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Abstract

In an off-shell formulation, where scattering amplitudes for closed bosonic strings
are defined as Polyakov path integrals over bordered world sheets, factorization of the
amplitudes at the poles of exchanged particle states is shown in any order of perturbation
theory. The same factorization is obtained for amplitudes defined via vertex operators,
again for any number of loops.
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1 Introduction

Quantum mechanical scattering amplitudes that are derived from a unitarv S-matrix must
satisfv a factorization property: Consider the scattering of n external particles with mo-

Ienta jy. ... . p.. described by the amplitude Fipi.... . p, ). When mi of these momenta. sav
JE T Pe- approach the mass shell of some particle of mass Af that is being exchanged. the
amplitude. as a tunction of ~,. = —(p; — ... ~ p,.)*?. acquires a pole at 1", The residue

1x the product of the two amplitudes describing the scattering of particles with momenta
Pleeenn Fine — ko @08 Ay Doneye e oo s P

In string theory this property has only been checked for some special (though important)
cases within the usual approach to define the scattering amplitudes, i.e. when they are
computed as correlation functions of vertex operators that describe an attaching of particle
states to the (compact) string world sheet [1,2.3. This formulation only works on the mass
shell of the attached particles. as off-shell the vertex operators produce a conformal anomaly.

To be able to look at off-shell amplitudes. one can proceed slightly differently. For the
closed, oriented bosonic string one defines the amplitude for the scattering of n external
strings as a Polyakov path integral over bordered world sheets whose » bordering curves
describe the external strings. If one shrinks closed curves of the world sheet to points, the
respective amplitude describes the propagation of infinitely many particle states through the
tube that has been pinched - either an “external leg” or an “internal line” of the world sheet
viewed as a string analogue of a Feynman diagram. This programme was initiated in [4] and
carried out further on in |5,6].

In (6] we showed in any order of string perturbation theory that the scattering amplitudes
acquire poles in the external momenta or in the appropriate kinematical variables, when an
“external” or “internal” closed curve on the world sheet is being pinched. In this article we
further develop the formalism used in [6! and show that the residues of the poles found there
factorize. Such a factorization has already been shown for some semi-off-shell amplitudes
[4,7], where the off-shell formalism for one and two external strings has been combined with
the insertion of vertex operators for the tree-level case. Here we give the result for any order
in perturbation theory and any number of external strings with the exception of the two cases
investigated in [4,7], for which the formalism presented in {6} does not apply.

Our paper is organized as follows: We first review the formalism of [4,5,6] for the treatment
of string scattering amplitudes. We then show how one derives the desired factorization in
this formalism. In the next section we give the relation of this formulation to the vertex
operator approach and then show how the factorization works in that latter formalism. It
turns out that both approaches produce formally identical formulae (compare (14) and (30)),
although the meaning of the amplitudes is different, due to their different definitions. In the
last section we sumiarize our results.

2 Factorization of Scattering Amplitudes

In the formalism we want to use the amplitudes for the scattering of n closed, oriented bosonic
strings described by the loops ¢;,...,c, are given as a Polyakov path integral over all world



sheets that possess the c;’s as their bordering curves [4,5,6],

A(Cl, v ,Cn) = Z Ap(Cl . ,Cn) 5 A C], Cﬂ fD 5§D9 —Sp[X.0] . (1)
O

p=0

The world sheets T of genus p are parametrized by the functions X#(¢) that describe the
embedding of T into flat, Eulcidean space-time, and carry the Riemannian metric gas(o).
The Polyakov action is

SpiX,g] f Lo /gg" 0, X 05X+ | (2)

We work in the critical dimension d = 26 and thus do not explicitly state the counter terms to
the action required to gauge-fix the conformal degree of freedom. H = Weyl(X)x Dif f(E)is
the symmetry group of the action and Dr represents an integration over the parametrization
of the bordering curves of ¥. The details of the definition of this path integral and a thorough
discussion of the boundary conditions for the fields involved may be found in {4,8,9]. In this
article we restrict ourselves to the case where  := 2p + n — 1 > 2, thus excluding the cases
(p,n) = (0,1) and (0,2) for n > 0. This is required by the method used in [6] and also
guarantees the absence of conformal Killing vectors in (1).

Integrating out the X-variable and gauge-fixing the symmetry degrees of freedom leads
to

Ay nyCn) ::/"Dn' fM duwp N [det'(P}Pl)]1/2[d6t'(—A)D]_13€_S‘I , (3)

where duwp denotes the Weil-Petersson measure, used to integrate over the moduli space

M, of Riemann surfaces of genus p with n bordering curves. PJ P, is the ghost operator
and Ap is the Dirichlet Laplacian on . S is the classical action, Sp[Xq, g] evaluated with
the classical field X4, AXY = 0. It only depends on the value of X; on the boundary
9T [4,5,6]. We are interested in the pinching limit of the amplitudes, where the lengths
I; := l(¢;) of the bordering curves shrink to zero. This limit has been described in [6]: When
the bordering curves ¢,,...,c, shrink to points z,,...,z, the leading contribution to the
momentum-space amplitude is in that limit given by

A (prye.espn) = fd"’%l B2, Ay, Tn) € Lo P

- g (zp,,)nz : 5 [ e ()

hiegenrdy A o 4#(3

The a;'s are expansion coefficients of some known function (see [6]), while the integral con-
tains the regular parts in the pinching limit.

In this article we want to study these amplitudes in the limit where an internal closed
curve ¢ on the world sheet is pinched in such a way that in the end ¥ separates into two
surfaces T; and I, of genera ¢; and g, and with additional punctures ¢; and ¢; on each part
respectively. This division should take place such that ci,...,¢ are bordering curves on I;
and cmi1,-..;¢n on B;. Therefore the momentum that flows from E; to E; in the pinching
limit { := I(c) ~—— 0 is ky = Y72, pi. In [6] we already showed that the amplitude develops
in that limit a singularity structure of the form

> e 41r(r 1) (3)

_.0 m
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where the d,’s are known expansion coeflicients (see (10)). In the following we shall show the
factorization of the residues at the poles in (5).

A typical world sheet that we want to study is depicted in figure 1. The pinching indicated

Figure 1: A world sheet T that is pinched into its parts £, and ;. E is the tube (“degener-
ating collar”), which develops in the pinching process.

in figure 1 is a well-investigated process in the mathematical literature (see [10]). As long as
| stays finite, T will be dissected into the three parts &;, T; and the “degenerating collar” =,
present in the mathematical description of the pinching process.

The X-integration will now be treated as in [11], namely split into an integration over I,
Yy and E respectively. The boundary 85 = v U 4, will be kept fixed and subsequently be
integrated over,

] DX ¢S] = / Dy, Dy j DX, e~51K) f DX, e~ SIXe] f DX, e~SPXa} | (6)
T Zy = p>0

In (6) the integral over the collar = is an integral over cylinder-shaped world sheets. Inserting
the g-integration, the part corresponding to E is the propagator A(~y;,72) discussed in [4]. In
the pinching limit, where v, and v, shrink to the punctures ¢, and gz, this amplitude acquires
the form [4]

oo n? oo
A(Z1, %) ~ const.f dl e o (E1-82)? II
0 k:l

(1 —e ‘1"1") - (1)

where Z;; are the coordinates of ¢y 2 in space-time.

At this stage we also pinch the external curves ¢y,...,¢,. Therefore £, and ¥, become
surfaces of genera g; and g, with punctures 21,...,2,,,%; and 2, Zmy1y. .-, Tn respectively. As
in (4) we perform a Fourier transformation to momentum-space and thus introduce momenta
Pis---yPmon Xy and pmyr, ..., Pn on B, Calling the restriction to 3y ; of the classical action

St (appearing in (3)) S0, we arrive at (see [6])

/dmxl ... d®z,, exp —S:,I) +1 Zpkﬂﬂk =
k=1
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1 m
“_fd%a:.]... mmexp{m—Z(.rk—:rI)ImaH (:m—:cl)—hzvp;f—-wO( (8)
. 2 kd=1 k=1
(27 )13 (d tIm 0“1)13 ex ,f_
- l} € g (1) p l
where (Im o)7' denotes the central block of the period matrix for the surfaces T that are the
’ . T

closed doubles of the bordered world sheets = {see .6 for details of the construction)
the part of ¢ that belongs to £;. An analogous formula holds for T;.

S pip(Im oy, )M — 17,k J

B =

k=12

Altogether one finds in the pinching limit

/d26m1 %?an DX C—S[X_: ~
by
- 1M
const [det’(—A(l))] (detImorm exp{ 52 pepilIm o)) u
—= Y. mo(Imog)y } (9)

~13
[det { A(z))] (det Im 0'('2; )2 exp { 5
kil=m+1

/oo dl ln /dzsi.ldzeizemiﬁlkm %msze =(@1—22
- Z dre_ﬂ'{-i(r_l) .
r=0
= Y1 1 D1, and the d,’s are the expansion coeflicients in
(10)

Here k! =37
gy Zdnq

[6-" =%

n=1
In the pinching limit [ Dy;Dv; degenerates to [ d**z,d*°z,, thus
411'2 13 1.2
fdzea: 4285, e~ E1hm—iEzkn o= n(E-82) = (27) (T) 6 (ke + KL )" TFm (11)
Therefore the l-integration in (9) yields
dl lllfdiﬁ d26— — 1% ke —1T2k,, — 4”(21—:1:2)2 d e———(rwl)
A >
= const. 6% (ky, + k) / 7 Z d.e A1) TR (12)
d,
-1)°

_ 26 '
const. 8% (k. + k,, )Zkz T an(r

r=0"m

We are now in a position to collect evérything: The Weil-Petersson measure (which factorizes

also in the pinching limit), the ghost determinants and the pole factors from (4) for ¥, and

(1)
— [ e

~ g8 (ipk)ﬂz A

%3, and (12), arriving at
k=1 i=1 ;=0 P

Ap(pl, L apn)
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n o '

duiyp, €5 (13)
1lr;l¢1_;3p12_‘_47r f WP2

.V d. _—

;/;'(’} ki —dr(r—1)

We “amputate” the external propagator poles and leave out the é-function indicating momen-
tum conservation. The remaining, amputated amplitudes we call T ip;..... Pn). For these
the factorization rule

ad C,d,
Fp(plf“‘ :pn) = rgl(plf"' ,pm:_km)?;;; kfn i 4;—(7~ — 1)r§2(km1pm+ls---3pn) (14)

holds in the above specified pinching limit, since e.g. fd,uwp;e_s-lll 1s the amputated ampli-
tude on the world sheet ¥; of genus g; with punctures z,,...,%,,,%; to which the momenta
P1s-- -+ Pms—km were attached (see (9)). (14) is exactly the desired factorization property that
1s expected for a scattering amplitude in a unitary theory. In addition one can see that the
wave function renormalization constant for the r-th mass-level in p-th order of perturbation
theory is Z!?) = C d. and thus factorizes in an r- and a p-dependent part.

3 Comparison with the Vertex Operator Approach

The formalism used in section 2 describes the scattering of strings — the loops ¢;. In the
pinching limut these degenerate to pointlike strings. On the world sheet the picture of letting
the lengths of the external strings shrink to zero is conformally equivalent to stretching the
cylinder-like parts of the world sheet that connect the loops ¢; with the rest of the surface to
infinity, therefore moving the incoming and outgoing strings that take part in the scattering
process to infinity.

If one wants to describe the scattering of particle states, one has to attach wave functionals
of given states to the boundary curves. The state space HO® of these wave functionals has
been investigated in [9]. For #,,...,%, € HOH the scattering amplitude in p-loop order is
given by

A (e ) = chl...Dcn daler]. . tulen] Ay(er, -y en) (15)

[ T 1/2
_ (det' P,' P 1 u "
- /Mm duwe - e A)D]*” ]‘[ / De; vilc exp[ f AXNBXEN)

where in the integrand the amplitude (1) occurs, and
Sa=5S8Xa,9] = ' fdzo_\/—gaﬁa X“ .X”

- 31 f DXENBXE(N) , (16)

:"’1
which only depends on the value X;()) of Xy(o) on each ¢;. The factor e™¥¢ becomes in the
pinching limit e=°», see [6], which has to be included in ;. If ¢; shrinks to the point P: one
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gets

/ T 1/2 n
det' P, P4
(dew( ):13 H"L’z(P (17)

Here the integration runs over the moduli space ML"} of Riemann surfaces of genus p with n

Ap(rseesba) = [ duwe
MF‘

punctures. In {12] it was shown that this amplitude is identical to the following amplitude

. det’PP 1/2
Al(py,..,pn) = d (
p (P1y- -5 Pn) /MP hWE (A

defined by integrating the vertex operator W} over a compact world sheet that has been
gotten by removing the punctures, see [12] for details.

]_—_[/d T \/9(0‘1 (U;,Pz) 3 (18)

It is a well-known fact that this approach works only for external momenta p; that are
on the mass shell of the particle that is being described by W;. In the sequel we will for
simplicity only work with tachyon vertex operators Wr{s,p) = €?X{), but everything goes
through for any other vertex operator too. We call Vr(p) := [ d?c,/gWr(c,p). Then it was
shown in [13,3] that

<[] Ve(p:) >= 6% (Zp )/ II |E(z, =) 2: exp{ — = Z Prpigs{ Zk,zz)} (19)
i=1 k#l 245

In this formula an UV-cut-off has been performed by subtracting the singular part of the
Green function for the Laplacian on the world sheet, leading to the omission of the (k = I}
term in the product in (19). In this formula E(z,w) denotes the prime form, which is a

—} D formon T x T, see {10]. Furthermore we put
27 2 3 p

P z 2
= Z Im] Wi (Jl".rnﬂ),,:l1 Imf wy (20)
kl=1 w , w

where § is the period matrix of £ and (wy,...,w,) are p linearly independent Abelian differ-
entials of the first kind (i.e. holomorphic one-forms) on ¥ [10]. It is necessary to introduce
(20) to make the integrand in (19) single-valued on X.

We do not want to go into the details of the pinching process, but only sketch the nec-
essary calculations. In [10] one can find the mathematical description of the pinching. One
introduces the (complex) parameter ¢ that is related to the length ! = I{c) being pinched
through 3}—'3 = —log |t|. Therefore I — 0 corresponds to t — 0. '

As in section 2 one dissects the world sheet ¥ into three parts: ;, &, and the degenerating
collar Z, see figure 2. For ps € T the Jacobi map I maps every point z € X onto the Jacobian
torus €P/Lq, Lgq = Z? + QZ? I(z)r = [} wr, k = 1,...,p. The prime form E(z,w),
z,w € &, can then be expressed by

o ()02, (05 0) Ty )0, D[]0 ) o)
lal(I(z - w); )}

In this formula ¥[a](Z;82), 7 € @7, denotes a theta function with (odd) characteristic & =

( :‘),see [10],

9a(7;0) = }_; exp {in(n + a)'Q(n + a) + 27i(n + a)'(Z+ b)} . (22)

E(z,w)"? =




21

Figure 2: A compact world sheet & with vertex operator insertions, that will be pinched.

In [10] one finds the expansion of £ and w, in powers of the pinching parameter ¢ and can
then expand E(z,w)~? in powers of {. For the period matrix the expansion is given by [10]

n:({;’ {(;2)“(9(;2 9012)+O(t’) : (23)

One has to distinguish two cases:
1. z and w are on the same part of &; z,w € ¥; say. Then one finds
|E(2,w)| = |E1(z,w)| + O(F) ,

where Ey(z,w) denotes the prime form in which one uses all expressions in (21) defined
only on %;.

2. z and w are on different parts of &; 2 € ;, w € I;, say. Then one finds
|B(z,w)| = |t|/* | Ex(2, q1) Ea( @2, w)| + O(t"/?) ,
where ¢, 2 are defined as in section 2, see also figure 2.

Next, one has to insert the expression (23) into (20) to find the expansion for gz(z,w):

1. z,w € 3,
ge(z,w) = g5, (z,w) + O(Y) ,

2. z€ 5y and w € Xy,
gs(z,w) = g5,(2,q1} + g5, (@2, w) + O(t) .

As described in figure 2, the first m external momenta py,...,pn will be attached to Z,, and
the remaining ones pyyy,...,Pn to I thus

Gu(Pryerspn)i= 3. pupr {log |B(zm, )" + 2mgn(z, 2) )
1<ktl<n



= Y pmi{logiEa(z,2) 7 + 27mgs, ( (20, 21)}

1<k£EI<m
+ X pep{log | Ba(2i, 21)i72 + 2mgs, (2, 2)} (24)
m<hk#EI<n
m T
+2) > mm {log |Es(zh,q1)i7 7 + 2mgs, (2, 1)
k=1I=m+1
+log i Ea(ga, 21)i 7 + 27gs,(g2. 21) + log if} + O{it]) .
Asin section 2 define k,, := E{” 1 pi; then momentum conservation, indicated by the é-function
n (19), yields 7 .= . Therefore

Ge{p1:--1pa) = Gz (pry--o,Pm) + G5, (Pms1s 23 Pn)
~2km {Zpk [log | Ex(21, 1)| ™" + 27gs, (24, 1]

k__

Z P [log | Ex(ga, 20)1” +27f922(qh~t)]} (25)

l=m+1
—2k2 log |t| + O(it])
- GEx(pla' ‘e 7pm:_km) + GEz(kM>PM+11 e }pﬂ) - Zkfn 103 |ti + O(‘H) -

In terms of these expressions the integrand in (19} reads exp{—;-Gx(p1,--.,pa)}-

The integration over the 6p—6 (real) moduli for I splits into an integration over 6g; —6+2
moduli for ¥;, 6g; — 6 4+ 2 moduli for ¥; and 2 moduli for Z. {The two moduli for T, ; that
are added to the usual 6¢,, — 6 ones for a compact surface correspond to the coordinates of
the punctures ¢;2.) We choose Fenchel-Nielsen coordinates (/,4) as the two moduli for the
collar =, see [4,6,11]. Therefore one finds in the pinching limit

duwp > duip A dugy A1d1 A d8 A dqry/g(g1) A da2/g(a:) (26)

to hold. We thus obtain from (25), using the ¢, ;-part from (26),

/d a1y/9(q1) jd 221/9(gz) < HVT (p:)>s = < ﬁVT(Pi)VT(—km) >5 (27)
< Valkn) TI Ve(e:) >5, 1% {1+ 008D}

To treat the contribution of the determinants in (18) we proceed as in [11] and in section 2,

equations (6)}—(12). We also include the factor |t| ¥ = ¢ T*m of equation (27) and observe for
that part of (18) which comes from the integration over the collar Z (including the integration
over the moduli for )

o, p ,
f 2,05, A(5,,5,)[t1 = const. f S e T
o
= const. Zd,./ dz e—”[k’z"'*'“(’*l)] {(28)
d,
= t. .
cons 1_2__;, k2 + am(r — 1)

9



Collecting the results from {26)-(28) and inserting these into (18) yields in the pinching limit

.I.

. det' P/ P2 |
AV (pry-.opn) > C) 6% (Zpk)f d#wp(, - 1)113 2y < ] Ve(p:) Vr(—kn) >x,
k=1 [det' (—A)] i=1

1

det' P P12 "
. d_“,)( 1°2 s, < Vrlkn Vr(p:) > 29
S, 55 e g = < Vet 1 Va(p) >, (29)
S
o kI 4 dm(r — 1)
As in section 2 we introduce the amputated amplitudes I‘;‘:(pl, .+-yPn), where the momentum-

conserving é-function has been left out. For these amplitudes equation (29) yields the follow-
ing factorization rule

v v = o,
Pp (pls--'apﬂ) = Pgl(pl"' 'spma_km)z k2 +47r(1' .

r=0 "m

I)F;(km,pm+1,...,pn) . (30)

This is exactly the factorization as in (14), but within the vertex operator formalism. Again
the wave function renormalization constant Z®PY = C}d, for the r-th mass level in p-loop
order factorizes in an r- and a p-dependent part. Therefore both amplitudes, the off-shell
formalism ones and the vertex operator formalism ones, share exactly the same factorization
property, when the world sheets are being pinched into two parts.

4 Summary

We have investigated the factorization of scattering amplitudes in bosonic string theory using
two different formulations. The first formalism [4,5,6] describes the scattering of n pointlike
string states and uses methods developed previously [6], extending former results for some
special situations [4,5,7], i.e. for the lowest orders in the topological perturbation expansion.
The second formalistm we analyzed is the usual vertex operator approach that describes
scattering of on-shell particle states. There some results were obtained previously in [2,3],
which have been extended to all possible cases in our paper.

We found that factorization holds to all orders in perturbation theory for both formalisms,
and the final results in both cases look formally alike, see equations (14) and (30). It is not
very surprising that this coincidence appears, since the techniques used to derive factorization
are similar: one has to pinch the world sheets in order to separate the external momenta into
two groups. This divides the world sheet into two parts that become the two (separated) world
sheets of the factors on the r.h.s. of the factorization formulae (14) and (30). In addition,
since both formalisms are connected in a specific manner, see (15)-(18), the similarity of the
results could be expected.

We also take our result on the off-shell formulation as a hint for the consistency and
the usefulness of this approach. It allows to study scattering amplitudes in a technically
comparatively simple manner (as compared to string field theory) also off the mass shell for
particle states. '
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