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INTRODUCTION

The work discussed below has been done in collaboration with Ch. Frick, K. Jansen,
J. Jersak, I. Montvay, P. Seuferling, T. Trappenberg, and U. Wolff in different combinations
and is presented in more detail in refs. [1-5]. The general framework of our investigation
Is a non-perturbative study of ¢*-theory and the Ising model in four dimensions. In the
continuum the Lagrange density of euclidean ¢*-theory reads

_E 2 ﬁzz 9. 252
c= o0+ et S, (1)

where ¢ represents a real N-component scalar field ¢*(z). The Ising model, on the other
hand, describes a field which only assumes values d{z) = £1. It is a standard test-ground
for many ideas in field theory and statistical mechanics.

The physical relevance of ¢*-theory with a four-component scalar field is based on the fact
that it describes the Higgs-sector of the standard model of electro-weak interactions. The
Glashow-Salam- Weinberg model of electro-weak interactions contains gauge fields coupled to
a four-component Higgs-field. Due to the smallness of the gauge coupling questions about
the Higgs mechanism can be studied in the context of the pure ¢*-theory [6]. Omne of the
questions relevant for phenomenology concerns the mass mpy of the Higgs particle. As a
simplification one may reduce the number of components to one, which leads to the ordinary
¢*-theory. Another special case is obtained by sending the bare quartic self-coupling go to
infinity in a such a way that the field ¢ is constrained to unit length:

6-6=1.

The theory is then called the O(4)-symmetric non-linear sigma model in the case of four
components. and the Ising model in the case of one component. It is in this limit that we
studied the models. In this limit accurate Monte Carlo calculations are feasible. On the other
hand this limit is relevant for upper bounds on the Higgs-mass as will be discussed below.
The mass of the Higgs-particle is related to the value of the renormalized quartic coupling
gr and the field expectation value v & 250 GeV through

gR
myg = - .

3

‘Thus non-perturbative upper bounds on the coupling gg in the phase with broken symmetry
yield upper bounds on the Higgs-mass.

Lecture given at the NATO Advanced Rescarch Workshop: “Probabilistic Methods in Quantum Field
Theory and Quanium Gravity”, Cargése, France, August 1989



¢'-THEORY

For simnplicity of notation T begin with a consideration of the one-component ¢*-theory.
In order to regularize the mode] it is defined on a hypercubical lattice Z*. The euclidean
action
1 mi 2y
5= E{E(aufﬂo)z"F 70(1’(2)‘5" Z;Gbg {2)
p !

is parametrized as

5= Z{“2"5296@)9’5(3+ﬁ)+ﬂ5(fc)2+/\[¢(-'c)2 *1]2} ; (3)

where the lattice spacing a is set 10 1 and f denotes the unit vector in the positive p-direction.
The parameters x and A are related to the bare mass mg and the bare coupling go through
1-—2A 6A

8 = .

m% = K - b Jo = K.2 (4)

The phase diagram in terms of £ and 2 is shown in figure 1 and results from nunerous studies
in recent years. (See e.g. ref. [7].) For values of x below a certain k.(A) all expectation values
respect the symmetry ¢ — —¢ of the action, whereas for values of x above s, the symmetry
is broken spontaneously. For A = 0 we have a free field theory, whereas in the limit A — oo
the Ising model is obtained.
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Fig. 1. Phase diagram of ¢*-theory in four dimensions.



The physical quantities of central interest are the renormalized mass my and the renor-
malized coupling gp. The renormalized mass is defined together with the wave function
renormalization Zy through the small moinentum behaviour of the propagator:

1
Gip)™ = Z;{qu +r7 + o)) (5)

mp is numerically close to the physical mass m = myg given by the pole of the propagator.
The renormalized coupling gg is defined in terms of the 4-point vertex function by

11(4)(070:0’0): _'ig‘ gR - (6)

Zg
The renormalized coupling and the bare coupling are numerically quite different. In particular
gr Temains finite even in the limit where X goes to infinity. gr and mpg are functions of &
and A and for an understanding of the model one has to know this dependence. Of particular
interest is the scaling region near s, where the mass mpg (in lattice units) vanishes as k — ..

Most important for these considerations is the fact that ¢*-theory is almost certainly
trivial, as work by various authors in recent years indicates, including ref. {7,8]. This means
that in the continuwm limit, where the cutoff A/mp = 1/amp goes to infinity while x — &,
the renormalized coupling gg vanishes and free field theory is obtained. Therefore @*-theory
can only be used as a low-energy effective field theory with some finite cutoff A. The coupling
gr will then also be finite but will decrease with increasing cutoff. Since this concept is only
meaningful if the cutoff is larger than, say, twice the renormalized mass, upper bounds on
gr result. The determination of numerical values for these upper bounds is the aim of recent
nonperturbative investigations. Litscher and Weisz [7,8] addressed this problem by means of
a combination of high-temperature expansions in the symmetric phase and renormalization
group methods, which allowed them to get control over mp and gg in the whole symumnetric
phase. These functions could then be continued to the scaling region in the phase with
broken symmetry. The scaling region can be identified approximately with the strip around
the critical line, in which A/mpg > 2. The upper bounds on gr mentioned above are obtained
on the boundaries of the scaling region. Here gp assumes its maximuwm in the Ising Limit
which is therefore the relevant limit.

OUR AIMS

The aims of our investigation are

1. A high precision calculation of m, ¢r, Zx and other quantities.
The results are to be used to check the scaling behaviour of physical quantities and to
make a comparison with the results of Liischer and Weisz. Triviality bounds on gg are
to be derived from them. The calculations are done in the lIsing limit by means of the
Monte Carlo methed.

2. A study of finite size effects.
The calculations are done for a system in a finite volume L*® . 7T. This implies finite
size effects for all quantities under consideration. The L-dependence of m, gr etc. can
be measured accurately in the Monte Carlo calculation. On the other hand, if the
coupling gp is small enough, these finite size effects can be calculated in renormalized
lattice perturbation theory, which we did in the one-loop approximation. This then
allows an extrapolation of the Monte Carlo results to L = oo.
Furthermore a precise determination of the volume dependence of two-particle masses
allows information to be obtained about scattering lengths [9].

[



CLUSTER ALGORITHM

One aspect of the numerical simulations deserves special note. For the Ising model we
have made use of the so-called cluster algorithm of Swendsen and Wang {10]. This algorithm
has been developed further by Wolff [11} in order to be applicable to the case of continuous
spin models. We have emnploved his version in our studies of the O{4} non-linear sigma model.

Cluster algorithims are highly eflicient updating algorithms and their use was essentjal
for achieving high precision. The basic idea of cluster algorithms is to enforce spin-flips for
large domains on the lattice. As a result the problem of critical slowing down is avoided.
There is, however, alse another advantage which turned out to be even more important in our
calculations. Namely, the cluster algorithms allow the measurement of observables through
estimators with significantly reduced variance.

For the case of the Ising model the cluster algorithm works as follows. In the Monte
Carlo simulation an alternating sequence of spin-configurations and bond-configurations is
generated. The spin-configurations are the usual configurations of Ising spins. Bond con-
figurations are represented by the values 0 or 1 on the links which connect neighbouring
lattice sites. The mapping between these types of configurations is probabilistic. Given a
spin-configuration {¢(z)}, a bond with value 1 is created on the link between z and y with
probability p = 1 — exp(—4x) if ¢{z} = @(y). H the spins ¢(z) and ¢(y) are unequal no bond
is created. A cluster is a maximal set of peoints connected by bonds with value 1. It may
consist of a single site. From a bond-configuration a new spin-configuration is now ohtained
by identifying the clusters and assigning random values r; = 11 to all spins contained in the
same cluster C;. The efficiency of the cluster updating algorithm in fighting critical slowing-
down is due to the fact that in the step from the bond-configuration to the spin-configuration
whole clusters are statistically assigned a new spin value. Since there are also large clusters,
this can imply a non-local change of spins. The generated sequence of bond-configurations
and their cluster structure can also be used to measure physical quantities. In this way one
obtains the same expectation values as in the spin representation, but the fluctuations, and
therefore the statistical errors, are smaller [11]. This is the variance reduction mentioned
above.

To illustrate the efficiency of the Swendsen- Wang algorithm let me compare it to the usual
local Metropolis algorithm. On a 12%-lattice at a value of the coupling where m =~ 0.5 the
cluster algorithm is ten times slower than the Metropolis algorithm. But the relative errors
of various physical quantities are smaller by factors 5-20. Thus the effective gain in speed is
a factor 3-50 for the cluster algorithm. The situation is even better on a 24%-lattice where
the gain in speed is 20-200. -

RESULTS

Ising Model in the Symmetric Phase [1]

In the symmetric phase of the Ising model we have performed simulations on lattices with

a spatial extent of L = 12, 16, 20 at points where A/mp = 2.0, 2.6 and 3.3. Very precise

results could be obtained. As an example I quote the final numbers (extrapolated to L = oo)
at x = 0.0732:

mp = 0.3078(3), gm = 32.9(13), Zgp = 0.9707(8). (7}

The analysis of the data leads to the following conclusions:

1. We ohserve a very good agreement with the analytical results of Liischer and Weisz.
The precision could be improved.



2. Scaling according to the perturbative 3-function {in the three loop-approximation) is
cotfirmed.

3. Finite size effects are under control. The observed effects are in agreement with the
theoretical results. The finite size dependence of two-particle masses allows a determi-
nation of $-wave scattering lengths to an accuracy of 10-15% [12].

Ising Model in the Phase with Broken Symunetry [2,3]

The results in the broken syimmetry phase of the Ising model are of a quality comparable
to those in the symmetric phase. Therefore 1 will not discuss them here in more detail but
merely quote the triviality bound

gr < 34 (8)

which can be derived from them. A novel aspect is the appearance of a new type of finite
size effects due to tunneling. In the phase under consideration the effective potential which
governs the dynamics of the long wave-length modes has a double-well shape. If the volume
L? is finite this leads to tunneling phenomena as in the case of an anharmonic oscillator.
In particular the spectrum of the Hamiltonian exhibits a small splitting of ali levels, which
vanishes for large volumes. For the splitting AE between the two lowest masses the large
volume behaviour is

AE ~C - LY? exp{—aL3} (9

where a “surface tension” ¢ appears. The prefactor C and the surface temsion o can be
caleulated in an instanton-type semi-classical calculation. Including one-loop corrections one

gets [4]
3

C = 1.65058 /2 & (10)
gr
and an L-dependent surface tension
gR 3\/577 \/g -yl 2
= _ IR VI (=~ "mpL) + O(e ™R 4 O 11
G(L} Ton (1 1672 (mRL)2 CXP( 2 MR ) + (C ) + (gR.) ( )

g~ TR (1 _ A (l + 435) + O(g%)) . (12)

JR 1672 \ 8

The mass splitting was also calculated numerically for various L in our Monte Carlo simula-
tion. The observed L-dependence is as predicted in (9), see fig. 2. The values of the surface
tension o and the constant C have been determined from a fit of AE up to I = 10 in ref. [2].
Combined with the Monte Carlo value mpg = 0.395(1) in lattice units the results are

a/my = 0.0581(5), C =0.101(4). (13)

The measurements were done at a point where the coupling is g = 30.2(4). On the other
hand for this value of gg the theoretical predictions are

o/my = 0.0585(8) for L = 10, C = 0.105(1). (14)

The agreement with the numbers above is remarkably good. This shows that the semiclassical
one-loop approximation is reliable for the value ol ggr above. Furthermore it supports the
evidence that at this point the model is in the scaling region, which was also found from a
study of the scaling behaviour of gg and mpg.
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Fig. 2. Volume dependence of the mass splitting AE = Eq, for the four-dimensional Ising
model in the phase with broken symmetry.

O(4)-symmetric Non-linear Sigma Model in the Symumetric Phase (5]

Using both Wolff’s cluster updating algorithm [1 1] and the conventional Metropolis algo-
tithm we performed numerical simulations of the non-linear sigma mode] in the symmetric
phase for two values of x and various lattice sizes, namely

x=0.290  (m = 0.45)

L =4,6,8,10,12, T = 12
and
k= 0.297 {(m =~ 0.3)
L = 8,10,12,14, 16, T = 16.

With the cluster algorithm accurate numerical results could be obtained. A comparison of
the measured values of m and gg for different lattice sizes L showed that finite size eflects
are well reproduced by one-loop renormalized lattice perturbation theory. As a consequence
the extrapolation to L = oo with the help of the perturbative formulae is reliable.
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Fig. 3. Comparison of our results (open circles} to the analytical work in ref. [8] (strip
given by the three lines) and to the numerical results of ref. [13]. The renormalized coupling
gi is shown as a function of » = 1 — x/x. with . = 0.30411.

The extrapolated numbers are
K = 0.290 {15)

mp = 0.4500(6), gp = 26.9(2.1), Zp = 0.988(2)

and
0.297 (16)

mp = 0.3044(4), gp = 22.4(1.7), Zg = 0.981(2). .

H

The extrapolated infinite voluine results for mg and gg agree well with the analytical resuilts
of Lilscher and Weisz [8]. In fig. 3 this is shown for the case of the renormalized coupling. The
figure also includes the results of a previous numerical simulation by Kuti et al.[13] which also
agrees within errors with rel. [8] and with us. The estimated relative errors for our values for
mp are up to a factor of 5-10 smaller than those of ref. [8], but the errors of the renormalized
coupling are somewhat worse here, as is shown by the figure. In fig. 3 the slope of the solid
curve below our data points reflects the scaling prediction from the renormalization group.
As can be seen {rom the figure our data are consistent with scaling behaviour.

The finite-size effects on two-particle masses again permitted a determination of scattering
lengths, similarly to the case of a single-component ¢*-theory.



CONCLUSIONS

e ¢-theory can be fully understood by means of present day cthods.

¢ Finite size eflecis are under control.

* Presently available results confirm the existing theoretical picture based on triviality

and scaling. The qualitative behaviour of the four-component model in the symmetric

phase is very similar to the one-component case.

* Our caleulations agree with the work of Liischer and Weisz [7,8], leading to the bound

my < 650 GeV on the Higgs mass.
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THE CRITICAL BEHAVIOUR OF A
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INTRODUCTION

Since Jan Ambjern has given an introduction and review on random surfaces at this
workshop I need not explain the motivations and basic concepts of random surface theory.
Of the two different approaches to this subject he has mainly discussed the one which deals
with triangulated random surfaces. The other one, which will be considered in the following,
considers a lattice regularization of surfaces. The surfaces are then embedded in the d-
dimensjonal lattice Z7. In this type of regularization the surfaces are specified geometrically
without any parametrization and the problems related to reparametrization invariance do
not arise.

A model of random surfaces is specified through

1. The set of allowed surfaces, which may be restricted through conditions on topology.

geometry etc..
2. The action §.

Most commonly used is the Nambu action

S=j384, A = Area = #(plaqueties).
The basic quantities of a model are the partition function
Z = ZE_‘BA(S), (1)
s
where the sum goes over all closed surfaces $ (modulo translations), and the correlation
functions
Gyl = 3 e BAS), (2)
SES('Tlv--y”Fn]

Here the sum is over those surfaces which have the loops 71 to v, as boundaries. The increase
in the number of surfaces as the area A increases is characterized by the entropy n,(4). It
is defined through

G(7)= 3 my{A)e A4 (3)
A=1

Lecture given at the NATO Advanced Research Workshop: “Probabilistic Methods in Quantum Field
Theory and Quantum Gravity™, Cargése, France, August 1989



for some fixed loop 7. For unrestricted random surfaces it has been shown [1] that
. (A) > Al (4)

and the correlation functions do not exist. On the other hand for fixed topology (Euler
number) we have

n,(4) < et (5)

for some positive constant by, independent of 4. This motivated the introduction of Planer
Random Surfaces (PRS), where only surfaces of the simplest topology withoul handles are
allowed. Other models of physical interest include the so-called Self-avoiding Random Sur-
foces (SARS) and the Solid-on-Solid Model (§0S). In these latter two models, however, the
surfaces obey nonlocal constraints and therefore they are not of mmuch interest in the frame-
work of string theory, where one would like to consider models which are defined in a local
\Va.y.

In the following some important physical observables and critical exponents of randem
surface models, which have already been introduced in Jan’s lectures, will be recalled briefiy.
The susceptibility is defined by

X(8) = G{ép,dp) (6)

where Op denotes the boundary of a plaquette p. The mass gap m{3) is given as usual by
the asymptotic exponential decay of the two-plaguette correlation function:

G(dp, Op') ~ ™™™, z = dist.(p,p). (

~T
pa—

The Wilson loop
Wi.m(B8) = G(vr,m)

is the correlation function for a single loop vz.as of side-lengths L and M. Its asymplotic
decay determines the string tension 7(53):

TVL,M ~ E_TLIM.

(8)

Another quantity of interest is the Hausdorff or fractal dimension [2]. In the context of
random surface models a convenient definition is

log A
dy =2 lim ——22
A—eo log < 2% >4

(9)

2

where < 7° >4 is the mean squared distance of a surface to its center of gravity, averaged

over all surfaces of area A. Its asymptotic behaviour for large A is thus given by
<zl ~ ATH (10)
On the basis of considerations for random walks Parisi [3] conjectured the value
dy = 4

for random surfaces. Furthermore he suggests that dy is related to the upper critical dimen-
sion d¥ through

d] = 2dy = 8.

The upper critical dimension is the number of euclidean space-time dimensions above which
trivial (mean field) behaviour sets in. The status of these conjectures will be discussed later.

Numerical and analytical results for different models indicate that the entropy in genecral

behaves like
n,(A) ~ AcePoA as A— 0 (11)



for some positive constant By and some real index e. In this case the correlation functions
exist for @ > Gy . If Bo is a critical point, where the susceptibility diverges and the mass gap
vanishes, we define critical exponents through

X(B) ~ (B—po)™ (12)
m(B) ~ (8- Bo) (i3)
dr u—1
5~ 6= | (14)
Gop,0p) ~ 1al M, for 1 el < = (15)

These exponents and the Hausdorff dimension are not independent of each other. As in the
case of other models of statistical mechanics, scaling relations can be derived under some
standard scaling hypotheses. If 4 is positive they are

= 24 (16)
= v(2-n) (17)
1 1
vo= gp= i {18)

Therefore there are only two independent exponents. We take ¢ and dy as basic critical
exponents hecause they are most easily determined in numerical calculations.

Ultimately we are interested in the existence of a continuum limit. If a sensible continuum
limit exists as 3 — By such that the mass gap and string tension have a finite physical limit,
the corresponding quantities in lattice units should vanish:

m(ﬂ) — 0, T(ﬁ) — 0.

PLANAR RANDOM SURFACES

The simplest ansatz for a regularized string theory is the model of planar random surfaces
{PRS) which was mentioned above. Due to the large entropy of planar random surfaces a
Monte Carlo simulation did not appear to be feasible [4]. An extensive study of this model
by numerical metheds was, however, made unnecessary by results due to Durhuus, Frohlich
and Jonsson [5]. Assuming that the susceptibility x(3) diverges as § — g and that a certain
self-similarity property holds they were able to establish the following
Triviality Theorem :

For the model of planar random surfaces, mean-field theory is exact and the
exponents assume their classical values

1
y:-—,;f,:§,d3:4 (19)
1
5, €= —1.5.
Furthermore, the string tension does not go to zero,

T(ﬁﬂ) > 01

the correlation function G{dp, dp'} has the free massive scalar propagator as its
continuum limit, and the higher correlation functions of n loops for n > 3 do not
possess continuum limits if d < 6 .



Monte Carlo calculations [6] for d = 2 and 3 yield ¢ = —1.52 0.2 which implies the divergence
of x(3). On the other hand mean field theory is known to apply for large enough d. These
results indicate that the triviality theorem applies for all d > 2. This disease of PRS can
be traced back to the fact that the surfaces behave like non-interacting branched polymers
(“cacti”) near the critical point. This means that a typical surface consists mainly of long
thin tubes. A corresponding behaviour in the case of triangulated random surfaces, namely
the abundance of spikes, has been discussed by Jan Amnbjgrn in his lectures.

PLANAR RANDOM SURFACES WITHOUT SPIKES

How can one cure this disease? Two possibilities are

a) to change the action, or as a special case
b) to restrict the class of allowed surfaces in order to prevent the outgrowth of “fingers”.

Such an attempt is made in the model of planar random surfaces without spikes (PRSWS).
Spikes are 180 ° wedges, where two plaquettes which occupy the same place are attached to
each other. Forbidding the occurrence of spikes represents a local constraint. The model has
been introduced by Berg, Billoire and Férster {7] as an analogue to fermionic random walks
which contribute to the random walk representation of the Dirac propagator. The hope is
that the constraint is strong enough to suppress “fingers” in low dimensions.

The PRSWS model is related to a string model with extrinsic curvature [8] studied recently
by several authors. A regularized model on a lattice including extrinsic curvature terms has
been formulated by Durhuus and Jonsson [9]. Its action reads symbolically

S = B) - #(spikes) + B2 - #(90 “wedges) + 33 - #(flat links).

It reduces to the Planar Random Surface model for 8; = §; = G3. On the other hand, our
PRSWS model is obtained as a special case containing extrinsic curvature terms in the limit
By — oo with B2 = B3a. Durhuus and Jonsson extended the triviality theorem for PRS to the
model above for the case that the couplings 3; are finite.

For PRSWS some general results have been derived [10,11] including Osterwalder-Schra-
der-positivity and scaling relations (16,17,18). Most important is the observation [12,10] that
the triviality proof as given by Durhuus, Frohlich and Jonsson for PRS does not apply to the
PRSWS model. This allows the hope for a non-trivial behaviour of this surface model in low
dimensions.

In large numbers of dimensions d, mean field theory applies as usual and can be used to
calculate various quantities [10,11]. The critical exponents take their classical values (19) in
mean ficeld theory. Furthermore the string tension 7(8g) at the eritical point assumes a finite
value, which can be calculated in mean field theory. For large d the model is thus trivial like
the planar random surface model.

Monte Carlo Calculations

Using an algorithm {13,7,4] developed particularly for the study of such models Baumann
and Berg [14] obtained the first Monte Carlo results for PRSWS. They measured the exponent
¢ and the Hausdorfl dimension dy in d = 4 dimensions. The results are

dy = 4.2+0.3 (20)
in accordance with the Parisi conjecture, and

e =-1.74+ 0.03 {(21)



which implies eritical exponents

1

L

! =1 (22)
4 4': =L
that differ from the mean field values (19). These results were then the main motivation for
further studies of PRSWS. One of the questions to be answered is about the upper critical
ditnension, which in view of the results above is conjectured to be

d* = 8. {23)

The Monte Carlo calculations have been extended since then to other dimensions d and the
statistics in 4 dimensions has been improved [10,11]. A new Monte Carlo algorithm due to
Baumann [15] was very advantageous for this purpose. First of all an accurate determination
of By was achieved for d==4,6,8,10,12 and 26, which is necessary for a determination of critical
exponents. The results are shown in fig.1 together with the predictions from mean field
theory (upper curve). For large d the agreement is quite good whereas for d < 8 deviations
show up.

The Hausdorff dimension and the exponent ¢ have then been calculated in extensive runs
in eight and ten dimensions. For the Hausdorfl dimension the results are

dg = 4.0£0.2, for d=8 (24)
= 3.8:+0.1, for d=10. - (25)

The number in d = 10 is obtained with somewhat less statistics than in d = 8. Together with
the value in d = 4 the results indicate the validity of the

Assumption: dy =4 for d> 4.

20—

Bo

1.5k

0Sj- T

[ |
23456 8 10 12 1% 20 25 d

Fig. 1. The critical coupling 8y versus the number of dimensions d for PRSWS {from
[15]}). The dots and crosses represent Monte Carlo data. The curve shows the prediction
from mean field theory.



The exponent ¢ comes out to be

™
Il

~1.58 +0.03, for d= & (26)
~1.55+ 0.05, for d = 10. (27)

The numbers may contain some systematic errors due to the finite maximal area occuring
in the simulations. But they are consistent with the classical value of ¢ = —1.5, in contrast
to the case of d = 4 dimensions. Thus the calculations support the hypothesis d¥ = 8 and
allowed the hope that PRSWS yield a non-trivial regularized string model for d < 8.

The String Tension

Concerning the continuum limit a crucial question is whether the physical string tension
has a finite value. This amounts to 7(fg) = 0 as has been mentioned earlier. In large
dimensions d mean field theory shows that this is not the case. To decide the case of low
dimensions is a difficult task for Monte Carlo calculations. Therefore we have studied the
string tension by means of a strong coupling expansion {16]. Strong coupling means large 3

in this case. From diagrams involving up to 12 plaquettes we derived the expansion up to
the 5th term. The result is

T = —3logl - 2(d- 2)¢ — 8(d - 1)(d~ 2)¢° - 2(d - 2)(9d - 20)¢*
~ 8(d — 2)(18d* — 48d + 19)1° , (28)
where 1=¢ %,

In fig. 2 the leading logarithmic term and the successive partial sums of this series are displayed
for the case d = 4. Also indicated is the value of the critical coupling t,.
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1 L L |

|
005 010 t

Fig. 2. The string tension as a function of ¢ = ¢=%% for PRSWS in d = 4 dimensions.
The uppermost curve represents the leading order of the strong coupling series; the curves
below show the successive partial sums. The vertical line indicates the critical point.
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Fig. 3. The string tension at the critical point versus d for PRSWS. The circles represent
the results of the strong coupling analysis, the curve shows the prediction from mean field
theory.

From fig.2 one gets the impression that at £y the series is still well convergent to some
non-zero value. However, in order to find out whether some significance can be attributed to
this observation, we analyzed the series by means of various extrapolation methods assutming
a critical behaviour of the type

7~ 7(lo) + A [t — o] (29)

For the exponent u the outcome is consistent with the classical value of u = 1/2, which also
results from the Monte Carlo calculations of dy in combination with the scaling relations.
On the other hand the values obtained for 7(3y) always deviate significantly from 0. In fig. 3
the strong coupling results for 7(3y} are shown as a function of the number of dimensions d,
together with the prediction from mean field theory. Again we see a deviation from mean
field behaviour for low dimensions. However it appears not to be big enough to bring the
points down to zero.

As a check on the method we have also applied it to the case of the exponent e, and
the results are consistent with the Monte Carlo data. Despite the linitations of the strong
coupling method, in particular the shortness of the series, we see that it gives strong evidence
for a non-vanishing 7{&g). It would of course be desirable to get more information about this
question by means of the Monte Carlo or some other method.

CONCLUSIONS

The picture which emerges from the discussion above is the following. The simplest lattice
model for regularized strings, namely planar random surfaces PRS, is trivial in all dimensions.
The modification introduced in the PRSWS model appears to be able to produce non-trivial
critical behaviour for d < 8, but the physical string tension diverges in the continuum limit as
in the case of PRS. On the other hand there are models with stronger, nonlocal constraints,
like self-avoiding random surfaces SARS, which show non-trivial behaviour in low dimensions.
However, they are not interesting for string theory.

-3



d PRS PRSWS ? SARS
12
10
8 : trivial
6 | non-trivial ?
4 | |
2 | l
trivial
7(Bo) > 0 7(Bo) > 0 7(Bo) = 0

It is presently unknown what a regularized string theory would have to look like. But, as has
been mentioned in Jan’s Jectures, there are some indications that it should contain extrinsic
curvature terms amongst other modifications of the simplest ansatz.
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