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Abstract

The two real canomnical spin variables a and 3 introduced in an earlier paper are
combined with the six canonical variables of coupled svnchro-betatron motion to form a
system of eight canonical spin-orbit variables in which spin and orbital motion are treated
on the same level. In these variables one turn maps are origin preserving and the usual
techniques of canonical perturbation theory can be applied. By writing the Hamiltonian
in normal form the spin detuning terms as well as the so called 7i-axis which is needed in
the theory of radiative polarization can be constructed. The equations derived are valid
for arbitrary velocity of the particles (below and above transition energy).
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1 Introduction

In an earlier paper |1° we introduced a pair of real canonical spin variables a and 3 which
uniquely parametrize the classical spin over (almosti the whole ‘spin sphere’ and which behave
in the small spin tilt limit like those used by Chao in the SLIM formalism [2]. These variables can
be treated on the same level as the canomnical set. (2. py. 2, p.. 0. p.} describing the coupled
svnchro-betatron motion. It is then possible to establish (following Rei. [1]) a Hamiltonian
description of combined spin-orbit motion for which the Hamiltonian can be expanded as a
power series in small quantities. In this way the usual techniques of canonical perturbation
theory can be applied simultaneously and consistently to the whole spin-orbit equation system.
For example. ai the linear level the motion can be described using & > & symplectic transfer
matrices. Furthermore, normal forms can be introduced and the mutual detuning of the orbital
and spin motion can be investigated. The introduction of normal forms leads to the construction
of the so.called 7-axis 3, 4. needed in the analytical calculation of spin polarization in electron
storage rings.

In detail. the work is organized as follows:

The starting point is the semiclassical spin-orbit Hamiltonian of Derbenev and Kondratenko
4, 5] described in a fixed Cartesian coordinate system but rewritten in terms of a and 4 1. 6.
This description 1s summarized in chapter 2. .

In chapter 3 the spin-orbit Hamiltonian is expressed in machine coordinates within the
framework of the 6-dimensional description of particle motion by using the arc length s of the
design orbit as independent variable (instead of the time ), taking into account all kinds of
coupling induced by skew quadrupoles and solenoids, by non-vanishing dispersion in the cavities
and by Stern-Gerlach forces. The equations so derived are valid for arbitrary velocity of the
particles {(below and above transition energy).

Ir chapter 4 we introduce the 8-dimensional closed orbit for the combined spin-orbit system
as a new reference orbit for spin-orbit motion, defining the periodic 6-dimensional closed orbit
for particle motion and the periodic (7, m, T)»dreibein for spin motion. The oscillations around
this closed orbit are investigated.

In chapter 5 normal forms and the n-axis are defined.

In order to study the perturbative behaviour of spin-orbit motion we need the Hamiltonian
of the linearised spin-orbit system in terms of action - angle variables. This can be obtained by
variation of constants and is derived in chapter 6.

After this preparation we then diagonalise the Hamiltonian using caionical perturbation
theory which finally leads to the normal forms of spin-orbit motion (chapter 7) and to a method
of calculating the #-axis in storage rings.

A summary of the results is finally presented in chapter 3.

Finally we remark that other methods for calculating the 7i-axis and the corresponding
computer algorithms have already been described in several papers [7, 8, 9. 10. 11'. Those
based on normal forms could in principle be reformulated in terms of a and 3.



2  Spin-Orbit Motion in a Fixed Coordinate System

2.1 The Starting Hamiltonian

The starting point of our description of classical spin-orbit motion 1s the classical Hamilto-
nian, H {1;: ]

Hir a:P.3it) = Homp (72 Pot)+ Hopin (703 P33 H) (2.1
with
Horb('f_'-,ﬁ“ = c-{7?2—~mﬂcz}]a—co (2.2)
Hopin (T P31 8] = (7, P.t) - €1a.3) (2.2b)
and
} 1\ = 7. B 1 1
Gy = ——— (_H).B__“ﬂ—;.f_ (H—)?xg (2.3)
moec | \ 7 {3 = 1}ymgc? MpCy 1+~

where we use the notation of Ref. [1..

7 and P are canonical orbital position and momentum variables, £ is a classical spin vector
of length %/2 depending on the canonical spin variables a and # and 7 and 4 are given by:

- € = .
7 =P - -4 (kinetic momentum vector) ; {2.4}
¢
1 f
y=— \/mgc? + 72 {Lorentz factor} . (2.5)
MgoC

In terms of the three unit cartesian coordinate vectors in the fixed laboratory frame.
€1, €3, €3 we may write 7, P and { as:

7? = X1'€1+.X2'€2+X3'€3: (2.6&]
P = P-éi+P-ér+ Pyt (2.6b)
£ = &-a1+8 -Gt 6. (2.6¢)

The spin components ¢, 2, {3 as defined by (2.6¢) are written in terms of the spin variables

a and 3:

Glad) = a e (0245 (272}
i

Lo, 8) = 5-\;/'5_%(&2%-!32); (2.7b)

Gla.d) = € (a*+ ) (2.7¢)

with
?_-!2
=G+ 6=7.
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The canonical spin variables a and o are to be used on an equal basis with 7" and F. &isof

constani length since i1 obevs a precession equation. See below.

Remarks:

1) Equations (2.7a, b, ¢) can be inverted to give:

@S TWisg O
b

2} The values of a and /3 are restricted by the condition :

A+ <4 = €2 €= =€

3) For
a? -3 <A
the correspondence between a, 3 and {3, £, &3 1s one-one.
4) For

<

4o

g

V€ 3

we have:

L o= 0"\/23
& o= B'\ﬁ

and in this case our canonical a and 3 behave like the spin-coordinates introduced by Chao in
the SLIM-program [2).

2.2 Orbital Motion

With the Hamiltonian (2.1) the orbital equations of motion are:

d BHorb aﬁﬂ g

=X, = . f 2.

a F T p. T ap £ (2.9a)

d oM, 800

— P = - — £ .

i ox, ox, & (2.9b)
(k=1,2,3).

The first terms on the ths of (2.9) are the Lorentz terms and the second terms describe the
(very small) Stern-Gerlach force {12}. Thus our Hamiltonian includes the SG force automati-
cally. Note that here we deal with the relativistic generalization of the SG eftect.



2.3 Spin Motion

Using eqns. {2.7a, b, ¢} and the relationship

QO - Qg] 'El—ﬂof_v'ﬁ—g—!-ﬂgg'gg. {210}
the spin-Hamiltorian H,y,,
H.qpin = QD {
may also be written as:
{1 1
Hopin = \/f ~ 3 (a2 +3%)- Qo1 -+ Qo -6 + [f -5 (o "“.132)} oz . {2.11)
Then we obtain the canonical equations of spin motion in the form:
d B OHopin 519
7 a = - a3 {2.12a)
d 3H$pin
° - _ pin 212
at ® Ba (2.12b)
leading to:
d -3 1
7 ® T T 7 [Qo1 -+ Qoz - Bl + 5—1(024'152)'902*13'903; (2.13a)
446 — {2432
\/E PR )
d —a , 1
;EB:— [ 1 '[QU]'QC+Q[)2'B_:—\/5—i(a2+62)'901+a'ﬂg3.(2.131’))
4 S W :
\/5 g (ot + 8%
In terms of the components §; we have:
d d d
af = g8y 8
_ / 1., 2). Q) 3 / L 2
= —avf—a(a +32) - Qoz + \/6*1(‘1 + 5%} Qo
= Qo1& Qop-& . (2.14a)
Similarly we can show that:
d
a §1 = Qoz-&— Qoa- & {2.14b)
and
d
T &2 = Doz b~ Qor-&s . (2.14¢)
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Thu:s :

or

d -
— = §} . 2.15b
i £ Sl x & { )

So as in Ref. !1] our Hamiltonian leads to the BMT-equation [13. 14].

Using {2.7). we can easily show that [3]:

aéy o 98 06
{&.62}as = 8—:; y 8_6432 — 8—% : 79% = &3 (2.16a)
{&.6}a,5 = & (2.16b)
{€3:£1}a.3 = E? . (216(‘)

These Poisson bracket relations for spin. which do not contain % on the rhs, are the classical
analogues of the commutation relation among Pauli spin operators.

The result (2.15) can also be obtained by using the equation of motion in the form:

[ ]
—
=T
——

d - .
Yoo (e, :
together with the Poisson bracket relations (2.16) and the spin-Hamiltonian

Hapin = Qo1&+ Qoz- &2+ Noz - &3 -

Remarks:

1) Instead of using the canonical spin variables (a, 3) the spin Hamiltonian can be expressed
in terms of the canonical variables (J, v*) via the relations [1, 3]:

o = 2 —-J)-costp; (2.18a)
8 = 2(6 —J)-siny . (2.18b)
Since
é = tany : (2.19a)
o
J - - é (a® + 3% (2.19b)



we obtaln the usual results;

& = E*;(O — 3%

The transformation

can be obtained from the generating function

1
Fl(OL. 1[‘) = g&z . t‘&H’L"‘ — E . ’U‘

The transformation formulae are then:

q = B_IE — 1 ,tl .
A= 45— = a-tany;
oF 1
J = —a—: = —é—az-(l—i-tanzda)+§
1 32
= —202'(1-1-55)4'5
— 1 2 FEARE .
— 75 (Q e )—\£ ¥
dF
H.-inn — K-—‘api’n(d':'j) — Hapm+ —a—l = Hapin
8

= Qo &+ Qoz- &2+ Doz - &3

(2.20a}

(2.20b}

{2.20¢)

= V& —J?. Qg - costP + Doy - sined] + Qo3 - J | (2.21c)

and one sees that (2.21a, b) lead back to eqn. (2.19a, b} consistent with the fact that (3, J)

ate canonical [15].



21 1t 1z easily checked that the pair

J = £E—J:

o= -y

(=

is also canonical. In terms of (J w) we have

a = + 2j-cos1,£';
4. = —V@-sinﬂ‘-.

2.4 The Combined Form of the Spin-Orbit Equations

The combined equations of spin-orbit motion can be written in the form:

d v +aH_
da "% = Tap’
d OH
—_ P = —_—_
d " X,
(k=1, 2, 3, 4)
with
Xq. = Q;
P= 3
and

H = H(Xy, Xoy, Xy Xy5 P, By, Py, Py 1)

1The variables J. ¢ can be obiained directly from (e, /) using the genetating function:

, - 1 ;
Fiia, v) = —3 a’ - tanv .
In general one can write !

{{'_g_‘]; . a:\/ﬁ-cos(c—i));
P o= 8 = \/2_j-sin(c—1ﬁ‘=)

2
| =]
[ ]
Y

12
2
S
o

with an arbitrary constant c {see eqn. (2.18a,b) ). For ¢ = #/2 one then has to take the generating function:

Fila, %) = Za®-cot¥

leading to a = V2j-sinif’;ﬂ = v2j-c051}.



Remark:

Negiecting the Stern-Gerlach (SG ) terms coming from the component M,,.,, the orbital part
ieqns. (2.9a, b)) of the canonical equations (2.9. 12) can be approximated as:

d . b‘HO?h d aHo’rb
— X = - L — P = — ; .96
FTi o P, di ax, (2.26a)
d . 6‘?‘(.07-5 d BHorb
— X, = - - — P = — : 2.26b
dt 7 ar, = 4t °? oxX, (2.26b)
d 5’710,5 d 8Harh
— Az = - . — P = - : 2.26
a7 88, - @ T T, (2.36¢)

This canonical systemn is then separate (and independent) from the spin motion and corresponds
to the fully coupled 6-dimensional formalism |16, 17
If the orbit vector

X
P
X
P
X3
Py

2y
I

is known, we can calculate the spin motion from the equations:

%a:+%§”; L (2.27)
Methods for a numerical solution of the spin equation {(2.27) are described in Ref. [6].
2.5 Transition to a New Dreibein #;, u,, u; for Spin Motion
We now consider the transformation [3):
€1, €2, €5 —— U1, Uy, U3
with
d . T d
o Blt) = Uity xaft) = U = 5 ;ak x - U (2.28)
and
{ = &L +b-e+ e
= Gt &drt & i, (2.29)

From (2.15b), (2.28) and (2.29) we obtain:

L

3
. o d L.
£ = Zekxﬁﬁj\. = (o x ¢
k=1 '

10



. d d d
= X b Wew Y @
k=1 k=1
3 3 d
= ng [ﬁx";k]‘i‘ Uy = e
o dt
k=1 k=1
and thus
3 d 3
Na b= fox - Y4 Tral]
k=1 k=1
— _— 3 -
= Q.Q bt E* £ > ka.ﬂg
k=1
 Gox i Foxf
= (-0 x¢. (2.30a)
Therefore in the new dreibein the equation of spin motion is:
d - . - - o
— 2§ = uk-{[no—v]xg} . (2.30h)
dt
Writing :
& = d-\/é—l(&ué?-)- (2.31a)
4 /T
& = Bwk—l(&+éﬂ- (2.31b)
i ™ 4 k)
; Ly oz
&= 6@ 7 (2.31c)
and
ﬁo = ﬁm . '11'1 -+ Qog . 1_1:2 -+ ﬁog . 'l?g y (232&}
l_f =" ifl'ﬂ1+ﬁz'ig+ﬁ3'1fg (232b)

we find the new spin-Hamiltonian, replacing the precession vector Q in (2.11) by (ﬁo — ﬁ)
(compare (2.30b) with (2.15b)) as [6]:

H.spm - [QOI - [:rlj| 'EI + I:Q(H - I}E] ) 52 + I:QOS — ff3] ' 53

\/ﬁ - 41 (&2 + /32) {[Qm A ] a+ [902 - Uz] B}

- 0] 13 (a4 7)] (2.33)

11



oT

It follows that:

d IH yprn
5 = -

dt BE

- (* — {la - £3] -+ [ T3] )
/e (@85

+\/f - }1 (5‘2 - 32) . [ﬁoz - f’g} — 3 [003 - f{g} : (2.34a)

Vg
()
[

/ i . - , s N
e (@ ) [ - 0] + @ [flog = T . (2:34b)
Introducing {as in eqn. (2.19) or (2.21} ) the spin variables (j, ) via the relations:
& = /2{6 = J) cosv; (2.35a)
. | 3
8 = VZ({—J)-sin'q‘* (2.35b}

& = \/fz—jz-cosb’_‘; (2.36a)
£, = y/€2—J%-siny; (2.36b)

{ =

.

(2.36¢)

we get in analogy to (2.11c):

Ropinld, 91 = 0= 2 {100 — 0] cos b+ [f1os = U] sin | + [0~ Do} - T (2.37)

and

d - ad - - -
J— .{- = = K:.'J '6'71 J. J’
dt gy el )
J . _ . . . - _ .
= ——. {[Qm - Ul] cos Y + [ng — Uz} sin 1,!)} -+ [903 - U3} ;  (2.38a)
£2 — J?

d - a - - -
—_ J = —_ }CJ in J, ’
dt o (/. %)

= £* - Jz. {* [Qm - [.‘71] Siﬂ?.z‘ + [Qoz - E'Tz] cos J’} . (2.38b)

12



Remarks:

1) If the rotation vector [7 defined by equ. {2.28) is independent of the variables (X,.. Py ).
then the orbital equaiions of motion can also be written as:

d OHe, = 0 [z -

Sy = Qe g G, — 7| - 2.39

g Tk 6 ¢8R [0 } (2.3%)

d aHorb - 8 — —

4 p = Ll -—[Q—U}; 2.39b

dt " X, { ax, L' ( )
(k=1,2.3)

With respect to the variables Ay, P, &, B we thus obtain (see egns. (2.33) and (2.34) ) the
new Hamiltonian for the combined spin-orbit system in the form:

—

H = Hoy—+ {ﬁo - fr] £ (2.40)
whereby in addition eqns. (2.29), (2.30) and (2.32) have to be used.

2) In the following chapters we introduce new sets of variables. But the modification of the
Hamiltonian needed to affect a transformation of the dreibein has a form similar to that in egn.
(2.40) since the BMT-equation has a structure similar to that in eqn. {2.15b} [1].

3 Introduction of Machine Coordinates

3.1 Reference Trajectory and Coordinate Frame

The position vector 7 in eqn. (2.1) refers to a fixed coordinate system with the coordinates
X;. X; and X3. However, in accelerator physics, it is useful to describe the motion in terms of
the natural coordinates r,z, s in a suitable curvilinear coordinate system [18].

In this natural coordinate system an arbitrary orbit-vector r'(s} can be written in the form:

7(z,2,8) = 7ols)+ x(s)- €ls)+ 2(5) - &(s) (3.1a)
where :
A
7 e-{s) = K.(s)-€,(8);
T e = Kals) - 6uls) (3.1b)
% €.(8) = —K.(s)€z(s) - K (s)-€.(s);
d
f_"s(‘s) = a:; FO(‘S)

(for more details see Refs. [1, 16]).

13



The transformation of the spin components from the (¢, ¢.. €a) - basis 10 the i€,. é,. €.
- basis

£1. ‘52- ﬁlﬂ _ {53 ém‘ t_.c: (32}
is merely a rotation and is defined by:

€ = 66— & G
= fs'gs—'—gr'g:r—!_f:'gz- (33)

H. by analogv to eqn. (2.7). we introduce canonical variables a'. 3 for £,. &, £.:

b= ol \JE - H(e?+57)

£$Zﬁf'\/5_%(ﬂ"2+,8'2); (34)

— 1 t2 2
£ =E8— 5 +8%) .
then (3.2) 1s equivalent to a canonical transformation :
a, 3 —= o, g (3.5)

(see eqn. (2.40} ).

3.2 The Spin-Orbit Hamiltonian in Terms of Machine Coordinates

The variables # and 2z in eqn. (3.1) describe the amplitudes of transverse motion.
To describe the longitudinal motion (synchrotron oscillations) we introduce two additional
small oscillating variables ¢ and p, {1] with

Fg = s8—1vy-t (3,6)

and

where v and 75 are given by

vg = design speed = ¢fy; B = \/1 — (moc)

and

AE
n = . (3.8)

E,
The variable o measures the delay in arrival time at position s of a particle and is the longi-
tudinal separation of the particle from the centre of the bunch. The quantity 5 is the relative
energy deviation of the particle.

14



Using this complete set of orbitai variables defined in the machine coordinate system we
are in a position to provide an analvtical descriplion for the orbital motion by a simultaneous
treatment of longitudinal and transverse oscillations.

Starting then from the Hamiltonian (2.1) for the spin-orbit motion of a charged particle
in an electromagnetic field. we can construct the Hamiltonian of the spin-orbit system with
respect to the new variables

z, z, o, o', &

(1. 16, 17! by a succession of canonical transformations combined with an s-¢ exchange (intro-
ducing the lengih s along the design orbit as the independent variable instead of the time )
and a scale transformation leading to the modified spin variables

— 1 J’f_l-‘; ! =) 1 /?'—’U_ '
a = —,/ = a: = — =8
3oV Eq B0\ Eo
and the modified spin vector
s - - 'S = ~ = ]_ 'L‘lo —
£ = €€t oot = =€ 3.9
- /!n _2
— = 1 /=2
‘gs*ﬂ' \/E*E(a + [ )1
(=5 it (34 (3.10)
£=i-1(ar+73")
of length ? :
- 1 Vo
= — = .f. 3.11
Choosing a gauge with ¢ = 0 (e.g. Coulomb gauge) we then obtain (to first order in /) ® {1}
7:f = ﬂorb + ?:fspin (3.12)
with
7:{07'(5 = pgi(l+ﬁ)'i1+ﬂrm'$+ﬁrlg‘2}X
' . 2 2y 1/2
1- (pr B PU'CA'T) + (P; + PD'CAZ)
(L +9)
N4 K,oz+K, 2] — 4, (3.13)
Po- <€
_— , k 5 2rh N .
Using the relations £ = 5 Eg=1rempc®, Ag = — {Compton-wavelength}), the quantity { can be written
0
in the form £ = M—— = 1 - A with A = ! - Ag denoting the de Broglie wavelength of a particle with

Tomove 47 o Yo,
energy Ep. Note, that £ as well as z, z, o, @?, A" has the dimension of a length.

3Since as in Ref. [1] the Hamiltonian (2.1) is based on a classical interpretation of a semiclassical Hamiltonian
we work only to first order in k.

15



and *

?:{spin = (. é

(’és €y + ém : g:r"“‘ é: ' E_) . ﬁ(m,;,o‘; Pas Pzy Pos S)

fl

: - - Q,
= (a EJlat e g @ s - (et 52)) % | 310
where the precession vector
Q = Q&+ 0 e &
is given by :
ﬁ_(m,z,cr; PerPzsPe;8) = [1+ K, z+ K, z}- Bil(l;—f:})
2 2y ~1/2
o emea) clerga) |
(14 7)* c
1K, & - K.-& (3.15)
and where the quantity 7 appearing in (3.13) and (3.15) is defined by:
) 1 / moc? 1 p-c p
(1=7) = m/(un)z—(% =g =L (3.16a)
o= B _q_PTP_ AP (3.16b)
Do Po Po

(p = moyv).

In the following we assume that the ring consists of bending magnets, quadrupoles, skew
quadrupoles, solenoids, cavities and dipoles. Then the vector potential A can be written as
[19]:

1 1
< A, = ——[1—|-Km-$—|—K:-z]+—g-(:2—m2)—|—N-mz
jDD'(‘ 2 2

1 L eVis) 2T

T R S0 2D

B o b Ey m[ 3 ‘”"D]

+— (AB,-z—AB,-z) ;

Porc
FAI:—H-z; c A. = +H-z
Po-C Do-¢

4To simplify the notation we now write the spin coordinates as «, 3 instead of @, 3.
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t/, = harmonic number) with g. N, H and k' defined in Ref. 1.

Expressing also the precession vector o in {3.15) (see eqm. (2.3) ) in machine coordinates,
we obtain the Hamiltonian for the canonical vanables

Ty =y Oy G Pay P:zv Pos Ba

and the canonical equations of motion read as:

with

where the matrix 5 is given by

Remark:

M)

~ T

y

I
)

[ Lo I Levm]

aH
Op,

= (I'} p-'~"7 Z')

[ [e=] LU) 1<

o= =
= < o

LU)

Pzy 0y Poy Gy :B)

_'a—ﬁ

3 §2:(

(3.17a)
(3.17b)
(3.17¢)

(3.17d)

(3.18)

(3.19)

(3.20)

Equation (3.13) is valid only for ’protons’, or more precisely, for all situations where radiation
d Y,

is negligible. For electrons we need the extra-term in the Hamiltonian [1]

Hegs = Ci- K24 K2 0o

2 4
(where i = gezﬁ

(3.21)

(for ve & ¢) in order to describe the energy loss by radiation in the bending magnets 20, 21!.
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4 Introduction of an Eight-Dimensional Closed Orbit

As can be seen by a series expansion of the Hamiltonian. H contains terms linear in
the coordinates ‘1. These linear terms can be eliminated by introducing a new &-dimensional
reference orbit. This orbit can then also be used to construct a new reference frame for the
spin motion. In the new variables spin-orbit maps are origin preserving ° .

4.1 Definition of the Eight-Dimensional Closed Orbit
We begin by defining the 8-dimensional closed orbit:
Yo = (¥ols), aols), Bols))
containing a periodic orbital part
Jo. = (Toy Peoi 2o, P:0} 0oy Poo)s
with
Yols -+ L) = wols) (4.1a)

and a periodic spin part ag, Gy :

ag(s + L) = aols);
Bols+ L) = pPols).

which defines (see eqn. (3.10)) a periodic spin vector

U

0(5) = éOs ' gs + éO:r ) E.‘r + éﬂz ' E:
= &ls+1) {4.1b)

via

503200'\/£—T1(002+502) ;

€oe = o - \/€ - 1 {ap? + Be) ; (4.2)

éﬂz = f - % (0102 -H@oz) .

The equations of motion read as:

. o .
— Yy = —S-— H(y, s
ds Yo 2 3§U (?!0 )
or
d' §2 Q Q .
T Yo = — 0 5 0}- e H(%os oo, P03 8) ; (4.3a)
0 05,/ %
. d L od - L d 20y F
ea'E{Os+€I'E£0z+ez"(E{qz = 0 Xg[l (43b)

5To introduce normal forms we need origin preserving transformations.
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with
0 = Q(go. s) (4.4)

and S, given by eqn. (3.20). So {go(s), aofs), 3u(s)] is a periodic solution of the combined
equations of motion.

Using £, we can now construct a periodic spin frame (Fig, m, l) :

Aols — L). m(s + L), l(s + L)J = [ﬁo(s), m(s), f(sﬂ

along the closed orbit [11 with

g = €o/|€ol ; (4.5a)
ng(s) L m(s) L (.s) {4.5b)
fio(s) = ri(s) x i(s) ; (4.5¢)

Fo(s)| = [m(s)] = ll(s)] = (4.5d)
and
. d L d . d 4 N
PR E.; Mgy T €5 - E Mgy + €; - E g = Q(U) X no(s) (4 ﬁa,)
L ood L d L d - - d
es-Ems—r—em-ds mI—FC:-E'HL = Q(D)xm(s)-ﬂ-l(s)-g Yapin(8) (4.6b)
d d d = = d
Hs ! _::r T ix €, + — - () l —m f T YWapin )
€ o s+ € p I. + €, ; { QY x (s} —m(s) s Vor {s); (4.6¢)
dspm(s + L) S]J'LTI( ) =2m - Qapin y (4-7)

whereby we have used :

— — —
= n03'53+n0m'€r+nﬂz'ez;
€.

= Mg €+ Mg € + M z 1

— 3 &
|

= dy-€+ 1€+ 1€

4.2 The Oscillations around the Closed Orbit

The 8-dimensional closed orbit together with f(s), m(s) will now be used to constrnct new
canonical spin-orbit variables. The canonical transformation for orbit and spin will be carried

out separately.
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4,2.1 Canonical Transformation for the Spin Variables

Following the method of section 2.5 to transform from the ¢, .. €, basis to the 7. m. [

basis:
for bar & = & b, & (4.8)
with
€ = bt bbbk
= & ot bnm—Go 0 (4.9)
and introducing for fn, ém, ég canonical variables &. 3 :
n = &- \//Ef - le (a2 + 5’2) : (4.10a)
& = 8- \/IE - i (é2 + 5’2) ; (4.10Db)
b o= f-1 (a® + ) (4.10¢)
eqn. (4.9) becomes a canonical transformation:
o, = ap8 (4.11)
and the new Hamiltonian K reads as :
K(z,z,0,8 papsrPor B3 8) = Ko + Kapin (4.12)
with
Kforb(z,z,a;pm,pz,pg;s) = 7:{0,.b; (4.13a) .

}Cspin(xazagsd§ pr:pzapané; 3)
= {ﬁ(r,z,a;pr,pz,p,;s) - ﬁ(ﬂf,Z,U;Pm,Pg,Po-;S)} ' (én 'ﬁU + ém -m + éf ) F) (413b)
(see eqns. (2.28) and (2.40)) and

i 1 "'><(" d e d o, d )
' = —|n €, — Moy + €z = Mog + €5+ — TNo,
21°° ds ° 5 Oz T ds °

[N ]




1 R _ d
= 5 [3 0O — 2 (@0 g ) — - (A ) — T (1) + (i + o) )
1 - — . d
= 3 [3 Q% — 0® L 27, . 7s 'd)sPin(S)jI
= ﬁ[O) + ﬁO N i d!a 'n(s) . (414)
ds %
Thus we find:

’{:apin(m-.::o'ad; p:mpzapawé; S)
5_ g0 _ 5.4 e b b T
= «02-9 —HO'ES‘d‘sm‘n(S) ‘(fn'no+fm'm+§i'l)

— — > N -~ = d
= w(-’I‘,Z,O':pm,pz,pg; S)' I:'Eﬂ 'n0+‘£m 'm+£i q _611 : E; d‘sm‘n(s)

: : . , d
= T (o @)+ b~ (- 3) + & (1-8)] - 7= Dupin(s)

Nos($) Moz($) Mo:z(s) Wy o
- (&n gm, fl) ' 'mfs('s) mr(s) m:(s) - @ - En b d_ 'ﬂ[)spin(s)
Lis)  Lls)  L(s) w; °

Nos(8) Mox(8) Tosl(s

x | m,(s) my(s) m.(s

L(s) [L.(s) (s
{E- 2@ )| ) (4.15)

2 ds =
where we have introduced for abbreviation the vector
D = Wyt wy€ptw, e,

= 0 0. (4.16)

This is equivalent to the form for the spin Hamiltonian given by Derbenev [4].
Using eqns. (3.15) and (4.16) and writing:

=4~ Yo (4.17)

w2

the vector @ can be linearised with respect to the orbital variables so that in the spin-Hamiltonian

21



(4.15) we can put:

= F (1) - (4.18)

/-"_‘\

£ FE &

t ] %)
SYER=CIR :3' )

a1
q

with the F; as in Ref. [1}.

With (3.13), (4.12), (4.13a), (4.15) and (4.18) we have the Hamiltonian for the canonical
variables

T, 2, Oy &3 Pz, Pzy Pos B

4.2.2 Transformation of the Orbital Variables

The orbit vector y{s) can be separated into two components {see eqn. {4.17)) :

—,

§(s) = dols)+3(s), (4.19)

where the vector ;5(3) describes the synchro-betatron oscillations about the new closed equilib-
rium trajectory yo(s) .

The transformation

P — po -

yi& B = gié&=a f=0 (4.20)
can be obtained from the generating function

FZ(;D: ﬁm; <, ﬁz; a, ﬁa; d, é’; 3) = (:1" - :EO) * (ﬁz Jf‘p:rl)) + (Z - ZO) ) (ﬁz + sz)
(6 = 00) - (o + Poo) + & - 3"+ f(s) (4.21)

with an arbitrary function f(s). The transformation equations read as:

S R N . L : 4.22
Pz = am—pm Pzo 3 :E—aﬁm—w Lo ; (a)
(9F2 - - 8F2
pz - _87 — pz +p20 3 z = 8]5z = Z — Zp ; (422]3)
_%h s 2B 4.22
P = 5= = PotPoos Uﬁaﬁa—afao (4.22¢)
which reproduce the defining equation (4.19) for g—j .
d
Choosing the function f(s) such that 7 f(s) becomes:
s
d d d d
7: Tle) = zo(s) - 7 peo(s) + 20(s) - —= paols) + 0o(s) - == Pools)
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we furthermore have:
E)F; dI‘(} dp_-_,.g C{ZO dng dG’O dpag
R = - . — . . o= - —_ — T .
Bs ds T g ds 77 s ds P77 T4

B aK K
- Pz apm ) T oz _
Y= ; &=p=0 =% : &d=A—=0

and therefore:

_ A . - . oK
K = K:orb + K:spiﬂ — H = K- ?7 _’g
ay o

J=fF ; &=3=0

» aleo-rb
= ]Cor -y =
b— Y ( 87 ) _
=t ; 6=8=0

- K ..
+ ’Csin'—g' "f"’-
’ ( By ) ]

= Horbif + Hspin

v s - BJE: rb
Horb = ]Corb -y ( i ) ;
g=io i a=F=0

oy
Y > - 8}(-:3 in
Hapin = ]Cspz'n —y- ( 65’1 ) .
Y Lo L=
V= ; 4=6=0

with

(4.23)

(4.24)

(4.25a)

(4.25b)



Ef & 2 3 : d
2 — _ R f(‘[;spm(s) (426&)

and at second order the orbital Hamiltonian H,,, takes the form [1] ¢ -

Horb(i'-,u

a.; f’m:ﬁzaﬁa’;s)
1, s g e s
2.?3.p0_[Km.$+ﬁz.z].pa

v {lfe+ B H 4 - H -2

Z
1

1
+5 {(BZ+9g) & + (K] —g) 2" - 2N -3z

1., 1 €eV(s 27

57 5 E 7 cosy (4.26b)

®For simplicity we treat the orbital motion only in the linear form. But the construction of normal forms
developed in chapter 5 and 6 works also for a nonlinear orbital Hamiltonian up to an arbitrary order.
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With {4.26) we have the Hamiltonian for the canonical variables

r. :

. o. al }31-- }5:-. ﬁa? ﬂ

and the canonical equations for spin-orbit motion are:

in
|

Qe
fl

Sla e e B

Remark:

oH d aH
v P = T
3P, ds 0z
OH 4 . H
Td_}-)jj EP- — __gs
oH 4 . _  8H
;f?_p:; gfpa _E.T_a
OH d aH
-}'%, Eﬁ - —g.

(4.27b)
(4.27¢)

(4.27d)

Using egns. (4.10a,b,c) which determine the spin components bn, ém, & of the spin vector

E (see eqn. (4.9) ) in terms of the spin variables & and 8, the spin Hamiltonian ﬂ,pm in (4.26a)

may also be written as:

H.apin =

with
2,
O
Q,

and & given by (4.18).

Since the spin components £ Eoms

{ém ém }&,B

{é?‘nvéf}&,@ =
{élaén}&.ﬁ =

the equation of spin motion

d
ds
takes the form:
4
d m
s 3

Qnén+ﬁm£m+ﬂlél
_€ ' [ﬁ:ﬂ W= d’;pin(‘s)}

él obey the Poisson bracket relations:

a_‘fsre 8 B 0, _
da 8B 3
b ;

gm

Q. £
= ﬁm X gm
47 &

(4.28)

(4.29a)
(4.29b)
(4.29¢)

(4.30a)

(4.30b)
(4.30c)

(4.31a)



or

d(EY (6
| &m = Q1 ¢, (4.31b)
ds . T
& 13
with the notation:
0o - 0,
Q = G 0 -9, (4.32)
Qe Q0

representing the BMT equation in machine coordinates with respect to the dreibein
(ﬁﬂa ?ﬁa I)

Neglecting the SG-forces, the equations of orbital motion read as ’

d a d o -

— g = Hor : . -:c = P Hm’ ; 4.3

ds © +8p3. ’ ds ¥ Ter (4.33a)
d g - d a -

—_Z = Hor ; - -2 = ——7= or ; .

ds z +8332 b ds P 0z Hors (4.33b)
d _ J d _ 0 -

E a = +3—_‘ Ho'r’b : E; P = —% Hors - (433(‘)

This canonical system is then separate (and independent) from the spin motion and corresponds
to the fully coupled 6-dimensional formalism [16, 17] in the orbital variables

(&, Pzy 2, P, G, o) -
These must be known in order to solve the equation of spin-motion (4.31) *

Equations (4.31) and (4.33) were already derived in Ref. [6].

4.2.3 Series Expansion of the Hamiltonian and the Linearised Equations of Motion

By a series expansion of the Hamiltonian we can write :

H = Hy+Hst--- (4.34)

where H,, (n = 2,3,...) contains terms of n** order in the coordinates

3 ‘%ﬂ Jﬂ &; p:r: pZ? ﬁa‘.‘ l@'

14

"The term —¢ - [l & — t,b;pm(s)] in egn. {4.28), containing only orbital variables in linear form, has no

influence on the spin motion. It may be subsumed under the orbital Hamiltonian H,p in eqn. (4. 26b) (instead
of the spin Hamiltonian #,,:, ) producing via the SG force a very small closed orbit shift which can be neglected.

8The neglect of SG effects when calculating spin motion is consistent with the philosophy of working only
to first order in k [1, 3].
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To obtain linearised equations of spin and orbit motion we only need the component H,

containing the quadratic terms of the variables. This 1s given by
v - e e - - - “Aorh " spin
Hals 2, &5 fay Pes i 8) = HY™ + HEP

A orb 1 - - - -
Wy = L i - KB4 KL,

e =) () i ) (5

172 - d
5|8+ B 2 () (4:35)
ds
where we have written {for abbreviation :
G, = Kl+g; (4.36a)
G, = Kl-g (4.36b)

(g, N, H, K are defined in Ref. [1]).

The corresponding canonical equations take the form :

d
- my(s) I,(s) N
+\/g (F127 FZZ, F32) ma:(s) l:c(s) ( B ) 3 (4-37&)
m.(s) 1.(s)
S—Sﬁm = Ke-pot|po—H 3 - H-G-5+N.z
- m,(s) 1,(s) A
_\/E (F117 FZI) FS]) mm(s) Ia:(-s) ( 5, ) N (437}))
m,(s) I.(s)
d
s : =p.—H-z
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or in matrix-form:

with

and

mels) Lls]

*l\/’l{.'(qu- Fay, Fig) ( ma(}

()

Lz
!

(s)
=(8)

)i

%ﬁz = K, po—[po+ H-2]-H-G;- 2+ N-z
- m,(s) ()
_\/g'(FIB-J Fy3, Fa3) mm(S) lz(S) (
m.(s) 1.(s)
d 1
s = . -|K, i+ K.-E]
ds ~E F - |
- m_,(.s) ZS("")
+\/g-(F1sa Fyg. Fg) ( mg{s) l(s) ) (
ma(s) L:(s)
d 1 eVis) L 27 -
Ep, = Eg- Ee -.-T-cosgo-cr
- mi(s) L(s)
—\ € (Fis, Fasy Fis) | mals) la(s)
m.(s) [.(s)
d . . my(s) mg(s) m.(s)
P +\/€;'(0’ 1)( Lis) l{s) L.(s) )—F—
‘h@‘ dis_ ¢spin(3) ;
4o g mes) mels) ma(s)
wh = Ve o TG TG )E
—a- di.; Popin{ $)
i (7 y
B B
A B
A(s) = ( & b, )
0 1 H 0 0
—(G,+ H*) 0 N H 0
-H 0 0 1 0
N —H —(Gy+H* 0 0
~-K, 0 -K. 0 0
0 0 0 0 e‘_;g”-é-z—gﬁ

E~371

iy

cos

(4.37d)

(4.37¢)

{4.371)

(4.37h).

(4.38)

(4.39)

H

Mo B o

; (4.40a)

L]

'—L
o
[« XN



- mg{s) I,3)
B(s) = —y{-S-FT-| mg(s) lx(s)) ; (4.40b)

B 01 mes(8) Mmel(s) m,(s) _

clay = V¢ ( 10 ) ( L(s)  Lls)  L(s) )E’ (4.40c)
0 1 d

QD(S] = ( 1 0 ) ' E "1[’333‘!11(3) - (440d)

Here the matrix B(s) describes the influence of Stern-Gerlach forces on the orbital motion
and the matrix C(s) the influence of orbital motion on the spin motion. The matrices A(s)
and D(s) correspond to the "unperturbed” spin-orbit motion.

Because the equations of motion (4.37) are linear and homogeneous, the solution can be

written as: - -
g(s) \ ¥(s0)
o'f(.s) = M(s,s0)- fzz(so) . (4.41)
Bls) B(so)
This defines the sympleciic 8-dimensional transfer matrix M(s,sg) of linearised spin-orbit mo-
tion.
Remarks:

1) If the matrix B in (4.39) is retained but the matrix C is put to zero, i.e. if SG forces are
included but the effect of orbital motion on spin is neglected, then M will be non-symplectic
and the orbital coordinates in (4.41) can, in principle, grow or shrink indefinitely —at least in
this linearised description.

2) Neglecting the SG forces by putting the matrix B to zero, the linearised equations of
spin-orbit motion (4.38) take the form:

T = Al (.t20)
%4(“’) = VE-Gye)ile) + Date) () (4.42b)

whereby we have written:

) (4.43)
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and
Cls) = € Gols). (4.44)

In this form the relations (4.42b) and {4.43) are the basic equations for spin motion used in
the computer program SLIM {2, 20:. We have thus derived the SLIM-formalism from canonical
equations based on a polynomial expansion of a spin Hamiltonian.

The linearization of the spin motion is valid if the spin-vector ¢ defined by eqn. (4.9) is
sufficiently parallel to ©,. The solution of (4.42b) can be written as :

fls) = V€ Gls,50)3(50) + Dis,s0) {lso) (4.45)
with
G(s,50) = D(s,50): /:dﬁ-2(50,5)-%(5)-%5,50)
- I:dg-g(s,é)-gu(s‘)-m&,so) (4.46)
and

s _ €o5 [’(:bspiﬂ(s) - ¢3pin(50)] sin [¢'spi’n(3) - "/)spz’n(so)] )
Dissso) = (G ) e ey ) )

where M{s,so) denotes the 6-dimensional orbital transfer matrix with respect to eqn. (4.42a)
which i1s determined by the differential equation :

d
7, Mlsys0) = Ag(s) M(s,50) ; (4.48a)
M(sp,80) = 1. (4.48b)

In this approximation, the 8-dimensional transfer matrix M(s,so) defined by eqn. (4.41)
takes the form:

M ( M(saso) Q ) 4
= N . 49
o ‘\/E'Q(S,S[)) Q(S)SO) ( )

In particular, one finds the following expressions for the revolution matrix ﬁ(sg + L,so):

" _ M(SO + L730) Q
M(so+ L,s0) = ( G(so + L, o) Q(SU-I-L,SO)) (4.50)

with

D(so+ L,se) = ( €08 [27Q ypin]  sin [270Q spin) ) ’

—sin 27 Qpin] €08 [27Q 4pin) (4.51)

where the quantity @, defines the (linear) spin tune on the closed orbit ( see eqn. (4.7)).

30



5 The Definition of Normal Forms and the 7- Axis

The nonlinear equations of spin-orbit motion represent a periodic canonical system described
by a Hamiltonian

H(x, poi 2, Dot 0, Poi e, Brs) = HO 4 1D (5.1)
with an unperturbed part

?'{(0) = ]Cz

_ E B M H o He bty o He L BT DS
- CH]HD"'#E(S) - T pm “~ p: a po’ 2 '3 (5-2&)
K1tHz s =2

and a perturbative part

HY =

Nk
ke

2
il
[N )

[]8

Z CMIHE"'MB(S.) ) -73#1}752 ZMP?‘] Juspga a#?ﬁ#e (52}3)

v=3 pitpet-tps=v

where the c(s) coefficients are periodic functions ® .

For a ring of length L the periodicity condition reads as:
H{z, pa; 2, p2; 03 pos @, B3 s+ L) = H(z, pas 2, paj 0, po; @, 85 8) . (5.3)

As in Chapter 3 the coordinates z, z, ¢, @ and momenta p,, p., p,, B can be combined into
the vector

SN
Be Y2

z Ys

- D Yy
s) = = 5.4
w(s) - " (5.4)

Y& Ys

a Yr
\ B } Ys }
and the canonical equations of motion may be written in the form
d oH
S

A

(5.5)

QOur aim now is to find a canonical transformation

T, Pzy Zy P2y Oy Poy &, B —  ©p Ji, @41, Jrr, rrr, Jin, @1v, Jiv

QFo_r convenience we have changed the notation from (&, p.; , p.; &, Ps; &, ,@) to (2, pe; 2, P2} O, Pa; @, B),
from H to H and from H, in (4.34) to X,.
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which brings the Hamiltonian into normal form:
H  — H = H(JpJy T dw)

where J; and ®, are action - angle variables so that the spin-orbit vector ¢ can be written as:

-

¥ = f(®:, @11, 111, Qv Jr, Jir. Jinn, Jrvy s) {5.6a)

obeying the periodicity relations:

Fl&;, ®7, 171, ®pvs 1, Jrp, Jran, Jive s)

—

by + 2m, @, Qpyr, ®pvs Jr, Jin, Jronn, Iy s

—

= f

( )
(7. @7+ 2w, @pp1, pv J1, Jirs I Jivi s)
F(®r, @11, Y111 + 27, @1v3 J1, o, Jiar, Jivs 6)
(@1, @11, @111, ®pv + 273 1, Jir, Jirr, Jivs s)
F(®1, ®r1, Y101, v Jry I, i, Jivy s+ L) (5.6b)

. The content of the parametrization {5:6a) 1s as follows.

If the SG forces and w were to vanish, there would be no spin-orbit coupling. In this case
the Ji, ®, (k = 1,11, 11I) would paraf{netrize just the orbital motion and Jyyv, ®5 would
parametrize the spin motion. But since in reality there is spin orbit coupling the Ji, ®,, (k =
I, II,III) become slightly modified by the {very small) SG forces. For the same reason the
orbital motion acquires a small dependence on Jrv, ®;v. Likewise the spin motion, described
by the components y7,ys becomes dependent additionally on the orbital motion through the
Je, @, (k=1,11,11I).

Using this parametrization we can in principle obtain the #-axis, the special solution of
the BMT equation on a particle trajectory needed in the analytical theory of radiative spin
polarization. The n-axis is a unit vector obeying the following periodicity conditions {3, 5, 11]:

7(@r, ®rry®rars s Jrr, Jriry 8) = (8 + 27, @y, ®ppr, Ir Jrrs Jimr 8)
(@7, @5 + 27, @111, J1, J11, J1115 8)
(@, @57, ®yr + 27, J1, J1r, Jis; 8)
7 (

@1, @11, @551, J1, I Jir s+ L) (5.7)

and is thus a single valued function of the orbital phase space coordinates and azimuth. Within
this formalism, 7 is simply obtained from the elements yr,ys by setting Jpr = 0 *° . At
Jry = 0 the vector ¥ becomes independent of ®;y so that we can write 1 :

- (3)

108ince H is in normal form J;y is an inlegral of motion.

( Ly ) = (@7, ®r1, ®pr1, Jr, Jir, J1ar; 8) - (5.8)
Ys Jry=0

1Here we must differentiate between the 2-vector @ defined by (5.8) consisting of the a and 3 components
and the 3-vector % which is the corresponding unit vector. Thus we work with two different modes of expression
for 7. The mode used should be clear from the context.
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The components of the i-axis with respect 1o the dretbein (g, 7, 'f_) can be obtained from
eqn. (4.10) and have to be multiplied by a normalisation factor such that il becomes a unit

vecior.

The action - angle variables Ji, @4, (k= 1, I1, ITI, IV ) in (5.6a) can be constructed itera-
tively 1% :

Je = Em JY;
., = lim @LV)V.

As a first step we introduce the variables (J;ED), ‘1’;:1)) which are action- angle variables with
respect to the linear motion. In this way we obtain the Hamiltonian in a form which can be
used as the starting point for canonical perturbation theory (chapter 7). In particular we show
that the variables J,EO), @im, {(k=1,1I,1II,1V) introduced to describe linear motion remain
canonical in the presence of the perturbation H(%).

6 Variation of Constants in the Coupled Case

6.1 The Unperturbed System.

In this chapter for abbreviation we write:
B = IO,
&, = o).
6.1.1 The Equations of Motion for the Unperturbed System.

Taking into account only the first component, H(®, of the Hamiltonian (5.1) we obtain
from (5.5) the equations of motion for the unperturbed system:

d o _ o OHOY
! T T a5
Oor
d (o) - (0)
-5 = A-y (6.1a)
with
) FHO -
A0 = 5. 57 ©) (6.1b)

1215 practise one would only calculate o a finite order ¥ = .
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and

g = P

Because the equations of motion {6.1) are linear, the solution can be written in the form:
g ) = M(s,50) § (s0) (62)

which defines the transfer matrix M(s, sg).

From (6.1), M(s,se) is determined by the differential equations:

%E(S,So) = A(s)- M(s,s0) ; (6.3a)
M(sq,50) = 1. (6.3b)

Since the variables z, p., 2, p,, ¢, p-, @, 3 are canonical, the transfer matrix is symplectic
[22] : '

M (s,50) - S - M(s,80) = S . (6.4)

The symplecticity condition (6.4) ensures that the transfer matrix , M(s,sy) , contains
complete information about the stability of the (linear) betatron motion.

Differentiating eqn. (6.4) with respect to s and using (6.3) one obtains an alternative relation
for symplecticity in the form:

AT(s)- S+ 5-Afs)=0. (6.5)

6.1.2 Eigenvectors for the Particle Motion ; Floquet-Theorem.

To come further we need the eigenvalues and the eigenvectors of the matrix M(s + L,s):

-

M(s+ Lys)vu(s) = Au-Fu(s) (6.6)
in order to study the normal modes. We proceed in the usual way [23]:

The vector ¥,(s) in eqn. (6.6) is an eigenvector of the matrix M(s + L,s) at point s with
the eigenvalue X,. The eigenvalues are independent of s.
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If the eigenvector ¥,(sg} at a fixed point sg is known. the eigenvector at an arbitrary point
s may be obtained by :

T ls) = Mis. s0)Tulso) - (6.7)

Since M(s = L.s) is symplectic and we assume stability, the eigenvectors ¥,(s) come in
complex conjugate pairs

(Ta, T = )y (k=1, 11, 111, IV)
with complex conjugate eigenvalues.

In the following we put :

A = e~ 2mQy
(6.8)
A, = et 2mQ -k |
(k=1,11,1I1,1V)
with
Qi = —Qu (6.9)
where @ is a real number.
Defining ,(s) by
Buls) = Uuls) et 27D (s/1) (6.10a)
we find:
(s + L) =uufs) . {6.10b)

Equation (6.10a, b) is a statement of the Floquet theorem : vectors %,(s) are special solutions
of the equations of motion {6.1) which can be expressed as the product of a periodic function
#,(s) and a harmonic function

—i-2%Qu- (s/L)

€

The general solution of the equation of motion (6.1) is a linear combination of the special
solutions (6.10a) and can be therefore written as:

o) = % {Aeeie)et 20 (D)

k=1, 11, 1I1,JV
A ig(s)- e+i‘2WQk'(3/L)} . (6.11)

We have the orthogonality relations:
TH(s)- 8- &(s) =~V (s) - S-vi(s) # 0

FF(s)- ST (s) =0 for p# v

(k=1, II, 111, IV).
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Furthermore the terms (s} - 5 - 7,{s) in the Jast equation are pure lmaginary :

r

Tils)- S Buls)] = (s 5T Tls)
= =[] S E(s)]

(since ST = - §). We choose to normalise the vectors vi(s) and v_g(s) at a fixed point s as:

’5;(50) -5 f"k(so) = —’f_"jk(so) -5 E—k(-‘io) =1

(b =1, 11, III, IV).

This normalisation is valid for all s if we use the definition in eqn. (6.7) for Tu(8). Thus we

obtain:
FF(s) - S Fals) = 54 (s) - S Fls) = 4
(6.12)
T1(s)-S-v,(8) =0 for u # v
Note that the Floquet-vectors
ﬁ“(s) = _'“(s) . e+?’ ' 271’0—,“ ' (S/L)
then fulfill the same relationships )
wifs) S dr(s) = —al(s) S i u(s)=4;
(6.13)

if(s) S u,(s)=0 foru+# v.

Remark:

The eigenvectors can be approximated by neglecting the Stern-Gerlach forces (matrix B in
eqn. (4.39)) and using the matrix M(so + L,s,) in eqn. (4.49).
For more details see Appendix A.

6.2 The Perturbed System.

Using these results we can now introduce a new set of canonical variables which will be
needed later.
We first remark that the general solution of the unperturbed equation of motion (6.1) may
be written in the form (see eqns. (6.10a) and (6.11) ):

gs)= Y {Ai-Gls) + Ay - Fi(s)) (6.14)

k=1I1,I1,IV
where Ay, A_, are constants of integration (k =1, IT, IT1, IV).
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In order 1o solve the perturbed problem (5.5} we now make the following "ansatz” (variation
of constants] :

dls)= > {Au(s) Tuls) - Agls)-als)} (6.15)

kI ILIILIV
Writing then for the coefficients A, and A_ (k=1,11, 111.]V):

Ar = o/ Tuls)- e 1S (6.16a)
Ay = /Jls)- e T0Hl8) (6.16b)

eqn. (6.15) takes the form:

i= Y VARG {ads) ) 5 o) T = s g B (6T)

k=111, 1111V

Note that in eqns. (6.16) and (6.17) the s dependence in J, ¥; is to be understood as
implicit, not as explicit. We intend to treat the Ji, v as dynamical variables. The explicit
s dependence of § (s, ¥y, Ji) 18 incorporated in the eigenvectors ¥ik(8) which obey the unper-
turbed equations of motion (6.1).

From (6.17) we now get:

dg _ , dH
ds Z ‘da + Z =5 8_3,7 : (6.18)
Then with
ay HO)
3= 5 5 (6.19)
we obtain:
ay OHM)
N g g O 6.20
Zam 3 Ekjwk i (6-20)
Furthermore from (6.17) we have:
8“' . .
Wi = i I8 {Bls) - TR () TR (6.21a)
oy _ 1 Gu(s)-e Pr 47 +ig
5 = 3 Jk(s)-{vk(s)-e +4(s) TR (6.21b)
Taking into account the relations (6.12) we obtain the equations :
» o o
{.{;’;' i LTt e z#k}.g.# = 2./ T -6 ; (6.22a)
{
—iy oy
{6; etite 5t . ”f} §'8z; — 0; (6.22b)
: . 57
{ﬁ;-€+zd’k+ta —w} g-% — 0; (6.22¢)
!
- _ ay , 1
{ﬂ:-e+z¢’“-1:k e ”b""} §ai = 22-2.\/J_k-6k¢. (6.22d)
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Then from (6.20) with the help of {6.22) and the relation v_; = ¢ :

e e o+
. - f = TR "‘lhk — T 1k . S . —A_—Y -
28/ k- {u 3 v € } S [ o) 97 _{
2 i ) i aH{l)
= {07 T @t 2
oy
or
! I X —1 ‘k}T oH
4 - e T e + v - € . =
PVA A b ¢ 8y
a7 gt
T8, oy
oH}
= 37 (6.23a)
and
. 1 . _ i GHW)
21 2-\/.]_k'J]; = {ﬁ:'e—'_z’d)k*vik'e “’lk}'g' [_g- 8g :|
. " . i oHM
= (@ @7 T
. . (1}
- _ {'Ek ] E_z¢k _ 6_13 . e—"?.’dfk}T . 37{_'
9y
or
. . _ N T AH
Jf:' — %.1.'Jk.{'vk.e ?‘¢k_v_k.e+%¢k} . 8?
a9z 7 oHW)
T 0y B
SHM)

So, by this ansatz, the motion of J and % can be attribuied entirely to the perturbative
part 7MY and the unperturbed motion is embodied in the motion of the eigenvectors @(s) [24].
The relations (6.23a,b) were already used in Ref. [24] and are similar to those of the uncou-
pled case [25, 26, 27] and can now be the starting point for detailed investigations of specific

cases 1% |

Remarks:

1) From (6.23a, b) it follows that the quantities J; and vy (k = I,1I,1I,1V) defined by eqn.
(6.16a,b) are canonical variables and that eqn. (6.17) represents a canonical transformation

Ty Pay Zy Poy O, Poy, @, B — 1, Jry 51, Jin, Y1, Jrrn, Yrv, Jiv . (6.24}

1%In the case that the linear motion is decoupled the Hamiltonian in eqn. (6.23a, b} can also be obtained by
a generating function [32).
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2) From eqn. (6.15) and the relations {6.12} we obtain
A = —i-Fls)- 5 H(s) (6.25)
and from (6.16a,b) we have:
Ji(s) = |gy(s)-S-2(s)”. (6.26)

In the special case of vanishing coupling (see eqn. {6.45) in Ref. [23]) we may thus write :
1
2 3,(s)

The terms on the r.h.s. of (6.27) just represent the Courant-Snyder invariants for the linear
uncoupled case. Therefore the term on the r.h.s. of (6.26) may be interpreted as the generalized
Courant-Snyder invariant for the linear coupled case.

Jyls) = '{[ay'y+ﬂy'Py]2+yz} . (6.27)

3) Writing the Jacobian matrix

B ( dy Oy Jy oy ay’ Sy y 8_37 )
C N8y 8y 8y BJr’ A’ By By Ay

J (6.28)

as an 8 x 8-matrix written as a row of column vectors (8y/9%;) ete. and taking into account
(6.21), the relations (6.22) may be combined into the matrix form

Jr-5-7=5. (6.29)
This matrix equation may also be written as:
J-8.J7=58 (6.30a)

or

+
AN e
Qv D
l‘ﬁli‘*l‘dl

L S Ny
| |

—

QO
o
[N

_|_
L
ey

I

a7 \ T
(27.)
ay \"
( dy 0y Oy ay oy ay oy Z ) . * (8"1’11) =S (6.30b
My’ 8J; By’ 8Jrr 8y’ 8Jir By’ 8Jrv _{ 0y r | =2 (6:30b)
5«]111%]“

o

D
D =
‘:‘.’l:

ja k)
~
-

)
=)
R
~

—
+

Oy
39



sInce

Jr-s-g=5 = &7 871
= [§T. g7 =57
= [§- 78777 =1
= 8 7.8 7" =58
— Z'ﬁ‘ZT:

In terms of components, one obtains from (6.30b}:
e pal ey = 15
, _Jw ) | . (6.31)
Wﬂll’J(lfi.J) = Eu‘)pv]{gb,.]) = [puapv](dr,.]) = 0 otherwise 3
(u71’ = m’ z? 0.3 a)
where [f,g)(y.7) represents the Poisson bracket defined by:

of dg Of 9y 8f 8¢ 8f Ay
[81,[*1 6 A ‘%’J [3%1 8Jy 8Jn 8vu
" [‘”.39 _ af.agb[@f,ag_af,ag]
OYrn OJir AJir O¢rr] [0y OJiv OJivy Yy

[fa 9] (1,J)

These relations demonstrate again that (6.24) represents a canonical transformation {28].
The new Hamiltonian in terms of the variables Ji, vy is just H(,

4) Starting from the Floquet-form (6.11) of ¥(s) and using (6.16) * :

i) = Y \/jk-{ﬂk(s)-e—i¢k+ﬁ_k(s)-e+i@k} (6.32)

k=I ITI11. IV

with

By = by + 2mQy - % (6.33)

we may define another Jacobian matrix

j B ay ﬁ ay ay ay oy ay a9y (6.34)
= \8%; 8y 8%y’ 8y 0%y 8Jir 0%y’ OJv '

in terms of the variables Ji, ®;. This obeys the same relation as J:

iT.ﬁ.J_:i‘ (6.35)

as may be seen by using eqn. (6.13). Therefore ®;,J, are again canonical variables.

t4Recall, that in this chapter Jy = J,EO), &y = @io). Thus:

-5 (0) . x (0)
g0 = % A e e B i
k=1 TIIII IV
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For the unperturbed case

HY =0 = (J, = const, v, = const)
and
i _ 0; 6.36
ds ' (6.36a)
d@k 2T
s E‘Qk . (6.36b)

So in that case, the quantities J, ® appearing in the Floquet {form (6.32) are standard action
angle variables.

The transition
Yy Ji — By, Ji = Ty

may be affected by a canonical transformation using a generating function of the form

27
F3(Jk,‘l’k;s) = E {—Jk-q)k+Jk-ka-5} . (637)
k=l II 1111V ’

The corresponding transformation equations:

3F3 27
Y = —a = ‘I’k—ka'S, (6.38a)
- oF,
A L (6.38b)

are indeed identical with the defining equations for ®; and J, (see eqn. (6.33)).

The new Hamiltonian H in terms of jk = J, and @, then reads as:

7:( — H(])+ 8_}73
s

2
-1 Y n T (6.39)
3
k=1 IIIII IV

This form of the Hamiltonian is useful for calculating the detuning terms (29, 32].

5) From (6.35) one obtains:
Jj-s-J =s (6.40)

or

{ s P2,y = 13 (6.41)

lu, v (g,0) = [uapu](i',.]) = [Pu,pv](q,,J) =0 otherwise ;

(uyv =z,z,0,a) .
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Moreover. since the transformation inverse 1o i£.241:
tﬁ!]: JI: 1[’11: JI]) u"III:-JIII-. . ']“' — I P Iy Poy Oy Poo O, ':? (642)

is also canonical one gets in the same way :

{ o (6.43)
[Jkajl](y-zoy) = [®5, 2] (v-p4) = 03
(y=wz.z,0,0) .
6) In linear order H in (6.39) takes the form:
- 2w
H = Z Jo S0y . (6.44)
k=1, 11 III,1V

Thus
g = JO

is an integral of motion. The n-axis as defined by eqn. (5.8) fulfilling the periodicity relations
(5.7) is in this order given by (see eqn. (6.32)) [34]:

RPN E (G Rl (D Rt R

k=1 11111

A general spin-vector can then be represented by :

(yT) s JW,{(W)_E_@”({um]:),e+¢¢k} . (6.46)
Ys Uka [t2] =1V

So in first order a spin precesses around the first order n-axis with frequency Qv (see eqn.
(6.33)).

7) In linear order (see {6.44) ) we now introduce new canonical variables 1% :

g = +v/2Jp-cos®y ; (6.47a)
P = —/2Jp-sin®; (6.47b)

by a canonical transformation

N R

1*We have already come across this form in eqn. (2.22ab).
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using the generating function:

1
Fy(®r,q0) = ;qﬁ-tanth.
J. = aF] _ 1 7 1 .
© T -ra‘i’k T Ttk cos? @,
aF:
P = 78—1 = —q-tan ®;
qk

(6.48a)

(6.48b)

(note. that the defining equations (6.47) for gx and p, are reproduced by eqn. (6.48b)} to

obiain the new Hamiltonian:

- 8k
K = H4+ —
Os

2
ok + g2 - T Q

Il
ta | =

k=I11.I1I,IV

(6.49)

representing four s-independent uncoupled harmonic oscillators and have diagonalised the

Hamiltonian (5.2a) which described four coupled Hill oscillators *© .

Using the new variables g and py, the spin-orbit vector ¥'(s) in (6.32) may be written as:

y(s) =
k=I,ITII1,IV

SR

k=1 I1IILIV

or in matrix form:

with

R = ([ay+a g, i@ —u_g], - ldv —d_vi], i ldvr + d-vi])

and

[ ar
Pr
qrr
PII
qIir
Piir

qrv
\ prv /

16The transfer matrix with respect to the Hamiltonian (6.49) is block diagonal.
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> g ipd - Tels) + lge — ipk] - Toal(s)}

Z {1tx(s) + v_(8)] - qr + ¢ [da(s) — W x(s)] - pa}

(6.50)

(6.51)

(6.52a)

(6.52b)



It follows from (6.50). taking into account the orthogonality relations (6.13). that

up (s} S gls) = +E-iqk—ipk}:
1
—u,(8)-S-yls) = ——=lg — i
so that :
Z. =l ‘, T -
g = —\7;[v-z;(s)—v:.(s)_:k_-y(s); (6.53)
1 - —i o — "
pr = —ﬁgu;T(S)-Fﬂik(S)}g'y(s} (6.53b)
or

['F}G - ﬁfu}}

. ! iU+ Uty S pe1

= —— _ - S5y = R . 6.54
' V2 [ — 47 1 =Y =Y ( )

¢ @+ @)
=t

lury — Wy
A \ i |dfy + Ty }
Equation (6.53) or (6.54) allows the quantities g, px to be calculated in terms of the starting
vaniables y,.

From the relation

or

1(5 +LYM(s+ L,s)R(s) 7(s)
We)M(s+ L,s)R(s)-7(s) (6.55)

Fls+ L) =

B
R-

(for the last step see eqn. (6.10b) ).
The revolution matrix with respect to the variables py, g is thus given by

M"(s+ L,s) = R Ys)M(s+ L,s)R(s). (6.56)

This matrix is block diagonal as can be seen from eqn. (6.49).
Equations (6.50), (6.51) and (6.55) represent the first step in normal form analysis [33].

In the next chapter we show how to put the Hamiltonian into normal form at the next and
succeeding orders. Implicit use will be made of the fact that the Hamiltonian can be written
as a power series in a and 3 (see chapter 4.2.3).
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7 Nonlinear Perturbation Theory and Normal Forms

The version of perturbation theory presented here 1s similar to that given by Courant, Ruth,
and Weng (CRW) (Ref. [29]). The starting point is the Hamiltonian (6.39), written in terms

of J, = J\” and &, = &{”:

H = Hol(J)+ V(®, J; s) (7.1)
with
- 2%
e = k:I.HZ.;H,IVJk.TQk (7-23)
and
v o= HY (7.2b)

(see Appendix B) where the unperturbed part, Ho, depends only on J, (k=1,11,111,1V).
The term V{(@®, J; s) resulting from egns. (5.2b) and (6.14) which is In general nomnlinear,
describes the perturbation and is periodic in s and @ :

V(®;, 11,8111, ®rv, J1, Jirs Jrrns Jrvi §)
= V(®; 4 27, @51, Q111, C1v, J1, Jr1, Jrir, Jivs 8)
= V(®7, & + 27, @y11, ®rv, Jr, Jrr, Jrir, Jivs )
= V(®;,®51, 81 + 27, Y5y, J1, Jrry Jian, Jivs s)
= V(®1, 817, @117, ®1v + 27, J1, Jir, J1ir, Jivs s)
= V(&r, @11, 011, @v, I, I, Jun Jrvi s + L) (7.3)

From eqn. (5.2b) we may write:

V(1,85) = Y Vi, %) (7.4a)
v=3
with
V., = K,. (7.4b)

The aim now is to transform the Hamiltonian (7.1) to normal form, i.e. a form in which
the new Hamiltonian depends only on the new momenta. To achieve that, we look for a
transformation which cancels the perturbative terms V), iteratively order by order.

At the (n — 2)* step of iteration we have the Hamiltonian

H = Ho(J)+ V(®, J; s) (7.5)
with
Jo = Ji¥
‘I’k = '1’5;1_3)
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and

V(@ Jis) = ) T2, Jis)

ks

=T
b

= 1 (@, J. s)+ Wa(®, J; ) ; (7.6)

<

W@, Jis) = Y V(@ J;s) (7.7)
v=n+l
where V, is of order » and the higher order terms resulting from Vi, - - - V,,_; at earlier stages

of diagonalisation have been absorbed in T/V’n and W,,.
At a first step we separate off the average of V,:

< Vo(J) > =

1 0o+l 2n 2 2 I 5
'——(271_)4 7 . /‘;.0 ds - l d(I’I '[; dq)II . /0 d@[_”- L d’@IV . ‘Llﬂ(@ka ‘]k: 5) (78)

and add it to ’}20 50 that

H o= Ho(J)+V(&,J;s) (7.9)

with
V(8,J;58) = Va(®,J;s)+ Wa(d, J; ) (7.10)

and
Ho(J) = ’)U?D(J)+<f’n(.f)u>; (7.11a)
Va(®,J58) = Vi(®,J;8)~ < Vo(J)> . (7.11b)

(We comment further on this separation at the end of this section.)

As is clear from eqns. (7.2a) and (7.11a) the term < f/'ﬂ(J) > results in a tune shift of the
form : '

L 8 .
§Qx = — — <V, . .
Q= 555 <Vald)> (7.12)

If < Tj’n(J ) > depends nonlinearly on J, the tune shift is amplitude dependent.

In a second step we make a canonical transformation 17 :

(@, Ju) — ($s, i) (7.13)

"In order to simplify the notation we drop the index 'n' in Fp and G.
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with

jk = J;fniz);
(i)k = @i,ﬂ72J

designed to cancel the term V,(®, J; s) by using the generating function:

Fy(®,J;8) = Z Oy Ji + GO, T, 5)

k=1 ILIII IV

For the new variables &, Jy

. oF,
oF, -
Jp = —— = LK+ G 7.14b
k 9%, T G, ( )

the corresponding Hamiltonian :

no= ne 20
Js

= Ho(J +Gs)+ V(®,J+Gg; s)+ G,

= Ho(J + Ga)+ Vou(®, J + Ga; 8) + Wa(®, J 4 Ga: s) + G, (7.15a)

oG
o

is in n'* order only dependent on Ji. In eqn. (7.14) and below we usc the notation Gg =
etc.

For this purpose, following CWR, we rewrite (7.15a) as:

H =

b=, I, II1, IV

Ho(J) + {'Hn J+ Gs) — Ho(J) - Z %'Qk(j)'Gh}

(
+ V@j+GMng@Jwﬁ

2 - . A
+ >, _E cQu(J) - Ga, + Gy + Vo(@,J 5 8) + Wo(®, 75 5) (7.15h)
k=IIIITI, IV

where for brevity we have written (see eqns. (7.2a), (7.11a) and (7.12) ):

aHg(«]) _ 2T

EYA T - Qu(J) . (7.16)
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We now require that the generating function G satisfies the partial differential equation :

o)

Y QU Ga, + G V(8,0 5) = 0 (7.17)
pa— L
k=111, 111 IV
so that
H = Ho(J)+V (7.18)
where

Vo= Wy,J;s)

1 9? .
+ Z 5 Ge, - Ga - ——= HolJ)
kyI=1, 11,111, IV 2 8J.8J,
a .
t Y Gey e V(B Fys) 4 (7.19a)

k=I,II,III IV dJ,

If the perturbation, V, in (7.9) is small compared to H, then according to {7.17) we expect
that G is small. It is then clear from (7.19a) that V in (7.18) is only a second order correction
compared to Hy, so that we may write:

f/(@,j; s) = Z IA/,,('I’,j; 3) (7.19b)

v=n+1

beginning the series expansion with the order v = n + 1 28 .

For convenience we also require that the solution of (7.17) is periodic in s:

G(®,J;s+ L) = G(&,J;s) (7.20)

so that V is also periodic with the same period L. In this case, the calculation embodied in
eqns. (7.8 - 16) (and in the Fourier expansion below) can be repeated in a second iteration

step, in whick V replaces V in eqn. (7.3).

In particular we can use the average of V:

~

< V() > =

1 sp+L 2% 2w 27 I 2 . .
—_ ds . dd; - dd;; - db;;r - dbry - V1 (9, J;
@r L [a 5 /[; 1 /; 7 /0. i1 /D v Vaia(®, J; 8)

1SSince’ W, is of order (n+ 1) and Jy of order 2 and since G has the same order n as V (see eqns. (7.21) and
(7.29)) V in (7.19a) becomes of order

2forn=2:

min(n+1,2n—2) = { n+1forn>3.

It follows that the canonical periurbation treatment does not work in the Lnear case where n — 2 since the
corrections of linear transformations remain linear. For that reason we have solved the linear problem separately
before (chapter 6) using another methed (variation of constants).
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to calculate the contribution to the Q-shift in the next order in analogy 10 eqn. {7.12}.

A penodic solution to eqn. (7.17) can be obtained by writing 1}, and G as:

Vn((I)gj-p SJ = Z 'l,i:l)mzm.'smi(j:‘s)
xei' [my @1 + me 11 + ma Q11+ my ®pv] (7.21)
and
G(®,Jis) = Y gmmmmi(do9)
M) T2 73,9y
xﬂi.imléf-pmz ®rr + ms 11 + My Prv) (7.22a)

where v,(;)mz msms 18 periodic in s and where according to (7.20} we require:

a

gmlmzmamq(Ja‘q+L) - gmlmzmsmq(qu)- (7221))

On substituting (7.21) and (7.22a) into (7.17) we get the differential equation connecting

the coeflicients g and v :

. 27 ‘ o .
{1 T M Q1+ Mo Qpr + ma Qrr + myq Qvy] + a} Gy iz my mgldsS)

S (J.s) . (7.23)

My ™Mo T3 My

This may also be written as:

| i Z [mQ;+myQp+m 4+ mgOpy] s -
o {e? T [maQr +my Qpz 3 Q1 1 Qrv] s s s (3 8)

L 2% [my Qr -+ ma Qpr + M3 Qrir + mg Qpv] s Lp ) (j,s) ) (7.24)

= ¢ ] M3 Mg My

By integrating (7.24) from s to s + L and using (7.22b) we then obtain:

gm1M2m3mg(J75) .

2 {ez’--zi—’ (M1 Qr+m2Qur +maQuuy + ma Qrv} - (s + L)
fei-zfﬂ [m1Q1+m2QH+m3Q111+m4Q1V]'3}
s+ L .
_ */ o (.5

xe";'%ﬁ [m1 @1 + m2 @iy + ma Qrir + my Qrv] - & (7.25)

from which:
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gm] 171277137714(']"5)

1.

2 -sin w[my @1 + ma Qrr + ma Qrpr + my Qv
s+ L i
x / di-ol (I 8)
8
e

i+ 28 [y Qp + ma Qur + ms Qrir + ma Qry) - (5 — s — Lj2) (7.26)

so that (7.22) finally :

G(®,J,s)

i
N Z 2 -sin wmy Qr + mg Qpr + m3 Qrrr + my Qrv]

TR T2, g, TNy

] ™o My g

. a+L
w ¢t [mi®r+me®r+ma @+ ma Prv] / di o) (1,3)

e ZTW [ Qr + m2 Qur 4+ ma, Qi + ma Qrv] - (5 — s — L/2) (7.27)

If the function v&m, mym, in (7.27) is furthermore expanded as a Fourier series in s:

p ) (J,8) = Y o) (J)-e7t 9T (7.28)

My Mg M3 My ™) Mz My My Q

q

then G takes the form:

G(®,J,3)

L ] :
= t E,; Z 'v's'nl)mzmgmgq(‘])

™M1,y My, My, g

Ao Mm@t ma @y +madnrt ma®ry g X s

X . 7.29
(myQr +m3Qrr +mzQuir + my Qrv — ¢ ( )

Since H is approximately independent of $,, the canonical equations:

d - oH
—J. = —— 7.30
k 5%, (7.30)

predict that Ji. are approximately constants of motion which together with eqn. (6.14b):

- d .
o = J —G{D,J; s5); .
k k+a‘1’k ( b] 3‘5)1 (731)

(k=1, 11, II1, IV)
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define invariant surfaces.
Remarks:

1) In separating off the average of 1, :

s = )

Yo6000

in eqn. (7.11b) we have ensured that the term in (7.29) for which m,, m;, ma, my and ¢ in
the denominator, (my Q7 + m2 Q1 + M3 Qrrr + ma Qv — g|, are all zero, does not appear.

2) Taking into account the relation:
2n s
/ 4% . — 9 for m#£0, (7.32)
0

the quantities < V, > vanish for odd values of v. As a result, only integer powers of J
(k =1, 11, 111, IV) appear in the normal-form Hamiltonian. (So the half integer powers
disappear: see eqns. (7.4a), (B.5) and (B.7) for the leading order and for higher orders Ref.
30] ). |

3) Since Jyv has the order of magnitude £, (see (6.46) and eqns.(A.4a,b) in Appendix A)
we may neglect powers (Jry)” for v > 2 in the final Hamiltonian H which thus takes the form:

H = hy(Jr, Jrr, Jinn) + ha(J1, Jr1, Joer) - iy (7.33)

whereby 4, and h; represent power series in Ju (k= I, I1, 11I) (we denote the action variables
in the final state by J) ¥ . Tt follows that:

dJi O
- = —7= = 0; (7.34a)
ds 5%,
dd, aH
— = +—— = const. (7.34b)
ds aJ,
and thus:
J. = const. ; (7.35a}
- 2T R
= 7 - Qur{Jk) - 8 (7.35b)
with
27 A d .
7 Qul(Jx) = +8—jk [hl + hy - JIV] : (7.36)

L9This corresponds to the fact that we work only to first order in k. In fact terms of order (Jyv )¥/? (N > 3)
can be neglected at each stage of the perturbation procedure [7).

The form of the final Hamiltonian in (7.33) looks similar to that in Ref. {3]. However the meaning of Jrv
differs from that of the action variable in Ref. [3].
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In particular we obtain for the spin motion:

j]‘[' = const. ; (7.37a)
by = holJr Jor Jpg) s (7.37b)
and
. L PO .
Qv (Ji) = o ha (Jry Jris Jrir) (7.38)

i.e. the spin tune depends only on the orbital action variables j;, Jr Jur
If the distribution function of the orbital action - angle variables is known, one can calculate
the mean square spin tune spread < (Qrv — Q,_,m-n)z‘> with Q. given by eqn. (4.7).

4) Since the transformation (7.13) is canonical, the Poisson bracket relations (6.43) remain
valid for ®, and J, :

(il = -

[Jk,Jz](y,py) = @ka‘ii](y,py) =0
(y=e,z,0,a) .

5) To calculate the 7-axis (see eqn. (5.8)) we need the spin-orbit vector 4 in terms of
the new action- angle variables. The 7-axis is obtained by taking JLO), @LD) to be functions of
Jeo ®p, (k =1, 11, 1IT,IV) in eqn. (6.32) and footnote #14 and putting J;y = 0. Clearly
this can be a complicated procedure since in the CRW method the old and new variables in
the generating function are mixed (see eqn. (7.14a, b)). It would then be more convenient
to apply another kind of canonical perturbation theory, namely the method of Lie transforms
(see Refs. [7,9,30] ), whereby one obtains directly the old variables as functions of the new ones.

6) The above treatment of perturbation theory relies on the assumption that the perturba-
tion & in (7.14) is small. From (7.29) it is clear that this condition is not valid if

m1 Q1 +mz Qi+ maQrr + my Qrv

is close to an integer. Thus the resonant case:

M1 Qr+mzQrr +mas Qi+ msQry &~ integer (7.40)

has to be investigated separately with other methods (see for instance Ref. [24]) 2° . In this case
the Hamiltonian becomes a function also of @, (k = I, 11,111, IV). As a result, J;y = 0 is
no longer a solution of the canonical equations of motion as used in eqn. (5.8) and the method
for calculating 77 described here breaks down (see also Ref. [3, 6]).

At linear order in this perturbation theory 7 contains first order resonances (|m,| + |m2| +
lms] = 1) and is of first order in orbit amplitudes (see eqns. (A.4a) and (6.45) as well as
Appendix in [20]). As can be seen in Refs. [6, 11] at N** order, 7 is of N** order in orbital
amplitudes and contains N*" order resonances.

*Since the SG forces are very small the spin motion can be considered to be a forced oscillation induced by
the orbital motion (see Ref. [6]). Therefore only the resonances (7.40) for which m. = 0,41 are significant.
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8 Summary

Following an earlier paper |1}, we have used a classical spin - orbit Hamiltonian for a spin 1,2
charged particle to construct a canonical formalism of spin-orbit motion expressed in machine
coordinates, taking into account all kinds of coupling.

In addition to the orbital variables z, p., =z, p., o, p, of the fully coupled 6-dimensional
formalism we introduce the canonical variables @ and § to describe the spin motion. All eight
variables can be treated on the same level. In particular, the equations of spin-orbit motion
can be hinearised. Also the one turn maps are origin preserving.

By expanding the Hamiltonian into a power series in these variables, one may work to
various orders of approximation for the canonical equations and the canonical structure of the
formalism is well suited for the use of Lie algebra and normal forms.

In this paper we show how it is possible in principle to convert the spin - orbit Hamiltonian to
normal form and how then to construct the n-axis applying a modified version of the canonical
perturbation theory used by Courant, Ruth and Weng. The analysis is restricted to the non-
resonant case but the resonant case could be incorporated in a natural way leading to a method
of estimating the stopband width [26, 27] of spin - orbit resonances.

Finally we remark that, starting from the variables =, p,, z, p., 0, p, a, 3 and using
analytical techniques as described in Refs. [17, 19, 35] one can also develop an 8-dimensional
dispersion formalism.
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Appendix A: An Approximative Calculation of the Eigen-
vectors for Spin- Orbit Motion

The eigenvectors for linear spin-orbit motion in storage rings may approximated by neglecting
the Stern-Gerlach forces. In this case the 8-dimensional transfer matrix M(s, so) of linearised
spin-orbit motion takes the form (see eqn. (4.49)):

oo - ( M(s, o) 0 ) (A.1)
MLs, Sp) = ﬁ.g(s,so) Q(S:SO) |

with M, G, D given by eqns. (4.46 - 48). Note that M is a symplectic matrix describing
orbital motion. |

The eigenvectors of the whole 8-dimensional revolution matrix ﬂ(sg + L, sg) for spin and
orbit which are defined by :

"

M(SO + Ls 50) ' {;u = A;I ' ﬁu (A‘Z)
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can now be written in the form:

Ui(80) = ( g;((:)l ) v x{s0) = [tals0 )" (A.3a)
for k =1, 11. 111
and
vtoo) = (o) ) gy = vl (A:3b)
for k =1V .

By combining equs. (A.2), (A.3), (4.46), (4.50) and (4.51) we obtain the two-dimensional
vectors wi(so) (k= 1, II, III]) and wrv(se) from the relation:

\/2 - G (s0 + L, s0) Vi{s0) + D (80 + L, s0) Wals0) = Ax - wir{50)

which leads to:

We(80) = —\/E [ D(80 + Ly,so) — A - 1)71 - G(s0 + L, 50) * Tr(50)
- —ﬁ-[g(mz,so)—w‘-/’”Lds-gcsﬁL,é)-go(é) 5(3)
! (A.4a)
for k=1, IT, III
and
Bry(se) = \% i ( —Ii ) . o~V ¥spin(S0) (A.4b)
for k = IV
with
W_w(se) = [Wu(so)]"; (k=1I, II, III, IV) (A.5)
where the vectors 7,(so) are determined by the relation :
M(so+ Ly o) - 0k(s0) = M -vr(s0) . - (A.6)

Thus ;7k(30) (k = I, II,III) are eigenvectors of the (symplectic) orbital revolution matrix
M(s0+ L, sp) which may be normalised by:

=+

By (s0) -8 - Tulso) = —b"

k(50) - 8 - Tr(s0) = i. (A7)

As a result, the orthogonality relations (6.12) are then approximately fulfilled (due to the small
value of £).

The corresponding eigenvalues are
M= U2k (I 1IT) (A.8a)
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and
Ay = eTUPTRNY ik Qpy = Qo (A.8b)

For the eig=nvectors ,(s) of the transfer matrix M(s + L,s) (initial position s):

M(s + Los)-v,(s) = () - Bu(s) (A.9)
we also have:
io(s) = M(s Y = %"k(s)
vuls} = M(s, s0) Uul80) = ( Fal s) ) : (A.10)
In particular we get
an(s) = (o) dm(s) = v (A.11a)
with
wrv(s) = D(s,s0) Wrv(so) = \/LE ( li ) cem minlS) T () = [@Wne(s)]*.  (A.11b)

The eigenvalues are independent of s:

Au(8) = Au(s0) - (A.12)

Remarks:

1) Note, that the components @, in eqn. (A.10)

Bils) = —\ED(s+Lys) = M- 1™ Gls+ Ls) dul)

s+L
= —\/ D(s+L,s)~ 1]1.f di-D(s+ L,5) Go(3)- (3} (A.13)

for (k =1, 11, I1]) are solutions of eqn. (4.42b) (using the definition (4.43)) with g(s) =
Ur(s): '

d " o TR d . I
Ewk() = —\/{-[Q(s+L,s)—/\k-1] '/; ds-EQ(s—FL,s)-Qo(s)-vk(s)

—\/E-[Q(S{—L,S)—x\k-l]_l-Q(s+L,s+L)-Qu(s—l—L)-ﬂk(erL)

\[ Di(s+L,s) —Ak-l]_l-Q(s-l-L,s)-_G_o(.s)-ﬁk(s)

= _\/g'[Q(SJrL,S)—)\k'H_I'/S ds - Do(s) - D (s + L,3)- Go(3) - #u(3)



~VEDIs+Ls)— M1 " 1-Gols) e uls)
FVE D5+ L) = N 17 D(s + Lys) - Gols) - inls)
= Dy(s) - wels) + \/g [D(s+L,s) =X 17" [D(s+L,s)— A -1]-Gols) Buls)

= Dyls)-wpls) + \/E'Qo(s)'ﬁk(s) :

This result agrees with the definition of wi(s) in eqn. (A.10). That is, the spin-orbit
eigenvector g, (s) defined by (A.10) is a solution of eqn. (4.42), which represents the combined
spin-orbit motion.

2) Introducing the spin vector

( ; ) ( " ) ~a(s) = v/ Jiv - ( Zz ) eV RV complcong. (A.14)

Ys k=IV
(see eqn. (6.44}) which describes the spin motion around the 7i-axis we obtain from (6.10a)
and (A.1la, b):

& = _\j_i Jv - E_i ' ['I)IV + wspin — 2% Qspin ) (S/L)} + Compl_conj_

= /2Jry - cos[®ry + typin — 27 Qapin - (s/L)} ;

Ié = \/Li Jry - l e_i [ + Gapin = 27 Qupin - (/L) | + compl.con.
2
= ﬁ'\f‘zJIV -sin[‘I’;V-f-i,bspm*%T Qspin (‘S/L)}

and therefore: )
v =5 [aﬂ + B"’-] : (A.15)

Thus spins at the same point in the orbital phase space (, p,, Z, p., &, f,) and s, can be
considered to precess around a common axis 7 with a tilt angle w.r.t. % proportional to Jy.
The quantity Jry describes the spin component perpendicular to the 7-axis ' .

Using the variables g; and p, defined by eqn. (6.47a,b), we can also write:

a = +qrv- COS["/’aPin — 27 Q4pin - (S/L)] +prv - Sin[¢awn =27 Qupin - (s/L)] ;

B = —qv sinYpin — 27 Qupin - (8/L) | 4 p1v - <08[hapin — 27 Qupin - (/L) ] .

It follows that the quantities ¢ry and prv oscillate around & and 3 (see eqn. (4.7}).

21Qutside the spin orbit resonances we may assume that the fi-axis is approximately parallel to ;.
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Appendix B: The Hamiltonian in Terms of J, and &;

In order to prepare a perturbation theory, the perturbative component H!) of the Hamil-
tonian defined in (5.2b), which may be written as:

Nk

HY = K.
n=3
oC
= :; E Cpur p-rpaa (5)
p=3 prtuet-tps=r

*(y1)" (2 ) (ya ) (ya) (95 )™ (36)™ (y7)" (0)™  (B.1)

by using the notation of eqn. (5.4) should be expressed in terms of the new canonical variables
J. and ®; 3.

This can be achieved by using eqn. (6.32):

J) = Y VI |@(e) e ti(s) 7P| = gi(@e, i s) (Bu2a)

k=1, ITIIL IV
with
ur(s + L) = ﬁk(s) . (B.2b)

From (B.2) one has for the »** component of §:

Yo : Z \/"Tk ‘ [uky ' e_iék + u]:y : €+%@k:| . (B3)

k=I,I1,111,1V

Thus we get:

n ' ' 1
)" = ( le ) ' { \/'-Tk ['mw . e—z¢k + up, - -e-}-ttl)k] }
k=1,

- Zﬂt ( 7 ) i ( i ) ()2 [ub,e—icbf +u},,-e+i‘1’1]”

. , -
x (Jyr) P2 [uuu eI g, E-H(I)H] ’

- . n—I{—gq
X (Jpy )nineE [ufvu LTIV EH(I)IV}

22In this appendix as in this chapter 6 we write J, = J,go), $, = @io).
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i )
_ n A\ L ) N ( . ) (J”pxz _(JIT)H—P)/? . (JIH]Q'I (J V)("n—f—q)/?
1 ] &\ 1 ) &=\ g '
=0 p=0 g=0
P
[ - —1 2 -
X Z( i ) (ug) (ug, P01 (2A )
a=0
i-p .
% ( Z ;P ) ) (i) P e (22— 1+ p)
A=0D
q }
* Z ( i ) ) (“HIU)A (“‘}Hu)qq : 6_2(1)111(2)\ — 9
A=0
n—Il—g
Sy - . melo-h  —q —
X ( ’ A ’ ) .(u’IVV))\ (urvy) Fohe 18y (24— n +Z+q}' (B.4)
A=0

Thus the terms of H{!) can be factorized into a periodic and a harmonic function (see eqn.
(B.2b) ) and the Hamiltonian takes the form:

ZIEID S5 35 V5 Y5 35 S5 S5 SF SRSHNERNE

Ty M Az Aq
X (Jp) M2 (T " (Tp) P () ™
we—t M Cr A @pr + A3 B+ Ay - Ry} (B.5)
with
HM ny fyng Ay A )\4(‘9 + L) = Hﬂ] ny Ny Tg A1 A2 Az 5\4(5) (B6)

and

A€ {—mny, —n1+ 2,40}
Ay € {—mny, —my + 2, ..., 402} ;
Az € {—n3, —na+2,...,+n3} ;
M € {—nq, —ng+2,...,+ng} .

(B.7)

'With eqns. (B.3) and (B.6) we have established the connection with the canonical pertur-
bation theory described in Ref. [27].

Note that the complex periodic functions us, (k = I, II, II1, IV) appearing in (B.4) are
determined by eqns. (6.6), (6.12), (6.7) and (6.10a). They can be conveniently directly calcu-
lated using computer programs (for example SLIM) #* . A description of a method to determine
the eigenvectors of the transfer matrix may be found in Refs. {21, 31].

Remark:

In terms of the variables @, Ji which are defined by eqn. (6.32) the Hamiltonian takes the
form (see eqn. (6.39)):

H = Ho+ V(21,810,811 1v, J1, Jis Jurr, Jivs 8) (B.8)

23As shown in Appendix A, the eigenvectors can be approximated by neglecting the SG effects.
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with

and

y 27
Hy = Z i - T Qu (B.9a)
k=1.11,111.1V

Vo= HWY. (B.9b)

Here the term V(®, J; s) describes the perturbation and is periodic in s and ®,:

V(@5 @5, @001, v, J1 i T, v s)
= V(‘I'I“‘ 27, 817, @rrr, B, 1, Jin, Jiars Jrvs s)
(@7, @71+ 27, @11, pv, I, J1n, Jrrn, Jrvs )
(1,17, 111 + 27, v, J1, Ji1, Jran, Jrvy s)
(®7,¥51, 111, ®1v + 27, I, J11, Jiar, Jivs )
(@5, @51, @111, 1v, 1y Jrry Jinn, Jrvy s + L) (B.10)

<

The corresponding canonical equations read as:

d®, OH 27 av .
A +8_Jk = TQk—l- B—Jk ; (B.11a)
dJ, OH 14

& = e T Taw (B.11b)

In this form the Hamiltonian can be used for a version of perturbation theory given by Courant,
Ruth and Weng (29, 32].
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