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Abstract

For each finite graph G we define a polynomial fG(p.q} depending on the
number of edges and number of components of all subgraphs of G. We
derive a formula for a generating function Z of thesg subgraph polynomials.
Z turns out to be the canonical partition function of a spin glass with p
states and an Sp symmetry. For a specific choice of the couplings we derive
a generalization of the Hopfield model that can be viewed as a neural
network with more than 2 states per neuron. Finally the system is
investigated numerically and some results for the associative properties of

this new network type are presented.
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1. Introduction

Neural networks (for an overview, see [1D are presently discussed as possible
candidates for associative memories that could be capable of reconstructing
the whole information from a part of a pattern. The Hopfield model [21 has
received much Interest because of its similarity to the Ising spin model.
Using a simple learning rule that goes back to Hebb {31, it is possible to

store information in the network and retrieve it afterwards 141.

The Hopfield model essentially uses neurons with two states ti. In this
article we are going to discuss a generalization of this model. We allow for
more than two states per neuron. Every neuron can be in one of p states.
These p states are equivalent in the sense that the system has an Sp
symmetry. States that differ only. in a permutation of the p symbols have the

same energy and therefore have a similar dynamical behaviour.

The outline of this paper is as follows. In the second section we consider a
graph theoretical problem. We assign polynomials in two variables to finite
graphs. The polynomiais are connected to a counting problem in graph
theory: How many subgraphs of a given graph with a fixed number of edges
and components exist? We construct a generating function Z for these
subgraph polynomials. In the third section we recognlie that Z is essentially
the canonical partition function of a spin glass, where the coupling constants
of the spin glass are the parameters of the generating function. Tﬁe
subgraph polynomials can be obtained by differentiation of Z with respect to
the parameters, and these derivatives of Z are connected to the correlation
functions of the spin glass, such that a high-temperature expansion can be
expressed in terms of subgraph polynomials. Then in section 4 we turn to a
non-perturbative application of this physical system. By generalizing Hebb's
learning rule, we arrive at a model of a neural network that allows storage
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and retrieval of patterns with more than two symbols. We present some
results of a numerical investigation of such a network. We show that indeed
patterns that are stored can be retrieved. We finally demonstrate that in a

certain sense our network can show superposition of patterns.

2. Generalized Subgraph Polynomials

In this section we introduce the subgraph polynomials and a generalization of
them. Then we discuss the generating function of these polynomials. We will
see that the generalized subgraph polynomials of subgraphs of a graph may
be obtained by differentiating its generalized subgraph polynomial with

respect to certain parameters that label the edges of the graph.

Definition: An undirected graph G is a pair (VG, EG). where Vg is the set of

vertices of G, and

€G! BG —> N {(2.1)
is the map that determines the multiplicities of the edges. Here

Bg = {(ab) | ab e v} (2.2)
is the set of unordered pairs of vertices. If
V. =1 = { 1, 2, ..., n }, (2.3)

then we write BG =B



A subgraph H of G, H < G, is a graph (VH. EH) with VH = Vg and €y < Egr
that is, ey (k) < eg(k) for all k « 'BG = BH‘

For a graph G and a subgraph H < G we define the multiplicity m(H,G) by

r

eglk
m(H,G) = [] (ig((k))). (2.4)
kEBG

If G is a graph, then we define bG to be the number of cémponents of G

and #G to be the number of edges of G, so that

#G = > eolk). (2.5)
kt—:BG
Example:
G = , H =

Figure 2.1
The multiplicity of the graphs in Fig. 2.1 is
mHG) = (3) (%) = s, (2.6)

and bH = 4, #H = 6.



Definition: If G iIs a graph, then the subgraph polynomial (SGP} fG(p,q) €
K(p,q)} is defined by £5) '

fe(pa) = > mHG) pH ¢*H, (2.7)
H<G

To be definite, we set K = € in the sequel. We note that the coefficient of
pbq# is equal to the number of subgraphs of a graph with b components and
# edges (subgraphs are counted with multiplicity). Therefore the calculation
of f(;(p,q) is equivalent to the solution of a counting problem. Now we
generalize the subgraph polynomials to obtain an algebraic expression for
them, and later will will see that these expressions are the building blocks

of a generating function for the SGP's. But first we have to define some

notations.

Definition: Let F(A,B) be the set of maps from A to B. For p ¢ N, an element
o ¢ F(n,p) =: S (2.8)

will be called a state (the reason for this name will become clear later).

Since n and p will be fixed, for ease of writing we denote the set of states

“by S.

Definition: For \ € F(BG.C), we define the generalized subgraph polynomiéf
{GSGP) of a graph G by

fpar) = > muG) p"H o™ ] 3 (2.9)
H<G k € BG



Now we derive an explicit expression for fG(p,q,)\).

Definitiqn: For a state «« € § and k ¢ BG’ fet 8o k) := Soc(a) a(b) where Sij is
the Kronecker-3% and k = {a,b}.

Theorem: For a graph G = (n, EG) define

(k)
ha(pa) = Z H (q 8o, k) + A )EG . (2.10)

xeF{n,p) k EBn

Then fG(p,q,}\) = hG(p,q,)\).

Proof: We expand the binomial in the product and obtain

. (k
Kk ¢ k)-i

(q §(o,k) + A )SG( = Z ( eci;(k))ql 7\;0( : 5(ee, k). (2.11)

i=0

If we now multiply these terms for all k ¢ Bn’ we see that each summand
can be identified with a subgraph H of G, namely, we set EH{k) = i, if the

th

i term in the expansion of the binomial is a factor in the product.

Therefore we obtain

(k)
M (astal + )

keB
1) eg(i)-eyy(k k)
=S mine [ o H O g (2.12)
H=<G kEBn



It remains to perform the sum over the states a. The subgraphs H of G split
into components. For each of these compents C, the §(«.k)'s restrict the sum
of all o for the vertices i that belong to C to one value, so that the sum

over the states contributes a factor of p for each component. Finally we

arrive at
[eA(k)-eg (k)]
helpar) = . mEe p°H g™ [ 7 2
H<G keB '

n

Wl]iCh prOVES fG(p,q.)\) = hG{psqs)\)-

h~(p.q.\) is defined for peN. But since there is a unique polynomial in p for
G
peC that coincides with hG(p,q,)\) if pelN, we see that the calculation of hG

suffices to determine fG for all peC.

Definition: We normalize the generalized subgraph polynomials by

gmar) =[]

s, (’() glPaA). (214)

Definition: If keBG is an edge of G, that is, eG(k)>O, then we define the
graph G-k by (VG,E'), where €'(1) = EG(I) - Bkl‘ The graph G+k = (Vg, £") is
defined by ¢"(i) = EG(I) JEINT

Now we regard the A as parameters of the polynomial gG(p,qJ\).



Theorem: If k is an edge of G, then

BokPat) =~ gglpan). (215)
Bkk

Proof: This is obvious from the definition of hG(p,q,?\) and the normalization

for gG(p,q,)\).

Therefore the GSGP for a graph G can be calculated by multiple
differentiation with respect to the Ag of the GSGP of any graph G' with
Gs<G'. If 1 is the constant map 1, = 4 then we see that fG(p,q) = fG(p,q,l).

By introducing new parameters ueF(Bn, C) we can construct the generating

function Zn{p,q,)\.u) for the GSGP's.

Defintion: Denote by qn the set of all graphs G whose vertex set is n. For
p.qe € and )\,ueF(‘Bn,C) define
tG

Zypara) = 3 S felpan). (2.16)
Gedj, G’

Here we used the shorthand notation

€ £~(k)
0 G .- ]—[ ukG N LS H eg(k)!. (2.47)
ke'BG kEBG



For a multiindex ve F(Bn, N) and a map xe¢ F(Bn, C) we define

8)\: i= H ( 9 )Uk and |yl ‘=Z\J(k). (2.18}
keBG a‘){k kEBG

The generating function Zn(p,q,)\.u) has the property that

€ v
¢z parw. (2.9)

f.(pg,A) =3
G b =0

By setting A equal to 1 we obtain

£
G
f~(pqg) =8
G u |u=0

Z,(p.a.l.u). (2.20)

Theorem: For pelN, we have

Zn(p,q,k,u) = Z exp [An(a,q,K,u) ], (2.21)
xeF(n,p)
where
An(oc,q.?\,u) = Z uk(qS(oc,k) + )‘k)' ' {2.22)
k EBn



Proof: By inserting the definition of hG(p,q,)\) into the definition of
Z (p.a\u) we obtain

£

¢ eglk)

Z (paru) = E JL__; Z T (as(ek + )‘k)
Geﬁn ®G' «eF(n,p) keBn

p&tk) e(k)
Y D T k)' (as(ek) « 2 )

xeF(n,p) eeF(Bn,N) keBn e(k)!

= Z exp [ Z uk(QB((x,k) + }\k) ] (2.23)

aeF(n,p) keBn
.
Therefore we succeeded in constructing a generating function of the subgraph
polynomials. We note that it is a finite sum of exponentials whose argument

has a simple structure.

3. Multi - State Spin Glasses

In this section we define a physical system whose canonical partition function
coincides with the generating function Zn(p,q,)..u) for the GSGP's. If a system
" is described by some parameters A, U, then the canonical partition function at

inverse temperature B = i/(kT) tk is the Boltzmann constant) is given by

ZBAw = > exp | - B Hlwaw | (3.9)

el



Here we assumed that the set of possible states S of the system is discrete
and the Hamilton function (the energy) is H. We will assume that our system
consists of n components, each of which can be in p different states.
Therefore the state of the system is given by an ocF(n,p). The Hamilton
function* H then describes the interactions between the components. We

‘assume that the interaction energy arising from the components i and j is
Hy(o) = - [ o) 3(ak) + o (1-8(ak))] 5 k= {i,j} (3.2)

This means that the interaction energy is - 0y, if the state of component i is
equal to the state of component f, and = O if the states of the two

components are not equal. The Hamilton function of the system is then given

by the sum

H(o) = ) Hy(o) (3.3)
kEBn

and the partition function is

Z(Boo) = . exp [ B, (o dok) + op (1 - 8(ok)) |- (3.4)
onesS keBn

It is easy to see that

z (parw = 28, 259 &)y (3.8)
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Therefore, Z_ corresponds to the partition function of a certain physical

system that turns out to be a spin glass that is generalized to the case of

n

more than two states of every component. We note that our system has an
Sp symmetry: Given a state xe¢ S and a permutation neSp, then the state
nex has the same energy as the state o. The set of states S can be divided
into equivalence classes: §' := S/Sp, where o~me o, neSp. It is obviously
desirable that the observables respect this symmetry. The observables we

decide to discuss are correfations {v,v'>.

Definition: If v, v’ eF(Bn, {0, 1}), let

v(k)
Moy = [ (steek)) (3.6)
keB
" (k)
(-8 = [T (1 - 8(ak) )u , and (3.7)
kEBn
Qv = Y 8% (1-8) (@)
oeS

-exp[ﬁ Z ( Ok 8o, k) + O (l—S(tx,k)) )] (3.8)
ke'Bn .

We note -that our correlations are not normalized, so in general €0,0> * 1,
It is easy to see that

SO YoV
oy = ANE 8,35 Z(B00). (3.9)

A, i, p and o are related by

Y CL: L (3.10)
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It follows that

J 3 3
P ™ = Pp _—apk + 0y _aok , or (3.11)

) _ ad d
dinyy - dlngy ' dtno” (3.12)

A perturbative evaluation of the generating function Zn(p,q,)\,u) with respect
to the coupling constants A and yu can be expressed in terms of the GSGP's.
This means that by (3.12) a high-temperature expansion of the correlation
functions of a spin glass is essentially a sum over the fG's, which are the
values of the "Feynman graphs” G. We will not pursue perturbation theory

further, but now turn to a numerical Investigation of the system when it is

interpreted as a neural network.
4. A Generalization of the Hopfield Model

A very popular model of a neural network is the Hopfield model [2]. It

consists of n neurons Si e {-1,1}, i=1, ..., n. The energy of the state S is
given by
U B
H(S) 5 T; Jij 5, si. (4.1)

where the J1j are the coupling constants. Given a state S at time t, the state

S' at time t+t is determined in the following way. Choose a random neuron k.

Calculate

n
j=1

and set S‘k := sgn m, with all other neurons unaffected. One can show that

this rule enforces H(S') < H(S), and equality hoids only if the state doesn't
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change. So there are no cycles possible, and the system finally will settle
down in a stable state with unit probability.

In the simplest case, the couplings JU are given by the Hebb rule (31
Assume there are M patterns E’ui’ u=1, .., M that are to be stored in the

network. The J” are then given by

e

1

E.
‘Jlu

=
g

Jij = Eill’ if i+§, and },; = O. (4.3)

=
]

This means that the coupling between neuron i and neuron j is large if there
is a positive correlation In the patterns with respect to the neurons i and j.
One hopes that such a network may serve as an associative memory. An
arbitrary pattern S is chosen, and the rule for the titﬁe evolution is applied
until the system does not change its state any longer. Intuitively, the system
will reach the nearest stable state that is similar to the original input
pattern S. For random patterns, the Hebb rule is a good choice, but for
regular patterns, there are better rules that involve the Moore-Penrose

pseudo inverse of a matrix [6L

We generalize the model in the following way. We assume that our model
neurons oy, .., ¢« can be in p possible states, so that a state of the system

is given by an « ¢ F(n,p). The energy is defined by

H(a) = o~ Z Jij Saiaj. (4‘.4‘)
i,

We generalize the Hebb rule by

M
_ 1 .
Wy = & > S p i i%) and J; = 0, (4.5)
et e
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where Eyyr o EMi are M input patterns, Em ¢ p. The update rule should take
into account the correlation of all other neurons with respect to the chosen

neuron k. So given a state «, we choose a random neuron k. We calculate
the numbers

n

m = 3 0 B )

j=1 J
for B < p. Then we set o to that B with the highest mg and leave all other
neurons unaffected. This rule means that the randomly chosen neuron k is
pushed into the state that has, according to the couplings, the highest

correlation. One can show that H never increases, so with unit probabitity,

the system will eventually reach a stable state.

Finally we describe some computer experiments to show that this model has
some interesting features. We used a 10+10 lattice and investigated systems

with two and three states.
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In the first experiment we stored the four patterns of fig. 41 in the
network. We used two regular patterns that will be used later and two
random patterns that we added to see the influence of additional information

that is stored.

e, ., ., ., 2212 I ZEEEREEREERE ]
kwx . 7227 I EEEESREREREN
¥xx,,, . 2121 I EEEEREREXEXX
***----222 LI A D A I R R R R
***llllzzz LI R D B D D R B |
***I!llzzz LI R R D DL D R
***llllzzz LI I T D D R R B
¥ex, ., ,,2212 1222221212121
ke, ., 2112 222222217212
*ex, , ,,2212 2212122211212
1.2 .%%% %, L%, %, .,
22%%222222 L 2.22%, %,
VL L 2%R22 ., 2%, 22%%772
A 2. N I N 2] AR N X B
¥, %, %%27,12 YR B BN X EE |
**..*2**.2. 722%,2.,.,.%,
2 R222, %2 % AN EESEE N
1222 .%7%%7 222, .,.%, %%
2:1:2!*2*2 *.222..*2.
2R, EERD 2 ESEIEEEE

Figure 4.1: Patterns with three states that were stored

in the network

Then we used the pattern of fig. 4.2 (a) as an input and updated the network
‘asynchronously 10 times. The system settled down into the final state of fig.
4.2 (b). In the next experiment we used the pattern of fig. 4.3 (a) as an
input. Again, after ten total updates, a stored pattern was recognized (fig.

4.3 (b}).
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E - i RSl e
M - P - PN
el 3 LR - R R
WMa 4 - e e om om e oa
3

. T,
- e = M. - = = . p3
PIFIPIFI I - R R R
LF T

M3 3 D N2

L - B 8 S
E I - = N N
L I B -
BRI R R R R R BRI D
P33 B3 3 D D D R Y D
PR3 D D D R RS D R

L] L}
L] 1
1 1
L) v
LI
L] 1
1 1

*
X

- R R -
= NSRRI

(a) (b)
Figure 4.2: (a) input pattern, (b} retrieved pattern.

PIe + = o e = o= = )
-~ M- - M= - - M2

e = = = M- M3
W= - e e = A e e s
P EI PRI PRI R - R D D
PRI I ) RS
3 D D MNE 3 D D D D
B B EEE 3 - B ]
E R R R I
K K - K KD i -
PO 3 3 PO P 3 RS 3 R D
3 3 P RO 3 I N 3 D D
P I3 3 PR3 I D D RIS RS
P S D D R P 3 D D )
EE I I B
L S i T ]
E R B B B

-

(a) (b}
Figure 4.3

We note, however, that we have permuted the symbols in the input pattern,
so that the output pattern shows this permutation, too. Since the system has
an Sp symmetry, all input patterns that are permutations of each other are
equivalent. We see that our system can recognize pattérns that are built up
with more than just two symbols, as is usually discussed. Therefore it makes
sense to use neurons with more than two states. Of course, in our simple
system, there is no ordering relation that specifies an order of the symbols.
This means that it is only important if two symbols are equal or not, it is

not possible to assign weights to the symbols.
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In another experiment we wanted to see what happens if patterns with two

symbols are stored in a network, but the dynamics is then applied such as if

This means that after storing the

there were three symbols available.

information we enlarge the phase space of the system. We stored the three

patterns of fig. 4.4.

llllllllll

E 2 L E K
L N A .
L R B RS i B R
LR - B B
= s =N KM - -
= = AN - =
L B B i
e B SRR
WA - - - - NN
MW - - - - - - E 3

M- - ok A M M
3 T NEY )
WA MK - - -
W oadk - - - ok -
WM - - - o o= o *>
Wwo-M N - - - e W
Ak - - - - -
- = = o« N - - - -
S N N -W - -k -

We used the pattern of fig. 4.5 (a) as an input and applied the dynamical

rules for two states. The result after five complete updates is shown in fig.

4.5 (b).

The stored pattern is recognized, as is expected from the Hopfield

model.

W - = - - - - e e
R A L X X
- W M - - MG WK -
S MMM MM N - -
- - e MW - - -
- - e W N - - -
- eMcW W M M M - -
L L
oM M - - - - 3
W . - - on e s > %

e e L L T
R T T
WK -k - -
e -k K - - -

MKW MM v - - =
X I LI
“oeM - MWW -
= - e - - O W
W™ - o= - - - . o " W

(b}

{a)

Figure 4.5
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Then we stored the pattern of fig. 4.6 (a) in the network, but now we
appltied the dymamical rules as if three possible states were available. The
final state after five updates is shown in fig. 4.6 (b). Since the input pattern

is so close to a pattern that is stored in the network, nothing new happens.

IUUI***IDC .l'****lll
Ill**l*lli |Il****l\l
lll****lll l!l****l!l
lll*l**ll. llI****lll
KL
Ill*ll*ll‘ "t + ¥ B 1 ¥ & 1 3
AN 3 e
|I|!l|lll* @ F E 8 ¢ 1 ® 1
(a) (b)
Figure 4.6

Now we used a pattern that is close to two input patterns as an input (fig.

4.7 (a)).
¥, KRR, K *¥%,22217,%#%
AR R X N I EERZZ2272%%E
L L EREERER R, L RERZ277 %R,
Ill*l***ll ||**2***!|
.lll**llll Ill****...
tl******ll Ill****lll
, L ER L RER , SRR RERER
R B I ,RER, L EER
kxR, HEN ¥, ,, L Fx
**l llll** **l!lll!**
(a) {(b)

Figure 4.7

After five complete updates, the system found a stable state that looks like
that in fig. 4.7 (b). We see that the final state looks as if it consists of a
cross and a small square, both which are learned patterns of the network.
The system uses the enlarged phase space to occupy a state that is close to
two input states. The resulting patterns are superpositions of two input

patterns.
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3. Summary and Conclusions

We started with a graph theoretical problem and constructed the generating
function for a class of polynomials that arise in graph theory. This
generating function is the partition function of a spin glass with p states
and an Sp symmetry. The subgraph polynomials are related to correlations in
this statistical mechanical system., We give a practical application of this
model. A specific choice of the couplings ts motivated by the Hebb rule and
results in a generalization of the Hopfield modetl. Finally we. present some
numerical experiments and show that complex patterns with more than two

symbols can be stored and retrieved.
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