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Abstract

In the following report we investigate the stochastic particle motion in proton storage
rings due to cavity noise in the framework of a Fokker-Planck treatment. The motion
is decribed by using the canonical variables £, f., %, Pz, 05 Por = AE/E, which are
derived from the variables z, pe, 2z, Pzy 0 = § — Vo &, Do = AE/Ep of the fully six-
dimensional canonical formalism by introducing the dispersion formalism via a canonical
transformation. Thus synchrotron- and betatron-oscillations are treated simultaneously
taking into account localised cavities and all kinds of coupling (synchro-betatron coupling
and coupling of the betatron oscillations by skew quadrupoles and solenoids). For the
unperturbed system we assume that the dispersion vanishes in the cavities. Then in
linear order the synchrotron oscillation is decoupled from the betatron motjon. In order
to set up the Fokker-Planck equation, action-angle variables of the linear coupled motion
are introduced. The Fokker-Planck equation is solved for the case of phase noise and
amplitude noise resulting from the cavities. The equations thus obtained are valid for
arbitrary velocity of the protons {below and above transition energy)-
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1 Introduction

In this paper we study the influence of cavity noise on particle motion in proton storage
rings. Investigations on this subject with respect to synchroton motion have already been
made by several authors [1,2]. The aim of this report is to generalize these considerations by
including the betatron oscllations, i.e. we investigate the combined system of longitudinal
and transverse motion by a simultaneous treatment of synchrotron and betatron oscillations,
taking into account all kinds of coupling (synchro-betatron coupling and coupling of the
betatron oscillations by skew quadrupoles and solenoids). A

The concept to be used in this report is well known from radiation theory [3].

In detail, the considerations are organized as follows:

The starting point of our investigations is the fully coupled 6-dimensional description of
the particle motion with the coordinates z, p., z, p., 0, p, = AE/Ey which allows to handle
~ the external magnetic forces in a consistent canonical manner and which includes consistently
and canonically the synchrotron oscillations in the electric fields of the accelerating cavities.
This description is summarized in chapter 2.1 and leads to a derivation of the stochastic
equations of motion, taking into account the influence of cavity noise (phase noise as well as
amplitude noise).

~ In chapter 3 the dispersion function is introduced by defining new variables z, p., Z, p., 7,
Po- Since this is done via a canonical transformation, the symplectic structure of the equations
of motion is completely preserved. In this formulation the coupling between betatron and
synchrotron motion only appears in the cavities. - '

The linear equations of motion, neglecting the synchro-betatron coupling as well as
stochastic terms induced by the cavity noise, (i.e. the unperturbed problem) are studied
in chapter 4 by defining the 6-dimensional transfer matrix and by investigating the eigen-
value spectrum of the revolution matrix. Furthermore, action-angle variables for the coupled
orbital motion are introduced.

The perturbed problem, taking into account the cavity noise and small coupling terms of
synchro-betatron motion is investigated in chapter 5.

We are then prepared to derive the stochastic equations of motion in terms of the or-
bital action-angle variables (chapter 6) which are the basis for a Fokker-Planck treatment of
stochastic particle motion.

The Fokker-Planck equation for orbital motion under the influence of cavity noise (phase =

noise and amplitude noise) is written down in chapter 7 and a solution of this equation is
presented in chapter 8 by a separated consideration of the phase noise and the amplitude
noise.

The equations so derived are valid for arbitrary velocity of the protons {below and above
transition energy).

A summary of the results is finally presented in chapter 9.

2 Equations of Motion

Our investigation of cavity noise in proton storage rings begins with the derivation of the
equations of motion. We will use the same variables as those in Refs. [4,5] :
r, 2z, o =s—vy-tand n = AE/E,



{vo =design speed= ¢/y) by introducing as usual [15::

a) the closed design orbit (a piecewise flat path of a particle with constant Energy Ep)
which will in the following be described by the vector 75(s) where s is the length along this
ideal orbit;

b) an orthogonal coordinate system ("dreibein”) accompanying the particles which travels
along the design orbit and comprises {8]:

n

the unit tangent vector es(s) = E_T_"o(s) =7o(8);
s
a unit vector  ¢€z(s) perpendicular to €, in the horizontal plane
€:(s) = e,(s) x €x(s) .

The Serret-Fresnet formulae for the dreibein (é,, €, €, ) read as:

and the unit vector

Sa(s) = +Es) a(s) (2.12)
Lafs) = +Ki(s)-6(s) (2.1b)
L afs) = —Ku(e)-Els) - Kuls) - E(s) (2.1c)

with the assumption that
K.(3) K.(s)=0

(piecewise no torsion) and where K,(s), K.(s) designate the curvatures in the x-direction and
in the z-direction respectively. B
In this natural coordinate system an arbitrary orbit-vector 7{s) can be written in the form

™z, z,8) = To(s) + z(s) - €x(s8) + z(s) - €,(s) . (2.2)

Note that the sign of K (s) and K,(s) is fixed by equs. (2.1).

Thus z and z describe the amplitude of transverse motion (betatron oscillations), while
o = s—vg-t and 7 = AFE/E, describe the longitudinal (synchrotron) oscillation. The quantity
o defines the longitudinal separation of particles from the centre of the bunch and 7 describes
the energy deviation of the particle.

Starting then from the Lagrangian

for the motion of a relativistic charged particle with the orbit-vector 7 in an electromagnetic
field and introducing the length s along the design orbit as the independent variable (instead
of the time t), one can construct the Hamiltonian of the orbit motion by a succession of
canonical transformations. Choosing a gauge with ¢ = 0 (e.g. Coulomb gauge), one thus
obtains (4,5] :

moc?

E,

H(msp:tazapzao-apa’;s) = pa_BO'\/(1+pa)2”( )2‘[1+KI°$+KZ-Z]X

4



— I+ K, 2= K. -z -3 —4A, . (2.3)

ds T Tap. ds T ez’ -
d IH d OH
-—_— L = —_— -— P: = —F ; 24b
a5 Top 4P T T Bz (2.4b)
d oH d OH
g, 4on e 9 2.4
ds © +8p‘, Cods B do (2.4¢)
with
P =N (2.5)
or, using a matrix form:
d OH
= = 5. = 2.6
s YT % ey (2:6)
with
gT = (:c? Pxs 2y P2y Ty po) (27)
where the matrix S is given by
S, 0 0 . 1
S = 0 5, 0 S P +1 0 . (2'8)
¢ 0 5,

Since H contains the transverse coordinates =, p,, z, p. as well as the longitudinal
coordinates o, p, we are thus able to handle synchrotron oscillations (longitudinal motion)
and betatron oscillations (transverse motion) simultaneously.

In order to utilize this Hamiltonian, the electric field € and the magnetic field B or the
corresponding vector potential,

"d_*’: "'I(mvzas)a (2‘9)

for the cavities and for commonly occurring types of accelerator magnets must be given. Once
A is known the fields £ and B may be found using the relations:

194
g = — d ———— 1} 2.10
£ = —gradg- (2.10s)
B = curld. (2.10b)
Expressed in the variables z, z, s, o, eqns. (2.10) become (with ¢ = 0):
. a -
ey —- A (2.11)
o

5



and

B ! 9 1+ A K ) - Al 6.4 (2.12a)
= . -+ FR S ~ 8, T T 4z 5 =
* (1- K, -r=HA. z) dz Os
1 7] o
B. = A4, - 1R, 2 K.-z)- Al (212
) {(1-HK, »-AK&. 2) {83 dr i Aoz 2 7) ]} ( )
d a
B, = —4. - —A4,. 2.12¢
P T et A (2.12¢)

We assume that the ring consists of bending magnets, quadrupoles, skew quadrupoles,
solenoids and cavities. Then the vector potential A can be written as (see Appendix A) :

1 . 1
S A = By 1+ K.zt K. zl+2g-Be-(F—a?)+N-Boraz
Ey 2 2

1 L eV(s) 27 ]

. . ‘e h-—. . 2.13

G omh B, VT TV (2.13a)
e €
— A, = —f84-H-z; —A, = H . 2.13b
Fo Bo B, . + 5o T { )

(h=harmonic number) with the following abbreviations:

g = —- (aB‘) (2.14a)
Po-cC dx o re0
N - L. _e (9B, 0B : (2.14b)
2 po-c Or 0z | _. o
1
= -.—.B,(0,0,s); (2.14¢)
2 po-c
K. = +——.B.(0,0,s); K.=———-B,(0,0,s). (2.14d)
bPo-c Po-C

In detail, one has:

a) g#0; N=K.,=K,=H =V =0: quadrupole;

b) N # 0 g=K.=K.=H=V=0: skew quadrupole;
¢) K2 +K?#0; g=N=H=V=0: bending magnet;
d) H#0 g=N=K, =K.=V=0: solenoid;

e) V #0; g=kK,=R.=N=H=0: cavity.

Thus the Hamiltonian takes the form :

Moc? - .
H(I‘,Pm,Z,P;,U,Pa;S) = pa_ﬁo'\/(l+pa)2_(, EO(; )2'(1+‘K-’£"7"+RZ'Z)X
1/2

e B3H P [p— BRH o]
B2 [(1+po)? - (7)1
1
ﬁ‘%ﬂg'(l-{—ﬁ-I-T—FK,; -3)2— Eg-(zz—a:z)ﬁN-a:z
L eV(s)
+27’l"h. Eg

+ COS

h-z%r-a—l-np] . (2.15)

6



Now. since

the square root

r 0 r - 1/2
[1 lpe + B3H - =] + [p: — B H 'I-ﬁz]
- 72 ; _ ch2
3() ’ [(1 + Po )2 ( Fo }2:1

in (2.14) may be expanded in a series :

[1 lpet BRH S Ipe  GRH x]z’]”z
8- [(1+po)t — (%))
L [p+ B - 2 < [p. — BRH -aF

1 - 5 TR + ... (2.16)

with # defined by:

2 1 .
Mo p-e = Ld . (2.17)

= L 2 _ I i
(1-'“77)—60\/(1-*-77) ( Eo) ~ Bo Eo po

(p = moyv) so that in practice the particle motion can be conveniently calculated to various
orders of approximation. {The subscript "0" refers to the synchronous particle.)

In the following we shall use a series expansion of the Hamiltonian up to second order in
the variables z, pg, z, Psy 7, Po- Then we obtain from (2.14) :

H = pg—[1+Kz-x+Kz-z]-,Bg-f(p,)
1

tgr Alpe + B3H o o, — FH 2T}
0
l P 2 2 2 2 _ ~
+2/30'{[Km+9]'1‘ +[szg]-z ZN-:L',:.}
1 'V 2 |74
—502-—-—615503) -h-%-coscp——a-eE(:) - sin @ (2.18)
with '
po = 1(s)
and

flps) = *1—\/(1+10¢)2*(mo.c )2—1E£

Bo Ey Po
— O+ F0) 7o+ F(0)
1 1 1

2
= —.p, — Sopi A (2.19)
B3 8o 2

-
i



(constant terms in the Hamiltonian with no influence in the motion have been dropped).
Taking into account the cavity noise we write:

w = wo+ o (2.20a)
Vo= V48V (2.20b)
where 6 describes the phase noise:
5 = Apx - £(s) (2.21)
and 6V the amplitude-noise: _
6V = Vo - Aanr - E(s) - (2.22)

We assume, without loss of generality, Gaussian white noise, i.e. noise described by a sta-
tionary stochastic process with

. < &s)> = 0; (2.23a)
< £(s) - €(s) > = o(s —s") . (2.23Db)

One may visualize £(s) as a random sequence of small positive and negative pulses.
Then the Hamiltonian becomes:

H = 7'[0 +H1 (2.24)
with
Mo = po—[1+ K-z +K.-2]- 55 f(p,)
1
togr et B3H -2+ p. - B3H - )}
0
1
+553'{(Km2+9)‘$2+(K;2—g)-zz—2N-;cz}
1 eVo(s 2 . eVols .
——502-——-—1{;f) ) -h--f-cossoo—a- }%E} ) - sin@g 3 (2.25a)
1 OV eVy(s 27
H, = ——az-ﬁ-—;i }hf COS o
Wi
_ eVols)  cos 0 - 8 . (2.25b)
Ey
Remark:

Eqn. (2.24a) is valid only for protons. For electrons one needs the extra-term in the
Hamiltonian

Hoga = Cr - [K2+ K- 0 (2.26)
2 4
(where C, = 562;_2)

8



in order to describe the energy loss by radiation in the bending magnets [8,9]. In this case,
the cavity phase g in (2.21) is determined by the need to replace the energy radiated in the
bending magnets. Thus:

So-:-L . 30+L 2
[ ds - eV{s)-singg = f ds-Eo-Cy-[K24 K] (2.27)
- 8n 8a

average energy uptake in the cavities ; average energy loss due to radiation
L)

Note, that the H,qq term only accounts for the average energy loss. Deviations from this
average due to stochastic radiation effects and damping introduce non-symplectic terms into
the equation of motion.

For proton storage rings, where radiation effects can be neglected, one has:

sing =0 = | o = 0, m (for protons) (2.28)

(— no average energy gain in the cavities) and ¢ is determined by the stability condition for
synchrotron motion:

o = 0 above "transition” ;

wo = 7 below "transition” ;

(— see later, eqns. (4.37a,b)).

3 Introduction of the Dispersion via a Canonical Trans-
formation

The Hamiltonian (2.24) now leads to the canonical equations :

d 1

- = —. 13 3.1
dsm /83 [P:c+180H Z], ( a)
d
P = —B - K2+g-z+Bs-N-z+08Ks+ f(po)
+lp, —BoH -2 - H ; (3.1b)
d 1 9 |
= - . - .xl . 3.1
d.S Z ﬁg [pz IBBH 93], ( C)
d
oo P = B [BI-gl- 2Bl N2+ b5 K flp)
—lpe+BIH -z - H ; (3.1d)
p ,
5o = 1K+ Koz Fo- flpe)s (3.1¢)
d _ eVo(s) 27
L T T TR R
Vi 2
+0'-€£,E)5)-h-%'cosgoo-)\AM-f(s)
+M'COSW0'/\PH‘C(S)- (3.1f)

0



which represent stochastic differential equations describing coupled synchro-betatron oscilla-
tions of protons under the influence of cavity noise (phase noise and amplitude noise).

Note that the linear (transverse) betatron oscillations (eqns. (3.1a - d)) and the longitu-
dinal motion (equs. (3.1le, f)) are coupled by the term

—[B,-x+ K.z} 88 f'(po) (3.2)

appearing in {3.1e) which depends on the curvature of the orbit in the bending magnets.
In order to simplify these equations we now introduce dispersion (- see later: eqn. (3.9))

Di(s)

D(s) = gjj; ; (3.3a)
D,(s)

D(s) = D(s+1L) (3.3b)

and replace the quantities z, p., Z, Pz» O, 7 = p, by the new variables z, p,., %, p,, @, P,
which according to the definition of dispersion satisfy:

T = z— f(p,) D1; (3.4a)
ﬁ:ﬂ = Pz — f(Po) : D2 3 (34b)
z = z—f(p,) - Da; (3.4¢)
15z = P: _‘f(pcr)'D‘l . (34d)
This replacement
(2 Pe 2 P2y &, 1=ps) — (&, Pay 2, Boy 6, Bo) (3.5)

can be achieved using the generating function [6,7,5]:

F2(m1 z, O, Py, Pz, I_)o') = ﬁx'[3*f(??a)‘D1]+f(ﬁa)'D2‘1?
+ f’z‘[z_f(ﬁa)'D3]+f(ﬁa)'D4'z

1 3 h
— 5—[D1-D2+D3-D41-f2(pa)—!—p,-o (3.6)
with the result that :
oF.
o= 3*2 =2 — f(ps)- D1 ; (3.7a)
D
8F, 3 -
Pe = = =P+ f(Bo)-Da (3.7b)
I
OF ) |
2= ==z f(p) Da; (3.7¢)
P
8F, )
p: = a_; = . + f(Ps) - Dy . (3.7d)
N oF, - - N .
g = 3ﬁ2 :0+f(pa)'[_Px'D1'+‘35‘-D2“P:'D3+2'D4]

~[Dy- D2+ Dy D] - £(52) - £'(50)

10



= o+ f(po) {5 D1+ 1z — D1~ f{p:)] - Dy
~pzDa+ [z —Ds- f(Po)] - Da}

= 0+ fi(Pe)[~Pe- D1+ 7 Dy —p.-Da+ 2Dy

= U+f’(ﬁo)‘[‘Pm'D1+$'Dz—PZ-D3+3-D4]; (3.7¢)
ar,
= ammmenews T 5 3-7{
Po 5o = P (3.74)
and

- dF.
H=H+—2. (3.8)

Os

These in turn lead to equ. (3.4).
On taking into account the defining equations for the dispersion in the general case of
arbitrary velocity fy (see eqn. (3.1)):

d 1
5-01 = Bg'[Dz-{-ﬁgH'Ds]; (3.9a)
d
LD, = +(Di-BIH DB -5 [K2+4)-Dy+ 53N Dyt G Kus (39b)
d 1
EDS = @-{34—ﬁ§H-D1]; (3.9(:)
d
£D4 = _[Dz'HSgH‘Ds}'H+ﬁg'N'D1—ﬂg'[Kf—g]'Ds-*-ﬁg‘Kz (3.9d)
we have the new Hamiltonian (3.8):
H = Ho+ H, (3.10)
with
o 1 — 2 512 - a2 ~12
Ho = '2'37'{[Pm+ﬂgﬂ'z] + [, ﬁoH'l‘J}
0
+%ﬁ§'{[K§+9]'52+[Kf—g]-?—ZN-:EE}
1 ) , ) _
_E‘Boz'fz(pa)'[Km'Dl+Ilz'D3]+po_ﬁg'f(z’o’)
1, 27 eV
-5 -—i—-focoscpo.
x {5+ f'(Bo) [ D1 — & Dy + 5. - Dy — 5 - Dy}’ (3.11a)
Y | - eVo(s
Hy, = “{5‘+f'(13,)-[;5m-131—£-D2+§:-D3—Z.D4}}A_§( )-cosgoo-étp
0
1 1y = - -~ —_ ~
—5{5+f(Pa)‘[Pm'D1“$'D2+Pz'D3—Z'D4]}2
Ve &V
x < ols) -h-zi-cosgoo--— . (3.11b)

E, L Vo

11



In this Hamiltonian the coupling term (3.2) which arose from the orbit curvature no longer
appears. Instead, there appears a term for the cavities :

1 2 el - .- ‘o - L - ;
b Scospo {5 + f(F) (e Dy~ @ Dyt po-Ds- 5 DY (312)
2 L Ey
representing a coupling between the longitudinal and transverse motion which disappears if
V{s)- Dy =V(s)-D3=0; (3.13a)
‘ V(S) . Dg = 'V-(S) . D4 =0 (313]3)

(e.g. no dispersion in the cavities).
Taking into account eqn. (2.18):

- 1
(ps) = E'Pii“-;
: 1 1
br— BL-fBe) = g aBiE
P o - f(P ) ,302’}/3 5
1
f’ Ps) = -
®) = &
and decomposing Ho and H, into two components:
’Rn = 7“-{01 + 7-{02
(3.14a)
Hy = Har + Haz (3.14b)
we now may write (linear approximation):
- 1 _ _ ) _
Hoo = 5oz {lpet BH -2 + [ - BH -3
1 - - -
+—2—ﬁ§'{[Ki+g]-x2+[wag] -zsz-xz}
1 - -
“og [(Kz+ D1+ K. - D3) — 1/ + po — B - f(Bo)
0
1. 27 eV .2
—Eh'f’ECOS{po'U H
(3.15a)
~ 1. 27 eV 1
Hgg = —Eh'f'E'COStpo'ﬁ—g
x{26 -|p.-Dy—Z2-Dy+p.- Dy — z- Dy
+(1/8%) - [pe-Di~ & D2+ .- Ds — 2- Da]’} (3.15b)
and
Hu = —{&+1/B) [pe D1~ &-Ds+5. Dy~ 2- Dy}
v
chosgon-)\pg-é(s) ; (3.16a)
E,
N 1 . N . i . 2
Hy = —;°{0'+(1/ﬁ0)'[Pz'DlWiC'Dz+Pz'D3*‘Z'D4]}
eV 9 .
x%-h-%-cosgoo-)\AM-f(s). (3.16b)

12



In terms of the variables 7. p,, I. p.. &, p, equ. (3.1) then takes the form:

d - - - .
d_g:A ;’ ((‘A Y+ (SCPH+(SC4W (317)
S5
with
- aH . 29,
A-§ = —§. H_E’l S Amn:_srnl'w; (3.18a)
0y Ay Oyn
-~ = OH - *H
§A-§ = —85 —= = Sdn.=—Sp-mn (3.18b)
9y 3y Oyy.
OH
écpg = —S- ;1; (3.18¢)
oy
OH
§Capy = —8-—= . (3.184)
oy

Here the quatities écpy and écqar describe the influence of cavity noise on the particle
motion while the matrix 64 results from the synchro-betatron coupling induced by the cavities
which vanishes for a vanishing dispersion in the cavities (see eqn. (3.13a, b)).

In detail one obtains from equs. {3.15a):

~(8) : |
AGs) = ( Aarale) Qe ) (3.19)
O(2xa) A(zxz)(s)
with
0 1/82 H 0
~(5) —(K2+g+H*) 0 N H
Agxn(s) = " 0 0 182 (3.20)
N -H —(K;—g+H") 0
and
0 —(1/B2) - (Ko - Dy + K. - D3) ~ 1/~¢]
A(zxz)(s) = ( V(s 2 cos g 0 (3.21)

whick includes the main part of the motion and which we will consider in the following as

representing the unperturbed problem. Furthermore, from (3.16a, b) one has:

. eVl Y
é6cpr = —Apm-&(s)- EO cospo - B2+ D (3.22a)
0
. eV
bcame = Aam - E(s)- fo oS Yo - ﬁo
0
><{a+(1/;3§)-[151.pl_I.Dﬁpz-pgfz-m} (3.22b)

13



where we have introduced 1n (3.22a, b) the vector

Dy
D;
D;
Dy
0
\ —1/8%

For later considerations we finally remark that from (3.18b) one gets the relation:

3
1]
—
co
2
[S%]

§AT(s)-S+5-64(s)=0. (3.24)

4 The Unperturbed Problem

In order to investigate the particle’s motion under the influence of noise it is reasonable
to neglect in eqn. (3.17) in a first approximation the small terms § A, écpy and éCan and to
consider only the "unperturbed problem” :

A-7. (4.1)

The (small) perturbations described by §A, 6cpg and 84y will then be treated in a second
step with perturbation theory.
Since eqn. (4.1) is linear and homogeneous, the solution can be written in the form:

(s) = M(s,s0) - 9(so0) (4.2)

which defines the transfer matrix M(s, s¢) of the motion.
In order to obtain more information about the particle motion and to set up the Fokker-
Planck equation we now look for the eigenvalue spectrum of the revolution matrix:

M(So -4 L,So) 17“(80) = Au . 5@(30) H (43)
(0 = 1,2,3,4,5,6) .

We require that the stability condition
Al €1 (4.4)

be satisfied.
Since the equations of motion can be written in canonical form (see eqn. (3.18a)), i.e.

&, Pz, Z, P=s O, Dr are canonical variables, the transfer matrix is symplectic [10]:
MT(S,S())'Q'M(S,SQ) :§ (4‘5)

(with S given by eqn. (2.8)).
As a result, the eigenvectors ¥,(sg) occur in pairs

(Tws T3) s k=1, II, IIT (4.6a)
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with the reciprocal eigenvalues g, A_j satisfying:
A Aoe =1 (4.6b)

(k= I, II, IIT refers to the three 2-dimensional subspaces of the full six dimensional phase
space).
Thus the stability condition (4.4) can be written as [15:

el = Ak =15 A= A;

Ap = e*i - 27 Q4 : Qp real;
== (4.7)

—t

v_k(s0) = T;"(s0)
so that all eigenvalues must lie on a unit circle. With the normalization condition for the
Tr(So) :
Ty (s0) S+ _i(s0) = 1
we then obtain from (4.5) the relations:
0y (30) - S+ h(s0) = —T,(s0) - S - T_i(s0) =1 ;
{ T {sa) -8V, (s0)=0 otherwise :

(k= I,II,III).

The vectors v4x(sq) are the eigenvectors of the revolution matrix M(se -+ L,s,) with
starting point so. The eigenvectors of the revolution matrix M(s + L, s) with starting point
s can finally be obtained by operating with the transfer matrix M (s,s0):

Uyr(s) = M(s,s0) Uxk(S0) ; (4.92)
M(s+ L,s) Far(s) = Auw-Fan(s) (4.9b)

whereby the eigenvalues remain unchanged:
Axk(s) = Asr(s0) = Auk - (4.9¢)

The vectors #yx(s) defined by (4.9a) also fulfill the same orthogonality relations (4.8) as
Vir(s0):

G (s) - S Thls) = T (s) - S+ Tnls) = 4
(4.10)
T} (s)-5-4,(s) =0 otherwise ;
(k= I,IT,III) .
Putting
Fu(s) = () - et 2mQu - (s/L) (4.11)

15



the factor "Sy (s)

ey - Lot 2mQ, - (s/L)

tu(s) = vyu(s)
1s seen to be a periodic function with period L:

7]

s) - (4.12)

Eqgn. (4.12) is a statement of the Floquet theorem : Vectors v,(s) are special solutions of
the equations of motion (4.1) which can be expressed as the product of a periodic function
7,(s) and a harmonic function

i 27Qu- (s/L)

Note that the orthogonality relations (4.10) are also valid for the "Floquet-vectors” 5u(s):
=+ e ot Y .
5l (s)- 8 Buls) = —F10(s) - S-Foils) = 1

(4.13)

';:(.s) . 5. 5,,(3) =0 otherwise .

The general solution of the equation of motion (4.1) is a linear combination of the special
solutions (4.11) and can be therefore written in the form

is)= % {Ak-ék(s)e—“"Z”Qk‘(S/L)+A_k-5_k(s)e+i'2“Q—k‘(s/L)}. (4.14)
k=IIIIII

Using these results we are now able to introduce a new set of canonical variables which

will be important for further investigations [3,11].
For this we write for the coefficients Ay, A_x (k =1,I1,11I)in eqn. (4.14) :

Ap = JT-e Bk —27Qi - s/L] (4.15a)
A = T 7B = 2mQues/L] (4.15b)

Then egn. (4.14) takes the form:

TOEED MRVARS RO N T O I B (4.16)

k=IIIIII

From (4.16) we now have:

oy - - - -

LN S CXRIE SR ARE A (417%)
k i .

By 1 - : - : |

a_i = +3 ,H_Jk-{ﬁk(s)-e_z@"’—{—ﬁ_k(s)-e_}'ﬂ)k} . (4.17b)



Taking into account the relations (4.13) one obtains the equations:

- T — -~ T —

8¢ b a1t a7
N Mt A L R NE (4.18a)

6J;\. 8‘1’1 a‘I’g 8']&

=T Pl =T =
9y 5. % _ 9 LS. 9 (4.18b)

aJs oJ; GPy a9,

which can be combined into the matrix form

J'-s-7=8 (4.19)

with J the Jacobian matrix

85 63 0§ o3 0§ 07 (2.20)
= 8%;' 8J; 8%y 8J1’ 0%’ i
being a 6 x 6-matrix just written as a row of column vectors (8y/8%)) etc.
Equation (4.19) proves that eqn. (4.16) represents a canonical transformation
E, Puy 2y Py 7y o -— @1, I1, @11, I, @uny Jin (4.21)

and that ®x, Ji (k =1I,1I,1II) are indeed canonical variables which can now be interpreted
as action-angle variables since

ds

d‘I’k 2

— = — ) 4.22b
ds L @ ( )

These variables may also be used to describe the orbital motion.
For later considerations we finally mention that the revolution matrix M(s + L.s) has
according to eqn. (3.19) the simple block diagonal form:

_ M9 L 0
M(-S + L,s) — —{4x4)(5 -+ ,S) M(a) Y{ax2) ) (423)
O(2x4) —(2x2)(3 +L,s)

where Mgflﬂ(s + L, s) corresponds to the (transverse) betatron motion and Mglz)(s + L, s)
to the (longitudinal) synchrotron oscillations.

Furthermore, the 2-dimensional revolution matrix M E;lz)(s + L,s) which is defined by the
equations of synchrotron motion:

d . 1

— - . . . _ 2 =~ .
&7 R (K. D.+K.-D.)=1/7| bo ; (4.24a)
d _ 2 eVis . |
7 Po = T E(o ) COS o - O (4.24b)

(see eqns. (3.11), (3.18) and (3.19}) can be represented in the form

(e} _{ cos2m@Q, + a,(s) - sin27Q, B.(8) - sin27Q, 495
Mzn(s + L,s)= ( ~vp(8) - sin27Q, c0s 2mQy + a,(s) - sin27Q, (4.25)
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with
By ove = al +1. | (4.26)

From these equations one sees that for the eigenvectors vx(s) one can write:

= (3]
f = ( I% ) o k=1, 1I); (4.27a)
T = O .~ _f wa 1 [ Bl ) cemwWalS) (497
1 ( 0, ) v We = ( Wy ) /Zﬂa(s) ( —[ag(s) +i] (4. )

where, in the case that the betatron oscillations are decoupled:

(z)
M L, 0
M (54 Ls) = ( Moalsrbe) O ) ; (4.282)
Otax2) Mio(s + L, s)
(v) _ [ cos27Qy, + aysin27Q, By sin 2wQ, : 4.98b
M(ZXZ)(S +L,s) = ( — Yy Sin 27, cos2mQy + a,sin27Q, j ' (4 )
By vy = a; +1; (y==z, z) (4.28¢)

the vectors ¢ and @77 take a form similar to vIrr:

7m® = (%):) P B = ((12 ) ; (4.29a)

5 = (EZ:;:):;ﬁ-(-[af?i?m)'e""“y”“ (4.20b)

Remarks:

1) An approximate form for the matrix ﬁ_&[_g;lz)(.s + L,s) can be established in which in
the equation of motion (4.24a, b) the coefficients of & and §, are averaged over one turn
(oscillator-model ):

1 s9+L
K, Di+ K, -Dy] — x= f'fs di - [K.(5)- Di(3) + K.(3) Dy(3)]  (4.30a)

(momentum compaction factor) ;

27 eVi(s 1 g+l 2r eV{(s
h.f. E(O_)cosgoo — —I:/;D ds - h T E(O)cosgoo
2
= Q*. 0 (4.30Db)

(£ —1/4§)

18



with

,  (r—1/78) 2r 1 gpsotl V{5
= S i00) gy 2T -—/ ds - . 4.31
. AL ' TE. (4.31)
Thus. eqn. {4.24) transforms to
d . (k-1/v) . R
0= ____.___g P | {(4.32a)
d _ ) 32 _
—p, = Q.0 .5 (4.32b)
ds (e — (/%)
or
dz
I & = Q.5 (4.33a)
$
d2
d_sz- ﬁo’ = Qz 'f;a (433b)

with the solution

(29) = ((itlog) )~ gnste ) (o) o

Using this "oscillator-model”, one obtains for the one turn matrix:

- . cos 1L —(r/Q)-sin QL F(s0)
Mg + L,s) = ( (/) - sin QL cos L ) ( Pol(s0) ) (4.35)

and by the comparison of (4.34) with (4.25) we find (5, > 0) :

2rQ, = —-Q-L; (4.36a)
®
= —: 4.36b
b= (4.36D)
a, = 0; (4.36¢)
L o= 2_1 (4.36d)
£ B

where the quantities  and « are taken from (4.30a) and (4.31).
Note that with respect to eqn. (4.33a, b) the synchrotron oscillations are stable only if

Q2 >0. (4.37a)

For protons (eV(s) > 0) with singo = 0 (no energy uptake in the cavities) this corresponds
to the usual conditions [5]:

wo =0 for k> (1/42) above "transition” ;

wo =7 for k< (1/9%) below "transition” .
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2) The phase function ¢,(s) (y = z,z,0) in eqns. (4.27) and (4.29) of an uncoupled mode

is determined by the fact that the eigenvector w,{s) must obey the equations of motion.
In order to find the analytic form of this function, we take the Hamiltonian for uncoupled
synchro-betatron osciilations in its most general form:

Ho = Hoz + Hoz + Hos (4.38}

1 1 :
Hoy = EFy(S) 'P; +Ry-y-py+ EGy("") -y’ (4.39)

P

(y = %,%,5) from which result the corresponding canonical equations of motion:

%(;):Ay.(;y) (4.40a)

As) = (_gz _%) . (4.40b)

Comparing eqn. (4.40a) with (3.21) one gets for example:

with

R, = 0;

F, = —(1/B%) (K. Dy + K. -D3)— 1/ ;
. eV{s) 2T

G, = E, -h- Lcosr.po.

Furthermore, we write with respect to eqn. (4.28b) for the revolution matrix
Mgg)xz)(s + Las)

of an uncoupled mode:

M}glz)(s + L,s) = cos2wQ, -1+ sin27Q, - K (s) (4.41a)
. with
- _ ay(s)  By(s)
K (s) = ( () —aZ(s) ) X (4.41b)

From the condition:

M((g)xz)(s +1L,s) = —Mgg)xz)(s 4+ Lyso+ L) - —zg)xz)(sﬂ + L, 50) - Mglz)(sms)

-1
= Mgg)xz)(s:sﬂ) ‘M—g)xz)(SO + L, s0) - [Mglz)(sa 30)] (4.42)

one then obtains with respect to (4.41a):

-1
K(s) = M, (s,50) K,(s0) [M3,(s,5)] - (4.43)
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For the derivative

- _ alls) 3(s) ‘
A (s) = ( *73(5) al(s) ) (4.44)
one gets:
K (s) = Al.s -Alén_}_) 0 {fiy(s + As) — Ey(s)}
— 31; -Aléri 0 {my(s + As,s)- K, (s) -m;*l(s + As,s) — _Iiy(s:)}
1 . )

= aoplim {1+ as 4,0 Ky(s) [L-As 406)] - Kyl

= A,(s) K, (s)— K, (s)- A s)

= ( (=7 Fy + By(s) - Gy} 2-[By - Ry(s) — oy - F] ) . (4.45)

2'[_ay'Gy+7y'Ry} “[“7y'Fy+ﬁy'Gy]
By comparing (4.44} and (4.45) we then find that:

a(s) = v Fy +8,-Gy; (4.46a)
By(s) = 2-[8y - Ry—ay - Fj] ;5 . (4.46b)
7.;('3) = 2-[ay-Gy—7 R . (4.46¢)

Finally, using the fact that w,(s) in (4.27b) and (4.29b) must be a solution of the equation
of motion (4.40) we gain by taking into account eqn. (4.46):

'(s) = F_y(_sl 4.47a
| 7)) = 36 ~ (4.47a)
—  py(s) = fo "ds - gj((z)) + Poy - (4.47b)
The Floquet-vector
B,(s) = ( zz ) = @,(s)-eti 2@y (s/1) (4.48)

as defined by eqn. (4.11) now reads :

= 1 By(s) ) { [ s s F(3)
Wy, = . 4 }-expqie 21rQw+—fds- —~ — (4.49)
Y= 2Ae) ( lay(s)+14) )P I D © e T
and the "action-angle representation” (4.16) of the orbital motion with the action variable
J, and the angle variable ®, takes the form:

(2) = Vo \/ﬁ‘(ﬁgmw] )
xexp{—i- l«ﬁy(s) +<poy+/os ds - gjgj)) - 2wa%]}

+compl.conj.
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or, written in components:

; s F,s) s
yls) = /2J, -3, - cos [@y(s) + ng+/() ds - % —2 Qy—L—] ; (4.50a)
27 . N A 1) s
pols) = —V' 3 -{sm [@y(s)—y—@oy—rfo ds-Ez(—h) _ZWny]
Fy,(3)

+a, - cos [éy(s) + poy + fs ds - — 2rQy%]} (4.50b)
0

By(3)

which can be the starting point for a canonical perturbation treatment of coupled synchro-
betatron oscillations as demonstrated in Ref. [16].

3) Equation {4.30) describes at a fixed point s an ellipse in the (y — p, )-phase-plane. The
area of the ellipse is given by:

F=2rn.J,. (4.51)
Usually one writes:
F=nmn-¢ (4.52)

where €, significates the emittance of the uncoupled oscillation in y-direction [9].
Generalizing this equation for coupled motion, we may write:

e = 2J; (4.53)

defining ¢ as the emittance of the k-th (coupled) mode.

5 The Perturbed Problem

The general solution of the unperturbed equation of motion (4.1) can be written in the
form

g(s)= 3 {Aw-Tiu(s) + Ak - Tk(8)}
k=IIIIIT _

with A, A_, being constants of integration (k = I, II, III).
In order to solve the perturbed problem (3.17) we now make the following "ansatz” (vari-
ation of constants) :

§(s)= 3 {Au(s) uls) + Ak(s) - Tols)} - (5.1)

k=II1III

Inserting (5.1) into (3.17) one obtains :

S {As) T+ AL(s) T} = SA- Y {Als) G+ Asul(s) - Toi)

k=I,IT,111 ke I IT,IIT
+6Cpg + 6Cam - (5.2)
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Using the orthogonality conditions (4.10) and the relations (3.22a, b) one gets from ({5.2)

for k=T.II.III:

is) = X » .. €1y 2 o =
A (s) = —"L.R-(S)‘Ti')\PH‘6(3)'E—-(‘OSSJG-;BO-‘U;c (s)SD(s)
o

T 27 .
i Aang - Els) - 20 cosgg b = - 32 FF(5)SD(s)
Eq z

x {& 4+ (1/B)  [fe- Dy — & Dy + s+ Dy — - Dif} 5 (5.3a)
AL (s} = (A (5.3b)
with
Xi(s) = X Aus)-(—i)-5,7 5649
I=IT1III
. + Y A(s)-(=i)-ET S AT . (5.4)
=1 IIIT

Taking into account eqn. (2.7) and the defining equation (3.23) for D one can write for

the term 7,7 5D appearing on the r.h.s. of (5.3a):

€k+-5—ﬁ = vp - D1 — vy - Da+ v - Dy —vgg - Do + (1/8) - vis

or with respect to (4.27) :

(5.5)

- viy Dy — v}y - Dy +vpy - Dy — iy - Dy for k=1, IT;

(1/83) -wy, =(1/83) - vis for k=1IT.

6 Stochastic Equations for the Action-Angle Variables
Ji(s) and ®i(s)

Representing Ax(s) in the form (4.15), we obtain for the derivative 4;(s) (k = I, 11, IIT):

T =i (@ —2rQk-s/L] _ ;. {@L — %Qk] - Ak

b | =

=

Ails) =

1 J . , 2
= Ak’{ﬁ':]_k'_z‘[@k_ka]}

and it follows for the derivatives J[(s) and ®}(s) of the action - angle variables Ji and s 3]:

d
Hfs) = 5 [Au(s) - Acilo)
= Ay(s) - Au(s) + Axls) - AL, (o)

= 2.Re{A,(s) - A_x(s)} ; (6.1a)
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CAu(s) - Ak(s) + Ay(s) - AL, (s)

2 i Jils)

Here the terms (A} - 4_;) appearing in (6.1a,b) are given by:

Ai(s) Ai(s) = Yils) + Ze(s)
Zi(s) = Z(s) + 20s)
with
Yi(s) = Xi(s)-A_r(s)
— X Vahe (=) F 564 F B B
I=LILIIr
+ Y VIV () E S 8A Gy Bt 2
I=LILIIr
and
Wy _ eVo 2 ot X
2, '(s) = Z'APH'g(S)'_E'COSWO'ﬁo'[vk(s) A—k(S)] S-D
o
. eV, ;. —+ =
- z-/\pH-G(S)--Ef-cossoo-ﬁoz-\/;k-ez ®:(s) .57(s)-5-D ;
(2) eVo A
Z(s) = —i-dam-€(s) - 5 cospo-h- - 53 [57(s) - Aa(s)] - S D
0

)
< {5+ (1/83) [px-Dl—é-Dzm-Ds—f-Dd}
= —i-Aanm-E(s) -

x{&+(1/83)

If we write then J/(s) and ®{(s) in the form:

Tuls) = K@, 7)+ QN (&1, 01) - £(s) 5
Bi(s) = K&, 70) + QYN &1, 1) - £(s)

[pz'Dl“i'D2+§z'D3—£-D4]} .

we obtain, using eqn. (5.5):
K = 2. Re{Yi(s)} ;
V - - —7* .
ng) = 3'.5_0.605990.)33.@.{5;:‘D.€% b [?:;;:ﬁD] Lt ‘I’k}
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K = SN Y. - Sm {Yi(s)}
L JA\(Q)
. ely 5 1 .7 ., [tHenlt - ®
Q({‘) = — == 08203 __-{v,SD-csE ’\‘+[t-._§DJ - € k}
! E, SO0 Ut :
i 1 - - - -
> {}\PH*AA}J'}I'Y[U-TBZ‘(pr'Dl—T‘Dz-‘—p:‘Dg—Z'.D‘l)}}. (GGb)

Po

The stochastic equations (6.4) for the variables J, and @, (k = I, I, III,) together with
(6.6a,b) are now the basis for a Fokker-Planck treatment of stochastic particle motion in
storage rings.

7 The Fokker-Planck Equation for Cavity Noise

The Fokker-Planck equation for the phase space density function W (in the Stratonowich-
version) now reads as [12]:

oW ] . p:) .
I k:I,ZII:,III{ 3Jk[D() W= 0%, [D() W}} (1)
v e o wie pTopw
ki=IILIIT k& ALey g
* %3@82@[ E”k)'Qg)'W}}
with

Dy) = K+ K, (7.2a)
DY = k¥ + kY (7.2b)

where the gquantities R—‘S-k) and I{'ék) contain the drift terms:

. 1 QY Q¥
Bw - ZxJ oW J oWl . 7.3
J 2, > { a7, @0t g Qe (7:32)

rrIiir
- 1 BQ(k) ) 8Q(k) l
EP = 2 % {_@ QW T2 QWY (7.3b)
2ifar { 9 0%
Introducing the time t by the relation:
ds = vy - dt

and using a long time scale [12] which is comparable with the oscillation time of synchro-
betatron motion we make an average around several circumferences, which we indicate by a
bracket { }, and then write the Fokker-Planck equation in the form:

1 oW . d (k) 8 )
_ o X
vo Ot k:I,II,III{ 8Jk[<D > wi- B‘I'k“D ) W] (7.4)
1 & (k) A1) 9? ) AW
+ k,1:§‘I1I{26Jk8J [(Q J > W] + BJ 8@ [( q,) W]
1 & (k)
AE . A w
* 353,08, Qs - Q3') - W]
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wherehv oscillating terms of the integrand due to the (linear) s-dependence of the angle
variables 4
2
Dils) = (0}~ (s — 80} - — Q.
. L
(see equ. (4.22b)) mayv be neglected since they are approximately averaged away by integra-
tiom.
Ir order to calculate the coefficients (DY), (DY), ¢ (Jk)- Oy QY. QL) and { f{“’-Qg’)
appearing in (7.4), we first introduce the following abbreviation:

g0+ L ——t -
6Qu = o [ ds ()5 6A(s) - Fyls)

1
b
1 sg+1L _y _ _
= oo [ s ) S 8A() Eule) (7.5)

(k=1I, IT, III)

so that one can write using (6.3a, b) and (3.22¢) :

Vi) = Jk.(ﬁi).%agk. (7.6)
Since
8Q: = 217r-/;,m%ds-{6}1’(3)-Q-M"(s)"c?xa(s)}+
_ _%./so’“”‘ds-a:(s)-af(s)-.S_-'Ek(s)

1t follows from eqn. (3.34) that Qs 1s a real number:

In Appendix B it is shown that the quantity §Q; appearing in (7.6) is just the Q-shift of
the k-th oscillation mode (k = I,II,III) caused by the (linear) perturbation ¢ 4.
Thus we obtain from (6.6) using (7.6) and (7.7):

(K$Y) = 0 (7.8a)
(K§ = %-Qk (7.8b)

with
Or = Qi + Re{6Qu} . | (7.9)

The further investigations shall be done for phase noise and cavity noise separately.
Remarks:

1} The reality of §Q@,:
§R€{5Qk} - 6Qk
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results from the fact that the perturbation é4 only contains symplectic terins {see equs.
(3.18b) and (3.24)). An imaginary part of 6Q which would lead to a damping of the oscil-
lation modes {3 only appears if the perturbation terins are nonsymplectic.

2) The quantity Q; defined by eqn. (7.9) designates the whole Q-value in the presence of
synchro-betatron coupling (3.15h) which results from non-vanishing dispersion in the cavities.

7.1 Phase Noise

From eqn. (6.6) one obtains the relations:

. 1 -tz et .
= -z'.-EE:-cos@o'ﬁg'\@{ﬁ:fﬁﬂ-ez'@k—[f)kﬁD] et (I)k}')\PHQ (7.10a)

—

1% 1 ;. .
N 1= F B (N - I E VN (BT

Eq 2/

which lead to:

1 peotlh = Vo(3 :
(O =27, - = [ ds- 5y SDP [e—"(ﬁ-ﬁg‘)\pﬂ] : (7.11a)

- 2
(k)2 __1_1 ’°+Ld~_ﬂ+52_ eVO('S)_ 2.y (7.11b
<(Q'§ ) ) - 2Jk L 50 8 ‘Uki I EO 1] PH ( * )

and

{ frk)' ffl)) = 0 for k#I; (7.12a)
QY Q%) = 0 for k#I; (7.12b)
(Q%-Q%) = 0. (7.12¢)

Furthermore one has, taking into account (7.3a, b):

- Vi 2 =
G
Ve 2 <
= [E ;(s) . é-Apy] e SDI? (7.13a)
0
2
BB - L eVo(s) 2
47, Eq ,
-t =12 =y *12 -
X{ fn;iD] et 2%x _ Ké}fﬁp) ] 6—1'2%} (7.13b)
and thus
- 1 peo+L - Vs 2
(R = L [T ds-psDP- [f—;@-ﬁé-f\pﬂ] ; (7.14a)
35 0
(K = 0. (7.14b)



From (7.2a, b). (7.8a, b} and (7.14a, b) we then get:

_— Lol oo B [al8) 2 .
(D = i/ d3 - #75D| -{w—ég—-ﬁg.)\m] ; (7.15a)
e N
DF = TG (7.15b)
Introducing the constants
1 peotl - V(3 2 _
M, = z~0-—f° ds - w-shp | £Rls) 82 el (7.16a)
L 30 EO
by = %-%‘]-Qk (7.16b)
we may finally write:
a
oo T e Wl mew
t k=II1II1 k k .
T 1 87 1 8 1
2 M, — !: - M W}
Toagz BT Mo Wit Sagg (57 M }
v,
= ¥ {—ﬁ[Jka W——(Jk M; - W)}
k=IIT 11 k
o 1 8
W — M. W
o, |7 T an T e, ”

4
o [ oW
_ LA VR —]
k:I,II,III{ i 0
a M, oW
o W RV )
[b" 4J, 8%, }
With the ansatz
W = wi(Jr, @1} wrr(Ji, 1) - wrne(J1ar, B111)
eqn. (7.17} simplifies to:

6wk o0 [ awa a [ Mk
— " AR P 8

XA 3, YA

ot ag |

Remark:

For k = IIT (synchrotron oscillation) one gets using (5.5) and (4.

M, in (7.15a):

1 gpa+l eVo(5)
My = Vo T d3 - (1/83) - |Frars|* [
&0
1 o+l ] _ GV 2
= v/ d*aﬁﬂ(s)‘[ £l H]
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(7.17)
(7.18)
Bwk
E«ﬂ] : (7.19)

27b} for the coefficient

2
- B3 - /\PH]

(7.20)



or. using the oscillator model (see equs. (4.31) and (4.36b)):

1 ., 4 RS L - o
M =5 Ao o T (577) (7.21)
7.2 Amplitude Noise
Using the smooth approximation [12]:
zxn-Dy; =0
e Dy o 2 0
b0 N SRR S . (7.22)
zx7n-Ds; ix0;
p:~n-Daj; p.=0
one obtains from (6.6) the relations:
Ve U . 21t .
QP = i+ 22 cospo- B\ Tu- {5i5D e o 5isD| e i B
0
2
xh-%-& Aant (7.232)
k eV, 1 - 2 . —+ 21" _;i.®. ]
QEI,) = —&—F;-cosgog'ﬁg-m-{vkﬁl)-ez k+['vk§D] et k}
27
xh - f T )‘AM (723]2))

with (see eqns. (4.16), {4.27) and (4.48))
& = - {q:»ks L IR e“@k} for k= IIT
= /7, {u},l e %0 4 i)t - e'H@"} (7.24)
where we have introduced the notation:
b, =P J.=Jir -

These equations lead to:

eV 27 2
oM. QB _ V[Ef.ﬂg.h.f-)\uf} NN
x{$§b-ei'®k— F’:ib} 'E_i‘@k}
x{gﬁﬁ-ei'@"“[aﬁlﬁ] -e_i'q)'}
. . 2 :
><{ﬁal'€—1¢“+[1&al]*'€+1@0} ; (7.252)
4
W o0 . [N Z.h.zi.A ]1 1
¢ e T +[Eo R I WV
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w lu I C—lq)c, 4 [g]]* ¢ "f.(I)C,I 1
- 2 7
Q¥ .ol — _.l-{ib.gz.h.z_ﬂ.AAM LN EL
J v ¢ ED 0 L J 2 JE ¢

From (7.25a, b, c¢) one gets the equations:

Q¥ QP = (10 - bu;

Q%% = (0P - bu;

QP Q) = o
with
(i (III)] )= J2.2 115 30+Ld§.rw01|4. [?3:? h- 2275 ,\AMr :
Q™) = ;'%£ZO+Ld§-]wall4 {%ff R Aaw 2
and
Q) = 4 g g g [ ds el SB[ G2 850 2
(0877 = 73 [ 5wt SBR[ h T dan]

fork=1,II.

Furthermore one has, taking into account (7.3a, b) :

a)Fork =1, II:

= (k 1 [aQl 5 00 k

Ap:i'{a}; QW J‘;)+
1. cr)Q{Jk) s ltiid 4 8Q.(] (111}
2 alr, 7 8%, *®

30

(7.25¢)

(7.268a)
(7.26b)

(7.26¢)

(7.27a)

(7.27b)

2 2
h_)\AM] ;(7.28&)

(7.28b)



1 jeVolsi 27 )
1. N AL .,
1 [ -EO 0 T Aij|
— T - T 2
X Iv,\ SD- el {1‘;\.'517} ¢ " ‘1”‘}
x {IE?CFI fil(Ig llg]* f—iéﬂ\l.—
1 [eVo(s) ., o ’
i 2 g
+4 [ Eo 130 h T AM J
— ‘ — = 2
X{QSD el ‘I’w[ﬁgp} il
b4 {u’o'l € c 4 [ﬁ’ol]* €+L‘I’g}
1 |eVols) 5 2T 2
. R I i NSNS
b g ]
_,+ .

x {5:51‘)_672-% - [ﬁk._if)] -e"l‘q’k}
o {wal L T e+¢¢»g}
. . 2
X {t&al : e_zq"’ + [o1]* - e_H(I)"} : (7.29a)

B -

[ SR
f—"'-"\'_\
QL

o))
<
- =

d
oo 5L )

1 BQ(k Jm 6Q<1> (111)
2 ) a7, 7 s, ¢
1 EVO(S) 2 271' 2 Ja’
= 4=. B2 A
8 [ E, /30 L AM A 1

1 [eVo(s) ., , 2m I,
:. . B2l e
3 [ B, oM gt
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« {wal ¢ ﬂ’”*[ﬁgl]* e-H@,}
x {uaﬂ e 1% 4 o] e+iq)"}2 (7.20b)
and thus:
(K = 7, .28 % fa:o%dg. o f? - 15k§5|2 . [eV;E)E) k- gg . )\AMr . (7.30a)
(K = o0 (7.30b)
b) for k = III:
I;rf’III) _ ' 1 {Mj 57111)+ @2 grr)}
2" a7, 3%,
1 feVf 2 g
< R o]

L T Rt

. . 2
X {[tﬂ‘a]r et ®, +abyy e b ‘1)’} : (7.31a)



11 1
I 1 JBO(I J {Hﬂ_aQ‘q: | Quml
N 2 | aJ- g %, : [
1 }e¥h(s) 2% ?
= Q- Y
! P [ i I3 A\I}
{(lfﬂ)' 20 Pe oy 62‘;'@”}-
y {[zzmi‘ S L ‘Z’} (7.31b)
and thus:
2
. 1 pao+l eVo(3) . 27
; pe(IIT), " 0
\AB‘; ) = Jo-gf . ds ‘U-crlq [ EO h Ai— AAM] ; (732&)
(KY™Y =0 (7.32b)

From (7.2a, b}, (7.8a, b), (7.30a, b} and (7.32a, b) we then get:

( 1 peotl L Z eVo(3) 27 ’
Lo2gy- g [ 4wl GSDP- [ edoh T-AAM] for k=1, I1
(D) = (7.33)
1 feotl . [evol3) | 2x ?
2= . . R A for k=1II
J, 2 /. ds - |w,1| l A 7 Aam or
and
(DY) = 355 Qy for k=1, II, IIT . (7.34)
Introducing the constants:
. 1 peotl _Z eVy(s 27 2
Mk:t?o-flo dS‘Iwallzl"Uk-_S'_DF‘[ -;E] )hf)-AMj|
for k=1, IT;
- 1 e+l eVol3) |, 2m :
ﬂ-l(,—vo-f/so ds-lwﬂi‘l-{ ;ﬂ -h-L-)\AM]
and
To 2
kaZﬂ"f'Qk for k:I, II,
(7.35)

b, = 27 -

- Qrir

| &

we finally may write:
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0‘; - ,@,'_;u '{_8?7& 235 T M W - agilibk-w;
B 1;]1 486 T i MW+ %%i”ﬁﬁ) - BY M, - Vp-]}
< g W] g
i %% Iz 2M W]+ iaé; [E e (7.36)
Remark:

From eqn. (4.27b) one gets for the coeflicient M, in {7.32a):

2
1 it ,82( ). eVo(3) h'z_ﬂ’/\AM (7.37)

M, =
vory E, L

or, using the oscillator model (see eqns. (4.31) and (4.36b)):

1 2 4 k2.0 -
Af[o- = E'AAM'UU'ﬁo'm. ((38)
8 Solution of the Fokker-Planck Equation
8.1 Phase Noise
From equ. (7.19) we have (k =1, II, III):
wy, a Owy, 8 M, Ows
= My e — = |bh-we — — = - 8.1
o1 A { ko 8.];,] 8%, [ R T 4T 9%, (8:1)
Since the phase diffusion term
M, 8%w;
4], 0%,
superposed on the phase advance term
Ow,
Y hhadd
" 88,
will lead to a uniform distribution of the phase & in [0, 27] [12], we make the ansatz:
T, .
Wi (T, 1) = Py Wil Jx) (8.2)
and obtain:
aﬁ?k o afﬁk
I _ T g, T
ot 8, [ kR ajk]



or for abbreviation:

4%

i G, dii
oo g it 8.
ot aJ [ ] (

with

U = Wy
J =T _ (8.4)
M = JLZ{A. H
(k=1, II, IIT) .
Note that the constant b no longer appears in (8.3) and we are left only with the coeflicient

M,.
The solution of eqn. (8.3) is given by [13]:

B(J8) = ]Ow dJo - K (7, Jo;1) - p(Jo) (8.5)

(p{Jo) =arbitrary function of Jo} with

K(J, Jo; t)

(T + Jo) I(2\/J_-Jo)
M-t'exP[' Mot | O\ Mt

where Ip( ) is the zeroth-order modified Bessel function.
K(J, Jg;t) is the fundamental solution of eqn. (8.3) and by definition satisfies the initial
condition

t—0+

(8(J — Jo) = Dirac delta function) . It then follows that p{Jo) is just the initial distribution
existing at { = O:

(7,0 = pl(J) (8.8)
The distribution w(J,t) can be characterized by the moments
maft) = fr dF - I i(J,1) . (8.9)
0
Using the relation:
i —ez 1 B/a
f dr - e - Ip(24/Bx) = — €
0 o

and the integrals which may be obtained by differentiating both sides of (8.10) with respect
to o, one is able to calculate the moments corresponding to the fundamental solution (8.6).
For m;(t) and m3(#) one gets for example:

my(t) = Jo+ M -1 {8.10a)
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and
malt) = JE — 40 Jo -1 + 2707 - # (8.10b)

{see also Ref. 2.,

Thus the time development of the distribution function w(J,?) and of the moments m,.(?)
15 characterized by the coefficient Af = M (k= I.I1.I1II}) which may be interpreted as the
reciprocal of the rise time constant +4:

= (8.11)
8.2 Amplitude Noise
From eqn. {7.36) we obtain:
% - k;ﬂ{ ai [2;30 J, - My - W+aih[2ﬁ§-Ja-Jk-Mk-W]]
—5‘%; (B - W+ % a"’; (Fe/7,) - 85 - 34 -W]}
" o | a7 9231

d 3 8% -
5 b W]+ 1682 (M, -w] . (8.12)

As in eqn. (8.1) for the phase noise, we assume a uniform distribution in &;, ®;; and &,

13\? .
W(J,8) = (2—) W (Ip, T, ) (8.13)
Vis
and obtain from (8.12):
oW 8 9 -
SALEN J W2 JoBt g, Jp- M, - W
ot k:gf;n{ T, [2/30 bo My Wt 3 Jk [Zﬂo Jor e M ]}}
a - s 2 e ki
* a7 {* 7 Mo W T 5T, [JU'MG'W]] : (8.14)
With the ansatz
W = w(J,) | (8.15)
eqn. (8.14) simplifies to:
ow a s .- .
bl — M, W
ot aJ, [ aJ, [J ]]
- a , Juw
= M, - : _ 8.16
M aJ, [J" 6],] ( )
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Tle solution of equ. {5.16} reads as:

wiJa.. 1) = / dJo- K{J.. Jy:t)-wiJy,0) (8.17)
Jo
with
i 1 MM, ot lnlJ. T
KiJ, Jot) = e - €XD [-—‘ hn( - k (8.18)
Jo-\dwh, -t 45, 1

(A (J,.Jo:t)= fundamental solution of eqn. (8.16}). :
The moments corresponding to the fundamental solution (8.18} grow exponentially with
time

(see also Ref. [2]).

The rise time constant due to amplitude noise is thus given by:

Fo= . (8.20)

9 Summary

We have investigated the influence of cavity noise on the motion of charged particles in
storage rings by using the Fokker-Planck technique. -

The motion was described in terms of a coupled six-dimensional dispersion formalism with
the canonical variables #, p,, , p., 0, P» = AE/FEq.

This set of variables can be obtained from the variables =, p., =, p,, 0 = s — ct, p, of
the fully six-dimensional formalism via a canonical transformation.

With this new set of variables we were then in a position to treat the betatron and
synchrotron oscillations simultaneously in a canonical manner, l.e. to provide an analytic
technique which includes consistently and canonically the synchrotron oscillations in the
electric fields of the accelerating cavities.

In order to derive the Fokker-Planck equation {canonmical) action-angle variables were
introduced taking into account a coupling of the betatron oscillations by skew quadrupoles
and solenoids and the linear coupling between the betatron and the synchrotron oscillations
induced by a non-vanishing dispersion in the cavities.

The Fokker-Planck equation was solved separately for phase noise and amplitude noise.

In this paper we have (for simplicity) neglected a shift of the six-dimensional closed orbit
induced by magnetic dipole fields. A technique to handle this effect may for instance be found
in Refs. [7,8]. The formalism developed remains valid. Furthermore, we have restricted our
investigations to proton rings. But it is easy to extend these considerations to electron beams.
In this case it is necessary to introduce cavity phase # (0,7) determined by eqn. (2.27), and
additional nonsymplectic terms due to stochastic radiation effects have to be taken into
account in the equations of motion which lead to a damping of the oscillation modes.

Finally we mention that the influence of phase fluctuations alone could already be in-
vestigated within the framework of the fully six-dimensional formalism in the variables
Z. Pes 2, Pos 0, Pe of eqn. (2.3) (without introducing a dispersion formalism). This shall be
demonstrated in our next report [17].
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Appendix A: Description of the Electromagnetic Field

Using the freedom to select a gauge, we can choose any vector potential in egns. {2.10)
and (2.11a, b, ¢) that leads to the correct form of the fields. Suitable vector potentials are as
follows and have been chosen for their simplicity.

A.1 Bending Magnet

If the curvatures K, and K, of the design orbit are given, the magnetic bending fields on
the design orbit, B%(s) and B{%(s):

_BLO)(S) = B.(0,0,s); {A.la)
B%(s) = B.(0,0,s) (A.1b)
are determined by [3]:
¢ B - _K,; (A.2a)
Po-c
£ B - ik, . (A.2b)
Po-c
The corresponding vector potential can be written as
1
< cA, = —-(1+ K, z+K,-z); (A.3a)
Po-C 2
A, = A4,=0. (A.3b)
A.2 Quadrupole
The guadrupole fields are
aB.
B, = =- (i) ; (A.4a)
x
S r=zx=0
9B,
B, = z- (—”) , (A.4b)}
& r=z=0
so that we may use the vector potential
0B, 1/, 3
AS N ( dr );n:s:O - 5 (3 T ) ’ (A5a)
A, = A.=0. (A.5b)
In the following we rewrite the term (e/Ep) - A, in (2.2) as
€ _ 1 po-c .2 2y L .2 2y . .
BA = o g P o) = g (o) (A.6a)
g = —- -(aBz) : (A.6b)
Po-¢ 61‘ r=z=0
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A.3 Skew Quadrupole
The tields are

1 (0B, OB. -
At L ATl
g . _L (9B, 095 . (A.Th)
2 dr 9z} _._s
Thus we may use
1 {68 9B,
A, = +- LA crr A8
) +2 ( O 0z )1-:::() B (A-8a)
A, = A, =0, (A.8b)
and we write
_E%As = N -Bg-zz; (A.9a)
N = L._& (9595 ez (A.9b)
2 porc\ Oz 8z | __._,
A.4 Solenoid Fields
The field components in the current free region are given by [14,4]:
B.(z,z,8) = =z- Z baysa(s) - (22 +2%) 5 (A.10a)
v=0
B.(z,2,8) = z-3 baia(s)-(2®+2%)"; (A.10Dh)
v=0
Bz, z,8) = > bu(s)- (2% + 23 (A.10¢)
v=0
where for consistency with Maxwell’s equations
- 1 9 0
. _ . 2 (r-B)=—-—B,:
div B 0 — il (r ) s
_ o} 0
. = — B, = —-—— B, ;
curl B 0 = s 3
(r? =z?+2*; B?!= B!+ B?)
the coefficients b,{s) obey the recursion equations:
1 , |
baaa(s) = N b2u($) ; (A.10a)
1 '
ba+2(s) = +m'bzu+1(s) ; | (A.10b)
(r=0,1,2,...)
and where
bo(s) = B,(0,0,s) . (A.11)
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The vector potential leading to the solenoid fieid of eqn. {(A.10) 1s then:

4.-.q‘]:7-,’7.q L 2
A e zos) - E;; 22 bizyls) (A.12za)
d.lr.zus) = *V'-\D}H— ! Bauy(s) - P (A.12b)
Afrozos) o= 22, - 2) {20yl - A.LZh,
AJdr,z,8) = 0. (A.12¢}
Thus we can write :
] 1 n k .
SoAe = BoH(s)-z4 RH"(s)(x? 4+ 2tz (A.13a)
Ey 8
1 2
EiAz = +hoH(s) -z = ZpoH"(s) - (2* + )z 4 . (A.13b)
0
with
1 €
H = —. -b All4
() = 3 =S hels) (a.14)
1
= —. % .B,(0,0,5).
2 o ¢
Note that the cyclotron radius R according to the longitudinal field (A.11} is given by
1
R=——.
2.-H
A.5 Cavity Field
For a longitudinal electric field
€z = )
e, = 0; (A.15)
g, = €(s,0)
we write:
A, = 0;
A, = 0; (A.16)
1 o
4, = —-f A& e(s,5)
50 o (s,0)
which by (2.10) immediately gives ¢,.
Now the cavity field may be represented by:
27
e{s,0) = V(s)sin [h- %-U-F‘,O] (A.17)
and we obtain using (A.17):
1 L 27
A, = ——- -Vis) - hoe— - , A.18
A A A COS{ 7 J+“‘°]' (4.18)

in which the phase ¢ is defined so that the average energy radiated away in the bending
magnets is replaced by the cavities (see eqn. (2.26)) and h is the harmonic number.
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Appendix B: Calculation of the Tune Shift caused by a
Perturbation 6.4

In: order to calculate the tune shift which is induced by a perturbation ¢4 we investigate

the eigenvalue spectrum of the revolution matrix
M(SO - L,SQ) + éﬂ(&g + L,.So)
of the perturbed problem

E“ =(A+84) -7 (B.1)

B.1 The Perturbation Part of the Revolution Matrix

According to eqn. (B.1) the transfer matrix
M(s,30) + 6 M(s,50)
with the perturbation part éM (s¢ + L, s0) obeys the equation:

%[M(S,SO)MM(S,SO)} — [A(s) + SA(s)] - [M(s,s0) + 6M(s,50)] ;  (B.2a)

M(so,50) + 6 M(s0,50) = 1. (B.2b)
Taking into account the corresponding equations for the unperturbed transfer matrix
M(s,s0) :

d
E;M(Srsﬂ) =

M('SO?'SU) =
we obtain from {B.2) in first order the differential equation for éM(s, so)

>

(s) - M(s,50) ;

=

d%&M(s,so)} = A(s)-6M(s,30) + §A(s) - M(s,s0)

with the initial condition:
S_M_(So, 50) = g .
The solution of this equation (and thus the first order solution of eqn. (B.2)) reads as:

§M(s,s0) = fds ) - 8A(5) - M(3, 50)
—  M(s, so) fd«; (5, 50) - 6A(5) - M(3, 50) .

For the perturbative part §M{so + L, so) of the revolution matrix one therefore gets in

first order the expression:

sg+L
§M(so + L,so) = f d3 - M(so + L,5) - 6A(3) - M(3, s0)

so+ L
- M(SO+L,SU)-f° di - MN(3, s0) - 6A(5) - M(5,50) (B.3a)
30
and for éM (s + L, s) one thus may write:

§M(s+L,s) = M(s+L,s)- /’”‘ di- M~Y(5,s)-6A(3)- M(3,s) .  (B.3b)
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B.2 The Tune Shift

Equ. (B.30Lj derennines the perturhed part 810(s — L. s) of the revolution matrix if
the (unperturbed] transfer matrix (3. 5} and the perturbation §A(5) are known. Using the
elgenvalue equation

Llf‘“ ('.J_Ii '(Fp —?‘6;“) - (Au —6’\;.1! '(Fpr - 5‘;;;] :
(p==x1, =1, =IIT)

or (since M7, = A7)
M-t + M -5, = A, - 6T, + 8Xi - T, (B.4)

we are now able to caiculate the Q-shift
i
27 - Ay

§Q, = L6 (B.5)

caused by M.

For that purpose we expand 67, in terms of the eigenvectors @, of the unperturbed prob-
lem:

66, = @, -7, (B.6)
and by inserting (B.6) into (B.5) we get:
Nan A+ 6M-T, = At @B + 62, - T, . (B.7)
“ r
Multiplying this equation from the left hand side with

1

and taking into account eqn. (4.10) we obtain:

1 1 1 1
Qur - A - ;f':égn -+ ;ﬁjﬁ ~6M - E,u = Ayt G "{ﬁj—_"ﬂ + 6 ;’5‘:5"7»( . 6#»: (B 8)
with
1 [-i—l forw=1, 11, III;
.t sE = el ' B.9
;e \ -1 forx = —I,—II,—III. (B.9)

For ¢t = & the first terms on both sides of eqn. (B.8) cancel and one obtains with (B.3)
and (B.5) the following approximate expression for the Q-shift §Q,. in linear order:

1 1
0Q. = (7 wrsa)- LGS EM(s+ Lys) - al(s)
i 2 - A,
1 hes 1 ~+
fey — .7 + . - . _f
(- -@rse) Sy TS Mls 4 Ls) X

f’”’ ds- M5, s)  BA(3)- M(3,s) - Te(s) -
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Furthermore. using the svimplectic condition of the transfer matrix I isy. s )
T, . . - LY —
M (s 80) -8 M(sy.s0) = 5
and the equation

CAs)- S Mis—Lis) = () [M7s~ Loy

(sinc
= Do [M(3,8) Gu(s))T - S M(3,5)
= M- G5} S M(5,s) (B.10)

we get:
1 1 s+L
6@ = (s wtsn) — [ 45() 56403 55)
so+L
- (—“*i)—/ s - 55(5)- S - §A(3) - 5(3)

(in the last step we have used the fact that the integrand is a periodic function of period L;
see eqns. (4.11, 12)) '
orfork =kand x =-k (k==I,£II,+III):

so+L
50, = i.f d5-7(5) - S - BA(5) - 5(3) 5 (B.11a)
2T Jay
sp+L
§Qx = —;1; / ds - 57,(3) - S - 6A(5) - T_x(3) . (B.11b)

Taking into account:

. B 1 . - + 1 80+L - _ s +
0p = (zoorsn) g [ [ s ) o)
SQ+L
_ (},.v gm) 1 §-[-5(3)-847(5) - S - 5.(3)]

1 271' 30

as well as

v, = (T, )"

the following relations can be derived from {B.11a.b):

Re(sQi} = - [ d5-w(3) [5-64(3)  647(5)- 8] - ()

= ~Re{5Q_i} (B.12a)
Fm{sQi} = f;] di - G} (3) - [S - §A(3) + 64T (5) - S| - Bu(&)

= 1 Sm{6Q_4) (B.12b)
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This means that in addition to a real Q-shift. there is in general also a complex Q-shift
which leads to a damping (or antidamping) of the oscillation modes 3.
In our case we have (see eqn. (3.24)}):

S-6A(3) - 64715 S =0 (B.13)

a1« therefore:

Im{éQr} = IMm{éQ 1} =0 = 8Qu = QL. (real). (B.14)

Note that eqn. (B.13) results from the symplectic structure of é A.
Finally we mention that the case i # « in eqn. (B.8) would lead to an estimation of év),
|11] which we do not need here.
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