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Abstract. We constrict a C*-dynamical model for a chemical reaction. Galilet invariance of our nonreta-
tivistic model is demonstrated by defining it directly on a Galilean space-time fibrebundle with C*-algebra
valued fibre, i.e. without reference to any coordinate system. The existence of equilibrium states in this model
is established and some of their properties are discussed. PACS 05.30.Fk, 03.70.+k, 11.10.Cd, 11.15.Tk




1. Introduction

Galilei invariant quantum field theories provide a natural candidate for a comparison with relativistic models.
Many of the properties typically attributed to relativistic field theories are actually a common feature of every
theory with a zero mean-particle density and translation-invariant Hamiltonian [1]. Especially the Galilei
invariant Lee model bas attracted much attention [2-4]. More recently, Narnhofer and Thirring presented a
Galilei invariant model [5,6] in the C*-algebraic approach to quantum field theory. The advantage of such a
formulation is that the algebraic formulation of quantum statistical mechanics [7-10] and quantum ergodic
theory [11-17] become applicabie.

In chapter 3 we present a C*-dynamical model for a chemical reaction which was inspired by the
Galilei invariant Lee model cited. We will consider molecules as the elementary objects. We show that
our interaction defines a time-evolution in the Heisenberg picture!. “Stability of matter” tells us that
independent of the initial conditions the system does not heat up and collapse. The time development is
well defined for arbitrary states and in principle one could tackle problems of noneguilibrium situations
where the state changes globally with time and the time evolution can not be unitarily implemented in the
GNS-representation corresponding to a state at a fixed time. But work in this direction seems difficult and
much remains to be done. Mixing properties will be discussed elsewhere.

In chapter 2 the algebra of observables A for our model is defined. We deal with three different species of
fermions. Some remarks on the superselection structure are added. As usual, the algebra of local observables
describes the possibilities of testing the system experimentally. Different methods for the construction of
automorphisms are discussed.

It is one of the basic facts of quantum theory that space and time coordinates do not refer to an
individual particle but refer to preparation and registration apparatuses. The ‘classical’ space-time structire
1s merely encoded in the net of local algebras. This aspect is worked out in the appendix, where the algebra
of observables is equipped with the fibre-bundle structure induced by the structure of space-time. The
symunetry group of ‘nonrelativistic’ space-time is of course the Galilei group [18,19]. In fact, the Galilei
group provides the transition functions between different charts of the space-time manifold?.

In chapter 4 we show that the time-evolution is Galilei invariant, i.e. it can be defined chart inde-
pendently on the new bundle. While this might look extraordinary for the firsé sight, we feel that it is
the natural, coordinate free formulation of Galilei invariance. That we are able to define a time-evolution
in a coordinate-free way makes it evident that only the spatial relationship between the preparation and
registration apparatuses are relevant. _

Finally chapter 5 answers the question whether or not our model has ground and equilibrium states.
'The positive answer is based on a result by Powers and Sakai [26]. We point out that equilibrium states
‘spontaneousiy break Galilei invariance and that even a local perturbation changes the number of parameters
labelling different equilibrium states.

2. The Algebra of Observables

We want to describe molecular dynamics involving chemical reactions such as the dissociation of large
molecules into two different smaller parts, for example a four atomic molecule which dissociates into two
simple molecules:
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O — ce cc— O
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L in the model of Narnhofer and Thirring this is achieved by cutting of high relative momenta, thereby introducing a slightly

non-local character of the interaction.
? The representation theory of the Galllei group on Hilbert spaces is well established [19}. Recently there has been some taterest In
more abstract aspects of this group {20-25]. Nevertheless the Banach space representations we construct in the appendix seem to have

no counterpart in literature,
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Since the difference between various isotopes are of no relevance for us we assume that all the particles are
fermions. The relevant C*-algebra is then the 3-fold tensor product of the usual CAR or Fermi algebra Ap
for one species of fermions. Uniqueness of this tensor product is guaranteed by the fact that the Fermi
algebra Ap is nuclear [8].

Definition. Let A denote the unital C*-algebra generated by annihilation and creation operators a(f), a*(f),
b(f), b*(f), ¢(f) and c*(f), where f € L>(R?). These operators correspond to three different particle species
with masses m, = my + m, and obey anticommutation relations

{{L(f)j a*(g)} = (f‘g) ﬂ:' {(L(f) a(g)} = 0= (1)

and similarly for b and ¢. Operators corresponding to particles of different. species commute. Thus A =

Ao A0 A, A =2Ap, r=abc

If we are interested in obtaining a Galilel invariant quantum field theory exhibiting production processes, we
have to include particles with mass values chosen in agreement with the mass conservation law. This was
done in the definition of A. As noticed by Bargmann (18], the mass operator M, appearing as an element
of the centre of the extended Galilei group Lie algebra, gives rise to a superselection rule. In fact, as long
as we have no chemical reactions the superselection sectors are labelled by three charges, correspouding to
the three different total masses M = M, + M, + M.. The corresponding equilibrium states are labeled by
three distinet chemical potentials. A chemical interaction will change the superselection structure. Besides
the total mass only one more parameter will survive. If the particles are charged, then this parameter tiurns
out to be the total charge.

The Lie algebra of the extended Galilei group (see Appendix) tells us that gauge transformations have
to compute with time translation. We might thercfore think of the gauge group as representing inmer
symmetries. In addition we expect gauge-dependent guantities to be unobservable. Nevertheless a chemical
reaction, corresponding to an operator of the form a*be, has to be observable. This suggests the following
choice for the action of gauge transformations on A.

Definition. The action of the gauge group U(1) on A is given by the continuous, faithful representation
A e St — 4y of U(1) into the *-automorphism group of A, defined by their action on the generating
elements of A,

(@(£).6(f), c(f)) — (€™=2a(f), e *b(f), e ™ e( £)), (2}

and linear extension. The fixed-point algebra under the action of U{1) is calied the observable algebra.

We list three different procedures for the construction of automerphisms v of A Their common feature is
that ~(a{f)), v(b(f)) and v(e{f)) are specified on a total set T of functions f € 7 < L3(R?). Then this
definition is extended to the whole generating system of A by setting v(£) := 1 and v{a*(f)) := ('y(a( f)))*
and similarly for b and c. If now v respects the defining relations among the generators, it can be extended
to a *-isomorphism of A (again denoted by ~), becaiise of the uniqueness of the CAR-algebra {8} and the
involved tensor products.

(i) . Coherent states

fop(n) = m-te~Homa ¥irlend) o L2ARD dP2), 1= (q,p) € T"(RY), (3)

explicitly relate to the classical picture. We may think of a, := a(f.) as an operator destroying
a particle centred at z = {g,p) in phase space. This corresponence between the classical and the
guantum picture allows us to lift group representations from ordinary phase space T* (R} to groups
of automorphisms of A. For example, the kinematical automorphisms
; ‘ 17 Y (=8 )
Af;;Km (t){a.) = e i g (fa) Fimav Rqa52q+vt+a—sv,ﬁp+muv (4)

g = {A, s,a,v, R}, define a representation of the extended Galilei group G' in Aut{A). (The phase-
factor was chosen in agreement with the cocycle relation of the Galilei group extension.)
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(i1) . The standard procedure to lift unitary representations of groups from the quantum mechanical one-
particle space to quasifree automorphisms of the algebra was introduced by Boguliubov [8]. Since the
kinematical automorphisms are quasifree we could as well use representations of the Galilei group in
coordinate-space [19]:

flz) = gimiHimis (e im.(1=0) =Yz _ q — pt 4 vs),  f € L2(RY), (5)

for a construction of these automorphisms. The free time evolution 72{a(f}} := a,(e‘*iér?‘ f) provides

another example.
(iii) . Each hermitian element b = b* of A defines a so-called inner automorphism:

ﬁ,f‘g = g7 9 b=b"ecA acAd {6)

Since A is a Banach space, we are allowed to consider limits. The limit 7;’ = limp— oo 'yg" might exist
even when {b, }nen does not converge in A. Such automorphisms are called outer automorphisms.

3. A Thermodynamical Syétem with Chemical Reactions

While the Narnhofer-Thirring model is concerned with pair interactions, of similar molecules with (regu-
larised) Van der Waal's interaction for example, the present interaction only includes vertex functions that
model the restructuring of the electrons once the molecules have got so close to one another that their
electron clouds overlap.

We construct the interacting time-evolution in three steps, as proposed by Guenin [27]:

(i) . We “cut-off” the interaction in such a way that v, exists as an element in A, thereby destroying
Galilei invariance.

(if) . We define inner antomorphisms 7" corresponding to the “cut-off” interaction u,.

(iii) . We construct the interacting time-evolution as a limit of inner automorphisms by releasing the cut-offs
and thereby restoring Galilei invariance.

Two atomic molecules are idealised as point particles at a fixed distance § and with equal momentum. The
spatial orientation of the molecular axis should be of secondary importance and is therefore neglected.

Definition. Let 7, := s — lim, o, 77 — where s — limn denotes the strong {(=pointwise) limit in B{A) — of
the following automorphisms 77

@) =@+ Y g [ ) T (o) o [ () @] ("

k=1 {0’31;‘,

where

N P n D3
i 1l Bnaciitasnl ISV 08 V9

U = j Py ad®pr1 P pad®ps f POV {iqs — a2l lar — aal, ,
Ma Ty The

lgsllpsf<n |§|=conat
N
x ( Tq1 1 %1 +4.1 Da2.p2 P+ 402 cqz»'ﬁacqsﬂ Py Coatdps Can s P rd pe Ve pa G tam aq:,m) (8)
Yy denotes the angle between (g1 — ¢g2) and (g1 - g3) and ¥, between (2L — 22} and (£- - Z2)}. The vertex .

Vgl id|, pl.1¥], ¥4, ¥p) is assumed to be in LY(R'?, d3qd®¢'d®pd®p'y n C(R'?), thus all Bochner-integrals
exist.
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We have symmetrized our descnptlon for example the creation operator of a molecule of type a centred
around ¢, p was taken to be

/ dOay, .., (9)

—('u-n,st

where d0) denotes the surface integral over the sphere |§| = const.

The vertex function V' should be strictly localised in a region of order of the atomic distances §. The
momentum dependence of the vertex function is unknown, but we have only required integrability and this
seems to be a decent assumption. We have made no restrictions on the angular dependence of the position
and the momentum distributions since V' will certainly depend on 9, and 1,

Furthermore, our six-particle vertex will not allow dissoclation with very high relative momenta of the
molecules. However, there will be no limit on the momentum cut-off and one can expect that for stable
systems where high momenta do not. oceur in a reasonable subset of states, our interaction gives a physically
acceptable description.

One can interpret the presented model alternatively as one involving particle creation and annihilation.
In any case, it exists strictly on the C*-algebraic level, without any renormalization or restriction to any
representation. The interaction is constructed so that there are two conservation laws: the number of a-
particles plus the number of b-particles is conserved, and the number of b particles minus the number of
c-particles.

Before we enter the proof of the existence of the limits used to define the time evolution we mention that
the interaction is stable for both signs of the coupling constant. It was argued in [14] that this is necessary,
if the interaction defines a strongly continuous automorphism. Furthermore it automatically cnsures a rea-
sonable thermodynamical behaviour of the system by guaranteeing that the energy is an extensive quantity,
which is a basic assumption in phenomenological thermodynamies.

Lemma 3.1. The interaction is stable®, i.e., there exists a positive real number ¢ € R, such that
o = by 4 vy > —¢ (Nadn + (Ni)n), (10)

where (h), = Evil—aﬂql,IpISn dqd*pa*(Vf,,)a(Vf, ) and (N,), [IQI p,<nd gd*pal a4, and similiar
for b, c.

Proof. We fitst show that « + z* < V2(a*x + zz*)/2, From (x — °)*(z — z*) > 0 we infer
T* a4zt > 2t 4 (24 (11)

Thus 2(z*z+z2*) > (x+x*)*. We rccall that operators corresponding to different particles commute. Thus

- 3 * . ’
Un = / dqr ... d’py / a0 V(... (a:rhplam+4,P1b'-1‘2m2b¢12+ﬁ,132cqa,Pacqa+é,p3 + hc‘rm.canj.)

fg:lu il Sne |§\=const
3 P P2 P
<V2 / Eqr...dpy f dO V{igi — @i, la — ¢, [ ai,h—n— - 231 9,,0,)%
@ @ <
tq:ls|pe [ En {§t=comst

* . . N
x ( Cos+4,p3 an paga+4q, 'pzqu p2 g td.p g :Plam 1 q1+q plb‘h ,mqu-qu,-;uz Cqa,paCaatdp

b

1/2
K * * * B
9302092+ 4.2 Caa,p3 Caa+ 4,03 €33 +,03 Caa 93 Dot 92 Pz 92 Car +4,01 Car o1 ) .

(12)

* *
+a'(h 21 +d,p

3 This result evelved from discussions with E. Lieb, D. Buchholz, H. Narnhofer and R. Verch,



Next we apply the operator inequality
abb™a® < aa”|b)|]6*|| (13)

and use the operator monotony of the square root. Once more it is crucial that operators corresponding to
different particles commute. We find

1/2
U < \/5 / d3q1 s ddp3 / do V(lql - qg', IQ1 - q3l1 s ?ﬁqﬂ?P) (bgg,mqu,pz + a;::Pla‘J'l'Pl)

lgil,lpi | <n |gl=const

SVE%MFMJu/f@mfmwm~®Hm—mww%%J /d%fm%m%m
q4z.02

lgilps|<n [galip2l<n
+\/§ 477;@|2 sup / djaQZ e d3p3V(IQI - Q’QI, {QI - ‘Iﬁla v :'ﬂqr 1913) / d3q1d3pl a;hpl aqy,m
q1,p1
el Ipel < PANSE

q2,p2

<3 4w|q*12mfzuvn1( f s Dbl bgs g + f d3q1d3p1a;,,muq,,m)
[g2],lp2a|£n (g, lpr]<n

(14)

In the last two inequalities we used the fact that P, = a and Py = by ., by, p, are commuting

~ projection operators and therefore (P.+ Pb)1/2 < Pa+ Po. Thus v, < 4@ mS ||V )1 (Na)a + (Vo)) and
similarly for a and ¢. O

£l
q2,P2 ﬂ'Q'Z P2

Stability for the opposite sign follows by the same line of arguments.

Theorem 3.2. 7 is well defined (as a strongly contimious one-parameter group of automorphism of A.)

Proof. We show that the perturbation formula (7} for 7*(a.) converges for all z € T*(R®) as n — oc. We
proceed in three steps.

(i) The number of graphs does not increase too fast. The strategy is to rewrite comuuitators in terms
of anticomrmutators. The first order in the coupling constant is

1 .
4 2 Yy :
t [ fadm [ @0 Via-ebln-ebl 2 B2 )

my i,
u [2<].lp:j<n |§l=conat .
of % * . , . * - * * R o
X [Til (aqa 21 %y +d,p1 Oaz.02 042+ 6.02Cga, 03 Caatg ps + Cas.p3 Castd,ps V32 w2 Daz+ d.p am,maq1+q,m) Ty (az»,)]

(15)

As one can see from this expression, every new order in the coupling constant introduces two products of six
creation and annihlitation operators. Given a fixed creation operator (resp. annihilation operator) only one
of these two terms has a nonvanishing commutator. For example, in the first order we find:

[Ttnl (a; P G.;l +d,m bQEJ-’Z bg2+f§>}’2 Caa,paCqat+i,pa + 623 Pa C;a+q",p3 b;f.:,,pz b;2+§,132 Oqq py Cgr+4.p1 ) 3 TtD (az" )]
= [Ttol (a;: %21 +d.p )7 (“2’)] T4y (baz,p2Dart6.p2 Can s Castdpa)
= { th; (ﬂ‘;z 1 ) ’ Tto (G‘Z’ ) } Ttol (a; +4,p qu;?z qu+<?>P2 Cqs.p3Cq3+d.pa )
+ {Tto1 (agy+a,pu 1 72 (A7) i, {02y 21 Pz p2Das+d.p2Caa,paCastips) (16)
Thus we are left with two products of five (=4+41) creation and annihilation operators. If we expand the

next commutator into anticommutators each of the 441 creation and anmihilation operators has two non
vanishing anticommutators with the interaction. Therefore in second order we have to compute bounds for

6



2.(4 4+ 1).2 terms of lengh 2 x 4 + 1. By the same line of arguments the number of nonvanishing terms in
third order is given by 2 x (4+ 1) x 2 x (8 4+ 1) x 2. For arbitrary order k we get
2.(4+41).2.(2.4+1)..2.(kA+ 1).2
1.23.k
(ii) The time-evolution can be written as a series of absolutely convergent summands,

=281 (4 + 1)-(4+%)._.(4+%).<_ 2 x (2 x 5) {17

[t (@) < |70 ()| + Z I ,,}E,nm% / d(tytx) [, (Wm)s oo 70 (vm )y o (@] 0] VYne N (18)
k=1 -[U,t]k

The idea is to use the fact that the spreading of free coherent wave functions f, does not depend on the
footpoint z € T*(R):

[ EM @ Grbati ) = [d e o g = P Ve TR, (19)
Explicitly the norm of the first order term of T axr),

My Mg e

t
[farr [ @a.am [0 via-abla-alZ - 212 - 2,0
0

lqi s lpefSn |nﬂ:crm.3t

# * * *

o - ¥ R o
x [Ttl (ﬂq] 11 %+ Bas paBast4,p2Cas,paCastdps T Cys.psCqs+d.ps qu ,'pgbqg-}-ﬁ,'pg Agqy . p18q1+4,p1 )* Tt (az’)] H
(20)

18 bounded uniformly in n by

< { Baq ... & - —ga| (BL _ P2 Pt P3
< [Eadn [ 40 [Via-wllo~al 2 - By 2 By, )
|d|=const

x5 (g, p )76 (@G 1000 72 () U, (Bgapa ) | U7, (Baatp2 )76, (Capa) NI (Canans )

Mg Tl

1
< [an [ o dm [ a0 Via-alla -l 2 - 22 -2, )
/ ,

|§l=comnst
. (|;T; (a8, o 7 (00w ) 2@ ) ] 4 S 0 )7 (s} Hrf;(a;ﬁq,,,l)u)

t

< 2q51u£/d3qg"'d3p3 V(e —al...., T%L — T—ii{,ﬂq,ﬂpﬂxazwi{ji" /dﬁzlfdtl (e et f, lem Hot £, ]
5 a@ « . 4
<snlg? omg VI ] 2L+t (21)
Higher orders can be treated in a similar manner. Thus
. *x 10k : k
o < 14 2 30 2 (st (Vi 12205 ) (22
k=1 '
and we have established the convergence of lim r*{a,) for |t| < f, with
4 il mg Vil it 2° (L + )% = 1071, (23)

(iii) The coherent states f, , form a total set in L?(R?), thus 7; can be extended to arbitrary a(f), f € L2(R?).
7{b{f}) and 7 (c(f)) are constructed in exactly the same manner and so lim, . 7{'(a}, a € A exists for ¢
small enough by the Banach-Steinhaus theorem. It even defines a *-tsomorphism, as can be seen from.the

(anti-)commutator relations, e.g., {r:(a(f)), 7e(a*(g))} = {a{f),a"{g)}. Thus Va € A, |ine{a)]} = |lall. This
allows us to define ry for arbitrary t e R : ‘

r(@) =1, (7, (. (@), )) Vac A t=tidttat... vt R, || <to (24)
O



4. Galilei Invariance of the Time Evolution

In nonrelativistic models we deal with nets of iocal observables (F x O) — (1, 4(0)), I an open intervall,
O an open region in R?, and A(®) the C*-algebra corresponding to the respective region. We now® equip

R.A):= | T A0, (25)

(LRI

with the bundle structure induced from the space-time structure.

Definition. Let §,h € GL:={) s,a,v.R) € G'{s = 0}. Furthermore consider the transitionfunctions

o R — Aut(A)

PR

26
o () 0 ki), 26)
We define the Galilean field algebra bundlie to be the fibre bundle
MA.-=(U{;;}><R><A) , (27)
Geat i

where the equivalence relation ~ is given by [§.,6) ~ [h, ¥, @] . t =t and o/ = Ty, (0 a

The set of transition functions {¥, ¢ }. ;1 satisfies the necessary cocycle condition ®; 5 = fy;‘ilf‘oj id 4
K Kin Kir Kin __ K3 _ ; |
and ¥, ;oW =~ 0o SRR AR 7} o —Y"*noh,oﬂ"'of =W, ;50 M. is well defined.

Our intention is to show Galilel invariance of the time-evolution by defining it chart-independent on the
Galilean field algebra bundle. We will need the following result.

Theorem 4.1. Let § = () s,a,v, R) and g = (X, 5,0’ ,v', B). The composition law of the automorphisms
g is given hy
Yot + 87) 0 vg (t)(@) = Ygogr (t)(a2), {28)

-where g,¢' ¢ G and a € A.

Remark. It can be verifed by restricting v,, § € G*, to one parameter subgroups, that Theorem 4.1
reproduces the relations used by Narnhofer and Thlrrmg [6] to characterise Galilei invariance. We will see
in a moment that this leads to a chart independent description.

Proof. Let denote g = (0,5,0,(, 1) o g = (A, s, 4,1, R) A straight forward computation yields

7g(t+5’)o’ygr(t)(a) = Ta® (Tf‘ O’Y;gtﬂ(t (a)+ hm Z krfd(tl )[ﬁk M(}g«+’v2u¢ O,a+vie,v R) (t+3’“tk)(vﬂ)1
T o
o 8, ) et (65— )0, 75 0 S ) (29

Thus it remains to show that the spatial symmetry gets restored, lim,,_ o [|[vn — fy;{“‘ ), alfl = 0, for all’
a & A. This can be seen as follows:

3 For Further details we refer the reader to the appendix.



Kin 3. 33 13 1 ~1 R 'p R 'ps
Y (EHen) = [dnd znd 'z [ dOV(IR™ g —a—uvt—R g +a+ut],...,| T +u|, dy, )
. m
|R_]qi—a—vtf§n |[R—1§|=const “ ¢

[R™ ps—miv|<n
x (a az,+qbz2bzz+qcza('£3+q + e Czq+szabzg+ﬁa'~1az1 +q>
_ 3, i3, 13 . ops

= fd 71d°29d” zqg3 f dOV(lgn — g2, ..., 9p) (a'zlaz;+qbzzbzz+q(’zzc‘zz tg €560, 1 gb0 lbzﬁqa;,aaﬁ.q)

|R71qi—a—v£L§u ld|=comst
|®" “pi—m,-'v|5n

(30)

and the change of integration boundaries vanishes in the limit n to infinity. Due to the strong continuity of
7° this implies

sfumzk, ] b1t [, 0 YE™ (), Lo 178 0 7 (0), 72 ()] ]

n—0o0
k=1 [0,3]x

_Snﬂijcm;% / Aty ) (v ), Lo b7 (), 72 (), (31

[0}

and consequently (28) holds. 0O

Together with the kinematical automorphisms %% the time evolution provides a representation of the
extended Galilei group G as bundle isomorphisms on M 4:

Theorem 4.2. Let § = (3, 0,&, %, R) and g = (A, s,a,v,R). The interacting time-evolution II ; G' —
Tso(My):
g — g My - M 4
{97 t?tl'} -3 [(A)sla"’i}? R) Og-l‘t + 31 TS th{if‘(’},a,?hﬂ} (-t)(ﬁ")}

defines a representation of G' as fibre bundle-isomorphisms on M 4.

(32)

Proof. Let 4, (t) = 7, ¢ /{:\‘gav ry{f) and g = (A, s,4,0, R).

(i) iy is well defined, +,(t)(a’) = (’yg(t)(a))’. Let [§,t,a] ~ [§’,t,a’] then (by definition) t = # and o' =
W 5t) a, therefore t + s = ' + . Furthermore

ﬂ{g(t)(a’) =7, () Ty 5(t)a)) = (q/g oy, oqj)(f)(a} = (Affgfcg—l)—l ) 7_,309--1)(6 + 8) © v, (t}{a)
= (((0,0,8,0,1)08705 1)1 © V0,500, 1)ogog 2 } (& + 8) © g (£}()
= \I,(j\’,s,&",ﬁ’,R’)Dg—l,(i,a,&,ﬁ,fi)og"[ (t + S) o "[g(t)(ﬂ,) = (7.‘:' (t)(a))t (‘33)

{i1) The group multiplication faw holds.

Is
\n
—~
fan
=

sl

88,0, Ry o g™t + 5,45 (tas)])
88,8, Ry og L ogT i s + 5,9t + 5') 0 vg (D){az)])
:\73+ Slra‘: A} R) (gog )—L t+ (S + 9) Tf-}cg ( )(U'Z)]) = 3‘909’([.65‘&'"’3}) (34}

o 0ty (9,1, az]) -



Corollary 4.3. 7, defines a Galilei invariant time evolution.

Proof. The restriction of IT to the time component, Hjtime : R — Fso(Ma):
g — ig: Mg — My
@tal — (9t +s 70 (35)

defines the time evolution independent of the chart. O

5. Equilibrium and Ground States

True {pure phase) equilibrium states are distinguished by strict invariance under time translations and
stability against local perturbations. If we add scme technical assumptions, then these requirements are
equivalent [28-30] to a characterising property first found by Kubo, Martin and Schwinger [31-32]. A state
w over A is defined to be a (1, #)-KMS state, if

wlab) = w(bris(a)) (36)

for all @, b in a norm dense, r-invariant *-subalgebra of A., where A, denoctes the set of analytic elements
for 7. The GNS-representation (M., ., {L,) associated with an equilibrium state wg connects our state-
independent results with the more common equilibriuin formalism.

While the laws of physics have to be Galilei invariant, the corresponding equilibrium states are not [33].
The following proposition tells us that the breakdown of Galilei invariance is unavoidable. Any symmetry
not commuting with time translations can not leave a KMS state invariant. This is a consequence of the

Tomita-Takesaki theory, first noticed by Narnhofer [34], see also [35]:

Proposition 5.1. (Narnhofer) Let A be a simple C*-algebra, wy be a {7, 3)-KMS state and v, € Aut(4),
g € G, a representation of a symmetry group G of the state, i.e.,

wp(rg()) =wpl ), VgeG. (37)
Then g commurtes with the time evolution,
Vg ©Te = T O Yy, (38)
forallteR,gcG.

Proof. Because of the invariance, the symmetry group can be unitarily implemented in the GNS represen-
tation (Mg, 75, ) of the KMS state wg, ie.,

e 9, (a)0s 1= 7, (v (a)) g, a€ A, (39)

densely defines a selfadjoint genarator I' a group of unitary operators {U{g)}4ec associated with +. Conse-
quensly we find

(Qslma{a)e 8 e Mo ma (b)) = (Qalma(b)e™ ma(a)|Qp)
= (Qglmp(aje "o ma (b)),  a,bc A (40)

Thus the generator of the time evolution, Hy, and the generator of the symmetry, T', associated to wg,
commute. This entails the commutativity of 4 with the time translation = of A which is essentially identical
to the modular automorphism:

ms(1e(14(a))) = ma(ve(rel@))), @€ mp(A)”, (41)

and since any representation of a simple algebra is faithful, v, (7e(a)) = 7 (y4(a)). 0O
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In other words, the KMS condition distinguishes a rest frame. If we want to describe a KMS state from a
different inertial frame, we have to use the following covariant KMS condition,

w(ab) = w(bkig(a)) (42}

where {#:}iem C {¥g}4ect denotes a one parameter group of automorphism corresponding to the ventral
element U = H - P?/2m of the extended Galilei group (see appendix).

After these model independent considerations it is time to establish the existence of equilibrium states
for our model. The free time evolution respects the tensor product structure of A,

Plaxbec)=r"ezleherlebel) (1ol c); Vae A, be Ay, ce A, (43)

The unique (7°, 3, tra, 3, p1.)-KMS state [8], where § = 1/kT is the inverse temperature and fia, i, g are
the chemical potentials for the different species, is given by

walabc) = w3, (a)wgi% (Bwg .. (c) Yae A, be Ay, ce A, (44)

with
(f(-?ﬁf;%f”“)
w;lm (a:] Ce a:ﬂaznﬂ . az“_kk) = b"‘..’l Det(fzt l__sznA,j) (45)
14 e (B2 pa)
and simlar for b and ¢. In order to see how the three chemical potentials enter one has to examine the role
of the /(1) gauge invariance more closely [36-37].

Even if we allow chemical reactions only in a local region, the situation changes dramatically: The
tensor product structure is destroyed and we lose control over the relative particles densities. The chemical
reaction itself will adjust the equilibriuin relative densities, depending on the temperature, Neverthcless the
existence of equilibrium states follows from standard results {(c.f. [8], Prop. 5.4.1 and Cor. 5.4.5):

Proposition 5.2. Let wy denote the unique (7°, 3, pa, tu, f1.)-KMS state. For each n € N and 8 € R there
exists a unique (77, 3)-KMS state wy defined by

wi(T2y " al?, )
wg(a) — ﬁo Fg/z *Fnﬂ/z (46)
wa( Tay2 Ligse)
where I't € A Is a one-parameter fainily of unitary elements, determined by
A 81 )
=14 Z z“/ ds, ] dsy .. / dsp 7, (vn}. .. 7o {vn) (47
0 0 Q

k>0
which satisfies the co-cycle relation T7, = I'T 77 (I'}).
For each initial choice of {f1,, i, 1) there exists exactly one KMS state when we switch on the interaction.

The reverse is of course false. Different initial states can lead to the same interacting KMS state.
By another standard result (c.f. [8]) our system allows equilibrium states.

Theorem 5.3. Let wj denote the unique (77, 3)-KMS state and assume that lim,, .. 7" exists with respect
to the strong topology on the antomorphism group. Then weak* limit points of w7 exist and cach weak*:
limit point is a (7, 3)-KMS state.

11



Proof. Let wg denote one of the weak* limit points of w;'@‘. The unit ball in Ap"* is weak* compact, thus there
exists a subsequence {wj ,}nen coverging to wg. We have to show that wg is (7, J, #)}-KMS states. A priory
we can not be sure that the intersection of the sets of analytic elements for the different automorphisms is
dense. This problem is avoided by using a different formulation of the KMS condition ([8],5.3.12) emphasising
the properties of analyticity. Let T denote the set of infinitely differentiable funections with compact support
in R. If f € D then the inverse Fourier transform f i1s an entire analytic function and

o

/_ dt f(t)lngp(aﬁ{b)) = Hm dt f(thwg ,(ar* (b)) = nlingc/_ dt f(t +ifwg . (7 (b)aj

=0
— 0

= /; dt f{t+ iB)wg p(r(b)a) = /_ dt f{thwg u(Te-—ip(bla); Ya,be 4, (48)

Now choose f, € Dsuch that 0 < fi < 1, fi{z) = 1if lz| <k and fe(z) = 01f |z} > k+1. Since fr % 1€ T,
it follows that fi = 6. Thus, for any bounded, continuous function g,

Jm [ it 090 = 90 (49)

and hence wj (ab) = wg ,(r—ig(bla); Va.be A,. O

Uniqueness for all temperatures can no longer be expected since phase transitions might oceur. There is no
uniform convergence lim, o0 SUpy, =1 {73 (@) — (@)} = 0. Consequently also the representations given by
the KMS state w; and wg will not be quasi-equivalent, which means that there will be no weakly continuous
isomorphism between the corresponding von Neumann algebras. wy is space translation-invariant and the
extremal translation-invariant components of wy will not admit another normal translation-invariant state.

For the ground state, formally corresponding to J = oo the whole modular structure is lacking and one
has to use autocorrelation lower bounds [8]. This was done by Powers and Sakai [26], who also gave the first
proof of the existence of KMS states for approximately inner automorphisms.

6. Appendix

In non-relativistic classical as well as quantum physies it is a basic assumption that the laws of nature have
a Galilei invariant meaning, i.e., they are independent of the actual time, the position, the orientation and
the centre of mass momentum of the described physical system. Two descripiions of a series of physical
events are equivalent if they can be connected by a coordinate transformation induced by an element g =
(s,0,v, R) € R x R*® x R® x O(3, R) of the proper Galilei group G:

' =Rz +ut+a t'=t+s (50)

Starting from an arbitrary coordinate systemn we can label equivalent frames by the corresponding group
element ¢ € G. Space-time, ore more precisely, the space-time manifold My, is constructed by ghung
different frames together and then identifying equivalent points in different charts. While in Aristotelian
physics both, space and time, were absolute, every event defined by an instant of time and a location in space,
in Galilean physics space becomes relative: the space-like distance of two space-time points with different
time components has no a priori meaning. Time remains absolute and gives rise to a {(fibre-bundle) projection
po: Mg — R, providing a universal synchronisation prescription for watches [38-39]. Omnce the watches are
synchronised in different charts, the group connecting equivalent charts is reduced to the isochronous Galilei
group G, := {(s,a,v, R) € G | s = 0}. This is the starting-point for our construction of the space-time fibre
bundle. Equivalent points in the charts § and A € G, are identified by transition functions wé'ﬂ(t) acting in

the fibre R® (=space) and depending on the basispoint # € R (=time).
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Definition. Let §, h € G, and Es denote the Euclidean group in three dimensions. Furthermore, consider
the following transition functions
/‘pg,ﬁ R — E3
Eoo et T oe)

where ¢5(t) x := Rz + vt + a. Galilean space-time is defined to be the fibrebundle (Mg, pe;, R) with fibre
R?®, the space-time manifold Mg := (Ug ca. {3} xR x Ra) foo which is described by the equivalence relations

(51)

(3,8, 2] ~ [t 2" ;@ t =t and z' = %y, 5(t) ©; the bundle projection is given by pa([g,t,7]) = ¢.

Although Mg is split up into space and time components in every {uniformly moving) coordinate system
g: Mg — R x R?, there is no canonical projection from Mg — R>. Mg is trivializeable, but not
canonically trivial. By definition, the set {1 ;}. ;.o fullfils the cocycle conditions ¢, 7 o4y, 7 =, 7 and
Y55 = td on R?, the required compatibility condition for the construction of fibrebundles [40].

The Galile: group was analysed in detail by Lévy-Leblond [19]. We collect a view facts relevant for a
discussion of the present model. Each element of the (Galilei group G can be written as a product of a time
translation (5,0,0,1), a space translation (0, a,0,1}, a pure Galilei trapsformation (0,0, v,1) and a rotation
(0,0, 0, Hg) with generators H, P, X, J respectively:

{s,a,v,Rg) = (5,0,0,1) 0 (0,a,0, 1) o (0,0,v,1) o (00,0, 0, Rg)
— ILiHSE-iPae—imeﬁ—i.’O' (5.2)
# denotes the three rotation angles. So far space and momentum translations commute, as can be secn from
the group multiplication law. In classical mechanics the observables form an abelian algebra of functions
over phase space T*(RJN ). The generators P, X, J and H are identified with the momentum, position,
angular momentutn and energy of the physical system.
In quantum theory this scheme is generalised by releasing the commutativity of space and time trans-
lations. Since Galilei invariance should not be affected by gauge transformations, a central extension of the
Galilei group seems appropriate. {/{1), the gauge group of classical electromagnetism, is the minimal choice.

Definition. Let m € R. The extended Galilei group (G™, o) is the eleven parameter group ¢ = (A, $,q,0,. R) €
St x R x R? x R* x O(3, R} with the group multiplication o defined by

(A s,a, v, Byo (N, &, d W BY=(A+X+ %(vzs' +v.Ra"), s+ s, a4+ Ra' +vs' v+ B RR}  (53)

Let M denote the generator of the gauge trapsformations. Then the Lic algebra of the extended Galilei
group ™ is characterised by the relations:

Mo d;]l = egede i, H} =0 [P.,P;] =0 (54)
[J.i,Xj] = el-ijk [JHM] :O [P,;,H] = 0

[J.L',Pj] = fijk.Pk [X“Xj} = O [Pi, M] = 0

X, Pl = by (X:,M] =0 H,M] =0

[mX.i, H] = {P;

As argued, the extension is central, so M commutes with all other Lie algebra elements. But it is nontrivial,
so M appears in some Lie bracket. The total mass M, the internal energy U := H — P?/2m and the spin,
i.e., the internal angular momentum 82 1= (J — X x P)? = 5(s + 1) generate the three dimensional centre of
the group and are therefore chart independent properties associated with a particle.

As pointed out in [19], the difference between Galilei and Poincare invariance is that, if we add an interaction
V to the Hamiltonian H = H,+ V, the commutation relations are not modified in the Galilean case, provided
that V commutes with (P, J, K, M), while in the relativistic case any modification of the Hamiltonian
requires a subsequent modification of other elements of the Lie algebra, since the Hamiltonian appears in
the commutator of the generators of space translations and pure Lorentz transformations.
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All the quantities usually considered as physically relevant, namely the energy, momentum, position angular
momentum and 1mass, appear as generators of the (extended) Galilei group. The problem is that for systems
with an infinite number of particles quantities like the Hamiltonian or even the particle number are not well
defined without reference to a representation of A. We therefore present a representation of the Lie algebra
of G™ as an algebra of derivations acting on A.

Proposition 6.1. Each v4(t), ¢ € G™ can be written as a product of derivable automorphisins, v,(t) =
Y(2,0,0,0,13 © Y(9,5,0,0,1) © Y(0,0,a,0,1) © %(0,0,0,0,13(f) © ¥(0.0,0,0,Rs)- The corresponding derivations 8m, én, bp, &2
and §; generate a representation of the Lie group of G™ on a common dense sct D,

[6;; © 6.?';'] = €3kl [6.7'1 bl =0 [‘5;7; ; ‘517;'] =0 (55)
(b5, 00,] = €ijilia, [65:.6n] =0 (8p:, 0] =0
[‘Sji! ’s'Pj] = f‘ijképk [51‘: ’ (5-1”3] =0 [épa y ‘Sm] =0
[6a;, 8p,] = idij [6z;,6m] =0 [bn.bm] =0

[6-13«;! 6’1] = %él)i .
where the Lic-bracket is defined by [§, 8(a) = 8§(8'(a}) — &§(6{a)).

Proof. Let D = {b,|b € A}, with

T s 2,2, 2
T (w) f Yo 0saoh® e T dsdad’y,  be A (56)

It follows ([7], 2.5.22.) that each b, is an entire analytic clement for «,, ie., there exists a derivation 4, ,

such that "k
g7é5,{bn) koo
Yglbn) = E b__#'};' and E —ﬁ& Hé‘.‘;g (bp)jl < +o0 (57)

>0 ' E>0 '
for some open neighbourhood U of the identity in G. ||b,| < |}b] for all n, and b, — b in the norm topology
as n — oo. The multiplication table (55) can be established by direct computation. 0O
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