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Abstract

The statistical properties of the quantal energy levels of the Hadamard-Gutzwiller ensemble -
whose classical members belong to the class of systems with hard chaos - are investigated. Based on a
saraple of 4500 energy levels, it is shown that the short-range statistics as nearest—neighbour spacing
distributions are governed by the GOE predictions of random—matrix theory, which was first surmised
by ‘Wigner and by Landau and Smorodinsky for nuclear level statistics. This result strengthens
the hypothesis, that quantum systems with chaotic classical counterpart dispiay level repulsion as
predicted by random-matrix theory. However, the level statistics describing correlations over greater
level distances deviate from the GOE predictions, which is explained as a simple consequence of the
fact that the spectral rigidity Az(L) introduced by Dyson and Mehta saturates non—universally at a
finite value A, for L — oo in complete agreement with the semiclassical theory developed by Berry.
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I Introduction

It is now commonly believed that the generic systems in classical physics are not the standard “text-
book systems”, which are completely integrable, but the non-integrable or so-called chaotic systems.
The latter display a very strong dependence on the initial conditions, i. e. even extremely small pertur-
bations have exponentially growing effects on the time—evolution of the systems. The chaotic behaviour
of such systems arises from the non-linearity of the differential equations describing them. But this
non-linearity is missing in quantum mechanics, because the corresponding differential equation is
the Schrodinger equation, which is linear and seems to smooth out the chaos observed in the classical
realm. Nevertheless, there is the hope that the statistical properties of the quantal energy spectra show
a clear sign of chaos. It has been conjectured [1,2,3] that the statistical properties can be described by
random-matrix theory, originally proposed by Wigner and by Landau and Smorodinsky for a better
understanding of the energy levels of complex nuclei (for a collection of the original papers, see (4]).
The random-matrix theory [5] asserts that the statistical properties of the nuclear levels are the same
as for the eigenvalues of random matrices of the Gaussian orthogonal ensemble (GOE), which should
be applied for systems with time-reversal symmetry. The GOE, which is invariant under orthogo-
nal transformations, consists of real symmetric matrices, whose matrix elements are zero—centered
Gaussian distributed. For systems without time-reversal symmetry, one expects statistical properties
according to the Gaussian unitary ensemble (GUE), which is invariant under unitary transformations.

The nuclear level statistics are in good agreement with the GOE predictions [4,6,7,8,9], and it
is conjectured [1,2,3] that these properties are common to the much wider class of chaotic systems
in general, whereas a Poisson distributed spectrum is expected for integrable systems. (For recent
Teviews, see e. g.refs. {10,11,12,13].) To check this assumption one needs a large number of eigenvalues
for a given system, whose chaotic nature can be proved rigorously. Problems arise from the numerical
point of view, because it is notoriously difficult to compute enough eigenvalues for chaotic systems
with the accuracy required to get significant statistics.

Following the spirit of random-—matrix theory, it is natural to improve the situation by considering
not just a single chaotic system, but rather an ensemble of chaotic systems belonging to a certain
family of systems sharing common properties. (For a similar approach see [27] for complex atomic
spectra and (7] for the “nuclear data ensemble”.) By computing the lower part of the quantal energy
spectrum for as many members of the ensemble as needed for statistical significance, one avoids the
serious problem of calculating very high energy levels. Since it is known that the properties of nuclear
level statistics are approximately independent of the energy range, i.e. the ground state domain shows
the same behaviour as very high energy ranges [6], one can suppose, that the results obtained for
the low energy spectra of the ensemble are valid in a much wider energy range, perhaps even in the
semiclassical region.

Adopting this strategy, we study in this paper the energy-level statistics of the Hadamard-
Gutzwiller ensemble. The Hadamard-Gutzwiller model [14,15] has been the subject of our earlier
detailed investigations [16,17,18], where the emphasis has been on the Selberg trace formula, which
for this model is identical to Gutzwiller’s periodic—orbit theory [19,20]. In ref.[18] we studied a very
special version of this model, calied the symmetrical Hadamard--Gutzwiller model, which is defined
by choosing the most symmetrical fundamental region in the Poincaré disc (i.e.a regular octagon)
for the Riemann surface of genus two, on which the particle motion takes place. For this model the
level statistics did not show the expected GOE bhehaviour even after desymmetrization [18]. However,
there is an infinite number of inequivalent compact Riemann surfaces of genus two, i.e. there exists
an infinite family of Hadamard—Gutzwiller models, which we call the Hadamard-Gutzwiller ensemble.
We suspected that the symmetrical Hadamard-Gutzwiller model, studied in [18], is a very special
member of the Hadamard-Gutzwiller ensemble, insofar as it possesses a very high symmetry leading
to non-generic level statistics even after desymmetrization. On the other hand, it could be hoped that
a generic member of the Hadamard—Gutzwiller ensemble, which is represented by an asymmetrical
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Figure 1: The fundamental regions of six members of the Hadamard-Gutzwiller ensemble are shown
in the Poincaré disc.

octagon, would reveal the expected level statistics. This is indeed the case for the short-range corre-
lations as will be shown in this paper. Working with a large ensemble (we use 30 different Riemann
surfaces of genus two) we can base our statistical study on 4500 eigenvalues which is a reasonably large
number, and allows us to make a detailed analysis of various statistical measures. Whereas the short—
range statistics turn out to be in nice agreement with the GOE predictions, the long-range correlations
show a different behaviour. This long-range behaviour can be completely understood in terms of a
single parameter A,,, which measures the asymptotic value of the Ajz-statistics of Dyson and Mehia
[21]. We thus obtain a coherent picture of the energy-level statistics of the Hadamard—Gutzwiller
ensemble.

Our paper is organized as follows. After describing the Hadamard—Gutzwiller ensemble and the
construction of its members in sect.II and III, respectively, we turn in sect.JV to the energy-level statis-
tics. In contrast to the usual approach we begin with the functions F(k, L) introduced by Mehta and
Cloizeaux [22], describing the probability that a randomly chosen energy interval of length I contains
k levels, which are more fundamental than the following statistics, because the latter can be derived
from the former. Then we discuss the higher moments of the number statistics (L), v2(L}, v2(L),
the level spacings P(k, s) and finally the spectral rigidity A3(L). We close with an explanation of our
findings in terms of the saturation value A, of the spectral rigidity As(L).

II The Chaotic Hadamard—Gutzwiller Ensemble

The Hadamard-Gutzwiller model [14,15] is a conservative Hamiltonian system with two degrees of
freedom, which is strongly chaotic. It is defined on a compact Riemann surface with constant negative
curvature with genus ¢ = 2, on which the free inotion of a point particle is considered. Genus g =2
means that this surface is topologically a sphere with two handles, i. e. it looks like a double doughnut.
For an excellent review see ref.[23)]. '



Riemann surfaces of genus g > 2 can be parametrized by a 6¢ — 6 dimensional moduli space. In
this way we get for ¢ = 2 an ensemble of purely chaotic systems, whose members can be described
as points in a 6 dimensional moduli space. However, in contrast to genus g = 1, where the moduli
space is explicitly known (the §L(2, Z) fundamental domain in the complex upper half plane), for our
ensemble of genus g = 2 it is not the case. Therefore, we proceed in the following way. The double
doughnut can be cut so that one obtains an octagon with geodesic edges, where opposite sides must
be identified, which leads to periodic boundary conditions. The octagon is mapped into the Poincaré
disc, which consists of the interior of the unit circle in the complex z—plane (2 = z; + iz2) endowed
with the hyperbolic metric

! by 4j=1,2 (1)
Gij = 550 s 1= 1
(1 - =y —23)
corresponding to constant negative Gaussian curvature K = —1. In the Poincaré disc, geodesics are

circles intersecting the boundary of the disc perpendicularly. The classical motion is determined by
the Hamiltonian H = ﬁpz-g"jpj, p; = mg;;dz’ /dt, while the quantum mechanical system is governed
by the Schrédinger eguation

o 92
~ AW, (z) = E,¥,(2) , with A= 4(1 — 22 - 23)? (5—;% + 3—%) ) (2)

where we used A = 2m = 1.
The periodic boundary conditions are reahzed by identifying the points z and b(z},

az+ 8

"= b(z):=
z (2) B*z + a*

s lal? =~ 18P =1, (3)

where the “boosts”

b = (5‘ f,, ) € SU(1,1)/{41)

are chosen such that they map a given edge onto the opposite edge. One needs 4 boosts for each
octagon, and each octagon of the ensemble has different boosts because of their different shapes.

As an example, we present in fig.1 the fundamental regions of 6 members of the Hadamard-
Gutzwiller ensemble. Notice that all octagons have the same (non—euclidean}) area A = 47 as follows
from the Gaufl-Bonnet theorem A = 4x(g — 1) for ¢ = 2.

Let us consider an arbitrary member of the Hadamard-Gutzwiller ensemble (HGE), which is
uniquely defined by its fundamental region {octagon) F' and the associated 4 boosts as described
above. Denote by Ar the Laplace~Beltrami operator defined in eq.(2), where the index F indicates
that Ar is defined by acting on wavefunctions ¥,(z), z € F, satisfying periodic boundary conditions
on &F. The HGE is then defined by the set {Hz} of all Hamiltonians Hr = —Ap, where F runs
through all fundamental regions corresponding to the 6-dimensional moduli space. Each member Hp
has a different (discrete) energy spectrum 0 = Ef' < Ef < Ef < ... due to the different shapes
of the octagons F. However, Weyl’s law EF ~ 4—"'-n n — oo, is the same for all of them, since it
is only determined by their area A = 4m, i.e. the n-th quantal energy is approximately EF ~ n.
The statistical analysis carried out in sect.IV is concerned with the fluctuations of the energies {EL’}
around this mean.

IIT Construction of the Octagons

It is always possible to map the octagons into the Poincaré disc in such a way , that their boundaries
are invariant under the reflection z — —z. Fixing three adjacent corners at z;, z; and 23 defines an
octagon, see fig.2. The six degrees of freedom in choosing the three complex numbers 2;, z; and z3
correspond to the 6 dimensions of the moduli space. Reflection at the origin yields immediately the
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Figure 2: Example of an asymmetric octagon in the Poincaré disc with the defining points 2, z2 and
z3 as explained in the text.

three further corners at — 2y, —z2 and —z3. The missing two corners, zo and — zg, say, are determined
by the fact, that the area of the octagon must be 4 = 4~.

The last task is to determine the 4 boosts needed for implementing the periodic boundary condi-
tions. Consider for example the boost b, which maps the edge between —z; and —z; onto that between
zy and zy: The two conditions &(—2z,) = z; and b(~z;) = 2z, give

a‘zy+azn -y~ = 0
0

0.22 + azy — ﬁ'zlzg — }3 =

which yield immediately Im a = 0, and with the normalization |a|* — |3]* =1, a = /1 + |3]* and

V1+18Ha+22) - oz - B=0 . {4)

The last ecjuation and analogous ones for the other edges determine the boosts.

IV  The Statistical Propertiés of the Quantal Energies

The quantal energies for a given octagon are determined by the Schrédinger equation (2) with the
periodic boundary conditions that points z,z’ on opposite edges must be identified via z’' = b;(z),
where b; maps the edge belonging to z onto that of z'. The problem is well defined, and we use the
finite—element method for solving the Schrédinger equation as explained in our earlier paper [18]. The
finite—element method is based on a variational principle and yields therefore upper bounds for the
quantal energies. Using fourth—order polynomials as ansatz functions and a tesseliation of the octagon
in triangles leading to matrices of dimension roughly 1300, we get the first 75 quantal energy levels
with the required accuracy. The calculation was done on the Cray Y-MP at the HLRZ in Jiilich.
Because both the Schrédinger equation (2) and the boundaries are invariant under the reflection
z —» —z, the quantal energies belong to the two parity classes “4-” for ¥(z) = ¥{-z) and “-” for
¥(z) = —¥(—z). A generic octagon has no further symmetries. In order to study the statistics of
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Figure 3: E{k, L) for the Hadamard—Gutzwiller ensemble (full curve) for k¥ = 0 to 10 in comparison
with the GOE (dotted curve) and GUE (dashed curve) predictions. For a given value of k, E(k, L)
can be identified by its maximum approximately at L = k.

the energy spectra, one must consider the parity classes separately, because one is not interested in
correlations due to this symmetry. .

We constructed 30 asymnetric octagons, to be considered as random members of the Hadamard-
Gutzwiller ensemble, and then calculated the first 75 quantal energies for each octagon and for each
parity class. This yields 4500 energy levels, corresponding to 60 different spectra which are used in the
following statistical studies of quantal energies, where one always performs averages over the ensemble.
We assume that one has applied the process of unfolding to the individual quantal spectra, i.e.the
mean spacing between two adjacent levels of a given sequence is normalized to unity.

IV.1 The Functions E(k,L)

Let us denote by E(k,L), k = 0,1,2,... the probability [22], that a randomly chosen energy interval
of length L contains exactly k levels. For a given value of k, the functions E(k, L) have a maximum
approximately at L = k, because of the normalization of the mean level spacing, and satisfy the
normalization -
Y. B(kI) = 1 . (5)
k=0
Other statistics like £2, 7,2, A3 and level-spacing statistics can be calculated from the knowledge
of E(k, L), which are in this sense more fundamental. The random matrix theory makes well-defined
predictions for E(k, L) in the case of GOE and GUE [22], see fig.3. (Ref.[22] contains tables and
figures for E(k,L)for k =0to 7 and 0 < L < 5.093. The curves shown in fig.3 are the results of our
own calculations which extend to k = 13 and 0 < L < 13 [24].)

The function E(0,L), which is the probability for finding no level in an interval of length L,
starts with 1 at L = 0 and decreases very fast with increasing L. For the Poisson case one gets
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GOE Hadamard-Gutzwiller GUE
ensembile
a B 1 & a B v & a B 4 &
0.924 0.004 0.993 0.996 | 0.818 0.195 0.864 0.916 | 0.563 0.467 0.853 0.864
1.029 6.551 0.216 2.728 | 0.767 1.260 0.204 1.902 | 0.633 1.064 0.166 2.871
1.097 1.137 0.609 5.012 | 0.706 2.451 0.048 2.332 | 0.671 1.720 0.004 5.645

LI e

Table 1: The parameters a,3,v and § for the ansatz E(k,L) = yL%exp(—(L — 8)*/2a) for the
Hadamard--Gutzwiller ensemble in comparison with the GOE and GUE predictions. '

GOE "Hadamard-Gutzwiller GUE
k ensemble
4 0.726 0.606 0.493
5 0.772 _ 0.604 0.516
6 {.809 0.616 0.535
7 0.841 0.616 6.550
8 0.868 0.614 0.564

Table 2: The parameter a for the ansatz E(k,L) = (2ma)~'/? exp(—(L — k)?/2a) for the
Hadamard-Gutzwiller ensernble in comparison with the GOE and GUE predictions.

Epoisson(0, L) = e L, whereas we get for the Hadamard—-Gutzwiller ensemble (HGE) an excellent fit
with

E(0,L)= erfc(aL ‘/_/ dz e’ (6}

with agge = 0.880. This agrees well with the GOE pred.iction 4GoE = 3%’3 ~ 0.88622..., if one
assumes the Wigner surmise to be correct. The GUE prediction matches not so well with erfe(al}
and does not agree with Enggr(0,.L).

In order to compare Eugg(k, L) with Egogr(k, L) and Egyg(k, L), we use 51mple fit functions and
compare the fit parameters. For £ = 1 to 3 we use the ansatz

E(k,L) = 7 L° exp(~(L - B)?/20) | (7

to describe our data and the GOE and GUE curves, whereas for higher k values wefix 8 = k, v = ﬁ

and é = 0, because the functions E(k, L} agree well with the Gaussian normal distribution

Sonaar’

1
E(k,L)=
(k. L) -V 2ra
(A possible dependence of the fit parameters on k is not explicitly written out.) The fit functions have
to obey eq.(5), at least approximately. The ansatz (8) can be improved by including a correction term
proportional to a parameter &

exp(—(L — k)*/2a) , k =4,5,.... (8)

B(k, L) = {‘/?_:_2; - v+ (L - k)z} exp(~(L — £)/20) | - (9)

where « is chosen such that the ansatz (9) optimally obeys eq.(5). We have checked, that this ansatz
obeys eq. (3) almost perfectly for @ > 0.25. The error is less than 10~° and 1075 for a = 0.3 and
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0.6, respectively. However, with increasing a > 0.5 the correction can be neglected and, indeed, the
quality of our fit is independent of the choice between eq.(8) and eq.(9). Therefore, we choose eq.(8)
for simplicity. The parameters are listed in table 1 and 2. (Here and in the following, our numerical
values are presented with 3 decimal places, where, however, the last figure may be uncertain.) The
“width” a of the Gaussian normal distribution increases for the Hadamard-Gutzwiller model very
slowly with %k until for # = 4 to 8 it saturates at a mean value a,, = 0.615. The saturation of &
for & — oo, which occurs neither in the GOE nor in the GUE case, will find a nice explanation in
sect.IV.5. The a-values for the Hadamard—Gutzwiller ensemble lie always between the GOE and GUE
predictions. For smaller k’s a closer match is obtained in comparison with GOE than with GUE, but
this reverses for greater k’s, which indicates that the spectrum of our system is more rigid over greater
“k-distances” than the GOE spectrum.

The functions E(k, L) for the Hadamard-Gutzwiller ensemble {full curve), GOE (dotted curve)
and GUE (dashed curve)} are shown in fig.3. For small &’s, a much closer match of Eygr(k, L) with
the GOE prediction is obtained than with those of GUE. With increasing k values, Exgg(k, L) seems
to approach the Egug(k, L) functions until for £ = 9,10 the agreement is nearly perfect. This is
an accident, however, because the functions Eggg(k, L) have already a constant width, whereas the
widths of the functions Egyug(k, L) are still increasing, and thus for ¥ = 9 and 10 the widths of both
are comparable just by chance.

The last point can be put on a more quantitative basis by anticipating the following relation

alk) = SXR) , k>1 (10)

which connects the “width” a = a(k) of the function E(k, L) with the number variance £*(L), defined
in eq.(17) below, which is a measure for the local two—point fluctuations. Eq.(10} will be derived later
in sect.IV.5 for the HGE as well as for GOE and GUE. But let us check already now the prediction
{10) for GOE and GUE, which is possible since the random-matrix theory makes exact predictions
for £*(L) [21]

GOE : 22(1}) = 3 ln(21rL)+7E+1—7;-2}+0( 41132) (11)
GUE: T(L) = %[h(2wL)+7E+1}+O(W+L2) (12)

(7g = 0.5772...is Euler’s constant). In order to test our ansatz (8) together with the prediction (10),
we have made a fit to the exact GOE and GUE predictions for E(k, L) using (8) with a = a{k)} =
T2(k) + e(k), where X%(k) is approximated by (11,12). As is seen in table 3, the values obtained for
the “discrepancy” £(k), which is the only free parameter in our fit, are very small (< 107%) over the
whole interval from k& = 1 to 9, which is a nice confirmation of our ansatz (8) and our prediction (10),
which can be written explicitly in the form (k > 1)

?

2 | T |
agop(k) =~ e In(2xk)+ v+ 1 — ry (13)

agus(k) = %acor,(k) + %
For k = 5 we obtain fromeq.(13) agyur(5) ~ 0.51 and agor(5) ~ 0.77, and thus agug < aHGE < @GOE
at this k value. But since for £ — oo a(k) saturates at a comstant value a, for the Hadamard-
Gutzwiller ensemble, whereas'it increases logarithmically for GOE and GUE, the difference in the
level statistics between GOE and HGE is getting larger, while there must be a “crossover region”
where the level statistics of the HGE approaches the GUE predictions. To determine the k value
at which this crossover occurs, we demand agug = G =~ 0.6. For k = 9,10,11 and 12 we obtain
the values 0.57,0.58,0.59 and 0.60 for agug(k), which nicely confirms the results of fig.3 where one
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observes good agreement between Eugg(k, L) and Equg(k, L) for k = 9 and 10. But it is now obvious
that this agreement is accidental, being simply caused by a crossover of the agyr and the augp curves
near k = 12.

k | GOE | GUE
1 | 6.039 | 0.012
2 | -0.004 | 0.003
3 | 0.000  0.006
4 | 0.002 | 0.007
5 | 0.003 | 0.007
6 | 0.004 | 0.007
7 | 0.005 | 0.007
& | 0.004 | 0.007

Table 3: The discrepancy ¢(k) := a(k) — £%(k) for the GOE and GUE predictions as explained in the
text,

In sect.IV.5 we will need the integral I(k) over the E(k, L) functions, which has been introduced
in {25]
k) = / dL E(k,L) . (14)
0

Assuming the Gaussian behaviour (8), we obtain
I(ky = 1 for k = 4,5,... {15)

In table 4 we give the values for J(k) obtained from the exact GOE and GUE predictions in comparison
with the results for the HGE. It is seen that I(k) saturates, indeed, in all three cases at the value 1
for k£ > 4. '

GOE | HGE | GUE
0.643 | 0.641 | 0.590
0.923 | 0.909 | 0.944
0.975 { 0.975 | 0.986
0.989 | 0.983 | 0.994
0.994 | 0.996 | 0.997
0.896 | 1.000 ; 0.998
0.997 | 1.000 | 0.999

T M W k= O]

Table 4: I(k) for the Hadamard-Gutzwiller ensemble in comparison with the GOE and GUE predic-
tions.

In summary, we observe, that for the Hadamard—Gutzwiller ensemble the E(k, L) statistics for
small k, testing the low-range statistics, agrees well with the GOE predictions, whereas statistics
measuring properties over greater level distances show a more rigid spectrum. This property will
also appear in the other statistics, measuring a wide enough level range, as %23(L), the level spacings
P{k,s) and the spectral rigidity Az(L). '
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IV.2 Higher Moments of the Number Statistics n{L)

Let us denote by n(L) the number of levels in an interval of length L. Its expectation value is
oo
<n(L)> = > kEkL) = L . (16)
k=1

The interesting measures are the higher moments of n(L), i. e. the number variance £?(L), the skewness
v, and the excess -y; which are connected with E(k, L) via [26]

SAL) = ((n(D)- LP) = (k- L)k, L) (an
k=0
1 3 1 e 3
(L) = gy ()= 1) = gapgym L (k- DB D) (18)
v(L) = 5-5-(31—1)3 {(n(L) - Lj4> 3= ﬁ;(k ~ LE(k,L)-3 . (19)

In fig.4 we present the results for £2(L),:(L) and v2(L) computed from the spectrum of the
Hadamard-Gutzwiller ensemble (full curve) in comparison with the curves obtained from the functions
E(k, L) for the GOE (dotted curve) and GUE cases (dashed curve). The Poisson case is shown too. For
L < 1.1, £*(L)is in perfect agreement with the GOE prediction, but then it falls below the GOE curve
indicating a more rigid spectrum than that of GOE for L > 1.1. However, the skewness 73 and the
excess 75 show no deviation from GOE with increasing L. The fall-off of +; is too slow in comparison
with GUE and agrees with the GOE case. However, for [ > 3, for which the deviation from GOE
should increase, the curves of the GOE and GUE spectra are nearly indistinguishable. Therefore, the
deviation is unobservable within the statistical significance of our data. The same result is obtained
for 42, where the minimum at I ~ 0.45 is in agreement with GOE, and the oscillations of ¥, for larger
ranges in L are too small to look like that of the GUE predictions. The Poisson case, expected for
integrable systems, is excluded in all three cases.

The results on the number statistics corroborate nicely our findings on the probabilities E(k, L) in
sect.IV.1, that the short range statistic is well described by the GOE predictions. Surprising, however,
is at first sight the extremely small L interval (6 < L < 1.1) in which T?{L) agrees with the GOE
prediction. In fig.10 we show 2%3(L} in a larger range up to L = 50. It is seen that X*(L) , apart
from small oscillations, saturates very quickly at the value 0.6 for L — oo. But this is exactly the
behaviour which is expected from eq.(10), which predicts

Shep(L) — 0o =06 for L — oo . (20)

(A derivation of this result will be given in sect.IV.5.) Thus a saturation of the widths a(k) of the
probabilities E(k, L) for k — oo implies a saturation of £?(L) for L — co. It is then clear that Z?(L)
has to fall below the GOE prediction above some L value. What is surprising, is the “precocious
saturation”, i.e.a saturation already at about L = 3. In sect.IV.5 we will present a nice explanation
for the precocious saturation.

IV.3 Level Spacings

The nearest-neighbour level spacing P(0, s) is the simplest statistic and therefore most often discussed
in the context of statistical properties of quantal spectra of chaotic systems. Very good approximations
to the GOE and GUE predictions are

7['32

GOE : P(0,8)= gse“ 1 : (21)

2

. 32 4
GUE : P(0,s)= ;326_47 , (22}
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with the Poisson {chain curve), GOE (dotted curve) and GUE (dashed curve) predictions. For the
cases k = 4 and 6, we also show the results of our model (full curve), eq.(40).

where s is the spacing between two adjacent levels. For a Poisson distributed spectrum, one gets
P(0,s) = e™". : .

It is important to check that the level-statistics for the Hadamard-Gutzwiller ensemble is the
same for the two parity classes, which is expected if the statistical properties are assumed to be a
common sign of chaos. To underscore that, fig.5 presents the level spacing P(0, s) for a single system
from our ensemble with parity classes considered separately (fig.5a,b), and for the whole ensemble
again for the two parity classes (fig.5¢,d). The statistic for the single system is based on 100 quantal
energies, where we used a matrix of dimension 2500 in the method of finite elements. Its statistical
significance is poor, of course, but it already points towards the GOE distribution and rules out a
Poisson distributed spectrum. Figs.5 ¢ and d demonstrate the large gain in statistical significance in
using a whole ensemble instead of a single system. The agreement with the GOE prediction is very
good; a GUE distribution is definitely ruled out. Thus we have shown that the first part of the rule,
as proposed by Wigner for highly excited nuclei, holds for the Hadamard-Gutzwiller ensemble. The
two parts of the rule may be formulated as follows [27]:

1. The spacing between adjacent levels having the same spin and parity is distributed (relative to
the mean spacing) according to a frequency function which is given to a good approximation by the
Wigner distribution (21). _

2. The second part of the rule states that levels of different spin or parity are not in any way
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correlated in position. This has the consequence, that if one is dealing with a sequence of levels which
is a superposition of sets of different spin or parity, the resulting distribution of spacing has a character
which is intermediate between the Wigner distribution and the Poisson distribution.

Having shown that the even~ and odd—parity levels separately obey the first part of the rule, we
shall now show that the same levels are also in accord with the second part of the rule, i.e.that
levels of different parity are not correlated in position. “This lack of correlation may be exhibited,
for example, by considering the distribution of the spacings of all levels, no attention being paid to
parity classification. '
sequences leads to an increase in the number of small spacings. In the combined system of levels
there will be a nonvanishing probability that a level of one sequence will be foliowed by a level of
the other sequence. Since these two levels are assumed to be not correlated in any way, there will be
a nonvanishing probability that the spacing between them is zero. Thus, we have the general result
that the probability per unit interval for the occurrence of a zero spacing in the combined system of
sequences will be nonvanishing.” [27]

Let us consider the nearest-neighbour level spacing distribution for all levels of the Hadamard-
Gutzwiller ensemble, no attentjon being paid to parity classification, which we denote by P(s). Since
the two parity classes separately are in good agreement with the Wigner distribution (21), we ex-
pect P(s) to be described by a random superposition of the unrelated sequences, each governed by
the Wigner distribution. The general problem of superposing two independent sequences was first
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considered in ref.[28]. Specializing to the case of two Wigner distributions, we obtain the following

distribution
s

5 . — =47 \/?_T 1 _ T4t
P(s) = A erfc (—4——3) + 2€ T - {23)
(Note that P(s) has the properties P(0) = ! and P'(0) = #/8.) In fig.6 we plot P(s) for the
Hadamard-Gutzwiller ensemble. The expected reduction of the repulsion of levels is quite evident.
The distribution (23), represented by the continuous curve, is in excellent agreement with our numerical
results.

We have aiready seen, that our spectrum deviates from the GOE predictions for greater spacings
s = L. To investigate the long-range statistics in more detail, we also consider the higher level spacings
P(k,s) for k = 2,4 and 6, where P(k, s} denotes the level spacing between two levels with & additional
levels between them. The expectation value is

(s), = f:’dssp(k,s) - k1, (24)

because of the normalization of the spectrum.
In fig.7 we show P(k,s) for k = 0,2,4 and 6 in comparison with the GOE, GUE and Poisson

predictions. For the Poisson case one gets [26]

ok
P(k,s) = e o, (25)
whereas no such simple formulae exist for GOE and GUE. The latter are computed numerically as
outlined in [22]. As in the case of E(k, L), one recognizes a nice agreement for k = 0 with the
GOE curve (dotted curve), whereas for the higher k values one sees a clear deviation from the GOE
prediction. This confirms our earlier findings that the spectrum of the HGE is more rigid than the
GOE spectrum.

Because the hlstograms in fig.7 display statistical fluctuations, it is more instructive to consider the
integrated measure, 1. e. the cumulative level spacing f; ds’ P(k, s}, which is shown in fig.8 again for
the cases k = 0,2,4 and 6. Here the striking agreement for k& = 0 with the GOE curve is impressive,
whereas for k£ = 6 the result is closer to the GUE prediction. In sect.IV.5 we will give a simple
expression for the higher level spacings P(k, s), which explains their behaviour in terms of the single
parameter q.,.

IV.4 Spectral Rigidity

As the last spectral measure, let us discuss the spectral rigidity Az(L) introduced by Dyson and Mehta
[21] as the average of the mean square deviation of the staircase N (E) = # {En|E, < E} from the
best fitting straight line a + be: :

Lj2
Aj3(L):= <(cb)L./L/2 E-I-e)—a——bs]) , (26)

where < > denotes a local average. This statistic measures more directly the rigidity of the spectrum
than the level spacings P(k, s). Qur results for the Hadamard-Gutzwiller ensemble are shown in fig.9
and 10. One observes excellent agreement with the GOE prediction for L < 8. Knowing the behaviour
of E(k, L) and P(k, s), it is no surprise to see, that the spectral rigidity A3(L) displays for grea.ter L’s
a more rigid behav:our than the GOE prediction.

The spectral rigidity Az(L) is the only statistic, for which a theory exists, which was developed
by Berry in {29] and is based on Gutzwiller’s semiclassical periodic~orbit theory (19,20]. This theory
predicts {29] for a system of 2 freedoms that A3(L) should display the following universal behaviour
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Figure 9: The spectral rigidity As(L) for the Hadamard-Gutzwiller ensemble (dots) is displayed in
comparison with the GOE (dotted curve), GUE (dashed curve) and Poisson (chain curve) predictions.

as a result of properties of very long classical orbits: if the system is classically integrable {(all periodic
orbits filling tori), As(L) = L (as in an uncorrelated Poisson eigenvalue sequence); if the system
is classically chaotic (all periodic orbits are isolated and unstable) and has no symmetry, As(L) =
—2;1-;;1111) 4+ 00590 1 € L € Lyax (asin the GUE of random-matrix theory); if the system is
chaotic and has time-reversal symmetry, Az(L) = %lnL ~ 0.00695if 1 <« L € Lpnax (as in the
GOE). When L > Lyax, however, Az(L) saturates non—universally at a value, determined by short
classical periodic orbits, of order 7! for integrable systems and In{h~?) for chaotic systems. Here
Lmax corresponds to an “outer energy scale” which is determined by the shortest classical periodic
orbit having period Tpin; Lmax = 2% /Tmin- (We have put again & =< d >~1=1, where < d >71is
the mean level spacing.) For a given member of the Hadamard—-Gutzwiller ensemble corresponding to
a given octagon F, we have Twmin(F) = Io(F)/2p, where p = \/E — 1/4 denotes the momentum and
Io(F) the length of the shortest periodic orbit on F. We thus obtain for the outer energy scale of the
Hadamard-Gutzwiller ensemble

: 4
¥ee o T E | (27)

where IHGE plays the role of an effective shortest length corresponding to an ensemble average over
the lengths lo(F) of the individual members of the HGE. For the octagons considered by us, the
lengths Io(F) vary roughly between 1 and 3. With IfiSF < 3 we arrive at the following lower bound
LEGE 2 (47 [3)WVE X 25. To obtain the last number, we have inserted E = 37.5 which is the lowest
energy E satisfying the condition E — L/2 > 0, if L = 75 denotes the upper bound of the interval
[0, L] over which the local average is taken in eq.(26). According to the semiclassical theory [29] we
thus predict that the rigidity As(L) should display for 1 € L < 25 the universal behaviour

1
As(L) ~ ASOE(L) ~ —inl — 0.00695 (28)
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Figure 10: The spectral rigidity A3(L) for the Hadamard-Gutzwiller ensemble (dots) is displayed for
L < 50-in comparison with the GOE (dotted curve) and GUE (dashed curve) predictions. The full
curve shows a best fit to Az(L) using eq.(30). In addition  E*(L) is shown, because 1E%(L) > A,

should be valid for L — co.

which is consistent with our findings presented in figs.9 and 10 which show that the GOE prediction
holds for 0 < L < 8. When L » L., the theory predicts that the rigidity saturates non-universally,

at a value approximately given by [29]
(29)

[s ]

1
Ay = pln(eLmu) -

Using the above estimate LEGE 2 25, we infer that A3(L) for the HGE should saturate for L > 25 at a
value A, > 0.30. A look at fig.10 shows, indeed, that A3(L) seems to saturate at a value A, > 0.29.
In order to get a better estimate for the saturation value A,,, we have made a best fit to Az(L) in

the interval 10 < L < 60 using the simple ansatz
2
a1 a2
Afl)= Ao |1 —-— - [= . 30
S(L) [ - (%) ] (30)

It can be seen from the full curve in fig.10 that {30} describes well for L > 10 the rigidity of the HGE,
where the parameters turn out to be given by A, = 0.305, ay = 2.115, a; = 2.048. We thus conclude
that the rigidity of the HGE saturates at a value A, = 0.305 which is completely consistent with the

theoretical lower bound of 0.30.

It is worth remarking that the rigidity shows “slow saturation”, reflected by the fact that a; # 0
in eq.(30), in contrast to the number variance L%(L), which shows a “precocious saturation” (see
sect.JV.2). We shall explain this difference in behaviour in the next section. '

Altogether it appears that the semiclassical theory gives a consistent description of the spectral
rigidity. Recently, Berry [30] remarked “that the transition from universal to non-universal spectral
statistics has not yet been seen in any honestly quantum Hamiltonian with a chaotic classical limit,
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because not enough eigenvalues have been computed (the transition has been seen for an integrable
system [29]).” To the best of our knowledge, the results reported in this paper for the HGE demonstrate
for the first time that this transition from universal to non—universal spectral statistics indeed occurs
in an honestly chaotic system.

The theoretical understanding of As(L) yields immediately a gualitative understanding of the
results for E(k, L) and P(k, s) presented in the previous sections. It is the purpose of the next section
to show that the saturation of As(L) explains also quantitatively the observed behaviour of E(k, L)
and P(k,s), and thus leads to a coherent picture of the energy-level statistics of the HGE. '

IV.5 Consequences from the Saturation of the Spectral Rigidity

Let us now discuss the consequences for the spectral statistics which can be drawn from the existence
of a finite saturation value A.,. We start with a discussion of the number statjstic ¥?%(L). The relation
between As(L) and £3(L) is given by a Volterra integral equation of the first kind for X2(L)

L* As(L) = 2 fOL (L3 —2L%r + 7’3) T3 (r)dr . (31)

Differentiating eq.(31) four times with respect to L and then considering the limit I — oo, where we
can set As(L) = Ao, yields the inhomogeneous Euler differential equation
d*Ti(L) dT?(L)

+ 2L =2 _ 6B*HL) = -12A04 ,» L > Lumax - (32)

2
L dL? dL

It has the general solution
THL) = 280 4 al? + 2l

where one must set ¢; = 0 for otherwise £2(L) would increase quadratically for L — oo. Then one gets
$2(L) = 2 An +O(L7%) for L —» oo. Thus we learn that the theoretically derived and numerically
observed saturation of Az{L) necessarily leads to a similar saturation of ¥2(L), where the saturation
value T2 is given by the simple relation :

o= 28k - (33)

A look at fig.10 reveals, that a saturation value of A ~ 0.3 explains well the saturation value ~ 0.6
of £2(L). To demonstrate the validity of eq.(33), we show 1%%(L) in fig.10, too. This curve has been
smoothed because (L) for the individual members of the HGE shows for L > Lax( F) quasirandom
oscillations which non—universally depend on the individual length spectrum. Oscillations of this kind
have been found by Odlyzko [31] and theoretically explained by Berry [30] for the number variance
of the Riemann zeros. For a given member of the HGE, Z7,(F) = Z In(eLmax(F)) — 1 plays the
role of the mean value about which the quasirandom oscillations take place. Since the oscillations
are quasirandom, they should cancel in the ensemble average. We observe such a cancellation for the
HGE, but it is still incomplete due to the limited nurmnber of octagons considered in our analysis.

The relation (31) explains also the observed “precocious saturation” of T2(L) versus the “slow
saturation” of As(L). Knowing the asymptotic expansion {30}, it is easy to derive from (31) that
T2(L) still obeys T3(L) = X%, + O(L~%). But the absence of O(L~') and O(L~?) terms implies
precocious saturation of L¥(L).

Having derived the interesting relation (33) between the number variance Z%(L) and the rigidity
A3(L), which must hold in general for strongly chaotic systems, one can ask whether a similar relation
exists also for the GOE and GUE predictions of random-matrix theory. Writing the asymptotic
expansions {11) and (12) in the form Z?(L) = AlnL + B + O(L~?), one easily derives from (31) for
L>»1

THL) = 24s(L) + %A + O(L™) (34)
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with A = 1— for GOE and A = —f for GUE, which is the natural generalization of (33).
Let us now come to the functions E (k, L), whose connection with £2(L) is given by eq.(17). Table
2 shows, that for £ > 3 the function a(k) of the ansatz

E(k, L) = —2;1;—(?) = | (35)

(X1

is approximately constant at a(k) > o = 0.615. This can be understood in terms of the saturation
value A, t00. Using the Euler-MacLaurin summation formula, one gets for L — oo

o0 1 (k=L)? oo 1 _(e—r)?
2 Ay ~ D3L) ~ k— L)? e B o~ [ dk (k — L)? e om
o ( ) ,;;( ) V2T , 3 ( ) Verag

1 /°° du o g
= @ ¥yt e a0
Vermae J3-1 v

1 oo , _3
el L
[+ =] — 00

and therefore
oo = 285 - (36)
Strikingly, the value A = 0.305 yields oo, = 0.610, which agrees nicely with our numerical value.
Combining eqs.(33) and (36), we obtain (20}, which was already found in sect.IV.2 to be in nice
agreement with our numerical results.
In sect.IV.1 we have shown that the ansatz (35) gives for k¥ > 3 an excellent fit also to the GOE
and GUE predictions, where a(k), however, does not saturate for k — oo at a finite value, but rather
increases logarithmically. For a(k) = alnk + b (a,b > 0) (see eq.(13)) we have checked numerically

that the relation
E—L1)2
/ dk (k- L) S
3 Verw

holds for I — oo. Thus the same argurment as above, using the Euler-MacLaurin summation formula,
can be applied to derive for GOE and GUE

~ a(L) (37)

L) ~ o(L) , L>»1 , \ (38)
a result which we anticipated in eq.(10) and already checked in table 3.
Finally, let us discuss the level spacings P(k, s), which are given by [22]

k .
P(k,s) :'Z(k+1—j)ﬂ-§ii)

=0

(39)

For k > 3, E(k,s) are determined by eq.(35) with ae = 244, and therefore P(k, s) are determined
in turn by '

~ (.-3)2 —ii%ﬁ
P(k, s) \/N_Ago;)(kﬂ_ (-—55—-1)6 - | (40)

Eq.(40) has been derived for s — o0, but it does its job well for k > 2, s > 2! After evaluatmg eq.(40)
numerically using our value A, = 0.305, we ﬁt_the result with the Gaussian

s—k—1)°
P(ks) = —m—e 3, 4

A 2To

which yields already for k > 3 the constant value 0o = 0.659,i.e.a saturation value A, forces P(k, s)
to be a Gaussian centered at s = k + 1 with a constant width 6. On the other hand, we can fit
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Figure 11: P(k,;s)fora)k =5and b) k=61s shown in comparison with eq.(40) for A, = 0.305.

eq.(41) directly to the data for the HGE. For k > 3 we obtain nice fits with 0.67 < o < 0.68, i.e. with
o—values slightly larger than the value 0o = 0.659. One must keep in mind, however, that the data
are given as histograms (see fig.7) and thus yield less precise fit parameters. To demonstrate the
astonishing agreement despite of the small numerical uncertainty, we present in fig.11 P(k, s) for the
cases k = 5 and k = 6 in comparison with eq.(40) using Ao = 0.305.

Independent of the ansatz (41), we can define the variance o2(k)} of s using the general definition
oik) =< s>k — <s>h 5 k=012, (42)

where

< 8" D= / ds s P(k, s) (43)
Jo

(see also eq.(24)). Using eq.(39) and performing two partial integrations, it is straightforward to derive
the following relationship between o%(k) and the integrals J{k) introduced in eq.(14) [25]

k .
(k) = 2 Y (k+1-HIG) - (k+1)" - (44)

It follows from the last equation, that the two sets {o{k)} and {I (k)} are not independent from each
other, since a knowledge of J(j) for j =0 to k determines uniquely o%(j) for j = 0 to k. In sect.IV.1
we mentioned already that the Gaussian approximatijon (35) predicts I{k) = 1 for k > K, if (35) is
assumed to be valid for k£ > K, and we inferred from a fit to the functions E(k,L) the value K = 4
for the HGE. This prediction was nicely confirmed in table 4, which, taken literally, yields X = 5, but
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which is consistent in fact with K = 4 since the deviation of I{k) from our prediction is only 0.004,
“and we do not claim that our numerical values are precise at the level 107°. Assuming I(k) = 1 for
k > K, we obtain from eq.(44) for k > K

' K-1 1 K-1
o (k) = 2k{ZI(j)— (K~~)} + K(K-3)+1 -2 (- 1I{) - (45)

3=0 2

Without further input, eq.(45) predicts for dz(k) a linear increase in k, which contradicts the asymp-
totic saturation at a value 2. In order to be consistent with the observed saturation, the curly
bracket in eq.(45) must vanish, which leads to the sum rule

K -1 1
Z (k) = K—5 . (46)
k=0

Using for I(k) the values given in table 4 for the HGE, we obtain for the left-hand side of eq.(46) the
values 3.508 and 4.504 for K = 4 and 5, respectively, which shows that the sum rule is satisfied within
our numerical accuracy.

Assuming the exact validity of the sum rule (46), we derive from eq.{45) the following relation for

the saturation value o2,

K-1
ol = K(K-1) - 2 Y kI(k) . (47)
k=1

With the values given in table 4 for the HGE and for K = 5 we obtain from (47) the saturation value
o, = 0.645 which is quite consistent with the value 0.659 obtained from eq.(40). Relation (47) shows
explicitly that o2 is very sensitive against small changes in I(k). For example, if we change just the
integral I(4) by the tiny amount -0.004 (i.e. I(4) — 0.992, see table 4), which renders the sum rule
(46) to be ezect for K > 5, we get a change in o2, by +0.032 yielding the new value oo = 0.669.

The above discussion has shown that a saturation of Az(L) at a value Ay is accompanied by a
saturation of o2(k) at a value o2, as a consequence of eq.(40). For the other statistics we have discussed
before how they depend on the saturation parameter Ao, and we were led to the remarkable relations
(20),(33) and (36). It is suggestive to ask whether there exists a similar relation connecting 2, with
Ao, i.e. with £2,. To answer this question, we display in table 5 the values for o, obtained from a
fit of eq.(41) to eq.(40) for Ay varying in steps of 0.05 between 0.25 and 0.70. In addition, we show
the combination 2A, — o2 . With (33) we are thus led to the relation

2 =0l +p {48)

where p is roughly constant,i.e.0.17 < p < 0.18 for 0.50 < B2 < 1.40. Relation (48) is reminiscent of
a similar relation [6] connecting X2(L) and (k) for the GOE and GUE, where p has been predicted
[32] to have the value %, while the exact result gives for GOE 0.16 < p < 0.17for0 < k < T, which is
very similar to the values obtained by us for the HGE.

A 0.25 0.30 0.35 0.40 0.45 050 055 060 0.65 0.70
Coo 0.565 0.651 0.725 0.792 0.853 0.910 0.964 1.015 1.063 1.109
2A, — o2, [0.181 0.176 0.174 0.173 0.172 0.172 0.171 0.170 0.170 0.170

Table 5: The dependence of 0 in eq.(41) on the saturation value A of the spectral rigidity.
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V Discussion

A big unsolved problem in quantum chaology is to find an explicit semiclassical quantization condition
for the individual energy levels of classically chaotic systems. Although Gutzwiller’s periodic—orbit
theory [19,20] leads. to very interesting sum rules [17,18] for the quantal energies, it does not provide
— at least in its present form — such a quantization condition. It is true, that by computing a huge
number of periodic orbits, we could demonstrate recently for the symmetrical Hadamard-Gutzwiller
model [17,18] and for the hyperbola billiard [33] that a Gaussian smoothing of the periodic—orbit sum
allows indeed a determination of the low-lying energy levels. But even with millions of periodic orbits,
we were unable to recover high ezcited levels. Lacking an explicit semiclassical quantization rule for
the individual energy levels, one is led to study the statistics of the levels.

In this paper we have presented for the Hadamard-Gutzwiller ensemble, considered as a model
for ‘quantum chaology, a detailed statistical analysis of the fluctuations of the energy levels about the
mean level density.

The results reported in this paper demonstrate clearly that the energy-level statistics of the
Hadamard-Gutzwiller model, defined on a generic asymmetric octagon, are (after parity separation)
in complete agreement with the short-range statistics of random~matrix theory (see figs.5a) and b)).
We have thus shown for the first time, that the motion on compact Riemann surfaces provides a
generic model far quantum chaology.

In order to improve the statistical significance, we have studied instead of a single model a whole en-
semble of different Hadamard-Gutzwiller models, called the Hadamard-Gutzwiller ensemble. Studying
30 different asymmetric octagons provided us, after parity separation, with 60 different level sequences
comprising altogether 4500 energy levels. Based on this relatively large sample, we were able to study
in detail various fluctuation measures.

The results obtained for the different measures led us to a coherent picture of the energy-level
statistics of the HGE: the short-range statistics of the quantal energies E,, are in perfect agreement
with the GOE predictions of random-matrix theory as first surmised by Wigner and by Landau and
Smorodinsky for nuclear level statistics. Thus our results strengthen the hypothesis, that quantum
systems with chaotic classical counterpart display level repulsion as predicted by random-matrix
theory. On the other hand, the level statistics describing correlations over greater level distances
deviate from the GOE predictions. But this non-universal behaviour can be uniquely described as a
“saturation effect” caused by the shortest periodic orbits of the HGE. According to the semiclassical
theory developed by Berry [29], the rigidity As(L) saturates at a value A, given approximately by
eq.(29). One of the main results of this paper is the fact that a similar saturation is observed also for
the other fluctuation measures, viz.the “width” a(k), the number variance £?{L) and the variance
o%(k), and, furthermore, that all those measures saturate at values which are completely determined
by the single parameter A,

Qoo = B2, = 280 = 0L + p . (49)

(Of course, a good answer to the question “Who needs p?” has yet to be given, though the “correction”
p =~ 0.17 — 0.18 is uniquely determined by egs.(40) and (41).) Since all fluctuation measures studied
in this paper can be derived from the probabilities E(k, L), we cite again eq.(8)

L—k)?
L oo

E(k,L) = —= k>4, 50
(b 1) = ——=s > (50)
expressed now in terms of the single parameter
2 1
2 _
Ew = ;z—ln(e}:/max) - 4— B (51)

It is worth mentioning that eq.(50) has not been derived from semiclassical theory, but rather we
have shown that the simple Gaussian ansatz (50) describes well the long-range statistics of all the

21



fluctuation measures and is, furthermore, consistent with the predictions of the semiclassical theory,
since from eq.(50) we can derive the saturation of Az{L) and T%(L).

To our knowledge, it is the first time that the transition from universal to non—universal spectral
statistics has been seen in an honestly quantum Hamiltonian with a chaotic classical limit.

There remains to test the energy-dependence of the various saturation values. E.g.for 2 we
obtain from eq.(27) and (51) the prediction

1 2 4ire 1
Eio = —InE + Fln (ITGTE) - Z y (52)
0

where E is the energy near to which the average over the energy intervals of length L is carried out
in the computation of £2(L). Unfortunately, the energy interval, which was attainable to us in this
paper, is too small to carry out the required test. Notice, however, that eq.(52) predicts that in the
genuine semiclassical limit, E — 0, Y2 -increases without limit, which implies that the GOE-curve
for £2(L) plays the role of an envelope to which the “experimental” number variance converges. In
this sense the GOE prediction of random-matrix theory is asymptotically recovered.

After completion of this paper we became aware of Berry’s lectures [34], where “some issues that
lie at the foundations” of quantum chaology are well discussed. In these lectures the semiclassical
theory is extended to the number variance Z#(L).
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