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Abstract

In the following report we begin to reformulate work by Derbenev [1] on the behaviour
of coupled quantized spin-orbit motion. To this end we present a classical symplectic
treatment of linear and non-linear spin-orbit motion for storage rings using a fully coupled
eight-dimensional formalism which generalizes earlier investigations of coupled synchro-
betatron oscillations [2,3] by introducing two additional canonical spin variables which
behave, in a small-angle limit, like those already used in linearised spin theory. Thus in
addition to the usual z — z - s couplmgs both the spin to orbit and orbit to spin coupling
are described canonically. Since the spin Hamiltonian can be expanded in a Taylor series
in canonical variables, the formalism is convenient for use in 8-dimensional symplectic
tracking calculations with the help, for example, of Lie algebra or differential algebra
[4,5], for the study of chaotic spin motion, for construction of spint normal forms and for
the study of the effect of Stern-Gerlach forces.
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1 Introduction

In recent years methods for obtaining spin polarized beams of antiprotons have been
extensively studied [6,7,8,9]. One of these schemes, the Spin Splitter scheme [8], involves the
use of Stern-Gerlach (SG) forces in the gradients of the magnetic fields in storage rings to
drive the particle motion in phase with the betatron motion as in a driven oscillator. This
would lead to the build up of coherent betatron oscillations. Of course, the need for a well
defined relative phase means that the machine would have to run on or close to a resonance
between spin and orbit natural oscillation frequencies, a so called spin-orbit resonance [10,11].
The initially unpolarized beam can be considered to consist of an equal mixture of spin states
with opposite values of the third spin component, say up and down or left and right etc. Thus
the two spin ensembles, with their opposite sign of SG forces would separate spatially and
oscillate coherently in antiphase. After some time depending on the ring layout and energy (8]
the betatron amplitudes of the two ensembles would be so big that the two ensembles could
be separated. For example, one ensemble could be removed using a beam scraper, leaving
the other ensemble in an almost pure spin state. Naturally, given the smallness of the SG
forces the separation time is typically of the order of hours [8]. Furthermore they are small
compared to other more familiar sources of orbit disturbance such as wake fields and nojise.
More details and explicit examples of ring layouts and optics can be found in the references.
In this paper, these details are of no immediate concern. Instead we are more interested in
establishing a Hamiltonian description at the single particle level.

Recently, Derbenev [1] has studied the Spin Splitter proposal again and has noted some
difficulties in realizing it in its original form. His arguments are general and are based on
the use of conservation laws that arise when two quantum oscillators, the spin and the orbit,
are coupled. However, he is able to suggest ways to overcomne these difficulties and also to
suggest further improvements.

The aim of this and another paper is to rework Derbenev’s picture, but this time using a
purely classical picture of spin motion, and to investigate the extent to which his conclusions
are to be expected on purely classical grounds by analogy with instability phenomena that
appear in other branches of storage ring optics.

That the original Spin Splitter concept may need modification is already clear at the
classical level when we realize that it utilizes only the SG forces in its modification of the spin
orbit motion and does not consider the details of the effect of orbit motion on the spin. In the
language of Hamiltonian mechanics this means that the formulation might not be symplectic.
Thus it is of no great surprise that the orbit amplitude appears to grow: This could just
be a manifestation of orbital antidamping of the kind that can be expected when transfer
matrices are not symplectic. We are also not surprised about Derbenev’s demonstration that
an increase of betatron amplitude can cause spin flip and thus a subsequent decrease in the
orbit amplitude, a process which would continue ad infinitum: For the Spin Splitter to work
as prescibed, one would have to sit at a spin-orbit resonance, a condition which in other
branches of spin physics in storage rings is well known to cause depolarization and spin flip
[12}].

In this paper we set up a consistent classical spin orbit formalism based on the semiclassical
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spin orbit Hamiltonjan of Derbenev and Kondratenko [1,13] and which was also used by
Yokoya [14]. From this Hamiltonian we derive, following some notions of Yokoya, a symplectic
spin-orbit formalism which is correct at semiclassical order, i.e. which contains no terms in
h above first order. This paper then forms the basis of another work in which we study the
interaction of the spin and orbit motion using methods familiar from other parts of storage
ring physics.

This formalism in fact represents a natural generalization of the earlier work of Refs. [2,3]
where we presented an analytical technique for mvestigating linear and non-linear coupled
synchro - betatron oscillations which handles the combined external magnetic and electric
forces in a consistent canonical manner and which includes consistently and canonically the
synchrotron oscillations in the electric fields of the accelerating cavities. The motion was
described by using the canonical variables #, Pz 2, Pz, 0, P, of the fully six-dimensional
formalism.  The equations derived in those papers provide the basis of a symplectic, non-
linear, 6-dimensional tracking program.

In this report we extend these investigations by including the spin motion using two new
spin variables (&, 3) which are canonical and which uniquely parametrize the classical spin
over (almost) the whole ’spin sphere’ and which behave in the small spin tilt hmit like those
used by Chao [10] in the SLIM formalism. Furthermore, the spin part of the Hamiltonian
when written in terms of these variables takes a form which can be expanded into a power
series in an economic way, leading to various orders of approximation of the canonical spin
equations. It is this property which distinguishes our canonical coordinates & and 3 from
others occuring in the literature {14,15].

With the complete set &, g, 2, p., &, po, &, ﬁ we are then in a position to develop,
in the framework of this 8-dimensional formalism, a symplectic treatment of the combined
orbital and spin motion in storage rings.

The equations so derived can serve to develop a non-linear, 8-dimensional (symplectic)
tracking program and modern methods such as Lie algebra, normal forms and differential
algebra which are well-known from orbital motion could also be used. Such a program may
be used to study (in addition to orbital problems) chaotic behaviour of spin motion when
spin-orbit resonances are wide and overlap and to investigate the influence of Stern-Gerlach
forces. Furthermore, since our formalism automatically includes provision for describing skew
quadrupoles and solenoids it is well suited for working with Spin Splitters since these usually
rely on special arrangements of such elements to obtain the required spin orientation at the
strong quadrupoles used to generate sufficiently strong SG forces. Derbenev restricted his
discussion to one mode of uncoupled betatron motion.

In detail, our considerations are organized as follows : -

Starting in Chapter 2 from the Hamiltonian of a charged particle for spin-orbit motion in
‘an electromagnetic field, described in a fixed Cartesian coordinate system, 1n Chapter 3 we
use a canonical transformation to arrive at the symplectic formalism for spin-orbit motion
expressed in machine coordinates, taking into account all kinds of coupling induced by skew
quadrupoles and solenoids (coupling of betatron motion), by a non-vanishing dispersion in
the cavities (synchro-betatron coupling) and by Stern-Gerlach forces.

The vector potentials we need to describe the electro-magnetic field are calculated in
Appendix A.

In Chapter 4 the arc length of the design orbit as independent variable (instead of the time
t) is introduced and new (small and oscillating) variables o, p, are defined which describe
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the longitudinal oscillations.

Spin motion in terms of the dreibein (€,,&x,€.) 1s investigated in Chapter 5 and the
corresponding Hamiltonian is derived by applying a transformation similar to that used by
Yokoya.

Then in Chapter 6 and, with the help of Appendix B, we define an 8-dimensional closed
orbit which we introduce as a new reference orbit for spin-orbit motion. The Hamiltonian
with respect to the closed orbit is again obtained by using canonical transformations, whereby
the canonical variables & and 3 are introduced to describe the spin motion.

A summary is finally presented in Chapter 6.

2 Spin-Orbit Motion in a Fixed Coordinate System

2.1 The Starting Hamiltonian

The starting point of our description of classical spin-orbit motion will be the classical
Hamiltonian, H:

H(7,9; P, Jit) = Ho (7, P, t) + Qo(7, Pot) - € (2.1)
with . 12
Hors(7, Pyt) = ¢ - {ﬁ"z + mgc2} + e¢ (2.2)
and
; e [(1 =~ a(7-B) . 1 A U
= —__— |t= -B-—" "/ 7 _ L —— £ 2.3
o Mo¢ [(‘r+a) B vy + mdet " moey (a+ 1+7)WX ] (23)

where 7 and P are canonical orbital position and momentum variables, £ is a classical spin
vector of length %/2 and where 7 and v are given by:

A (kinetic momentum vector) ; (2.4)

7=P-—

oo

1
v = ——-ymfc? + 72 (Lorentz factor) . (2.3)

mopcC

The following abbreviations have been used:

¢ e = charge of the particle ;
e my = rest mass of the particle ;
e ¢ = velocity of light;

= electric field;

]
(r'l

o B = magnetic field ;

» 7 = radius vector of the particle.

(24




o £ = classical spin angular momentum vector in the rest frame of the particle of length

h/2 ;

® a = (g—2)/2(0.00116 for electrons, 1.793 for protons) and quantifies the anomalous
spin g factor ;

e 27h = Planck’s constant.

The quantities A and ¢ appearing in eqn. (2.7) are the vector and scalar potentials from
which the electric field € and the magnetic field B are derived as

€ = —grad ¢ — —— ; (2.6a)
C

—

B = curld. (2.6b)

Our starting Hamiltonian (2.1) is that which is often used for describing the spin-orbit
dynamics in accelerators {1,13,14,16,17] and is the classical reinterpretation of the effective
guantum mechanical Hamiltonian derived by a unitary transformation of the Dirac Hamil-
tonian and by working in the semiclassical limit. This latter is valid when the external
electromagnetic field is weak and it neglects bremsstrahlung effects [18].

In terms of the three unit cartesian coordinate vectors in the fixed laboratory frame,
€1, €2, €3 We can write 7, P and Eas:

T o= X1'€1+X2'E‘2+X3°€3; (27&)
P = P -éy+P- &+ P .5 ; (2.7b)
£ = G-a+b-&+6 6 ; (2.7¢)

Furthermore, we write the components of E in the form:

1=V —J%-cos ;
£y = VEP—J?-sinv (2.8)

with

ﬁ2
€2=Ef+§§+§§=z-
We will treat ¢ and J as canonical spin variables [14,16] to be used on an equal basis with
7 and P. f_'is of constant length since it obeys a precession equation. See below. 3
With (2.1) and (2.8) we have the Hamiltonian for the canonical variables 7, P, ¥, J.
One of the aims of this paper is to transform from the canonical variables (7, P, 3, J)

to the new set of canonical variables (2, 2, &, &; p., P:y Po, ,8) (see eqn. {6.39}).
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2.2 The Equations of Motion
2.2.1 Orbital Motion

With this Hamiltonian (2.1) the orbital equations of motion are:

d My 00y -

— X, = ekl ]

5 X + 3P, + 3P, £; (2.9a)

d Moy Oy

— P = 7T _ € .

7R 5%, ox, & (2.9b)
(k=1,2,3).

The first terms on the rhs of (2.9) are the Lorentz terms and the second terms describe the
Stern-Gerlach force [19]. Thus our Hamiltonian includes the SG force automatically. Note
that here we deal with the relativistic generalization of the SG effect. It is clear (see eqn.
2.3) that our SG terms reduce to the usual non-relativistic forms in the limit that ~ becomes
unity and that for 4 > 1 the factor g/2 in the expression for the SG force in field gradients
in Ref. [8] should be replaced by (g — 2)/2 + 1/7). Thus if v is increased from 1 up to a large
value, the SG force is reduced by the factor (g ~ 2)/g. For protons (9/2 = 2.793) this gives
a 36% reduction . But for electrons (g/2 = 1.00116) the reduction factor is large.

The discussion in this paper covers both relativistic and non-relativistic motion.

2.2.2. Spin Motion

Using (2.8) and treating J, ¢ as canonical variables, we can easily show that [14):

{&,6vg = & (2.10a)
{62, 6lvs = &5 (2.10b)
{6, 6itvr = & (2.10c¢)

These Poisson bracket relations for spin, which do not contain % on the rhs, are the
classical analogues of the commutation relation among Pauli spin operators. Using these
relations together with the canonical equations of the spin motion:

% Y = +a—i Hopin 3 (2.11a)
%J = _E?% Hapin (2.11b)
where
Hopn = Qo€ (2.12)
and
Qo = Qoy- &1+ Doy & + Nos - &5 (2.13)
so that

Qo-& = Qoy-&+ Qo2 - o+ Qoa- &
= ‘\/62 — J2. [QOI . COS?,!’ -+ Qog - §1n 'l,[‘] + 903 o J (214)

7




we find

—

d - .
7 & = Pox¢ (2.15)

Thus this Hamiltonian formalism reproduces the Thomas-BMT equation [20,21].
The result (2.15) can also be obtained by using the equation of motion:

d - _ ~ o ag 3Hapin 3{ aHspin
dt E - {67 sp:n}#"] - 5,‘; aJ _:97—61[_ . (2.16)
2.2.3 The combined Form of the Spin-Orbit Equations
The combined equations of spin-orbit motion can be written in the form:
d OH
— X, = 4.
g ok +3Pk ; (2.17a)
d OH
E P, = —g‘X_—k (2.17b)
(k=1, 2, 3, 4)
with

3 Introduction of Machine Coordinates via a Canonical
Transformation

3.1 Reference Trajectory and Coordinate Frame

The position vector 7'in eqn. (2.1) refers to a fixed coordinate system with the coordinates
X1, X5 and X3. However, in accelerator physics, it is useful to introduce the natural coordi-
nates z, z, s in a suitable curvilinear coordinate system. With this in mind we assume that an
ideal closed design orbit exists which describes the path of a particle of constant energy Ey,
i.e. we neglect energy variations due to cavities and to radiation loss. In addition we assume
that there are no field errors or correction magnets. We also require that the design orbit
comprises piecewise flat curves which lie either in the horizontal or vertical plane so that it
has (piecewise) no torsion. The design orbit which will be used as the reference system will,
in the following, be described by the vector 7(s) where s is the length along the design orbit.
An arbitrary particle orbit 7{(s) is then described by the deviation §7(s) of the particle orbit
r{s) from the design orbit 7(s) :

~3

7(s) = Fo(s) + 67(s) . (3.1)




The vector &+ can as usual [22] be described using an orthogonal coordinate system
("dreibein”) accompanyirig the particle which travels along the design orbit and comprises

: - d _
the unit tangent vector  &,(s) = ETD(S) =ro'(s) ;

a unit vector  €(s)

which lies perpendicular to &, in the horizontal i)lane [11]
and the unit vector  €,(s) = €,(s) x &,(s) .
In this natural coordinate system we may represent é7{s) as:
6r(s) = (87 &) - € + (67 - &) - &,

(since the "dreibein” accompanies the particle, the &,- component of &7 is always zero by
definition).
Thus, the orbit-vector 7(s) can be written in the form

(@, z,8) = 70(s) + z(s) - €.(8) + 2(8) - €.(s) (3.2)

and the Serret-Fresnet formulae for the dreibein (€,,€z,¢€;) read as:

Eé;(s) = +K.(s)-&(s); (3.3a)
d

SE(s) = AKAs) () (3.3
%E’,(s) = —HK.{s)-&(s) — K,(s)€.(s) (3.3¢)

where we assume that |
K.(s)-K.(s)=0 (3.4)

(piecewise no torsion) and where K, (s), K. (s) designate the curvatures in the x-direction and

in the z-direction respectively.
Note that the sign of A.(s) and K,(s) is fixed by equs. (3.3).

3.2 Introduction of the Natural Coordinates z, -, s via a Canonical

Transformation
Writing:
ro= X1+ X+ X567 = ro{s) + @ - €x(8) + = - €.(s) ;
13 = P61+ P, &+ P;- e

we can obtain the canonical transformation:

XhXZ:XSaPlaP?aP'i — L8, PrsPoaPa
(¢, J unchanged)

A e




by introducing the generating function [23] :
Fi(z,z,8,9"; P, Py, Ps, J;t) = — [7o(s) + z - Ex(s) + 2 &,(s)] - P ; (3.5)

This Jeads to the transformation equations :

OF;

Xi = —gpt =[fa(s) +2(s) - &ls) + 2(s) - o)) G =785 (3.6a)
. 1
6F3 - . . — - -
Xy = o = [Fals) +2(s) - Euls) + 2(s) - &ls)] - & =7+ & ; (3.6b)
2
aF; . - - oo
Xs = —gp =lols) +2(s) &(s) + 2(s)- &uls)] - & = 7- & ; (3.6¢)
3
o ., . =
P: = == €:(s) - P ; (3.6d)
3F3 — - .
P: = —'E = 62(8) . P » (368)
p, = _63_?:[1+K3.$+Kz.z].gs.ﬁ_ 7 (3.6f)

Note, that eqns. (3.6a - c) reproduce the defining equation (2.1a) for the variables X,
X, and X; and that eqns. (3.6d - f) determine the new momentum variables Pz, P and p,.
The spin variables ¢ and J remain unchanged.

Because
aF,
Bt O
the Hamiltonian is transformed to :
OF:
H — H+ a—;’ = H

—

= How+Qo-£. (3.7)

In order to obtain H in terms of the new variables z, p., Z, Pzy S, Pss W€ Write:

T = Tp-€+m & +m: &, (3.8)
with
Ty = -6 = (P‘—fi) & = po— AL (3.9a)
C
r o= & é’zE(ﬁ*EE)-gz:pz—EAz; - (3.9b)
[ C
— € — o p_! €
— s — R - fnd - T ——A_., 39
e r e’_(P cA) © 1+ K, z+K,-z] ¢ (3.9¢)
whereby
A = A,-E.+4,-¢ + 4,7,
= (4-6)G&+(Ad-&)-e+(A &) & . (3.10)




Thus we obtain:

1/2

e 3 (pe=Sa) + ( “4.) + . 4.} 4 mie
Pz ¢ - p: ¢ {1+Km-m+Kz-z] _E s ] T mge (3'11)

and
Go = Qov 2t Qo &+ Do & (3.12)
with
1 . . .
Doy = _."3_[(__|_a)_Bs_m(ml B, + =, Bz:-'rrz B.) s
Mot L\ 7(7 + 1) - mdc?
1 1
- + ol ™ M Ep y .
Mocy (a 1_+7) (Mee; = m.e) ] (3.13a)
1 s’ BJ x " T z " -
Q. = -t [(—-—I—a)-Bm—a(w + 7 Bz—l—ﬂ' }3“)_‘”_I
MoC | \7 (v +1) - mic?
1 1
_mocﬂy (a + 1 -I—’Y) (ﬂ'zEa - 77352) J h (3.13b)
1 .- B, = B, .- B,
Oy, = —i[(——i—a)-Bz—a(W + ;{—71' B)-wz
mae [\7 T+ 1) e
1 1
" mocy (a "1 +~y) (mex = mee.) J (3.13¢)
whereby
1 M, -
Y = — m§c2+ﬁ2=__ﬂb 2e¢
Mo Mo

and B and € have to be written as functions of 5, @, =z, ¢

With (3.7), (3.11), and (3.13) we have the Hamiltonian for the canonical variables

T, z, 8 Y¥; Px, P:, Psy J.

Remark:
Equation (3.5) is an example of a point transformation
% — g ~(8.14)
which may be written in the most general form as:
o = filg, 1) . (3.15)

11
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This transformation can be obtained as a canonical transformation
G, Pk — Gy, P : (3.16)
by the generating function

FS(Q{,PIJ) = “an'fn('ﬂrat)- (3.17)

The corresponding transformation equations read as:

_OF;

% = o = fulg;); (3.18a)
OF; b3,

E S =0 P a faldlht); .18b

Pr Bq;e ;IP BqL f (91 ) (3 18 )
OF.

Here the relation (3.18a} coincides with eqn. (3.15) defining the new variables ¢, and eqn.
(3.18b) determines the new momenta Pj corresponding to the variables ¢}, whereas the new
Hamiltonian H' is given by (3.18¢) which has to be written in terms of g, and p}.

3.3 The Equations of Motion
3.3.1 Orbital Motion

In the new orbital coordinates the equations of orbital motion are :

d Moy, 80 -~ d OHoy Oy -

a  _ £ S, = ~ZCF. 3.19

dt * +‘ Op. + Op. & dt P or oz ¢ ( 2)
d aHorb aﬁﬂ g d aHorb 85:i() =

- — . * -— P = — _ - H 319b
i’ T T Tt w? o: B ¢ (3.19b)
d 37‘!0,.5 aﬁo ud d a?im'b aﬁﬂ r

e £ S, = - _ g 3.19

@ T T et P 5s  bs ¢ (3.19¢)

3.3.2 Spin Motion

Although we have not yet written the spin, E, in terms of &,, &,, €, the equations of spin
motion are as before :

d - L
- — 3.20
SE = fox (3.20)
or
d 8 = d
@t =zl = gz (3.212)
d 9 = 0
= = e . = ——H . 3.21b
7 J Y [Qo E_] 3¢H ( )
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3.3.3 The combined Form of the Spin-Orbit Equations

The combined equations of spin-orbit motion are :

% T = -I—g:: ; %Pz = —86—7: 5 (3.22a)
d oH d oH
@7 Yap @’ T e (3.22b)
d OH d tidal
7 s = +3p_, Yoo P =~ : (3.22¢)
d OH d OH
7 Y = o7 #T T Tag (3.22d)

4 The Arc Length of the

Design Orbit as Independent

Variable

In eqn. (3.22) the time f appeared as independent variable. In order, as usual in accelerator
physics, to introduce the arc length s of the design orbit as independent variable we recall
that eqn. (3.22) is equivalent to a version of Hamilton’s principle [24]:

é ttz dt - {m Pat PPt é Pt T — %(w,z,saw;pm,pz,pw’;t)} =0 (4.1a)
with
bz(ty) = 8z(11) = bs(ty) = bp(t) =0; bpa(th) = 5p.(t1) = 8ps(t1) = 6J(t1) = 0;
§z(ty) = 62(t) = bs(t2) = 8%(82) = 0 6pa(tz) = ép.(t2) = &ps(t2) = 8J(#3) = 05 (4.1b)

5t1=5t2:0,

where the variables z, z, 8, ¥, P2, Pz, Ps; J, t are varied independently of each other and
are held constant at the end points. (For the usual derivation of the Hamiltonian equations
(3.22) from the variational principle (4.1) the variation of the time t is actually not needed.
However, in order to be able to carry out the derivation of eqn. {4.1) it is useful, nevertheless,
to allow ¢ to vary.)
Eqn. (4.1) can now be rewritten using
dt

as:

6[” ds-{z' -p.+7 p.+v¢ T+t (-H) + po(z, 2,8, Y Pay Py —H, Ji8)p = 0 (4.22)

with
bz(sy) = bz(s1) = &t(s1) = 6¢(s1) = 0;
8pe(s1) = 8p-(s1) = OH(s1) = 8J(s1) = O
§z(s,) = 62(32) = 8t(s2) = O¢(s2) = 05 (4.2b)
6pe(sz) = 8p-(s3) = 6H(s2) = 6T (52} =05
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and
dy

= = = t
y ds ? (y m"z, ’/llb)

(where we make independent variations of the variables z, z, t, ¥, ps, ps, —H, J, s and
where s is the independent variable).

The required equations with s as independent variable are then obtained from the Euler
equations of the variational problem (4.2):

d + oK d oK 43
L X e _ _9r
d’s apm ? d.‘j Pm aw 1 ( " a)
d oK d oK
:1"; “ = +8pz ) E pz — —79_'2_ H (4'3b)
d aK d oK
— f = P S — _F. )
ds Yoy @ M ot (4.3¢)
} d K d K
| with
; K = —p.. (4.4)

So eqn. (3.7) must be solved for p,. To come to that, we recall that in storage rings the
total energy is very much greater than the energy due to SG forces and that our Hamiltonian
(2.1) is based on semiclassical quantum mechanics where terms in % above first order are
ignored. Thus here we also only keep zeroth and first order terms in / and make a perturbation
calculation with respect to % [14]. Starting with zeroth order in %, the term Q- £ in (3.7)
vanishes and H = H,,; . Solving for p, and using (3.11):

o ) . 1/2
Pao = [1+KI°:E+KZZ]{M_(P:17_'EA$) _(Pz_EAz) _mgcz}

c2
t1+K,-z+K,-2]-24,. (4.5)

C

Since we are interested only in terms up to order % [14], we make the ansatz :
Py =pw+h-R, (4.6)

where R, is a function of z, z, ¢, ¥, p,, p., —H, J to be determined.

Because E . ﬁu is already O(#k), we can, in the argument of ﬁo, make the approximation:

Ds = Pso - (47)

This simplifies the problem because p, now only appears in the orbital part of H (in Qo -£
the term p, can be replaced by p,o, i.e. by the known function (4.5) of z, z, t, p;, p. , —H,
5). Hence eqn. (3.7) becomes an equation quadratic in p, and we obtain:

€

p,(w,z,t,@b,pm,pz,*’}'{,.}) = [1+Kx'$+ kK, ’z] : EAS ‘
+1+K,-2+ K, -z

x {(H meg—Go-8)" (pe- Sa) — (p. - Sa) - mécz}m- (4.8)

2




This can be simplified again by neglecting terms of O(h*)

1 ' =
pe = po——-[l+Ke ozt K. o2 (H - <9) .
¢ psg—[l—FKm-:c—%Kz-z]-—A,
C

(- €] . (4.9)

The second term in (4.9) is just - R, and p, is a well defined function of z, z, t, ¥, pr,
p:y, —H, J, s

For the new Hamiltonian K we obtain from (4.4), (4.5) and (4.9):

K(z, 2, t, ¥; Pey Pz —Hy I3 8) = Korb + Kopin (4.10)
with
Kot = —Pso
= —[l+K,-z+ K. 2] %
{ﬁ,’f_:;i)f ~(pe- EAm)z - -(P; - %AZ)Z mg&}l/z
—[1-+Km-m+Kz-Z]-%A,; (4.11a)
Kopin = [ﬁo-ﬂ-j_z[lJer-;wKz-z}- pj:_“b >
([ T K, x+ K.z ¢ )
— (6 8- 1+ K. z+ K. -2 -(H—ed) . (411D)

H — 2 P 2 1/
cz-{LTe@**(pm—EAm) —(pz—EAz) _mgcz}
c c ¢

Note, that the factor after the quantity [Qo ] in eqn. (4.11b) is, apart from terms which
only contribute to O(h?), just (1/$), since we obtain from egn. (3. 11)

oK OH ot

5 = = O(h
) 819,, ap_, + ()
——C2 1 ps €
- &) ' —ZA) +O(R) . (412
(H—ed) [1+ K. z+K.-2] ([1+Km-:c+Kz-21 . )+ (R). (4.12)

This result could also have been obtained by much simpler means as follows:
d - = - ~ 1 -
LE - fuxE = dgo tdixe (4.13)

$

but we wanted to obtain it within a Hamiltonian formallsm.
Thus, setting

pe=-H
we have with (4.10 - 11) the Hamiltonian for the canonical variables
z, z, t, ¥5 P2y P2y Pts J
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and the arc length, s, of the design orbit acts as the independent variable.

We repeat that in a semiclassical treatment it is sufficient to evaluate I, using the sub-
stitution (4.7).

In the remaining part of this chapter we perform some further canonical transformations
of the variables z, z, ¢, ¥; p., p., o, J in order to prepare for the next chapters.

In the following we choose a gauge in which
$p=0.
Then from egn. (2.4) and (3.11) we obtain:

H = Ho,-b-I-O(h)

mocz

= = 1 0(n)
\/1;%
= E+O(hr);

(E = H,,» = the orbital energy of the particle)
and thus

pi+ E = O(h) .
&7

(Note that v> = ¢- ¢ and 7 = E)

In order to describe the energy oscillations we use the design energy, Eo, to introduce the
(small) quantity

pe=pi+ Eo= —(E — Ep) + O(h) = —AE + O(h) (4.14)
as a new (canonical) variable:
t,pe — ) Py (4.15)
This transformation can be obtained using the generating function
F(t,p:) = t«(p: — Eo). (4.16)

The transformation equations read as:

OF,

= T Pt — B ; (4.17a)
P 9B (4.17h)
op.
s

whereby (4.17a) reproduces the defining equation (4.14) for 3; .
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Finally, since the variable ¢ increases without limit, it is more useful to introduce the
variable

o=8—-T1p-1 (4.18)

with

N
vg = design speed = ¢fo; Bo = Jl_ (moc)

which describes the delay in arrival time at position s of a particle :
t'; iﬁi — 0-7 pa (419)

(¢ describes the longitudinal separation of the particle from the centre of the bunch.)
This point transformation can also be made by a canonical transformation (see section
3.2). The generating function is

1

Fy(pr,058) = —— P~ (s =) - (4.20)
0
From this follows:
OF; 1
t = —5— = —-(8-0); 4.21
8_'15: o (3 0) 1 ( a)
OF: 1 E-FE AE '
P = —me = —— P = ° L O(R) = == +O(h) (4.21b)
do Vg Ug Vo
and
— aF:
K - K(313505¢5Pw1pzapdaj;5) = K"’F‘f
= K + pa
= Korl:- + ﬁﬂ : g (422)
with

Kob = Pa—[fl-{—fi’ x+ K, ]

X
(51 B) - oo 0~ (o) i)
A

1+ K, x4+ K, -2 A, ; (4.23a)

ta

E
- [1+KT-I+B—2 } ﬂO(Pa‘Q’—E)

v
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With (4.22 - 23) we have the Hamiltonian for the canonical variables

Ty 2y, Oy Y5 Pay Py Poy J

In order to utilize the new Hamiltonian (4.22), the magnetic field B and the corresponding
vector potential,

—

A= E(m,y,cr;.s), (4.24)

for commonly occurring types of accelerator magnet and for cavities must be given. Once A
is known, the fields & and B can be found using eqn. (2.8a, b)., In the variables z, z, s, o
these become (with ¢ = 0):

— a 7
&= 5o - % A (4.25)
and
B, = 1 E[(1"”‘* + K )A]*EA . (4.26
o (1+ K, -2+ K,-z) |6z T 2% S s -26a)
1 7 o
Bz - (1+Kz.$+Kz.z)'{a_ 5;[(1+Km-E+KZZ)A,]}, (4.26b)
6 8
= @ - 4.26

In Appendix A the vector potential A is calculated for various types of lenses,

In the following we assume that the ring consists of bending magnets, quadrupoles, skew
quadrupoles, solenoids, cavities and dipoles. Then the vector potential A can be written as
(see Appendix A) :

1
EiA, = —;ﬂ0°(1+K¢'w+AFZ )—l— A Bo- (2" -2 )+ N-By-zz
(1] i

1 L €V(s) [ 271' ]

. S BT
% 2nh s cos i o+

+—[AB, -z - AB, 2] (4.27)
Eo

(h=harmonic number) with

AB,= = Y ABW.§(s—3s,); (4.28a)
AB,= = i ABW . §(s — s,) (4.28Db)
p
(dipole field in z- and z-direction)
and
EiOAI — —Bo:H-:z; EOA = +fBo-H -z (4.29)
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whereby the following abbreviations have been used :

: 0B, _ 4.30
g = Po-c Oz z=z=0’ (4.302)
1 e 8B, OB,
N = -—. . — d . )
2 PO - ( am az ):n:z:U , (4 SOb)
1 e
= 5 - B,(0,0, i .
5 Bu0,0,0) (4.30¢)
K, = +— .B.(0,0,s); K.=———"B,(0,0,s) (4.30d)
Po-c Po-c

(po = momentum corresponding to energy Ep).

In detail, one has:

a) g#0; N=K,=RK.=H=V =0: quadrupole;

b) N #0; g=K,=RK,=H=V =0: skew quadrupole;
¢) K2+K?#0; g=N=H=V=0: bending magnet;
d) H#0; g=N=K,=HK,=V=0: solenoid;

e} V #0; g=K,=K,=N=H=0: cavity.

Furthermore, for the magnetic field B we get (see Appendix A) :

~B, = f {—K; + 2 AB.+(N-H)-z+g- z] ; (4.31a)
E, Po - €
<B. = B [+Kw +—_AB. - (N+H"): =2 +g-:c] ; (4.31b)
Eg Po-C
=B, = Bo-2H (4.31¢)
Ey
and for the electric field € we have:
2
e, = V{(s)sin h-%-a—}—go]
2
= V(s)sintp+cr(.s)-h-%-V(s)coscp—F--- ; (4.32a)
€« = €& = 0. | (4.32b)

Although z, z, o, ¥} Pz, P, Pr, J are canonical variables, it is still useful to introduce
the new quantities

Vo AE
= — .p, = — + O(h 4.33
n=g P =gt (R) (4.33)
and
B o
77 — ﬁo n EO
¢ A
Ly om=E_110m=2E10m) (4.34)
Bo  Ebo Po Po




where

1
p = - E? —m3e'" = momentum corresponding to energy E ;
1 :
Po = - EZ — mict* = momentum corresponding to energy Ej ;
Ap = p—po

Then for the term

B2 2 2 1/2
W = {ﬂg . (Pcr + ——D) — (pm — —e-Am) — (pz — EAZ) — mgcz} (4.35a)

L]

appearing in eqn. (4.23) we have:

W = ﬁoz'(Pg-i-EE)z_mng_ 1_(}7:—% 3)2+(fz_§ 2)2
\ 63'(Pa+g—°-) —mgcz

Vo
E), (’Uo 2 vi 1
= - —_— "_r_r+1) ___m262._0__

3
) 2 B, 2
° 35 - (;Da + ;U‘L) — mic?

Eg 2 mocz 2
o= ()
2 2y 1/2
1— (%)2 (%%pz-Eioﬂﬂ'Am) +(%%pz_ﬁﬂﬂAz) }

2
L 2 E 2
0 Bs - (;Pa + ;0‘1) — mgc?

= — B (1+7)

’ {1 B (&)2 (37 + 55 H2) = (gm: ~ﬂ§.Hm)2}1/2

2
vo [ - B0+ (1 + )]
. EO 2 "
= o “Ho (1+77)
Y 2 2 v 2 2 1/2
1 (gp.+82-Hz) + (2p. - B2 Hz)
- y 2 (4.35b)
o (1L+9)

Thus, putting (4.27}, (4.29), and (4.35b) into (4.23a), we obtain for the orbital part K.,
of the Hamiltonian:

= Ey v E . ; ;
]Corb = "‘E_Dpa__o‘ﬁoz(1+7])‘[1+.ﬁ.mﬂZ-I-ILz'Z]X
vo FEy Vo
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or

| (o) s (e gy
Bi- (1 +7)
Eo

-1+K,-a+ K, z]-— X
c

1 1
{—Eﬂo-(l+Km-a:+K:-z)+Eg-ﬁo-(zz—mg)—'rN-ﬁo-$z

— 1+ K, z+ K, 2] 8% x

1 - B} 1
{—;-(1+Km-m+fiz-z)+Eg-(zz—:rz)—l—N-mz

1 L eV(s) [h 2w N ]

B ok E, <l T7TF

© [AB,-z—AB.-z]} . (4.36)
Po-C

The vector ﬁg in (4.23b):

ﬁﬂ = Q03'€s+90w'€m+ﬂﬁz'gz

(see eqns. (3.12) and (3.13)) as a function of the variables z, z, 7, Pz, P, Ps, 8 NOW takes the

form:
1 ED 1 €
-0 s = - . _Bs
c ° TT!-D(’.2 [('}’ T a) Eo
anz ('no eB+vg eB—i-vO eB)vg
- =T " = Da el (PO » ' M. D) T,
‘}'(“y =+ 1) - m%c" . [33 Eo Eo Eo Eo Eg .E(] Eg
1 c
= - - .—B,
° [(7 i a) Eq
2
av; 1 (vo € 5 Uy € Vo € ) Vo ] -
— | =7 - — v+ —mp+—B.+ —7. =B. —m,| ; (4.37a
v(y + 1) 63 Eow Eq Ey Eop Eq Eq E, (4.372)
1 1 €
Z e = -0l =B,
’ I [(’r " a) Eo

2 1 ) . '
__ﬂ_._(fﬂﬂ ._F_Ba_i_l_oﬁr.f_};x_;_i"_m.igz) Yo,
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1 1
-y, = - - -—B
p 0 '70[(7-1-@) E,
2
a%g 1 ('Uo e T e
g (e Bt o =Bt 2r. S p)
Y(y+1) 53 Eq Eo Ey Eq E,

1 1 Vo

€

€, )
0

Yo 1 ( n 1 ) Vo
—— -1l a | =T =
v S 1+v/ E E

€

+_ +_-_ .--.—ﬂ.,’c'_hes
¥ 50( 1+7) Ey E, ],

whereby the fields B,, B., B, and ¢, are taken from equs.
is defined by

Ey

moc?

Yo =

For the Lorentz factor v appearing in (4.37) one has:

(4.31) and (4.32

_FE
T = mol:2
Eg ’UQ [ E0:|
- o+ =2 +on
1"1'1’4)(32 Eo + Yo + ( )

= vo-(1+7)+ O(h)
and for the quantity =, we have ((3.9¢), (4.5) and (4.6)) :

B\ 2 e 2 €
S P

. 1/2
) _mgcz} -

E .
= =85 (1+n)
Vo
1/2
(Enpr'l'ﬁﬂ HZ) +(§0' ﬁo HT)
x ¢l — -
.80'(1 "7)
E ;
= =85 (1+7)
o
2 1/2
i1 (Eu”-f) "’(’E%WZ)
B8 - {1+ %)?
(see eqn. (4.35b)) with
Yo Yo a
i = —P=r '.HZ
EO“T:Z' E P +180
(3]
— ., = —— -Hzr .
EOW- EOP- .80 z

(4.37b)

Vo

—,
Eo

(4.37¢)

) and the term 4,

(4.38)

(4.39)

Il
3

(4.40)

(4.41a)

(4.41b)

With (4.23b), (4.36 - 37), (4.39 - 41) we have rewritten the Hamiltonian for the canonical

variables
L, 2, O, l/’a Pzs P:y Pos J
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in a more convenient form by replacing the terms in p, by the equivalent quantities 7, 7.

Remark:

Eqn. (4.36) is valid only for protoms. For electrons one needs the extra-term in the

Hamiltonian
ED r2 -2
}Crad:;—'cl'[ﬁm+-ﬁz}'a (442)
0
_ 2 273
(Where Ci= 3e Eo

(for vy & ¢} in order to describe the energy loss by radiation in the bending magnets [11,25].
In this case, the cavity phase ¢ in (4.33) is determined by the need to replace the energy
radiated in the bending magnets. Thus:

so+L sg+L
/ ds - eV(s) - sin e - f ds-Eo-Cy - [K2+ K2 (4.43)

L5 890

average energy uptake in the cavities ; average energy loss due to radiation

Note, that the K,,s term only accounts for the average energy loss. Deviations from this
average due to stochastic radiation effects and damping introduce non-symplectic terms into
the equation of motion.

For proton storage rings, where radiation effects can be neglected, one has:

sing=0 = =0, (4.44)

(no average energy gain in the cavities) and the choice for ¢ is determined by the stability
condition for synchrotron motion [3]

¢ = 0 above "transition” ;

¢ = ™ below "transition” .

—_

5 Spin Motion in Terms of the Dreibein (&, €., €.) ;
Canonical Spin Transformation

In this chapter we show how to describe the motion of the spin with respect to the €,
€., €, basis. The variables z, z, 0} Pz, P:; Do need no further transformation.

5.1 A New Spin Hamiltonian

The transformation of the spin from the (€}, €, &) - basis to the (€, €z, €-.)- basis

El)£27£3 == gsaé:ﬁéz . (51)
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is merely a rotation and is defined by:

E = &i-€1+ &€+ €365
= és'c_‘s+£m'€m+§z'€:- I (5.2)

If, by analogy to eqn. (2.2), we introduce canonical variables ', J for £,,&.,&,:
= VI T cosy
fa = VEF — J? - sing’ (5.3)

gz:']-’s

It

then (5.2) becomes a canonical transformation:
,2,0,%: P2 PesPord = 2l =x,2 = 2,0" = o, ,pl = po,p, = p.,B, = poy I . (5.4)
Following Yokoya, who uses a Lie transform, the new Hamiltonian K is [14] -
K(2:2,0,"; pe, parPo, J'5s) = _fwb(w,z,a;pz,pz,pa;S)

3 -
+3 [ﬂo(w,z,a;pz,pz,paw) — U(w,z,a;px,Pz,Pa;S)] -t (s)E, (5.5)
v=1

where
i, = €; & = & (5.6)
Uy = & & = &
Uy = €, ; :a = &
and
2 3 dd,
U:%;ﬂ’yx . (5.9)
From eqn. (3.3) we have:
% i1(s) = —Ka(s)-ty(s) — K.(s)- ds(s) ; (5.10a)
Ed; Wa(s) = +R.(s)-d:(s); (5.10b)
% us(s) = +R.(s)-di(s). (5.10¢)

Putting (5.10) into (5.9) we obtain:

U = %{é} X [—Ko(s) - ez(s) — K.(s) €.(8)] + € x (Kz&) + €. x (K.&,)}

= —h,-e,+ K, €&,

24
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and it follows that:

K(z,2,0,%": paypzr P, J'5 5)

= —

= Kors(2,2,03p2, 02,053 8) + @, 2,05 P2, P2, D3 8) - (€, - €, + &2 - €0 + £, - €2) (5.11)
with
o == o —
_'}Cor = _'K:o-r'
E, "ot E,
= 7B ()4 K2t K o] x
» 2 v 2y 1/2
L (B - B Hz) 4 (pe - 62 - He)
Bs - (1 +n)?
—[1+ K, 24+ K, -z]- 82 x
1 1
{~§-(1+KI-:£—|—KZ-::)+—2»g-(z2—z:2)+N-mz
1 L eV(s) 27
___ A S0 Al
ﬂg o7 h E, cos{ T O'-I-(p}
+— -[AB;-Z—ABZ-;E]}
Po-c
Vo
_]Cra .
+E0 d (5.12)
and

—

Q(-Tazaa';Psz;Pa; 5)

=~ QO+ K,-¢, - K, ¢

. E,
s m e B
= To ‘ﬁ[}
Ean 2 2 2 /2
c-{ S(pe+2) ~ (pe-S40) — (- C4) —m?,cﬁ}
To c C
+Am'gz_Kz gm
- - (1+7)
=1+Hk, =+ K. -z
| Bo(1 + %)
2 2y —1/2
o (%p.+52-Hz) + (&p. — 82 Hz) ls
o (1+5)? P
+K,-é.— K. &, (5.13)

With (5.11 - 13) we have the Hamiltonian for the canonical variables
Z, 5 0y V5 Pay Pav Poy I
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Remark:
The equation for spin motion corresponding to the Hamiltonian (4.22) reads as:
d £ = Qoxé 5.14
6 = Doxt. (5.14)

Representing the spin vector E in the form

E=C i+l T tE - E (5.15)
and using eqn. (3.3) we have:
d ~ ] — ] s ] — d - d — d —
E; = {:a'ea+£m'ez+§z'ez+€w'£ez'f'{a'aes+€z'£ez
= ﬁ;'€8+gi'gﬂ+§;'gzHfa'(Kz'Em+Km'€z)+£m'Kw€s+£z'Kz€a
- é-;'é;—l_E;'e_"-"—l_E;.gz_E_‘X(KZ'EE_KE'EZ)- (5.16)
Thus eqn. (5.14) can be rewritten as:
L d . d L d 5 o
e:'afs+ez'£§m+ez'“d';£z - QXE (517)

with Q given by (5.13) which confirms the validity of the spin part Q - £ in the Hamiltonian

’C(ma 2,0, Poy Pzy Doy I s).

If the new spin basis had been an explicit function of the canonical orbital variables, then
even at first order in % the orbital variables and the orbital Hamiltonian would have been
modified by the canonical transformation (see Ref. [14], eqns. (3.16), (3.17), (3.24)). How-
ever, at this stage in our treatment, the azimuthal variable, s, is the independent parameter,
not a canonical variable. Therefore the variables z, z, 7, p,, p., p, remain unmodified by the
transformation and K,.; and K,,; are identical. Furthermore, since X and K differ only by
the term (K, - ¢, — K, - &,) - £ which is independent of the variables z, z,0,p., p., p,, the
Hamiltonians X and K lead to the same equations of orbital motion.

5.2 Series Expansion of the Hamiltonian
Since

(%%pm + 3 -Hz)2 + (%%pz — 32 -H;c)2

: < 1
Bs-(1+7)?

the square root

1/2

(gp- + 82 H:) + (po. - 53 He)' |
- (1 +7)? j
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in (5.12) and (5.13) may be expanded in a series :

1- (gpe+ 82 H2) + (0. - 2 Ha)' |
B8 (1+7)?

(Br+8 - H:) 1 (p.— 83 Ha)’

1 1
=1-=. - ... (518
2 R tAr 2 R +ap (519
and the same can be done with the term
L eV(s)
: AL ]
o E, CcOs [ o+
resulting from the cavity field :
L eV(s) [h 2 N ] L  eVis
. e —— = . COSs
2w - h Eg cos L 7 v 2% - h Eu v
eVi(s) .
- sin
o A ing
2 Vv
—- o’ % c E(:) cosp + -, (5.19)
Furthermore, for the term
1
1+~
appearing in eqn. (4.37) we may write :
1 1
Il + O(h
14+ (1+%)+7 -7 ()
1 Yo
_ _ Lt O(h 5.20a
] B T A (om0
and for the guantity
7 = f(n)
one obtains from eqn. (4.34) :
= fln)
= f(0) + f(0) - + f(0) - 5n* +
1 11,
-~ .p- NP (5.20b)
IR R
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so that in practice the spin - orbit motion can be conveniently calculated to various orders of

approximation in the orbit variables.

If we wish to obtain a symplectic linearised treatment of synchro - betatron motion (in-
cluding SG effects) we expand the Hamiltonian up to second order in the orbit variables.

Then from (5.12) and (5.13) we obtain:

a) For the orbital part fm_b of the Hamiltonian :

Ko = Ko + K1 (5.21)
where Ko and K; are given by:
(3] N 1 _ 1 2 -
z. Ky = 2 71 " —|K.-z+K,-z]. 5
1 Vg ) ]2 [vu 2 ]2
S ) LI H. 0, — 82H.
+2ﬂ3 {[EOP +ﬂ0 z + Eop 1] &
1
+§ﬂ§-{(K2+g)-m2+(xf—g)-zZ—zN-asz}
1 |4
_Eaz. eE(:) h - -i_:~ cos p ; (?.22a)
Vo eV 2 2
— Ky = -0 [— sing — Cy - (K -|-Kz)] (5.22b)
E, E,
-5 c .-z —AB, -]

(constant terms, (L/2wh): (eV/Ep) - cos and (—£2/2), in the Hamiltonian, which have no

influence on the motion have been dropped) .

b) For the spin part f,pm of the Hamiltonian :

I
i3

_G.F
with

Q, = —2H-(1+a)

1
+2H (1 -I—a) ]

Ey* 1+'}’0 PD ¢
Vo G,'}’O
‘f'_ z
Eop 1+ 7 [
Q, = KA, av—(1+ay)- AB,
Po-c
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(5.24a)




~(1+ay)-(N-—H) z—-(K]-g) =

2
a7o o 2
.oH . [_ . H}
+1+’]’0 Egp 'I‘ﬁg #
1 Yo GV(S) . Yo
+—= - |ayo + . - —p.
i [ 2] TR e B
l1+a . €
—[1+ Al -(Az— ABE)-n; (5.24b)
Yo — 1 Po- ¢
Q, = —K,-ay— (14 avo)- AB,
Po-¢€

+1+ay) [(N+H) z— (K +g)- 2]

2
avs ['Uo 9 ]
2H . |—p. — - H
+1 + Yo Eupﬁ Bo *
1 ~Yo eVi(s) . g
—— - |avo + . SINY » —Pg
83 l T %l B, 7 B
l14+a R
+ [1 + 7 -7:/[0] . (Rm =+ e. ABZ) - (5.24c¢)
0 Po-C

(no solenoid field in the bending magnets and in the cavities — K. -H = K. - H =
0; V-H=0).

6 Introduction of an Eight-Dimensional Closed Orbit
and a New Pair of Canonical Variables for Spin

As can be seen from (5.21 - 5.24), the series expansion for forh contains terms linear in

the orbital coordinates and §! contains terms independent of the orbital coordinates. These

and the linear terms can be eliminated by introducing a new 8-dimensional reference orbit.

This orbit can then be used to construct a new reference frame for the spin motion and, as

we show below, it is then possible to introduce new variables to describe the spin which are
canonical and are related to the spin variables used by Chao [10].

6.1 Definition of the Eight-Dimensional Closed Orbit
We begin by defining the 8-dimensional closed orbit:
(%o(s): Jo(s), Pols))
containing a periodic orbital part

=T . oA .
Yw = (‘TD, Pz0: 20, Pz03 Co, p«-:O);
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with
Yo(s +L) = 7o(s) (6.1a)
and a spin part Jo(s),%0(s) which defines (see eqn. (5.3)) a periodic spin vector

Eo(8) = oo~ €r + Loz - € + o, - €,

with
bfs +L) = &fs) (6.1b)
whereby the equations of motion read as:
d 0 = _
s Yo = —8- 8_"0 K(go; %o, Jo; 8) ; (6.2a)
d d d = -
& . S - = 0
g ds EOJ + € ds fﬂm + €, ds 603 Q X go (6.21))
with
0O = Q(g, s) (6.3)
and
S, 0 0 0 1
i = 0 52 0 ) §2 = +1 0 3 (64)
0 0 5,

ie. (Go(s), Jo(s),30(s)) is a periodic solution of the combined equations of motion.
Using £p we can now construct a periodic spin frame (ﬁo, ﬁi,l_) along the closed orbit
(see Appendix B) : |

[fiols + L), (s + L), i{s + L)] = [fio(s), 77i(s), I(s)]

with
Ay = &ofl&ol ; (6.5a)
Ao(s) L 7a(s) L Us); (6.5b)
%M==ﬁ@xh” (6.5¢)
[Ro(s)| = |m{s)| = jl(s)] =1 (6.5d)
and
d = .
— o(s) = 0O x d(s) ; ' (6.6a)
ds ;
%ﬁm :ﬁmxﬂﬂ+mya¢mﬁﬁ (6.6b)
d - =0 - o d )
- ) = QO xlls) = t(s) - = Vpin(s) ; (6.6¢)
Trbapin('s + L) - d‘apin(s) = 2m- Qspin . (67)
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6.2 Canonical Transformations

-

The 8-dimensional closed orbit together with I(s), mi(s) will now be used to construct
new canonical spin - orbit variables. The canonical transformation for orbit and spin will be
carried out separately.

6.2.1 Canonical Transformation for the Spin Variables

To derive the new spin-Hamiltonian, we proceed in two steps:

1) Canonical spin-transformation:

Firstly we follow the method of section (5.1) to transform from the ¢, €, €, basis to the
My, 111, | basis:

gs: E:r-a Ez = Em E'ma 61 . (6'8)

with

rf‘l'}l

= €S'€s+€m'€m+§z'
= én'ﬁ0+§m°7ﬁ+£l'

—
-4
-
l.

(6.9)

Introducing for &,, £m, & canonical variables ¢, J” :

£ = (/€ = (J")? - cos 9" ;
&= /€2 ~ (J")? singp” ; (6.10)

gn:']-nr

eqn. (6.9) becomes a canonical transformation:
LI = gt J" (6.11)

and the new Hamilionian K reads as :

ﬁ(a:, zZ,aq, ¢";pmap27paa J’; ‘5) = forb(xazaa;pmapzapa; 3) + K:spin (612)
with
}aapin(il?,Z,C",’lf)”;pm,pz,pa,J";S)
= {ﬁ(m,z,a;pmpz,pa;s) - ﬁ'(xvzaa;pmpzvpd;s)} ' ( én * ﬁO +£rn - + & ) r) (6'13)
and
- 1 drg dm - dl
N = “ito = S LT —
v 2n0xds+ ds+xds
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= % :ﬁ‘o x (ﬁ(") X ﬁ’o) + m X (ﬁ“’) X 1 4 1 - d_i ’l;bspin('g)) +1x (ﬁ(o) x I — 1 % ¢apin(5))]

_ % :35(0) ~ g+ (7o) — - (GO - 7) — T (G- 1) + (7o + 7o) - % 'nbspin(s)]

= % :36(0) — O 4 273, . % ;b_,,n-n(s)]

= G4 L ) (6.14)
Thus we find:

’C,pin(mg2,03¢"5P1,P2,P05J";5)
= 1600 Ly} (6ot bt T)
ds spin n m
- - . d
= w(wazaa;Pm,PZdes) : [En T+ &m -+ & l_] —&n - ds Yypin($)

= [t (@) 4 (3 8) + & (F-0)] — a2 hin(s)

Tos(8) Nox(8) 7ox(s) w, d
= (&n, &my &) - ( my(s) mg(s) m(s) ) - ( We ) — o oo Yepinls)  (6.15)
L(s) L(s) ILs) w,
where we have introduced for abbreviation the vector
3 = 0-00, (6.16)
This is equivalent to the form for the spin Hamiltonian given by Derbenev [1].
Writing
@ = Wyt Wy €yt w, e, (6.17a)
and

== (6.17b)

L1

we obtain from eqns. (5.24) for the linearised components w,, w,, w,, of the vector & :

1
wy, = +2H-(1+a) - — -9

B3
Vo .  a¥g . €
——0 Pz I\-z - ° A'B:r:
Ey'm 147 Po-c
2
To _ 2% - €
+—5. - R, +— .ABZI : 6.18a
Eup 1+ 7 [ Po-¢C ( )
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we = (L+ay)-[(N—H) & - (K!-g) 2]

2

a7, Vo . 2 -
+ -2H . [— z -Hz]
1 +'}’0 Eop +ﬂo
1 Yo eV(s) . g
+ 5 [ave + . N - ——p,
3 [ ° 1+’70} E, S Eop
l1+a €
— [1 + 2 70} * (Kz - AB:E) 7 ; (618b)
Yo — 1 DPo:c

w. = +H(1l+ay)-(N+H) Z-(K]+g)-3

2
2% Yo . 2 -
o 25, g
+1 v Eﬂp By - Hz
1 ~o eV(s) . Vo L
—— . |a + . F— Dy
B2 l T 70] B, ¥ RSP
1+ ayo ( . e -
+ {1+ | K, 4 AB,] - 6.18
[ 76— 1 } Po-c ) 7 ( )
with (see eqn. (4.33))
~ Vo .
n= Eo *Ds . (619)

With (5.12), (6.12), (6.15) we have the Hamiltonian (up to second order in the orbital
variables) for the canomnical variables

", "
T, Z, Oy V5 Pay Psy Doy J -

2) Introduction of a new pair of canonical spin variables:

We now introduce the spin variables (a, §) defined by:

— 2-(& —J") - cos” ; (6.20a)
B = \J2-(6—J") sine” . (6.20b)
From this definition we have:
B L tany s (8.212)
o
J" = - -;- (o +3%) (6.21h)
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and

&, =
Em:

& =

The latter can be inverted to give:

| The transformation

-
-5 (48

1 1

E'a'\/zf—g(ﬂ“rﬂz);

25 B2 =5 (a4
= + “bm ;

E+€n

TRy
Vere &

H, JH a, ﬂ

i

I can be obtained from the generating function

F(a, ") = 1cr

oF,

O
OF,

- eV

Thus «, 3 are canonical variables.

2 2-ta,n1[)"—§-1,b":

a-tanyp” = 8 ;

—%az . (1 + tan® 1,[)")

From (6.15) and (6.22) we obtain:

N =

ﬁ,pin = (f——a+ ),%

noa nO.’t(S
ma(s) mals)
L(s)  L(s)

[5 0:2 + ﬂz

e N3 T < T3 T ST e 7 dren ¢ e a4 1 h % B b

(6.22a)

(6.22b)

(6.22¢)

(6.23a)

(6.23h)

(6.24)

(6.25a)

(6.25b)
(6.25c¢)




With (5.12), (6.25¢), (6.26) we have the Hamiltonian for the canonical variables

T, z, Oy O Pa, D2y Poy P

Remarks:

1) The values of a and 3 are restricted by the condition :
of 87 <4t = > 6 > €.
2) For
o + 3% < 4t
the correspondence between «,3 and &,,, &n, £ 1s one-one.

3) For

we have:

€n = a'\f?
& =~ ﬁ'\/g-

and in this case our canonical o and 3 behave like the spin-coordinates introduced by Chao
in the SLIM-program [10].
4) For the Poisson-bracket

da 93 B 8P
a,‘pu aJ a7 3,¢,u

{O:, ﬁ}d,u‘_]u =

we obtain from (6.20) :

o 2 -
{a,B}yngn = ["* 2-((-J )-51111’[)]-2. 2-(€_J").51n¢

-2 " ” ,”
- 2.,/2-(£—J")‘cosd’ '[“LVZ'(E_J)'COS"’/ }

= 1.

This relation demonstrates again that « and 3 are canonical variables.

5) The variables o and 3 could already have been introduced at the beginning in the
starting Hamiltonian (2.1). They completely replace ¢ and J.
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6.2.2 Transformation of the orbital Variables

The orbit vector (s) can be separated into two components (see eqn. (6.17b)) :

—,

J(s) = o(s) + 9(s) (6.27)

where the vector ﬁ'(s) describes the synchro-betatron oscillations about the new closed equi-
librium trajectory yo(s) .
The transformation

giof = yia=a f=0. (6-28)
can be obtained from the generating function

Fz(ﬂiaiﬁm; za.ﬁz;aaﬁa;a73;s) = ("T - 1:0) ' (f’m +Pm0) + (Z - ZO) ' (;5: ‘l‘pzﬂ)
+(o = 05) - (Po + poo) + - A+ f(s)  (6.29)

with an arbitrary function f(s). The transformation equations read as:

3F2 - - 6F2
Pz = E = Pz +P.—:0 ] T = 3}.';‘3 = & — Iy ; (630&)
OF: - - OF,
p: = a; = P.+pPo; T = aﬁ: = z — o ; (6.30b)
oF: . - aF.
P = = = Fetpo; & = aﬁ: = 0 -0 (6.30¢)
which reproduce the defining equation (6.27) for ; .
Furth h ith d ) = zo(s) d (s)):
urthermore we have | with - (3) = zols = Peols) )
oF, du dpzo dzo dp:o . day N dpso
ds ds P27 T as BT g ds P77 Tds

- (%) 531

and therefore

K

il
2
+
Ig
<.
3
>,
|
I
oy
o
| @
&
S
&
°
fl
s
I
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= }Corbzt + Kspin

- - - B’Car
’Corbit = K:m‘b —Yy- ( b) ;
oy | .
‘ F=t% ; a=5=0

> > —_ 3]& in
K-:spin = K:sp'in - Y- ( asf )
Y/ g=d i a=p=0

with

For the linearised form of & (see eqn. (6.18)), eqns. (6.26) and (6.32) lead to:

"Csm'n(ia 2,6,00 Doy Pzy Doy B3 8)

(6.32)

(6.33a)

(6.33b)

/--—-..‘\Nl
£ £ €
n B w
e




S+ (] e

and at second order the orbital Hamiltonian K, takes the form, using eqns. (5.21) and

(5.22) :
%";-féo,b(i,z,&;ﬁz,ﬁz,ﬁg;s)
:%-731_1 q — K2+ K. 27
%{ et BH 3]+ [;—Zﬁz—ﬁgﬂ'i]z}
138 {(K2 +9)-# + (K2~ g)- 2 ~ 2N - &)
_%32 e‘;(:) ._h.zf’r.cow | (6.34b)

(the constant terms

d =
(_E . a 1/’81)511(5)) and ’Corb(xo&zﬂs T0; P20y Pz Pso; 5)

in the Hamiltonian (6.34), which have no influence on the motion, have been neglected).

With (6.32), (6.34) we have the Hamiltonian for the canonical variables

&, Z, &, & Pz, Pzs Doy O

and the canonical equations for spin-orbit motion are:

d . K d _ oK
a; r = +a—;5m‘ ; a Pz = —5";'_; ; (6.358.)
d _ oK d . oK
Li S T b T Tar (6.35b)
d . oK d . oK
5 = +3_1_)0; SB= e (6.35¢)
;; a = +g—’;-; di'sﬁ = —g—f : (6.35d)

As in eqn. (5.18) for the orbital motion, we can expand the square root

oo ()]
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appearing in the spin-Hamiltonian (6.34a) in a series :

pi) @] - G G e

so that the spin motion can be conveniently calculated to various orders of approximation.

¥ £ is sufficiently parallel fo 7iy an expression to linear order suffices and the Hamiltonian
(6.34a) becomes:

T3

(3\/?) N (%)} 2 pupinl) (6.37)

and the corresponding canonical equations for o and 3 read :

i (%)

+

o~

e

-

o~

¢

S

.

B

—_—

)

p—

e

N

—

w

e

o
p——n

& &
o e—

+ (i) . di:'s Yypin(8) 3 (6.38a)

d {(8Y _ s
- (—5) = —(mils) mals) mz(s))(wz)

o d
- (ﬁ) ‘ E ¢spin(5) . (638b)

In this form the relations (6.38) are the basic equations for spin motion used in the
computer program SLIM [10,11]. We have thus derived the SLIM-formalism from canonical
equations based on a polynomial expansion of a spin Hamiltonian.

6.2.3 Scale Transformation

In order to eliminate the factors (vo/Es) and A% appearing in the Hamiltonian (6.34), we
define new relative variables :

P o= ﬁzzgg%‘%-ﬁmz‘%; (6.39a)
;o= 7, 1325%;—1-133:%; (6.39b)
5 = &;: po = ﬁlg%-ﬁa = Blgﬁ; (6.39¢)
& E,Blo %‘:J-a-; b= 2 (kg | (6.39d)

Bo\ Eo




(z, Z, & unchanged).

. . . 1
Note that (6.39) is a combination of a scale transformation (using the scale factor ——-)

- 83 Eo
and a canomnical (point-) transformation (involving «, 8 only).
Furthermore, the linearised vector (6.18)
Wy
wm
Wy
in the spin-Hamiltonian (6.34a) can be written as:
[ &
W, T;‘T
We = E (3x6) ° 15 (6'40)
W .
G
\ P/
with
F, = ’Yo *‘1 lﬂz B.’c] ;
Fiy = (Yo —1)- lm+ Bz];
Do~ ¢

F]ﬁ = +2H (1+a :
F21 = —(1+G’YQ)'(N—HI),

Fys = +a(yo—1)-2H ;

2

a
Fao = +(1+ay0)- (K} =)+ ;=265 H' ;

14+~
Yo .
Faq [a’ro+ ) +%] T {s)sin ¢
F‘26 = [ l ( ABI’) 5
Po-C
- a’)’
Fa = —(1+av) (Kitg) =226 H;
Yo
F.o.o = — |ayo+ —Vs sinw ;
32 [0’)’0 1+%l E, (8) L2

Fizs = +{1+ay)- (N+H);
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Introducing now

with

+a(yo —1)-2H ;

a . €
SRR
Yo Po-cC

0 otherwise .

i

orb

Hapin =

d . oM
a:c = +3ﬁz
d . oM
s © T Tap,
d . OH
&7 = Yo,
d . aH
6 T Ta

™

z,

AB,,) ;

1 Vo ~

-—_ . K:

B8 Eo

Hm-b + Hapin
1 Vo ~

S~ = )Cor 3
BiBy
1 o ~

a7 = ICJ in
/33 ED P b

we can rewrite the canonical equations (6.35) in the form:

so that H is the Hamiltonian for the canonical variables

-

s Oy Q5 Py Pzy Poy a.

(6.41)

(6.42)

(6.43a)

(6.43b)

(6.44a)
(6.44b)
(6.44c)

(6.44d)

By expanding the Hamiltonian H in a power series in these variables, we can calculate

To obtain linearised equations of motion we use (6.34b) and (6.37) :

motion are symplectic.

Horb(iafa&;ﬁxaﬁzaﬁd;s)

41

spin-orbit motion in the required order of approximation and be sure that the equations of




+

+

1
2 v

1
_z'ﬁi_[Kz'£+Kz'2]'ﬁa

1
5 e+ H 2" 4 [p. — H - 37"}
1
5-{G1-.€:2+G2-£2—2N-£2}
1., 1 eV(s)

7t — ch-— -cosyp ;
2" "B B, - L v

my(s) Li(s)
\/5- 1 Yo, (Wyy Wy Wg) - ( ma(s) lz(s)
Fo\ Eo mz(s) 1.(s)

1
2 [ +ﬂ ] ds ¢spin(5) )

where we have written for abbreviation:

Gy = Kl+g;
Gz — K:—g.

The corresponding canonical equations take the form :

8

ol

P+ H -2
m,(s)
_;_\/_ % \/7 (Fiz, Faz, Fs2) | mal(s)
0 Ey z(S)
-K:c Pa - H- :.'2] H— G1 g+ Nz
m.(s)
_‘/_ )8 \F Fll: F21) F31) ('5)
0 0 ,5)

p, — H - &
L e m,(s)
-I-\/E' ﬁ‘; ) VEU (Fiay, Faay Fa) ’T’Zj:;

K. po—|po+H |- H-Gy-34+N-&

I

T &
~——

(6.45a)

(6.45b)

(6.46a)
(6.46b)

(6.47a)

(6.47b)

(6.47c)




or in matrix-form:

with

and

An(s) =

" m,(S)
_\/E. 7@% . \/;00 . (F13, F237 F33) ( Zfiz;

1

43

S py — K-8+ K, 2
wF | * | |
"’ ms(s) I4(s
"r\/E: Bl . \/’Ej - (Fiey, Fae, Fis) ( me(s) (s
0 o m(s) L(s
= {%-eV( ) vh- 2_7r -COsSp - b
‘[ \/ﬁ (m,(s) (s
- (F15, Fus, F35) 1(5) lz(S
b VE: (s) Lis
_ m,(s) 'mm(S) ma(s
- +\f (0, 1)( RN
+ﬂ e ¢spin(5) )
L my(s) mals) m.(s
= e ﬁo \/‘0 (110)( Lis) ls) Lis
d,pm (s)
g g
B 3
a6 = (A 2
0 1 H 0 0
(Gy + H*) 0 N H 0
-H G 0 1 0
N _H —(G;+ H?) 0© 0
—K, 0 -k, 0 0
0 0 0 0 LE(GJBL ixh

COs P 0

G s o R RS T 7

(6.47d)

(6.47€)

(6.47f)

(6.47g)

(6.47h)

(6.48)

(6.49)

: (6.50a)




m,(s) L,(s)

20 = Ve g E B e by | oo

$ = . l . 2 . 01 . ms(s) mm(s) mz(s) )
g( ) - \/E ﬂo \/ETU ( -1 0 ) ( 15(3) [m(s) lz(.s) ) F (6.50(3)
D(s) = ( —[1) (1] ) 'dis Yepin(s) - | (6.50d)

Here the matrix B(s) describes the influence of Stern-Gerlach forces on the orbital motion
and the matrix C(s) the influence of orbital motion on the spin motion. The matrices A(s)
and D(s) correspond to the “unperturbed” spin-orbit motion. We emphasize again that the
approximation in (6.45b) can only be used if the spin is almost parallel to 7.

Because the equations of motion {6.46) are linear and homogeneous, the solution can be
written in the form:

(s) | = M(s,50) - | a(so) | - (6.51)
B(s) B(so)

This defines the symplectic 8-dimensional transfer matrix Af(s,sq) of linearised spin-orbit

?(3) 5(30)

motion.

If the matrix B in (6.49) is retained but the matrix C is put to zero, i.e. if SG forces are
included but the effect of orbital motion on spin is neglected, then M will be non-symplectic
and the orbital coordinates in (6.5) can, in principle, grow or shrink indefinitely —at least in
this linearised description.

Another observation is that the matrices B and C serve to couple orbit and spin in a
way analogous to the way that the off diagonal 2 x 2 blocks in solenoid and skew quadrupole
matrices couple z and z motion. In the presence of orbital coupling and near resonance the
7 and z modes exchange energy and, depending on whether the system is at a sum or a dif-
ference resonance, the beam blows up or is stable as energy is exchanged between the modes
indefinitely [26]. It will be interesting to see if analogous phenomena occur in the spin and
orbit coordinates at spin orbit resonances. We will treat this case in another paper.

Remarks:

1) Neglecting the Stern-Gerlach terms coming from the component ?:i,pm the orbital part
(eqns. (6.44a, b, ¢)) of the canonical equations (6.44} can be approximated as:

d a7:2014:» d - aﬂ;rb

o : - — : 6.52
T Tep @k Fra (6.522)
d aﬂorb d N aﬂorb

f = - N —_— . = = - ’ 6r2b
ds i 0p. ds p: 03 (6.52b)
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ia = —|—6’H°"b- LA —f%
ds B Op, = ds Pe = 8¢

(6.52¢)

This canonical system is then separate {and independent) from the spin motion and corre-
sponds to the fully coupled 6-dimensional formalism |2,3].
If the orbit vector

Q>:?’ N)H’E"L

Bo )

is known, we can calculate the spin motion from the equations :

d . H ypin d . OH spin

e B " (6.53)
or

d . at,pm . d _ aﬁ:pin

%= 135 5 &P T TTaa (6.54)

where I&sm-ﬂ is given by eqn. (6.34a). These spin-equations are again in canonical form and
provide a method alternative to that in Ref. [27] for calculating the 7-axis, based on a canon-
ical perturbation technique for investigating the "forced solution” of eqn. (6.53) or (6.54).

2) The perturbation of the orbit motion by SG forces 1s of O(h)-(avy + 1) but the effect of
the orbit on spin of order (ay + 1). The fact that B and C are of similar order of magnitude
is an artefact of the choice of canonical variables.

Note also that the (&, p.), (£, p.), (&, Bo) and (&, 3) phase space areas all have the
dimension of length.

3) The formalism presented here describes the effect of SG forces in all three (z,z,s)
planes. In particular it automatically describes the effect of longitudinal field gradients on
the transverse motion. '

7 Summary

Following earlier works of Yokoya and Derbenev, we have used a classical Hamiltonian in
a fixed Cartesian coordinate system for a spin 1/2 charged particle to investigate a canonical
formalism of spin-orbit motion expressed in machine coordinates, taking into account all kinds
of coupling induced by skew quadrupoles and solenoids (coupling of betatron motion), by a
non-vanishing dispersion in the cavities (synchro-betatron coupling) and by Stern-Gerlach
forces (spin-orbit coupling).

In addition to the well-known orbital variables #, p,, 2, f:, &, p, of the fully coupled
6-dimensional formalism we introduce the canonical variables & and A to describe the spin

motion.
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By expanding the Hamiltonian into a power series in these variables, one may obtain
various orders of approximation for the canomical equations and the canonical structure of
the formalism allows modern techniques such as Lie-algebra, normal forms and differential
algebra to be included in a natural way. For example, the & and 3 variables might simplify
calculation of the 7-axis using normal forms [28,29].

The equations presented in this paper can serve to develop a non-linear, 8-dimensional

(symplectic) tracking program for the combined spin-orbit system.

Such a program may be used to study (in addition to orbital problems) chaotic behaviour
of spin motion and to investigate the influence of Stern-Gerlach forces.

In this paper we have treated motion in a storage ring, i.e. the average energy E; of
the particles is constant. But it is easy to encompass acceleration by cavity fields in this
formalism. For more details see Refs. {30,31].

Finally we remark that, starting from the variables &, p., 2, ., 0, §, &, 8 and using
analytical techniques as described in Refs. [3,32,33] one can also develop an 8-dimensional
dispersion formalism.
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Appendix A: Vector Potentials for various Lenses

Using the freedom to select a gauge, we can choose any vector potential which leads to
the correct form of the fields. Suitable vector potentials are as follows and have been chosen
for their simplicity [2].

A.1 Bending Magnet
Since the design orbit
z(s) =2(5) =0 (A.1)
is a solution of the equations of motion for
§=0; E=E, (A.2)

by definition, the magnetic bending field B{")(s) and B{")(s) is fixed by the curvatures K,
and K, of the design orbit:

£ .BO® = —K.; (A.3a)
Po-¢

 .B® - LK, . (A.3b)

Po-C

The corresponding vector potential can be written as:
1 .

€ 4, = —(1+K.-z+K. 2); (A.4a)

Po-C 2
A, = A.=0. (A.4b)
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A.2 Quadrupole
The quadrupole fields are

OB,

_ Z ( aw )E:Z_D 5 (A"5a)
0B,

= z- ( 52 )mzz:o , (A.5b)

o8B, 1
, = (B_;EH) 5 (zz —.7:2) ; (A.6a)
rz=z=0
A, = A, =0 (A.6b)
We rewrite this as:
Poe' - A, = %g (22 —z%) (A.7a)
with
€ 0B
= . z ) A.7H
PD'C ( am )m=z=0 ( )
A.3 Skew Quadrupole
The fields are
1 OB OB
_ _I. Lt U A8
B. 2 ( 2z oz )m:o s (4.82)
1 OB aB
— —. L z cz. _ A8b
Thus we may use
1 {08 aB
= —- z _ = -rz; A9
! 2 ( oz dr )3:2:0 TES ( 2)
A::: = A: =0 3 (Agb)
and we write :
€ A, = N.zz; {A.10a)
Po-cC
1 € OB aB.
= T _ - ; Al0b
IV 2 pD'C ( aw 8; )m:::U ( )
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A.4 Solenoid Fields

The field components in the current free region are given by [2,34]:

B.(z,2,8) = x+Y baur-(a®+2%); (A.1la)
=0
B.(z,z,5) = =z- Z boysr - {22 + 22) (A.11b)
B,(z,z,5) = Z by, - (2 + 2*)¥ (A.llc)
where for consistency with Maxwell’s equations the coefficients b, obey the recursion equa-
tions:
1 '
byuti(s) “Bora) b3.(s) 5 (A.12a)
1
bri2(s) = T b31(8) ; (A.12b)
(v =0,1,2,...)
and where
bo(s) = B,(0,0,3) . (A.13)

The vector potential leading to the solenoid field of eqn. (A.11) is then:

A (z,z,8) = —2z- Z 2 +2 (2,,)( s)r v ; (A.14a)
i 1

A, — . ———— by, L ; A.14b

(:1:,2,-5) +z !;) (21/ + 2) (2 )(3) r ( )

A(z,z,8) = 0 (A.l4c)

with
7'2 — w2 + 22

Thus we can write :

-1
%Am = —fo-H(s)-z+ gﬁn SH"(s) (2P + )24 (A.15a)
0 .
1
EiA,, = +fo-H(s)-z— P H'(s) - (a* + %) 2+ (A.15b)
o
with
1
H(S) = E . P 'bg(ﬁ) (A16)
= L. .B0,0,9).
2 Po-C
Note that the cyclotron radius for the longitudinal field (A.13) is given by
1
R= S H
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A.5 Dipole

A,=AB, - z—AB, -2

with
AB, = = ZAB&“) -8(s — s,) ; (A.17a)
H
AB.= = S ABW¥.§(s—s,) (A.17b)
— *
so that
[ € I ~ ~
A4, = N b6(s—s,)- |ABW .z — ABW .| . A.18
e e Tl s [AB s a8 ] A

A.6 Cavity Field

For a longitudinal electric field

e, = 0;
£, = 0 ; (A-lg)
g, = €(s,0)
we write:
A, = 0;
A4, = 0; - (A.20)

1 4
A, = — | dé-<(s,5),
B [ d-<(s,5)

which by (4.25) immediately gives ¢,.
Now the cavity field may be represented by

2
e(s,0) = V{(s)sin [h . % co+ 5.9] (A.21)
and we obtain using (A.20):
1 L 27
A,:_B;-zﬂ.h-V(s)-cos h-f-a-l—(,o] , (A.22)

in which the phase ¢ is defined so that the average energy radiated away in the bending
magnets is replaced by the cavities and h is the harmonic number.
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Appendix B: The Periodic Spin Frame (7, 'rﬁ,l_j along the
Closed Orbit

In order to define the periodic spin frame, we first introduce a compact matrix notation.
Rewriting an arbitrary vector

j-':As'é’s‘I“Aw'gz'FAz'é’z

as a column vector with components 4,, 4, A4.:

A,
Aa'€s+Am'Em+Az'€z= Aa:
A,

and defining the derivative of a column vector with respect to the arclength s as the derivative
of the corresponding components A4; but not of the unit vectors :

A
d * . d . d L d
% (A,;) :e,'EA_,-l-eE'ds Am—l-eztds Az
A,
we get from (5.17) and (6.2b) :

d - B .
= £0s) = 9O £Oy) (B.1)
where we have set
- 503
0 = | £. (B.2a)
£0z
and
0 -0 QO
Q%) ={ Q@9 o -0O@ |. (B.2b)
-0 0 0

The transfer matrix M,,;.)(5, 50) for the spin motion defined by

£0)(s) = M (opin)(5550) - £ 9(sq)
satisfies the relationships:

Mf(r;pin)('sa SU) : M(;p‘in)(sj SO) = 1; (B.3a)

det [M_(,pin)(s,.‘jo)] =1 (B3b)

since (with eqn. (B.1))

d
a M(spm)('sasﬂ) = Q.(D)('s) 'M(spin)('s)s()) 3

|b=t

M(mn)(sda s) =

50

. B
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and therefore (with [T = —Q?)

d T
s [Mapfn)(s,so) : M__(,pm](s,sﬂ)] = [Qlﬂ)(s) ‘M(spm)(S,Su)] M yimy(8550)
+MT (s, 30) " [Q(G)(S) 'M(,pm)(éi,so)]

{spin)

+M(1;p'in)(‘5> SD) ) Q(U)(s) i M—(spz"n)(sa'SO)

= M(smn)(s’SD)T : ﬂ(o)(s) ‘ M(spin)(sa So)

det M(s,s9) = det M(sp,80) =1,
i.e. M,pin)($;80) is an orthogonal matrix with determinant 1.

Let us now consider the eigenvalue problem for the revolution matrix M(sq + L,s¢) with
the eigenvalues e, and eigenvectors 7,(s):

M(So + L, 50) 7_"#(30) = Q- 7_'1:(50) ) (B-4)

(r=1, 2, 3).

Because of (B.3a,b) we can write [23,35]:

o = 1,
ay; = e't < 2T - Qapin : (Bs)
as = e v 27 - Qupin :

(Q.pin= real number) -

and
71{s0) = 7ols0); (B.6a)
7(s0) = mho(se) +1-lo(s0) ; (B.6b)
7a(s0) = ﬂao(so)—i'ﬁa(sn); (B.6c)

—

(7o, 7120, lo =real vectors) .
If we require that

i

(normalizing conditions)
we find, using also eqn. (B.3a) [35]:

fio(sa)l = |mol(se)] = llo(so}l = 1; (B.8a)

ﬁg(So) 4 7?'10(30) 1 E}(Sg) . (B.Sb)
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Thus the vectors 7ig(so ), mMo(s0) and l_(‘,(s(,) form an orthogonal system of unit vectors. Choos-
ing the direction of 7y(se) such that

fio(s0) = ho(se) x lo(so) (B.8¢)

these vectors form a right-handed coordinate system.

In this way we have found a coordinate frame for the position s = s,.

An orthogonal system of unit vectors at an arbitrary position s can be defined by applying
the transfer matrix M,,;,)(s, s0) to the vectors fg(s0), mMo(s0) and l-;)(so):

Ao(s) = Mspiny($,50) To(30) ; (B.9a)
Tﬁﬂ(s) = M(spin)(s'.\sﬂ) "ﬁﬂ(sﬂ) 5 (ng)
lo(s) = M (spin)(3,50) lo(s0) - (B.9b)

Because of eqn. (B.3a,b) the orthogonality relations remain unchanged:

fio(s) = tio(s) X Io(s) (B.10a)
mo(s) L Io(s); , (B.10b)
[Fa(s)] = Irio(s)] = Ilo(s)] = 1. (B.10c)

The coordinate frame defined by 7o(s), mo(s) and lo(s) is not yet appropriate for a
description of the spin motion, because it does not transform into itself after one revolution
of the particles:

o(s0 + L) + ilo(so + L) = M{pin)(s0 + Ly o) [io(s0) + ilo(s0)]
= 27T Qupin [Tﬁo(Sa) + 2-[(‘)(30)]
# 1ho(s0) + ol s0)

(if Q.pin # integer).

But by introducing a phase function v,,in(s) and using another orthogonal matrix D(s, s¢):

— Cos[lf)spin(s) - '(»bspin(s())] Sin[¢spin(3) - wsp'i'n(SOH
D(s,%0) = ( — $iD[Wspin(5) — Yopin(50)]  COS[Wapin(8) ~ Yapin(s0)] ) (B.11)

with
DT(s,50)  D(s,80) = 1; (B.12a)}

det [D(s,s0)] =1 (B.12b)

we can construct a periodic orthogonal system of unit vectors from 7y(s), 0(s) and fo(s).
Namely, if we put [35]:




—  ga(s)+ills) = e_i'w’?"'“(‘s)_"'b’m"(‘go)]-{rﬁo(s)-i-ilﬂ;(s)] (B.13)
£ 1io(s0) + tlo(s0)

we find, using eqns. (B.12a, b):

fio(s) = mh(s) x I{s) (B.14a)
m(s) L Is); (B.14b)
Fols) = i) = fils) = 1. (B.14c)
Since
(so+ L) +illso+ L) = oL [Wapin(80 + L) — Yapin(s0)] | [Tﬁ(so) +if(30)]
it follows that the condition of periodicity for 7ig, m and I
(Roy 2, 1) _, ., = (o, 8, I) (B.15)
can indeed be fulfilled if the phase function ,,.(s) satisfies the relationship:
'ﬁbspin(sﬂ + L) - '¢’8pin(5) = 27 - Qupin ; (B.16a)
(Qspin. = spin tune).
For instance we can choose:
d"sp:'n(S) =2r- Qapi'n . : (B.16b)

E .
Taking the derivatives of ni(s) and f(s) with respect to s, and taking into account equs.
(B.13), (B.9), and (B.1) we get

% m(s) = QO(s) m(s)+ ¢ '(s)- I(s) ; (B.17a)
21y = 2Os) )~ '(5) - ts) (B.17b)

and 7ig(s) satisfies (see (B.9a))

d
7 fio(s) = Q'9s) 7Ao(s) . (B.17¢c)
Finally the vectors
F](S) = ﬁo(S) = M_(.spin)(s'}‘s()) 'Fl(SO); (BlSa)
a(s) = TﬁO(S)'i’iEJ(S) = M(pin)(8, 80) T2(s0) (B.18b)
7(s) = mols) — ilo(s) = M spim(s,50) Fa(s0) (B.18c)

are eigenvectors of the revolution matrix M ,,;,, with the same eigenvalues as in (B.5):
M(s+ L,s) 7,(s) = a, - -m,(s) . (B.19)
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Thus, the eigenvalues «, and the quantity Q,,;, defined by eqn. (B.5) are independent of the
chosen initial position sp.

Remark:

In order to solve eqn. (B.1), the 6-dimensional orbit vector i, must be known (see eqn.
(6.3)). This vector can be approximated by neglecting the Stern-Gerlach term

g =

agfo ’C.spin(go; ’l,bo, JO; 3)
in eqn. (6.2a), giving:
d 6 =
L G = =8 Korsldo; s) - .
ds 0 2 5% s(Yo; &) (B.20)

The error in calculating é;;(s) is of order i? which we can neglect at our semiclassical level of
approximation. A solution of (B.1) may then be obtained by using the method of thin-lens
approximation as described in Refs. [10,36).
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