dg. (These points are indicated by the values uy,...,uss in fig.9.) Group theory (see [16}) yields
the bhasis vectors according to the Dg symmetry which describes the relation of the function values
w; at those 16 points. The basis vectors can be classified in 4 one-dimensional (9}, 93, 93, 7}) and 3
two-dimensional {93, 92, %) representations as listed in table 2. For a one-dimensional representation
it suffices to know one of the 16 function values, because then all others can be read off from the basis
vectors belonging to the interesting representation. A two-dimensional representation requires two
values because there are two basis vectors determining the function values.

Then the transformed matrices A' and B’ based on the basis vectors obeying the Dz symmetry
have non-zero elements only in 10 square—submatrices along the diagonal belonging to the different
irreducible representations. The large eigenvalue problem seperates so in 10 smaller ones.

An additional difficulty arises from the fact, that the periodic boundary condition requires different
mixtures of Dirichlet and Neuwmann boundary conditions for each group representation, so a general
numerical treatment is impossible. To see this, imagine that the points u; to u;s of fig.9 lie on the
boundary. Then the periodic boundary condition demands for the function values u; = ;o and
4 = ug for example (fig.9). There are only two representations, ¥ and 93, which satisfy these
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Figure 9: Symuinetries in the regular octagon

conditions. All other vectors according to the Dieder Dg symmetry contradict the periodic boundary
condition.

For the representations 73 and 9} one obtaines from table 2 u; = —uyo and uz = —1ug, therefore
these two representations can be calculated by composing Dirichlet boundary conditions (1 = 0,uz =
0,--).

In contrast for the 3 more complicated two-dimensional representations the additional demand of
Dirichlet conditions would yield not a subset of the energy spectrum with periodic boundary conditions,
i.e. not a subset of a spectrum of a Riemann surface. In the following we restrict ourselves to the 4
one—dimensional representations.

For these one-dimensional representations it is not necessary to start with the whole matrices A
and B for calculating the energy spectrum. It is sufficient to consider the triangle which is enclosed
between two adjacent syminetry axes and the boundary. For the 4 one-dimensional representations
one has to choose the Neumann and Dirichlet boundary conditions as depicted in fig. 10.

These boundary conditions follow from table 2. For example consider the points u; and us in fig. 9,
then for us = ug, one has a Neumann boundary condition and for u; = -u3 a Dirichlet boundary
condition on the dotted symmetry axis between u; and u3.

Expensive computation time can be saved if the method of finite elements is applied directly to the
above described triangles with mixed boundary conditions. The 4 energy spectra shown in fig.11 have
been calculated again at the HLRZ using the method of finite elements with polynomials of fifth order
as ansatz—functions in the triangles. The eigenvalues of the representation 93, i.e. Dirichlet boundaries
on all edges, have already been computed by Schmit [17].

V1.2 Level spacing

The main presumption of “quantum chaos” is that all quantum systems, whose classical lunit is
chaotic, share common statistical properties of their energy spectra, in particular the fluctuations of
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ug| 1] -1 -1:-1)| cos T”Tl sin?%" sin 7%"' cos 7%'!

Table 2: The basis vectors obeying the Dg symmetry

the levels around the mean level distribution. The two most studied statistics are the level spacing
and the spectral rigidity, to which we devote two sections. These statistics should hetray a quantum
system as a chaotic one.

In integrable quantuin systems a Poisson distribution describes the level spacing statistics, whereas
for chaotic ones level repulsion is expected, i.e. a distribution vanishing as the level spacing tends to
zero. The random matrix theory [18] suggests two different distributions, which are well approximated
by

Zse” 42 (GOE) (35)
P(sy= ¥ (GUE) , (36)

where s is the normalized spacing between two neighbouring levels. The GOE distribution, the so~
called Wigner distribution, should be valid for chaotic quantum systems with time reversal symmetry,
whereas GUE should apply if the system has no such symmetry. Thus our system is a candidate for
the Wigner distribution.

The energy spectra {F;} must be normalized to {E”} such that the mean spacing between neigh-
bouring elements is unity. This is achieved by transforming E; with the aid of Weyl’s law N(E) which
accounts for the mean trend in the spectrum:

E':= N(E)) . (37)

For our 4 one-dimensional representations, Weyl’s law can be found as outlined in {13] and one
obtains

1 1 1 67

91+ Ny(E) = GEt o 511)@+ o (38)
1 1 1 67

9 1 NiE) = E- —(lo+ ;hVE+ o (39)
1 1 1

93 : Ni(E) = EE+4—;(IU*511)\/E (40)
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Figure 12: Level spacing of the 4 one—dimensional representations in comparison with various theoret-
ical distributions as explained in the text. The dotted curve is the Berry—Robnik distribution eq.(42)
for p = 0.3.

91 NG(E) = I%E— 21;(10-%11)\/@ : (41)
Here Iy and [, are the lengths of the two shortest classical periodic orbits of the symimetrical Hadamard-
Gutzwiller model. Weyl’s law for the normalized spectra {E''} reads now N(E™) ~ E™ E™" — oo,
of course. These spectra are shown in fig. 11 in comparison with Weyl’s law, where one observes an
excellent match for the first 140 eigenvalues. The eigenvalues above E™ >~ 140 are somewhat too large
and therefore lead to a staircase N(E) lying slightly under Weyl’s law. This is a consquence of the
method of finite elements, because it is based on a variational principle yielding upper hounds for
the eigenvalues which are, however, for the first 125 eigenvalues very good approximations to the true
eigenvalues. Only these first 125 eigenvalues are used in the following statistical considerations. We
use a smoothing procedure for the histograms because otherwise large fluctuations in the bins would
hide the true statistical behaviour. This procedure smoothes a distribution by carrying out a Fourier
synthesis of the damped power spectrum obtained from a Fourier analysis of the given distribution.
Fig. 12 shows the smoothed level spacing distributions for the 4 one-dimensional representations
in comparison with the Poisson and Wigner distribution. Neither of them agrees with our results,
whereas the dotted line gives a reasonable fit. It corresponds to a superposition of a Poisson and
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Figure 13: Cumulative level spacing f; P(s') ds’ for the 4 one-dimensional representations in compar-
ison with various theoretical distributions as explained in the text

Wigner distribution as proposed by Berry and Robnik [19]:
P(s,p) = pze_p’erfc(gﬁs) + (2,0,6—]— gﬁss) P T ; p=1-0p {42)
for p = 0.3. ! To avoid the smoothing procedure, let us consider the cumulative level spacing

f’P(s’) ds' | (43)
1]

which yields a useful statistics even for a relatively small sample of level spacings. The result is pre-
sented in fig. 13 where the staircase function f; P{(s'} ds’ is shown in comparison with the cumulative
Poisson and Wigner distributions. Again neither of them agrees well with the staircase. A much
better match is obtained for the cumulative “Berry-Robnik distribution” using p = 0.3 (dotted line
in fig.13).

Thus our results don’t support the hypothesis that chaotic quantum systems with time reversal
symmetry should display a pure Wigner distribution. Rather our systems behave as if their phase
spaces were divided in chaotic and integrable regions. Following random matrix theory one would

!The parameier p measures the integrabie contribution, if one identifies the integrable contribution with the Poisson
distribution.
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come to the conclusion that our systems are chaotic to only 70%, even though we know that they are
purely chaotic. We would like to emphasize that the symmetry cannot be called for to account for
this result, because we desymmetrized the regular octagon in irreducible representations according to
group theory. Perhaps the random matrix theory should be weakened to the statement that chaotic
systems never display a pure Poisson distribution.

It is notoriously difficult to compute more than a few hundred eigenvalues up from the ground state
numerically for non-integrable systems, and there arises another possiblity for the flaw in our statistics
which lies beyond our power of judgment, because it could be, that the semiclassical properties are
not valid in the low energy range which we doomed to use. However the practice often shows that
semiclassical approximations like WKB describe many systems well up to the low energy range. So it
can he hoped that the behaviour of our system varies only slightly over the energy scale, too.

VI.3 Spectral rigidity

The spectral rigidity Az(L) measures the fluctuations of the spectrum over an energy range corre-
sponding to L mean level spacings, whereas the level spacing itself only measures the fluctuations
between two neighbouring levels. The rigidity A3(L) was defined in [20] as the average of the mean
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square deviation of the staircase N{E) from the hest fitting straight line a + be:

As(L):= <lmn I fL/Z de N(E+¢)—a-— b£}2> (44)

{a.b) L/2

where < > denotes a local average. The constants a and b can be eliminated yielding
1

L/ Z 1 L2 2
As(L) = <I/L/2 deN*(E + ¢) [ /L/szN(E+ e —12 [L2 / L deeN(E—ks)l >
(45)

The behaviour of the spectral rigidity depends on the statistical properties of the underlying spectrum,
of course. Only the behaviour for L << 1, where As(L) ~ jz L, and the fact that Az(L) tends to a
non-universal saturation value A, for large L is independent of the underlying spectrum. Therefore
most important is the transition region for which the random matrix theory asserts for GOE

1 B
As(L) ~ ﬁlnL + const (46)

with const = -0.00695. In contrast to the level spacing there exists a semiclassical theory for Aa(L)
which was developed in [21]. For chaotic systems with time reversal symmetry this theory predicts the
same behaviour for Az(L) as the GOE-theory. An integrable system continues to display the low-L
behaviour even in the transition region, i.e. Az(L) ~ 1—15L and then turns over to a non-universal
saturation value A

In fig. 14 the rigidity is shown for the 4 one-dimensional symmetry classes. The rigidity is calculated
for the four energies E™ = 30 , E™ = 50 , E™ = 70 and E™ = 90,respectively. The local average < >
in eq.(45) is obtained by averaging in the interval [E™ — §E,E"™ + JE] where we use 6E = 10. For
all classes we observe good agreement with a straight line with slope L ic in the interval 0 < L <
Beyond this universality region one observes a very strong dependence on the energy, which is caused
by the very small averaging interval. Because of lack of more eigenvalues, we have no other choice.
The energy dependence is too strong to observe a universality like the GOE prediction (46), which is
shown in fig. 14 too.

VII Summary

In this paper we have presented a rigorous approach to quantum chaology of spectra for an ergodic
system, the Hadamard-Gutzwiller model. This model is a Hamiltonian system of two degrees of
freedom which describes the geodesic flow on a surface of constant negative curvature. Our approach
has been based on the Selberg trace formula (13) which yields infinitely many POSRs. These sum rules
establish a striking and “apparently paradoxical” duality relation between the quantal energy spectrum
{E,} and the length spectrum {/,,} of classical periodic orbits. One has thus found an exact substitute,
appropriate for our strongly chaotic system, for the Bohr-Sommerfeld-Einstein quantization rules. A
main purpose of this paper has been to demonstrate that PO theory provides a practical tool for
quantum chaology which even allows to calculate spectra. Finally, we have studied the level spacing
and the spectral rigidity for 4 desymmetrized subspectra of the symmetrical Hadamard-Gutzwiller
model.
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