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A v
Qf'” = R/_\ + € (D §,.u">,3’v)\§ \(K (29)

The constraint 3+R = O is manifestly satisified; the constraint y+R = 0 requires

. |
e = (30)
3m}

A little computation shows that RU satisfies the Klein-Gordon equation and is thus

a massive spin-*% field

42 eo ofeyoee ME T
(E]__ P1 ) Fi =0 b.Il.z:‘g~ ::1)) =
o 2f
In order not to produce tachyons, when one starts from the Einstein action where

Y = 1, one must have that o is positive and B is negative.

The spin-l equation reads

A = (32)

/V\

Contracting withau one obtains the Proca equation for a massive spin-1 field

_Qx))A-‘iﬂé %x

v ),«v

1 1 r (33)
_. v a .1\ =0 wL, = —
(ﬂ ) g e

-~

The remainder A“ = Au + ﬂ3u3'A satisfies the Lorentz condition 3*A = 0 1f n is

chosen properly

2 _ A _ l20< a } A (34)
. !/ Y

From the original equation for Au and the equation for 3+A it follows that Eu is

a massive spin-1 (Proca) field
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A

(D—*‘MZJA/‘:D P a./a:o) Mz:: ':1-\-;;— (35)

Finally we turn to the fields S and P. Their field equations are given by

(D.‘mz S = (D..MQ_)'P::D) w’ s 7{& (36)

We see thus that a supersymmetric action of the form

.é?flt +‘o<-%)RL-:§___R+..... (37)

L
K ex?t

contains the following:

i} One massive (2,%, %,1) multiplet with mass M®* = -y/2B, given by eau, RU’

AU° I1f there are mo tachyons (o > 0, B < 0), all excitations are ghosts.

ii) One massive (Y% ,0%,07) multiplet with mass v/(12a), given by S, P, and one
of the two solutions of (O - m®)y*R = 0. These fields are physical if there

are no tachyons.

1ii) Another massive (lé,0+,0—) multiplet with the same mwass, given by the other
spin-'%4 solution of (O - m?)Y+*R = O, 3-A and the scalar mode in R + RZ.
These particles are physical if all masses are real. For example, in a
suitable gauge Ru 3" Ew“ and decomposing [(3 + m)(g - m)%]_l one finds that

both residues of the massive spin-'% excitations are positive.

iv) The usual massless spin (2,%) multiplet.

THE MAXWELL-EINSTEIN SYSTEM

The Maxwell-Einstein system was obtained by coupling the spin-(1,%) vector
multiplet to the spin—(2,°%) gauge action of Poincaré supergravity and was the
first example of a matter couplingﬁ). Action and transformation rules were ob-
tained by adding successively at each order in x extra terms to action and trans-
formation rules such that at each order in k invariance was obtained. It was
also shown that this process must stop after a finite number of steps if no spin-0

8
fields are present ). The action obtained reads
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We repeat that DU always denotes the gravitational covariant derivative with gauge

(38)

torsion but not matter torsion. The transformation rules were found to be

fe = KEY WL, .
s - I %QXS‘XT ”hﬁr’ Tﬁf")x"_&

§ N - [—F/\W(V) + % :F/.Xv)‘ ] - (39)

We will now introduce auxiliary fields such that the commutator algebra closes;

this will simplify these results and clarify their structure.

The first point to be observed is that the Poincaré supergravity gauge action
with auxiliary fields #(5G,e,},5,P,A) is separately invariant under the gauge

transformation of Section 2, and thus the gauge action need no longer be considered.

This is because we expect the gauge algebra to be model-indepedent and, in parti-
cular, the gauge transformation rules to be independent of the matter fields. Their
separation of the action into separately invariant parts is one of the great ad-
vantages of introducing auxiliary fields. The second point to be stressed is that
globally supersymmetric matter systems have in general their own auxiliary fields

needed to close the global algebra in flat space. Obviously, these matter auxiliary

fields must be carried over to the locally supersymmetric extension of the theory.

In the case of the vector multiplet there is one pseudoscalar auxiliary field D,

which enters into the action simply as

f— E’D?. (40)
T2

and into the flat-space transformation rules as

8= Etf,(\‘)fdﬁe +L nge ; 8\;5 _EYA 58D EY HA (41)
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A very important remark is that the Maxwell-Einstein system is locally scale
invariant (Weyl invariant). It is thus also globally conformal invariant, and it
seems plausible that it can be made locally superconformally invariant and be
coupled to the superconformal gauge action. (This we will indeed do below.)

Since the superconformal gauge action only contains the axial-vector auxiliary
field AU’ it follows that one only needs the auxiliary field AU and not S or P

in the action and transformation rules for the coupling of the wvector multiplet

to the conformal supergravity gauge action. We will now argue that also the coup-
ling of the vector multiplet to the Poincaré& supergravity gauge action will only
involve AU' Since the Poincaré transformation rules are a linear combination of
the conformal Q- and S- supersymmetry rules, one must find these conformal Q- and
S- rules for the matter multiplet. But since the superconformal gauge fields are
inert under local conformal boosts K , the matter fields will be locally K-inert
as well, and from [K ,Qa] = (Yu) ZSb it follows that the matter fields A, AU’ and
D are also S—inert. | Note that this argument only applies to the vector multiplet,
since it transforms according to the group; but it does not apply to the gauge
fields, since their transformation rules have been modified by constraintsq).j
Since the auxiliary fields S and P only entered into the coefficients of the
S-supersymmetry laws, the transformation rules of A, AU and D under local Poincaré

supersymmetry will be independent of § and P. We conclude that only AU appears

in the coupling of the vector multiplet to Poincaré supergravity. This field Au

must be coupled in a locally chiral invariant way, since the superconformal gauge
action is chirally gauge invariant. (We note that S and P still appear in the
Poincaré supergravity gauge action and rules, but can be eliminated consistently,

if desired.)

Finally, it should be stressed that field equations transform into field equa-

)

tions according to

8L = - k * Kh . (42)

| )
If D = 0, the A field equation rotates under a local supersymmetry transformation

into the Vu field equation without a derivative on £ (since cSVu = —EYUA; note

that since dA = Fege + iDy €, the opposite is not true). Thus, the A-field equa-

tion must be supersymmetrically covariant, i.e. it does not contain 3¢ if it is

subjected to a local supersymmetry variation. This observation even dispenses
one from explicitly constructing the Noether current of the matter action, since
one can at once replace Bul by its covariantization. [In the varied action 3¢

terms of course do appear, since §.% = BuKu with ! E-dependent].
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With these four preceding observations one can at once write down the

action and transformation rules without any algebra

L-A(pstiew,S,PA) -2 F 0"+ g D Ty/'D

res (Bt F v

S\= Fﬁvr/*veqkib\gge , A =“3XpA

- g — T A (4
D= Léxgxr\bﬁ)\ ~¥Tyy D= i€y D A 3
Here ﬁuv is the covariant field strength

A

Ff"v = (B/*VV tT Vr\fv’ A ) "( / 'W) (4

)

while DUA is the completely covariant derivative™’ i.e. gravitationally, super-

symmetric and chirally covariant

= L xE ¢
I}J‘ = b,a A+ -?:KA/“XS')‘ = {F.zpr “l’/\ - 'ZKDXS“?}« (45)

The conmection terms are of course the Noether couplings arising from the universal

coupling
= M A 1/ T (46)
bl s MRV

which have been further covariantized. The last term in the acticn is a con-—

sequence of the requirement that the A field equation be covariant but not the

action. Terms with one A appear in the field equation with a weight ‘A with re—
spect to terms quadratic in A, and thus one must give the terms linear in X an
extra factor two in the action. A final simplification occurs by replacing eD?

by (D')? in the action and transformation rules. Then the D' law becomes
/ % g

§D -'-‘:e'lé-’ﬁc\ﬁr\b/«)‘ 7)

and the whole theory is truly minimalk*).

%) Note that Eq. (42) requires that the D~term in the derivative on A be absent
in the action.

%%) We thank Dr. M. Rocek for this observation.
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It is thus clear that the complete coupling is simply a minimal coupling
with respect to gravity, supersymmetry and chirality; or, equivalently, that re-
placing ordinary derivatives by completely covariant derivatives yields at once

the total action and transformation rules.

Also clear is that replacing in the total action the Poincaré supergravity
gauge action .#(PSG,&,{,5,P,A) by the conformal supergravity gauge action
Z(CSG,e,P,A) yvields again an invariant action, such that the sum is again
invariant.

&)

We obser#e that these above results remain unchanged for the Yang-Mills case
One can also add separately invariant actioms, such that the sum is again invariant.
For example, one can add a term aS + BP plus corresponding ) terms to the Poincaré
or conformal supergravity action, plus the vector multiplet. The sum of all these

terms is again invariant since the auxiliary field equations do not interfere.

The interplay between the conformal and Poincaré& supergravity should have
important consequences for other matter couplings as well. For instance, one can
immediately couple the scalar multiplet in improved form to Poincaré supergravity.
Recently, the improved (superconformal) scalar multiplet was coupled to conformal
supergravityl3). In that theory the scalar multiplet is unphysical and by fixing
the local axial, dilatatiomnal and S-supersymmetry gauge, one regains Poincaré super-
gravity. Using our techniques, one can instead couple a physical scalar multiplet
to Poincaré supergravity. The corresponding action is the sum of the Poincaré
action with auxiliary fieldsl) and the action for the improved (superconformal)
multiplet. The Poincaré supersymmetry tramnsformation laws, which leave this action
invariant, are the superconformal Q laws plus a field-depenﬁent uniform § transform-
ation with parameter £g = lé(iYSP + if v, - S)e. This reproduces the Poincaré
transformation rules for the gauge fields ei, wu, 3, P, Au while only the matter
field x gets modified by a term &y = (A - iBYS)ES. The transformation rules for
§ supersymmetry can be obtained by using Jacobi identities and [KA;Q] = YAS’
while [Q,x],~ #(A + iBy;) and BN [PU,A]. Since all fields are K-imert, the

desired rules follow immediately.

PURE SUPERGRAVITY WITH COSMOLOGICAL CONSTANT

We next comnsider the gauge action of de Sitter supergravity. Action and

transformation rules are given by

L
af: L (S&,e,q/)i-?&ﬂrr% 4 3e (48)

1



L L R T T T et a R R LRt R T LR LR Ty L T P R E T B Y B S I B T R B P O T T T

_]_6_

Eér:m’é'\f ﬁ"’r 5‘6L|~r:% D e +_?C_\6 ) (49)

Hence it is the sum of the Poincaré supergravity gauge action plus a cosmoclogical
and a Y-mass term; the latter is actually needed in a de Sitter space in order that

(e) + Kpab(e’w} .

wu remains massiess. We repeat that Wiab =~ Puab

As noted in the last section we can put aside the action #(SG), since it is
separately invariant. From the term Bwu v YUE above, we see that only the term
awu v YUES survives in the full transformation law of wu after elimination of the
auxiliary fields. Hence, only S appears in the matter action. The most general

expression which contains a term linear in §, 1s given by

v — (50)
-aed +bheF /Ty rce T
fs 2 Tl ree ¥y

ES= 123-‘0’-& - 2 &y S+ (51)

SL}!:L—DE +-L*(P€S+'“ (52)

one finds from the €0S terms and the €R terms in the action, using that "V ]

= Y4.*R, the result ¢ = 0 and a = 2b, so that

Lo -eb oy, +28] 6

Eliminating S from the S-dependent terms in the total action

_3821.9_1928 =0 —_— S = é.l) (54)
Y
5 3 wt wh

and substituting this result back inteo action and transformation rules, one ob-

tains with P = AU =0

Stbedkge  ©

YA —_
£= 3?:!3 ._‘Ql?‘i’,. Yoo 5"\’/* ke 3

et

Clearly, with b = g one obtains the desired equations.

e
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In this example, the auxiliary field $ was essential. In principle, ome
could alsc start from P; such a term would break parity. However, no new features
arise since the chiral rotation wu + exp (-im/4 Ys)wu and § > P transforms this case
back to the previous case. 1In fact, any (oS + BP) term leads to a cosmological term
with positive coefficient. More interesting is the case of adding a term linear in
D to the vector multiplet action, and extending this to a locally supersymmetric
invariant., This might have important consequences for the elimination of unwanted

cosmological terms.

Note added: After completion of this manuscript we received a preprint by K. Stelle
and P.C. West, ICTP preprint 77-78/6, who have found the same results as in Ref. 1,

except the matter coupling and relation to conformal supergravity.
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