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Abstract

We study the hyperbola billiard, a strongly chaotic system, whose classical dynamics 1s
the free motion of a particle within the region D = {(z,y)|z 20 A y > 0 A y < 1/x } with
elastic reflections on the boundary 8D. The corresponding quantum mechanical problem is
to determine the bound state energies as eigenvalues of the Dirichlet Laplacian on D. It
is shown that the classical periodic orbits of the hyperbola billiard can be effectively enu- -
merated by a ternary code. Combining this code with an extremum principle, we are able
to determine with high precision more than 500000 primitive periodic orbits together with
_ their lengths, multiplicities and Lyapunov exponents. The statistical properties of the length
spectrum of the periodic orbits are found to be consistent with a random walk model, which
in turn predicts asymptotically an exponential proliferation of long periodic orbits and leads
to a novel formula for the topological entropy 7, whose value turns out to be approximately
0.6. The periodic orbits are used for a quantitative test of Gutzwiller’s periodic-orbit theory,
which plays the role of a semiclassical quantization rule. We find that the predictions of the
periodic-orbit theory for the Gaussian level density agree at low energies surprisingly well
with the “true” results obtained from a numerical solution of the Schrodinger equation.
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I Introduction

Despite the early recognition of chaotic motion in nature by Poincaré and Hadamard at the
end of the nineteenth century, detailed studies of “deterministic chaos” have only been carried
out in the last few decades. Today, however, our knowledge of classically chaotic systems is
very rich, and most natural scientists slowly appreciate the important role played by chaos in
nonlinear dynamical systems. On the other hand, the question how classical chaos manifests
itself in quantum mechanics, has attracted only recently the attention of more than a few
pioneers. The only known, commonly accepted quantitative theory aiming at unravelling the
mystery of “quantum chaos” is based just on the earliest approach, namely the semiclassical
approximation of the Feynman path integral pioneered by Gutzwiller [1] (see also [2,3]).

The standard semiclassical quantization rules of Bohr-Sommerfeld-Einstein-WKB type
are based on the assumption that phase space is divided into invariant tori. In this case the
path integral can be approximated by a sum over all classical trajectories which wind on the
invariant tori. But for chaotic or non-integrable systems it is well-known that phase space has
a much more complicated structure and thus the standard semiclassical quantization rules
cannot be applied. What is required instead is a substitute for these quantization rules for
chaotic systems. Gutzwiller's periodic orbit theory provides this substitute. In this theory
the path integral is replaced by an infinite sum over all periodic orbits, i.e. the quantum
mechanical energy spectrum is determined by purely classical quantities like the periods or
lengths of the unstable periodic orbits and their Lyapunov exponents.

Although Gutzwiller’s approximation amounts to a tremendous simplification of the path
integral for chaotic systems by replacing a very complicated functional integral by an ordinary
sum over classical trajectories, we are still facing another extremely complicated problem, now
in classical mechanics, namely the enumeration of the periodic orbits and the calculation of
their lengths and Lyapunov exponents. In contrast to integrable systems, where the number
of periodic orbits increases only like a power-law, for chaotic systems the number of periodic
orbits whose lengths are smaller than a given length increases exponentially. The exponential
proliferation of long periodic orbits implies that a successful application of the periodic-
orbit theory can only be expected, if enough periodic orbits together with their lengths
and Lyapunov exponents are explicitly known for a given non-integrable system. Thus it is
mandatory to have an effective method at hand which allows us to determine in a systematic
way the shortest periodic orbits.

Until recently the only quantitative test of the periodic-orbit theory for strongly chaotic
systems was carried out by Gutzwiller for the anisotropic Kepler problem [4]. Only within the
last few years a few other systems have been investigated [5]. However, in most of the cases
people were not able to give a systematic enumeration of a large number of periodic orbits.
There is a very special system, namely the Hadamard-Gutzwiller model 6], for which millions
of periodic orbits could be calculated [7,8] by using very powerful results from the theory of
compact Riemann surfaces and Fuchsian groups, and an effective algorithm implemented on
a large computer.

In view of this situation it seems worthwhile to look for other dynamical systems, which
are classically chaotic but yet simple enough to allow an explicit enumeration of a large
number of periodic orbits. It is the purpose of this paper to present the results of a detailed
study of an example of the simplest kind of chaotic systems, namely a two-dimensional plane



billiard system, which we call hyperbola billiard, whose domain is given by

Di={(e,y)ls20Ay20ny<}, (1)

1.e. the area bounded by the x-axis, the y-axis and the hyperbola y = 1/z. The quantum-
mechanical problem is to find the eigenvalues and eigenfunctions of the Laplace operator
on D with the condition that the wave functions vanish on the boundary of the billiard region
(Dirichlet problem). The corresponding classical motion is the free motion of a particle with
mass m within the billiard area with elastic reflections on the boundary. This motion is
strongly chaotic in virtue of the fact that neighbouring trajectories separate exponentially.
All periodic orbits are unstable and have an instability exponent greater than zero (see
Appendix B).

There are two crucial points which enable us to give an effective enumeration of the
periodic orbits of the hyperbola billiard:

i) In Section II.1 we show that there exists an efficient classification of the periodic orbits
in terms of a ternary code, i.e. the set of all periodic orbits is represented by the set of words
formed by three letters obeying a certain grammar.

ii) It is a characteristic feature of chaotic systems, that their evolution in time depends
sensitively on the initial conditions, since neighbouring trajectories diverge exponentially
in time. It thus seems impossible to determine the precise reflection points on the billiard
boundary for a particle travelling on a long periodic orbit in our hyperbola billiard. We show,
however, in Appendix A that there exists an “extremum principle for periodic orbits” which
allows us to get around this problem. The point is that all periodic orbits have the property
that their length is minimal within a certain class of neighbouring “trial” trajectories that do
not satisfy the elastic reflection condition on the hyperbolic boundary. Using this extremum
principle we were able to find more than 500000 primitive periodic orbits.

Our paper is organized as follows. In SectionIl.1 the coding of the periodic orbits and
their symmetry properties are discussed. In SectionIl.2 we study several properties of the
length spectrum of the periodic orbits. It is shown that the length spectrum proliferates
exponentially, as expected, from which we infer for the topological entropy 7 ~ 0.60. It
turns out that the distribution of lengths of all periodic orbits which are reflected N times
on the hyperbola obeys for large enough N a universal law which is well described by a
Gaussian. In Sectionlll we describe our numerical solution of the Schrédinger equation
using the Rayleigh-Ritz method. The spectral staircase calculated from the approximate
eigenvalues is at low energies well described by a modified Weyl’s law. In SectionIV.1 the
periodic orbits are used as an input in the periodic-orbit theory. Using a Gaussian smearing
of the energy-level density, we are able to determine the lowest bound state energies. In
order to increase the energy-resolution of the periodic-orbit theory, we have desymmetrized
the hyperbola billiard. In SectionIV.2 we discuss the application of the periodic-orbit theory
to the two desymimetrized systems satisfying Dirichlet and Neumann boundary conditions
on the line y=z, respectively. As expected, the energy-resolution is significantly improved.
Section V gives a discussion of our results. In Appendix A the extremum principle for the
periodic orbits is derived, and in Appendix B the general form of the monodromy matrix is
given.



IT Periodic orbits

II.1 Coding of the periodic orbits

It is possible to introduce an efficient classification for the periodic orbits of the hyperbola
billiard. This will be explained in the following. A primitive periodic orbit is traversed once,
and the number of reflections on the hyperbola is counted. Let this number be N. The N
points on the hyperbola divide the orbit into N segments. Each segment is denoted by one of
the three letters “x”, “y” or “b” according to whether the particle is reflected in the segment
on the x-axis only, on the y-axis only or on both axes, respectively (see Appendix A). In this
way to each periodic orbit is associated a ternary sequence of the form

a=(ay,...,ay), where a; =x,yorb. (2)

If for a given periodic orbit a different starting point on the hyperbola is chosen, we arrive at
a ternary sequence which is a cyclic permutation of the original one. Therefore, if a sequence
“a” is associated to a periodic orbit, every cyclic permutation of this sequence belongs to
the same orbit. Examples are given in Figuresla to le. The sequences are given for those
starting points on the hyperbola which have the highest y-value.

The main point now is that extensive numerical investigations for N = 1 to 7 showed that
there exists exactly one periodic orbit for every sequence. The only exceptions are sequences
which consist of letters “x” only or of letters “y” only for which no periodic orbits exist.
This fact and the extremum principle discussed in Appendix A make it possible to search
systematically for every single periodic orbit. If one wants to find the periodic orbit which is
coded by a given sequence “e”, one just has to form the length-function L(#y,...,zy) which
corresponds to this sequence {see Appendix A) and to look for its mimimum. Since there
exist very efficient generalized Newton methods for finding the minimum of a given function,
this is a very fast and accurate way to determine the periodic orbits. Using this method we
were able to find more than 100000 different primitive periodic orbits within two hours of
computer time on an IBM 3081 with an accuracy of 16 significant digits.

The code can also be used to determine possible symmetries of a periodic orbit. For this
purpose the ternary sequences are divided into classes, which we call cyclic classes. Two
sequences “a” and “@” belong to the same cyclic class if one is a cyclic permutation of the
other:

a=a<=>a;=adi4,vi=1,...,N forne{l,...,N}. (3)

Here we defined a;.n := a;. A given cyclic class therefore consists of all sequences which
describe the same orbit. If a periodic orbit is geometrically reflected on the straight line
y = z one gets another periodic orbit since the system is invariant under the reflection R on
this line. The sequence belonging to the reflected orbit, “Ra”, is obtained from the sequence
of the original orbit “a” by replacing all “x” by “y” and all “y” by “x”:

z if a;=y
Ra:=a where @, =< yv if ;=2 }, t=1,...,N. (4)
b if a; = b

An orbit is invariant under this reflection if Ra = a holds.



al g = (b,x) bl g = (y,x,x,bl

Figure 1: a} to e) Examples of periodic orbits {) Forbidden periodic orbit



Another possible symmetry of an orbit is time-reversal. If an orbit is traversed in reverse
direction, the sequence of the reversed orbit, “Ta”, is the reverse sequence of the original
orbit:

Ta:=a where a; =ayy1_;, t=1,...,N . (5)

An orbit 1s invariant under time-reversal, if Ta = a holds. In Figuresla to le examples
for all possible symmetries of a periodic orbit are given: a) a = Ta # Ra = RTg, b)
a # Ta # Ra # a # RTa, ¢) a = Ta = Ra = RTa, d) a = Ra # Ta = RTq, ¢)
a = RTa # Ra = Ta.

Different orbits which are related by reflection or/and time-reversal give an identical
contribution to the periodic-orbit theory. It is therefore useful to combine different cyclic
classes 1o a bigger class, which we call symmetry class, if their sequences can be transformed
into each other under reflection or/and time-reversal. To each symmetry class a multiplicity is
associated which counts the number of different cyclic classes which are contained in it. This

nutnber can be 1, 2 or 4. It then suffices to determine one periodic orbit for each symmetry
class.

If a sequence consists of identical partial sequences, for example
a = (x,x,y,b,x,x,y,b,x,x,y,b) 3 (6)
[ S L N

it does not belong to a primitive orbit, but to an orbit which is traversed repeatedly. A class
which belongs to a primitive orbit is called a primitive class. The number Z(N) of primitive
classes of sequences which consist of NV letters satisfies the recursion relation

1

Z(N):*ﬁ

(3%~ > M-Z(M)-2), (7)
MIN
M<N
where we have taken into account that there are no periodic orbits for the sequences (x)
and (y). The sum runs over all integers M that are divisors of N excluding M = N.
The primitive periodic orbits for N = 1 to 14 were determined numerically. A number
of SN, Z(N) = 533828 primitive periodic orbits was expected corresponding to 136 719
different primitive symmetry classes. But only for 136 699 symmetry classes periodic orbits
could be found. Although for the remaining 20 forbidden symmetry classes a minimuin of the
length-function L{z,,...,zn) could be found, the corresponding orbits cross the hyperbola
like in Figurelf. It is expected that the number of forbidden periodic orbits increases with
increasing N.

I1.2 Properties of the length spectrum of the periodic orbits

In Figures2a and 2b the number A/(I) of the determined orbits with lengths smaller or equal
than [ is shown,

N(l) := #{primitive periodic orbits v with length [, < I} . (8)

The expected asymptotic exponential proliferation of periodic orbits for chaotic systems,
- . . . ) .

N ~ £5,1 — co, is well confirmed in the region where the orbits were determined. A value

of 7 =~ 0.60 was obtained for the topological entropy 7 from a fit in the region 10 < [ < 15,

5
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Figure 2: The staircase function A'(1) in comparison with the asymptotic law e /71 for 7=0.6
(dashed line), a} linear scale, b) logarithmic scale

where the number of the periodic orbits is expected to be almost complete. Above [ 22 15 the
calculated staircase function is below the curve corresponding to the asymptotic law "’T—T;, see
Figure2. This is due to the fact that the contribution of periodic orbits which are reflected
15 times or more on the hyperbola is missing.

We also examined the distribution of lengths px ([} of all periodic orbits which are reflected
N times on the hyperbola along one traversal of the periodic orbit for N = 1 to 14. pn(I) dl
is the probability that a randomly chosen orbit with N reflections on the hyperbola will have
a length between ! and ! + di. The result for N = 14 is shown in Figure3a. It was found
that the length distributions can be approximated very well by Gaussian curves if NV is large

enough (N 2 8)

T2
pr(l) = \/2_71TUN exp{—gﬁ} , {9)

where the mean value [y and the standard deviation on satisfy the relations

N , I =2.027
VN o =0.682 .

&
e~

g

N
aNy =

(10)

q

In order to demonstrate this behaviour, we plotted py(! + NI)/pn(NI) as a function of ;“L\/f—&
for N = 10 to N = 14 in Figure3b. As can be seen there is good agreement between the
length distributions that correspond to different values of V.

These results seem to indicate that the statistical properties of the length distributions
can be described by a model in which the lengths of the orbits are the result of a random walk
process with NV independent steps where the displacements of each step have a mean value
! and a standard deviation o. This is also confirmed by an examination of the distribution
of spacings P(S) between adjacent lengths. P(§)dS is the probability that the spacings of
a randomly chosen pair of neighbouring lengths will be between S and S + dS, where § is
measured as a fraction of the mean length difference Al at the length considered: S = Al/Al
In Figure4 the result for P(S) is plotted and compared to the Poisson distribution P(§) =
e~%. The agreement is excellent which means that the lengths are uncorrelated.

6
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Figure 3: a) The length distribution pj4(!) in comparison with a Gaussian. b) Scaled length
distributions px (! + IN)/px{IN) as a function of {/o+v/N for N=10 to N=14.

Figure 4: Length spacings distribution P(S)
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Figure 5: Lyapunov exponents A, in dependence of orbit lengths ,

The explicit dependence on N of the approximated length distributions (1}, eq.(9),
makes it possible to examine the asymptotic behaviour of the staircase function N(1) analyt-
ically:

SN = T () Z(V)
N=1

i 1 ( (11N 3% (11)
———exp{—— 1} -
2 JarNo TV 20N 'N

A stationary phase approximation of this sum for large values of yields the following result

d 1 U ; =
aEN(l)mfexp{;—z—[l—\/lzw20210g3]} JA>1 . (12)

A comparison with the expected asymptotic behaviour %Nl— = CTH, [ - o0, leads to an explicit
expression for the topological entropy of the form

1 -
r= ;;5{3 - 1_/.l2 —~ 202log 3} . - (13)

The numerical value 7 =~ 0.58 which is obtaired from this equation is in good agreement with
the previously obtained value 7 ~ 0.6.

The Lyapunov exponents of the periodic orbits were determined using the method of
Appendix B. In Figure5 the Lyapunov exponents A, are plotted as a function of the orbit
lengths L, (for fixed energy E = m/2).




IIT1 The energy spectrum

The quantal energies E, are determined by the Schrodinger equation (k = 2m = 1)

82 62

~ (52 5 ¥n(®:) = B Vu(zyy), (2,y) €D, (14)

with Dirichlet boundary conditions
1
V. (z,y)=0if =0 or y=0 or y= - . (15)
T
Introducing hyperbolic coordinates
- . 16
> (16)
eq.(14) transforms into

e, 7 + 35) $a(106) = Butn(n, ) (17)

with boundary conditions

Pn(n,€)=0if n=0o0r =1, (18)

The first energy eigenvalues were numerically determined using the Rayleigh-Ritz method.
This method is based on a variational principle which yields upper bounds for the energy
eigenvalues. An approximate solution of eq.(17) of the form

M
6) = Z__ G:n‘Pm(??aﬁ) ' (19)

is sought for with suitable functions ¢n,(7,£) that are linearly independent and satisfy the
boundary conditions eq.(18). The minimum principle of Rayleigh then leads to the eigenvalue
problem

M
Z(Ai:i - P"nBi:i)a? =0, i:n =1,....M (20)
where o . 5 5 ' 5 5
A4i; = f_w dﬁfg dy [a—n%(ﬂ,é)a—n%(ﬂ,f) + a—§¢i(n,§)8—£¢j(n,€)] (21)
and
[ wi(n,£)es(m€)
B = / de f N (22)

The eigenvalues p, of eq.(20) are upper bounds for the first M energies E,. The functions
©m(n,£) were chosen to be products of sine-functions in n-direction and eigenfunctions of
the one-dimensional harmonic oscillator in ¢-direction. Altogether 200 different functions
¢m(1,€) were used. The result for the first ten energy eigenvalues is listed in Table1.

In Figure6 the spectral staircase function
N(E) = #{E.|B, < E} (23)

9



| n 1 2 3 4] 5] 6 8 | 9 | 10
| E, || 11.74 [ 21.46 | 27.4 | 36.3 | 36.5 | 45.8 | 49.8 | 58.1 | 60.2 | 66.2

-1

Table 1: Upper bounds for the first ten energies

2 O T T T T T T T T T I T T T T T T T T T

N (E)

15

LI | T T

10 ¢

Figure 6: Staircase function N(F) in comparison with the asymptotic law eq.(24)

is shown for 0 < E < 100. It should asymptotically obey a modified Weyl’s law [9]

N(E)N—ElogE+4—ﬂE+4—W\/_+ E— oo (24)
a =2(y—log2r) = —-2.5213
b =4 = 1.6944 .

This curve is also shown in Figure6 . As can be seen, the asymptotic law 1s a good approxima-
tion to the mean mode number < N(E) > even down to the lowest eigenvalues. For £ 275
the staircase function lies under the curve corresponding to the asymptotic law eq.(24). The
reason is that by using a limited number of functions ¢,.{n, ) ‘too high’ upper bounds for
the higher eigenvalues are obtained from the variational principle.

10



IV Periodic-orbit theory

IV.1 Hyperbola billiard

The periodic-orbit theory usually is presented in form of a semiclassical approximation (h —
0) for the trace of the energy-dependent Green’s function (resolvent}

1 1
I‘E_I,‘{):;E_En, (25)

where H is the Hamiltonian and E, are its eigenvalues. In case of the hyperbola billiard this
approximation is given by

o(E )_gD(E)__ZZmZ = )n‘rexp{zk*g’g1 (26)
v k=1 P 62 W( l)kn"re, p)

where p = V2mE denotes the momentum. The sum over 7 runs over all primitive periodic
orbits v, and k i1s the number of their multiple traversals. I, is the length of the orbit 4 and
u., 18 its instability exponent. u. and the Lyapunov exponent A, are related by u, = )\,yl,\,%.
n., is the number of reflections on the boundary for one traversal of the periodic orbit. If an
orbit v is described by a ternary sequence that consists of N letters, then n.,, = 2N + N, where
Ny is the number of letters “b” in the sequence. go(E) is the contribution of the so-called
“zero-length orbits” and corresponds to the Thomas-Fermi approximation.

In Ref. [10] we presented for the first time generalized versions of the periodic-orbit sum
rule, eq.(26), which involve absolutely convergent series only. These sum rules represent
a semiclassical approximation to a generalized sum over the energy eigenvalues, 3, h(p.),
Pn = +/2mE,, involving a “smearing function” h(p) which has to satisfy certain conditions in
order to ensure convergence. Depending on the kind of application there are many possibilities
for a useful choice of the function h(p). Various examples are given in [8] . In order to
determine the energy eigenvalues we found most useful the choice of a Gaussian smearing
function in case of which the periodic-orbit sum rule takes the form

4(B) == Ylexp{- BTy | expy - BEES

2
n £

- ]{)""dp'[exp{ ©F) 4 expt- 2P  yiagy)

l .lmT COS(kpl ) e2k2)2 _
;:1 h P{* hz‘r} * (2‘)
Y hmteE — (—1)kmem T 4
where d(p) := » d < N(F) >, E = £ . According to our results in SectionIIl, < N(E) >
H_

can be identiﬁed with the asymptotm la,w (24). Here £ > 0 is a smearing parameter that
can be chosen arbitrarily. The exponential term at the end of eq.(27) leads to a very strong
damping of the contribution of orbits with large lengths. The smaller ¢ is chosen the smaller
is the width of the Gaussian peaks at the momenta p,,, but the larger is the number of orbits
that give a significant contribution to the periodic-orbit sum. '

In Figures7a and 7b we show the Gaussian level density eq.(27) for £ = 0.2 as a function
of the energy E (in our numerical evaluations we use the following units: k = 2m = 1). The
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Figure 7: Gaussian smoothed energy-level density d.(E) for £==0.2 including all orbits with
a) N <3 and b) N < 5 (full line: calculated from periodic orbits, dashed line: calculated
from our numerical solution of the Schrodinger equation)
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Figure 8: Gaussian smoothed energy-level density d.(E) for €=0.1 including all orbits with
a) N<9and b) N <14

full line represents the right-hand side of eq.(27) taking into account all periodic orbits with
N < 3 and N < 5 respectively. The dashed line corresponds to the left-hand side of eq.(27)
calculated from the first 10 approximate energy eigenvalues. In Figure7b the agreement
between both lines is surprisingly good in view of the small number of summed orbits. Even
for the ground state energy the periodic-orbit theory gives an excellent approximation despite
its semiclassical nature.

In Figures8a and 8b the Gaussian level density is shown for ¢ = 0.1 in a larger range of
the energy E. Again the full line represents the sum over the periodic orbits whereas the
dashed line is calculated from the approximate quantum-mechanical energies. The periodic-
orbit sums were evaluated using all orbits with NV < 9 (Figure8a) and N < 14 (Figure8b).
This corresponds to a contribution of 1061 and 136 699 different lengths respectively. As can
be seen the agreement between the dashed and the full line improves only slowly.

The number of orbits that have to be taken into account in the periodic-orbit sum in
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order to resolve a momentum difference Ap can be estimated from the fact that each orbit +
contributes an oscillation to the smeared spectral density which has a “wavelength” Ap ~ 2;’—"
T

This implies that in order to resolve Ap one has to sum over all orbits with length L, < %Zl.
From the exponential increase of the number A'(!) of orbits with length I, < [ then follows
that a resolution of %’3 requires the summation over the square of the number of orbits that

are needed in order to resolve Ap.

IV.2 Desymmetrized hyperbola billiards

Symmetries of a system can be used in order to essentially increase the energy-resolution of the
periodic-orbit theory. The hyperbola billiard system is invariant under a geometrical reflection
on the straight line y = . For this reason it is possible to find a basis of eigenfunctions of
the Hamiltonian H that are either odd or even functions with respect to this reflection. The
even eigenfunctions satisfy Neumann boundary conditions on the line y = z, whereas the odd
eigenfunctions satisfy Dirichlet boundary conditions on this line. The periodic-orbit theory
can be applied to both classes of eigenfunctions separately.

Dirichlet boundary conditions: In order to determine the eigenvalues of the odd eigen-
functions one has to apply the periodic-orbit theory to one half of the billiard system, e.g.
to that system which is bounded by the x-axis, the hyperbola y = 1/z and the straight line
y = z. The periodic orbits for this system can be determined from the periodic orbits of the
whole system according to the following rules. To each periodic orbit of the original system
can be associated a periodic orbit of the new desyminetrized system. The only exception
is that periodic orbit which runs along the line y = = for which no corresponding orbit in
the desymmetrized billiard exists. If an orbit which is described by a sequence “a” is not
invariant under reflection on the symmetry line ¥ = & (Ra # a) then it is mapped onto an
orbit in the desymmetrized system which has the same length, the same instability exponent
and the same sign-factor (—1)™. The reflected orbit which is described by the sequence Ra
i1s mapped onto the same orbit in half of the area. For this reason the multiplicity of the
corresponding symmetry class is halved. On the other hand orbits which have the symmetry
property ¢ = Ra are mapped onto orbits in half of the area that have half of the length and
half of the instability exponent. The sign-factor of the orbit in the desymmetrized billiard is
(—I)H%Q, where N is the number of letters “b” in the sequence “a”.

Neumann boundary conditions: The periodic orbit theory can also be applied to the eigen-
values of the even eigenfunctions that satisfy Neumann boundary conditions on the line y = z.
For that purpose again the periodic orbits for half of the area are needed, this time including
the periodic orbit along the line y = z. The difference is the number n., which now does
not count all reflections on the boundary along one traversal of the periodic orbit but only
those reflections that do not take place on the line y = . There is a simple rule relating the
sign-factor (—1)™ of a periodic orbit for the Neumann case to that for the Dirichlet case.
For orbits to which correspond orbits with Re # e in the whole area both factors are equal.
In the other case (Ra = a) the sign-factors have opposite sign.

In Figures9a to 9¢ the smeared spectral density is shown for ¢ = 0.2 for odd and even
eigenfunctions together and for both classes of eigenfunctions separately. In the periodic
orbit sums all orbits were taken into account which are reflected at most seven times on the
hyperbola. As can be seen, the energy-resolution in Figures 9b and 9¢ is significantly improved
in comparison with Figure 9a. The first ten energy eigenvalues of the whole hyperbola billiard
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that can be read off from these figures are listed in Table2. E,, E,, E; and E, are eigenvalues
of odd wave functions, the other energies are eigenvalues of even wave functions. The values
in Table2 are in good agreement with the values in Table1 except for Eg and E;y which are
probably more accurate than the values obtained from the variational principle.

n 1 2 3 4 5 6 7 8 9 10
E, 12.0 | 21.7127.0 | 36.0 | 37.0 | 45.9 | 49.2 | 55.9 | 60.7 | 63.0

Table 2: Approximate values for the first ten energies obtained from the periodic-orbit theory

V Conclusions

We have shown in this paper how the periodic orbits of the hyperbola billiard can be effectively
represented by a ternary code, how the multiplicities of the periodic orbits can be understood
in terms of their symmetry properties, and how the lengths of the periodic orbits together
with their instability exponents can be calculated with high precision using an extremum
principle. Based on these results, we were able to determine more than 500000 primitive
periodic orbits. This large sample of orbits made it possible to study detailed properties of
the length spectrum of the periodic orbits. The main conclusion to be drawn from these
studies 1s that the length spectrum behaves as i1f it would result from a random-walk process.
The statistical distribution of lengths of periodic orbits, which are reflected N times on the
hyperbola y = 1/z, can be imagined for large enough N as result of a one-dimensional process
consisting of NV steps where each step is carried out in average with a constant mean-free path
of length [ and standard deviation o. To show that this interpretation makes sense, we have
calculated the length spacings distribution. Our numerical results are in nice agreement with
a Poisson distribution, which is expected, if the lengths are uncorrelated. From the random-
walk model for the periodic orbits we were able to derive asymptotically for large lengths
the famous exponential law for the periodic orbit number N (l) expected for strongly chaotic
systems and thereby obtained a novel formula for the topological entropy which expresses its
value in terms of the random-walk parameters [ and ¢ and the number log 3, the latter being
a trace of the fact that the orbits are governed by a ternary code.

It 1s tempting to make the hypothesis that the properties of the periodic orbits, which
we discovered in the special system of the hyperbola billiard, are found to hold also in other
chaotic systems. It would be interesting to look for such properties in other non-integrable
systems and to compare them with the results obtained for integrable systems.

It is notoriously difficult to determine the quantal energies from a numerical solution of
the Schrodinger equation for classically chaotic systems, even on a large computer. To gain
first information on the lowest energy levels of the hyperbola billiard, we have employed a
variational method. A comparison with the modified Weyl’s law indicates that the first ten
eigenvalues should be not too bad an approximation to the true quantal energies. To obtain
more than ten eigenvalues with reasonable accuracy requires a more sophisticated method
like, for example, Heller’s method [11). Computations using the latter method are presently
carried out and results will be published elsewhere. It is hoped that the more elaborate
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methods will give us more eigenvalues with better accuracy and thus will allow us to study
the energy level statistics.

In SectionIV we have carried out a quantitative analysis of Gutzwiller’s periodic-orbit
theory. Since the original version of the periodic-orbii theory, i.e. the representation (26)
for the trace of the Green’s function, is at best conditionally convergent, we have based our
analysis on the Gaussian smeared periodic-orbit sum rule (27), which is absolutely convergent
for any smearing parameter ¢ > 0. Working with a convergent form of the periodic-orbit
theory is of crucial importance in view of the limited number of classical orbits. Using a
relatively large smearing parameter, i.e. ¢=0.2, it turned out that the periodic-orbit theory
evaluated with only 36 terms agrees at low energies surprisingly well with the “true” Gaussian
level density obtained from a numerical solution of the Schrodinger equation (see Figure 7b).
if, however, the energy resolution is improved by taking ¢=0.1, one requires all available
136699 terms in order to be able to distinguish between the energy levels F; and Es (see
Figure 8b).

In SectionIV.2 we have shown that the energy-resolution is significantly improved if the
periodic-orbit theory is applied to the desyminetrized billiard systems instead to the full
hyperbola billiard. Summarizing the results of Section IV, we can say that the periodic-orbit
theory provides indeed a substitute for the semiclassical quantization rules for our strongly
chaotic system. In contrast to what one might have expected, the theory works quite well
at low energies, while in the genuine semiclassical region, i.e. at large energies, much more
periodic orbits would be needed than have been calculated in this paper. There remains the
challenge to invent a powerful summation method te handle a huge number of periodic orbits
in the periodic-orbit sum.
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Appendices

A Extremum principle for periodic orbits

Suppose P;_y(z; 1 ]E}__I)’ H(:c,-|—§:) and P q(zi41] m,lT) are three successive points of a periodic
orbit on the hyperbola. The lengths of the segments of the periodic orbit from P;,_; to P, and
from P; to P,y are denoted by [;_y; and [; ;4 respectively. P/_; and P/, are two points that
are obtained by extending the two line segments of the orbit that have F; as common point
until they hit one of the hyperbolas y = 1 or y = —2 (see Figure10). Now consider an ellipse
through P; with foci P;_; and P/ ;. Because of the focal property of the ellipse that the lines
P! ,P; and P/ ,P; form equal angles with the tangent to the ellipse at point P; it follows
that the ellipse and the hyperbola have a common tangent at point P;. It further holds that
l; 1;+ liit1 = A where A is the major axis of the ellipse. If now the position of the point B;
on the hyperbola is changed one sees immediately that the major axis of the ellipse through
P; with foci P/_; and F/, , is increased and therefore also the sum of the distances P;_, F; and
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Figure 10: Hlustration of the extremum principle

PP/ ;. Since this argument holds for every point of the periodic orbit on the hyperbola, the
following extremum principle for periodic orbits is obtained:

s}
2L, en) =0¥i=1,...,N (28)
and
o? .
—a";*z-L(itl,...,:I:N)>OV’LEI,...,N, (29)

where L is the length of a given periodic orbit as a function of its N points on the hyperbola,
l.e.

N
L{zy,...,zy) = ELi(zi,mHl) y TN41 1= T . (30)
=1 '

There are three different possibilities for the functional dependence of the length L;(z;,z:11)
of the segment of the orbit from Pi(:ci|"z1—£) to Py(ziir|2):

Tit1
Foli, 2ina) i= (@i — 2 ) + (F + ﬁ)z}%
Liziszina) = { ful@i i) = [(zi + 2ia)* + (51? - ﬁp]% (31)
folzis@ipa) = [(m; + 2i1a)® + (z + i)z}% .

These three cases respectively correspond to segments in which there is a reflection on the x-
axis only or on the y-axis only or on both axes. Thus if the given periodic orbit is represented
by the ternary sequence @ = (a;,...,ax) (see SectionIL.1), its length-function reads

N
L(:cl?‘ ‘e 7mN) = Zfai(:ci?mi-H) . (32)
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B Calculation of the monodromy matrix

Consider a certain periodic orbit. In its vicinity a coordinate system can be introduced
whose x-coordinate is parallel to the orbit and whose y-coordinate is perpendicular to it. A
particle that starts at 7 = (z¢,dy) with momentum p' = (p,,dp,) infinitesimally close to the
periodic trajectory will have after one traversal the coordinates 7' = (g, dy’) and momentum
?" = (pz,dp),). The monodromy matrix M of the periodic orbit is then defined by

(o) =) e

It has the property detM = 1. Introducing an angle o between momentum-direction and
x-direction one obtains

' dy' Y dy v My, pMi, B
(da’)_M(dQ)’M_(iMn M2~2 vp‘lﬁ]' (34)
The matrix M can be decomposed into partial matrices M;

M=M.,,.

e My - My (35)

This is done by traversing the periodic orbit once and inserting into the product one matrixM;
for every straight line segment and for every reflection on the boundary. It follows from
geometrical considerations that for a straight line segment the matrix M; is of the form

- 1 I

where [; is the length of the line segment. For a reflection on the boundary the corresponding

w500 (37)

R; cos f3;

matrix Mi has the form

Here 3; is the angle between the incoming trajectory and the normal to the boundary. R; is
the radius of curvature of the boundary at the collision point. R; is greater than zero if the '
boundary is convex and it is less than zero if the boundary is concave. If the reflection takes
place on a straight line, R; = oo.

In case |Tr(M)| > 2, the periodic orbit is unstable and M has eigenvalues A;; = e**
or Ajz = —e*™, where u > 0 is the instability exponent. The Lyapunov exponent A of an
unstable periodic orbit is in our case defined as A = u /T, where T is the period of the periodic
orbit. If |Tr(M)| < 2, the periodic orbit is stable and M has eigenvalues A, = e** where v
is the angle of stability. _

For billiards whose boundaries consist of concave and straight pieces only and which have
the property that every classical trajectory is reflected from a concave part of the boundary
at least once it is easy to show that the product of matrices M = M, __ ... " M satisfies
the relation |Tr(M)| > 2. For that reason all periodic orbits of the hyperbola billiard are
unstable and have positive instability exponents.
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