

DESY 90-024 ISSN 0418-9833

March 1990

An Introduction to Transputers

Torsten Woeniger
DESY - Hamburg

March 12, 1990

Abstract

An effective inter processor connection is one of the major problems of the data acqui-
sition systems of modern high energy experiments. Transputers are fast MIiCroprocessors
whicl can be easily interfaced with each other via serial connections called links. An in-
troduction into the concepts and the performance of transputers is given. As an example
two transputer hardware modules are presented. Several parts of the ZEUS data acqui-
sition system (Global Second Level Trigger, Eventbuilder, Calorimeter-Readout etc.) are
based on these hardware modules.

Contents

(&)

Transputers

1.1 Hardware Structure of Transputers oo

1.2 Software Structure of Transputers oo oo

1.3 Communication Between Processes o0

1.4 Additional Hardware for Transputerso oo oot
1.4.1 Crossbar Switch (C004) o v i v it it v v v st o e e
1.4.2 Link to Port Converter (C012)o v i oo

Performance of Transputers

o1

2

2.2
2.3
24

TRE LINKS « v v o 0 00000 o 4 o s i mo e o 6 88 670 o iwis &0 & & % &l i & als
Copying From Memory to Memoryo o oo oo
Memory and Link Actions in Parallel

Conclusion

Transputer Hardware at ZEUS

3.1

3.2

The 2-Transputer VME Board

The Reset and Broadeast System . . o v v v v v v v v v v v e mo oo oo oo ns

Acknowledgements

—— —
(SO U - B

— e s P
= - N S

19
19
20

List of Figures

1
2]
3
§

Block diagram of the T800 transputer
Structure of the main registers of the transputer
Format of the transputer assembler commands

Five processes without communication S
A channel sends data from one process to another
Several processes are communicating with channels

One Link DMA Unit

A transputer with its four bidirectional links

Protocol structure of the link messages
Block diagram of the ZEUS 2TP-module (preseries-modules)
Block diagram of the Controller and Switch Box (CSB):cuu

List of Tables

L= B I

List of the available transputers o
The 16 one byte instructions of the T800 _ . .
Uni- and bidirectional linkspeeds (fast link protocol)
The transfer rate in relation to the cable length for a 20 Mbit/s link rate . . .
Linkspeed and memory copying with all processes running at low priority

Linkspeed and memory copying with the link process running at high priority

11

14
18
18
18

Floating Pont Unit

WO,

Processar

|

-

vee—
GND—
CapPlus —
CapMinus — |
Aeset —»
Analyse —® Sysem
Errorin—® Sarvices

Error Link L?nkSpeclal
BootFromROM | Services LinkOSpecial
Clockin Link123Special
ock
ProcSpeed A Lnk Linkin0
Selectn-2 : 32 Interface LinkOuto
Timers |
Linkint

Link
=

LinkOut1

Linkin2
LinkOut2

&4 Koy'es
of
On-chip

RAM
- Linkin3
ProcClockOut 4—| LinkOut3
notMemS0-4 ¢—
oMemWrB0-3 4— \,—AIJ Ersnineq
notMemAd €— M' £ ’a
notMemRl 4— | ’”:"“ Y
MemWait— nierface MemAD2-31
MemConfig— K 12 > MemnotRID1
MemReq MemnotWrDO

MemGranted

Figure 1: Block diagram of the T800 transputer

1 Transputers

1.1 Hardware Structure of Transputers

Transputers are powerful microprocessors with fast serial interfaces. These serial interfaces,
called links, provide a very efficient tool for inter processor communication.

In figure 1 a schematic overview of the T800 Transputer is given. The T800 is the most
advanced transputer on the market. All components which are shown in this figure are inte-
grated on one 84 Pin Grid Array Chip.

The central part of each microprocessor is the Central Processor Unit (CPU). The 32 bit CPU
of the T800 has been designed as a RISC ! - Processor. This processor design differs from
that of the conventionally designed processor which is called a CISC ? - Processor. Until the
mid-eighties all microprocessors used the CISC design. In comparison to CISC - Processors
which have a large instruction set with many different instructions and addressing modes, the
instruction set of a RISC - Processor is very small. However, the CISC - Processors need a
relatively large number of clock cycles for their complex instructions (up to several hundred)
because these are combinations of many simple instructions, called microcode instructions.

'RISC = Reduced Instruction Set Computer
*CISC = Complex Instruction Set Computer

In contrast, a RISC - Processor has its own logic for most commands. With this fast fixed
logic such a processor is able to execute most commands within very few clock cycles.

The on-chip memory is a fast RAM (4 Kbyte on a T800); it is faster than the external mem-
ory : there is no need for external drivers because the electrical capacities of the bus lines
inside the chip are much smaller. The access time of the internal RAM can be compared with
{he access time of registers in conventional processors.

The T800 is the only member of the transputer family which has a floating point unit (FPU)
on the chip. The format of the FPU follows an international standard * . For the same reason
{hat an on-board memory is faster than an external memory, an on-chip FPU is faster than
an external floating point coprocessor. The FPU, which works independently of the CPU,
chows the remarkable effect that it performs floating point operations slightly faster than the
CPU performs integer arithmetics.

Other useful hardware units which are integrated on the chip are the timers. These are two
clocks, each of them incrementing a special register. The slow clock is ticking every 64 pus
and the fast one every single us. Because a timer can start a process, there is a wide field of
applications for these timers. Examples for these applications are high accuracy time mea-
surements, time delays for suspended processes, etc.

The connections between a transputer and the outside world can be classified as the System
Service Connections, the External Memory Interface, the Events, and the Links.

Firstly, the transputer like any other computer, needs electrical power, external clock fre-
quency, etc. The transputer gets these via the on-chip circuits which belong to the group of
System Service Connections.

Secondly, there is the need for an External Memory Interface. The fast on-chip RAM is too
small for large programs or huge amounts of data, and a fast processor needs both for its
work. To reduce the number of pins and amount of board space for bus lines, the external 32
bit address and 32 bit data lines are multiplexed together on to 32 bus lines. The memory
configuration (wait cycles, refresh interval etc.) can be defined externally over some addi-
tional lines and the refresh unit which is required for DRAMs is also integrated on the chip.
A computer has to react also to events from the outside world. In this case a conventional
computer would be ‘interrupted’ by interrupt lines and routines. In a transputer the ‘events’
are responsible for the interrupts. If a signal comes from the outside world (e.g. a keyboard
or a trigger) a program can be started which handles the necessary actions (e.g. gets a byte
from the keyboard or a data block from an ADC-card). In comparison to the interrupt sys-
tem of a conventional computer, the transputer’s events do not have as many possibilities
but are much easier to program. This is especially true in the case of high level languages
programming.

However, the greatest advantage of a transputer compared to a normal microprocessor con-
sists in the transputer links. Links are high speed serial interfaces which have a very effective
protocol. Each link is served by its own DMA controller so that it can operate more or less
independently of the rest of the chip. Further details of the performance of the system are
presented in chapter 2.

One advantage of the transputer concept is that the necessary hardware around a transputer
chip is as simple and unique as possible. For that goal the chip designers tried to place as
much as possible on the chip itself. One example is the implementation of the processor clock.

S ANSLIEEE 754-1985 Floating Point Representation

2

-

ﬁansputer type H Wordlength I internal RAM l Linkspeed | No.of Links Comments
T 212 16 Bit 2 Kbyte slow 4
M 212 16 Bit 2 Kbyte slow 2 Disk Controller
T 222 16 Bit 4 Kbyte fast 4

I T 414 32 Bit 4 Kbyte slow 4
T 425 32 Bit 4 Kbyte fast 4
T 800 32 Bit 4 Kbyte fast 1 with FPU

Table 1: List of the available transputers

Although the internal processor clock speeds of the T800 are 17.5, 20 and 25 MHz, only a 5
MHz quartz signal is needed from the outside. The higher frequencies are generated on the
chip.

Table 1 shows an overview of the transputers which are available today.

1.2 Software Structure of Transputers

A conventional processor has several registers for data on the chip. This provides the pro-
cessors with a fast access to the most often used variables. But whenever a completely new
process is started, the content of all registers has to be stored in the memory. Subsequently
the data for the new process have to be reloaded into the registers of the processor. Reasons
for this so called task switching may be either a task swapping inside a multitasking machine
or an interrupt that has to be handled. Conventional processors need between 20 and several
hundred s for task switching.

Another way of handling processor registers is the so called Workspace Concept. Processors
using this concept keep all their registers in memory. On the processor chip itself are only
registers for addressing the actual program command (Program Counter) and the location of
the registers in memory (Workspace Pointer). If the processor has to switch to another task
only the contents of the Program Counter and the Workspace Counter have to be changed. It
is obvious that this can be done very quickly. The argument against the Workspace Concept
is that an access to an on-chip register is always faster than an access to the external memory.
For this reason the first processors with the Workspace Concept (TMS 99XX) had fast task
switching instructions, but were fairly slow at every other computing task.

To avoid these problems, transputers are designed to have the advantages of both systems.
In figure 2 the structure of the main registers of a transputer is shown. There is a Workspace
Register which points to a list which is called Locals. This local list contains the local vari-
ables and the pointers of this process. One sees also a Program Pointer (labled Next instr.)
which points to the next instruction in the program. The three registers above (A, B, C) are
the so called evaluation stack which is organized like a LIFO *. The evaluation stack is used
as a short time memory for most of the commands. With these registers the transputer has
all speed advantages of permanent registers on the chip. In order to speed up task switching
even further there is a hardware scheduler on the chip. It stores the data from the scheduling

*Last In First Out

Registers Locals Program
- | Lt
N i
D |
B
|
c [‘
Workspace _—.L

Figure 2: Structure of the main registers of the transputer

lﬁﬁchar‘] me;j
- 4 3
v '

L Operand Register l j

Figure 3: Format of the transputer assembler commands

of all the processes into several internal registers which are not indicated in the above figure.
With this highly advanced hardware scheduling mechanism the transputer switches from one
process to another in lus. Also, suspended processes consume no CPU power, This hardware
helps to avoid performance degradation in case of several concurrently running processes. If
a program can be more easily written using several concurrent processes there is no reason
why one should not do this.

To reach high computing speed, the structure of the assembler commands is also optimized.
Together with the RISC-design of the hardware {here is also a RISC-design of the assembler
commands implemented. The register (Operand) at the bottom of figure 2 is used for this
purpose. The idea of the RISC assembler is the following. The most often used instructions,
which include Function and Data, are only eight bits long (figure 3). The first four of these
bits define the function, the second four bits the data. Thirteen of the possible sixteen com-
mands (2*), the so called direct commands, are used in this way. Measurements haye shown
that 70 % of the executed instructions can be encoded in these single byte commands. There
are 16 of these instructions which are only one byte long. Two of these sixteen commands
are the so called prefix instructions (2X and 6X in table 2). These instructions have to be
used if the operand is larger than 15. In this case one prefix instruction (pfix) is required for
each additional four bits of the operand. The other prefix instruction, called negative prefix
(nfix), is used as the first prefix if the operand is negative. The prefix instructions tell {he
processor that the data of this 8 bit command has to be combined with the data of the next
command by shifting the command in the operand register eight bits to the left, This means

4

W)Ic—uwr_v Mnemonic | Pmressor‘ Name

S —

‘ Code J Cycles i -
[ox i T8 Tump]
[11X Idlp 1 | load local pointer B
™ 2x | pix % 1 | prefix ‘
]——.‘l.\' kldnl_él 2 load non-local N
X [Tae I 1 load constant |
r 5X ﬁnlnlpj | T [load non-local pointer

6X nfix | 1 negative prefix]
X i 2 Toad local
| 8X [ade | 1 add constant :
| 9X [eall | 7 call
H AX [(jA 1 2| cuudiﬁ:?nTjump (not taken)
‘ | | 4 | conditional jump (taken)
M Bx | ajw [1 adjust workspace
[ex [eqc | 2 equals constant
U: DX stl 1 store local
[EX [stnl ‘I- 2 store non-local
L_I‘(‘. apr [- operate

Table 2: The 16 one byte instructions of the T800

that the data length has been doubled by using one prefix function. By placing a number of
these prefix commands one after the other, the data in principle can be extended to any size.
Here is a simple example of this prefix command :

Program Hex. Memonic assembler
1. direct command % 3= 35 45 ldc 5 -- load constant 5
(4-bit operand) DX stl x -- store to x
2. with a prefix function x := 35 23 pfx 3 -- prefix load 3
(8-bit operand) 45 ldc 5 -- load constant 5
-- prefix was const.
DX stl x -- store constant to x

In the first example (direct command) the constant 5 is assigned to the variable x. The
transputer assembler program which does this task can be seen on the right side. At first the
constant 5 is loaded into the evaluation stack. Then the content of this stack register is stored
into the memory location of the variable x. In the second example with the prefix command
the constant 35 is assigned to the variable x. Here the transputer assembler program starts

5

with a prefix command which contains the bit pattern of the constant 3. Up to now it is
not clear to the transputer whether the bit pattern is part of a long command or of a long
constant with the numeral 3. The next command to load the constant 5 into the evaluation
stack identifies the previous bit pattern as the first numeral of the constant 35. Finally this
constant is stored into the memoary location of the variable x.

The last of the sixteen possible function codes is called operate. It causes the following
operand to be interpreted as an instruction code. While the data block consists of four
bits, sixteen additional instructions can be defined without using the prefix function. But as
mentioned above it is possible to extend the data code up to any arbitrary length. With the
combination of the operate and prefix operation it is then possible to extend the number of
available instructions indefinitely.

In a CISC - Processor the assembler commands are also ordered into groups. But while the
commands of a RISC - Processor are ordered into groups according to how often they are used,
the commands of a CISC - Processor are ordered into logical groups (arithmetical commands,
copy commands etc.). While the advantage of the RISC processors is the enhanced execution
speed, the advantage of the ordering into logical groups becomes obvious when a person wants
to program in assembler language. Due to the ordered system the assembler commands of a
CISC - Processor are more easy to learn.

This conflict can be solved with an efficient high level language which supports the RISC
architecture;: OCCAM 2 is such a language. It supports all the fast possibilities of the
transputer architecture. Because transputers and OCCAM had been developed together, no
other language can compete on the transputer with the performance of OCCAM. This is
especially the case with communication tasks. OCCAM is based on the theories of C.A.R.
Hoare, who had developed a concept for inter process communication [Hoare85|.

Nowadays several other languages like C, Pascal and Fortran have also been developed for
transputers. To describe the possibilities of these languages on a transputer, the idea of
parallel processes has to be presented in some more detail.

A sequential process is normally called a program. It is a list of statements which are written
in a definite order and which will be executed one after the other. In OCCAM 2, where the
lierachy of the statements is defined by indentation, such a program would look like this :

SEQ
statement.1
statement.2
statement.3

statement.n
Several of these sequential processes can be executed together in parallel :

PAR
sequential.process.1

sequential.process.2
sequential.process.3

sequential.process.n

While a sequential process is finished when the last statement has been executed, a group
of parallel processes is finished when all the sequential processes have been finished. These
sequential and parallel processes can be grouped together in any arbitrary order:

SEQ
statement.1
PAR
statement.2
SEQ
statement .3
statement .4
statement .5
statement .6

In the above example the commands will be executed in the following order: First the state-
ment.1 will be started. When the statement.] is finished three processes are started and
executed in parallel. The first process consists only of the statement.2, the second process
consists of the statement 3 and 4 which will be executed one after the other, and the third
pracess consists of statement.5. When all these three processes have been finished the last
process, statement.b, can be executed.

It is also possible to give tasks different priorities. This has the effect that tasks which have
low priority are only handled if processing of the tasks with higher priority cannot be con-
tinued at the moment. This feature is a useful tool for process optimisation.

As shown above several parallel processes can be created with OCCAM 2. In figure 4 each
bubble stands for a separate process, which means that in this example five processes are
running in parallel. What happens when one process needs some data from another process
? For this purpose a communication system between the processes is needed. In OCCAM
the communication system of C.A.R. Hoare [Hoare85] is used. This interprocess communi-
cation is done via so called channels. A channel is a unidirectional point to point connection
to exchange data between processes. In the example of figure 5 the process A sends the
value of the variable a over the channel which is called ‘connection to the process B'. In the
process B the data is received and stored into the variable ¢. The synchronisation between
processes is also achieved by this process communication. This means that when process A
comes to the statement 'connection ! a’ it will wait until the process B comes to the
statement ’connection 7 c¢’. This is also true il the process B comes to the statement
‘connection ? ¢’ first. Then process B will wait until process A comes to the statement
‘connection ! a’. The situation when one process is forever waiting for another process
is called a deadlock. Parallel processes have to be carefully designed to avoid these situations.
In [Ari82) several problems are described which may cause deadlocks. How the processes of

T

<)

@
@

Figlll’f’ 4: l"i\‘f‘ processes wilhuul ('(HHIIHIl|i(‘{lli|-l|

Process connection Process
A B
connection ! a connection ? ¢

Figure 5: A channel sends data from one process to another

messaged

message |
Lo

message9
Lo

messagey

L0, L1, L2, L3 : outgoing links
L4, L5, L6, L7 : incoming links

messagel, ..., message9 : logical channel names

Figure 6: Several processes are communicating with channels

figure 4 may communicate over channels can be seen in the example shown in figure 6.

So far the simple structure of OCCAM programs has been shown. What about the other
languages which are available for transputers ? For these languages one has to distinguish
between the ordinary versions (C, Pascal and F77) without parallel extensions and their en-
hanced derivates (Parallel C, Parallel F77). Using the ordinary languages it is only possible to
write a sequence of sequential statements and combine them in a procedure. This procedure
can then be called by an OCCAM program which builds the *harness’ for the procedure. This
is quite different when an enhanced language like Parallel C or Parallel Fortran 77 is used.
Additional commands like PAR, SEQ, send and receive over a channel have been integrated
into the structure of these languages. These commands offer almost the same parallel pro-
cessing possibilities as OCCAM, with the benefits of C’s combined variable types (structures)
and pointers still can be used. However there are still strong reasons for using OCCAM on
the transputers.

The first reason is that no other language on transputers can compete with respect to the
execution speed and compactness of the executable code. But while the Fortran programs are
only able to obtain 50 % of the speed of OCCAM, the best C compilers achieve 90 %. This
time measurement is valid for sequential processes without communication. OCCAM is the
only language which can directly access the hardware ports of links. All other languages need
an additional software interface written in OCCAM for their communications over the links.
The delay which is introduced by this interface can only be avoided if OCCAM everywhere
is used.

In conclusion OCCAM should be used when maximum computing speed or a large amount
of inter process communications is required.

1.3 Communication Between Processes

As mentioned above a transputer has four bidirectional serial communication units. These
communication units are called links. How can the channels (of process-process communica-

9

On-

Chip

Transputer

Bus v LinkOut 0 (OCCAM Nr 0)
(32 Bit wide) / i 1 Bit serial

LINK
(32 B ¥ pDMA -)

UNIT #0 J] Linkin 0 (OCCAM Nr 4)
/WA 1 Bit serial

ransputer - Chip

Figure 7: One Link DMA Unit

tion) be associated with the links and how can a process be placed on a specified transputer?
Channels are logical connections between processes for the unidirectional exchange of data or
information. Because a link is a bidirectional serial connection, two channels can be placed
on one link. Figure 7 shows a schematic overview of one link DMA Unit. Therefore it is un-
derstandable that the links are serial connections. If a parallel system had been chosen much
more pins for the links would have been required. In figure 8 the four outgoing connections
are associated with the numbers 0 - 3 while the incoming connnections refer to the numbers
4 - 7. These numbers are the OCCAM addresses of the 32 bit wide ports of the links at the
internal bus. An example is shown in figure 6.

In order to explain the link procedure first the whole system with five concurrently running
processes will be developed on one transputer. The basic structure of the OCCAM code
(without some formal surroundings) will look like this :

CHAN OF ANY messagel, message2, message3,
message4, message5, message6,
message7, message8, message9 :
PAR
process.1(messagel, message2 ,message3)
process.2(message3, message5 ,message6, message7)
process.3(message7, message8 ,message9)
process.4(messagel, message2 ,messaged)
process.5(message4, message5 ,message6, message8, message9)

At the top nine channels (messagel, ...,message9) are defined. Then the five processes are
started to work in parallel. The processes are written as procedures with the channels as
arguments. This makes it easier to distribute the processes later onto several transputers. It

10

7
PR _—l’
3 Transputer 5
PR — l————

6 2

Figure 8: A transputer with its four bidirectional links

cannot yet be seen that the channel 'messagel’ at process.l will be the entry point of the data
from the channel 'message.1’ of process.4. However the list clearly shows which processes are
communicating with each other.

When the program runs without any deadlocks on a single transputer the performance of the
system can be enhanced by placing the processes on several transputers. T'wo restrictions
limit the number of transputers on which the processes can be placed: firstly, no single se-
quential process can be distributed over several transputers. While this is a restriction, which
in principle holds for all distributed processor systems, the other restriction arises from the
hardware possibilities of transputers. Today a transputer chip offers only four bidirectrional
links. That means that from the processes which are placed on each transputer, only four
incoming and four outgoing channels to the processes on other transputers can be created.
The example shown can be distributed onto up to five different transputers.

The following lines show how this will be done in OCCAM?2 which is the actual version of
OCCAM. It is assumed that the links of the five transputers are physically connected as in
figure 6.

CHAN OF ANY messagel, message2, message3,
message4, message5, message6,
message7, message8, message9

PLACED PAR

PROCESSOR 1 T8
PLACE messagel AT 6
PLACE message2 AT 1
PLACE message3 AT 0
process.1(messagel, message2 ,message3)

11

PROCESSOR 2 T2

PLACE message3 AT 5

PLACE message5 AT 0

PLACE message6 AT 7

PLACE message7 AT 6

process.2(message3, message5 ,message6, message7)
PROCESSOR 3 T4

PLACE message7 AT 0

PLACE message8 AT 1

PLACE message9 AT 6

process.3(message7, message8 ,message9)
PROCESSOR 4 T4

PLACE messagel AT 0

PLACE message2 AT 5

PLACE message4 AT 6

process.4(messagel, message2 ,messaged)
PROCESSOR 5 T8

PLACE message4 AT 3

PLACE message5 AT 6

PLACE message6 AT 0

PLACE message8 AT 5

PLACE message9 AT 1

process.5(message4, message5 ,message6, message8, message9)

The program looks very similar to the previous single transputer version. The PAR statement
is exchanged by a PLACED PAR and in front of each process the following line has been added

PROCESSOR processor_number processor_tvpe

Any arbitrary integer can be used for the processor. number. It can be used as a processor
identification by the user. The processor_ type (T8 = T800, T4 = T414 or T425, T2 = T212
or T222) is necessary because the various transputer-types are compatible only at the source
code level. So the compiler has to know for which transputer the executable code has to be
generated. The line

PLACE channel AT link_nr

connects the logical channels to the physical links.
In the example considered it also would be possible to distribute the processes only over 2,
3, or 4 transputers.

1.4 Additional Hardware for Transputers

Transputer links offer a very efficient means for data transmission between processors. Ad-
ditional hardware devices have been developed for an even more efficient use of these links.

12

Two of these devices are the Crossbar Switch (C004) and the link to port converter (C012).
While the crossbar switch provides a better connectivity between several transputers the link
to port converter allows a unique interface to other processors.

1.4.1 Crossbar Switch (C004)

A crossbar switch for transputers is a device which allows the connection between any pair of
transputer links which are connected to it. A single C004 crossbar, which has 32 bidirectional
links, can set up 16 bidirectional point-to-point connections. Physically the C004 is an 84-pin
integrated circuit which can be controlled by a transputer over a control-link. As a further
advantage the output signals are regenerated on the chip.

However, a delay of 175 ns to the signal transmission is introduced by the C004 crossbar
switch. As it can be seen in table 4 (refer to chapter 2.1) this leads to a reduced data rate
which corresponds to an additional cable length of 20 m.

If larger crosshars are required, combinations of the C004 chip can be used. If a 32 %32
crossbar switch is needed one can combine two C004 chips. In this configuration each bidi-
rectional link will use a single line from each of the two chips. By combining several crossbar
switches it is also possible to extend the number of links per crossbar. A bidirectional 48 »48
crossbar switch can be constructed with three pairs of C004 chips. In principle it is possible
to construct with C004s crossbar switches of arbitrary size. But the delay introduced leads
here to a pratical limit (see [IMSSP89]).

1.4.2 Link to Port Converter (C012)

The C012 is an integrated circuit which converts a transputer link to an eight-bit wide port
of a conventional microprocessor and the other way round. With the C012 it is possible to
communicate over a data bus with a link. This chip is very often used for interfaces between
transputers and conventional processors. Another application for the C012 is the general
broadcasting system which is described in chapter 3.2.

13

[Link rate : | unidirectional bidirectional [
one channel of a link used | both channels of a link used

I [Mbit/s] [Kbytes/s| [Kbytes/s|

| 5 450 670

| 10 910 1250

[20 1m0 | 2350

Table 3: Uni- and bidirectional linkspeeds (fast link protocol)

swaracies (1] | | [[T[] [e]

NN TT——

stan ca‘a packet cata stoo bit
oit bit

A:mow'e:gel 1J 0

Figure 9: Protocol structure of the link messages

2 Performance of Transputers

2.1 The Links

Transputer links are serial communication lines which are intended to be used for inter trans-
puter communications. On a serial communication line the data and the control signals are
sent over only one electrical signal path, whereas parallel communication systems use several
separate lines for control signals and data. A parallel system is obviously faster but it also
requires more space (pins on chips, board space etc.). Therefore it is technically more difficult
to build an integrated system with parallel lines on a single chip such as for a transputer.
For a further saving of space the transputer links are bidirectional. That means that the
transputer can send and receive data in parallel over the same link. In this case the data rate
in both directions together is less than twice the unidirectional transfer rate. This reduction
occurs because the ' acknowledge * signal and the data bits have to share the lines (refer to
3).

Each link consists of a Linkln and a LinkOut connection. The LinkOut connection from
one transputer has to be connected with the Linkln connection of another transputer and
vice versa. After one data byte is sent over the LinkOut pin the sending transputer waits
at the LinkIn pin for an acknowledge of the data. The data formats are shown in figure 9.
On these lines there are two electical states defined as High(H), for a logical 1, and Low(L),
for a logical 0. As you can see in the figure, two startbits (set to high) are sent before each
data byte and a stopbit (set to low) is sent after each data byte. Then the acknowledge is

14

received. As mentioned before in table 1 of chapter 1, the older transputers have a slower link
protocol then the newer ones. In the old link protocol the acknowledge is sent once the whole
dataword (Byte) has been received. Transputers with the new link protocol already send the
acknowledge bits when it has received the first bit of the data word. Due to this feature the
new link protocol is a factor of two faster over short distances than the older protocol. It is
also understandable that both link protocols are fully compatible with each other. All new
transputers use the fast link protocol. All the measurements given in this note (unless stated
otherwise) have been performed on transputers with the fast link protocol.

The link speed of 20 Mbits/s is the fastest linkspeed available at present; it is the ideal
speed for short distances with good electrical conditions. However linkspeeds of 5, 10 and
20 Mbits/s can be chosen for each transfer. Obviously the data rate is directly correlated
with the link speed and at first glance it is difficult to understand why a transputer should
not communicate with the full link speed. But a higher link speed also requires better elec-
trical conditions. For instance the electrical conditions become worse when the cable length
increases. These problems are described in some detail in [Rygol87|. There is another reason
why long cables are reducing the data rate. At longer distances the data words need a longer
time to arrive at the receiving transputer. Due to this the acknowledge bits will be sent
later and will also arrive later at the transmitting transputer. In summary the data through-
put decreases with increasing cable length. This is shown in table 4. These data rates are
calculated approximately with the formula :

TransferRate = l - Mbyte
0.55 + Cable Lenght |m| = 0.01 s

Our measurements agree well with this formula which can be derived from the medium speed
of an electrical signal and the protocol structure of transputer links.

2.2 Copying From Memory to Memory

The performance of a copying process depends strongly on the use of coding techniques which
allow the compiler to use the most efficient machine instructions. If an array of variables is
copied with a loop around a single assignment (like a[i] := b[i]) the data is only copied with
1 Mbyte/s. With some tuning (opening the loop and using abreviations, see also [Atkin87])
one can achieve a copy speed of 2 Mbyte/s. Like in other high level languages the main
limitation comes here from the range checking routines of OCCAM. This is for the case that
the copying is done inside the external memory (100 ns access time). The faster internal
memory (see chapter 1.1) is only 10% faster. This behaviour changes dramatically, when the
special blockcopy command of OCCAM is used. The statement

larrayl FROM startl FOR endl| := |array2 FROM start2 FOR end2|

copies data with 10 MByte/s in the external memory. The above OCCAM statement is
directly translated into the blockcopy assembler command of the transputer which operates
at the speed of the memory. A restriction of the blockcopy command is that the two arrays
should not overlap. In this case it is still faster to copy the data at first into a third array
and then copy it to the destination array with the block copy command.

15

2.3 Memory and Link Actions in Parallel

Several test measurements have been done for the case that the CPU copies data from one
place in the memory to the other while the link units perform DMA actions in parallel. At first
the results were in contradiction with the assumption that the link actions are independent
of the other actions of the transputer. Copying of arrays in the memory was used because it
1s obvious that this action puts the most load on the memory. The memory is the common
bottleneck. All data which go to or come from the link have to be buffered in the memory.
For the tests the T800 was used because of its fast link protocol. At the test it was running
at 20 MHz and the memory had an access time of 100 ns. The linkspeed was set to 20
Mbit/s and the linklength was negligible (< 0.3 m). Table 5 summarizes the results of these
measurements. With increasing number of links used not only the memory copy rate hut
also the linkspeed decreases. This test was done with all processes running at low priority.
The transputer allows only two classes of processes which can be seleeted by the user. The
processes can either run on high or on low priority. In the next test the link actions were
given high priority and the results for the link performance turned out to be much hetter. As
shown by table 6 the memory copy rate decreases to 6.45 Mbyte/s, whereas all four links are
working with the full unidirectional speed. In a network of processes it is always true that
the communication tasks have to have priority. Otherwise most of the processor time is lost
by waiting for data (see also [Atkin87]).

2.4 Conclusion

A few years ago transputers established a new generation of microprocessors, based on com-
pletly new concepts,

A popular argument against transputers is, that today even faster standard Processors are on
the market. Because of the rapid development in the field, no processor is the fastest on the
market for long. Benchmark tests have the problem that each processor is given the tests it
is best suited for. The available transputer families are at least a factor two faster than the
fastest processors of established families like MC 680X0 and Intel 80X86. Faster transputers
with clock frequencies up to 35 MHz and full pin compatibility have been announced.

A transputer is able to compete favorably with even faster processors because of its network-
ing capabilities. Other microprocessor manufacturers are planning processors with separate
DMA channels. This would allow to place the DMA controllers on separate chips so that
there would be no restriction on the number of links. However, there are several arguments
for the transputer link solution: The integration of everything on one chip allows very com-
pact and also very cheap systems. Furthermore, the integration also sets a standard for the
protocols which reduces the problems with interfaces to a minimum.

The most important restriction of transputers at present is the number of links per chip
which is four. This number in future will increased to probably 8 links. In order to achieve
the equivalent increase in data throughput the interaction system between the processor and
the links will be changed. At the moment all data are transferred via the bottleneck of the
internal bus. With four links the internal bus and the memory are just able to handle all
activities without any perturbation. But this will be different when more links want to access
the internal bus. Therefore future transputer chips will include a completely separate part
for the link handling. This link control part will also be able to connect two links with each

16

other without any intervention of the transputer CPU.

Another cumbersome part of the transputer is the absence of several features in OCCAM
which are convenient in other high level languages like Pascal, Modula 2 or C. The missing
features are specially structured variable types and pointers. A dynamic memory allocation
(like malloc in C) is missing too. Hopefully there will soon be extensions of OCCAM which
provide these features.

In summary the transputer concept appears to he the most reliable processor network sys-
tem available. ‘Transputers are relatively easy to program and are supported by reliable

development tools including a post mortem debugger.

17

Delay : | Cable length | Transfer rate

ns m Mbyte/s
0-50 0-5 > 1.53
50 -100 5-10 1.42
100 - 150 10-15 1.32
150 - 200 15 - 20 1.25
200 - 250 20 - 25 117 |
250 - 300 25 - 30 1.11
300 - 350 30 - 35 1.04
350 - 400 35 - 40 1.00
400-450 | 40-45 | 095 |
450 - 500 45 - 50 0.90

Table 4: The transfer rate in relation to the cable length for a 20 Mbit/s link rate

ﬁlllllb(‘r of links used (unidireclalall : 4 3 [2 1 0 J 1
| memory copy speed [Mbyte/s| : 7.88 | 8.29 [8.74 |9.25 (99| -
] average link speed [Mbyte/s| : 0.991 | 1.04 | 1,10 | 1.16 | - | 1.77

Table 5: Linkspeed and memory copying with all processes running at low priority

number of links used (unidirectional) : | 4 3 2 1 0 1
memory copy speed [Mbyte/s| : 6.45 | 7.30 | 8.17 [9.05 | 9.9 | -
average link speed [Mbyte/s| : 1.70 | 1.72 | 1.74 | 1.76 | - | 1.77

Table 6: Linkspeed and memory copying with the link process running at high priority

4 bidirectional links reset, event in, 4 bidirectional links

AyAyAyAy error in, vAyY
3 =JJ A AHYi

programmable
T800 output T800
1 l:-/[Bytc output event m) 1)T,mym
memory event in output | MEMOry
L0 logic /O logic
l_’ i dual-port ‘—l
memory

| jumper jumper

VME-bus interface
interrupt
request

Figure 10: Block diagram of the ZEUS 2TP-module (preseries-modules)

3 Transputer Hardware at ZEUS

3.1 The 2-Transputer VME Board

Transputers will play an important part in the ZEUS data aquisition system. For this purpose
at NIKHEF-H a VME board with two INMOS transputers has been developed. Despite the
fact that the 2TP-Board was originally planned for the GSLT ° it has been designed as a
general purpose VME-transputer board. The 2TP-Board documentation is well provided by

NIKHEF and can be found in :
¢ (Waard87] Hardware Documentation
e [Bot87] & [Bot88a| General Descriptions
o [Bot88b| Test Software

¢ [Bot89] Libraries

In view of the detailed documentation only a brief overview of the module is presented here.
The structure of the 2TP-Board is shown in figure 10. Each of the two transputers (called X
and Y) on the board has its own private memory (1 or 4 MByte), its own four bidirectional
link connections, and some additional I/O connections (reset, event in etc.). ® All actions on

“Global Second Level Trigger
5The link and the 1/O connections are physically connected to the a and ¢ row of the P2 connector from
the VME-bus. An additional adapter which has to be placed on the back of the VME backplane amplifies the

signals at the link cables for connections with other transputers.

19

the hardware described so far can be done independently. But it is obvious that this will be
different when the transputers are communicating with the VME-bus since on the VME-bus
at a time only one Master is allowed. When one transputer wants to access the VME-bus it
has to do this in the following way. First the transputer has to make an access on the local
bus. This local bus is connected to hoth transputer modules, a dual-ported memory (DPM),
and a VME-bus interface. Once the transputer has established this connection, it is able ta
access the VME-bus via the VME-bus interface. As mentioned before there is also a dual
purted memory connected to the local bus. This enables both transputers to access the dual
ported memory over the local bus, The name dual ported memory comes from the fact that
this memory is connected with a further port to the X-transputer module. The additional
bus between the X-transputer module and the dual-ported memory increases the power of the
ITP-Board dramatically. With this connection it is possible that transputer X accesses the
DPM while an additional access to the DPM from the Y-transputer module or the VME-bus
is handled simultaneously. By accessing the DPM from both transputer modules, the DPM
can be used as a connection between these transputers. This possibility is also supported by
the two event lines between the two transputers. By using the event lines the protocol for
a transputer-to-transputer connection with the DPM becomes very similar to that of a link
connection hetween transputers, like a fast 5th link.

All the connections between the 2TP-Board and the outside world are done through the P1
and P2 connectors of the VME-bus. While the VME-bus uses the P1 connector (96 pins)
and the row b from the connector P2 (32 pins), the rows a and ¢ from P2 (32 pins each) are
used by the special transputer lines (links, reset etc.).

At the moment the VME-bus interface consists of several chips. To reduce the required board
space and access time a gate array (ASIC) is under design. This gate array will contain the
whole transputer VME-bus interface on a single chip. With this ASIC the performance of
the 2TP-Board will be enhanced. Also, several additional features like a real triple ported
memory (TPM) instead of a dual ported memory and more status registers are added.
With these features and the fast VME-bus interface the 2TP-Board provides an ideal hard-
ware environment for a VME-bus based world.

3.2 The Reset and Broadcast System

For the control of the ZEUS Global Second Level Trigger (GSLT) a multi purpose module lias
been designed at NIKHEF. A block diagram of this so called “Controller and Switch Box”
can be seen in figure 11. The CSB is controlled by a T222 transputer which can be connected
to the outside world with two of its links. These links can be used to combine several of the
CSBs to a chain. This allows the configuration of a controller for linking an arbitrary number
of transputers.

The CSB can be divided into the following logical sections :

Switchboxes : The remaining two links of the T222 transputer are connected to two
C004-Crosshar Switches. These C004 chips are described in chapter
1.4.1.

Link Adaptors : In contrast to other transputers the T222 (and T212) does not have

a multiplexed address and data bus. At the T222 there is a separate

20

32 reset signals

s External bus
-

64 event in/ error in signals

32 event out signals Control
Logical VO Other T2's,
" 711222 controlling
CO12's (Fig. 3 + 4) network of
from / to read-out transputers trigger
Acknowledge transputers
Commands control and
(Type 111) monitoring

?

C004 (Fig. 2)

from / to read-out transputers

8 x data read-out +
8 x monitoring
(Type Lresp. I

C004 (Fig. 2)

from / to read-out transputers

¥ x data read-out +
8 x monitoring

?

Fast broadcast (Fig.5)
from / 1o read-out transputers

Trgger decisions
(Type IV)

Figure 11: Block diagram of the Controller and Switch Box (CSB)

16bit address and data bus available. This makes it very easy to con- References
nect the C012 link adapters to the transputer bus. The CSB provides

16 of these port link adapters connected to the bus of the T222. With [Ari82] Principles of Concurrent Programming

these adapters and additional control registers a direct communication M. Ben-Ari, Prentice-Hall International, 1982
between the T222 and 16 transputers is possible. This communication

is not as fast as a direct link-to-link connection, but it is a very nice [Atkin87] Performance Mazimisation (Technical note 17)
possibility for the exchange of control information between one master Phil Atkin, Inmos Ltd, 1987

and several slave transputers. [Bot87| A two-transputer VME module for the ZEUS ezperiment

Logical I/O Lines : The reset, event_ in and event. out lines belong to this group. These H.Boterenbrood, S.C. Goble, G.N.M. Kieft, J.C. Vermeulen, A.J. de Waard,
lines allow one single CSB to perform control and reset functions for L.W.Wiggers, NIKHEF-H, 1987
up to 32 transputers. In the following one possible solution for that
will be shown.

The CSB sends an event signal to a specific transputer. In this trans-

[Bot88a] The ZEUS Tuwo- Transputer VME-Module, an Overview
H.Boterenbrood, NIKHEF-H, 1988

puter this event invokes a selftest process. If this selftest finishes [Bot88b| Testsoftware for the 2TP-module
without an error the tested transputer sends back an event signal to H. Boterenbrood NIKHEF-H, 1988

the CSB. This controlling action is done in parallel with the normal

activities of the transputers. With that simple protocol the CSB can [Bot89] 2TPlib, a library of 2TP-module cycles
find out which transputers of the system are still alive. When a hard- H. Boterenbrood NIKHEF-H, 1989

ware error occurs in the system the CSB will know which transputer
has failed. In this case the CSB can reset the transputer network.
After all transputers have been reset the system can be booted and
restarted.

[DOB89] The Use and Possible Abuse of Transputer Links
C.Bizeau, A.Bogaerts, R.W.Dobinson, D.R.N.Jeffery, W.Lu, C.Parkman and Y.Perrin
CERN, Geneva, 3 May 1989

[Hoare85] Communicating Sequential Processes

Fast Broadcast : Someti it i it ful to have th ssibility f fast broadcast.
as a ometimes it is quite useful to have the possibility for a fast broadcas C.A.R. Hoare, Prentice-Hall International, 1985

A broadcast is the transmission of data from a single source to several

receivers. An example for a broadcasted data package may be a global [IMS84] Occam Programming Language Manual

status information. In the fast broadcast module of the CSB this is Prentice-Hall Inc., 1984

arranged by some dedicated hardware,

In principle one transmission line is fanned out to all receivers and the [IMSAS89| Transputer Application Notebook : Architecture and Software
logical anded acknowledge from all the transputers goes back to the Inmos Databook Series, Inmos Ltd, 1989

transmitter. Due to this hardware connection only an unidirectional

data traffic is possible on this system. (IMSLI86] Connecting Inmos Links

Inmos Application Note, Inmos Ltd, 1986

4 Acknowledgements [(IMSOC85] The implementation of Occam on the IMS T41§
Inmos Ltd, internal, 1985
I would like to thank all the people who supported my work. Especially all the people from

the transputer group of NIKHEF-H. These people developed the hardware which is decribed IMSREF86] Transputer Reference Manual Inmos Ltd, 1986

in chapter 3. Further on a lot of discussions provided me with the knowledge and information [IMSSP89| Transputer Application Notebook : Systems and Performance
for my work. (includes [Atkin87] and [Rygol87))

Further on I would like to thank W.Vogel who strongly supported me in any aspect of my Inmos Databook Series, Inmos Ltd, 1989

work. Last not least I would like to thank E.Lohrmann and G.Wolf for carefully reading the

manuscript and further suggestions to make this report more readable. [OCCAMS88| Occam 2 Reference Manual

Prentice Hall Inc., 1988

[Packer88| Simpler real-time programming with the transputer (Technical note 51)
Jamie Packer, Inmos Ltd, 1988

o
L3~

23

Richter8S { t S1¢
ntz Richter. B leubner Stuttgart, 198
vizol8T A] ¢ I R
Tiehael Ryaol an Natsor nmos Ld IRT
S B8 ACcCAM) ¢ aralleie Verarne
Ul Steinmen) fred Hathig rlag Hetdelberg JRR
I2IMsxi / L) ' ruction sel
fnmos Lid, internal 1RG
{tINMS8a [VS T Heferen Vanual
nmos Ltd, 1955
S8 Iravsputer Developmeni System
Beta Release Document, Inmos Ltd. 1986
Verm88' Transputers P ce d wrienee |

I.C. Vermeulen, NIKHEF-H, 1988

Waard&7 crgn of the ZEUS 2 Transputer VME Card
\.J. De Waard, NIKITEF-H, 1987

