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Abstract

We propose a dynamical mechanism for neutralizing the cosmological constant in
our universe. The analysis is wholly Lorentzian, unlike most other mechanisms which
rely on the problematic Euclidean quantum gravity. Additionally, we do not have to
assume any properties of a complete quantum gravity theory for our result. Quantum
cosmology is an effective theory below the Planck scale, and it suffices for the purpose
of our demonstration. The vacuum energy from particle physics is many orders of
magnitude too great to explain the measured smallness of the cosmological constant.
Any generic field that allows us to shift the vacuum energy has the possibility of
neutralizing it. However, such a field has an infinity of possible vacuum states, and we
have to be in exactly the right one to achieve the cancellation. We show that when
we third quantize a cosmology containing such a field in its particle physics sector we
do have the possibility of selecting one vacuum over another. (The field we use for
the sake of demonstration is a four-form.) The essential result of our paper is that the
dominant vacuum state for the field is indeed the one that exactly cancels the particle
physics vacuum energy. This means that a large universe, such as ours, has a vanishing
cosmological constant.

1 mail: duncan@vx.acs.umn.edu
2E-mail: jensen@landau.phys.washington.edu



1 Introduction

A long-standing mystery in particle physics and gravitation is why Einstein’s cosmological
constant is so many orders of magnitude smaller than it ought to be [1]. The particle
physics vacuum inevitably has some energy locked up in it. It is this residual energy density,
measured at energy scales far below those of the underlying particle dynamics, that is the
cosmological constant. To arrange for a cancellation by the necessary amount requires a
fine tuning of the particle physics, and all its vacuum fluctuations, to an incredible degree
of accuracy. Even if it is possible to succeed in this, all that has happened is that we have
exchanged one problem for a host of others. In what follows we shall argue that there is
a convenient mechanism, within the framework of third quantization, for neutralizing the
vacuum energy. If we invoke this mechanism when investigating any particle theory we need
not bother about the consequences for the cosmological constant.

Third quantization, as we shall use it, is a method for determining the state vector of the
universe. We shall show that for a large universe, such as ours, the dominant state vector is
one for which the lowest, stable, particle physics vacuum does not contribute a cosmological
constant. The method itself is quite straightforward. Starting from the hamiltonian for- -
mulation of gravity we postulate canonical quantization rules for the gravitational degrees
of freedom and their conjugate momenta. Qur rationale for this is that whatever quantum
gravity might be, it certainly ought to reproduce cosmology in some limit. Quantum cosmol-
ogy is simply an effective theory for quantum gravity at energies below the Planck scale. The
. quantized degrees of freedom of the cosmology are the remnants of the degrees of freedom
of the complete quantum theory of gravity that give rise to the large scale structure of the
universe.

Gravity couples to matter fields in the usual way. The matter fields are already second
quantized. The resulting differential equation for this system of first quantized gravity and
second quantized matter is the Wheeler-DeWitt (WDW) equation [2] which can, in principle,
be solved for the cosmological wave function. The WDW equation has similarities to the
more familiar Klein-Gordon {KG) equation. Not surprisingly there is also a difficulty with
normalization which is remedied by promoting the cosmological wave function to the status

of a field operator [3, 4, 5]. The field operator satisfies the WDW equation. We have now



second quantized the gravity. As the matter was previously second quantized this explains
why the procedure has been dubbed ‘third’ quantization. We shall show that the quanta of
the field operator correspond to different particle physics vacua.

The notion of using quantum cosmology to solve the cosmological constant problem goes
back to an observation of Baum [6] and Hawking [7]. In Euclidean quantum gravity the path
integral has a stationary value of exp (37 /Gy A). If the cosmological constant A can be made
a dynamical variable then the path integral would be dominated by geometries for which
A — 0;. Actually, the BH factor crops up quite often in quantum cosmology. The WDW
equation typically has classically allowed and forbidden regions, where the solutions are os-
cillatory and non-oscillatory respectively. It is possible to calculate the tunneling probability
through the classically forbidden region and, depending on the boundary conditions, it can
be the BH factor [8] or its reciprocal [9]. Rubakov [3] has shown that the BH factor also
appears in simple third quantized models, there interpreted as the probability of finding a
large universe given a value for A. However, in the above cases A is a fixed parameter of
the theory and therefore the BH mechanism is not directly applicable’. Our mechanism
is the converse: given a large universe the most likely vacuum state is one with vanishing
cosmological constant.

In passing we mention that wormholes {10}, or topology changing configurations in Eu-
clidean space, do give rise to a dynamical cosmological constant and could allow the use of
the Baum-Hawking (BH) mechanism. It has been suggested that when both wormholes and
universes other than ours are traced out of the theory that the cosmological constant in the
' resulting one-universe theory is driven to zero [11]. Unfortunately it has become clear that
there are serious difficulties {12, 13] with the wormhole calculus. An alternative is to third
quantize the WDW equation and use wormbholes to vary A [5]. Unfortunately the wormholes
have other dire consequences that ultimately invalidate the result. This is above and beyond
the problems inherent in Euclidean space quantum gravity. In this paper we shall stay clear
of wormholes and their pathology.

The analysis presented here is firmly rooted in Lorentzian spa,cefime. As we mentioned

above, Euclidean quantum cosmology has its problems {14] and it is difficult to circumvent

}These models also suffer from being too simple. They have only one variable (the scale factor). This is
akin to quantum mechanics with only a time coordinate and no space coordinates.



its pitfalls. To allow for the variation of the cosmological constant we shall introduce a four-
form field which accomplishes the task admirably. It was realized some time ago that the
presence of a four-form field gives rise to a variable cosmological constant [7, 15-18]). We are
not claiming that there really is such a field in the universe. It is just that it is the simplest
way to arrange for a dynamical cosmological constant, its physics is straightforward and, most
important of all, we can actually calculate with it consistently. We shall find that we still
recover the BH factor above, albeit by a different chain of arguments. To be precise, in what
follows we shall third quantize a Friedmann-Robertson-Walker (FRW) universe containing a

four-form and demonstrate that the cosmological constant is dynamically neutralized.

2 The Wheeler-DeWitt Equation

The total action for matter coupled to gravity in a spacetime with a Lorentzian signature is,

1
S =
ot 160G

f.M (R - ZAD) \/—“Gd';w + SaM + Smatter . (1)

This is the form of the effective action at energies much lower than the Planck scale Mp =
G]—vl/ ? where quantum fluctuations in the spacetime are expected to invalidate (1). The ‘bare’ -
cosmological constant is denoted by Ag. What we mean by a bare cosmological constant will
be discussed below. If the spacetime manifold has a boundary M we are required to add

the boundary correction {19},

1 3
Som = 5 /aM KV &Pz (2)

where hj; is the induced three-metric on the boundary and K is the trace of the extrinsic
curvature. The effect of this boundary term is to remove second time derivatives from the
action upon integration by parts, and thus render the action a function of the gravitational
degrees of freedom a,nd their first time derivatives.

‘The choice of what matter to include depends on which model of particle dynamics we care
to use below the Planck scale. We assume that we are working with a generic particle physics
theory. Additionally we assume that there is a field présent whose background configuration
is undetermined by the theory itself, and which shifts the vacuum energy. The simplest

example of such a field that we are aware of is a four-form field strength. Almost any other



field with the aforementioned properties will suffice for our mechanism, but the advantage of
the four-form for the sake of demonstration is that its physics is well-understood. Separate
the matter action into this field and the rest of the particle physics, Spatter = Sg + So.

A four-form field strength is the curl of a three-form potential, F = dA, and its action

is similar to the Maxwell action for electromagnetism, but with a couple of extra indices,

Sg = —% fM FA+F = —%-41—. jM Fun, /=g d*z (3)
Such a field arises naturally in theories with supergravity [15}, although for our purposes
it 1s simply an introduced field with no particular theory in mind. Its special property is
that its vacuum configuration is undetermined by its dynamics [15, 16] and that this shifts
the cosmologfcal constant. The cosmological constant then defies its name by becoming a
variable. The four-form has also been used in the framework of Fuclidean quantum gravity
as an example of the BH mechanism [7, 17, 18]. For a full discussion of this we refer the
reader to ref. [18]. The mechanism we are proposing also takes advantage of its properties.
As for the rest of the matter, the generic particle physics model, it has a vacuum state,
|Q%) of lowest energy. All the particle quanta are excitations from this vacuum. The vacuum
expectation value of the stress energy tensor (from Sp) can be written (0|7, %) = —pogur,
where pg is the particle physics vacuum energy density. We can absorb this into the bare
cosmological constant Ag — Ag + 87Gxpo in (1). The matter action then becomes Sp — 5§
whose stress energy tensor is purely due to the energy of the excitations i.e. we have
moved the vacuumn energy from the matter action into Ao, and (|7}, [Q) = 0. The bare
cosmological constant is equivalent to the vacuum energy density arising from the particle
physics. (The nomenclature can sometimes lead to confusion, but we adopt it here as it is
commonly used in the literature.) The matter excitations (particles) give the usual density
and pressure terms in the Einstein equations, and if the four-form were not present the
cosmological constant would be Ap. It is this latter quantity that we have to cancel, and so
we may neglect the particle excitations in what follows.
In studying general relativistic cosmology it is convenient to express the metric in a form
that distinguishes the true gravitational degrees of freedom from those that merely reflect the
reparametrization of general coordinate invariance. The ADM formalism [20] is well-suited

to this task. Moreover, assumptions about the symmetries of the spacetime greatly reduce
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the problem of solving the Einstein equations. Friedmann-Robertson-Walker cosmologies
are based on the assumption of an homogeneous and isotropic universe, properties that our
universe appears to possess on the large scale. It is for this reason that they are the most
widely used of cosmological models. We shall assume we are dealing with a closed FRW

cosmology. The spatial hypersurfaces are three-spheres. The FRW metric has the form,

ds® = (%C’;—N) (—Nz(t) di @ dt + a’(t) 6;;0° @ af) (4)
The common prefactor is just a scaling for later convenience. We have chosen to write the
line element of the unit three-sphere in terms of a homogeneous basis of one-forms o'. They
satisfy the algebra do’ = —¢;;x 07 A oF and when integrated over the three-sphere give its
volume f o' Aol A o3 = 272 The only degree of freedom in the metric is the usual FRW
scale parameter a(t), a function only of time by virtue of the homogeneity of the three-space.

The lapse function N(t) simply represents the time reparametrization invariance.

Tf we expand the potential in the basis of this spacetime it must have the form,
1 X .
A = x(t) ANl AT+ §§ij(t) di Ao* Ao’ (5)

and we immediately see that F will be independent of C,-,-; There is only one degree of
freedom for a four-form in general, and in our particular case it is F = x dt A ol Ao’ Aot
You can also see that the action (3) has only one degree of freedom in much the same way
that you identify those of the Maxwell field in QED; essentially the (;; may be gauged away.

If we now rescale the four-form and the bare cosmological constant according to,
2G
— 2y-1/2 N )
x = (27°) (~——3?r ¢

g
Ao = (QGN) Ao

and evaluate the scalar curvature R arising from the metric (4) we find that the action (1)

may be re-expressed as,

L fan(-La rod® 4+ 2 (6)
B TRt T g

where we have already performed the integral over the three-space. The lapse function does

not have a kinetic term and therefore variation of the action with respect to it will yield a
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constraint. The scalings were chosen to make this action as simple as possible; everything
is expressed in units of the Planck mass. We have reduced the problem to one of two time-
dependent coordinates. The last term in the action is not equivalent to the kinetic term for a
massless scalar particle. A scalar would have had the a® factor in the numerator rather than
denominator. Rewriting the action in the form S = J(Pad + psdp — NH )dt, after identifying

the momenta, the Hamiltonian is found to be,

1 Pg 3_2 3
HZE -——;+ap¢,—a+)\oa . (7)

The classical equations of motion follow by varying (6) with respect to the coordinates
N, a and ¢. Variation with respect to N results in the Hamiltonian constraint, H = 0. Also
from (6) it follows that ¢ is a cyclic coordinate, i.e. Py 1s conserved classically. This implies
that (up to the scalings) F ~ pyn is the solution to the four-form equations of motion,
where 7 is the invariant volume element of the spacetime (the canonical four-form). The
one degree of freedom possessed by F is really an undetermined constant, different values
of which correspond to different choices of vacuum. Solving the Hamiltonian constraint for
a(t) we find (upon setting N = 1),

i
a(t) = -—\/~/\=cosh (1//\0 + 9 t) (8)

o+ pﬁ
Note the similarity with the familiar solution of a closed FRW cosmology with a cosmological
constant. The difference here is that the four-form has introduced an addition of p5 to the
bare cosmological constant Ag. As we shall see below, in the quantized version of the theory
a similar phenomenon occurs.

The value of py is arbitrary and characterizes the vacuum configuration |py) of the four-
form. There is an infinity of possible configurations. The combined matter and four-form
vacuum is |(o; ps} which has an effective cosmological constant A = Ag+ p5. As X is usually
negative (particle physics vacua usually have a negative energy density from symmetry break-
ing) we observe that the states |Q; -£1/—Xo) have vanishing effective cosmological constant.
However, we have to be in exactly the right states for this to happen. We shall now third
quantize the Hamiltonian (7) and show that we are indeed forced into some superposition of

these special states.



The system described by (6) is quantized by imposing the usual canonical quantization
relations, similar to the method used in ordinary quantum mechanics. We simply replace
the canonical momenta with the corresponding differential operators, and construct the
Hamiltonian operator which acts on a wave function ¥(a,¢$). We find that the quantum

Hamiltonian 1s,

H= % [a'"-é% (a“%) - a"% + (Aoa* — a?) (9)
alias the Wheeler-DeWitt operator. The parameter n reflects the fact that there is a factor
ordering ambiguity in going from (7) to (9). We shall permit ourselves to choose it as we
wish for the sake of calculational expediency. As we have seen above, in theories including
gravity the total Hamiltonian is constrained, so we must also demand that the equation for

the wave function ¥(a, ¢) must obey the Hamiltonian constraint, i.e. we must demand that,
HE =0 (10)

This is the Wheeler-DeWitt equation [2], and as the form of (9) attests it has some similarities
to the KG equation. The scale parameter a and the four-form ¢ are analogous to time and
a spatial coordinate in the KG equation respectively. The last term in (9) is analogous
the the mass or potential of the KG equation. However, its dependence on the scale factor
(the pseudo-time coordinate) means that it resembles more the KG equation on a curved
background space [21].
It follows from (9) and (10) that there is a conserved current whose components are,
J* =™ §, ¥

- 11
J® = —ig"Hy de U ( )

and which satisfy 8,J° 4+ 94J% = 0. We can therefore define an inner product of two wave
functions according to,

(W) =ia” [~ (w; 5. wz) do (12)
where both wave functions are evaluated at the same value of the variable a. The scale factor
a in this case is naturally interpreted as the external order para.mefer of the wave function.
In ordinary quantum mechanics the time coordinate is not an operator like %, but is rather
the classical parameter that determines the evolution of the wave function from preparation

to measurement. Of course time flows whether we like it or not and so the measurements
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there are described as cause and effect. In the case of the cosmological wave function there
is no sense of direction to the scale factor and moreover it does not flow. Given the wave
function (and its derivative) at one value of the scale we can evaluate it at any other using
the WDW equation. However, as in the case of the KG equation, the inner product (12)
need not be positive definite when W¥; = W,. There is therefore a difficulty with a strict
probabilistic interpretation of the WDW wave function, aside from the fact that the concept
of probability in quantum cosmology is nebulous to begin with. This is remedied by third
quantization.

Suppose we look for wave functions of the form uz(a, ¢) = €*¢ fy(a). These are eigenstates
of the four-form momentum operator. As we stated above, each eigenvalue k corresponds
to a different vacuum state of the four-form, and therefore each of these eigenfunctions

corresponds to a universe with a different vacuum. Setting the factor ordering parameter

n = —1 for convenience the WDW equation reduces to one for fi(a),
d {1d 2 2 ' :
oz (325) o (1= 3| e = (13)

where A\, = Ao+ k? is the effective cosmological constant. Thus the presence of the four-form
shifts the cosmological constant, in keeping with the classical theory [18]. In the quantum
theory the shift depends on which eigenstate of p, we happen to be in. The solutions to (13)
are Airy functions [22], solutions to the differential equation w” — zw = 0, and are denoted

Ai(z) and Bi(z). The general form of the u.(a, #) is therefore,

u(a, ) = Ny e** [Ai(z) + BBi(z)] (14)
where the argument is,
1 Apa’
CHE (19)

The boundary conditions we impose in the next section will determine the parameter S.
It is then straightforward to construct a complete set of orthonormal solutions to the

WDW equation, which under the inner product (12) satisfy,
(uk|uk:) == 6(k b k’)

(uiluw) = 0 (16)
(uilui) = —6(k—F)



The Wronskian of the Airy functions is Ai(z)Bi'(z) — Ai'(2)Bi(z) = 1/x which fixes the
normalization of the wave functions via the relation, )

8|JV k|2
Immediately we see that &0, the imaginary part of 3, must have the same sign as Ax. As

expected, our wave functions have to be complex otherwise they cannot be normalized.

3 Third Quantization

So far we have found a complete set of orthonormal solutions to the WDW equation. If we
consider a general linear superposition of the states u; and uj, this need not have a positive
definite norm. To remedy this we are led to third quantization. We treat the wave function
¥ as an operator and expand it in terms of annihilation and creation operators for the modes
Uk,

U(a,9) = [ dk [e(k)us(a, ) + & (kuz(a, o) ()

and take these operators to satisfy the usual commutation relations,
[&(k), (k)] = 8(k — &) (19)

with all others vanishing. We would then find the equal scale commutation relations for the
operator W are,
3‘ 8 =) 2 ? [
i = — 20
| £ 2 ba, ), 800 8)| = 506 9) (20
This is analogous to the quantization procedure for the KG scalar field. Actually, what we
are doing is similar to quantizing a scalar on a curved background spacetime [21]. Instead

of canonically quantizing from (20) we could also construct a path integral for the third

quantized theory. The third quantized action is,

S = ; f a*dadd [(‘Z‘f) —a (%)z_ (Ao — a?) qﬂ] (21)

and we see that variation with respect to ¥ yields the WDW equation.
We fix the parameter 8 by demanding that the u; correspond to positive frequency

outgoing modes, frequency here referring to (negative) the rate of oscillation with respect to



the scale. In classically allowed regions the positive frequency modes correspond to expanding
universes [23]. As the potential in (9) is scale dependent so will the meaning of positive
frequency. We therefore have many possible expansions (18) depending on at which scale we
choose to fix the frequency. We shall consider the two choices of small scales (a 2 1) and
large scales (a — o00), and impose the positive frequency conditions there.

The vacuum energy from the particle physics is Ap in Planck units and is therefore very
small. Moreover, it is more than likely to be negative from the effects of symmetry breakings
in these theories. For the electroweak symmetry breaking Ao ~ —107%7, which is very small,
although it is still many orders of magnitude greater than the observed upper bound on the
cosmological constant 107'2° [1]. The wave number k is the momentum of the three-form in
Planck units and is also very small. We can think of there being a cutoff k. in (18) and also for
integrals over k. Thus |k| < k. < 1 and |A¢| < 1. Hence |A¢| < 1. In addition, |Aza?| < 1
for a wide range of scales many times the Planck length. The effective cosmological constant
can have either sign, depending on whether k? is greater than or less than |)|.

For the moment let us consider Ay > 0. In this case there are two different behaviours
for Aza? > 1 and Aea® < 1 as there is a classical turning point for positive A;. In the
limit @ — oo the argument of the Airy functions is z — —co. In this limit the asymptotic

behaviour of these functions is [22],

Ai(=z]) ~ =7 2|2| M sin(¢ + 7)

Bi(—Jz]) ~ 7 7/7|2| M cos(¢ + 7) (22)

where ¢ = 2|z|*/2. Thus the choice # = i will ensure positive frequency outgoing modes for
large scales. We shall call these modes which have positive frequency at large scales the ‘out’
modes. Setting 8 = ¢ in (17) to fix the normalization, the ‘out’ modes are then,

cikd
= T [Ai(z) + ¢Bi(z)] (23)

up™(a, ¢)
when the wavenumber is such that Ax > 0. Incidentally, the phase of this wave function in the
large a limit is the same as if we had only used the semiclassical approximation, ¥ ~ exp(i5),

where S is the action (6) evaluated on the classical path. This is just the positive frequency

component of the Hartle-Hawking wave function [8] and the Vilenkin wave function [9].
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Similarly we can impose the positive frequency conditions at small scales (we shall discuss
the physical meaning of this in the next section). As Aa? — 0, with positive A, the argument
of the Airy functions z — zp = (4A2)~'/3, which is very large from the discussion above. We
can expand the wave function as a power series in the scale factor a. It is easily seen from

(15) that both Airy functions have expansion,

w() =55 (-5 5 e (24)

From the asymptotic form of the Airy functions for large positive zo [22] we find that their

derivatives behave as,

z&nhAi(")(Zo) ~ ("1),‘%“?1/220_1/46-@ (1 + O(C"_l))
zo—nlzB](n)(zo) ~ W_llzza-l/‘leﬁo (1 + O(CO_I)) (25)

where again (o = %zg/ 2 = 1/3);. Thus the series {24) may be summed in both cases giving,
a® A
Ai(z) ~ Ai(zo)exp (5—)
a?
Bi(z) ~ Bi(z)exp (—-2—) ,

valid for Ay < 1 with M\a? < 1, the latter inequality being satisfied for a wide range of small
scale factors. Call the modes with positive frequency at small scales the ‘in’ modes. The

asymptotic form of their wave function is then,
uil:l(a: ¢) ~ eik(ﬁNkﬁ_l/zZ{;l/é (%e_c°e°2/2 + ﬁeCoe—azlz) (26)

for positive A in the limit of small a. We can fix 8 by demanding that this have a positive
frequency. However, there is another way we can determine 3 by demanding continuity of
the ‘in’ modes when Ay passes through zero for small wavevector.

As we have said, for Az > 0 there is a classical turning point and so the meaning of
positive frequency is different at small and large scales. This is why we have two sets of
modes above. However, for Az < 0 there is no turning point. Therefore the “4n’ and ‘out’
modes are identical for Mz < 0 as a positive frequency condition will hold over the complete
range of a. It is only for Ax > 0 that the ‘in’ and ‘out’ modes are distinct. The value of 5 can

be determined by requiring continuity of the ‘in’ modes in the wavenumber k. The special
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case of Ay = 0 is when the wavenumber k = +ko = £|Xo|'/2. The wave function for these
two values may be obtained by solving (13) with Ay = 0 and finding the positive frequency
modes. The wave function at these critical wavenumbers is,

ik d

V8r

The normalization is fixed by (16). With this choice of wave function the phase of (27) has a

uih, (0, ¢) = ulk, (e, ¢) =

(/2 4 iem/%) (27)

scale dependence of ¥ = — arctan [tanh (%)] leading to a positive frequency w(a) = -1% =
sech(a?).

We are now in a position to uniquely determine the value of 8 in (26), simply by de-
manding that (26) converges onto the states (27) in the limit of Ay — 0. The unique value
is, _

2
8= 56—240
The important factor in this is the appearance of the exponential, necessary for correct
normalization of the modes. The overall e~% in (26) is canceled by a similar fa.ctof in N;.
‘The numerical factor ¢/2 is uniquely determined by the factor of ¢ in (27). This latter factor
may be changed slightly, with a corresponding change in 3, but must retain its positive
imaginary part. All that bappens, if we wish to do this, is that it introduces an overall
numerical factor into our final results. The diligent reader can confirm that it does not
alter our conclusions one bit. With this choice of 8 the wave function again has a positive
frequency of w(a) = sech(a?). With the normalization given by (17) the ‘in’ modes are

_explicitly, "
e'l

u(a, ¢) = T60e)175

when the wavenumber is such that Ay > 0.

[61/3**Ai(z) + %e“l/‘”*Bi(z)J (28)

The construction of the states above has been for Ay > 0. We now return to the situation
where the wavenumber £ is small enough that Ay < 0. In this case the argument z of (15) is
always positive. With this sign of the effective cosmological constant the analysis is similar
to that for the ‘in’ states above. The expansion of the Airy functions for all scales is as in
(24), except for a positive sign to the a?/2 terms inside the brackets. We go through the

same procedure to find that the parameter 8 = —ie™*° where now (o = 1/3|A;|. There is
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only one common set of wave functions, valid for all scales,

. eik® 1
u(a, ¢) = u(a, ¢) = W [3‘61/3“&' Ai(z) + Ee—usmlBi(z)] (29)

when the wavevector is such that Ay < 0. The frequency of these states is also w(a) =
sech(a?).

We have constructed two sets of complete, orthonormal modes, either of which may be
used as a basis of states. The ‘in’ modes taken together are (29), (27) and (28) in order
of increasing absolute wavenumber, whereas the ‘out’ modes are (29), (27) and (23). The
classical cosmologies corresponding to the ‘out’ modes (23) in the limit of large scales are
FRW with cosmological constant Az [9]. There is no direct interpretation of the modes
(28), however, since \ya? < 1 is a classically forbidden region. Negative Ax also does not
correspond to a classical cosmology. All we have done is to construct positive frequency
modes in regions of the (k,a) space. The wave operator can now be expanded in terms of

either set of modes,

ba,6) = [ d [a(k)uil(a,6) + (b (a, 9)
= [ b [touR)u(o, 8) + Sulkup (e, 9) (30)

each with their own set of annihilation and creation operators. Moreover, each set of modes

has its own (third quantized) vacuum, which is annihilated by their respective operators,

én(k)]0,in)) =0 Vk
Eout(k) |0,0ut) =0 Yk (31)
The double ket signifies that this is a third quantized Fock vacuum, not to be confused
with the second quantized particle physics Fock vacuum |€). The ‘in’ vacuum contains no
positive frequency modes in the limit of small scales. The ‘out’ vacuum contains no positive

frequency modes in the limit of large scales. We are now set to determine the state vector

of the universe.

4 The Vacuum State of a Large Universe

It is worthwhile at this point to recap what we have done so far. We have considered a

closed FRW cosmology with a matter sector containing a four-form. The matter is already
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described by a second quantized field theory. The vacuum energy from all fields, excluding
the four-form, is A in Planck units and is very small and negative. The four-formn vacuum
state is undetermined: there is a continuum of possible background configurations for the
four-form, each vacuum labeled by a real number k. The effective cosmological constant
for the FRW universe is Ay = Ao + k2, a different one for each four-form vacuum. How do
we then select a vacuum for the universe? To do this we third quantize the theory. We
construct a complete set of solutions to the WDW equation, each mode corresponding to
a different four-form vacuum state. There are two possible mode expansions, with positive
frequency for small or large scales. It should be possible to calculate the density of k vacua
for a certain third quantized state.

Given that the third quantized state of the theory is |23)) we can estimate the expectation

value,
N (ky k') = (Q]&he(k) éoue ()| 02)) (32)

This is the distribution of k-vacua for a very large universe such as ours. A large universe
has a scale factor @ 3> 1 in Planck units, which is why we are interested in the number of
‘out’ modes. Our effective theory breaks down at scale factors of order the Planck length
and so we should ensure that there is an absence of small universes in the third quantized
state. For this reason we take |3)) = |0,in)). What we mean by a small universe is one
having a scale factor a R 1; for scale factors such as these, sufficiently far above the Planck
length, the frequency w(ae) < 1 and so the wave functions make sense as they do not have

fluctuations of the order of the Planck length itself. We can now calculate the expectation
(32).

For this we need the Bogolubov coefficients for the transformation between the two bases
of states. The Bogolubov coefficients [24] are obtained by expanding the ‘out’ modes in
terms of the complete set of ‘in’ modes,

o

_ 24 |a(k, (e, 9) + Bk, 9)uy(a, ) (33)

up(a,4) = [
By the orthonormality conditions (16) we identify the coefficients as the inner products,
alk,q) = (udfuy)
Blkg) = (uh™) (34)
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As we know the explicit form of the ‘in’ and ‘out’ states it is a simple job to evaluate these.
The ‘out’ creation and destruction operators are similarly expressible in terms of the ‘in’

operators,
tous(K) = [ da [a(k, @)3() + B(k, q)eh(a)] (35)
and likewise for the conjugate. Inserting this expansion into (32) with the ‘in’ vacuum we

find that the number of states A(k, k') is,

Nk, k) = [ dg 5°(k, Q)B(K, q) (36)
It should immmediately be clear that this vanishes for any |k| or || less than ko. From (29)
and (27) the ‘in’ and ‘out’ modes are identical when A\; < 0, and therefore 3(k, ¢) vanishes

by the orthonormality relations (16). The only non-vanishing 5 coefficients are when Ax > 0.
From the forms of (28) and (23) we find that,

— _ _1_ 1/3X l —1/3)&)
alk,q) = 6(k = )5 (& + 3¢ @
in this case. One of the relations amongst the Bogolubov coefficients is,
[ dale™(k, 9)alk, q) - B(k, )B(K, 9)] = 6(k — ¥ (38)

from which we may directly obtain the number of states for positive effective cosmological
constant. Altogether we find that,
NGB = { L (e~ 3em/n)” 6k~ K) if X > 0 (39)
0 if A <0
There are two four-form vacua with wavenumber tk for each effective cosmological con-
stant ;. Removing the delta function and summing over both vacua we find that the density

of vacuum states for a large universe is,
2
kD) = (7% = 36/ () (40)

where © is the Heaviside theta function. This is strongly peaked around Ax — 04, where 1t

has the form,
B

p(1E]) ~ ¢ = exp (m) (41)

precisely the Baum-Hawking factor. The dominant four-form vacua selected by the third
quantization are the ones that cancel the vacuum energy of the rest of the particle physics,

resulting in a vanishing cosmological constant for a large universe.
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5 Discussion

This has been a long argument and it worthwhile recalling the salient points. If the cosmo-
logical constant were purely due to the vacuum energy of the universe that energy density
would have to be on the order of 10~*"GeV*, many orders of magnitude smaller than any
value naturally derived from particle physics. We are in serious need of some mechanism
for exactly canceling the vacuum energy of the universe. We have taken a rather pragmatic
approach to the problem in this paper, by introducing the simplest method we know of for
allowing the cosmological constant to vary and then showing that the value selected by third
quantization is zero.

We have introduced an additional field whose special property is that its vacuum con-
figuration, its background, is undetermined. This behaviour is unlike what normally occurs
in a particle physics theory where the background is dictated by symmetries, and by being
the configuration with the lowest vacuum energy. This would be the stable vacuum state of
the theory, whose energy is expressible in terms of the parameters of the theory. The ad-
ditional field, however, has a continuous infinity of possible background configurations. For
the sake of demonstration we have taken this field to be a four-form, as it has the requisite
properties. The advantage of using a four-form for demonstration purposes is that it has
only gravitational couplings and has no effect on the rest of the particle physics. Moreover,
we can actually perform sensible calculations with it.

Each vacuum, labeled by & in the preceding sections, really corresponds to a different
. theory (much like the # vacuum of QCD) and there is no relaxation mechanism for the four-
form to prefer one configuration over another. The background state can be denoted |(q; k).
The |Q) is the stable vacuum state of the particle physics (e.g. the spontaneously broken
vacuum of the electroweak theory) and has vacuum energy density pg say. In inflationary
cosmology [25] it would be the true vacuum state. The |k) is whatever configuration the four-
form happens to be in. The cosmological constant arising from the coupling of gravitation
to the above particle theory plus four-form is A(k) = 8#Gnpo + 97k?/2GnN for the choice of
vacuum |§2o; k). The question we have posed is the following: given a large universe, what is
the most likely vacuum state and the most likely cosmological constant? To answer this we

have quantized the cosmology. We do not have to rely on any deep understanding of what a
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quantum gravity theory might be. Below the Planck scale we may use quantum cosmology
as an effective theory for the gravitational sector, and a generic particle physics model for
the matter sector.

The field equation of quantum cosmology is the Wheeler-DeWitt equation. The solution
to this equation is often referred to as the wave function of everything. In our approach it is
interpreted as the wave function of nothing. The techniques of quantum cosmology allow us
to determine the vacuum state of a large universe. The solutions to the WDW equation form
a complete set of modes, each one corresponding to a different £-vacuum for the four-form.
Positive frequency modes correspond to an expanding universe in classically allowed regions
of the parameter space. Demanding that the modes be positive frequency at either small or
large scales determines the form of the wave functions. When we third quantize the theory
we find that there are two third quantized vacua, with an absence of positive frequency
modes at small or large scales respectively.

In this picture the state vector in third quantization is that with no positive frequency
modes at small scales. This is because we began with an effective description of gravity valid
only on scales larger than the Planck length. We have required that the third quantized
theory reflect this for consistency. It is then a straightforward task to evaluate the number
of k-modes at large scales for this state vector. We have avoided the metaphysica.l interpre-
tation of this as parthenogenesis or ‘creation from nothing’ and of the quanta as ‘universes’
being created or destroyed. Third quantization, as we have used it, is merely a method for
determining the distribution of particle physics vacua when there is no other means for doing
' s0. We have found that the dominant vacua for a large universe are the ones with vanishing
cosmological constant.

In general the particle physics vacuum is a superposition of the k-vacua,
1) = [ di o(k)|%; F)

and the analysis of the third quantized theory has led us to the conclusion that, le(k)|2 ~
exp (37/GnA(k)). Thus |Q) is saturated by the vacua possessing zero cosmological con-
stant. If we are only interested in classical cosmology then we may regard this result as a

superselection rule for the particle physics.
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