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Abstract

The length spectrum of closed geodesics on a compact Riemann surface corresponding to a reg:
ular octagon on the Poincaré disc is investigated. The general form of the elements of the “octagon
group . a discrete subgroup of SU(1. 1}/{=1}.in terms of 2 x 2 matrices is derived. and the previously
conjectured law (Physica D32(1988) 451) for the length of periodic orhits is proved analvticallv. An
algorithm for the multiplicity of geodesics with a given length is developed. which leads 1o an efficient
enumeration of the periodic orbits of this strongly chaotic SVSLen,
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I Introduction

The free motion on a compact two-dimensional surface of constant negative curvature is one of the
simplest and best investigated ergodic models of classical mechanics (see e.g.ref. [1] and references
therein). In ref. [2] some properties of periodic trajectories were investigated for one of such surfaces
which corresponds to a regular octagon on the Poincaré disc with opposite sides being identified. (For
a discussion of asymumetric octagons corresponding to different compact Riemann surfaces of genus 2,
see ref. [3].)

It is known [1,2] that for such a system the periodic orbits are in one-to-one correspondence with
the distinct hyperbolic conjugacy classes of fundamental group matrices. For the problem considered,
i-e. the “octagon group” G, a discrete subgroup of SU(1,1)/{+1}, the latter can be represented
as products of an arbitrary number of the following 4 generators (k = 0,1,2,3) and their inverses
(k = 4,5,6,7) [1,2]:

- 14vE GEVRVE ) "
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However, if one would generate all group elements M successively. one would count the orhits repeat-
edly, since all conjugated matrices
M = SMS? | (2)

where § is an arbitrary fundamental group matrix, correspond to the same orbit. Therefore, to enu-
merate the periedic orbits, it is necessary to know which fundamental group matrices are conjugated
to each other, i.e. one has to generate the conjugacy classes [M] = {M'|M’' = SM S5, 5 c G} instead
of the group elements itsell. In addition, there is the basic relation

boby Tbob3 Thy 1b1by by = 1 (3)

which has to be used in its various equivalent forms in the process of enumerating the conjugacy
classes.

In ref. [2] all products up to 11 generators were found and, using a particular algorithm for separat-
ing the conjugacy classes, the length spectrum of 206 796 242 primitive periodic orbits was calculated.
The numerical results strongly suggested that there exists an exact formula for the lengths of primitive
periodic orbits, and thus two of us were led to the following conjeciure [2]:

(:oshl—;1 = m+nv2, : (4)

where [, is the length of a periodic orbit with n being a natural number (0 < Iy < I}y < ...} and
m = m(n) an odd natural number, which is uniquely defined by the condition that the modulus of
the difference

A := |m(n) — nv?2| ' (5)

has a minimum value at given n, ‘

The existence of such arithmetic relations in terms of algebraic numbers was not expected before
for this ergodic system. In particular, from these relations it could be concluded [2] that the mean
multiplicity g(1) of periodic orbits for a given length / is unexpectedly large, i.e. §(I) ~ 8/2e/2/1, [ —
0.

In section II of this note we shall study the fundamental group matrices for the regular octagon
and shall find their general form which characterizes them in an explicit way as 2x2 matrices. From
this we shall prove the conjectured law (4), (5} analytically.

In section III we shall derive a condition on the matrix elements which ensures that the invariant
geodesic corresponding to a given matrix goes through the fundamental region.

In section 1V we develop an algorithm for the calculation of the multiplicity of periodic orbits with a
given length. The usual method of constructing the fundamental group matrices as products of a finite
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Figure 1: The regular octagon on the Poincaré disc. Numbers denote circles of inversion associated
with the symmetries Ty, ..., Ty discussed in the Appendix.

number of generators (which was used in ref. [2]) suffers from the drawback that products consisting of
a large number of generators can give a periodic trajectory with a small period. This means that the
multiplicity of periodic trajectories (even for small lengths) obtained by such a method, in general, will
be underestimated due to the contribution from products with a larger number of generators. This
fact restricts the applicability of such calculations, especially for checking the Selberg trace formula
(periodic-orbit theory) for the system considered [4]. The method proposed in section IV permits us
to find the exact multiplicity of periodic trajectories with a given length independent of the number
of generators taken into account.
This paper is an extended and improved version of ref. [5].

II General form of fundamental group matrices for the regular
octagon '

An arbitrary fundamental group matrix of the “octagon group” corresponding to the regular octagon
shown in fig.1 can be written as [2]:

M= ( Ay + 1A V2~ 1(B; +1B3) ) , (6)
V2 - 1(B, — iB;) Ay —iA,

where Ay, Ay, By, B, are special algebraic numbers of the form
m+ ny2 - (7}

with integers m, n, and | Tr M| = 2|A44] > 2.

(Note that we choose in the off-diagonal elements the factor y/ V2 - 1 instead of \/\/5 + 1 as in
[2). The reason for it will become clear below.)

The obvious property of (6) being an element of G C SU(1,1) is that its determinant must be’
" equal to 1: ' :
A+ A3 - (V2-1)(B] + B3) = 1. (8)
This condition seems to he trivial, but we shall see in a moment that it is a key relation giving us a
lot of information about the matrix elements. :

First of all, we introduce a few definitions. Let us call the algebraic numbers of form (7) even or
odd depending on whether the parity of m is even or odd, respectively. (Here the parity of an algebraic
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number m + nv/2 is defined by p(m + nv2) = m(mod2).) It is easy to show that 4; must be odd, A,
even, and By, B; must have the same parity (both even or odd). Among the algebraic numbers (7)
which are defined by two independent integers m and n we shall be interested in particular subsets of
these numbers for which m = m(n) is uniquely connected with n by the requirement that the quantity

A = |m - nV?2| (9)

acquires its minimum value for fixed n and for a given parity of m. We shall call the numbers with
this property minimal numbers. There are two types of minimal numbers: even and odd depending
on whether m is allowed to be even or odd in the minimization of {9). The necessary and sufficient
_ condition that an algebraic number C = m + nv/2 (n # 0) belongs to the set of minimal nunbers can
be expressed in form of the inequality

C:'

= |m - nv2 < 1. | (10)

In table 1 we present the first 40 minimal numbers for the case n > 0. Minimal numbers have the
interesting property that each class of minimal numbers is closed under multiplication. This means
that if one multiplies two arbitrary minimal numbers with the same parity, the result will be again a
minimal number with the same parity.

n 1234|5167 8109/ 10

m 202 a4l6 |88 10]12/12]14
even

m

3|55 701919111315

odd 1 !

n 1112|1314 | 15|16 |17 ] 18|19 ] 20

™ l16 16|18 |20 | 22|22 | 24| 26 | 26 | 28
even

" ool1s 17|19 |19 21 | 23|25 |25 27| 20
odd

Table 1: First positive minimal numbers m + n21/2,

Let us consider condition (8) in detail. It is an algebraic relation for the numbers (7). It is clear
that it will remain true if one changes the sign of v/2 in all terms. This implies that if 4;, 4,, B;, B,
of form (7) obey (8), then their algebraic conjugates A, etc. will obey the following relation:

Al + A+ (V2 1B+ BYy =1, (11)

where A4, := m, - n1v2 ete.. But all terms in (11) are ‘positive munbers, and therefore they are
restricted by the following values

Al <1, [Bil<yvV2-1<1,i=1,2. (12)

These inequalities mean that all 4; and B; belong to minimal numbers. -
Taking into account the above-mentioned parity properties, we conclude that all fundamental
group matrices for the regular octagon must have form (6) where:

Ay is an odd minimal number
A, is an even minimal number ‘ (13)

By and B, are minimal numbers of the same parity .

3

R S



The length { of a periodic orbit corresponding to a fundamental group matrix M can be calculated
from the relation [2]:

[1
h- = - = .
cosh 5 = o |TtM| = |4 (14)

Combining this with (13), one obtains formulae (4), (5) which were the mathematical expression for
the conjecture proposed previously in ref. (2].

Now we prove the reverse statement, i.e. that any matrix of form (6) with unit determinant and
with A;, B; obeying (13) belongs to the fundamental group of the regular octagon. Our proof will be
based on the theorem proven in ref. (6] and cited in ref. [1]. :

According to this theorem the group of all matrices of form (6) with unit determinant differs from
the considered “octagon group” by the existence of an additional generator

: 0
R‘rr:(o z) (15)

RobiBIY = bryg = b7, R2= -1, (16)

i.e.an arbitrary matrix (6) can be represented as a word constructed from the generators by, and the
additional matrix R,. But according to (16) matrices with an even number of R,’s can be reduced
to fundamental group matrices (without any R,), and matrices with an odd number of R.’s can be
reduced to matrices with just one R,. Therefore, an arbitrary matrix (6) with algebraic elements Ay,
Ay, By, B, belongs either to a fundamental group matrix or to a product of a fundamental group
matrix with one R,. It is not difficult to find a criterion which distinguishes these two cases. As
was indicated above, 4; must be an odd algebraic number for any fundamental group matrix and
A, must be an even one. The application of R, to a matrix (6) results in the following substitution:
Ay — — Az, Ay — Ay and By — — By, By — B;. Hence, for a product of B, and a fundamental group
matrix the A, element will be an even algebraic number and Az will be an odd one. (B; and By will
be, as before, numbers of the same parity). This means that the parity of Ay uniquely discriminates
between these two cases. If 4; is an odd number, the matrix (6) belongs to the fundamental group,
and if 4, is an even number, the matrix (6) is a product of R, and a fundamental group matrix.

Thus we have proved the following Theorem: The necessary and sufficient condition that a matrix
(6) with unit determinant belongs to the fundamental group of the regular octagon is that the A,
element is an odd minimal number and all other elements obey (13}.

From this theorem it follows that to construct a fundamental group matrix it is enough to sort
out miniinal algebraic numbers obeying conditions (13) and select from them those obeying (8). Let
us emphasize that the minimality condition (10), which in the end is a simple consequence of the unit
determinant condition (8), is of very importance. As it will be shown below, due to this condition
it will be enough to sort out only a finite number of minimal numbers in order to find all periodic
trajectories with a given length. Let

A1:m1+’ﬂ1\/§, A2:m2+"2\/§a
B, P1+'I1\/§, B2=P2-|'(12\/E

be the representation of the matrix elements in terms of integers. As was noted above, m; is an odd
integer, 1 is an even integer, whereas pi and py can be either even or odd, but must have the same
parity.

We present here a few more parity properties. From eq. (8) one can deduce the following:

with the properties

(17)

1) if n; is even, then ns, p; and p; are even and ¢, and g¢; are of the same parity;
2) if ny is odd and p,, p; are even, then n is even and ¢; and g; are of different parity;

8) if n, is odd and p;, p2 are odd, then ng is even or odd depending on whether ¢ and ¢z have the
same Or opposite parity.



III Conjugacy classes and their associated periodic orbits

To enumerate the periodic orbits it is necessary to know which fundamental group matrices are con-
jugated to each other. (See the remarks after eq.(1).) If the matrices are given as products of
fundamental group generators, then a pure algebraic algorithm exists [2], which solves this problem
within a finite number of steps. : 4

In the approach developed in this paper, we can construct any fundamental group matrix directly,
but, a priori, we do not know its representation as a generator product, and the question of the
separation of conjugacy classes has to be considered in detail.

Let us recall a few general facts [1]. Any geodesic on the Poincaré disc is a circle which is perpen-
dicular to the boundary circle |z| = 1. Inside the fundamental region a closed geodesic (i.e. a periodic
trajectory) consists of a set of segments of such circles connected with each other by the identification
of the boundary arcs via the generators (1). An arbitrary fundamental group matrix of the form

a f
=0 18
M (ﬂ*a.) (18)
with unit deﬁernﬁnant defines the linear fractional transformation (z = z + iy)

= M(z) = 2P

“Fira ‘ 19

which leaves the circle |z| = 1 invariant.
Simultaneously, a matrix (18) defines a unique geodesic on the Poincaré disc which is not changed
by the transformation (19). In Cartesian coordinates this invariant geodesic is given by the equation

2
B4y - By - ) +1=0, (20)
where ay, a3, B1, By are real and imaginary parts, respectively, of a and 3

a=oartiay , B=p+1i8; . | (21)

If az = 0, then the invariant geodesic is the straight line

By = B | @

It is not difficult to show that the conjugated matrix (2) is in geometrical terms the result of the
translation of the circle (20) (corresponding to the matrix M) under a transformation of type (19)
defined by the matrix §.

Let us assume that we know a fundamental group matrix and we want to construct the correspond-
ing circle (20} on the Poincaré disc. Two variants are possible. Either the circle (20) goes through
the fundamental domain or it entirely lies outside of it. Only the first case corresponds to an arc of
a periodic trajectory of the free motion on the surface considered. The second case has to be consid-
ered as the result of a transformation of a geodesic under the action of a fundamental group matrix.
This means that we have not to consider matrices for which the invariant circle (20) lies outside the
fundamental region.

The necessary and sufficient condition that the circle (20) goes through the fundamental octagon
is that the distance between the centre of the circle and a certain corner of the octagon is smaller or
equal to the radius of (20). If the matrix M is written in the form (6), this condition is equivalent to
the following inequality

421 € (2= V2)(|B| + (V2 - 1)1 Bl - (23)

where we assume that |By| > |Bs| (this can alﬁays be achieved by rotations over 7/4, see the Ap-
pendix).



Using eq. (8) one obtains the following condition on By, By (assuming B > By > 0)
B? + 5B — 4B, B, < (1+v2)%(4} - 1). (24)

Therefore, if the length of the geodesic is fixed (i.e. Aj is fixed, see eq.(14)), there exists only a finite
number of matrices (6) which we have to consider. These and only these matrices correspond to
invariant geodesics (20) which go through the fundamental region.

IV Determination of the multiplicities of the length spectrum

In this section, we describe our algorithm which determines the multiplicities g;, of the length spectrum
{1} of the periodic orbits using only matrices obeying the properties (13) and, in addition, (24). (Here
¢!, denotes the multiplicity which counts also the non-primitive periodic orbits.)

First the number n, is chosen, for which the multiplicity g, should be computed. This determines
A; and therefore the r.h.s.of (24). In the next step, all pairs (B, B,) with By > By > 0 are generated
which obey (24) and are both odd in the first run and both even in the second. The modulus of A;
is then computed by eq.(8). If this A; is an even number as required by (13), a valid group matrix is
found which corresponds to a geodesic of length I, .

By rotations over  (see the Appendix}, seven further group matrices can be found which also
correspond to geodesics inside the octagon. In this way we could compute all geodesics with the same
Ay lying inside the octagon, but we would not know the number of the periodic orbits which are
composed of the pieces of the former. In principle, one could compute the number of the periodic
orbits from this set of matrices, if one could find out which matrices belong to a given periodic orbit.
One has to select one matrix after the other of the set and then to conjugate the matrices which
vield the matrices corresponding to the other geodesic pieces of the same periodic orbit. This group
natrices have to be omitted in the set. The conjugation must be repeated as long as one arrives at the
starting matrix. In this way, only group matrices belonging to different periodic orbits survive in the
set and the multiplicity g, is determined. However, this method is uneconomical and we therefore
use a more subtle algorithm. '

First we concentrate on only those group matrices which obey By 2 B, > 0. An array is used,
in which all matrices corresponding to pieces of the periodic orbits are stored. At the program start,
this array is empty, of course. Then the first valid group matrix is computed and stored in the array.
Then this matrix M{1) is conjugated by the eight generators b, k = 0,...,7. Two of these new eight
group matrices by M (l)bgl correspond to geodesics which continue the original geodesic in the interior
of the octagon along the periodic orbit. To find them, the eight matrices are rotated by an angle of
7 until By > By > 0; then the two correct geodesics can be recognized by the inequality (24) which
they have to fulfil. After the first conjugation one of these two matrices can be chosen arbitrarily as
M2 for the next conjugation step. However, after the n—th conjugation (n > 1) that one has to be
chosen as M1 which is different from the matrix M(-1} obtained two steps earlier. Otherwise
this would lead to an orbit segment which one has already obtained. As noted, for the application of
(24), the matrix M(+1) was rotated to obey By > By > 0. This rotated matrix Rint1) s also stored
in the array, the reason will be clear soon. The conjugation cycle is finished, when the new matrix
M(+1} §5 equal to the matrix M (1) at the starting—point. Then one has followed a whole traversal
of the periodic orbit and one can turn to the next group matrix obeying (24). But before starting
the conjugation cycle again, one has to ensure that the geodesic correspending to this matrix is not a
piece of a periodic orbit already computed. This can be checked, because all pieces considered already
are stored in terms of their matrices M} and R} in the array. This is the reason why the rotated
matrices R(") have also to be stored.

After repeating this procedure for all allowed values (A3, By, By), one gets distinct periodic orbits,
all of which have the same length determined by A;. However, one point was omitted until now.
Because one considers only matrices M) obeying By, > B; > 0, one obtains only part of the periodic

6



orbits. In general, a whole periodic orbit can be rotated over 7, which yields a new periodic orbit.
After eight of such rotations one arrives at the original periodic orbit. Thus in general, for each
computed periodic orbit one rather has eight instead of one. However, there are exceptions to this
rule. Sometimes a periodic orbit has a higher symmetry, such that one arrives already after 4, 2 or 1
rotations over T at the original one (see fig.2 in [2]). Such a hehaviour is betrayed by the sequence R,
Take a conjugation cycle of length N. The condition M(1) = R("*1) is obeyed for a non-symmetric

orbit only for n = N. However for a symmetrical one, one of the values n = %, % %'- is the lowest one
oheying the condition. For n = % one has only this single periodic orbit, for n = there are two and

for n = N four periodic orbits. In the case n = N, eight periodic orbits are to be taken into account
as mentloned already. With this geodesic counting, one arrives at the correct multiplicities g),.

Finally, the multiplicities g,, corresponding to primitive periodic orbits are obtained by subtracting
from g/, the multiplicities of shorter orbits (if they exist) having length 1,,/k, k = 2,3,..., which have
also been taken into account in gj,.

Using the described algorithin we have computed the complete length spectrum {l,,} together with
the associated multiplicities {g,,} of the primitive periodic orbits of the regular octagon for n = 1 to
1500. Unfortunately, the computation time increases rapidly with n (~ n%), which sets a practical

limit to the calculation of the longer orbits. For n = 1500 we have 4; = 2121 + 150012, and our .

computed length spectrum covers the range from Iy = 3.057141839... to ly590 = 18.092025632. ...
There exists an independent check of our results carried out for n = 1 to 1099 by C.Matthies based
on her own computer program. The two results agree exactly in their common range.

It turns out, that not all n—values correspond to primitive periodic orbits; indeed, for the n-values
given by n =4, 24, 48, 72, 140, 160, 176, 184, 200, 224, 288, 432, 456, 472, 496, 704, 728, 816, 856,
880, 1024, 1088, 1112, 1128, 1136, 1152, 1360, 1384, 1400, 1424, 1488 there exist no primitive periodic
orbits, which is equivalent to say that for these n-values we must set g, = 0.

At this moment we are not aware of a closed formula which would reproduce the above n-values
and, even more, would yield the n-values corresponding to the “forbidden” primitive periodic orbits
having ¢, = 0 for n > 1500.

Our results nicely confirm our previous computation 2] of the length spectrum. In table 1 of
ref, [2] we presented all lengths up to n = 82 which were obtained by generating all fundamental group
matrices constructed from products of up to 11 generators. We find that the length spectrum given
in this table is almost complete; there are only two lengths for which the multiplicity is a bit too
low since products of 12 generators give a contribution. They correspond to A; = 97 + 68v/2 and

= 97 + 69v/2 for which the multiplicities have to be equal to 48 and 576 mstead of 40 and 560,
respectlvely

In fig.2 we show the staircase function

3 on (25)

<l

for I < li500, which counts the number of all primitive periodic orbits of length less than {. Noticing
the logarithmic scale in fig.2 one immediately confirms the exponential proliferation of the number of
periodic orbits with increasing length, a characteristic feature of chaotic systems. Notice, that there
are more than 4.2 million primitive periodic orbits involved. In fig.2 we also show the asymptotic

behaviour |
N(l) ~ Ei(l)::f de " | 1o (26)
oo o

which is seen to describe the average hehaviour of the true staircase function very well down to the
shortest orbit. Fig.2 should he compared with the corresponding fig.3 of ref. 2], where the staircase
function lies for { > 14.5 clearly below the prediction (26) since the conjugacy classes generated by
products of more than 11 generators were not taken into account. Fig.3 shows the staircase in the
small range ! = 17.9 to I = 18 in order to allow a comparison with the asymptotic behaviour (26).

T
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the asymptotic behaviour N(!} ~ Ei({}, { — oo.
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Figure 3: The staircase N(!) is shown in the small interval [ = 17.9 to I = 18 in comparison with the

asymptotic behaviour N (I} ~ Ei(l), I — oo.
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Figure 4: The strongly fluctuating behaviour of the normalized multiplicities g~ of the length spectrum
of primitive periodic orbits is shown.

In ref. 2] the following asymptotic law for the average multiplicities §(!) was derived on theoretical
grounds

/2
g ~ &;\/5'T , l— oo . (27)

While the average law (27) was confirmed by the numbers computed in [2], it was found that the
actual multiplicities g, fluctuate wildly about the average (27). We are thus led to define nermalized

multiplicities g by : ‘

[ e in/2 ‘
N . n

- 28
gn gn 8\/5 ( )
which are expected to fluctuate around 1. In fig.4 we display the normalized multiplicities for n = 1 to
1500. It is seen, that for the first 1500 periodic orbit Jengths ¢~ does not exceed 4 and that it is actually
fluctuating mainly between 0 and 2, which is a striking confirmation of the theoretically predicted
exponential increase (27). Furthermore, we present the distribution of the normalized multiplicities

g in fig.5, which shows a maximum below the mean value 1.

V  Summary

In this note it is shown that the fundamental group matrices for the regular octagon can be represented
in the form (6), where the matrix elements are uniquely characterized as minimal algebraic numbers
with well-defined parity, see (13). This representation immediately proves the conjecture (4), (5)
put forward in [2] for the geodesic-length law. A geometrical method for the separation of distinct
hyperbolic conjugacy classes is described, and a numerical algorithm for the determination of the
multiplicities of the primitive periodic orbits is constructed. The proposed method is used for an
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Figure 5: The distribution of the normalized multiplicities g/ is presented.

actua) enumeration of the primitive periodic orbjts of the regular octagon for n = 1 to 1500. The
multiplicities g,, show strong fluctuations about the theoretical mean value (28).

Appendix (Symmetry transformations)

From fig.1 it is clear that the simplest symmetry of the regular octagon is a rotation over 3. If
Ay, Az, By, By define an admissible matrix (6}, then A1, Ag, BY, B with

B (By — B2)/V2
B, (By + By)/v2 (29)

il

also give an admissible fundamental group matrix. Note that an inverse matrix corresponds to Ay,
— Ay, — By, - By. The reflection over the coordinate axis is eguivalent to the inversion with respect
to the line which has the angle /8 with the abscissa. (H is denoted by 1 in Fig1). This inversion
corresponds to the following transformation:

A'] = A]
;4’ = ""Az 2 .
Ty - . w I =1. 30
Vi By = (Bt B vE D .
B, = (B - B2)/V2
The inversion on circle 2 in fig.1 gives the transformation
A; = A1
Ay = —(V2 4 )4y~ V2B, 2 :
T, : : L TE= 0, (31)
By = (2+ v2)42 + (V21 1)B;
B; - ‘—‘B]

10



Analogously, the inversion on circle 3 in fig.1 corresponds to the transformation

Aa - A]
T Al‘g:"(1+\/§)A2+B1_B2 T‘Zzl (32)
U B =BV (14 V2 V2B - (14V2)4, T
By = (14 V2)/V2B; + B/v2 + (1 + V2) A,
Note that
NI = 1T {33)

as it must be for the reflections on 3 lines having an angle of 60 ° with each other. And, finally. the
inversjon on circle 4 in fig.1 gives

Al = A,

~(3 4 2v2)A; + V2B, - (2+ V2)B,
~(1+V2)Bs -~ (2+ V2) 4,

(44 3v2)A; — (1+ V2)B, + (2 + 2v/2)B

M
s
I

Ty L TE=1. (34)

==
0o

Two important properties of the transformations {29)- (34) are:
i) If A1, Aa, By, B; obey Eq. (8). then 44, A}, B), B}, also obey this relation.

ii) If Ay, Az, By, B, are integer algebraic numbers of type (17) obeving (13), then A,. 4. B}, B,
will be also integer algebraic numbers obeying (13).

Any sequence of these transformations will be an admissible transformation. So, knowing a fun-
damental group matrix, one can construct another one with the same trace by the above symmetry
transformations.
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