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Supermembranes have been proposed as models for elementary particles. One of the
main reasons for the recent interest in these theories is that supermembranes, unlike string
theories, can live in an eleven-dimensional supergravity background [1,2]. Thus they can
possibly serve as a basis for a unified theory of elementary particles different from string
theory, which could have maximally extended supergravity as its low-energy approximation.
In this contribution, we will review some of the recent developments with special emphasis on
the supermembrane in eleven dimensions, and on the topics that have been the focus of our
own recent work [3.4,5]. Since the theory of supermembranes now appears to have entered a
more tranquil stage of its development, it is perhaps also appropriate to offer some comments
concerning their future,

Supermemmbranes, as they are presently known, are based on Green-Schwarz type ac-
tions. In their original form the Green-Schwarz actjon provided just another description of
superstring theory. Some time ago, it was shown that such actions can also be formulated
for supersymmetric p-branes, where p = 0, 1, ... defines the spatial dimension of the "brane”
(1,6,7,8]. Hence, for p = 0 we have a superparticle, for p‘ = 1 the superstring, for p = 2
the supermembrane, and so on. The dimension d of space-time in which the superbranes
can live is very restricted [9]. While d can take all positive integer values for p = 0, the
only other possible values for (p,d) are (1,3}, (1,4), (1,6), (1,10), (2.4) (2,5), (2,7), (2,11),
(3,6), (3,8}, (4,9) and (5,10). These restrictions arise from the fact that the action contains a
Wess-Zumino-Witten term [10], whose supersymmetry depends sensitively on the dimension

of space-time. If the coefficient of this term takes a particular value then the action has an
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additional fermionic gauge symmetry, the so-called n-symﬁetry. This symmetry is necessary
to ensure the matching of the bosonic and fermionic degrees of freedom on the mass shell.
As the number of spinor components grows mucl:l more rapidly with the dimension than the
number of vector (or tensor) components, it is also very plausible that there should be a
maximal dimension in which super-p-branes can exist. In the remainder we will be mostly
concerned with the maximally extended theory which corresponds to (p,d) = (2, 11).

Much of our work is based on the observation that supermembranes can be regarded
as the N — oo limit of certain matrix models in supersymmetric quantum mechanics with
SU(N) invariance [3]. In this way, it becomes possible to regularize the theory at a non-
perturbative level and to study its properties in a rigorous fashion. Already at this peint,
we would like to emphasize that these matrix models provide the only supersymmetric reg-
ularization which is presently available. Notwithstanding the numerous open problems that
remain, especially conéern.ing the:limit where the “cutoff” is removed, we believe that this
approach has led to new and important information about the supermembrane. In particu-
lar, using this approach, we have shown that the spectrum of the regulated supermembrane
is continuous [4]. Furthermore, we have studied the (classical) supermembrane Lorentz al-
gebra in the finite- NV approximation {5], paving the way for a rigorous quantum-mechanical
treatment. ‘

As there already several extensive reviews of supermembrane theory [2], we here only
sketch some of the basic results. In the notation and conventions of [3] the supermembrane
Lagrangian reads

£ = - v/=g(X,0) ~ &% [} 5 X4(9;X” +8T*9,6) + L BT#0,0 8T*0,6] BT840, (1)
where X #(() and 6({) denote the superspace coordinates of the membrane parametrized in
terms of world-tube parameters ¢* (i = 0, 1, 2). The fermionic coordinates @ transform as
d = 11 spinors and have thus 32 components. The gamma matrices are denoted by I'#; gamma

matrices with more than one index denote antisymmetrized products of gamma matrices in

the usual fashion. The metric gi;(X, ) is the induced metric on the world tube,
gi; — (6.-X“ + ﬁl“‘a,-ﬂ) (BJ-X" 4 (_91"”8,0) Nisres (2)

where 7, is the flat d = 11 Minkowski metric. It is easy to see that g;;, and therefore the
first term in (1), is invariant under space-time supersymmetry. If d = 4, 5, 7 or 11 the second
term proportional to €% is also supersymmetric {up to a total divergence). Furthermore,
~ the action is invariant under k-symmetry for these valués of d.

In order to study the quantum-mechanical properties of the supermembrane we pass to
the light-cone gauge. First we define light-cone coordinates '

1 -
X*= E(x“' + X9

XH = (3)

Xe (e =1,...,9)



In the light-cone gauge we are left with the transverse coordinates X and corresponding
momenta P, which transform as vectors under the §O(9) group of transverse rotations. Only
sixteen spinor components § remain, which transform as §O(9) spinors. Furthermore we have
the centre-of-mass (CM) momentum Py in the direction associated with the CM coordinate
Xy (the remaining modes in X ~ are dependent), while the CM momentum Py~ is equal to
minus the supermembrane Hamiltonian.

The CM transverse coordinates and momenta and the CM spinors are defined by
P, = / e B, Xo= [d%ovw(o)X(0), 6= f d%o+/w(o}8(a). (4)

where o™ (r = 1,2) are (space-like) coordinateswhich parametrize the membrane, and we
employ a density +/w(c) which is normalized according to

/d”a Vu(o) = 1. (5)

The supermembrane theory is now expressed in terms of the various CM coordinates and
momenta and the "oscillatory” modes contained in X, P and 8. The Hamiltonian takes the
following form
Pr  M?
= o7 t 551 (6)
2P, 205,

where M is the supermembrane mass operator, which does not depend on any of the CM

H

coordinates or momenta. An explicit expression for M? will be given shortly.
The gauge conditions adopted above leave a residual reparametrization invariance con-

sisting of so-called area-preserving transformations. They are defined by

o 0" +E(0)  with 8 (Ve(@)E(e)) =0 (1)

The general solution of (7) can be decomposed into co-exact and harmonic vector fields. For
a membrane of genus g there are precisely 2¢ independent harmonic vectors. Furthermore,
there can be homotopically nontrivial transformations; these will not be considered in what

follows. The co-exact components are parametrized in terms of globally defined functions

£(o),

67‘8

¢ (o) = 8,£(c)- (8)

w(o)
and generate an invariant subgroup, which we denote by G. In the following, we will restrict
our attention to this invariant subgroup when referring to area-preserving transformations.
The commutator of two infinitesimal G-transformations characterized by functions £; and §;

yields a similar transformation characterized by

&= {62751}1 (9)
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where the bracket {4, B} for two functions A(c) and B(c) is defined by [11,12]

{A,B}(¢) = ! €*8.A(c)8,B(0). (10)
It is straightforward to show that (10) satisfies the Jacobi identity. According to (9) the
bracket is related to the structure constants of the group G. This relationship will be made
more precise in a moment. -

As it turns out, the supermembrane moving in a d-dimensional space-time can be re-
garded as a limiting case of certain models in supersymmetric quantum mechanics in d — 2
dimensions. As explained above, this observation plays a central role in what follows [3).
In order to derive this result one expands all the coordinates and momenta into a complete
orthonormal basis of functions consisting of the constant function 1 and functions Y4(o)
(where A = 1,2,...,00). The coefficient of 1 represents the CM value, so we have

X(0)= %o+ 3 Xa¥A(0), - (1)
A=1

and similar expansions for all other quantities of interc such as the momenta or the fermionic

coordinates.
The bracket {Y4,Y P} is again expressible in terms of the basis functions, so we may

write _ .
{v4, Y8} = 45 Y7, (12)

where the constants fA%; can be regarded as the structure constants of the infinite-dimen-
sional group G. Other tensors related to the diffeomorphisms generated by harmonic vectors
and tensors needed for the Lorentz algebra generators were defined in [6]. After these decom-

positions, the supermembrane mass operator takes the form
2 2
M= (PA) 4+ }(fancX2XT) - ifano 8%y X26°. (13)

We stress once more that this expression is independent of the CM coordinates and mornenta,
Furthermore we have adopted a somewhat different notation for the spinor coordinates, which
are regarded as real §O(9) spinors. Corresponding to thie original d = 11 spinors, they have
have been rescaled with a factor proporticnal to (P )"/%. The gamma matrices are chosen
accordingly and indices a, b run from 1 to 9. '

For completeness we give the supersymmetry charge assaciated with (13}
Q = (P99 + Lapc XX 1) 6% (14)

Observe that this charge is a sixteen-component spinor. It satisfies the supersymunetry alge-

bra,
[Q, M*] = constraints, {Qa, Q) = bap M? + constraints, (15)
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where the constraints are of the form ¢4 =~ 0, with
w4 = faBc (XB-ﬁC - %9396) X | (16)

These constraints, which imply the invariance of the wave function under the action of the
group G, follow from the requirement that the light-cone coordinate X ~ be a giobally defined
function on the membrane. Apart from its CM value X ~ is then determined in terms of the
other coordinates and momenta, which is only possible if ¢# ~ 0.

If we replace G by a finite group, then (13) defines the Hamiltonian of a supersymmetric
quantum-mechanical system. These models have been discussed in the literature [14] and
follew from dimensional reduction of pure supersymmetric Yang-Mils theories. In the limit
to the infinite-dimensional group G' we thus recover the supermembrane. This is the result
quoted above. It enables us to regularize the supermembrane in a supersymmetric way by
considering a limiting procedure based on a sequence of groups whose limit yields the group
G. Since the precise meaning of this “limit” is somewhat subtle (see below), let us first
note the following result. For spherical and toroidal membranes, there exists a basis of
functions ¥ 4(o) such that the associated structure constants f4pc are the N — oo limit
of SU(N) structure constants (for toroidal membranes, there are, of course, additional area-
preserving diffeomorphisms generated by the two harmonic vectors). To be specific, the

following relations exist for the SU{N) structure constants [11,12,13,5],

' 1
ABC _ fABC
SU(N) — Jsphere + 0 (ﬁ) »
1
7455 = 1855 + 0 (5.

where it is important that the SU(N) structure constants on the left-hand sides of these

(17)

equations are defined in a different SU(N) basis, and therefore not the same. Although these
bases are related by a similarity transformation for any finite IV, this is no longer true for
N = oo {as is also suggested by the non-equivalence of area-preserving diffeomorphisms on
the sphere and the torus).

There has been some discussion in the recent literature on the precise meaning of the
N — oo limit, especially in connection with spherical and toroidal membranes. Although
this limit can be taken “pointwise” in (17), one can by no means infer that SU(occ) really
coincides with the group of area-preserving diffeomorphisms on membranes of a particular
topology. The important point here is that these diffeomorphisms, and hence the vector
fields £7(e) that generate them, are by definition C®-functions. Now, it is not difficult to
construct sequences of area-preserving maps corresponding to elements of SU(N) which are
C* for any finite N and which, in the limit N — o0, become singular (i.e. discontinuocus

or non-differentiable). Hence the group SU(oc) also contains singular area-preserving maps.
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Such singular maps do not even have to preserve the topology of the membrane, so that it is
quite meaningless to associate SU{oc) with any particular topology (see also [15]). Rather,
the limit N — oo must be interpreted as a “weak” limnit: it only makes sense for matrix
elements of (SU{XN)-invariant) operators between two fixed states (the existence of such
limits may require non-trivial renormalizations as N — o). One can even go farther and
adopt the point of view that the SU{N) approximation defines the membrane theory, and
therefore takes care of all topologies. Then there would actually he no need to sum over
different topologies, just as in lattice gauge theories, where there is also no need to sum over
“instanton sectors” of different topological charge as these are automatically included. On
the other hand, this point of view ignores the fact that. for membranes of nontrival topolgy,
there are 2¢ additional constraints which require the wave function to be invariant under area-
preserving diffeomorphisms associated with the harmonic vectors on the membrane surface. It
is not clear how to incorporate such constraints into the finite- N approximation (see appendix
A of |5] for a further discussion of this). Of course, one may certainly prefer other approaches
to make sense of the theory. but we remind the reader that so far all other proposals (e.g.
those based on semi-classical approximations) are essentially perturbative and therefore prone

to miss important qualitative features.

The structure of the Hamiltonian (6) shows that the wave functions for the supermem-
‘brane now factorize into a wave function pertaining to the CM modes and a wave function of
the supersymmetric quantum-mechanical system that describes the other modes. It follows
also from (6) that the fermionic CM modes, which are the generators of a sixteen-dimensional
Clifford algebra, should be realized on the CM wave functions. Therefore the possible wave
functions pertaining to the CM modes constitute a massless d = 11 supermultiplet. In
terms of its §O(9) representation content, this multiplet consists of 44 @ 84 bosonic and 128

fermionic states.

Whether or not the supermembrane states can be massless is determined by the sec-
ond part of the wave function, which must be an eigenfunction of the operator {13). This
shows that it is not possible to obtain nontrivial information regarding the mass spectrum
by studying a collapsed membrane, an approximation that is sometimes used in order to
eliminate the nonlinearities of the supermembrane Hamiltonian (see, for instance, [16]). Fur-
thermore, in view of the supersymsmetry algebra (15), the mass can only be zero if the state
is annihilated by the supersymmetry charge {14), and vice versa. Therefore it follows that,
as for their dependence on the modes other than the CM modes, massless supermembrane
states correspond to supersymmetric singlets. After combination with the CM modes we
thus have a massless representation of d = 11 supersymmetry. If the states are not massless
they will, after being combined with the CM part of the wave function, constitute massive

representations of d = 11 supersymmetry.



For d = 11 one would hope that there is precisely one supersymmetric vacuum, so that
the corresponding massless d = 11 supermultiplet will be the supergravity multiplet. For
other dimensionalities, the smallest supermultiplet does not contain spin-2. In order to have
a massless supermultiplet that contains the graviton, there must be a further degeneracy
of the groundstate associated with nonzero angular momentum. It is not known how this
additional degeneracy would effect the analysis of [16].

The nonlinear structure of the mass operator (13) makes it very difficult to prove or
disprove the existence of massless states for the supermembrane, despite the fact that super-
symmetry allows us to take the “square root” of the mass-operator and thereby reduce the
second-order (functional) differential equation to a first order one. Below, we will demonstrate
by means of a toy model introduced in [4], that even under most simplified circumstances,
it is very difficult to settle this issue. Therefore, contrary to some claims in the literature,
the question of massless states remains open. Among the few results that can be stated
with some certainty, is a theorem that follows from the positivity of the bosonic part of the
mass operator (13) [3]. According to this theorem there is no massless state whose wave
function factorizes into a bosonic and a fermionic wave function such that one of these, or
both, is invariant under either G or under the SO(9} group of transverse rotations. This
result shows that the structure of these groundstate wave functions (if they exist) must be
very complicated (see [3] for a further discussion).

‘ Having stressed that the probl'em of finding massless states is more difficult than one
might have anticipated, we would like to add some comments on alternative proposals to

study the nature of the groundstate. One is based on the Witten index [17],
A= [(-)F e B4 (18)

and motivated by the hope that, even though it may not be possible to derive the groundstate
wave functions explicitly, there may still be indirect methods to count their mumnber. As is
well-known, if A # 0 there must be an unequal number of massless fermionic or bosonic
states. At least some of them must be annihilated by the supersymmetry charge (14). Mo-
tivated by the connection of the supersymmetric quantum mechanics with supersymmetric
Yang-Mills theories, the Witten index has been determined for G = SU(2) in the so-called
ultralocal limit [18]. Usually one finds that A # 0, with the exception of the two-dimensional
models {corresponding to a supermembrane moving in a four-dimensional space-time), where
A = 0 for odd-dimensional gauge groups G. Furthermore, in {19] a "twisted” version of the
Witten index was proposed which was argued to be strictly positive. If this were correct
massless supermermbrane states should exist. On the other hand, the validity of the ultralo-
cal approximation is rather questionable. Moreover, we have already pointed out that the
specfrum is continuous in the finite- ¥ approximation without a gap. In such a situation it is

known that the very notion of the Witten index will sensitively depend on the regularization
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that one employs [20]. In any case, the issue cannot just be resolved by formal manipulations
of certain functional integrals. Rather than being positive the result is likely to be ill-defined!

Another method to investigate the problem: of massiess states relies on semi-classical
approximations [21] and arguments based on collapsed membranes [16]. However, the results
do not always agree, The reason is probably that the various approximations involved here
are difficult to control.

An important feature of the quantum-mechanical models based on (13) is that the po-
tential vanishes if the coordinates X # take values in some abelian subalgebra. These valleys
in the potential are also familiar from supersymmetric gauge theories; obviously in the small-
volume limit, where one dljops all the nonconstant modes, these valleys are still present
although they remain compact as long as the volume is not strictly equal to zero. Also
the (super)membrane has these zero-energy configurations; they correspond to stringlike
configurations of arbitrary length. The same feature exists for general p-branes. Classical
(super)p-branes are unstable: the zero-energy configurations correspond to collapsed branes
of lower dimensionality p — 1 {obviously, this observation is only relevant for p > 1.

It is evident that these classical degeneracies will also bear upon the quantized theories
and the nature of the mass spectrum. In quantum mechanics, the spectrum of the Harnil-
tonian is usually discrete if the potential confines the wave function to a finite volume in
configuration space. In the presence of zero-energy valleys, there is a latent danger that the
wave functions will no longer be confined. There is then no obvious reason why the spectrum
should be discrete. However, quantum-mechanical effects may still prevent the wave function
from escaping through the zero-energy valley. In the valley the transverse width of the wave
function is reduced. and because of the uncertainty principle the kinetic energy must be finite
and positive. Another way to see this is by noting that the oscillations perpendicular to the
valley direction give rise to a zero-point energy. This effect thus induces an effective potential
barrier, which tends to confine the wave function. To make this more explicit, consider the
following two-dimensional Hamiltonian,

Hg =pl+p}+2"y" | (19)

Obviously the potential in (19) has zero-energy valleys along the z- and the y-axis. Never-

theless the eigenfunctions of (19) are confined and cannot escape through these valleys. This
follows from decomposing (19) as .

Hpg = H, + Hy,° (20)

where H; = p? + L2?y? and H: = p! + 32’y*. Since Hy and H, take the form of harmonic

oscillator Hamiltonians in z and v, respectively, with frequencies proportional to |z| or [y,

we immediately derive the operator inequality

Hp > 2t (21)

T V2



Therefore the wave function will be confined and the spectrum of Hp is discrete [22].

It is now obvious why the introduction of supersymmetry could drastically change the
situation described above. As is well-known, supersymmetric harmonic oscillators have no
zero-point energy, so that the confining effective potential may vanish. Whether or not the
potential in the valley will vanish completely can also be investigated in the two-dimensional
model. We first introduce a supersymimetry charge by

—2Y Pzt ipy
Q=9'= : (22)
Pz — Py zy
which acts in a two-dimensional fermionic Fock space. The Hamiltonian then follows in the

usual fashion,
Hg =z -1y

H=Q= : | (23)
T + 1y Hg
In order to establish the absence of an effective potential barrier that may prevent the

wave function from escaping through the valley, we consider a set of normalized trial wave

functions
alz,3) = x(z - A) wol2,9) éps (24)
characterized by some parameter A. Here x is a one-dimensional free particle wave packet
satisfying [ dz |x|* = 1, which has compact support so that {24) is only different from zero
for ¢ &~ A, @g is the normalized groundstate wave function for a one-dimensional harmonic
oscillator,
wo(z,y) =777 (2] * exp (~Flzl ¥, (25)
and £p is a normalized two-dimensional spinor. When the parameter A is large, the wave
function {24) thus has its support in a narrow region along the z-axis.
What we now intend to show is that, by making A large, ¢ will tend to a supersymmetric
wave function, which, by virtue of the supersymmetry algebra, must have zero energy. To

iy

see how this works, let us consider @ ¢,

-1 - 0 = . '
Q¢A={my( ng)+( ’ )}%- (26)
sgn 1 p: O

If we now choose £r equal to £r = %x/f(l, ~1), then the first term cancels (without less of

generality, we can assume z ~ A > 0) and we are left with
Q¥r = —pa= ¥ @20
It is now straightforward to derive the following result for the norm of Q 3,
| Qe = [pexI® + O(A7), (28)
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where the first term is obvious and represents the norm of the one-dimensional wave function
Pz %, wWhich is equal to the energy of the wave packet since ) is normalized to unity. The
second term originates from the operator p, acting on pq. This introduces a factor |z]~! or
a factor ; however, the latter becomes also proportional to lz|~1 after integrating over y.
As z 2= A. the contributions from p. g are thus of order A7,

Obviously the right-hand side of {28) can be miade arbitrarily small by choosing a wave
packet x of sufficiently low energy and by making A sufficiently large. The latter implies that
the wave function will extend further and further into the valley, so that there is apparently no
confining force, as 37, approaches a supersymunetric wave function with zero energy. Although
suggestive, the above result is by itself not yet sufficient to conclude that the spectrum of H
is continuous, but it nicely illustrates the main ingredients of the proof. Namely, along the

same lines, one shows that for any E
| (H = BYba I7= I(p2 - B)xl? + 0(x7). (29)
For any positive E and ¢ we can then choose a wave packet x such that
I(p2 - E)x|* < /2. (30)

By making A sufficiently large we can make the O(A™") corrections in {29) smaller than ¢/2.

Combining (29) and (30) then shows that for || ¢ {|= 1.
| (H - Eyps|*< ¢ (31)

for any positive £ and ¢. This proves that any non-ncgative E is a spectral value of the
Hamiltonian £, so that the spectrum is continuous. It is clear that the reason for the
continuity of the spectrum is that wave functions can excape to infinity along the valieys that
have zero classical energy. ‘

The above example exhibits all the qualitative features of the supersymimetric quantum-
mechanical models that we are interested in. For the supersymmetric SU/{/V) matrix models,
the proof is technically more involved, but the only essential ingredients are the existence
of the potential valleys extending to infinity and supersymmetry. We thus conclude that
the M? operator of the supersymmetric quantum-mechanical models that are related to the
supermembrane has a continuous spectrum starting at zero for any finite (compact) gauge
group [4]. By contrast the spectrum of the corresponding bosonic theory is discrete [22],

At this point we would like to return once more to the issue of finding discrete and
possibly zero-mass eigenstates. Discrete eigenstates within the continuum are possible, al-
though such examples are not easy to construct and always suffer from instabilities (as the
discrete states can “decay” into the nearby continuum). For our toy model, it is not known

whether such states actually occur. The problem is somewhat simpler to address for the
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zero-eigenvalues. In this case, the problem boils down to the question of whether there exist
normalizable solutions of

Q¢ =10, (31)
Writing out the two components of ¢ and assuming for simplicity that ¥y = £1p;, we must

check whether there are square-integrable solutions of
(802 + Oy}t = —dzydy. (32)

Now, although solutions certainly exist, it is not known even in this utterly simple example
whether these are square-integrable or not {see e.g. [23]). The case we are ultimately inter-
ested in, namely solving (31) with {14}, is, of course, far more complicated as the spinorial
part of the wave function now has 28(Y"~1) components!

We stress once more that the continuity of the spectrum has so far only been established
for supersymmetric matrix models based on a finite Lie group. Furthermore, it is not known
whether this result remains valid for supermembranes moving in a curved background,.and
whether the proof can be suitably modified in this case. Apart from this important open
problem, the crucial question is what will happen when we take the limit to the infinite-
dimensional group of area-preserving diffeomorphisims. The regularization procedure that we
employ emphasizes supersymmetry, and indeed supersymmetry is crucial for our conclusions.
Of course, it is not unlikely that alternative regularization methods exist. However, irrespec-
tive of these technical considerations, it should be noted that there is no physical reason
for the supérmembra,ne to behave any differently from the finite-dimensional matrix model,
because it exhibits the very same features that led to the continuity of the spectrum in the
finite-dimensional case, namely flat directions in the classical potential and supersymmetry.
At this point, one might rajse the problem of whether or not the supermembrane is renormal-
izable (or even finite). In the former case, various quantities may diverge in the N — oo limit,
but these infinities can be controlled by making a finite number of renormalizations. As the
spectrum is continuous for finite N, one would first define a spectral density and then study
its deformations as NV is varied. For N — oo, certain renormalizations may again be neces-
sary to keep the speciral density well defined. It would take more than a fortuitous accident
for the spectral demsity to develop discontinuities (i.e. é-function-like spikes) in this himit,
quite apart from the formidable technical problem of proving this! If, on the other hand, the
supermembrane should turn out not to be renormalizabie after all, little can be said, but it
is quite obvious that the theory would then be plagued by the same diseases which afflict
any theory of gravity in more than two dimensions. One may also ask whether the above
result only applies to a particular membrane topology. In view of our discussion concerning
the relation between $U(o) and area-preserving transformations, we emphasize once more
that the topologies are automatically accounted for, at least in the sense that SU(oc) con-

tains more than just the invariant subgroup G of area-preserving diffeomorphisms associated
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with one particular membrane topology. So it seems that there is very little chance for the
supermembrane to evade the dilemma of a continuous spectrum: it is a theory without an
intrinsic mass scale! We emphasize that, of all supersyminetric p-branes, only the superpar-
ticle and the superstring can evade the above conclusion. The particle simply because it has
no internal structure at all, and the string because, apart from the centre-of-mass motion, all
modes are confined by harmonic oscillator potentials.

In conclusion, we believe that, in its present form, the supermembrare cannot be a viable
candidate as a model for elementary particles, at least not in the same relatively simple con-
text in which superstrings are ordinarily considered. In addition to the difficulties concerning
its physical interpretation which we have described above, there remain the enormous techni-
cal complications of membrane theory that derive from its non-linear structure (to name but
a few: little progress has been made with a Polyakov-type approach, no membrane analog
of vertex operators suitable for the computation of scattering amplitudes is known, etc.). To
overcome all these problems, one would need some major miracles {like hidden integrability
of supermembrane theory, for instance). On the other hand, there is a beautiful and unique
algebraic structure in these theories. Perhaps supermembrane theory - like string theory -

will make a comeback in an entirely different context from that originally envisaged.
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