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ABSTRACT

We propose a modified jet evolution equation which resums large cor-
rections to the usual leading legarithmic approximation when phase
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verified at the fourth order level.
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asymptotic behaviour of multiplicities; the clustering of final
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1. - INTRODUCTION AND QUTLINE OF THE PAPER.
1) ,2}

Hard processes have been computed in perturbative QCD by
techniques that allow a simple resummation of all corrections of the
type (aS(Qz)log Qz/Az)nto the Born term. This so-called leading

3)

logarithm approximation (LLA) revealed the validity of a simple

4) (essentially that of the parton model) for

semiclasgsical picture
.describing and relating to one another hard inclusive processes.
A similar result can be obtained for inclusive multiparticle
correlation functions within the jet fragmentation processB). The
above quantities turn out to be insensitive to the infra-red (IR)
structure of the theory, since the leading logs , criginating from
collinear singularities , have coefficients which are IR regular
if real and virtual contributions are added. By the Kinoshita-Lee-
NauenbergG)(KLN) theorem, this cancellation is effective provided
the quantity under consideration is totally inclusive in the
emission of coloured quanta.

The above results are accurate up to terms of order uS(QZ),
which decrease to zero for large Q2 because of asymptotic freedom.
Nonetheless, accurate computations of non leading log corrections7)
have shown that they c¢an be numerically large éspecially near the
boundary of phase space. The importance of being able to take into
account these large non leading terms to all orders is then obvious.
Besides, one would like to know if the semiclassical parton-like
picture described above is invalidated by non leading corrections.

In order to understand the origin of these large corrections,
let us consider, as an exampleie+e— annihilation into hadrons or,
more generally, the problem of jet fragmentation. The degradation of
invariant mass and energy from the original wvalue /62 can be

followed perturbatively (in the sense specified above) down to the

appearance of "final" quanta of squared mass Qi as long as
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The fact that final quanta are out of the mass shell implies an

L 1 (1.1)

auvtomatic infra-red (IR) regularization in which Qi acts as the IR
cut-off. Quantities which are singular in Qg are therefore sensi-
tive to the IR structure of the theory. This is the case for several
quantities of physical interest which have been recently

investigated8)'9).

Let us mention, for instance, the large multi-
plicity of final states, the mass spectrum of colour singlet systems
of quarks and gluons (whose average mass turns out to be of the
order of Qo } or the strong damping of all processes in which real
emission of gquanta above Qg is inhibited : e.yg., the quark (Sudakov)

form factor and the behaviour of structure functions near the

phase space boundary (x ~1).

In such cases the real emission of soft coloured guanta is
restricted, and is therefore unable to fully compensate the strong
(reducing) effects of virtual contributions. The outcome is the
appearance of large corrections of the type mentioned above, which,
for instance, affects the behaviour of a structure function near

x=zl1l, in the form:

4 Fl@x) o Ple)g @)f1e (@b bex) o)
d égQL (i.Z)

o(s(Qi) @ca, (4'—)() ~ O/'i) . (1.3)

This indeed happens near the phase space boundary
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A simplified treatment of some of these IR sensitive gquantities
has been recently given in refs. 8) and 9). When applied to the
sudakov form factors, however, such treatment gives results at
variance with those known from more rigorous methodslo)'ll).
In this paper we wish to present a unified and more refihed
approach which is summarized by a simple modification of the

4)

Altarelli-Parisi (AP} equation (and consequently of the jet
calculus rulesS})and which preserves the probabilistic partonic

interpretation mentioned before.

We warn the reader that the proof that the modified AP
evolution equation resums correctly all IR singular contributions
is actually incomplete, i.e. only checked at the leading IR
singularity level. Our conjecture that this is the correct
equation is nevertheless comforted by the fact that we have found

agreement with other approaches, whenever comparablelo)_lz).

Our improved treatment confirms the physical pilcture stemming

8)’9). It actually enhances the strong

from the more naive approach
damping of the (semi) exclusive guantities described above but, as
we shall discuss later, the actual form of the tails of these
stronglydamped (i.e. faster than poWer) exclusive distributions
have probably little physical content. Indeed, when leading
logarithms are subject to such a strong cancellation,it becomes

possible to identify other contributions (e.g. some which are down

by powers) that will become dominant (see Section 6).



To be more specific, both for the Sudakov form factor FCr and

. 1
for the colour singlet mass sPectrum‘*) we shall find expansions of

the type

€+'1

F

where the above series is resummed by our modified evolution

equation.

Similarly, for the moments of structure and fragmentation
functions (EJQ,Q?), QJQ,Q?) at large n (i.e. x + 1) we shall

obtain expressions of the type:

- &? FlQ,e) ~ - LoD ()0
= Z c M£+M-4[z£} %){['g} 9/;:)"'“[44—0[%}}

1

€ e s

fva:f / (l.6)
and we shall be able to resum the series to a simple function of
Q2 and n, which approaches the Sudakov form factor (1.5) for

2,2
n = Q /QO.
The outline of the paper is the following.

In Section 2, starting from the Dyson equation, we obtain an
expression for the quark propagator in a class of axial gauges.
This result is used in Section 3 for deriving the modified AP

equation for ordinary non singlet structure and fragmentaticn

()

A behaviour related to eg.(l.5) is also obtained for the colour-—

connecting distributions introduced in ref. 9).
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functions. From this we obtain the asymptotic form of the Sudakov
form factor and of FEF(Q%QE), fo(Q%Qf). (& few technical points,
as well as the proof of gauge independence of the form factor are
presented in the Appendices).

In Section 4 the preceding analysis is extended to the singlet
case and its implications for multiplicities are worked out.

In Section 5 we turn to the colour structure of jets, by
giving a modified equation for the generating function of multi-
parton spectra. We confirm that final states can be arranged in
colourless clusters with a mass spectrum showing a damping as
strong as the one of the guark form factor. We also show that
guanta belonging to the same colourless cluster have a small

relative momentumnm

These strongly damped contributions are compared with higher
twist effects in Section 6, where some final comments are also made.

In Appendix A we discuss at the two loop level the cancella-
tion of the leading IR singularities needed in order to arrive
at the modified AP eqguation.

In Appendix B we check the gauge independence of the Sudakov

form factor.
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2.- THE QUARK PROPAGATOR AND ITS DYSON EQUATION IN AXIAL GAUGE.

As stated in the introduction, we shall start by computing, at
the leading log level, the fermion propagator S(k) (or rather its
logarithm) in a class of axial gauges.

Besides being a necessary ingredient for constructing evolution
equations of the Altarelli-Parisi type, this calculation also
illustrates the origin of the effects we are looking for as well as
the method and the approximations used to find them.

We shall work in a set of axial gauges defined by

A+n =290 (2.1)
with n a vector in the t-z plane parametrized ag

n = {(a+b,0,0,a-b), with n? = 4ab << 1.

The Dyson-type eguation for Disckz[snl(k)] (equivalent to a
flavour conservation sum rule) is shown in Fig.l together with the
skeleton expansion of the 2-particle irreducible flavour non singlet
kernel K.

As is well knownl)’z)

» the leading log mass singularities are
fully given, in the gauges (2.1), by the first term in Fig.lb which
generates dressed rainbow diagrams. The fact that vertices and

propagators appearing in Fig.l are renormalized is what makes the

running coupling constant
, 177
K Kk?) .’!(19 29# /AZ) )

§ (2.2)

b= (MW, 24 )/ /12T , N~ Soo Mel,

appear for each rung of the rainbow diagrams.

1}=-3)

We shall now repeat the usual analysis , with some more

care, in order to find which is the variable appearing in the
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running coupling constant (2.2) when the fraction z of the momentum
carried by the cut quark line of Fig.la approaches one. We show
that this variable takes indeed a value given by the-kinematical
upper limit on the emitted glucn mass which behaves as 1-z as 2 > 1.
Following the reasoning of ref.1) ,this suggests that the correct
variable to appear in o is k2(l-z). In order to prove this
statement, one should check that no other 1-z dependence is
generated by gauge dependent terms in vertices and propagators.

Such terms enter in the form of logarithms of (k-*n )2/k2n2

which have an infra-red origin (they diverge for k2 -+ 0 at fixed
k” ~ k+n). In order to prove our assertion on the argument of og
one should then check the complete cancellation of all these IR
singularities in the appropriate diagrams. We shall be able to
check this cancellation explicitly only at the leading IR level
(oaslog2 terms), but we conjecture that this will continue to be
true for less singular infra-red diveryences (single logarithms) .
An actual complete check of this conjecture would necessitate the
computation of the non rainbow diagrams generated by the crossed
kernel in Fig.lb, as well as some collinear-non leading terms of
the ladder diagrams.

Let us restrict ourselves for the moment to the planar piece
of the kernel (an elegant way to dispose of the non planar piece
would be to take the large N limit); Then, the r.h.s. of the
equation, represented in Fig.la, can be just written in terms of

the quark and gluon dressed propagators S and Duv and of the guark

gluon vertex T, as
D-‘:ck“ }j&fk,ﬁﬂk") (D;;ck,tg(“')) D/MV(K”) rv {“fkikﬂ)]_

(2.3)



We now define

(2.4)

where we have set to zero the mass of the quark since we work off-

shell. In computing the r.h.s. of the Dyson equation (Fig.la}), the
LAY
dq term in S(k) as well as other contributions to Duv

indicated by dots in eq.(2.4) do not contribute to the LLA since

and T
u

they do not keep the propagator poles needed to generate leading

logs.

We thus find the simplified Dyson equation:

.D;SCMS-,(K) Dire 2 ()

21 - 2, =
~ CF?lfa,((K, *_]___“ [D‘R M]
(2,-,—)4; g e Lt 2
N, 2 2 . 0{ W .
‘[D\}tk"z { r:”? [“uktr/) \_9’_'2:%-)] (2.5)
- Lo « Eg)XT L o oy ] ,



where we have just indicated terms of 0(n2) which become irrelevant

in the limit n2 + 0. Dropping terms in the bracket proportional to

k'z, k"2 which do not contribute to leading logs {strong ordering

1

approximation), we can decompose k" as follows:

‘ ) i
K'= (-2)k ~(4/2—2) < Ty oln) e,
1
! ! (2.€)
K,+ Ky "

K, * If(3

so that the square bracket term in (2.5) can be rewritten as

2
22K + k?’j 1+2z-2 +— #nmlrw}t /'ﬂw + 0{'72)] .
Kﬂ? (2.7)

We can now write

z 2
2 1 1]
Alfkf - 2” O{Klzd()(ﬂz OPZ 9 [L(—- ; _ ...E..—- ) .

(2.8)

In order to perform the dk"2 and the dk'2 integrations, let us
state a general formula we shall exploit also later.
Let us say that we are interested in the leading lecg g? behaviour

of

dq'” Dise [ £04°)] 2 szlq");

ATt r:lf’- 20 c?'

(2.9)
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N
where f(g'?) is a function that has [log (~g'?) type singularities.
q d P

The C(qz) contour is depicted in Fig.2. The phase dependence of

2 ig 2. . . 2 ()
t{g"e™™) on C{(g”) is then a non leading log g~ effect and therefore

T

1 ) 2
0’?'1 Di&c F(q J :AF(_?z)j__ f{.i_l ; ]C[_7z) ,
ql’

27 q’L

clq') (2.10)

or, equivalently,

f’{___ L 9 z ‘: D‘.Jc]c[‘[l) ' ..
0{“]1 [5’{7) (7)] - ?a ’

Moreover, if g(q'z) is a function which is regular inside

C(qz), then analogously, we ohtain

r

1 2 ) . te Z 9’ N (7’1/ z 0
4yt Do (0] <1 S0 B fraly )

C{‘Il} (2.12)

|'|2
By using (2.12) we start now integrating eq.(2.5) over k"“. Its
maximum value is

z

e[ £

%

aax

All functions of k"2 have only logarithmic singularities and we use

*)

f
Correction terms are down by two powers of log, because jﬁpd‘F: o

-
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therefore egs. (2.10}),(2.11) . We obtain, at the leading log level,

j>;£ckz 25 [Fi) ~

N

Diseu g7 k)

4

2L 2/

Ty i ' 2z |
~ o~ e o 2 2, 4+82°-2 |,
~ V4 dw! iz + KY ——

2(2i)} | 37/ K ]
b : 2 2 k' k)

(K!K‘/—["‘Z)(K—_z');klf)Zk//!(,!—z) v
qq ? {(2.14)
R B P | I

} Z ' 1z L
T k
.2
We now notice that the singularity of dg(-(l—z)(kz— E 1 lies

outside the circle C(zk*) (cf. Fig.3) and that I'°  in eq.(2.14)
has no leading singularity in k'2 in the whole region of interest.
This second statement stems from the fact (cf. Appendix A) that the

effective vertex function evaluated in a "collinear" configuration

{i.e., k, =0 if k? is replaced by -k?).
cold z .
Gz, k) s o d k] dy (e 2K,)
W

(Kz, - Kt{ z, - ;<l[r-;)[:—z) ; K,r/ zK, I[r-z)K,,)

(2.15)
has no leading singularity in the variable L = k'z/zkz.
Then eq. (2.12) can be applied in performing the k'z integral.
This implies setting k'2=0 in the arguments of F2 d and

g99 g
2

k'2= k“z (i.e.: its kinematical limit) in 4 . We then find that
q
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vertices and propagators appear in the combination

[-<-2)) d, [-1%) =

2 z

v T ke, mktez) kg, |

4t 1Y ’ | ¥

= Aq [~o<z) G / . (2.16)

We will now argue that it is legitimate to-replace GCOll

in eq.{2.16) by as(kz(luz)). Let us first notice that for =0
fixed 2z the kernel depicted in Fig.lb is the same as for the
gauge invariant non singlet fragmentation function (cf.Section 3).
Then, its complete expression cannot depend on the gauge vector n ,
and therefore on the parameters (KL”] )Z/Kf'\?" = K':; /Kf .
This means that the kg dependent singularities of the various
contributions should eventually cancel . The remaining singular
mass dependence has then an ultraviolet origin, and therefore can
be computed in the kinematical region ki:ﬁ>k” i « In this regime

neglecting the crossed diagrams is justified in LLA, and GCOll in

eqg. (2.15}, thanks to the Ward identitiesl)’z) is just uékz(l-z».

Let us now discuss the actual cancellation of IR divergences.
The leading ones (of %}ogz%znz/(kn)%]type) do not appear in the
{neglected) crossed diagrams of Fig.lb and therefore should cancel
in the expression (2.15) of GCOll. In the Appendix A we show that
this is the case at the one loop level. Non leading IR singularities
(as log kz/k; ) must cancel in a much more complicaﬁed way that
we have not checked explicitly. Indeed, besides GCOll, the

cancellation must involve crossed diagrams we have neglected in the

kernel as well as non strong-ordered iterations of the

[ T T T I T T T TR T P o e T R R TR R TR gy
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ladder. & check of this cancellation is already the absence of

a? (log n)? terms in the two-loop anomalous dimensionsl3), Moreover,

a complete 4th order calculation of the NS structure and fragmenta-

4)

tion functions has been recently performedl (Fig. 4). All singu-

larities for z - 1 of the effective kernel thus found coincide to
this order with the expansion of the simple expression uékz(l-z))P(z)

that we will obtain.

The final equation for the quark propagator is derived from

eq.(2.14) by inserting the decomposition

Slu)s Ak + B X ,
-

f] = (44"44'25),4 ) Aq = d?

(2.17)

RS
I+ A

4
) [07«4)
{2.18)

. 2 .
and using the identification of (2.15) with as(k {1-2})). One finds

e DA DB L e )
2T k’7 P2 27T ?

| dz (.ZZ)(/-J— ‘.‘2% 1+82-% )a(s[kz[4-z))'

g K’V] 4'Z+6[K/:)

(2.19)

2.2 2
where s(k”) = k2/4k//2 = k'n"/4(kn) << 1 and therefore

— ———
—

. -ty ! q ? "‘
_‘OI [-K‘)‘D_‘Rf'_a’q“‘]c Azf?’?{z,e}"‘/s("{"‘!»- A z }0[7/«)

1 om 27 of g Kk
0 } (2.20)
where
H4
%Y 1+z (2.21)
P ze)= c,
3 1-Z + €]
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and use has been made of eg. (2.11).

We obtain thus the result

¥

p: P

' K (1-2)

d {'KI/K;}’:—" -&’}o - f(.f_ dz P? [2,6)0‘/3[ 42)
K

q kll zil—- y

z
(2.22)

where u° is the usual subtraction point, here to be taken of order

2
k
it

>> k2 in order for eq.(2.11) to be valid.

The relation of this result to the (gauge invariant) Sudakov
form factor will be discussed in the next section. We want,
however, to stress immediately that, by expanding oﬁk'%l—zn of
eg.(2.22) in powers of %{k'z)log (l1-z) , a series of the type
discussed in the introduction {eg.(1.5)) is obtained. The
evolution equation (2.20) can be seen as a simple way to resum

that series of large legarithms.

3.- NON SINGLET EVOLUTION EQUATION AND SUDAKOV FORM FACTOR.

The method of embodying IR divergences in the invariant charge
can be easily extended to the parton fragmentation fungtions and,
with some modifications, to the jet calculus |

Let us first consider the flavour non singlet fragmentation
function DNS(Qz,x). Let us recall that DNS(QZ,X) is related in a
standard way to the spin average of a qq forward absorptive part,
in which one of the external masses is fixed at Qi and the other
is integrated between Qé and Q2. It then follows that DNS satisfies

the Bethe-Salpeter eguation represented in Fig.5 where the kernel

is the one of Fig.l1b.
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We parallel the treatment 6f Section 2 by neglecting the
crossed diagrams of Fig.lb which do not contribute to the leading
logarithms (uslog2q2). As before their contribution is important
in order to restore at the single log level the gauge independence

of the effective coupling constant.

The Bethe~Salpeter equation for DNS then reads

Qd (4 D(en) = xd, e 3t g Bt
de? / 1

+ A;(-Kz) _?f_z_ At A" dz Pﬁiw(z ¢)

G <

Ne

Dise o] rf, (6t tet) dale | d T, D7) %)

e [Fm( o )‘}T ahc“[q :
L (3.1

The k‘2,k“2 integrations can now be performed as in Section 2,
and we similarly obtain the invariant charge (2.13) and therefore
the running coupling constant uﬁkz(l—z)).

Equation (3.1) can then be rewritten as

;i‘__ .ZL.#—-— Ll ]
A k) a{g‘,&w[d?( 'D (u,x))

N

9
4
2z § N3 2
dz &<l p™o ) D (e X
z 2T 4 : (3.2)
X

where ng is given in eg.(2.21}. By finally using the virtual
contribution {2.20) in the 1l.h.s. of (3.2) we can define the

generalized Altarelli-Parisi densities
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1
[ {KZ Z) = o(s (1('{1—7.)) P:?(z/ é[kl,})- S[Z—'I)

x é’( A} ) (3.3)

1
/’
I dx ot [K1-x)) ?:?

:!x: (m,x®) = | dz P:?(z, ele,)) o« (KM1-2) (271

with the resulting modified AP equation:

1
Nt q v
4 (x)> L | de T («’z) D (2x) X)),
off;}l(z 2N Z 7

x (3.4)

Since for the non singlet case the kernel is non singular at
z = 0, one can neglect the rescaling k2-+ kzz in eqg. (3.4) which
would only contribute non leading terms. As a result, eg.{(3.4) can

be diagonalized by going to the usual moments and gives
T

N3 / Je? 7'.:-"
2 n2 ) 1 K Kt

D% (Ql‘oo) - u)o 2 | L It} ([, &%) .

R° (3.5)

o

The cancellation of IR divergences (z -+ 1) is apparent in
(3.3), because -- for n finite -1 (n) is regular for g » 0.
The usual AP density [P(zq , which is k* independent, is
replaced however by [ﬁlkz(itz}) P(z):,+ . The difference is of
course non leading for finite n but becomes relevant for

uékz) leg n ~ 0(1), the case we are interested in

B e L O R I T Iy R TR I L I TR
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(%)

For 1<<n < Qz/Qg we have, in the light-cone gauge

(E(kﬁ)‘—"@)
A
_”_‘{ (m.} Ql) = -"__C_f. dz_ O/S(Qt{l-Z)) + 0[0(3(92)) =
1 T A-Z
0

"

Log, ™ o !
Loty [« z,j‘z;) L 0le (R G

and from (3.5)

N3

D (e0r) = ex)o(

'&
b
s

[ 1< <Qz)

&5
(3.7)

,0)) :
&?:m)

t _-@_l
.a}a -%E(-&w %{E,}Mfzzi)] ;

%y

We can see that the naive large n anomalous dimension contribution

NS

(first exponential in (3.7)} 1is modified by a coefficient Cn which

becomes important for n large. In fact, for a;Qt)Qog:1<< 1, we have

C (w ()) fx;a

n 2n

&/ [Qz)(z.a ) (3.8)

7

which is just the exponentiation of the perturbative result

(x )The reglon n“JQ /Q is given by (3.6) also in gauges for which

£ —k),/Q > Q /Q For €"l< QZ/Q2 the result becomes gauge depen-
dent . The deflnltlon of gauge 1nvar1ant quantities, which in this
case necessarily involve both g and q jets, is discussed below and
in Appendix B.
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In the region n > Qz/Qg . roughly related to l—z<:Qg/Q2,eq(3.6)
is unwarranted due to the fact that the integrand is sensitive to
regions in which a,1s large. The reason for this difficulty is that
for x =+1 DNS(X) becomes essentially of exclusive type (i.e. even
soft gluons cannot be emitted)while physically significant questiohs
should always be inclusive in soft glucons. In fact, besides the
usual energy resclution arguments, we must remember that the iden-
tification of a nearly zerc mass gluon has no meaning in a
confining theory. This proviso must therefore be included also in
the definition of "exclusive" guantities as the guark (Sudakov)
form factor.

In order to understand this point, let us compute the
probability Aq(kz,Qg) that an initial guark with mass k2 emits
only soft gluons in its evolution down to Qg. Soft quanta are
defined as those emitted with a fraction cf momentum (l—z)<:Q§/k2,
where Qi is the scale for which (1.1) holds. In the strong ordering
configuration this includes systems of gluons with masses up to Qé.

Recalling that the emission of an off-ghell gluon implies a
summation over all final states it can give rise to, we see that
the soft gluon emission so defined implies being inclusive in all

hadronic states with square momentum smaller than Qg.

The differential probability of soft gluon emission can then
be obtained from (3.3) as

q

dbysy (i, elel] = | T fetz,el,)) Az _
Ti 1 Sy =

Ja
4 b ! Py (3.9)
B Tj oy fmétw) .
=-| dz o_(s(uhaz))ﬁ? [z €e)) = - | dz F s w [1e(a-2))
ed T a-z S

S L L T T B T B T R s e e W R L R e e e er
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z

‘ K
¢ ) = M ax (G{‘C,,), ?l_:;) / é{“f,} = Z_;,“ (3.10)

4

In the light-cone gauge {k#+ w, £(k) = Qi/kZ) we then obtain

Le K
14 (L z
A, (< al) = wp |- bty et &)l
s k't 1 w
QO
~ b -Ef.(&, K O(S{Q:}__C?ﬁ)
Th 3’ A® Z? oty [ K?) Q; .
(3.1

This quantity is related to the square of the Sudakov form
factor provided we define F;(Qz,Qé) as the probability that a
photon of squared momentum Q2 produces a single energetic q& pair

(xqﬂ4xa n 1) plus an arbitrary number of soft gluons.

In fact, one finds that, in the k'ﬂ « frame, only the quark
or the antiquark (whichever is opposite to the gauge vectorn ) emits

guanta and has, therefore, a non trivial evolution. Hence, we have

2 4 v Le 2 1
Fq(a,@o) = Al ) x4
' {(3.12)
In a general gauge, both g and q emit guanta. We show in Appendix B
how combining both probabilities Aq and Aa the result for Fé
becomes gauge (n) indepen&ent.

By comparing (3.7) with (3.11) we conclude that the quark
fragmentation function in the light-cone gauge reduces to the (gauge

invariant) quantity Fé(QZ,Qg} for n = Q2/Qg_ Morecver, this

discussion shows that the moments (3.3) of the generalized A.P.
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densities L
N e N
-—/—?(M/Kl) =] ldz ¢ [d=z oL f; (z, 5[“,,//‘ (Zﬂ“_4)

1

1
0 1- Qo
E{ {3.13)
consist of two parts, corresponding to the two integration
intervals in (3.13). Only the first part is reliably computed in
the perturbative approach. The second part is negligible for
n g Qz/Qg (1-x > Qg/Qz) but would give a gauge dependent

1%

contribution for n:n>Q2/Q§ if the perturbative expression of akF)
is extrapolated to this region where the gluon concept loses its
meaning.

On the other hand, confinement is expected to generate
hadronic masses, which automatically regularize the =z + 1 singu-~
larity of the perturbativeO%E:?Therefore, QO representing here a
typical hadronic scale, the region ( l—Qg/kZ,l) will give a
negligible contribution to all physical quantities, or in other
words, virtuwal and real gluons compensate in this region because
of hadronization. The fact already mentioned that the region
l-x <« Qé/Q2 is rather unphysical makes this assumption irrelevant
for the single inclusive distribution. However, it is important

for the discussion of the full generating function of Section 4,

because it provides the correct normalization condition.

The resulting expression for the moments becomes
L™
q t

1- 05/ ‘
meta) e L e 27z e (274 =

1- € (k) 7

“ | dz g (Kt(r—z))'fz:?’[z) (Z“.'f)

(3.14)

<

T L R T
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where (k) defined in (3.10) summarizes the gauge dependent and
phase space cutoffs. The corresponding fragmentation function Dn
can be evaluated from (3.14) and (3.5) also for n > QZ/Qé where it
becomes roughly n-independent, and is still given by (3.11).

Therefore, we have, in the light-cone gauge

et el S E(L ), wsE
) (etar) < 1 T
43 | \\\ X 2

Flee) , @7
7 : (3.15})

Note that this expression is of the form F2(Q2,Q§)- f(Q"/n) in
5)

. . 1
acreement with previous arguments .

‘&,

£

Z
°

[\

To summarize, the modification of the AP equation we have
proposed {egs.(3.4), {(3.6), (3.8)) implies:
i) No change in the moments of structure and fragmentation
functions for n finite (non zero) and not too large (asequ<<l)
i) EBEg.(3.7) for 1 <<n < QZ/QOZ, in agreement with other results
and conjectureslz).
iii) The Sudakov form factor 1limit for n 2 Q2/Q§ , with a form
factor falling faster than any power, in agreement with other

1)

1l
analyses .

In this section we explicitly dealt with the timelike kinema--
tics characteristic of jet fragmentation. For structure functions
the appropriate spacelike kinematics makes the evolution go
towards larger |q2| while the momentum is decreased due to
bremsstrahlung. This is the reason why the evolution eguation for
FNS differs from eq. (3.4} for DNS in that F appears in the r.h.s.

with argument kz/z instead of zk2 . Besides, also the rescaling
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in the argument of Og is obtained from that of Section 3 by the
replacement z = 1/z. All this is expected from general arguments
' 6
of analytic continuationl ).
L 2_2 2.2
As a consequence, for finite or large n, aﬁ},Q‘) and QJQ,QO)
have the same form at the leading log level discussed here.
For small n, instead, F and D have a very distinct behaviour,
as expected from the fact that their physical meaning is also
i (X
different. Indeed, as we shall see in the next section, D UQIQ.)
n» .
is related to total jet multiplicities and is computable, while
' )
F (Qjao)is related to the Regge limit of deep inelastic
N-s g

scattering where the perturbation techniques based on strong

ordering become invalid.

Finally, in the case of lepton pair production, the different
dependencelz) of kiax on the Drell-Yan variable 1 has to be taken in-
to account. For largen

. 2
Egq. (3.15) with Doy

(variable conjugated to 1) we find again

DY 7),12)

replacing n, in agreement with other authors

4. GENERALIZATION TO SINGLET DISTRIBUTIONS AND MULTIPLICITIES

The previous analysis can be extended to the full Jjet evolu-
tion, including flavour singlets and colour structure, on the basis
of similar cancellations of IR logs, as in the anomalous dimension

13)
case .

The most important differences in this case are the
occurence of the 3g vertex function, and of gluons of small z's as

intermediate (non emitted) quanta. This means that we have also to

evaluate the combination

|~ gz, -bgllimzhe] NN o] - tes)e’

(4.1)

ﬂ?{‘l
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for small 2z, and of

L

"1
e

for either z-»>0 or z - 1.

() - fax’ - leplti-ehe?)] dope’ claf_zkz) Ay iy

(4.2)

The proof of the absence of (log)2 terms proceeds as before
{Appendix &), and by the same argunments we are led to identify
(4.1) and {4.2) with their U.V.behaviocur. Thanks to the Ward
identities relating T .o to d;l and Lyaq to d;l in the
UV region, we are entitled to replace (4.1} by a(zkz} and (4.2) by
a(zkz) a((1~z)k%/a(k2) = u(z(l—z)kz). This means that in any
case what matters is the smallest gluon mass, oOr eguivalently
k o z(l—z)kz.

By repeating the analysis of Section 2 for the gluon propagator
we then obtain

. _
P 1

a{}(-KLIK;) a4 “P - t‘i‘f; dz PB\(/z,eJ o(s{z(:—z)k'z) ;

ke
% (4.3)

where the virtual gluon probability density ig given in terxrms of the

real emission densities as

v 9
P = 4 P%(?;’z e+ P? (z) (4.4)
¥ 2 T '
Egs.(4.3) and (2.22) then represent the solutiocn of the Dyson
equations for dg, dq in the axial gauge which resum the leading
log k2 singularities. This problem has also been investigated by

7)

other authorsl in order to determine the long distance behaviour
of the theory. In our opinion, however, the singular dependence c¢n
kl‘f/k2 induced by the gauge dependence has no physical relevance

and disappears when ‘'physical" (i.e. gauge invariant) quantities

are computed.
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We have shown this explicitly in Section 3 and in Appendix B
in computing the guark (Sudakov) form factor.

Let us now consider the singlet fragmentation functions. The
generalized A P densities for hard gluon emission -i.e., corres-

ponding to eq. (3.14)~- become

b Lb'

E
”_a (uz’ z, €l = d, [Z(hz)k')Pa 2, elk,)] 2/ !—2—*—/
o . 1- € (1) .
Bz ) = 8lz) 8 | de o [xlexi) Px)
€lu) 4.5
(ab=9,7,4) :
and the evolution equations in the light-cone gauge have the
customary matrix form
4
CJ c 4 e ¢ c 2
2 2
. Da(u,x)zg d= £ YC(VIZ,E;)DJM, 2)
d 4
(4.6)

For 1 < n << Q2/Q§ the moments of (4.6) reduce to the usual
ones, apart from corrections of relative order QJQZ). Important
differences arise instead for 1<<n £ Qz/Qg and for n -+ 0. In
the first case the resummation of corrections (qJQz)fo ’“).};5 for the
gluon evolution yields a fragmentation function analogous to (3.7)
with CF replaced by Cy (only the singularity 2 CA/(l—z) of ngg
matters).

9) that

In the second case (n-30), one has to remember
according to eg.(4.6) the jet squared mass k2 is rescaled in the

evolution, to its kinematical limit zkz. This rescaling cannot be

B R L I B TR T T PP
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neglected for the multiplicity whose evolution equation reads

(n? =0)
, b © -
AW e =2f e T oeie) N (=)

O{[o‘)ul e

( A/b (Qf) - 5: ) _ (4.7)

(2%

In detail, by taking into account the occurence of as(kzz(luz) ), and

)
defining zk2= k'2 whenever Pgb (z} is singular, we get

b 2 b b
21___ N o= __C_ﬂ[.d_‘i (Kﬂ)_{\/b(ud),_[I:,zb-}Lo(Snf?-}Ma; [M‘fM;L

H ? T u'z 5 ?

d

a( © 4 b b
}\/ = _E.f[ fif' (") @ o 3 j (“ZJ )

A%uz ﬁ i u.t O(S A/?(“ ) ({' Q/JM )A/? )

{4.8)
where § = Nf/6'ﬁb.

The asymptotic multiplicity then becomes

L 2
Na( Ql’ Q:) _ ( ,&B B /A |
&(} S/n* n 4

o [\B (e 1]

4
}'E'?’; Le Ce

{4.9)

where a,b = 1 stands for q, and a,b = 2 for gq.
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where
b Y v2d[1e ] SN RIS
A c *
(4.10)
2}

and p differs by 1/2 from the one Previously giveh . The reason is that
since us is evaluated at a smaller mass, the yield of particles
must increase.
Finally, one can obtain the evolution equations for the jet
generating functionsg
-1 e . 0
7 ? 1 "
Golagelfs) =4+ Z [mlaln ]z a (5 )0 iga
a ey R B A ¢, [ TatFi e
fe] ~
{4.11)
Cy-..C
where Da T are the integrated n-particle inclusive distributions.

By using the method of Ref.9) with the replacement

aékz) - aékzz(l—z)) we obtain in the light-cone gauge

% AL / (utols &) s

{4.12)

R A A L NIRRT B e I T PR R AT L L T L O R Rt T R TR R IR
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where Vq was defined in (3.9) and

i— €fie)

\/‘a'(“t, Qo, 6) = o x o, (x (1-x) i?) P; (x) (4.13)

€ (¥

are the virtual emission contributions.

It is important to notice at this point that the cut-off
e (k) = Qg/kzoccurs in the virtual terms (3.9) and {(4.13) because
of the final expression (3.14) for the I's in which real and
virtual gluons compensate for Qi/kz S 1-z » 0. It follows that
eq. (4.12) satisfies the normalization condition Ga= 1 for Za=l
since virtual and real emission phase space correctly match.
This confirms the classical picture of the jet evolution as a
branching process alsoc when the argument of asis modified in order

to incorporate correctly soft effects.

5. COLOUR DISTRIBUTIONS.

In Refs. 8),9)it was shown that final guanta in a hard process
cluster in colour singlet systems with a strongly damped total mass
distribution. This damping was found to be the same as in the
sudakov form factor due to a similar incomplete cancellation of
I.R. divergences. We show that this similarity is preserved by the
present more refined method so that in analogy with eq. (3.11) the

mass distribution of singlet clusters will be damped by a law
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) Ne J&, ol Qy)
mt dg m* Tb ¢ (m?) ,
‘g— T 042 ] Qz X (f:oWV"J s# 9—"—)
AW L >>Qo < m -

(5.1}

A simple way to study the colour distributions of the final
state is to introduce the ceclour connecting distributionsg)
Fz{a=q,g) {Fig.6), which are the inclusive distributions of gquarks
in a guark or gluon jet under the regquirement that a colour line
connects a +to g through the emission of gluons only.

In order to see the conseguences of forbidding gqq emissions
along the colour line, we start by studying the probabilitya)
Ug(Qz,Qé) that a gluon jet produces only gluons in its evolution
down to Qg .

This can be obtained from the generating functions

Ga(Qz,Qi,z ) of eq. (4.11),which satisfy the equations
1-€ (k)

d = Ce dz v ('fi-2) | 1- k(1-2)]| ¥
M}kzcﬁ C, Lol Az gletal [1-¢, )

' _34_ ol () (4- @?) ,

6J J 1- €[} z ]
i Ty G g2 o el [1- € I [+

sl g o)

Ga ( O:; Q: ’ {3}) - S’u . (5.2)

B R L R R Tt T T R R RN T VIR
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In order to forbid guark pairs, one has to be exclusive in the

quark variables and inclusive in the gluons, i.e., one has to set

}q-; ’85:0’ %724 )

Defining l-z = k'2/k2 we get
z
14
6‘ (KZ Q: rz T
i - Jo He g |- A o [&")(4-%/«",&))*
0{Q1¥K- T ?- ot K'®

2 2o - MP K’ 20!
+ % "(s{k) (4-5_3{“,0.:)) fé-%"(;( )6_}(“/9-)._

(5.3)
. . 8) 2 .2 . .

As previously discussed Gg(k ,QO) is driven to zero for
k2>> Qi by the terms proportional to Ng in eg. (5.3). Therefore,
the integral over cg(k'z) in the r.h.s. of (5.3) converges to
a number. The other integral diverges as log q}kz) whereas the
remaining terms are asymptotically vanishing. In conclusion, the

asymptotic solution has the form

L Ne g

Sy (Qz, Of) ~ A (Q}Q.) (QI/Q:)"”" (5.4)
¢ ¥
LC

where, in analogy with Aq of eg.(3.11),
Qt 1- €{K)

LL t
A (&0 = axp |- 4| gz 2, 12) [2l-2]
t L }

Q, € ()

Qz o(,(Q:J _ d
by &, Oy Ly &)

N,
~ ex,p - == . s
b (R .

(5.5)
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and
0o
2
R = i‘fi ol (i) 6—3' (Kj Q:) (5.6)
K

3
£°3 Q?Rt
represents, in a self-consistent way, the real emission contribu-
tion. Taking into account that the gluon Sudakov form factor is
given by A;‘c (as shown for the quark in eq.(3.12)), eq.(5.4)
shows the connection between damping due to forbidding the emission
of quark pairs (Ug(Qz,Qi))andtO forbidding the emission of every
(hard) guantum. Let us also recall that the damping of Gg{QZ,Qg)
was directly relateda) to the damping of the colour singlet cluster
mass spectrum which, therefore, is the one anticipated in eq.({5.1).
This correspondence can be generalized to the colour connecting
distributions Fg - Asymptotically, their moments satisfy the
9)

equations 2

e

-A + A[ du!z ~7 T L3
2 ¢ 't G% f =
A&J" 2T P o (") [, [« ")

n ~

0 1 q z
- Ne ?.,{_.’f— 'E’ a’s(k'z) F} [K.IZ 0 : ,u) {5.7)

i\

(@ o) = BlRlel ) = (0] 0w

(5.8)

in the approximation CF = Nc/2 (large Nc expansion) .

The solution of (5.7) can be given in terms of the integrated

r 2 t
virtual emission probability Vq(k, Q, ;ﬂb/g‘} of eq.(3.9).
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In fact, using the variable x, Eg. (5.7) reads:

a’ / KR <) = 'lﬂ/ k'’ "ot ‘&5:
;TE—O}KZ-{- g F( 109, )- dk ;{_;zlg[ / F(K(Qo/ k’t)'

(5.9

whose sclution is

rlotel ) = 20, (k@2 Ty [x @)+ Ex-dl

{5.10)

where x is the fraction of momentum carried by the quark, which
is colour-connected to the initial antiquark. This x will be
called o in the following.

The asymptotic behaviour of I' 1is therefore again dictated
by the Sudakov form factor Aq with the important rescaling
Q2 - szcc' This means that < x_ > = Qg/Q2 is small for large
Q2. One can verify from eq.(5.10) that this small Xoc region
saturates the sum rule I dx T = 1.

Going to the rest frame of the antiguark directly coupled to
the virtual photon, it is easy to check that the above result
implies that the momentum of the first emitted quark (i.e., colour
connected to the antiguark) is finite. This property can be
extended to any qq pair connected by colour (i.e., belonging to
the same colour singlet). This is just a restatement of the fact

that the singlet average mass 1is finitea)’g).

This conclusion has a counterpart in terms of the space-time

development of QCD jetsla)'lg)

. All quanta in the same colour
singlet cluster spend, in the cluster rest frame, their life-
time of order l/QO in the same region of space alsc of order

l/Qo.
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6. CONCLUSIONS.

Our goal in this paper was to develop a formalism for hard QCD
processes which could also cover regions of phase space (or more
general questions) where the emission of quanta is so inhibited
as to explore the infra-red singularity of the theory.

We argued that this can be achieved in terms of modified evolu-
tion and branching equations (i.e., (3.4), (4.6) and ((5.2)) where the
argument of the running coupling constant is scaled down to account
for phase space restrictions.

The main consequence of this treatment is the prediction of a
very strong (i.e., faster than any power of Qz)damping in quasi-
exclusive processes* such as the large moment (x~+ 1) limit of
structure and fragmentation functions (eg.(3.7)) or the mass spectrum
of final state colour singlets in e'e” annihilation {eq. (5.1)) .

Recalling that all perturbative QCD calculations amount to a
method for resumming large logarithms, it. is clear that the strong
damping we obtained reveals very accurate cancellations.

We are aware of the fact that individually small terms, such
as higher twist contributions (down by powers) could be uncovered
by the strong cancellation of leading contributions.

An interesting example of a situation of this type is offered
by structure functions at large Q2 and at x = 1—Q§/Q2 (with QiaAz).
In this case our result, which resums soft gluon emission (see Fig.
7a) and neglects the spectator parton, gives the damping (3.11). This,
however, is overcome ascf+-w by the exclusive hadronic (possibly
inelastic) form factor which is known to behavezl)as an inverse

power

*similar considerations could apply to inclusive p, spectra for

2 2 2 9),20)
Qo<pl << Q ! .

E e e L R T L T R R T T
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5 g (o -m
Fhadronic (&7 & [ds(ﬂ )] ( /Qj) 7 (6.1)
M,/M-'-‘- 4"2 '

The origin of (6.1) is not hard to understand if one looks at

21)

the relevant diagrams (Fig. 7b). The two hard propagators
(drawn as thick lines in Fig. 7b) lead to an immediate colour
screening and cause the loss of a power of Qz. However, once this
price is paid, the remairning ladder-type radiative corrections act
within low mass colour singlets and produce no further damping.
These kinematical configurations with a few propagators of large
q2 fixed at O(Qz) were not included in our treatment because
strongly non leading (i.e. equivalent to higher twists in the
operator product expansion) .

In order to have an idea of the value of Q2, say 62, at which
the contribution (6.1) starts to overcome ours we can equate (3.11)

with the square of (6.1) (taken for simplicity with n=0, m=1) and

solve for 6

R o |
!
?X}D a'__+ - BOJ' °(°_z - L&ﬁ? = '-'Uz
L b o, (R%) q, Q
(6.2)
where of EgXS(Qg). Eq(6.2) becomes easily
4 C/o
i - ]2 o
« (2] {Q Cp o(s(Q")
giving approximately ZFL)
e oy epr g
&, < ()T
A ‘ (6.4)

The above result suggests that, even if the tail of the distribu-

tion (3.11) cannot be trusted, t+the fact that the distribution



34

itself is strongly damped has physical significance.

An  equivalent observation could be made for e+e- -+ hadrons
if one could attach a phenomenological meaning to the concept of a
large mass colour singlet system with a single qa pairs (plus
gluons). Then, if one would look, for instance, at the cross section
for ete” - 2 qg pairs + gluons, our leading log result would
predict formation of one large, one small mass cluster with a
damping such as in eq.(5.1). On the other hand one could produce
two-low mass singlets via a time like hadronic form factor and
lose. just a power as in eqg. (6.1) so that this second process
eventually overcomes the other.

In any event the above processes are both negligible fractions
of UT(e+e_ + hadrons) . What we have learned from previous

studiesg)’g)

and confirmed in the present paper is that separation
+ -

of colour is strongly suppressed and that the process e e -+ hadrons

1s entirely saturated as Q2+ ® by channels with an increasing

number of colourless clusters whose average multiplicity grows as

in eq.(4.9) and whose invariant mass remains finite.
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APPENDTIX A

CANCELLATION OF LEADING LOGS IN GCOll

We want to show here that the following combination of vertex
and propagator renormalization functions found in the text

Coet -gf r1z
¢ 1%

. afﬁ fi® e, ) o

kz’ —z;uz, —(h?-)(t-f)tcz/- K. ) .

\ (-2 ) oy (-6-2) %} %u2)

(A.1)

is free of singularities of the form log2 kii/kz. At the same
accuracy level this also establishes its gauge invariance, and
its independence of the parameter g .

Let us first note that such log2 terms come from the
combination of collinear and infra-red singularities in the loop
integrals. By selecting the relevant region of phase space in

2

the intervals where the gluons in the loop are soft, gq =+ 0,

q k —> 0, vwe find the following contributions:
y g ?

a) Quark propagator . From the diagram of Fig.8 we obtain, to

leading order

S -

[ 4—26FT(k)) (3.2)

z

where
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L I 2 » [
(2rf | 19 icf—zm)w'é [77)

quSk,, (A.3)

b) Gluon propagator. We find, from diagram of Fig.9, that the

important vertex contributions are those which conserve helicity
along the hard line (cf. Fig.9p}. There are two of them according
to which gluon in the loop is soft.

Therefore,
2 4
(W) L d ,, 4 _!CA%J:'./__?__
/M

2 .

NI APl 7)0( [k} 2K A°F [9) 2K, e

(k-q]a+:é

IR

k‘ [LZCH‘T(K)/‘ * /7/‘(7" (B.4)

¢) Vertex function. The Feynman diagrams are given in Fig.l0

(ki) 2 b oo e Ttk £ (Tl )
i)

where the last two contributions are from the two diagrams of
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Fig.10¢ corresponding to the two phase space reglon where the
momentum g of the gluon in the loop is soft , and I(kl;kz) is

defined by

z D[L'q zt(:( 0(/”,(3) Zqu

(27)* (g%ie ) [lc-q1% ie] flx,-q)%i€]

iy

I{KMKZ) = ,;3

L X[ A ) sl )

) (Z“")s 91 [kf-— 2141&74—56)(&(:-— 2;.{27.;.;e) W

(A.6)

d) ggg vertex function. The contribution for which the gluon

with momentum ¢ in the loop is soft gives rise to three terms
(cf. Fig.11b)which reproduce the transverse part of the bare
invariants at the opposite vertex (as shown by the helicity
saturation diagrams). For instance, the saturation of the firét

diagram in Figllb gives the spin numerator

T

%/ (k«ukl)h 0{?\?(%4) afﬁ./‘1(x,,) 2k: Jet(7)2k1

which is proportional to the corresponding part of the bare vertex
transverse to kl.
Since there are three possible soft gluons, a straightforward

computation gives

!/'/‘1}‘2. = r/‘f‘duz ( 1+ 5 Ca [I(Kz'-qu « Lk K4)+

1 I(k,tc'z)]) TN (A.7)
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It is easy to show that both :T(k) and I(kl,kz) behave like

2 2
1002 {k.n) when k2 = k.n) s |k2| . We want to prove that
- T’]2k2 4 nz

this singularity cancels in the invariant charge (A.1), in which

. ) 2 z
the vertex function occurs with the mass configuration k1=— k z 3,

2

2 :
5=k (1-2) (1-£),

k
Let us note that, because of the colour factor in {(A.2)}

(A.4) and (A.5), this amounts to show that the combination

I [K" k”;- ;zl(zlzky)— ‘T{k;k#}“' ]-[“'Zki Zk//

(A..8)

. 2
and analogous ones for kl, k2 etc, do not contain log” terms.
For instance, the combination (A.8) gives rise by (A.6) and (a.3)

to integrals of the type

3—L a[z‘f sl p X ~ 5 ) /. l(,,z
arf | 191 (<EegP)petagr)  Lq7) iy T }G‘w
(91 ¢ 1, (A.9)

where Pu = (P,0,P) in the large P limit, and any explicit =z

dependence drops out automatically.

In theintegrand of eq. (3.%9) there is a double collinear
singularity which is however cancelled by the k2 factor in the
numerator, thus proving our assertion at the double log level.

Similar results hold for the combination kl,k and K, Kz N

2
The overall 13 dependence is such that leading singularities at

£ =0 (£=1) are killed by factors of £ {(1-f£). This shows that

. 2 2
the cut in kl , k2

contribute to GCOll at leading log level.

of the collinear vertex function does not

Finally, by applying exactly the same arguments to the triple

gluon vertex (A.7) and to (A.4) we can extend the cancellation of

R T P P S N TR T SIA PR RN PR
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(log)2 terms to

(A.10)

y :

APPENDTIX B

The gauge invariance of the result {(3.11) can be checked by
generalizing to our case with a moving coupling constant the
DDT analysis of the renormalized e.m. vertex

It is clear from Fig.l2 that

z

2 . 2 2 z ¢
F% = [;q? (@4, Q) 4, "”‘) ”{?/'&’k’”) O/Ei_m‘”k“’

(B.1)

where Tan contains the OCD radiative corrections to the quark
e.m. vertex, and dq is given by (2.22) except that £ (Kﬁ}is
replaced by e(k) in order to allow soft‘emission up to Qo'
Since, at (log)2 accuracy,Pqujj;not infrared singular in
the "small" masses, i.e.,
¢ 2 T ] {71 LR R 4
r‘;’-'fﬁ (Q,'Q\,,'Q,; Ly Muz) v Y43 ( q, Q, (2/‘ Wya, KHZ)/

(B.2)

we can use the invariant charge relationship for the latter to get
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Fleer) v 4y leal k) Ao (el k)
{(B.3)
where
7 -1 2 2
Dgleser ) o ol (g ,) d e n) =
| .
= op [_ LRV P o €le))
L(L | q‘ ¢ .
Q: (B.4)

In a planar gauge with n =(a+b,0,a-b) and in the ¢.m. system
we have

€ (k) Max [;; ) i{) (5.5)

where €2= b/a and the longitudinal momentum of k is positive
(k3= Q/2). When k points in the opposite direction (k3=—Q/2) in
eq. (B.5) we have to replace 52 + 1/&2.

A straightforward computation of eq.(B.4) with ¢ (k) given in

eq. (B.5) then leads to the following results:

a) £ > Q/QO. In this range of gauge parameters the result for

A,is the same as for the light-cone gauge (& - =), i.e.,

G %
b R

QZ
bt |

(B.6)

_ 7 A_(Q‘,Q:: CF 0, Q
"a’ ﬂ ) T ?{A'- t‘?

On the other hand, it 157frivial to see that for & < Q/QO we get

&q=l, corresponding to the absence of emission from the guark with

positive longitudinal momentum nearly parallel to the gauge vector n,

R e R R R R T T L T e T
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by QO/Q < E < Q/QO. In this range of § ‘there is a non-

trivial gauge dependence:

- by B, (80 )

%L{}&Q 2?"‘*(0) fo ], (%ﬂdgu),(“)

oLs (@ g")

&aA 2"5[} &?f (Q/z &6;0] / (“?('g;),(é)

(B.7)

°F “r

Let us note the difference — + ——  in eqg. (B.6) and
mh 21b

eq.{B.7). This is important for the gauge invariance of the

result. In fact, one has, in the c.m. frame,

z 2 2 2
X, = Q;z b, = Q/g': (B.8)

/ flz

and therefore, by (B.3),

~2(:.?7F,’= &}A (0, 5)- &A 99,‘?#
%A;C(afaf)

where the last identity follows trivially from (B.7b) by exchanging
£ -+ 1/FE . We conclude that (3.11) , {3.12} hold for any gauge

of this class.
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FIGURE CAPTIONS

Dyson equation for the inverse propagator and skeleton

expansion of the flavour non singlet kernel.
Integration contour C(qz) for eq. (2.9).

Integration contour for eq.(2.14). The branch point at
zk 2 is the one of dg and possible non leading singulari-
ties of T are dashed.

e aqg
Fourth order graphs important for the large n behaviour
in the planar gauge.

Bethe-Salpeter equation for DNS.

Graphical representation for the distribution of qg
within a colour singlet cluster. The black dot represents
single parton distribution, half-black dots represent
colour connecting distributions with a selection against

q& emission from the open side. The sum 3' is

restricted to (bc,c,} = (qqg), (agq)and (ggg).

(a} structure function at large Q2 and x = l—Qé/Q2 and
(b) hadronic form factor.
Thick internal lines in Fig. (b) indicate the two hard

propagators.

Second order correction for the quark propagator.

T ) T T TR T R R R L L T T T T T R T e ey R T



Fig.10:

Fig.11:

Fig.l2:
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Second orxder correction for the gluon propagator. Dashed
lines indicate the saturation of Lorentz indices at the
ggg vertex. Fig.(b) indicates the relevant saturation

at the double log level in the phase space of soft g.

Second order corrections for the ggg vertex. Dashed lines
indicate the saturation of Lorentz indices of the. ggg
vertex. Fig. (b) indicates the relevant saturation in the

double log phase space region of soft g.

Second order correction for the ggg vertex,Fig. (b)
indicates the saturation of Lorentz indices contributing
to double log in the phase space region of the soft
gluon with momentum g. This saturation reproduces the
transverse part of the invariants at the vertex of the
gluon of momentum k opposite to the soft gluon with

momentum J.

Electromagnetic form factor of the gquark.
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