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last term in (2.B.17), after an integration by parts and use of (2.A.10) and (2.A.11), is seen to
equal

p / eF tr (9710ig-0j)) = =k f tr (97 Bog-97 " Bigrgr 05gr)

K - - -
'gjeaﬂﬁrtf (gflaagfgflaﬂg‘rgrla‘fgf)
X
—81:'2}:./111(9?)
x -
d ,
= —Swzn'd—_r/wo(gf) .
x

Thus eiGe~iCv ="e~27a1(#.9) where

a1(p,9) = —;—ﬂ,/x{tr (2082991 + 9™ 1997 Bag) } +41m]xw°(g) (2.B.19)
and (2.B.15) becomes

(2.B.18)

il

Ulg)¥(p) = e~2mion(@id) g(p?) . (2.B.20)
The last term in (2.B.19), which appears also in the 1-cocycle of topologically massive gauge
theories [see (2.A.20b)], is muitivalued for the same reason.
The Gauss law constraint (2.B.10) requires that physical states ¥(y) be left unchanged by
the action of U(g), since the generator annihilates them.

U(9)¥(p) = ¥») (2.B.21)

Therefore in this theory, as in topologicaily massive gauge theories, functionals describing physical
states are not gauge invariant; rather, according to (2.8.20), they satisfy

T(p?) = D Y(g) . (2.B.22)

Only when 47x is an integer can this condition be met with single-valued functionals.

As indicated eariier, it is generally true that when a symmetric theory is described by a
Lagrangian that changes by a total time derivative under a finite symmetry transformation,
L—=L+ -;‘;21ra, the 1-cocycle is just a, evaluated at fixed time. To verify this for the Chern—
Simons theory, we must cast the Lagrangian in phase space form: the kinetic term should
involve pg, i.e. KA3A? rather than Se'i A7 A2. This is achieved by subtracting x4 tr (A1 As2)
from (2.B.3). .

ECS = Lcs — ﬁ',(-‘:; f .tr (A1 Az) (2.B.23)

Then from (2.A.8), (2.A.9), (2.A.10) and (2.A.11) it follows that Lcs transforms as
Los = Los
d ;s -
+ Ei”[{ tr (e"a.'g g7 A —Bigg T Ar — A1BhggTt — g7 D199 1329)
X

(2.B.24)
+ 81r2w°(g)}

d

= Lcs + (—Eﬁf {— tr (2¢0d2g g~! +g-13199_1329) +8n2w’(g)}
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in agreement with the general resuit and with (2.B.19).

We see that the 1-cocycle for the Chern—Simons theory is essentially the same as the one
in(2.A.20) for the topologically massive gauge theory, once differences in polarization are taken
into account: in the former there is a single field variable ¢* = A, while the latter is described
by a pair A?, ¢ = 1,2. In particular, the multivalued contribution to each is the same.

Next we construct explicitly states that obey (2.B.22), thus solving the Gauss law constraint.
To this end we write '

U(p) = eZmao(¥)y(p) (2.B.25)

and seek a quantity ag(p), cailed a cochain, that satisfies

ao(p?) ~ aolp) = a1(v; g) (2-3-26)

Then (2.B.25) solves (2.B.22) with gauge invariant ().

If Eq. (2.B.26) hoids the 1-cocycle a; is trivial — it is a coboundary. It is known that a;
is non-trivial in local cohomology, but a spatially non-local functional that trivializes ay can be
constructed. It is easy to verify that

ao(p) = 4”/

x

w(h) — 2% / tr (ph~'&2h) , (2.B.27)
where h is defined by the non-locat relation

@ E h—lalh ) (2328)

solves (2.B.26) and therefore trivialized the cocycle (2.B.19).

It is to be remembered that the multivalued contribution to the trivializing functional
(2.B.27) is related to the effective action of chiral fermions coupled to an external gauge field in
two [Euclidean] dimensions. This connection arises because the fermion determinant is not gauge
invariant; under a gauge transformation its change is related to the Chern—Simons 1-cocycle.®

The gauge invariant functional () in (2.B.25) is formed solely from ¢ = A,. It must
be constructed from path-ordered exponential integrals of ¢ along z! at fixed z2; e.g. closed
Wilson loops &(C1;2%) = tr Pexp [,  dz'p(z?,z?) where P denctes path ordering. [In two-
dimensional, sourceless electrodynamic; analogous holonomies around closed loops in the single
spatial direction are the only surviving degrees of freedom in the quantized theory; they give rise
to the vacuum angle and probe a possible vacuum electric field.?3] Whether such one-dimensional
closed loops, or other gauge invariant constructions, exist depends on the topology of the two-
dimensional space-like manifold on which the fixed-time canonical formalism is defined. Apart
from this gauge-invariant functional, physical states of the non-Abelian Chern-Simons theory
are given by

() = N e2rice(®) (2.B.29)

where N provides normalization and the other factor is related to the two-dimensional chiral
fermion determinant — a non-local functional, as is normal for a physical wave functional. The
necessary quantization of k, (2.A.14), is again evident: from (2.B.25) and (2.B.29) we see that
ao(y) contains the multi-valued term 47« [ w°(h), which with unquantixed x would render
U(yp) in {2.B.25) or (2.B.29) muiti-valued.

11



Since the Hamiltonian vanishes, the physical states (2.B.25) or (2.B.29) scive the Chern-
Simons theory for all times. It is instructive to demonstrate explicitly that the vector potential
A; acting on the state (2.B.29) is a pure gauge. To exhibit the action of A} = §/irdp® on
T(yp) we need Sao(e)/inép®. This can be found from the .definition (2.B.28), which implies
B1(6h A1) = héph~!, and from the formula (2.B.27) for 2maq, which has the consequence
that §(2ma) = —2k [, tr {B2h h™181(6R h~1)}. Thus

Ax(x)T(p) = %T“%:%%‘I’(‘P) ( 2.B.30a)

= hT (x)8A(x)¥(0) -
Together with (2.B.28)
Ax(x)T(p) = R (X)AHA()¥() (2.8.30b)

the desired result is obtained.
AT(p) = h=18;h(p) (2.B.30¢)

The wave-functional (2.8.29) has y-independent norm {N |2, hence it cannot be normlized
by [funcitonal] integration over . This is to be expected of states that satisfy Gauss’ law,
because the Gauss law operator has a continuous spectrum. The resolution of course is that
the integration measure Dy must be gauge fixed — &(ip) is a natural choice leading to trivial
integrals. - '

Note that it is possible to formulate the theory in terms of a gauge invariant, spatially
non-local Lagrangian. From (2.B.24) it follows that the gauge transform of Lcs(A) is

= - d
Lcs(A%) = Los(4) + 2mau(#i9) - (2.B.31a)

With (2.B.26), this can be presented as

= d < d
Lcs(Ag) - E21rao(cp9) = Lcs(A) - Ezﬁ'ao(fp) (2.B.31b)
This means that the equivalent Lagrangian
invariant T d
Ligeent(4) = Los(4) - J2re(#)
< )
= Lcs(4) —2m ] ¢“3§Lj'il (2.B.31c)
x ¥
= —2x ] tr (A2 — h18zh) An
x

is invariant against time-independent gauge transformations (h9 = hg). In (2.B.31c), h=16h
is the non-local functional of ¢ = A, defined by (2.B.28); Az - h=18,h does not vanish here,
only when acting on physical states.

12



The same resuits may be presented in the holomorphic representation, wherein states are
functionals of a complex function 4% and A%* = % (A¢ —1A3) is realized by multiplication by

A?* while A% = % (Af +1A$) acts by functional differentiation.

T) — B(4) (2.8.322)
A (3)|) — A%(x)T(A) (2.8.32b)
A*(x)|0) — Af(z) ¥(A) (2.B.32)

This action reproduces the commutator between A and A*.
a wb 1 ab
[A%(x), A*(y)] = ~8%6(x~y) (2.B.33)

The adjoint relationship between the two operators is maintained, provided inner products involve
a non-trivial measure in the functional integral

(T1|T,) = / DADA" e~ Ju A4 g 4y, 4) (2.B.34a)

where
DADA* = DAY DA;/ det(2i) (2.B.34b)

A development paralleling the previous discussion in the Cartesian polarization results in a wave
functional in the holomorphic polarization analogous to (2.B.27) and (2.B.28).

U(A) = NV e2mioa(4) (2.B.352).
ao(A) = 2= f tr (AR™104h) + drx f &O(h) (2.B.35b)

Here % is defined through |
A=r"10_h (2.B.36)

and 0+ = \—}; (81 £1:82). The multivalued phase is of course encountered once again, while

the integration measure exp —x fx A" A® insures convergence of the functional integrals — no
further gauge fixing is needed.

We conclude this presentation of the quantum Chern—Simons theory by noting that the
Gauss law constraint is here solved after quantization. One may alternatively solve it classically,
and quantize the remaining degrees of freedom. In general the two procedures do not commute,
as is seen from the following example.?d

Consider the quantum mechanics for planar motion of a point particle described by the
two-vector q = (g*, ¢?). The Lagrangian

L=24-V(g (2.B.37)

[N
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is invariant under rotations through the angle 4,
§¢' = -0 g (2.B.38)

when V(g) depends only on the magnitude of q. Here q' is a function of time ¢, and the
overdot denotes differentiation with respect to t. However, 8 is time-independent — the rotation
in (2.B.38) is “global.” In the usual way, one knows that invariance under (2.B.38) implies
conservation of angular momentum J = q x p, where p = % = ¢, and the familiar Hamiltonian
operator for fixed angular momentum £ is

B2 &#  R( -
H=—5 g3+ (

2 or 2r?
[We temporarily restore Planck’s constant.] One may promote the global symmetry under ro-
tations (2.B.38) to a “local” gauge symmetry by introducing into (2.B.37) a “gauge potential”

a(t),

1) +V(E), r20. (2.B.39)

1, . o :
o = 5 (¢ +aee’) (¢ +ac®") - V(g) (2.B.40)
that transforms under time-dependent rotations.
Sa =0 (2.B.41)

In the Weyl gauge, a = 0, L, coincides with (2.B.37), but now there is an additional constraint
that captures the Lagrangian equation of motion obtained from (2.B.40) by varying a: the
rotation generator J must annihilate physical states, which therefore are only s-states. if the
constraint is solved classically, the classical Hamiltonian for rotationally invariant motion with
vanishing angular momentum is

. 2
Hglassical o 22’: +V(r) , . , (2.B.42a)
whose quantized form, obtained with the naive replacement p2 — —h%d2,
classicat ﬁ’z 62 7
HiZ, -——P ~% 52 + V(r) (2.B.42b)

does not reproduce the quantum s-wave Hamiltonian that survives from (2.B.39) if the constraint
is imposed after quantization.

Himg=-— o + V(r) (2.8.43)

The O(k?) difference between (2.B.42b) and (2.B.43) can be viewed as an ordering ambiguity
ie. (2.B.43) follows from (2.B.42a) if p2 is taken to be —%6,-1‘3,-%:, but without further

information there is no way to justify the “correct” choice. No such ambiguity arises if one
imposes the constraint after quantization. [Henceforth we return h to unity.]

This is not to say that there will always be a discrepancy when phase space is reduced before
or after quantization. For example, in many-body quantum mechanics, the passage to the center-
of-mass rest frame [which may be formulated as a gauge principie for translations®8] produces the
same quantum theory whether it is carried out before or after quantization. Similarly, enforcing
the Gauss law in quantum electrodynamics does not involve ordering ambiguities. It is therefore
surprising that we find non-commutativity of quantization and phase-space reduction already for
the Abelian Chern~Simons theory in flat space, which | shall now describe.

14



C. Abelian Chern—Simons Gauge Theory with Sources

. We begin with the Lagrange density
Los = g-e“ﬁ'VaaAgA-, — A5 (2.C.1)

where j# = (p,]) is the conserved matter current with time-independent charge.

Q= / p(t, x) (2.C.2)

Here the fields are real functions, and the coupling constant is absorbed in the definition of the
current j#. We leave the matter Lagrangian unspecified; indeed we take the current to be an
external, conserved, c-number source. The previous canonical development holds in this theory,
except that the Hamiltonian does not vanish,

H = / Aij (2.C.3)
X
and the Gauss law constraint acquires an inhomogeneous term.
10,4 = —B = %p ' (2.C.4)

This constraint on the magnetic field B implies that particles with charge @ are also flux-tubes
for A-flux, ® = —Q/«, and leads to exotic statistics and angular momentum of the charge- and
" flux-carrying particles.1? ’ f

In contrast to the non-Abelian theory, here the gauge field contribution to the constraint
(2.C.4) is linear, and may be chosen to be the momentum conjugate to a coordinate #. This is
achieved by decomposing A; into its longitudinal and transverse components,

A; =3i9+€ija;13 (2 c5)
ot =9;/V? o
The decomposition (2.C.5) is unique and well-defined provided there are no zero modes of the
two-dimensional Laplacian V2. This we assumme here; indeed, we consider space-time to be
Minkowskian.

The commutation relation (2.B.8) implies that B and @ form a canonical pair.

[6x), B)| = =6%(x - ) (2..6)

In the Schrodinger representation we realize B as a functional derivative with respect to the
coordinate, 8, B = §/iké6. This is the rotationally invariant polarization.
The constraint (2.C.4) reduces to

[%a%5+mm]w=o, @.c.m)

15



and is solved by
B(6;t) = N(¢)exp [—i f pe] o (2.C.8)

where N(t) is a 6-independent, but possibly time-dependent normalization factor. N(t) is then
determined by requiring that ¥(8;¢) satisfies the time-dependent Schrodinger equation.

i0,0(8; ) = [ f jiA,-] W (6;1) (2..9)

Inserting the decomposition (2.C.5) and using the continuity equation for the matter current,
we find

: t
N(t) = exp—% dt’ f p(t', x)i(t',x) , (2.C.10)
0 x
where we have written j* in terms of its Iongitﬁdinal and transverse parts.
it = =815+ €78;j (2.C.11)

N(t) is normalized to 1 at £ = 0. Note that for static matter the state U is an eigenstate of the
Hamiltonian with energy eigenvaiue

E= lfpj . (2.C.12)
k& x

We see that. the theory admits a unique physical state, which in the absence of sources is
described by the wave functional ¥ = 1.

Of course, the above development can alternatively be presented in the Cartesian polar-
ization A1 = ¢, Az = §/ixép, which we used for the non-Abelian theory. In the absence of
external sources, the unique physical state that satisfies Gauss's faw is

1K &
¥o) = New |3 [03e] . (2613
in agreement with (2.B.25), (2.B.27) and (2.B.29). ¥ responds to a gauge transformation by

¥(e%) = ¥(p+01)) = T ENY(y)

2.C.14
ay (g3 A) = 2%] [9032)\ + %&Aaﬂ] ) ( )

in agreement with (2.8.22).
The unitary transformation functional that connects the Cartesian polarization to the rota-
tionally invariant one is

(8lp) = det 1/ (2 32) exp [“‘ / { (a.-a - Z—:fp) gz—‘ (a.-o - %go) - w%j—v,o}] (2.C.15)
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K &
WO =6 =1, Ue)=lit)=New [T [o3]

In the rotationally invariant polarization the physical state, in the absence of external
sources, ¥ = 1, is obviously gauge invariant. This fact realizes the gauge invariant formu-
lation described previously: in the rotationally invariant polarization the Lagrangian, apart from
a total time derivative, is invariant against time-independent gauge transformations.

- . e d ’
fos = [x TR fx BY (2.C.163)

Ligyariant nf Bé (2.C.16b)
x
Finally in the holomorphic polarization (2.8.32) the state of the Abelian theory is
T(A) = N exp g / Ag—+A (2.C.17)

We have already remarked that the Chern-Simons theory may be viewed as the x — oo
limit of the topologically massive model. It is interesting to examine in detail how one theory
passes to the other, and this we can do explicitly for the wave functionals of the Abelian theory.
For £ of (2.A.6a) to pass into Lcs of (2.A.6b} it suffices [in the Abelian case] to rescale the

potential by /% and set « to infinity, with x' remaining as the coefficient of the Chern—Simons
Lagrange density. Performing this limit on the ground state wave functional (2.A.22a) leaves

To(A) — (expi%' f BAL) (exp_%' / AT-AT) (2.C.182)

In terms of complex variables 4 = 715 (A; —iAz) and A* = 715(:41 +1A4;), (2.C.18a) reads

! !
To(A) — exp (1‘2- f Ag—t )exp—% / A*A (2.C.18b)

Comparison with (2.C.17) shows that in the limit, the ground state wave functional of the
topologically massive theory tends to the unique state of the Chern-Simons theory, times the
square root of the measure factor, so that the probability measures correctly pass into each
other.2¢ Other details on this limit can be found in the literature.2

D. Quantum Holonomy

In the Abelian Chern~Simons theory defined on the topologically trivial plane there is very
little structure. Indeed when the constraints are solved before quantization, there is no structure
at all if there are no sources. However, by quantizing first, and computing the quantum holonomy
around closed loops at fixed time, we encounter non-trivial results that show an explicit difference
between solving the constraints before and after quantization.?d

The holonomy operator ®(C) is defined by the parallel transport equation around a closed
planar loop C parametrized by x(7) for v € [0,1], with x{(0) = x(1) = Xo, which serves
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as a marked point on the loop, where we also specify the initial and final unit tangent vectors,
Vo = %(0)/|%(0)] and ¥, = %(1)/|x(1)|, respectively. The marked point is on a smooth segment
of the loop if ¥o = V1; otherwise it is at a cusp with opening angle 7 F cos™! V¢ - V1, where F
refer to opening angles < w and > 7, respectively, and 0 < cos™ ¥ - ¥; < 2.

The equation for the holonomy

[(0r + V(P)]B(C)=0 , V(r)=z&'(r)4i(x(7)) (2.D.1)
is solved at the classical level by the Aharonov—Bohm phase.
1
pelassical _ oxp {z/ dr V('r)} = exp [z/ dz* A,-] (2.D.2)
0 : c
The constraint (2.C.4) in the theory without sources forces A; to be a pure gauge, and therefore
Pelassical — 1 independent of the loop C.

To solve Eq. (2.D.1) at the quantum level we must recall that {A4;(x)], A2(x)] # 0, therefore
[V(7), V()] # 0, and the quantum holonomy operator is given by a path-ordered expression.

&(C) = Pexp [e 4/0 “ar V(r)] (2.D.3)

To determine the action of &(C') on states we first need to undo the path ordering. Since the
commutator [V(7), V(7')] is a c-number, this yields

(C) = exp P-% /0 L dr j; " Vi), V(f')]] exp [i /01 drV(r)]

:.i . frr-i i_;-': 7
= exp |-5- /0 dr /0 s (r)e 53(+)62 (x(r) — x(r ))] (2.D.4)

X exp z /0 ' dr #(7) A, (x(f))]

In our chosen polarization, ®(C') acts on functionals of the “coordinate” 8, and it is therefore
convenient to reorganize (2.D.4) so that the “momentum” B stands on the right. To this end,
we split the operator V(r) into a self-commuting pair

V(r) = W(r) + Va(r)
Vi(r), i(7")] = [Va(), Va(v")] = O (2.D.5)
[Vi(r), Va(7')] = c-number

Splitting the operator-valued exponential in (2.D.4) gives an additional phase, which combines
with the first to yield

#(C) = explirlenp [i [ drao)| exp [i [ arvatr) (.08

v=i Cdr JCA GRS
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With our polanzation

Vi(r) = (130 (x(r) = 38(x(7))

hias 2.D.7)
Va(r) = &'(r)e? 97 B (x(7))

~ becomes
_ 1 1 r ' 8 X t 'J -1 2 !
¥ = "./o. dr/o dr 3t ("9 6° (x(7) — x(77)) (2.D.8a)

where 6;16 is the derivative of the two-dimensional Green's function.

The formula relating 61-_16 to a derivative of tan™! gives an alternative expression for .

I T8 8 2(r)~z¥(r)
T= 21k Jo dT'/.O dr or ar' tan Zi (1) — 21 (') (2.D.8b)

The derivation may be organized differently. We recognize that the phase arising from split-
ting exp [i fol dr V(‘r)] into exp [z' fol d-er(r)] exp [z fol dr Vz(*r)] vanishes because the loop is
closed, leaving for the entire contribution to - just the last quantity in (2.D.4), which arises from
undoing the path-ordering, and which is determined by the polarization-independent [A;, 4;]
commutator.

' 1 r . '
¥ = . [ d'rf dr'z (r)e' £ (1")8? (x(7) — x(7")) (2.D.8c)
2k J, 0
Using the identity 2x6%(r) = ¢/ 3;0; tan™! rZ /r} we can rewrite (2.D.8¢).
1 T.o.f9 8 8 8 1 Z3(7) = (")
1= 4xx Jy d‘rfo dr (51: ar ~ or a'-) tan z(r) — z1(7) (2.D.8d)

Equation (2.D.8¢c) exhibits the elusive nature of 7. Owing to the é-function enforc-
ing x(t) = x(r'), one might conclude that #'(T)e'’i7(7'), and hence v, vanishes. How-
ever, upon closer examination we recognize that the two-dimensional d-function is a prod-
uct of two one-dimensional §-functions, each enforcing the same constraint on the one-
dimensional variables r,7'. Thus the integrand in (2.D.8¢c) involves the ambiguous quantity
#(r)ei 27 (r) ] |21 ()2 ()| 6(r = 7")6(r — '), and in the following a careful analysis is per-
formed to obtain an unambiguous result. But it is aiready clear that ¥ is non-trivial owing to
the continuum properties of space, which give rise to é-functions. In a discretized world with
Kronecker delta's, (2.D.8) does indeed vanish.

Our evaluation of v is based on the following observation. In spite of the singular nature
of (2.D.8c), one can begin with any of the other formulas (2.D.8a), (2.D.8b) and (2.D.8d),
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manipulate finite expressions and arrive at an unambiguous answer for ~. By this procedure, we
shalt derive below the result 1

= A0, - A8, . (2.D.9)

27K 4K
Here A©, is the total angle accumulated at the marked point xo when the loop is traversed by
a vector based at xg,

0r(r) = taa™ T

r=X—Xo0

AO; = 6.(1) - 0,(0) ,

while the quantity A©, is the accumulated angular change in the tangent to the curve.

-1 7'2(_"')_ = tan~] t""2("')

(1) 31(r) (2.D.10b)
AB, = 0,(1) — 6,(0) |

(2.D.10a)

Oy(7) = tan

The evaluation of (2.D.8) that gives (2.D.9) is performed without using regulators. However,
to illustrate the subtlety of (2.D.8) we remark here that if regulators are introduced, for example
by regulating the §-function, and if the regularization preserves the fact that the Green’s function
derivative is odd under interchange of argument, 61-'152(:-: -y) = —61-_162()' — x), so that
aj" §2(0) vanishes, then we again obtain a unique answer that does not depend on the details of
the regularization. However, this answer differs from (2.D.9): v*°¢ = uﬁA@,. the contribution
from the change in the tangent is missing.

We now present the derivation of (2.0.9). In (2.D.8a) or (2.D.8b) the 7 derivative ‘is
interchanged with the 7/ integral. Starting from (2.D.8a) we have ‘

1 r
y== [Larg [ ar )8 ixtr) =)

- %]1 dr ('j:"(‘:")e"-’iaj_l62 (x(r) — x(r')))
" =T (2.D.11a)
—_— __l Pofr Iy ] .—l 2 Tf —Xo
= n/; dr' &'(r")e 871 6% (x(r") — x0)
1
o '/0 dr(ii(r')eija_;l&z(x(r')—x(-r))) -

By expressing the derivative of the Green's functions in terms of the inverse tangent, or aiterna-
tively by beginning with (2.D.8b), we find

1 20,0y _ 2
R R b
21k Jo or ri(r) —zp (2.D.11b)
_ e (L e wzcr')—xzm) 7
21k Jo ar o0 i (") —2(7) ) |pi=r
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[It is easy to see that the same formula emerges if one begins with (2.D.8d), treats the 0,0
contribution as in (2.D.11b) and evaluates the 8.8, contribution by first performing the 7'
integral.] The integrand of the last term in (2.D.11b) is

( 9., :1:2(1")-1:2(1'))

9 ~1 3"2("')
ar! zi(r!) - z1(r)

_16, 1#@
~ 2 8r z{r)

ri=r

and so vy becomes

1 [, 0 xz(é) —22 1 (1. 8 £2(r)
T= %76 Jo Tor Zi(r)—a} dnx _/; ar or t z1(7) (2.D:11¢)

This establishes (2.D.9). [Note that if a regulator had been used for the § function in (2.D.11a),
then the last term of each equation in (2.D.11) would vanish, with natural regulators such that
d7162(0) = 0, leaving, as commented above, for 7**8 just the first term on the right-hand side
of (2.D.11c). A possible regularization would be to retain the kinetic Maxwell term, and then
decouple it by passing with « to infinity. It should be no surprise, in view of earlier discussions
on this limit [see {2.C.18)], that different answers can be obtained. For more discussion, see the
literature.?

The value of 4 depends on the curve, Consider first simple curves, traversed in the counter-
clockwise direction, without self-intersections. For smooth, simple curves, the angle swept out
as the marked point is =, and

1 1
580 = . (2.D.12a)
‘The angular change in the tangent is 2, so
1 1
: mA@v = 2n (2.D.12b)
and therefore :
v=0 (2.D.12¢)

The same results hold if the curve has cusps, provided the marked point is not a cusp.
However, when Xo does lie at a cusp where ¥y # V;, there are shortfalls in the angular traversals
and

1 1 .

ﬁA@, = (1r Fcos™ Vp -01) (2.D.13a)
1 1 . -
311_5&('3., = Tnn (21r Fcos Vo v1) (2.D.13b)
1 1
v = :Fdnr_n cos™ g - ¥y (2.D.13c)

where T refer to opening angles of the cusp < 7 and < T, respectively.

We now discuss loops with intersections. We set the following conventions: the marked
point lies on an outermost smooth segment of the loop, insuring that |AOQ,| = w, regardless
of the number of intersections and cusps, since X; does not lie at any of these exceptional
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points; the parametrization takes the contour through xg in a counterclockwise direction thus
fixing A©, = 7; an intersection is defined by an actual crossing — touching contours are not
intersections; the total number of intersections is v and we do not consider loops with multiple
intersections at the same point.

Only A®, varies with the intersection number v. For v =1, there are two elementary
intersections: the “figure eight” where the two sub-loops are traversed in opposite directions,
o that AO, = 0, and the “nested loop” where the two sub-loops are traversed in the same
direction, with AS, = 4. Loops with higher v can be constructed by superposing in various
ways these two elementary blocks. For a given v, the highest possible value for A©®,, AQT* =
(v + 1)2x, is achieved by superposing like-oriented nested intersections. The lowest possible
value, AGD® = —(v — 1)2m, is obtained by building out of v like-oriented intersections a loop
whose direction has been reversed by a single figure eight intersection. The possible values of
AO,, for fixed v, interpoiate between A@T® and AOF** in steps of 4x. The different allowed
values for A©,, combined with the unique AQ, =, give a table of values for v at fixed v.

m v

, mME€ [—E,e3+1,...,§—1- ”] (2.D.14)

7 2 '3

[
Finally, we return to the fuil holonomy operator, and determine its action on the state
(2.C.8). In our polarization, we have

$(C)¥(8) = expi(C)| exp [i fc dx"a.-e] exp [—i fc da,-"e"fa;lp] ¥(@6) . (2.D.15)

Since the holonomy of the pure gauge 9;6 is trivial, exp [i f da:‘B.-G] = 1. The integral in the
exponent of the last factor is evaluated by Stoke's law and gives ' '

—] dz"e""aj'lp = dxp = Q(C) (2.D.16)
C - Sc

where Q(C) is the total charge contained within the closed curve, with contributions appro-
priately signed if C' is self-intersecting. [For a single point source of charge @ surrounded by
3 counterclockwise loop, Q(C) = @.] Thus the physical state (2.C.8) is an eigenstate of the
holonomy operator with eigenvaiue ¢(C).

#C) = exp (i [0 + tq)) (2.0.17)

[Note that the holonomy operator commutes with the Gauss law operator because it is gauge
invariant, and with the Hamiltonian (2.C.3) if Q(C) is time-independent.]

Since holonomies around closed loops are the only gauge invariant and generally covariant
observables, this shows that the U(1) Chern—Simons theory in Minkowski space is characterized
by the strengths of external charges, and by the vacuum holonomy &Y€), which is missed
when the constraints are imposed before quantization. The vacuum holonomy, which can be
evaluated without regularization, vanishes for simple loops provided the marked point is not at a
cusp; otherwise, it is determined by the opening angie of the cusp. This rich structure is already
present for the U(1) Chern—Simons theory in Minkowski space.
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The gauge structure in the Chern-Simons theory follows closely that of its topologically
massive antecedent: both involve essentially the same cocycle in the action of the gauge group.
However, the behavior of the quantum holonomy @ is quite different. In the latter theory, the
vacuum ground state — for the non-interacting Abelian model, the Gaussian (2.A.22) in A —is
not an eigenstate of @, and the vacuum expectation value of the holonomy operator is infinite.
In the Abelian Chern—Simons theory, the vacuum state — the only state for the source-free
model in Minkowski space — is a @ eigenstate with finite non-trivial eigenvalue, which is not
seen when constraints are solved before quantization.

If expectation values of the holonomy operator in a topologically massive theory are to
possess physical significance, ® must be renormalized and its vacuum value is undefined. Neither
regularization nor renormalization is needed in the Chern—Simons model; indeed since v carries
a rich loop dependence, a universal renormalization cannot remove the effect.

E. Anomalous Statistics and Spin of Charged Particles

We saw earlier that charged particies interacting through a Chern—Simons [Abelian] gauge
field carry flux. This has the consequence that their spin and statistics is modified by the gauge-
field interaction!® — a result which can be established without reference to the detailed nature
of the particle dynamics.?d Here we first show how the holonomy modifies statistics, and that
spin adjusts so that the spin-statistics theorem is preserved. Later, we shall take a point-particle
model for the matter and regain these results in an explicit manner.

Consider two identical particies, each with charge @, and imagine a fixed-time test of
statistics by carrying one particle around the other, corresponding to a double interchange of
the particles. The wave function of the test particle wiil acquire, in'addition to the conventional

statistical factor, the phase
- Pexp [iQf d:c"-A.-] |
c

where C is a loop without self-intersections surrounding the particle.. The state (2.C.8) is an
eigenstate of this operator with eigenvaiue exp [iQ?/x], apart from the vacuum contribution,
which is absent provided the marked point is not at a cusp. The phase acquired by the wave
function under a single interchange of the two particles is half the above, i.e. Q%/2x. Thus
the statistics phase is an observable, whose value satisfies the spin-statistics theorem because
particles in this theory carry anomalous spin S,

2
2x8 = — 2.E.1
4 2« ( )
as we now demonstrate.
Spin fractionization for the charged matter particles is due to the angular momentum of
the gauge field associated with the magnetic flux created by the charged particle. The variation
of the gauge field under an infinitesimal spatial rotation éz* = —€'7 27,

§A; =~ ¥ B Ay - €1 4; (2.E.2)

leaves the Lagrangian corresponding to (2.C.1) invariant, provided the external current j is
rotationally covariant. o o
R+ 757 =0 (2.E.3)
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For the conserved angular momentum aperator we take

J = _gfa,—"e"f {4;, B} . (2.E.4)
J generates the transformation (2.E.2),
6A; = i[J, Ai] (2.E.5)

and commutes with the Hamiltonian (2.C.3) when the current is rotationaily covariant, i.e.,
(2.E.3) is satisfied. Also J is gauge invariant, as is seen by replacing 4; in (2.E.4) by d;A
and B by —p/« according to (2.C.4). When the charge density is spherically symmetric, an
integration by parts yields a vanishing response to the gauge transformation. J is not obtained
from Noether's energy-momentum tensor, rather from the symmetric tensor, which has no pure
gauge field contribution owing to the topological nature of the Chern-Simons term; only the
interaction contributes.

TH = g#Vi%A, — j*AY — jYAH (2.E.6)

J = / elpiTo = / eiinAjp

=—n/e‘jziAjB ,
< -

where (2.C.4) was used. In (2.E.4) the expression is symmetrized to insure Hermiticity; however,

it differs from.(2.E.7) by-a commutator i f, €/78;6%(x — x), which although involving §2(0) can

be set to zero by an integration by parts. [Alternatwely, 8;6%(x) is odd in its argument.]
Consider now the action of J on the state (2.C.8)

Thus we have

(2.E.7)

JE(8) = [ fx e"fz‘A,-p] T(6) = [ pe zt [a,-o - %ejka;lp] T(6) (2.E.8)

The contribution proportional to §;8 vanishes upon an integration by parts for spherically sym-
metric p. This shows that the physical state (2.C.8) is an angular momentum eigenstate with

eigenvalue S.
1/91'3 'p
='27r-ff(,)| )p(tY)
L Y PO Sl i
= pr(t, )[H[x_ylz]p(t,y)
_ @

b)

(2.E.9)

47m

Equation (2.E.9) gives the fractional spin carried by the charged matter particles, and agrees
with previous resuits. S is a sharp observabie, which satisfies the spin statistics relation (2.E.1).
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F. Point-Particles with Abelian Chern-Simons Gauge Fields

A possible model for charged matter consists of point particles.!! The total Lagrangian is

L = Lmatter + Linteraction + Lcs (Q.F.l)
where
L 1 2
matter = pgl mpug(t) (2.F.2a)

N
Linteraction = Z €p (vp(t) -A (ta rp(t)) — Ao (t., rp(t)))

r=1

= - [ 4@

. |
D eui(2)82 (x — rp(t)) = (p(z),i(z))

j* =
r=1
vy = (1,v,) (2.F.2b)
Los=3 /; & Ai(2)A;(z) = & /x Ao(2)B(z) (2.F.20)

We are considering IV point-particles with coordinates rp(t), p=1,..., N, which are the particle
dynamical variables, and vy(t) = ,(t) are the velocities. The masses and charges are mp and
ep, respectively. The second expression for the interaction Lagrangian makes use of the point-
particle current, which is a 6-function. Thus the integral over all space evaluates z = (£,x). the
field point argument of A,(z), at z = (¢, rp(t)). The time component 4, has not been set to
zero.

The {unordered] Euler-Lagrange equations of motion consist of the Lorentz force equation
for the matter variables

My, = ep (E'(r,) + €'/vi B(r,)) (2.F.3a)

and a field-current identity that relates the electromagnetic fields to the matter currents.

Ei(z) = %eij i(2) (2.F.3b)
B(z) = —%p(z) (2.F.3¢)

Point-particle electrodynamics suffers from well-known self-energy problems. Let us observe
that these are absent here. Consider the equation of motion for a single particle, N = 1 and
subscript p suppressed. The force in Eq. (2.F.3a) arises from the electromagnetic fields at the
particle position r; by (2.F.3b) and (2.F.3c) they are given by the charge and current densities
evaluated at x = r. However from (2.F.2b) we see that at x = r there appears the undefined
quantity 6°(r — r) — the density function of a point-particle at its position. Fortunately this
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singular object is multiplied by a factor that va nishes, since according to the field-current identity,
the quantity

E'(x) + €7 B(x) = —Eeij (77(z) - v p(z)) = %eii (v/ —v?) 8% (x — )

vanishes unambiguously; therefore we shall take it to be zero also at x =. In other words the
charge and current densities are regulated by non-singular expressions for the evaluation of the
self-interaction, which is then shown to vanish.

With this prescription, particles interacting through Chern-Simons gauge fields do not ex-
perience self-interactions. Equations (2.F.3) combine to give for the particle coordinates a closed
equation of motion, free from undefined quantities.

mpt, = eij-a’-’- E eq (v —v]) 6(rp —1y) (2.F.4)
7P

The Hamiltonian arising from the Lagrangian (2.F.1) and (2.F.2) is

N
H = Z m,v: + f Ao(z) (kB(z) + p(z)) (2.F.5)
r=1 X

o=

It is recognized that the Lagrange multiplier A9 may be set to zero [by choosing the Wey! gauge]
provided Eq. (2.F.3¢) is imposed as a constraint. Thus the Hamiltonian is just the free particle
one.

N
SRS |

p=1

Although the gauge field is invisible in (2.F.6), its presence is felt in the commutator algebra.

The commutation relations between canonical variables follow in the usual way, except
that vector potentials satisfy the Abelian version of (2.B.8). However, it is useful to present
the algebra in terms of the gauge invariant velocity operator, which occurs in the Hamiltonian,
rather than in terms of the canonical momentum.

aL
Pp= gv_, = mpVp + epA(rp) (2.F.7)

Thus we have from (2.B.8),

[4(x), 47 (¥)] = %eii 82(x - y) (2.F.8)
The particle variables satisfy
[ror3] =0 (2.F.9a)
[r8,mqvl] = i8" 85 (2.F.9b)
[mpv;,mqvg] = iV (6pqch(rq) + %epeqéz(r,, - rq)) (2.F.9¢)

26



The velocity commutator does not vanish; rather it contains terms that arise from: (i) the fact
that v differs from p by A(r), (2.F.7), and p does not commute with A(r) but produces the first
term in the parenthesis of (2.F.9c); also (ii) the vector potentials do not commute, (2.F.8), giving
rise to the second term in parenthesis of (2.F.9¢). There is aiso the nén-vanishing commutator
between velocity and field.

[mpvs, 49(x)] = —%eijep62(x —1,) (2.F.10)

Finally we remind that (2.F.3c) is imposed as a constraint.

Before proceeding with an analysis of the dynamical problem, it is interesting to record the
symmetries of our theory.

First there are the spatial transiation and rotation symmetries, under which the coordinates
and fields change as

61“ = a"
P _ _ (2.F:11)
6A,(t,x) = —a’8;4,(t,x) (translations)

6r = —eiird
§Ao(t,x) = —e’*27 8, Ao(t, x) (2.F.12)
§Ai(t,x) = —e/* 279, Ai(t,x) — €7 4(t,x) (rotations)

The Lagrangian (2.F.1), (2.F.2) is invariant, and the conserved constants of motion are the

momentum P and ang_ular momentum J, respectively.

N |
P =) (mpvy+epA(ry) + n/ AB

p=1 x

N
=) ppt+r / AB (2.F.13)
p=1 x

N
J = Z(rp X (mpvp + ey A(rp))) + n/(x x A)B

=1

N
= rxpy+ n/(x x A)B . (2.F.14)
p=1 x

The second formula in both expressions makes use of the canonical momentum, (2.F.7). The
vector potential, evaluated at x = rp, which is combined with m,v, to form the canonical
momentum, arises from the integration Lagrangian (2.F.2b); the last term in (2.F.13) and
(2.F.14), proportional to «, arises from the Chern~Simons kinetic term.

Let us observe that Ei\;l Ip X Pp possesses integer eigenvalues when acting on single
valued wave functions. Thus point-particles, interacting with gauge fields that are governed by
Chern-Simons dynamics, possess in their angular momentum a contribution additional to the
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usual integer. The extra term is not quantized but is determined by the gauge field and the
Chern—Simons coupling strength «. This is consistent with the results of the external source
analysis, presented earlier, and it will be shown later that in fact there is complete agreement.

Note that for point-particles moving in prescribed eziernal gauge fields [rather than dy-
namical ones), the last term in (2.F.13) and (2.F.14) is missing, and A(r,) is a given function
of rp. Therefore, in the external field problem the angular momentum spectrum comprises the
conventional integers, even though it differs from the kinematical momentum.!?

N N N
Zr,, X Pp = Zr, X MyVyp + Ze,r,, x A(rp)
=1 p=1 p=1

[This point is occasionally confused in the literature.]

in addition to the symmetries under the above spatial transformations, the theory is also
invariant against transformations of time: obviously time translation [t — t + to] is a symmetry
leading to energy [= Hamiltonian] conservation; but there are two further, unexpected time
transformations that leave the action invariant: time dilation [t = At], and time special conformal
transformation [1/t — 1/t + 1/te]. Together, the three form a dynamical SO(2,1) symmetry
group of conformal transformations.f

Infinitesimally we have for these time reparametrizations

ot = —f(1) ' (2.F.15a)
1 translation
flt) = {t dilation (2.F.15b)

L¢2 special conformal transformation

The dynamical variables transform as
b7e5(8) = F(V5(8) — 5 SImS(0) |
5 Ao(t,x) = 8 (F(£)Ao(t, X)) + % f()x - VAg(t,x) — % ft)x - A(t,x) (2.F.16)
5,A% %) = B (FA(E X)) - % FOA®E %) + FB)x - VA, X)

and the Lagrangian changes by a total time derivative. The constants of motion arising from
the three transformations are, respectively

N
1
=3 mpok+ f Ao(kB + p) (2.F.17a)
r=1 x
1 1
D=tH - ZZmr,(r,,-\.rp +Vp Tp)— 3 / x-A(kB+p) (2.F.17b)
p=1 *
1 N .
K=-£H+2AD+= mur; (2.F.17c)
3PP
r=1
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Of course (2.F.17a) coincides with the Hamiltonian of (2.F.5).

Returning now to the dynamical problem, we observe that when the constraint (2.F.3¢) is
imposed, all reference to gauge fields disappears from the equation of motion (2.F.4). Hence,
we can set kB + p to zero throughout, and suppress the gauge degrees of freedom. Therefore,
only the dynamical algebra (2.F.9) is relevant, and now it takes the form

[ri, ] =0 (2.F.18a)
[rh, mqui] = i6Y6,, (2.F.18b)

. ; ) Ei-
[mpv}, mgvi] = z—;((l — 8pg)epeg62(ry — Ty)

— bpq Z epend®(ry — rn)) (2.F.18¢)
nEp

The consistency of these commutation relations is established by realizing the operators through
their action on functions of r,, with r, acting by multiplication, while m,v, is redefined as

. _ J o pd
Mpv, = P}, — €'’ z eq (r ) (2.F.19)
g#p r"‘
with p, acting as —iV,,. .
The symmetry generators (2.F.13), (2.F.14) and (2.F.17) become
N .
P=" myv, - ' S (2.F.20)
N -
J=) 1, xmyv, (2.F.21)
=1
N _
H= 2 Zm,,v: (2.F.22a)
p=1
1 N
r=1
1 N
K=-t'H+2D+5) mpr, (2.F.22¢)
r=1

The presence of the interaction is hidden, but it is in evidence in the commutators (2.F.18)
and in the relation (2.F.19) between canonical momentum and velocity, which implies that the
effective particle Lagrangian is!?

eﬂ'ectwe = Z ( mpv + €pVp * ap) (2F23a)
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: 1 . (rd —ri)
ay(ry,...,rN) = € z eq s

1 ., 8
=—e'— > elnfrp,—r
2tk Ord q%; ¢ lnfrp — 14|
1 & Z
= T om. A eqfpq
21k arp =
Yp — VYq
Bpq = .F,
tan fpq z, —a, (2.F.23b)
Explicitly, (2.F.23a) reads
N N
1 1 (vp —Vq) X (rp —Tg)
Leffective = 3 Zmpvg + Y Z epeq—r |: . I.f . (2.F.24)
p=1 P;dé’ql P q

Note that the angular momentum (2.F.21) is not constructed from the canonical momen-
tum, hence as already remarked, its eigenvalues are non-integral. All the constants of motion
C = P. J. H, D and K generate the appropriate transformations (2.F.11), (2.F.12) and (2.F.16)
upon commutation.

- érp =i {C,.rp] (2.F.25)

In particular, the equation of motion (2.F.4), properly symmetrized, emerges upon commuting
v, with H. Also the SO(2,1) generators satisfy the conformal Lie algebra,

(D,H] = —iH , [D,K]|=iK , [H K]=2D (2.F.26)

which may be presented in the more familiar Cartan basis by forming linear combinations with
the help of a fixed, positive parameter a of time dimensionality

1/1
R=3 (;K + aH) (2.F.27a)
1/1
=3 (;K - aH) (2.F.27b)
Ly =(S+iD) (2.F.27c)

S and D act as non-compact two-dimensional boost generators, while R generates the rotations
that form the compact SO(2) subgroup of SO(2,1).

[R,L+] =L+ (2.F.28a)
Ly, L] =-2R (2.F.28b)

J commutes with the conformal generators; it rotates P in the proper manner.
[7, P*] = i€ P | (2.F.29)
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The momentum commutes with H; the commutators with the remaining conformal generators
are

(D,P| = —%P (2.F.30)

N
(K,P] = —i (tP -3 m,,rp) (2.F.31)

p=1

Equation (2.F.30) shows that the scale dimension of the momentum is 1/2, opposite to that
of the coordinate r,. Since the commutator of two constants of motion is again a constant
of motion, the right-hand side of (2.F.31) shows that center-of-mass motion is free. This is a
consequence of the evident invariance of our theory against Galileo boosts, which are generated
by tP — ZN=1 L

That the generators are indeed constants of motion may be established by use of the formula

dC i ac
& =Rl
It follows from (2.F.32) that all three generators are time-dependent. Note however, D and K
do not commute with the Hamiltonian; their total time derivative vanishes owing to the explicit
time-dependence seen in (2.F.22b) and (2.F.22¢c).

We conclude this discussion of point-particle/Chern-Simons dynamics by recording the
Casimir operator J2 of the SO(2,1) group.

(2.F.32)

TP =R2-S§_D*= %(K’H + HK) - D? - (2.F33)

G. Quantum Dynamics

The Schrodinger equation governing dynamics of particles interacting with Chern—Simons
gauge fields is inferred from (2.F.19), (2.F.22a) and (2.F.23).

i%\l!(t; ry,...,rn) = H¥(t;ry,...,rN) (2.G.1a)
N o1 /1 2
FeY o (39 - era0) (2.G.1b)

The wave function W is single-valued. We may however make use of the formulas in (2.F.23b)
to express a, as a gradient, and remove the interaction in (2.G.1) by redefining the phase of the

wave function.!3

‘I’(l‘h...,l‘N) = eie\I'O(rl,...,rN) (2G2)

N
© = Z Ype9pa (2.G.3a)

pa=l

r<q

= 5% 2.G.3b

Vpq Sy (2.G.3b)
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Then B° satisfies the free Schrodinger equation.

i—a U(t;ry,...,en) = HOEO (01, .., Fn) (2.G.4a)
N 1
0 —-i0 1y 1€ . 72
H = ¢ H% _;::1( 5 pv,p) (2.G.4b)

Even though H? is a sum of one-body Hamiltonians, ¥° cannot be chosen as a simple product
of one-body eigenstates [plane waves] because WO satisfies complicated aperiodicity conditions,
which must hold so that ¥ be singie-valued. Of course T0 is a superposition of plane waves,
however, determining the precise superposition, which when multiplied by ¢'® gives a single-
valued wave function, is a challenging, non-trivial problem that has been solved only for the
two-body case.

The two-body problem is tractable because of the center-of-mass reduction, wherein only the
relative coordinate, r = r; —ry, experiences the interaction, while the center-of-mass coordinate
R= ﬂ‘-lﬂ—:f_ﬁ;ﬁ moves freely. By setting total momentum to zero, the two-body wave function
depends only on r and satisfies

i2u(57) = hy(tiv) (2.G.5)

M is the reduced mass, M~ = m{! + mJ}, and the vector potential ‘a gives rise to a vortex

with flux & = -2

; . i .
@i(r) =~ = = — o0y lnr
=2 50=va0 (2.G.7)
27

r = (rcos8,rsin )
Hence (2.G.5) requires, after the usual separation of time,
P(t;r) = e Fpp(r) (2.G.8)
solving the following eigenvalue problém.
‘Elﬁ (V = ivV6) u(r) = Bpe(r) (2.G.9)
The eigelnfunctions necessarily have theform |
pe(r) = e yi(r) (2.G.10)
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where 13(r), though governed by the free Hamiitonian

RO = =% p e™v? - (2.G.11)
kz

k2
ROYR = Uk E=3 (2.G.12)

is not a conventional plane wave, owing to a non'-trivial boundary condition,
P, 0 = 0) = e~ 2™ pl(r,§ = 27) (2.G.13)

which must be met so that 1 z(r) is single-valued.
Since rotation by 27 corresponds to double exchange of particles, we see that ¥ acquires
a statistics factor —wv = 2 /2x, in agreement with (2.E.1) for e; = e2. Moreover, the [relative]
angular momentum
J=rxMv=rxp-rxa
2 (2.G.14)

indicates that each particle possesses additional spin e?/4xx again in agreement with (2.E.1).
[The angular momentum operator acting on the multi-valued wavefunction 49 is

0 _ —ivly ive _ —iv8l i ivé _5_2_
J'=¢e Jet'" =e 3'396 +21m
T i 88 - 2k i 00

i.e. it is just the angular derivative. Nevertheless, its eigenvalues are non-integral, just as those
of J in (2.G.14), since J® = 1 Z acts on multi-valued functions which satisfy (2.G.13). It
should further be emphasized that, as we have already stated, the reason that J is just r x Mv
and not r x p is because our effective particle theory arises from a dynamical model for the
gauge potential, where the dynamics is governed by the Chern—-Simons term. If the problem
(2.G.5) and (2.G.6) is viewed as describing single particle motion in an ezternally prescribed
gauge potential a(r), then the correct angular momentum is r x p, with integral eigenvalues.!?]

The Schrodinger equation (2.G.5), (2.G.6) and (2.G.7) leads only to scattering, and the scat-
tering amplitude has been obtained long ago by Aharonov and Bohm, and later by Ruijsenaars.14
More recently the problem has re-emerged in the context of planar gravity.’¢. As we shall see,
there too one seeks free solutions with unconventional boundary conditions.

| shall now present the solution, using the gravitational techniques, which have the advan-
tage of giving an explicit wave function, in the form of a contour integral.?f

Ya(r) = }C%e"k(’)"p(z’) (2.G.15)

Here k(z) = (kcosz,ksinz) and it is obvious that 1)(r) satisfies the free equation. That it
also satisfies (2.G.13) requires a special contour C and weight function p, which we now derive,
by considering the scattering problem, the radial equation and the phase shifts.
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The Ansatz uE(r)T is made for ¥g(r) in (2.G.9); j is an arbitrary integer to insure
single valuedness, j = 0, %1, £2,. uE(r) satisfies the radial equation,

1 d d (j —v)?\ 9
and is given by a Bessel function.
why(r) = VMJ|;y (kr) (2.G.17)
The angular momentum of this partial wave is j — v; see (2.G.14). The normalization is fixed

by

/ rdr w(rpuds(r) = 6(E — E') (2.G.18a)
0
and insures

fom dE ui',,(r)qu’(r') = %6(1‘ -r') (2.G.18b)

When the plane wave identity
. m e
efkreosd = Z e"(a"'%)Jj(kr) (2.G.19)
j=—c0
is recalled, we are led to form the scattering solution by
:JO

Ye(r) = i e (5t ) ui(r) N (2.G.20)

j==o0

where the phase shift §; of u/y(r) relative to J;(kr) is identified from their large r asymptotes.

vy i> v
§; = { o [ (2.G.21)
—vE—jr j< [v]

Here the brackets [ ] indicate integer part. The energy independence of the phase shifts is a
consequence of scale invariance.!®
From (2.G.20) and (2.G.21), the wave function is constructed as

l,bE(l‘) \/ 24 Z "(u+J')JJ._y(kr)eij0

7=l (2.G.22)
-15-(u+ ) i70
HE B i
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The sums are performed by using the Schlafli contour representation for the Bessel function.
ilo dz —tkrcosz _izox
Jo(kr) = 'z Tt e (2.G.23)

The Schlafli contour C, begins at z = —3x/2 + ioc, descends to slightly above the real axis,
passes from z = —37/2 +i(0") to z = 7/2 +#(0%) and ascends to z = #/2 + ico. The sums
are now geometric, and give for the two terms in (2.G.22), respectively,

1/2
%L'E(l') (M) f dz -lkrcosa t([u]:'r-{u}z+{u]0) -1

1 + e—-t(:"'o)
2
+ M 1 dz -—:krcosaei([l’]?r-{”}z‘{"le)—1——
27 *2r 1469
1/2
= M\ dz e~ ikreoss i({vjm+{v}s+([v]6) —r (2G.242)
2 ~*or 1 + ei(==9)
1/2
+ M —dz eikrcnsJei(["]""'{”}z"'["]a) _—l"""""
2 L 1+ ei==0)
{v}=v-[y

In passing from the first to the second equality, the change of variables 2 — —~2 is performed in
the first integral. As a consequence, the integration contour for that integral, now called C_,,
becomes the mirror image of the Schlafli contour C,. [C—, starts from 371/2 — ico, ascends to
3w /2 below the real axis, passes to —r/2 and descends to —7/2—i00.] As a further consequence
the integrands of the two contour integrals become identical [we use 7 = g—ilvir),
proceed, contours are shifted: C_, is shifted by =/2 to the left, and C, by 7/2 to right, so that
the vertical portions of both contours are at z = +x. The last step is to redefine the integration
-variable by z = -2/ + 6 — . The 2’ integral now runs over the contour C depicted in Fig. 1a,
and ¢ g(r) is represented by [z’ is renamed ]

A /2 —i{v}s
1|bE‘(l') = (2%) et dz kT cos(z—4) €

o ° l—e—t
12 —ilv)s (2.G.24b)
= M R dz oik(2)r
27 21r 1 — et

[A constant phase factor has been suppressed.] Thus we have derived the representation (2.G.15),
with contour C as in Fig. 1a and p(z) given by

M 1/2 e—i{v}z
L il 2.G.2
= () T (2.6.25)

That ¢ g(r) as given by (2.G.24b) satisfies the free Schrodinger equation is obvious: that
it is single-valued — periodic in 8 with 2r period — is more easily seen in (2.G.24a).
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Imz

—-27T+6

>— Re 2z

(a)
Imz

—— -2 6Tt 1: 16 Re z

(b)

Fig. 1: (a) Integration contour C for the wave function (2.G.24b). The pole at
the origin is avoided. (b) Contour C equivalent to contour C. The pole at the
origin is enclosed, giving rise to the incoming wave. The vertical contours produce
the scattered wave.
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The contour C' avoids the pole in p(z) at z = 0. However, we may alternatively en-
close the pole and replace the contour C' by the three-segmented contour C', depicted in
Fig. 1b. The portion encircling the pole is evaluated by Cauchy’s residue theorem, contributing
(M/2m)!/2ilkroos8+v0); the portions arising from the vertical axes are presented in terms of
real integrals by setting z = § — 27 + iy and z = 8 +iy. Evidently, this separation decomposes
-the total scattering wave function ¥ g(r) into an incoming wave [pole contribution] and the
scattered wave [vertical contour contributions].

MAY2
PE(r) = ( 2—W) ($n(x) + w5 () (2.G.26a)
wiél(r) = gi{krcos 8+v8) (2.G.26b)
ac iy trw oe dy tkr cos e{l’}y
YE(r)=e VI8 givm ginymr [m P k hye-'f-_'-o—_f (2.G.26¢)

The large r asymptote of 13(r) defines the scattering amplitude f{#) through the formula

YE(r) — \/gf(ﬂ)e‘*' (2.G.27)

o0

Although the integral (2.G.26c) for ¥3%(r) cannot be performed, its limit at large r can be
evaluated. The circular wave formula (2.G.27) is found, with scattering amplitude

1 ; sin v '
= —i{v}8 i(v+1/2){8+n)
O g 26

Equations (2.G.26b) and (2.G.28) are essentially the results of Aharonov and Bohm and
Ruijsenaars;'* note especially that the incoming wave is not a plane wave, but is modulated by
the additional phase e?*?.

Since r = r; ~rz, ¢'*(?)'* is 3 product of two plane waves

e =ra) = ok (0 )b (ra)
Pi(r) = k(T (2.G.29)
d’;(l‘) = e-ik(z)-r

Hence the representation (2.G.24b) shows explicitly how products of one-body plane waves are
superposed to form our solution.f

e—t{v}z

12 g
Yip(r) = (g%) %‘g—ﬂ‘lbf(rl)ﬂbf(l‘z)m (2.G.30)

As yet we do not have a similar closed form for the N-body wave function. The problem is
reminiscent of the é-function interaction on a line. There too the many-body wave function is
obtained by superposing one-body wave functions in a fashion prescribed by the Bethe Ansaiz.
Perhaps similar ideas wili prove useful here.
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Finally, we conclude that the two-body relative coordinate problem of course also possesses
the SO(2,1) symmetry, with generators given by the relative coordinate parts of the two-body
generators (2.F.22)

H=(h)= %M& | (2.G.31a)
D=tH~ %M(r-v+v-r) (2.G.31b)
K=—t*H +2tD + %Mr‘z (2.G.31c)

The algebraic properties of these quantities hold as before; now they are based on the dynamical
algebra

[F,ri] =0, [, Mvi}=i6F , [Mv',Mv']=ie2rv§(r) (2.G.32)

The Casimir in (2.F.33) can be expressed in terms of the angular momentum (2.G.14)
7= %(J’ —1) (2.G.33)

Since the eigenvalues of J are j — v, those of J2 are 1 ((j — v)* — 1), and the entire motion
at fixed angular momentum is described by a single, irreducible, unitary and infinite-dimensional
representation of SO(2,1). We have already remarked that the energy independence of the
phase shifts is a consequence of the symmetry. Because of the higher symmetry, the time-
‘dependent Schrédinger equation (2.G.5) can be separated in coordinates other than the usual
time and space. Indeed group thecory may be used to give a complete, aiternative analysis of the
problem . '

3. PLANAR GRAVITY
A. Introduction

The equations for Einstein’s theory of gravity — general relativity — can be presented in
any space-time with dimension d equal to or greater than three: The Einstein tensor

1
G;w = Rp.w - ngR (3A].)
vanishes in the absence of matter sources,
Gnv =0 (3A23)

while in their presence it is proportional to the energy-momentum tensor of matter, T),,.
G = 270G Ty, (3.4.2b)

Here R,, and R are traces of the four-index Riemann tensor Raugy in which all local geo-
metrical information about the space-time is encoded. G is the gravitational coupling constant
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— the generalization to other dimensions of Newton's constant; in (3.A.2b) G enters with an
unconventional normalization that is convenient for the subsequent analysis. The reason that
(3.A.2) cannot be posited in two space-time dimensions is because there G, vanishes identicaily.
[However other geometrical equations have been proposed at d = 2.16]

it is obvious from (3.A.2b) that when space-time is flat, i.e. when the Riemann tensor
vanishes, so also does the Einstein tensor and T, must be zero. In general, the converse does
not hold: absence of matter implies vanishing Einstein tensor, but the Riemann tensor need not
be zero so that empty space-time need not be flat. However, in three dimensions the Riemann
tensor is linearly related to the Einstein tensor,

R3L = €*#7e,5G?, (3.A.3)

so that the vanishing of the latter implies the vanishing of the former: empty space-time is
necessarily locally flat.}”

Several consequences follow immediately: since the vacuum state [empty space-time] is
locally flat, there are no gravitational waves in the classical theory, and upon quantization there
are no quantum gravitons. Sources produce curvature, but only locally at the location in space-
time of the sources. Forces between sources are not mediated by graviton exchange, since there
are no gravitons. Rather interactions arise because the locally flat space-time possesses in the
large non-trivial geometricai and topological structure that gives rise to non-trivial motions. It -
also follows that the non-reiativistic limit of Einstein's general relativity in three-dimensions is
not three-dimensional Newtonian gravity, which involves a conventional force law that decreases
with the inverse power of the distance.

It is the purpose of our research program to study in three-dimensional space-time the
classical and quantum motions of matter that interacts gravitationally.® Since there are no prop-
agating gravitational degrees of freedom, the problem is tractable, and we can learn much about
the puzzles that are encountered when a geometrical theory is confronted by quantum mechan-
ics. In four dimensions these puzzles exist as well, and it is my opinion that understanding
them is important for understanding quantum gravity; a task quite independent of and per-
haps more fundamental than the task of overcoming the unrenormalizable infinities that pollute
four-dimensional gravity, but are absent in three dimensions since non-renormalizable graviton
exchange does not occur. To conclude these introductory remarks, | note the following points.

(a) The theory can be elaborated by adding a cosmological constant to the field equation.
The vacuum is then a space of constant curvature, whose sign depends on the sign of the
cosmological constant. While some investigations of such models have been performed, |
shall not further discussthem here.3¢

(b) Another elaboration ‘of the conventional theory involves adding a topological term, anaio-
gous to the gauge theoretic modification.3® This Chern-Simons addition will be discussed
below.

39



B. Classical Space-Times

We record several interesting space-times that arise from classical sou rces.®® We begin with
a single massive but spinless point-particle. Without loss of generality the particle is taken to
be at rest at the origin of the coordinate system, i.e. it is described by an energy-momentum
tensor all whose components, except the energy density, vanish,

Vdet g, T% = M&(X)6(Y
uw ™ ( 6() (3.B.1)
TO% = T% =
Here M is the particle mass.
The task is to find the metric or equivalently to give a formula for the line element. Clearly
it is non-trivial only in its spatial components,

(ds)? = (dt)? — (d¢)? (3.B.2)

and we need to find expressions for (d£)2.

We recognize that we seek a space which is everywhere flat [T# vanishes] except at the
origin where a é-function singularity concentrates the curvature. |t is clear that the desired space
is a cone, with the source particle positioned at the apex.?P: 4417 It remains to give an analyttc
description of this obvious geometrical fact.

To solve the Einstein equation (3.A.2b) with sources given by (3.B.1), it is necessary to
choose a coordinate system, and the conical solution looks different in different coordinates. Of
course only the two-dimensional spatial section needs to be considered.

Particularly useful coordinates, which lend themselves to a many-body generahzatlon are
the conformal ones where the metric tensor is a multiple of the flat metric tensor; this can always
be locally achieved in two dimensions. The conformally flat spatial metric that solves Einstein’s
equation then leads to the following spatial interval.

(&)’ = e ((m)2 + Rz(de)z) | (3.B.3)

Here the variables range over the conventional circles.

0<R< o
- 3.B4
-rT<O<LT ( )
While (3.B.3) certainly provides the desired solution, it does not seem to produce the cone
described earlier. Nor is it manifest that the space is flat except at the origin.
All this can be seen by passing to another coordinate system, attained from (3.B.3) and
(3.B.4) by a change of variables.

Rl—G‘M
"T1-6M (3.B.5)
9 =(1—-GM)®
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In terms of r and @ the spatial metric is flat, and the line-element is trivial.
(dJ_’)2 (dr)? + :n~2(e:1€9)2 (3.B.6)

However, the range of the new variables is unconventional — an angular region is excised, since
according to {3.B.4) the range of (r,8) is

0<r<m

—7(1-GM) <6 < n(1l ~GM) (3.B.7)

This describes a cone, with apex determined by GM. [Henceforth we take GM < 1. For
GM > 1, the space changes character and the description becomes more complicated.®® At
GM =1, it is seen from (3.B.3) that space becomes a cylinder in the variable r = In R ||

In summary, we say that a point particle of mass M at the origin gives rise to a locaily flat
space-time, but the global identification of coordinate variables is unconventional and reveals
the presence of a massive point-particle;- the point (t,r, 8) is identified with

(t,r,8) = (t,r,0+2r(1 — GM) (3.B.8a)
In terms of a complex variable description of the space, z = z + iy, we identify z with
z &g T iTIGM (3.B.8b)

" This is the analog in.planar” grawty of the Schwarzschild solution.

To find the planar analog of the Kerr solution, we endow our polnt-partlcle at the origin with
spin S, i.e. now the energy-mamentum tensor possess non- -trivial energy density and momentum
density, the latter giving rise to no momentum but to angular momentum S.

Vdetg,, T = M&(X)5(Y)
V/det g, T% = | /detg,, T = 5¢79;6(X)5(Y) (3.B.9)
T'lj =10

In the spatially conformal coordinate system, the metric that solves the field equation leads
to a space-time interval, which is non-trivial in time as well as space.

(ds)? = (dt + GSdO)? — RglaM ((dR)z + Rz(d@)z) (3.B.10)

Once again, by a change of variables one may pass to a locally flat space-time, where the presence
of a massive, spinning source is encoded in a non-trivial identification of coordinate variables.
Defining new spatial variables as in (3.B.5) and also a new time variable = by

GS :
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we see that (3.B.10) becomes flat,
(ds)? = (dr)? — (dr)* - r?(d6)? (3.B.12)
but the required identification is
(r,r,0) = (7 + 2xGS,r, 6 + 27(1 — GM)) (3.8.13)

Time is helical, space is conical and there are closed time-like contours.

Note that specifying a solution is equivalent to specifying an element of the 24-1-dimensional
Poincaré group that effects the identification (3.B.13).

The static one-body solution can be generalized to describe N particles located at R, with
masses M; and spins S;, ¢ = 1,...,N.1® One finds in spatially conformal coordinates

X (R—R, . 1
(ds)? = (dt +GY Sag o x dR) -lg—gmm@® @5

i=1 i=1

The passage to locally flat coordinates is effected by first defining a new time r.

(R - Ry) '

N
dr=dt+GY Sime——= xdR (3.B.15)
_ IR — R;|?

i=1

This hides the spins’in complicated identifications ‘on_ 7. To flatten the spatial interval, it is
useful to express it in complex vanables Z = X +:Y, eic.

: (T 1 d 1 _ |
(d&)* = (H m) dZ (H m)_dz (3.B.16)

=1 i=1

Thus the definition

N
1
i=1 :
gives the flat spatial interval
(d€)? = dzdz (3.B.18)

but complicated identifications on the complex plane, which generalize (3.B.8b), reveal the
presence of N particles with masses M;. Unlike in the one-body problem, we cannot express z
as a closed form function of Z, but for most purposes the integral expression suffices,

z , N 1
- / 12 [] gr=gyom (3.B.19)

1=1
and it can be explicitly evaluated in special cases.
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It is easy to show that the above solution also satisfies self-consistently the geodesic
equation.?® Thus a static N-body configuration exists and is stable in three-dimensional space-
time, in contrast to higher dimensions where gravitational attraction would prevent this. This
demonstrates vividly the absence of Newtonian attraction in our theory.

With: point-particle sources, the two-dimensional space is flat, but curvature is concentrated
on a lower-dimensional sub-space: the zero-dimensional collection of points where the particles
are located. One may next consider flat space with curvature concentrated on cne-dimensional
lines; i.e. string sources in the plane, which presumably correspond to domain walls in four-
dimensional space-time, just as points on the plane correspond to strings in four-dimensional
space-time.

When considering strings, it is natural to allow for tension along the string; otherwise the
source is an uninteresting pulvarization of the point-particle — a “dust” string.

In the spinless case the resuits are simple and startling.?!*1® There are no open strings,
only closed ones. A circular source at r = a is described by an energy-momentum tensor whose
nen-vanishing components are

Vdet g, Ty = pé(r — a) (3.B.20a)
Vdet g, T = r§(r — a) (3.B.20b)

Here i and * are mass and stress density/per unit length; the total mass is M = 2ray; for a
relativistic string 7 = 4. The momentum density and the other stress components vanish. With
this source the space-time interval in conformally flat spatial coordinates is

(1 —27Garln 2) (dt)? — (2)° ((dr)? +r*(d6)?) r2a

. (ds)? = { (3.B.21)
(dt)? = (dr)? — r¥(d8)? r<a

The exterior spatial interval also reads (daln f)z + (ad§)?, which is a half-cylinder of radius

a extending from infinity to r = a, where it is capped by the flat disk of the r < a region.

Moreover, the total mass M = 2mrau is given by G™1, so that '

GM =1 (3.8.22)

We have seen earlier that for point-particles obeying (3.B.22) the space is a cylinder; here
(3.B.22) is always obeyed for spinless strings under tension and the space is a capped cylinder.

Although for 7 > 0, goo vanishes at a finite distance, this is not a conventional horizon
because goo does not change sign, but time does “stand still” there. Clearly there exist solutions
with either sign of 7 and unrelated to . However, for a relativistic string 7 = u > 0.

For more discussion on these extended objects and inclusion of spin, please consult the
research papers.f1?

C. Quantum Dynamics

The simplest non-trivial dynamics arises when we consider the interaction of two point-
particles with each other. As in other contexts, it is possible to pass to the center-of-mass frame
where the relative coordinate moves in an effective potential that describes the interaction.3d The
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same problem arises without the center-of-mass reduction, but in the limit when one particle’s
mass becomes much larger than the other.3¢

In view of this, it suffices to consider the problem of a test particle [mass m] moving in the
field produced by the source particle [mass M| located at the origin.

The classical motion of a spinless test particle is easy to describe: in flat coordinates there
is no deviation from straight-line motion. However, when the unconventional identification
(3.B.13) is performed, we find a classical scattering angle,

Abclassical = =TTGM (301)
and a classical time delay,
GSr
Atcismsical = FT 537 (3.C.2)

where S is the source particle’s spin, and the sign depends on which side the source is passed.
The classical trajectories are depicted in Fig. 2 [ignore the dotted lines for the moment]. They
depend only on the impact parameter, but not on the energy; the scattering angle does not vary
with impact parameter, except in its sign.

[ L m—

Fig. 2 Qualitatative pictorialization for scattering of waves on an obstacle at the
origin. The two sharp lines are classical trajectories with scatlering angle trGM
in (3.C.1), the sign depending on which side the trajectory passes the source. The
envelope to the right of the source, formed by heavy diagonal lines, is the sharp geo-
metrical shadow. Broken lines represent diffraction on two sharp edges, even though
no edge is actually present — the source [conical defect] produced the “edges.”
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Next we give a quantum mechanical description and to this end we solve a quantum me-
chanical equation appropriate to the test particle: Schrodinger or Klein-Gordon for spinless test
particles; Dirac for spin 1/2 test particles, etc. [We do not second quantize the matter degrees
of freedom.] The question that still must be considered is what interaction should we use to
describe the influence of the source on the test particle.

The answer that we propose is that no interaction need be considered; rather we solve the
free, non-interacting equation but impose on the solution a coordinate condition that reflects
the identification (3.B.13).

For example, let us consider the simplest case first — a spinless test particle in a spinless
source. The equation we propose to solve is the free [square-root] Klein—Gordon,

z'—%t[)(t; r,8) = V=V +m2y(t;r,9) (3.C.3)

with the requirement that
P(t;r,0) = P(t;r, 0 + 27a)

a=1—CM (3.C.4)

[If non-relativistic motion is of interest, the non-local “square root” operator is replaced by
m — V?2/2m, which leads to the free Schrédinger equation, with boundary conditions (3.C.4).
The mathematical analysis is identical.]

The solution of (3.C.3), which satisfies (3.C.4) is constructed along the same lines as the
Aharonov—Bohm scattering solution discussed in detail earlier. | shail not repeat that presenta-
tion, beyond remarking that time, radial and angular variables are separated in the usual way,
with partial waves carrying angular momentum, £, which is not integer quantized, rather af is
an integer. This of course is a consequence of the fact that the angular range is 2ra, not 2.

The scattering solution is given by a contour integral in which plane waves are superposed,
with definite weight3d:¢

: dz 1
tep B = e=iEt $IZ k(e __1___
Y(t;r,0) =e f me  1-ewla (3.C.5)
= e—iEtQ/’(ra 9)

Here E = k% +m2 and k is the vector of magnitude &, rotated by the contour integration
variable z: k = (kcos z, ksinz). That (3.C.5) satisfies (3.C.3) is obvious, that also the boundary
condition (3.C.4) is obeyed depends on the specific weight function in (3.C.5) and also on the
contour, which is depicted in Fig. 3a.

The weight function has poles on the real axis at 2 = z, = 27na and the contour C' avoids:
them. However, the contour. may be deformed as in the discussion of the Aharonov-Bohm
problem. We can consider the equivalent, three segment contour C, depicted in Fig. 3b, where
the poles are encircled and aiso there are integrals along the vertical lines. The contribution
from the encircled poles is evaluated by Cauchy's theorem; it gives the incoming wave. The
remaining integrals along the vertical lines give the scattered wave, but the integrations cannot
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(b)
Fig. 9: (a) Integration contour C for the representation of Y(r,8) in (§.C.5). (b)
Integration contour C for the representation of ¥(r,9) equivalent to that in (a) but
giving rise to the decomposition p = Pt + 3¢, The incoming wave it is given
by the [negative] Cauchy contour around the poles ot z = 27na, indicated by heavy
dots. The integrals along the left and right verticle contours determine the scattered
wave ¥*°, whose large distance asymptote defines the scaitering amplitude f.
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be evaluated, so no closed form is available. Nevertheless, the large r asymptote is accessible,
and the scattering amplitude is determined explicitly.3d-¢

¥(r,8) = ¥ (r, 8) + 4*(r,0) | (3.C.6)
Yn(r,8) =a) lekinr (3.C.Ta)
sc — *® dy tkrcos 1 1
llb (T', B) =1 ./_m 2—1re k hy [1 — eiﬁe—%(y+i9) - ) e—i-g-e—i-(y+i0)]
e \/g f(B)e*r (3.C.7b)

£(8) = 2\;2% [(ctnaz'a“ -i) - (ctnB;-aﬂ. —i)] (3.C.8)

The prime on the sum in (3.C.7a) indicates that z, must lie in the interval {7+, 7 +6]. Note
that the incoming wave is not a plane wave, rather it is a superposition of variously rotated plane
waves. This is analogous to the modulated plane wave found in the Aharonov—Bohm analysis.
We observe that the scattering amplitude f(8) in (3.C.8) is real and vanishes when 1/« is
an integer. Also there are singularities at finite values of 8, where either of the two cotangents
blows up. Finally, the optical theorem, which in two dimensions and with our normaiization

reads
Im f(0)=\/g / BUGE (3.C.9)

fails because the left-hand side vanishes and the right-hand side diverges. Nevertheless, there is
no loss of unitarity: one can verify from the exact solution (3.C.6) = (3.C.7) that the probability
current is conserved. The peculiarities of the scattering amplitude are presumably related to
the long-range nature of the “interaction”: no matter how far the scattered particle is from the
source, it remains on a cone. An interesting problem that here remains is the study of how a
wave packet evolves in time.

Going beyond the simplest case, we consider the situation that arises when both the source
and the test particle are spinning. The source spin S is arbitrary; for the test particle we consider
spins 0 and 1/2, solving the Klein~Gordon and Dirac equations, respectively, but now with the
more elaborate identification (3.B.13). One may again give a contour integral representation
for the wave function, obtain the incoming wave by performing a Cauchy contour integral, and
deduce an explicit formula for the scattering amplitude. The result is an elegant generalization
of (3.C.8), which can be presented in universal form, provided the following definitions are made.

S* = spin of source [can be arbitrary, previously called S1.
S = spin of test particle [actual calculations done only for S* =0,1/2].

E* = energy of source [taken to be M)]. (3.C.10)

E* = energy of test particle (E‘ =/ k%2 + mz)
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The scattering amplitude is®d-

—i[w]d/x ) —_ .
£(8) = %—ﬁ [e--{w}"ﬂ' (ctng — - i) ~ ¢iwin/a (ctng ;; L z)l (3.C.11)
W .

Here w is the symmetric cross product

w=E°S*'+ E'S” (3.C.12)
while the square and curly brackets denote integer and fractional part, respectively.
w = [w] + {w} (3.C.13)

For the spinless test particle, S* = 0, one can determine from the phase shift §(E) the
time-delay by Wigner's formula. Agreement with the classical result (3.C.2) is found.
96(E)

AT = 2'—'aE— (3.C.14)

We may understand the scattering amplitude as arising from diffraction effects [like in
physical optics] which supplement the classical trajectories [whose analogy is geometrical optics].
These diffraction patterns are indicated by the dotted arcs in Fig. 2 and the two terms in (3.C.8)
correspond to the two branches. We observe that scattering consists of a rotation through the
angle £7GM, and we recall that in the presence of spin a rotation is accompanied by a phase
change in the wave function. This explains the emergence of the additional phases in (3.C.11)
as compared to {3.C.8).

The analysis of the Dirac equation is especially interesting owing to the fact that the Dirac
Hamiltonian ceases to be self-adjoint on a conical, time-helical space time.?® [The same malady
~ afflicts the Dirac equation in the presence of a vortex — the spinning Aharonov=Bohm effect.??]
Of course the derivatives are formally Hermitian, but consideration of the boundary conditions
indicates that a self-adjoint extension, depending on parameters, must be made and different
physical results emerge with different values for the parameters. [In deriving Eq. (3.C.11) a
definite choice is made to insure universality — but other choices are possibie.|

In physical terms what is seen here is the failure of the point-particle description. Extended,
smooth objects — described e.g. by fields — would lead to a self-adjoint Hamiltonian and in the
point-particle limit various parameters, characterizing the extended object, survive as boundary
terms on the particle surface and provide the missing information. The situation is similar to
what is found for the Dirac equation with a [Dirac] point magnetic monopole. The Hamiltenian
needs a one-parameter self-adjoint extension.?! When a smooth ‘t Hooft—Polyakov monopole
is considered, the parameter is identified as the QCD vacuum angle.?? For the gravitational
[and vortex] problems it remains an open question what model for the extended particle gives a
physical origin to the mathematically necessary self-adjoint extension parameters.

The loss of self-adjointness appears to be related to the closed time-like curves that are
present in a background metric arising from a spinmng source.

We conclude this discussion of quantum motion by remarking that the true two-body prob-
lem — in contrast to its test particle source-particle equivalent description — is solved on a
space with deficit angle given by the eigenvalues of the two-body Hamiltonian.3d This truly
“Machian” behavior raises conceptual puzzies — for example it is impossible to superpose or
compare energy eigensolutions. Moreover, the three- or more-body problem has thus far not
been resolved [apart from a very easy special case®®] owing in part to difficulties in describing
the multi-conical space on which the physical motion takes place.
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D. Topological Elaborations

Up to now the discussion has been based on the three-dimensional version of the Einstein
equation (3.A.2). However, in complete analogy to three-dimensional gauge theories, it is pos-
sible to modify (3.A.2) by an additional term, because in three dimensions there exists another
second rank tensor that is symmetric and covariantly conserved. Sometimes called the Cotton
tensor, its form is :

1

CW = ———=
2,/detg,,

DRy +p — v (3.D.1)
Symmetry is manifest, covariant conservation follows from the Bianchi identities. C'*¥ is traceless
as follows from (3.D.1). also with the help of Bianchi identities.

Ct=0 (3.D.2)

Moreover, C*¥ may be viewed as the three-dimensional conformal tensor — an odd-parity analog
of the Weyl tensor, the latter vanishing identically at d = 3. [That is why the Riemann tensor
is determined by the Einstein tensor.] C** is invariant against conformal redefinition of the
metric tensor g#¥(z) — A(z)g*(z) and vanishes if and only if space-time is conformally flat,
9uv(2) = M)nuu. We may supplement/replace the left-hand of (3.A.2) by the addition of a
multiple of C#¥ 3%

G™ 4 10% =0 (3.D.3a)
e i—c&" = 2 GT™  (3.D.3b)

[Also a cosmological constant can of course be added to the equation with or without sources,
(3.D.3a) or (3.D.3b) respectively — we shail not do so.]

From its definition (3.D.1), we see that C#¥ is of one derivative order higher than G*¥,
hence the dimension of x is mass. Analysis of the linearized approximation yields dramatic
results. While in the absence of the modification, there are no gravitational excitations, the
addition “liberates” a previously “confined” graviton, which now becomes a single propagating
mode; moreover, it is massive, while retaining general covariance. The spin is £2, the sign
being correlated with the sign of x. [The triple derivative nature of the differential equations
(3.D.3) does not give rise to acausality; here, the conformal invariance comes into play, removing
possibly dangerous terms from C#¥ ]

GH¥ is obtained variationally from the Einstein—Hilbert action. Similarly, C'#¥ may be ob-
tained variationally from the Chern—-Simons action, for the local Lorentz group in 24-1 dimensions
— S0(2,1). Constructing that quantity as in a gauge theory from the connection — either
Christoffel or spin — but viewing the connection as a function of the fundamental dynamical
variable — either the metric tensor or the dreibein respectively — and varying the dynamical
variable gives C#¥ 3%

Thus we see that the proposed modification is the complete analog of the situation in the
gauge theory, and for that reason the model (3.D.3) is cailed topologically massive gravity.

However, no quantization condition need be imposed on «.2* Non-trivial homotopies in a
non-compact group like SO(2,1) coincide with those of its maximal compact subgroup, here
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SO(2); but SO(2) is trivial in this respect, so the gravitational Chern—Simons action is invariant,
just as the field equations are covariant, and « is unrestricted.

It is not known whether topologically massive gravity is renormalizable.

Of course a theory based solely on the Chern-Simons action /Cotton tensor field equation
may also be considered.3® Here again, there are no propagating degrees of freedom, and due to
the tracelessness of C*¥, only massless sources, with trace-free energy-momentum tensor can be
coupled. However, owing to its triple derivative structure, the topological term is not natural for
a low energy description, in contrast to the gauge theoretic Chern=Simons term. On the contrary.
The Einstein/Hilbert theory is dominant at low energies, while the Chern-Simons/Cotton term
dominates at high energy. 7

| conclude this discussion of topological elaborations on planar gravity by the following
observations.

(a) Just like the gauge theoretic Chern-Simons term, the gravitational SO(2,1) Chern-Simons
term is induced by virtual fermions.?* This raises a puzzle about our treatment of quantum
scattering, when the matter degrees of freedom are second quantized fermions and the
“bare” gravitational action is just the conventional Einstein—Hilbert action. On the one hand
the bare gravitational action suggests that there are no propagating gravitational degrees of
freedom. On the other, fermion loops induce a Chern-Simons action which when considered
together with the bare action indicates the presence of massive, propagating gravitons. So
which viewpoint is correct? Is the emergent “graviton” a fermion /anti-fermion bound state?
How should perturbative calculations be organized?

(b) The fact that in planar Einstein gravity, the gravitational field is locally determined by matter
sources is analogous to the situation in gauge theoretic Chern-Simons theory. Indeed the
analogy exposes an identity: the Einstein~Hilbert action is also the Chern=Simons term for
150(2,1), the inhomogeneous (2+1)-dimensional Lorentz group, i.e. the Poincaré group.??
There are six generators: J¥ rotations and P* translations. With these we associate
respectively the “gauge” connections w” and e* — the spin connection and dreibein —
and use an off-diagonal “trace,” (P*P*) =0, (J*J¥) = 0, (J*P#) = 6**, to construct
the Chern—Simons term. The result is the Einstein—Hilbert action in first-order form.

(c) The Lagrangian for topologically massive gravity consists of Len + 1Lcs, the Einstein-
Hilbert Lagrangian summed with k-1 times the Chern—Simons term. Equivalently we may
write it as Lcs +&LEH, and view the higher derivative Lcg as the “kinetic” term and sLgn
as the “mass” term. The former possesses more symmetry than the latter — it is conformally
invariant. in some sense that is “too much” symmetry, and no propagation is possible with
just the kinetic term. Inclusion of the less symmetric mass [Einstein-Hilbert] term lowers
the symmetry and “liberates” the previously confined graviton. One may even promote «
to a scalar field o with its own [unspecified] dynamics. The combination Los +@Len + L,
can be conformally invariant for suitably chosen L,. Then an expansion about () =0
contains no propagating gravitons, while the symmetry breaking starting point (@) = &
liberates the graviton.28,

(d) Some classicai solutions to topologically massive gravity have been found. They are planar
analogs of Gédel universes.?”
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