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Abstract

We present a refined asymptotic expression of the trace of the heat kernel O(t} =
Tret® for billiard systems in two unbounded regions 2 C JR*® with infinite and finite
area respectively. Simon [8], [9] gave several proofs for the first system to have discrete
spectrum and determined the leading divergence of the trace of the heat kernel. We
combine standard techniques for the evaluation of © for bounded region billiards with
results by Van den Berg [13] for "horn-shaped regions”™ using an optimized way of dividing
the region into "narrow” and “wide” parts to determine the first three terms in the
asymptotic expansion of ®. This yields in addition an asymptotic expression for the
spectral staircase V() with corresponding accuracy.

We denote points {z,y) € @ C IR® by z. Let A be the Laplacian on {2 and Galt|zz') be
Green’s function (heat kernel) for A - 2 with Dirichlet boundary condition on 851, then

O(t) = Tret® :/:’ AN(A) e = /ﬂdf Go(tlzz) .t>0

where the "staircase function” N(}A) is defined by N(A) = Tl with A; being the ith
eigenvalue of the system (degenerate eigenvalues are counted according to their multiplicity).

lSupported by Deutsche Forschungsgemeinschaft under Contract No. DFG-Ste 241/4-2

1



Then our method can be described as follows:

i) Integration of Gg(t]zz) over the region (1) = {= € Q|3circle K : z € K C Q;diam(K) =
1‘%_‘} (¢ > 0) with classical methods. The boundary condition influences (roughly speaking)
points within a distance of v/t from 8Q, therefore most of the points of the above mentioned
set are not affected by the boundary. For them we can use the free heat kernel with small
corrections ("Kac’s principle of not feeling the boundary” [13], [6]).

i) Integration over £ — Q(¢) with Van den Berg’s formula [13], quoted in Theorem 4 below.
The points of this domain lie between two nearly parallel parts of 32 ("horn”) with distance
smaller than t27¢. They are strongly affected by both of these parts. Van den Berg obtained
an estimate for Gg(tlzz) which ignores the variation of the width of the horn. (Note that
Stewartson and Waechter [11] used a similar approximation to evaluate @ for regions of finite
area with cusps.)

This second integration is precise up to order t~%; in our first example there is a competing
error term of order ¢~(3-9) (due to £2{f)) requiring the choice € = %; in our second example
any choice € > 0 1s allowed.

Our result is

Theorem 1: Let A be the Dirichlet-Laplace-operator on = {(z,y) € R0 < zy < 1},
then for t N, 0

+ Ot~V
47t + 4t 8/t ( )

where

n

4 = 1-2 (\/_— f: (El(nz) + M)) = —2.0985...

7372
B = —4 = —1.6944...
T2(1/4)

For an early reference about this system see e.g. [12]. Note that Van den Berg’s method [13],
{14] suffices to determine 4 though he did not exploit this. The coeflicient A could also be
found by a careful manipulation with rectangles following the line of Simon’s proof 3 in (8].
There is no obvious interpretation of the first two terms {(as there is for the classical case
[61,[11},{1]). B is (in a short but very informal phrasing) the difference between the length of
the hyperbola and the length of two half-axes and the remaining factor is that one which 1s
expected for perimeter corrections.

Theorem 2: Let A be the Dirichlet-Laplace-operator on @ = {(z,y) ¢ R0 < y < e” o},
then for t ™, 0
1 2logt B’

4wt 8wt 8wt

O(¢) = Tret® ~ + O(t7)

(for any € with 0 < € < ;) where

B = —4§: (El(nzﬁz) + erf:;_('n)) + -—j—; + 2 (logZ -1+ \/:—log(l + \/E))

3

|l

= 2.070

-]

(8]



The last billiard system was introduced in [13] and Van den Berg determined the two leading
terms. Note that the first term is analogous to the standard situation, whereas the second
and the third term lack any simple interpretation.

To gain direct information about the spectrum we need

Theorem 3: Let 0 < b < A < Xy < .oand N(A) = ¥5,0 1 satisfy fi~ AT dN(A)| < oo for

some g > 0 and let

f TN (e = Xk: (t74(ci + cilogt)) + O(t™+)

b =1
over 0 < t < T for some T € R, and rpsy < 7 < ... <71. Then over A >b
N()\) Zk: AT ( ' )\+( + 1(¢( )+1)))_‘_6(A"k+11 )\)
oy ———— —. i . H -— + O
2 Fm 1) ¢; log ¢+ ¢, 7 m g

i=1
where 1 denotes the digamma function and O refers to “log Gaussian error estimates”:
Let F be of bounded variation over every finite interval, where it is continuous and
I2y o ldF(y)| < +o0 for some ro > 0; let either fi(y) = y"logy or fuly) =y",7 >0,
then

Fly) = O(f:(y)) «

/:o exp (—%pz (log 3) 2) dF(y)

This theorem can easily be obtained by mimicking the proof of Theorem 7.13 in [4]. (Prop-
erties of O are also quoted in (1], p. 30ff.).
Starting from Theorem 1 one finds

Yp > 0dM, : < M,f.(v)

Corollary 1: For the quantum billiard considered in Theorem 1 holds
Alog A

T

N(X) + i) — i\/x + 6(/\1/4 log A)
47 4

for A — oo where

a = 2 (i (El(nz) + ﬂ@) - ﬁ) +4 = —2.5212...

The staircase function for the quantum billiard in the region {0 < zy < k}NIR?% can be found
by replacing A by kA in the r.h.s. of the corollary. E.g. for k = 2:

Alog A N (a + log2)
2 27

Berry [2] pointed out that the leading term in the last expression coincides with the first term
of the asymptotic expansion for the number of the non-trivial zeroes of the Riemann zeta

Ni—2(A) =

b _
A f\/i + O(A41og \)
¥is

function with imaginary part less than A :

_Alogd (1 + log (27))

NRiemann(A) = Ton o A+ O(AO)




The lack of time-reversal invariance which a hypothetical system whose eigenvalues are given
by the imaginary parts of the Riemann zeroes is believed to be subject to [2] could be enforced
upon a billiard system by introducing a magnetic field thus establishing an Aharonov-Bohm
billiard (c.f..3], [10]). Note, however, that the terms we determined are not affected by a
magnetic field of the Aharonov-Bohm type. i.e. the above formulae also hold for Aharonov-
Bohm quantum hilliards.

Starting from Theorem 2 one finds

Corollary 2: For the quantum billiard considered in Theorem 2 holds

for A — oo where

(Here we have used Theorem 7.7 III in [4] which is also quoted in {1].)
To prove Theorem 1 we need the following definition:

Def.1: For t given with 0 < ¢ < 1 let the sets Q(t),; be as follows:
Qt) = {(z,y)le <t YAy <tV
Mt} = {(x,y)ldist(z,{zy =1}) < if”"} aRYE)
2y = {{z,y)lz,y < 1/2} 0
Qult) = {(xy)ldist(z, {ey = 0)) < 1074} 1 0(1) - 0

(We will sometimes omit the t-dependence of §2;(7),Q(¢); the sets are illustrated in
figure 1.)

VS )
T )
\\\\\ Q3

—

The integration over (2 required for the derivation of Theorem 1 shall be performed separately
for Q2 §2(t), Q(t), 23, the results being stated in Theorems 4, 5, 6 which together immediately
prove Theorem 1. In Appendix 3 we will sketch the proof of Theorem 2.
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Theorem 4: Let O = {(z,y) € R110 < zy < 1} and Qt) be as defined in Definition 1, then

1 —1logt A’ 1 1
— < Lim f df Gql(tizz) — 2 g
27 r ( n-0(t) f Galtizz) { 47t + 4t * t3/4\/47r}) T 4.7

where - o (\/—_ i (El(nz) + M))

n=] n

Proof: Theorem 3 in [13] states for f : [zo,0) — IR. decreasing and IR* D D O D' =
{(z,y) € R*0 < y < f(z), = > 20}
(o) (2o)
- < [ df Gplt|zz <
smt = o ¥ O a5 < sV

where O(t,z) = 322 exp (— L% pre ;) . We choose zo = 1',“1/4 and f(z) = 1; the integral can be

carried out after use of the transformation formula of the Jacobi theta function:

oo oo 1
f dr Y exp(—m nPe’t) = NI da: Zexp —nintz?)
n=1

1t 1 1+ZZ;':’=Iexp(—ﬁz- 22,2
N \/E gl,udm 5( :cﬁ ) f dz Zexp( 8 )

rlogt  1- t1/4 Z ( erfc(n‘fr /‘1“ dz i
_ — —— ) ex
Vart 24 \/47r n  mt p(

where Eq(z) = [~ ‘%‘e‘“ denotes the exponential integral. For small x:

- n? X _
Zexp(——z) < 2 < 22 P
n=1 z
which gives the required bound for the last term. »

Theorem 5: Let H = [ (,/1 + ;1; - 1) dz, then

) Q) — Qy] 2074+ (H - 3)
0 < himt'/* / dfGalt _ [ - 2 <
=% ( 2(t)-0s fGalt|2z) { 47t 44/t -

Proof: Van den Berg {13] shows for regions with R-smooth boundary (for zo € 82 there is a
circle K with radius R and 8K N Q = {z}): Let z € @ and é§ = dist(z,9Q) then

[

1 2 46 & i
Ga(tlzz) < —{1—e 7T + = 4—
n(lz)_tl?rt{ crtge Tt R?}
This inequality will be used for = € Q; U, whereas for z € Q(t) — (Q; U2 UQ3) we employ
1
Gal(t|zz) < o

We choose R = 2 and integrate (c.f. Lemma 2 in Appendix 2):

) - Q5] 1 2 _g |2(2)]
dfGa(t|zz) < - Cdf - — be” T+ df +
/ﬂ(t}—ﬂ;r, fGal | ) = 47t 4t mun2 f + 2wt Ja, 0, ¢ f 4
[Q(t) - 93‘ 1 (., ~1/4 3 ) 1 1 ‘Q(t)‘
- 4nt B 4/t 2 - ..,) i + wil/4 + 4w

To obtain a lower bound we integrate the following inequalities:
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Lemma 1:
62

1 - 7 1 1
) oz e Q¢ G 2) P ———— . — -
(6) z € M(t) U Qat) = Galtlez) > o - exp 32%;)
() = € 9() — () UM(t) Uu(t)) = Galtlzz) 2 —— — — exp(— )
u) 2 1 2 (1) = CGaltlzz) 2 70 — 5 exp 32V
(The proof will be given below.)
We find
Q) - Q] 1 e 12(2)] 1
dfGa(t|zz) > 2/ 72 2 Tdf — S —
]nm_ng fGaltlzz) = 4t yrrll UL IEL. et 0V L
192(t) — Qal 1 ( 1 3) 1|9 1
- 2t H-2)) - —— ——
Art a/nt TE=)) e ol 325

Proof of Lemma 1: (1) A trivial geometric consideration shows that for z, € 9Q(¢) N 30
there is a square Q C 1, with one side centred at zp, tangential to 99 whose sides have
length I = %1‘1/4. Therefore

T 2,2 s4+ni)2 too a2e2 w1 /2212
Ga(t|22) > Goltlzz) = - {Z (e ..ﬂ——)}{ > (e #)}

" art W

n—=—oo

The first seriesis > 1 — exp (—%) — exp (—%) (because of § < {/2). Depending on the sign of

this bound one uses that the second seriesis < 1or > 1-— 2exp(—i—i).
(11) In this case there is a square Q' C 2 with center at z and length [/+/2 and

2
I [ 3R 7 2 _nppe
Ga(tlzz) > Goi(t|zz) = —-{ > (e T —¢ i )}
dmt | .27
1 2 \?
> —[1-2exp(——
= 47rt( exp St))

This completes the proof.

Theorem 6:
|92 1

1
0 < df Ga(t|zz) - | —= — < =
T Jay f Galtlzz) (47rt Sﬁ/ﬂ-t) T

Proof: Let Gg(t|z:') be Green’s function for the unit square and G;(t{z2') Green’s function
in the case of Dirichlet boundary conditions on {zy = 0}. Then

2 2
— 1 > —m¥n?t 1 1 _1
./93 4 Goltlzz) = {5 2 } 3 (\/m 2)

n=1

(for 0 < ¢ < 1/m) by virtue of the Jacobi theta function transformation formula.

Furthermore
1 1/2 23\ [0 1 1
thz::—/ d(l_”‘?) o S ol
L, f Galtlzz) 47t ( 0 * ¢ T 4t 8wt + T
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for 0 < t < 55 (because of erfece < ﬁ;) g
It 1s evident that a corner can at most affect the constant term in the asymptotic expansion
of ® {[11], quoted also in [1]). Therefore the integration over 3 could (with little loss of
rigour) have been taken into account by increasing L{p(f21)) (c.f. Appendix 2) by 1.
Appendix 1: The Hyperbola Integral

Denote the arclength between {1,1) and (z, 1) on the hyperbola y = 2 by L((z, 7)), then (for

r > 1)
L((z,%)) = [\ +$du

(because H = [{© (\/1 + - 1) dz < 1, see below). Furthermore

L((:c,%)) x—1+H—Lm(,/1+$—1)du

o dyu 1
S H—f e 14+ H— — .
= FobA AR 62

Il

The quantity H can be determined by partial integration:

H = flm (H~l)dw

- 1_ﬁ+2f1wmm2\/(i_ﬁ
1 1 1
- vkl )

(E, K : complete elliptic normal integrals of the first and second kind, c.f. formula 3.166.,2 in
[5]). Legendre’s relation between K, E, K’, E’ yields for k = %:

E(i) _ 7T K ()ﬁ)

T UEG
With K(\—%) = Z\]‘/—;Fz(l/fl) ([7], p- 359) we finally find:
3/2
H=1-2 = 0.1527...

r2(1/4)



Appendix 2: Boundary Corrections

For merely technical reasons we need two additional sets and for their definition a projection
onto the hyperbola:

Def.2: For 1
z € {(z,y)|dist(z,{zy = 1}) < 4—t1f4} 0

there is a unique zp € {zy = 1} with |z — 20| = dist(z,{zy = 1}). We define the
projection p onto the hyperbola by

20 :P(Z)
Def.3:

Qi(t) = pleM(t)n{zy =1})
Q(t) = p(p(h(t))

{The sets are illustrated in figure 2.)

ARNNN1E

()

The integration over (1 is performed in new coordinates s{z) := L{p(z)) (arclength between
(1,1) and the projection of z onto the hyperbola) and 6(z) := dist(z,{zy} = 1). For a
connected M C {zy = 1} let L(M) be the length of M on the hyperbola, then

Ltll“ 2

fe‘édf = [ as [ a5 (14
c oy Jo

i 1 t T
= L(p(C))~; (1 —erfe (41‘.1/4)) T3 (1 e ]M) /p(c:) s

)

for C = Q)(t), Q7(t) respectively (x: curvature of the hyperbola).
With Q] C 0, C Ot

t
\C;L(P(Q;)) (1 — erfec (

<

3
=)
a3

82 it
< -*r d < 1 -
o)) < [ € i < L) + ]

8



Since
t3/4

sup T < T M
€0 (t) 4

we have in combination with the bounds in Appendix 1:

-1/4 f:{i '
2t -1+ H-0) £ L)

Lp(Q))) < 207 -1+H)

finding
2 t

f T df <VEHEMA 1 H)+ T

Qa1 (t) 4
and

Fa o v ik ()
j;]me df > V(¢ 1+ H) (1 erfc (41‘.1/4
> (¢t -1+ H) -t

for t — O.

The integration over £, is obtained by inserting the correct length and setting « = 0

1 2 1
Vat (V- ) -t < % df < V(e - 5)

Va(t)

For the integral over é exp (— —ii) one finds

Lyi/s 2

S~ df = f dsf“ d6 (1 + ré)fe s
p(Q)) 0

t 1 3 \/_7[ 1 i~ _ .1
— . rt —_ 16/t z LA 1 - . —_———— —_ 16/t
ZL(p(ﬂl)) (1 © ) f ./p(n;') s { 4 ( erfe ( 16\/5)) 8 ¢ }

< Logrem) + 707

it
nl

e

< 2t3/4

for t — 0. The results can be summarized in

Lemma 2: There is a {5 > 0 with

1 3 1 1 2 1 3 1
——_(zr”“+H——)~-—§— e-‘Tdfg—(zflwa__%_
and ) )
&
—_— de v df <
4t Jo,un, ¢ f < 2 ril/4

for any 0 <<t < t.



Appendix 3: Proof of Theorem 2

Since the proof follows exactly the lines of Theorem 1 we only give the main steps:
The calculations can be confined to the region =z > 0. In analogy to Theorem 4 one has to
choose f(z) = €™ and zy = 3(e — 1)logt and evaluates

2
oo [ <]
f d;t Z e_nzﬂ.zte2r _
Zo n=1

2

1 erfc(n)

_ L s VL€ (g ey, (@) 1 pdy &
_\/E(t 1)+410gt+2(n§1E1(nﬂ*)+ - ) ﬁjﬁ ynz::le

Let § = {z € Oz > 0, dist(z,{ye” = 1}) < %té(l“)}, p be a map

Vdula

p:{(z,y) € Qldist(z, {ye® = 1}) < 7079} —, {ye* =1}

and

Q= p7(00 — {ye =1}~ {z = 0} - {z = a0})
R = p7(0M — {ye" =1} {e =0})

(The sets are illustrated in figure 3)

YIIZa 10

()

In the bounds of Appendix 2 we have to use

1 — ' 1 . 1—s
Lp(Qy)) < — elogt+log2_1+xﬂmlog(1+\/§)+ZtT(lHT)
1-— -
Lp()) > — 2Elogt+log2wl—i—\/:—log(1+\/§)—f—2'

where we have used the (elementary) arclength

/\/1 + e dz = V1 + e +log (" + V1 4 2*)
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The upper bound corresponds to the hyperbola billiard; a suitable lower bound is

(208) - @) V(Y Q)| 1 e 90
[ dfGaltiz2) 2 e =/ e

The complication of the first term of the lower bound is a result of the edge at (0,1); in its
neighbourhood the bound of Lemma 1 does not hold, therefore it has to be excluded from
the integration.
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