
DEUTSCHES ELEKTRONEN-SYNCHROTRON DESY
DESY 90-024
March 1990

An Introduction to Transputers

T. Woeniger
Deutsches EJeJctronen-SynrhrotroH DESY, Hamburg

: i 2,'.?R. »S3Q

L.,.»..

ISSN 0418-9833

NOTKESTRASSE 85 - 2 HAMBURG 52

DESY behält sich alle Rechte für den Fall der Schutzrechtserteilung und für die wirtschaftliche

Verwertung der in diesem Bericht enthaltenen Informationen vor.

DESY reserves all rights for commercial use of information included in this report, especially in
case of filing application for or grant of patents.

To be sure that your preprints are promptly included in the
HIGH ENERGY PHYSICS INDEX ,

send them to the following address (if possible by air mail) :

DESY
Bibliothek
Notkestrasse 85
2 Hamburg 52
Germany

ISSN 0418-9633

An Introdllction to Transputers

Torsten Woeniger

DKSY - Hamburg

March 12. 1990

Contents

l Transputers
1.1 Hardware Structure of Transputers
1.2 Software St ruc ture of Transputers

1.3 Communication Between Processes
1.4 Additional Hardware for Transputers .

1.4.1 Crossbar Switch (C004)
1-4/2 Link to Port Converter (C012)

2 Performance of Transputers
2.1 The Links
2.2 Copying Frorn Memory to Memory .

2.3 Memory and Link Actions in Parallel

2.4 Conclusion

3 Transputer Hardware at ZEUS
3.1 The 2-Transputer V M E Board .

3.2 The Reset and Broadcast System

4 AcknowlcMlgements

l
:
::
'

12

! =

s ;

14
:-•
15

16

' • i

19

19

2i

22

Abstraf t

An effektive intet proressor cotinection is one of the major problems of the data arqui-
sition Systems of modein high energy exper iments . Transputers are fast microprocessors
which can be easily interfaced with each othet via setial connections called links. An in-
troduction into the cöncepts and the performance of t ransputers is given. As an example
two tiansputer haidwatc modules are piesenled. Several parts of the ZEUS data acqni-
sition System (Global Second L^vel Trigger, Eventbuildet, Calorimeter-Readout etc.) are
bascd on these Hardware modules.

List of Figures

l Block diagram of the T800 transputer l
'2 Structure of the niain registers of the transputer 4
'A Format of the transputer assembler commands 4

4 Five processes without cornmunication 8
5 A channel sends daia from one process lo another 8

6 Several processes are commuiiicating with channels 9
I One Link DMA Unit 10

8 A transputer with its four bidirectional links 11

9 Protocol s tructure of the link messages 14

10 Block diagram of the ZEUS 2TP-module (preseries-rnodules) 19

I1 Block diagram of the Controller and Switch Box (CSB) 21

List of Tables

1 List of the available transputers 3

2 The 16 one byte instructions of the T800 5

3 Uni- and bidirectional linkspeeds (fast l ink protocol) 14

4 The transfer rate in relation to the cable length for a 20 Mbit/s link rate . . . 18

5 Linkspeed and mernory copying with all processes running at low priority . . 18

6 Linkspeed and memory copying with the link process running at high priority]8

GNO
CapPlus

CapMtnus
flesei

Analyse
Errorln

Error
BootFromROM

Clockln
ProcSpeeö

SeleclO-2

LinkSpecial
f* LinkOSp»cial

^^—N— Linkl23Special

ProcCIockOuI
no tMemSO-4

io lUemWrBO-3
notMemRd

LinklnO
LinkOuiO

Figure 1: Block diagram of the T800 transputer

l Transputers

1.1 Hardware Structure of Transputers

Transputers are powerfui microprocessors with fast serial Interfaces. These serial Interfaces,
called links, provide a very efficient tool for inter processor cornmunication.

In figure l a schematic overview of the T800 Transputer is given. The T800 is the most
advanced transputer on the market. All components which are shown in this figure are inte-
grated on one 84 Pin Grid Array Chip.
The central part of each microprocessor is the Central Processor Uni t (CPU). The 32 bit CPU
of the T800 has been designed äs a RISC ' - Processor. This processor design differs from
that of the conventionally designed processor which is called a CISC 2 - Processor. Until the
inid-eighties all microprocessors used the CISC design. In comparison to CISC - Processors
which have a large instruction set with many different instructions and addressing modes, the
instruction set of a RISC - Processor is very small. However, the CISC - Processors need a
relatively large number of clock cycles for their complex instructions (up to several hundred)
because these are combinations of many simple instructions, called microcode instructions.

'RISC = Reduced Instruction Set Computer
:CISC = Complex Instruction Set Computer

In contrast, a RISC - Processor has its own logic for most commands. With this fast fixed
logic such a processor is able to execute most commands within very few dock cycles.
The on-chip memory is a fast RAM (4 Kbyte on a T800); it is faster than the external mem-
ory : there is no need for external drivers because the electrical capacities of the bus lines
inside the chip are much smaller. The access time of ihe inlernal RAM can be compared with

the access time of registers in conventional processors.
The T800 is the only member of the transputer family which has a floating point unit (FPU)
on the chip. The formal of the FPU follows an international Standard J . For the saine reason
lliat an on-board memory is faster than an external memory, an on-chip FPU is fasler than

an external floating point coprocessor. The FPU, which works independently of the CPU,

shows the remarkable effect t hat it perforrns noating point operations slightly faster than the

CPU performs integer arithmetics.

Other useful Hardware units which are integrated on the chip are the timers. These are two

clocks, each of them incremcnting a special register. The slow clock is t ioking every 64 fis

and the fast one every single im. Because a timer can starl a process, (here is a wide field of

applicaüons for these timers. Examples for these applications are high accuracy time mea-

surements, t ime delays for suspended processes, etc.

The connections between a transputer and the outside world can be classified äs the System

Service Connections, the External Memory Interface, the Events, and the Links.

Firstly, the transputer like any other Computer , needs electrical power, external clock fre-

quency, etc. The transputer gets these via the on-chip circuits which belong to the group of

System Service Conuections.
Secondly, there is the need for an External Memory Interface. The fast on-chip RAM is too

small for large programs or huge amounts of data, and a fast processor ueeds both for its

work. To reduce the number of pins and amount of board space for bus lines, the external 32

bil address and 32 bit data lines are multiplexed together on to ?,'2 bus lines. The memory

coniigiiration (wait cycles, refresh interval etc.) can be defined externally over some addi-

lional lines and the refresh unit which is required for DRAMs is also integrated on the chip.

A Computer has to react also to events from the outside world. In this case a conventional

Computer would be 'interrupted' by Interrupt lines and routines. In a t ransputer thp 'events'

are rcsponsible for the Interrupts. If a signal comes froin the outside world (e.g. a keyboard

or a trigger) a program can be started which handles ihe necessary actions (e.g. gets a byte

from the keyboard or a data block from an ADC-card). In comparison to the inlerrupt sys-

tem of a conventional Computer, the transputer's events do not have äs many possibilities

but are much easier to program. This is especially true in the case of high level languages

Programming.
However, the greatest advantage of a transputer compared to a normal microprocessor con-

sists in the transputer links. Links are high speed serial interfaces which have a very effective

protocol. Each link is served by its own DMA Controller so that it can operate morc or less

independently of the rest of the chip. Fur ther details of the performance of the system are

presented in chapter 2.
One advantage of the transputer conrept is that the necessary hardware aroiind a transputer

chip is äs simple and unique äs possible. For that goal the chip designers tried to place äs
much äs possible on the chip itself. One example is the Implementation of ihe processor clock.

ANSI-IEEE 754-1935 Floating Point Represci.tutio

Transputer type | Wordlength

T 212
M 212
T 222
T 414
T 425
T 800

16 Bit
16 Bit
16 Bit
32 Bit
32 Bit
32 Bit

internal RAM

2 Kbyte

2 Kbyte
4 Kbyte

4 Kbyte

4 Kbyte
4 Kbyte

Linkspeed

slow
slow
fast
slow

fast
fast

No.of Links

4
2
4
4
4
4

Comments

Disk Controller

wüh FPU

Table 1: List of the available transputers

Although the internal processor clock speeds of the T800 are 17.5, 20 and 25 MHz, only a 5

MHz quartz signal is needed from the outside. The higher frequencies are generated on the

chip.

Table l shows an overview of the transputers which are available today.

1.2 Software Structure of Transputers

A conventional processor has severat registers for data on the chip. This provides the pro-

cossors with a fast access to the most often used variables. But whenever a completely new

process is started, the Content of all registers has to be slored in the memory. Subsequently

the data for the new process have lo be reloaded into the registers of the processor. Reasons

for this so calied task switching may be either a task swapping inside a multitasking machine

or an In t e r rup t that has to be handled. Conventional processors need between 20 and several

hundred ^s for task switching.

Another way of handling processor registers is the so calied Workspace Concept. Processors

using this concepl kerp all their registers in memory. On the processor chip itself are only

regislers for addressing ihe actual program command (Program Counter) and the location of

the registers in memory (Workspace Pointer). If the processor has to switch to another task

only the contents of the Program Counter and the Workspace Counter have to be changed. It

is obvious that this can be done very quickly. The argument against the Workspace Concept

is that an access to an on-chip regisler is always faster than an access to the external memory.

For this reason the first processors with the Workspace Concept (TMS 99XX) had fast task

switching instructions, but were fairly slow at every other Computing task.

To avoid these problems. transputers are designed io have the advantages of both Systems.

In figure 2 the structure of the main registers of a t ransputer is shown. There is a Workspace

Register which points lo a list which is calied Locals. This local list contains the local vari-

ables and the pointers of this process. One sees also a Program Pointer (labled Next instr .)

which points to the next instruction in the program. The three registers above (A, B, C) are

the so calied evaluation stack which is organized like a LIFO 4. The evaluation stack is used

äs a sliort time memory for most of the commands. With these registers the transputer has

all speed advantages of permanent registers on the chip. In order to speed up task switching

even fur ther there is a hardware scheduler on the chip. It stores the data from the scheduling

'Löst In First Out

Figure 2: Structure of the inain registers of the transputor

4 3

Operand Register

Figure 3: Format of the transputer assembier commands

of all the processes into several internal registers which arc not indicated in the above figure.

With (his highly advanced Hardware scliedtiling inechanism the transputer switches from one

process to another in l//s. Also, suspended processes consume no CPU power. This hardware

helps to avoid performance degradation in case of several concurrently running processes. If

a program can be more casily written using several concurrent processes there is no reason

why one should not do this.

To reach high Comput ing speed, the structure of the assembier commands is also optimized-

Together wilh the RISC-design of the hardware there is also a RISC-design of the assembler

commands implemented. The register (Operand) at the bottom of figure 2 is nsed for this

purpose. The idea of tlie RISC assembler is the following. The most often used instructions,

which include Funclion and Data, are only eighl bits long (figure 3). The first four of these

bits define the function, the second four bits the data. Thirteen of the possible sixteen com-

mands (24), the so called direct commands, are used in this way. Measuremeiits have shown

that 70 % of the executed instructions can be encoded in these single byte commands. There

are 16 of these instructions which are only one byte long. Two of these sixteen commands

are the so called prefix instructions (2X and 6X in table 2). These instructions have to be

used if the Operand is larger than 15. In this case one prefix instruction (pfix) is required for

each additional four bits of the Operand. The other prefix instruction, called negative prefix

(nfix), is used äs the first prefix if the Operand is negative. The prefix instructions teil the

processor that the data of this 8 bit command h äs to be combined with the data of the next

command by shifting the command in the operand regisfer eight bits to the left. This means

Memory

Code

r ox
IX
2X
3X
4X
5X
6X
7X
8X
9X
AX

BX
cx
DX
EX
FX

Mnemonic

j
Idlp

pfix

Idnl

Idc
Idnlp

n fix

1dl
ade

call

cj

ajw
eqc

&z
stnl

opr

Processor

Cycles

3

1
1
2
]

I
1
2

1
7
2

4
1
2

1
2

-

Name

jump

load local pointer

prefix

load non-local

load cönstant

load non-local pointer

negative prefix

load local

add cönstant

call
conditional jump (not taken) ,

conditional jump (taken)

adjust workspace

equals cönstant

störe local

störe non-local

operate

Table 2: The 16 one byte instructions of the T800

that the data longth h äs been donbled by using one prefix function. By placing a number of

these prefix commands one after the other, ihe data in principle can be extended to any size.

Here is a simple example of this prefix command :

1. direct command

(4-bit Operand)

Program Hex. Mernonic assembler

x :- 5 45 Idc 5 — load cönstant 5

DX stl x — störe to x

2. wi th a pref ix func t i on x :- 35

(8-bit Operand)

23 pfx 3 — pref ix load 3

45 Idc 5 -- load cönstant 5

-- prefix was const.

DX stl x — störe cönstant to x

In the first example (direct command) the cönstant 5 is assigned to the variable x. The

transputer assembler program which does this task can be seen on the right side. At first the

cönstant 5 is loaded into the evaluation stack. Then the content of this stack register is stored

into the memory location of the variable x. In the second example with the prefix command

the constant 35 is assigned to the variable x. Here Ihe transputer assembler program starts

with a prefix command which contains the bit pattern of the constant 3. Up to now it is

not clear to the transputer whether the bil pattern is pari of a long command or of a long

constant with the numeral 3- The next command to load the constant 5 into the evaluation

stack identifies the previous bit paltern äs the firsl numeral of the constant 35. Finally this

constant is stored into the rnemory location of the variable x.

The last of the sixteen possible funct ion codes is called operate. It causes the following

Operand to be iiiterpreted äs an instruction code. While the data block consists of four

bits, sixteen additional inslructions can be defined without using the prefix function. But äs

menüoned above it is possible to extend the data code up to any arbilrary length. With the

combination of the operate and prefix Operation it is then possible to extend the number of

available instructions indefinitely.

In a CISC - Processor the assembler commands are also ordered into groups. But while the

conimands of a RISC - Processor are ordered into groups according to how often they are used,

the commands of a CISC - Processor are ordered into logical groups (ari thmetical commands,

copy commands etc.). While the advantage of the RISC processors is the enhanced execution

speed, the advanlagc- of the ordering into logical groups becomes obvious when a person wants

to program in assembler language. Due to the ordered System the assembler commands of a

CISC - Processor are inore easy to learn.

This conflict can be solved wi th an efficient high level language which supports the RISC

architecture; OCCAM 2 is such a language. Il supports all the fast possibilities of the

transpuler architecture. Because transputers and OCCAM had been dcveloped together , no

other langwage can compete on the transputer with the performance of OCCAM. This is

especially the case with communication tasks. OCCAM is based on the theories of C.A.R.

Hoare, who had developed a concept for inter process communication ,Hoare85].

Nowadays several other languages like C, Pascal and Fortran have also been developed for

transputers. To descnbe the possibilities of these languages on a t ransputer , the idea of

parallel proc.esses has to be presented in some more detail.

A sequential process is normally called a program. It is a list of statements which are writ ten

in a definite order and which will be executed one after the other . In OCCAM 2, where the

hierachy of the statements is defined by indentation, such a program would iook like this :

Statement.l

Statement.2

Statement.3

Statement.n

Several of these sequential processes can be executed togelher in parallel

i i*

sequent ia l .p rocess . l

sequent ia l .process .2

sequent ial .process.3

sequentia1.process.n

While a sequential process is finished when the last statement has been executed, a group

of parallel processes is finished when all ihe sequential processes have been finished. These

sequential and parallel processes can be grouped together in any arbitrary order:

s ta tement . l

i AI

statement.2

SEQ

s ta tement .3

s ta tement .4

statement.5

s ta tement .6

In the above example ihe commands will be executed in the following order: First the state-

ment.l will be started. When Ihe statement.l is finished three processes are started and

executed in parallel. The firsl process consists only of the statement.2, the second process

consists of the statement 3 and 4 which will be executed one after the other, and the third

process consists of statemenl.5. When all these three processes have been finished the last
process, statement.6, can be executed.

1t is also possible to give lasks different priorities. This has the effect that tasks which have

low priority are only handled if processing of the tasks with higher priority cannot be con-

tinued at the monient, This feature is a useful tool for process optimisation.

As shown above several parallel processes can be created with OCCAM 2. In figure 4 each

bubble stands for a separate process, which mcans that in this example five processes are

r u n n i n g in parallel. What happens when one process needs some data from another process

? I''OT this purpose a rommunicaüon System between the processes is needed. In OCCAM

Ihe communication syslem of C.A.R. Hoare [HoareSS] is used. This interprocess communi-

cation is done via so called channels. A channel is a unidirectional point to poinl connection

to exchange data between processes. In the example of figure 5 the process A sends the

value of ihe variable a over the channel which is called 'connection to the process B'. In the

process B the data is recelved and stored into the variable c. The Synchronisation between

processes is also achieved by this process cominunicatioii. This means that when process A

comes to the slalement 'connection ! a' it will wait until the process B comes to the

statement 'connection ? c ' . This is also t rue if the process B comes to the statement

'connect ion ? c ' first. Then process B will wait un tü process A comes to the statement

' c o n n e c t i o n ! a ' . The Situation when one process is forever waiting for another process

is called a deadlock. Parallel processes have to be carefully designed to avoid these situations.

In [Ari82] several problems are described which may cause deadlocks. How the processes of

/^\e 4: Five processos without comrnunicalion

conncctiun

conneciiwn ' a connection '.' c

Figure 5: A rhannel sends data from one process to another

LO, Ll, 1.2, L3 : oulf>oing links
1,4, L5, L6, L7 : incoming links

mcssagel. nessagc9 : logicaJ channel naruf

Figure G: Several processes are comniunicatuig with channels

figure 4 niciy communicate over channels can be seen in the example shown in figure 6.

So far the simple s t ructure of OCCAM programs has been shown. What about the other

languages which are available for transputers ? For these languages one has to distmguish

between the ordinary versions (C, Pascal and F77) without parallel extensions and their en-

hanced derivates (Parallel C, Parallel F77). l'sing the ordinary languages it is only possible to

write a scquence of sequenüal statements and conibine them in a procedure. This procedure

can then be called by an OCCAM program which buikls the 'harness' for the procedure. This

is quite different when an enhanced language like Parallel C or Parallel Fortran 77 is used.

Additional commands like PAR, SEQ, send ard receive over a channel have been mlegrated

into the s tructure of these languages. These commands offer almost the same parallel pro-

cessing possibilities äs OCCAM, with the benefits of C's combined variable types (structures)

and pointers still can be used. However there are still strong reasons for using OCCAM on

the transputers.

The first reason is that no other language on transputers can compete with respect to the

execution speed and compactness of the executable Code. Hut while the Fortran programs are

only able to obtain 50 % of the speed of OCCAM, the best C Compilers achleve 90 %. This

time measurement is valid for sequential processes without conimunication. OCCAM is the

only language which can direcl ly access (he hardware ports of l inks . All other languages need

an adclitional Software Interface writ ten in OCCAM for their Communications over the links.

The delay which is introduced by this Interface can only be avoided if OCCAM everywhere

is used.

In conclusion OCCAM should be used when maximum computing speed or a large amount

of inter process Communications is required.

1.3 Coinmunication Between Processes

As mentioned above a transpnter has four bidirectional serial communication units. These

comrnunicaiion units are called links. How can the channels (of process-process communica-

On-
Chip
T r a n s
Bus
(32 Bi

u n t e r

wide)

Q; - BiQ
/ U N K J
-\A -
•\T #OJ

W///////',

I'ranspulcr - Chip

LinkOm 0 (OCCAM Nr D)

^ 1 Bit senal

Linkin 0 (OCCAM Nr 4)

1 Bil senal

Figure 7: One Link DMA Uni t

tion) be associated with the links and how can a process be placed on a specified transputer?

Channels are logical connections between processes for the unidirectional exchange o{ data or

Information. Because a link is a bidirectionai serial connection, two channels can be placed

on one link. Figure 7 shows a schematic overview of one link DMA Unit . Therefore it is un-

derstandable that the links are serial connections. If a parallel System had been chosen mucti

more pins for the links would have been required. In figure 8 the four outgoing connections

are associated with the numbers 0 - 3 while the incoming conrtneclions refer lo the inimbers

4 - 7. These numbers are the OCCAM addresses of the 32 bil wide ports of the links at the

internal bus. An example is shown in figure 6.

In order to explain the link procedure first the whole system with five concurrent ly r u n n i n g

processes will be cleveloped on one transputer. The basic s t ructure of the OCCAM Code

(without some formal surroundings) will look like this :

C H A N OF ANY messagel , message2, messageS,

message4, message5, message6,

message? , message8, message9 :

PAR

process . l (messagel , message2 ,messageS)
process .2(message3, messageS ,message6, message?)

process.3(message7, messageS ,message9)
process .4(messagel , message2 ,message4)

process.5(message4, messageS ,message6, messageS, message9)

At the top nine channels (messagel, ...,message9) are defined. Then the five processes are
started to work in parallel. The processes are written äs procedures wilh the channels äs
argurnents. This makes it easier to distribute the processes later onto several transpulers. It

Figure 8: A transputer with its four bidirectionai l inks

cannot yet be seen that the channel 'messagel' at process.l will be the entry point of the data

from the channel 'message.l' of process.4. However the list clearly shows which processes are

communicaling with each other.

When the program runs without any deadlocks on a single transputer the performance of the

System can be enhanced by placing the processes on several transputers. Two restrictions

limit the number of transputers on which the processes can be placed; firstly, no single se-

queiilial process can be distributed over several transputers. While this is a restnction, which

in principle holds for all distributed processor Systems, the other restriction arises from the

hardware possibililies of transputers. Today a transputer clup oifers only four bidirectrional

links. That means that from the processes which are placed on each transputer, only four

incoming and four outgoing channels lo the processes on other transputers can be created.

The example shown can be distributed onto up to five different transputers.

The following lines show how this will be done in OCCAM2 which is the actual Version of

OCCAM. It is assumed lhat (he links of the five transputers are physically connected äs in

figure 6.

CHAN OF ANY m e s s a g e l , message2, messageS,

message4, messageB, messageS,

message?, messageS, message9 :

PLACED PAR

PROCESSOR l T8

P L A C E messagel AT 6
PLACE message2 AT l

PLACE message3 AT 0
process . l (messagel , mes sage2 ,messageS)

11

PROCESSOR 2 T2

PLACE message3 AT 5

PLACE messageS AT 0

PLACE messageS AT 7

PLACE message? AT 6

process .2(message3 , messageS ,message6, message?)

PROCESSDR 3 T4

PLACE message7 AT 0

PLACE messageS AT l

PLACE message9 AT 6

process.3(message?, messageS ,messageS)

PROCESSOR 4 T4

PLACE messagel AT 0

PLACE message2 AT 5

PLACE message4 AT 6

process.4(messagel , message2 ,message4)

PRDCESSOR 5 T8

PLACE message4 AT 3

PLACE message5 AT 6

PLACE messageS AT 0

PLACE messageS AT 5

PLACE message9 AT l

process.5(message4, message5 ,message6 , messageS, messa

The program looks very similar to the previous single transpuler version. The PAR statement

is exchanged by a PLACED PAR and in front of each process the following line has been added

PROCESSOR processor_number processor_type

Any arbi trary integer can be used for the processor. number. It can be used äs a processor

identification by the user. The processor_ type (T8 = T800, T4 = T414 or T425, T2 = T212

or T222) is neressary because the various transputer-types are compatible only at the source

code level. So the Compiler has to know for which t ransputcr the executable code has to be
generated. The line

PLACE channel AT l ink_nr

connects the logical channels to ihe physical links.

In the example coitsidered it also would be possible to dis t r ibute the processes only over 2,
3, or 4 t rai ibpulers .

1.4 Additional Hardware for Transputers

Transputer links offer a very efficient means for data transmission between processors. Ad-
ditional hardware devices have been developed for an even more efficient use of these links.

12

Two of these devices are the Crossbar Switch (C004) and the link to port Converter (C012).

While the crossbar switch provides a better Connectivity between several transputers the link

to poit converter allows a unique interface to other processors.

1.4.1 Crossbar Switch (C004)

A crossbar switch for transputers is a device which allows the connection between any pair of

transputer links which are connected to it. A single C004 crossbar, which has 32 bidirectional

links, can set up 16 bidirectional point-to-point connections. Physically the C004 is an 84-pin

integrated circuit which can be controlled by a transputer over a control-link. As a fur ther

advantage the output Signals are regenerated on the chip.

However, a delay of 175 ns to the signal transmission is introduced by the C004 crossbar

switch. As it can be seen in table 4 (refer to chapter 2.1) this leads to a reduced data rate

which corresponds to an additional cable length of 20 m.

If larger crossbars are required, combinations of the C004 chip can be used. If a 32 x32

crossbar switch is needed one can combine two C004 chips. In this configuration each bidi-

reclional l ink will use a single line from each of the two chips. By combining several crossbar

Switches it is also possible to extend the nurnber of links per crossbar. A bidirectional 48 x48

crossbar switch can be constructed with three pairs of C004 chips. in principle it is possible

to constnict with C004s crossbar switches of arbitrary size. But the delay introduced leads

here to a pratical limit (see [IMSSP89]).

1.4.2 Link to Port Converter (C012)

The C012 is an integrated circuit which converts a transputer link to an eight-bit wide port

of a conventional microprocessor and the other way round. With the C012 it is possible to

conimunicate over a data bus with a link. This chip is very often used for interfaces between

transputers and conventional processors. Another application for the C012 is the general

broadcasting System which is described in chapter 3.2.

l ':

Link rate :

[M bit /s]

5
10

20

unidirectioiial
one channel of a link used

[Kbytes/s]

450

910

1740

bidirectional
both channels of a link used ,

[Kbytes/s] [

670 ;
1250 !

2350

Table 3: Uni- and bidirectional l inkspeeds (fast link protocol)

0 1 2 3 4 5

1 1 0

Start data packe!
bt b,t

Figure 9: Protocol s t ruc ture of the l ink messages

2.1 The Links

Transputer links are serial comninnication lines which are intended to be nsed for inter trans-
puter Communications. On a serial comniunication Üiie the data and the control signals are
sent over only one electrical signal path, whereas parallel comniunication Systems use several
separate lines for control signals and data. A parallel System is obvionsly faster but it also
requires niore space (pins on chips, board space etc.). Therefore it is teclinically more d i f f i c u l t
to build an mtegrated System with parallel lines 011 a single chip such äs for a t r anspu te r .
For a fur ther saving of space the t ransputer links are bidirectional. That nieans that the
t ransputer can send and receive data in parallel over the same unk. In this case (he data rate
in both directions together is less t hau twice the imidirectional transfer rate. This reduction
occurs because the ' acknowledge ' signal and the data bits have to share the lines f re fe r to
3).

Each link consisls of a Linkin and a LinkOut connect ion . The L i n k O u t connection frorn
one transputer has to be connected with the L i n k In connection of another transputer and
vice versa. After one data byte is sent over the LinkOut pin the sending transputer waits
at the Linkin pin for an acknowledge of the data. The data formats are shown in figure 9.
On these lines tliere are two electical states defined äs High(H), for a logical l, and Low(L),
for a logica! 0. As you can see m the figure. two startbits (set to high) are sent before each
data byte and a stopbit (set to low) is sent after each data byte. Then the acknowledge is

received. As mentioned before in table l of chapter l, the older transputers have a slower link
protocol then the newer ones. In the old link protocol the acknowledge is sent once the whole
dataword (Byte) has been received. Transputers with the new link protocol already send the
acknowledge bits when it has received the first bit of the data word. Due to this feature the
new link protocol is a factor of two faster over short distances than the older protocol. It is
also understandable that both link protocols are fully compatible with each other. All new
transputers use the fast l ink protocol. All the measurenients given in this note (unless stated
otherwise) have been performed on transputers with the fast link protocol.
The link speed of 20 Mbits/s is the fastest linkspeed available at present; it is the ideal
speed for short distances with good electrical conditions. However linkspeeds of 5, 10 and
20 Mbits/s can be chosen for each transfer. öbviously the data rate is directly correlated
with the l ink speed and at first glance it is diff icult to unterstand why a transputer should
not commiinicate with the füll link speed. But a higher l ink speed also requires better elec-
trical conditions. For instance the electrical condilions become worse when the cable lenglh
increases. These problems are described in some detatl in [Rygol87], There is another reason
why long cables are reducing the data rate. At longer distances the data words need a longer
tinie to arrive at the receiving transputer. Due to this the acknowledge bits will be sent
later and will also arrive later at the transmitt ing t ransputer . In siimmary the data through-
put decreases with increasing cable length. This is shown in table 4. These data rates are
calculaled approximately with the formula :

Transfer Rate =
:

0.55 + CableLenght im] * 0.01

Mbytt

Our measurenients agree well wi th this formula whirh can be derived from the niedium speed

of an electrical signal and the protocol s t r u c t u r e of transputer links.

2.2 Copyiiig From Memory to Memory

The performance of a copying process dependss t rongly on the use of coding techniques which

allow tlte Compiler to use the most efficient machine instructions. If an array of variables is

ropied wi th a loop around a single assignment (üke a [i] := b[i]) the data is only copied with

l Mbyte/s . With some tun ing (opening the loop and using abreviations, see also [Atkia87])

one can achieve a copy speed of 2 Mbyte/s. Like in other high level languages the main

lirnitation comes here from the ränge checking routines of OCCAM. This is for the case that

the copying is done inside the external memory (100 ns access time). The faster internal

memory (see cliapter 1.1) is only 10% fasler. This behaviour changes dramatically, when the

special blockcopy comniand of OCCAM is used. Tlie statenient

[nrrayl FROM startl FOR endl] := [arrayl FROM start'2 FOR end2]

copies data with 10 MByte/s in the external memory. The above OCCAM statement is
directly iranslated into the blockcopy assembler command of the t ransputer which operates
at the speed of the memory. A reslriction of the blockcopy comniand is that the two arrays
should not overlap. In lliis case it is still faster to copy the data at first into a third array
and then copy it to the destination array with the block copy comniand.

i ;

2.3 Memory and Link Actions in Parallel

Several tost measiircments liave been done for the case that the CPU copies dala fron onc

place in the memory to tlie other while the link units perform DMA actions in parallel. At f i rs t

the results were in contradiction with the assumption thal the link actions are independent

of the other actions of the t ransputer . Copying of arrays in the memory was used because it

is obvions t l iaf th is action puts the most load on the memory. The memory is the common

botl leneck. All dala which go to or come from the link have to be buffered in the memory.

For the lests the T800 was used because of its fast link protocol. At the lest it was r u n n i n g

al 20 MHz and the memory had an access time of 100 ns. The linkspeed was sct to 20

Mbit/ 's and tlie l ink le r ig th was negligible (< 0.3 m). Table 5 summarizes the results of these

measurements. With mcreasmg n u m b e r of l inks used not only the memory copy rate but

also tlie linkspecd decreases. This test was done with all processes running at low priority.

The t ransputer allows only two dasses of processes wliich can be selet-ted by the user. The

processes can either run on high or on low priority. In the nexl test the link actions were

givcn high priority and the results for the unk performance turned out to be much better. As

shown by table 6 the memory copy rate decreases to 6.45 Mbyte/s, whereas all four links are

working with the füll unidirectional speed. In a network of processes it is always t rue that

the communication tasks have lo have priority. Otherivise most of the processor time is lost

by wailing for data (see also [Atkm87j) .

2.4 Conclusion

A few years ago transpulers established a new generation of microprocessors, based on com-

pletly new concepts.

A populär argument against t ransputers is, that today even faster Standard processors are on

tlie market. Because of the rapid development m the field, no processor is the fastest on the

market for long. Benchmark tests have the problem that each processor is given the tests it

is best suited for. The available t ransputer families are at least a factor two faster than the

fastest processors of established families like MC 680X0 and Intel 80X86. Faster t r anspu te r s

with clock frequencies up to 35 MHz and füll pin compatibility have been announced,

A transputer is able to compete favorably with even faster processors because of its network-

ing capabihties. Other microprocessor manufacturers are planniitg processors with separate

DMA channels. This would allow to place the DMA Controllers on separate chips so that

there would be no restriction on the number of links. However, there are several arguments

for the transpiiter l ink solutiou: The Integration of every th ing on one chip allows very com-

pact and also very chcap Systems. Furthermore, the Integration also sets a Standard for the

protocols which rednces tlie prublems with Interfaces to a min imum,

The most important restr ict ion of t ransputers at present is the nuiuber of l inks per chip

which is four . 'lins number in f u t u r e will mcreased to probably 8 links. In ordcr to aclueve

the equivalent increase in data th roughput the interaclion system between the processor and

the links will be changed. At the momeitt all data are transferred via the bott leneck of the

infernal bus. With four links the internal bus and the memory are just able to handle all

activities without any perturbation. But this will be different when more links want to access

the intcrnal bus. Therefore f u t u r e transputer chips will includc a completely separate pari

for the link handling. This link control part will also be able to connect two links with each

u;

other without any Intervention of the transputer CPU.

Another cumbersome part of the transputer is the absence of several features in OCCAM

which are convenient in other high level languages like Pascal, Modula 2 or C. The missing

features are specially s t r u c t u r e d variable types and pointers. A dynamic memory allocation

(like malloc in C) is missing too. Hopeful ly there will soon be extensions of OCCAM which

provide these features.
In summary the t ransputer concept appears to be the most reliable processor network Sys-

tem available. Transputers are relatively easy to program and are supported by reliable

development tools inc lud ing a post mortem debugger .

• -

Delay :

ns

0 - 50

50 -100
; ü ' 150

150 - J .H '
200 - 250
250 - 300

300 - 350
350 - 400

400 - 450
450 - 500

Gable length

m

0- 5
5 - 10
10- 15
15 - 20
2 0 - 25
2 5 - 30
30-35
35-40
40 - 45
45- 50

Transfer rale
Mbyte /s

> 1.53
1.42
1.32
1.25
1.17
1.11
1.04
1.00
0.95 i
0.90 i

Table 4: The transfer rate in relation to the cable length for a 20 Mbit/s link rate

number of links used (unidirect ional) :

memory copy speed [Mbyte/'s

average link speed [Mbyte/s
••

4
7.88

0.991

3
8.29
1.04

2
8.74
1.10

1
9.25
1.16

0

i.9

-

1

-
1.77

Table 5: Linkspeed and memory copying with all processes runn ing at low priority

| number of links used (unidirectional) :
[memory copy speed [Mbyte/s |
| average link speed (Mbyte/s] :

4
G. 45

1.70

3
7.30

1.72

2
8.17

L74

1
9.05

1.76

0
9.9

-

1

-
1.77

Table 6: Linkspeed and memory copying with the link process ruiining at high priority

4 bidirectional links reset, event in, 4 bidirectional links

******** J
x S-

T800 5—

1 MByte o
memory ^

^ I/OloRic *~

l t *
+ I

T

J , errorin, n LitA^
programmable ^

Output ^ T800

jtput event in^ j MB;

entin Output ™

, 1 I/O loj
^ dual-port ,

""* memory

1

VME-bus Interface
interrupt
request

1

local bus
i'

l

: VME-bus

i*U
Y

fte
ry
sc ^

i •
jumper

request

Figure 10: Block diagram of the ZEUS 2TP-module (preseries-modules)

3 Transputer Hardware at ZEUS

3.1 The 2-Transputer VME Board

Transputers will play an important pari in the ZEUS data aquisition System. For this purpose

at N I K H E F - H a VME board with two INMOS transputers h äs been developed. Despite the

fact that the 2TP-Board was originally planned for the GSLT 5 it has been designed äs a

general purpose VME-transputer board. The 2TP-Board documentation is well ptovided by

N I K H E F and can be found in :

• [WaardST; Hardware Documentation

• [Bot87] & (Bot88a) General Descriptions

• [BotSSbj Test Software

• [Bol89, Libraries

In view of the detailed documentation only a brief overview of the rnodule is presented here.
The struclure of the 2TP-Board is shown in figure 10. Each of the two transputers (called X
and Y) on the board has its own private memory (l or 4 MByte), its own four bidirectional
link connections, and some additional I/O connections (reset, event in etc.). 6 AU actions on

^Global Second Level Trigger
6Thc link and the I/O connections are physically connected to the a and c row of the P2 connector frotil

the VME-bus. An additional adapter which has to be placed on thf back of the VMB backplane aniplifies the
Signals at the link cables for connections with other transputers.

i >

thc Hardware described so far can be done independently. But it is obvious that this will be

different when the Iransputers are cornmunicating with the VME-bus siace on the VME-bus

al a tnne only one M «ist er is allowed. When one transputer wants to access the VME-bus it

1ms tu do t Ins, in the foliowill g way. First the transputer has to make an access on the local

bus. This local bus is coiuiected to both transputer modules, a dual-ported memory (DPM) ,

and a VME-bus interface. ünce the f r anspu te r has established this connection, it is able to

access the VME-bus via the VME-bus Interface. As meiitioned before there is also a dual

port.'d memory connected to the local bus. This enables both transputers to access the dual

porled memory over the local bus. The naine dual ported memory comes from the fact lhat

t h i s memory is connected with a fur ther port to the X-trausputer module. Tlie additional

bus between t l i e X- l ranspu te r module and the dual-ported memory increases the power of the

21'P-Board dramatically. With t h i s connection it is possible that t ransputer X accesses the

DPM while an additional access to the DPM from the Y-transputer module or the VME-bus

is handled simnltaneously. [3y accessing t l ie DPM from both t ransputer modules, ihe DPM

cau be used äs a connection belween these transputers. This possibility is also supported by

the Iwo evenl lines between the two transputers. By using the event lines the protocol for

a Iransputer-to-transputer connection wi th the DPM becomes very similar lo that of a l ink
connection belween transputers , like a fast 5th link.

All the connections between the 2TP-Board and the outside world are done through the Pl

and P2 connectors of the VME-bus. While the VME-bus uses the Pl connector (96 pins)

and the row b from the connector P2 {32 pins), the rows a and c from P2 (32 pins each) are
«sed by the special transputer lines (links, resel etc.).

AI the moment the VME-bus interface consists of several chips. To roduce the required board

space and access time a gate array (ASIC) is under design. This gate array will contain the.

whole transputer VME-bus interface on a single chip. With this ASIC the performance of

the 2TP-Board will be enhanced. "Also, several additional features like a real triple ported

memory (TPM) histead of a dual ported memory and more status registers are added.

Willi these fealures and the fast VME-bus Interface the 2TP-Board provides an ideal Hard-
ware environment for a VME-bus based world.

3.2 The Reset and Broadcast System

For the control of the ZEUS Glubal Second Level Trigger (CSLT) a multi purpose module has

been designed at M K H E F . A block diagram of this so called "Controller and Switch Box'1

can bc seen hi f igure I I . The CSB is controlled by a T222 transputer which can be connected

to the outside world with two of ils links. These l inks can be used to combme several of the

CSBs to a chain. This allows the connguration of a Controller for l inking an arbi trary nuntber
of transputers.

The CSB can be divided inio the following logical sections :

Swito.hboxes : The remaining two l inks of the T222 t ransputer are connected to two

C004-Crossbar Switches. These C004 chips are described in chapter
1.4.1.

Link Adaptors : In cotitrast to o the r transputers the T222 (and T212) does not have

a multiplexed address and data bus. Al the T222 there is a separate

32 reset Signals

64 event in / error in Signals External bus

32 event oul Signals

Co mm and s
(Type III)

8 \a read-out
8 x monitoritig

Trigger dccisions
(Type IV)

Other T2's,

C012's(fig. 3 + 4)
from /10 rcad-om transputers

mmrnimm

COOl (Fig. 2)
from / lo read-out transputers

C004 (Fig. 2)
from / to read-oul transputers

Fast broadcasi
from / to read-out uansputets

mmmmmit
Figure 11: Block diagram of the Controller and Switch Box (CSB)

16bit address and data bus available. This inakes it very easy to con-
nect the C012 link adapters to the transputer bus. The CSB provides
16 of these port link adapters connected to the bus of the T222. With
these adapters and additional control registers a direct communication
between the T222 and 16 transputers is possible. This communication
is not äs fast äs a direct link-to-link connection, but it is a very nice
possibility for the exchange of control Information between one master
and several slave transputers.

Logical I/O Lines : The reset, event. in and event. out lines belong to this group. These
lines allow one single CSB to perform control and reset functions for
up to 32 transputers. In the following one possible soliition for tliat
will be shown.
The CSB sends an event Signal to a specific transputer. In this trans-
puter this event involtes a seiftest process. If this seiftest finishes
without an error the tested transputer sends back an event signal to
the CSB. This controlling action is done in parallel wilh the normal
activities of the transputers. With that simple protocol the CSB can
find out which transputers of the system are still alive. When a hard-
ware error occurs in the system the CSB will know which transputer
has failed. In this case the CSB can reset the transputer network.
After all transpulers have been reset the system can be booted and
restarted.

Fast Broadcast : Someümes it is quite useful to have the possibility for a fast broadcast.
A broadcast is the transmission of data from a single source to several
receivers. An example for a broadcasted data package may be a global
status Information. In the fast broadcast module of the CSB tKis is
arranged by some dedicated Hardware.
In principle one transmission line is fanned out to all receivers and the
logical anded acknowledge from all the transputers goes back to the
transmitter. Due to this Hardware connection only an unidirectional
data traffic is possible on this system.

4 Acknowledgements

I would like to thank all the people who supported my work. Especially all the people from
the transputer group of NIKHEF-H. These people developed the Hardware which is decribed
in chapter 3. Further on a lot of discussions provided ine with the knowledge and Information
for my work.
Further on I would like to thank W.Vogel who strongly supported nie in any aspect of my
work. Last not least I would like to thank E.Lohrmann and G.Wolf for carefully reading the
manuscript and fürt her suggestions to make this report more readable.

References

[Ari82] Principles of Concurreni Programming
M. Ben-Ari, Prentice-Hall International, 1982

[Atkin87] Performance Maiimisation (Technical note 11)
Phil Atkin, Inmos Ltd, 1987

[Bot87] A two-transputer VME module for tke ZEUS experiment

H.Boterenbrood, S.C. Goble, G.N.M. Kieft, J.C. Vermeiden, A.J. de Waard,
L.W.Wiggers, NIKHEF-H, 1987

[BotSSa] Tke ZEUS Two-Transputer VME-Module, an Overview

H.Boterenbrood, NIKHEF-H, 1988

Testsoftware for Ike STP-module

H. Boterenbrood NIKHEF-H, 1988

[Bot89] STPlib, a library of STP-module cycles
H. Boterenbrood NIKHEF-H, 1989

POB89] The Use and Possible Abuse of Transputer Links
C.Bizeau, A.Bogaerts, R.W.Dobinson, D.R.N.Jeffery, W.Lu, C.Parkman and Y.Perrin
CERN, Geneva, 3 May 1989

[HoareSS] Commtinicating Sequential Processes

C.A.R. Hoare, Prentice-Hall International, 1985

[IMS84] Occam Programming Language Manual
Prentice-Hall Inc., 1984

[IMSAS89] Transputer Application Noiebook : Architecture and Software
Inmos Databook Series, Inmos Ltd, 1989

[IMSLI86] Connecting Inmos Links
Inmos Application Note, Inmos Ltd, 1986

[IMSOC85J The implementation of Occam on the IMS Tjlj

Inmos Ltd, internal, 1985

[IMSREF86] Transputer Reference Manual Inmos Ltd, 1986

[IMSSP89] Transputer Application Notebook : Systems and Performance
(includes [Atkm87] and [Rygol87])
Inmos Databook Series, Inmos Ltd, 1989

[OCCAM88] Occam 2 Reference Manual
Prentice Hall Inc., 1988

[PackerSS] Simpler real-üme programming witk tke transpuier (Technical note 5l)
Jamie Packer, Inmos Ltd, 1988

23

Richter85 lietritbssyslrmt

l u t z R i c h t e r , B.C. Teiibntr S tu t t ga r t . 1985

.VeniiSS TranipatfTs Pradice and Expcrience i
l.C. Vermeulen. M K H E F - H , 1988

WaardßT Design of ihe ZEUS 2 Tra.nspule.r- VME Card
A..J . Do Waard. N I K I I E F - H , 1087

2 !

