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CONDITIONALLY SOLVABLE PATH INTEGRAL
PROBLEMS: 1. NATANZON POTENTIALS
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Universitidt Hamburg, Luruper Chaussee 149
28961 Hamburg, (Germany

ABSTRACT

New classes of exactly solvable potentials are discussed within the path integral {formal-
ism. They are constructed from the hypergeometric and confluent Natanzon potentials,
respectively. It is found that they allow incorporation of four free parameters, which give
rise to fractional power behaviour, long range and strongly anharmonic terms. We find
six different classes of such potentials.

1 Introduction.

In a previous paper [1] I have discussed a class of potentials which are known as “condi-
tionaily solvable potentials™ [2]-[5]. They have the specific feature that they incorporate
strongly anharmonic, fractional power behaviour, and long-range terms. They modify the
usual potentials in quantum mechanics in a specific way such that they are quantum me-
chanically exactly solvable, however, the parameters and the couplings of the potentials
are not completely free to choose. .

In this second article I want to generalize the potentials of [1]-[3] to more general
classes which are related to the Natanzon potentials {6], and cf. [7]-[16]. With their
six parameter structure the Natanzon potentials are designed in such a way that a wider
range of shapes and potential wells is allowed in comparison to other weil-known potential
problems in quantum mechanics. Let us mention, e.g., the Morse potential, the radial
harmonic oscillator, the Coulomb potential, and the class of hypergeometric potentials as
contained in Poschl-Teller and modified Péschi-Teiler potentials [17]. They are subject
to many applications, e.g., in the study of solvable potentials in quantum mechanics in
general, in the study of molecular physics for modeling a more realistic single particle
electronic shell structure, in atomie physics for quark-antiquark forces, charge densities of
nuclei, or in solid state physics. The two classes of Natanzon potentials cover all known
potentials for which an analytic solution to the bound and continuous state problem can
be found.

The class of the hypergeometric Natanzon potentials is defined by (note the different
notations used in the literature)
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where R(z) = apz’+bpz + o, and 2 = z(r) 1s implicitly defined by the differential equation
2’ = 22(1 — 2)/+/R(z). The function z varies in the interval z € (0,1). The h2-term is the
Schwarz derivative of z with respect to r.

The class of the confluent Natanzon potentials can be obtained by the substitution [6]
a=og/th = fr, [ = g2/ by — ho — f = g1/, = = b/, and taking into account
the limit 7 — 0. This yields )
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where R(r) = o:h? + mih + co, and h = A(r) is implicitly defined by the differential
equation A'/2h = 1/,/R(r). The variable r and the function b = k(r} are assumed to be
positive. The h*-term is the Schwarz derivative of h with respect to . I succeeded in {18]
to calculate the path integral representations corresponding to the two potentials (1) and
(2) explicitly in terms of the corresponding Green’s function. The energy eigenvalue (=
quantization conditions) were equations of fourth degree in the energy. In spite of the fact
that the bound state energy-level conditions are rather complicated, closed form solutions
in terms of the Green’s function were still possible. This is quite surprising because the
exact analytic form of a particular Natanzon potential is only implicitly defined and may
even not be known analytically.



The two path integral representations in [18] contain all former path integral solu-
tions which are related to the radial harmonic oscillator and the (modified) Pdschl-Teller
potential. respectively. In the two latter cases at most two free parameters arc free to
choose.

In particular for (2). the choices cg = 7 = 0. g1k = gih®. and ok — 714%, respec-
tively eg = 3 = 0, g¢1h — g1h* oyh — @k produce modifications of the two kinds of
conditionally solvable potentials as discussed in [1j. They have been called a modilied
C'oulomb potential and a radial confinement potential, respectively. The new potentials
which T would like to call conditionally sofvable Natanzon potentials have four free pa-
rameters. and seem to be entirely new. Of course. a similar modification is dene for the
hypergeometric version, and gives four new classes of potentials. These modifications
of the original Natanzon potentials are suitable for our purposes, and the path integral
discussion of these four new classes of potentials is the main object of this paper.

Although exactly solvable, these potentials are complicated enough to be of serious
consideration in the modeling of actual physical forees. This can be the case where one
wants to study an approximation of a model. or where an exactly solvable model is used as
a starting paint for a comprehensive numerical investigation. c.l.e.g. the recent review {19].
By choosing a path integral approach we succeed in gaining comprehensive information
of 1he bound-stated solutions of these potentials {if they exist), and what is often more
important, about the scattering states which eventually allow for the calculation of cross-
sections and phase-shifts. In this respect, the path integral provides a convenient tool for
the calculation in which the proper analytic structure of the solutions is manifest.

In order 1o avold unnecessary overlap [ do not repeat the space-time transformation
technique as sketched in [1). e.g., Refs. [20]-[34]. and references therein. For the actual
formulation of the path integral representations of the potentials T use the canonical path
integral definition as developed in Refs. [20]-[23. 27. 35, 36]. This will not be repeated
here. too.

This article 1s organized as follows. In the second section I present the six classes of
~conditionally solvable Natanzon™ polentials labeled ¥, 15, V5. Vi, Vs and ¥, respectively.
The well-established space-time transformation technique reduces each path integral prob-
jem to an already known one. The final result in cach case includes the statement of the
corresponding (Green’s function. The poles of the Green’s functions yield in the first
two classes implicit expressions (transcendentzl equations} for the energy eigenvalues, in
the second two cases equations of fourth degree in the energy which admit an analytic
solution, and in the last two classes also ouly transcendental equations for the energy
eigenvalues can be stated. The bound state wave-functions and the scattering slates are
not evaluated explicitly. The last section contains a summary and a shert discussion.

2 The Potentials.

2.1 A generalized Coulomb potential.

In the first class of potentials I consider a medification of (2) by changing the power-
behaviour of k in the ¢,-term into a g1 k%, in the oy-term into 014", and we set oo =7 = 0.
Thus we obtain the following first conditionally solvable confluent Natanzon potential
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The variable r and the function h = A{r) are assumed to be positive. The special choice
oy = 16 and o = 0 gives k = h{r] = /7 and reproduces the modified Coulomb potential
of Ref. {1], including, of course, the quantum potential AV = —3R*/32mr? e,

u
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Assuming a power dependence h = h{r) = r¥, as 7 — oo, we find & = 1/2, and the
potential (5} describes the asymptotic behaviour of Vi(r} as well. In order 1o calculate
the path integral representation of the potential (3) we perform the transformation r — =
together with the time-substitution df = ds/z" such that the new pseudo-time s” can be
introduced via the comstraint f§ ds/z"* = T = ¢ — ¢". This space-time transformation
causes the emerging Schwarz derivative to cancel with the K% term and gives the path
integral representation in the polar coordinate 2
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and 1 have performed the additional variable shift v = & — Rigi/dma E, and set w?® =
—o1£/2m. The path integral {6) now has exactly the form as the one in [1] for the
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modified Coulomb potential after the space-time transformation. There it was solved with
the appropriate boundary conditions, i.e., the path integral (6) is not a path integral of a
shifted harmonic oscillator in the entire IR. As pointed out in {37] the wave function has
the wrong behaviour at the origin of a singular potential, and therefore such a “solution”™
must be discarded as physically unacceptable [38]. Similarly, as in [1] it is not passible
to extend the variable h to the entire IR, a feature which is in accordance with the
one-dimensicnal Kustaanheimo-Stiefel transformation which maps R* — R* {34, 39].
Therefore the path integral (6} is a radial path integral with 2 > 0 [40], and the path
integral (7) is a radial path integral for a harmonic oscillator with v > —A%/4me E.
for fixed energy E. The additional linear term spoils the symmetry with respect to
reflections in the variable £. In [41, 42] I have developed a procedure how to deal with
such problems within the path integral. We assume that we have evaluated a path integral
problem with a poteatial ¥V (z) in, say, the entire IR. This path integral is called K"(T).
The corresponding Green's function is denoted by G(V)(E). Now we consider the path
integral problem with the same potential V', but with Dirichlet boundary conditions at
the location ¥ = @ and we consider the half-space © > a. Then the Green’s function in
the half-space z > a is given by [41, 42]
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The Green’s function corresponding to G*¥){ E) which we need is the Green's function of
the harmonic oscillator, G E), and has the form
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Here D,(z) is a parabolic cylinder function [43, p.1064]. Inserting (10) into (7) and
complying with (4} we obtain the following solution for the Green’s function G E)
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Here | have abbreviated
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This determines the energy-spectrum by zeros of the parabolic cylinder function, i.e.,
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I have indicated by », = v(E,) and w, = w(F,) the explicit dependence on E,,. The
analysis in [42) showed that the poles coming form prefactor in (11) play no réle in
the corresponding boundary condition problem. Equation (13) clearly generalizes the
corresponding result of [1] to the case of four parameters.

2.2 A radial confinement potential.

The second class of conditionally solvable confluent Natanzon potentials we want to con-
sider has the form
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where
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The special choice oy = 9 and o3 = 0 gives & = k(r) = r** and reproduces the radial
confinement potential of Ref. [1], including the quantum potential AV = —53%/72mr?,

2
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and the radial confinement potential (16) is also the asymptotic solution of V3, for b =
k(r) powerlike as 7 — oo. The necessary space-time transformation has the form r —

k accompanied by the time-substitution df = R(h)ds/4h?, as before. This gives the
following path integral representation in the polar coordinate k
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and 1 have performed the additional variable shift v = A — ma E/k%g;. and set w =
h\/qr/2m. In comparison to (6) the réles of the quadratic and the linear term are inter-
changed. The path integral (17) now has exactly the form as the cne in [1] for the radial
confinement potential. Taking the corresponding result of [1] we obtain the following
solution for the Green’s function GO2)(E)
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Here [ have abbreviated

This determines the energy-levels E, by zeros of the parabolic cylinder function, i.e..
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[ have indicated by v, = v(E,) the explicit dependence on E,. This result again gener-
alizes the corresponding case of [1].

In the special case of 4 = 0 we must consider the path integral solution of the
linear potential. We obtain in this case for the Green's function GW=9(E), note F' =
o E — higa)2m
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I(z} and K,{z) are modified Bessel functions [43, p.958]. Possible bound states are
determined by

v —2m mpmm 53
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In terms of the Airy function Ai{z) this gives

— 2/3 2
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which gives a cubic equation in E), and has the form (an > 0,n € IN, are the zeros of
the Airv function, i.e. Ai{—a,} =0 [44, p.166])
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2m ™m

ok, — ;mw = {26)

which can be cast into the canonical form (the case a3 = 0 is equivalent with the case
discussed in [1] and must be ireated separately)
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One real solution of this cubic equation is given by [50]
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An asymptotic analysis of the cubic equations shows that for a, — o0, i.e. n — 20, we
have a behaviour of the bound state energy-levels according to £, o —|gz|a;*?, g2 < 0,
and the accumulation point 1s £, = 0.

2.3 A modified Rosen-Morse potential I.

In the third class of potentials [ want to investigate, | consider the hypergeometric Natan-
zon potential with the following modifications

bty = 2 aEL = 2 ol —z)+ 2V R MANQ“ 2
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where RB(z) = bpz + co, and z = z(r) is implicitly defined by the differential equation
z' = 22(1 — z}/y/R(z). The variable z varies in the interval z € (0,1). For R(z) = 1, we
find z = (1 + tanhz). z € IR, and the emerging potential has the form

mm &c - w\# ._: 3
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which locks exactly like the first modified Rosen-Morse potential in [1]. In the original
Natanzon potential ¥, this choice yields the usual Rosen-Morse potential, which justifies
our notion.



In order to calculate the path integral representation corresponding to the potential
{31) we perform the transformation r +—+ z together with the time-substitution dt = dsfz"
This space-time transformation causes the emerging Schwarz derivative to cancel with the
h%-term and gives the path integral representation
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We perform a further space-time transformation z = z{z) = tanh? z, = > 0, together with
the time substitution dt = 4 tanh® zds/ cosh® z. The quantum potential emerging from
the Schwarz derivative of z with respect to  is given by

% u w
AV = T !v : 1
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and we obtain the path integral representation for the emerging Manning-Rosen [45]
potential with the solution according to [23, 25, 46]-[49)]
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with the Green’s function G*3)( E) of the third conditionally solvable Natanzon potential
given by

GOty = T (BRENY Tl = Le)l (e 4 4 1)
B\ 2(r)a(r") [(my + my + 1)I{my —my + 1)

N 24/z(r") . 2./2(7" Limi4ma+1) 1 N?J.le\nmﬂ Fimy—ma)
L+ /3(r) 14 y/2(r") 14 o) 14/l
L-yein

xoFy | —Leg+my,Lg+mi+1;my —my 4 1

1+4/z(r)
2y/2.4r)

xeFy | -Lg+my,lg+m+1m +me+l, ———m—| , (37)
1+ 4/2<(r)

where
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2Fi(a, b; ¢; z) is the hypergeometric function [43, p.1039]. Furthermore | have abbreviated
2= ho+1— w% (40)

Note that the number g is a square root and the specific sign it takes may vary in different
examples. From the poles of the Green’s function, respectively from the spectral expansion
of the Manning-Rasen potential [49] we derive the quantization condition for the bound
state wave-functions (n € IN}

h
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This equation, which is actually an equation of fourth degree in the variable E;,, is with its
four parameters an obvious generalization of the corresponding case in [i]. Introducing
the abbreviations By = ﬂﬁ\: -1, B = ﬂ:: +1), C1 = h:.n (hg + 1), an = dep.
ay =by+co, R =hi(n+ WV\,\MS it can be rewritten into
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Equation (43) can be solved [50] by considering the solutions of the quadratic equation

d
ﬁv+>v‘+w+€\» =0, (45)

where A = +/8y + 5% Z4¢, 1.e., with the four solutions

by —
Enyey = —(b+ A) £ /(b + A)2 - a?+w|mlmv , (46)
and y is any of the real roots of the cubic equation
8y® — dey® + (2bd — Be)y + e{4c —H) —d* =0 . (47
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2.4 A modified Rosen-Morse potential IT.

In the fourth class of potentials we wanl to investigate, we modify the hypergeometric
Natanzon potential according to
AR -n 4 h(l -5+ il =) AP

1y(r) = —_
() 2m Rz} +m§.

where Riz) = gz + co. and = = z(r) is again implicitlv defined by the differential equation
=221 - 2y <§A Repeating the considerations of (32) gives an additional facror
e " in the A, -term. therefore reproducing the modified Rosen-Morse potential of {1]. We
perform the same space-time transformation as before and obtain (%? as in (40}))

e o
5 b3 Loy
K" v Ty = 4\ Dr(t)exp W\ le.qt — E?L dt
Ve L2
r{th)=r" '
: ') bﬂw 1 —.\.N -
_ T.v T.. q \. dE mL.m,H?\S&m:
Lz{r (e — ()1 — R 27h o
(s =2" . ER(=)
i [m E
Dx(s) e \\ s b
" (] exp hito |2 * 131 — 2)?
{0)=2t
h? h i :
SR p— + — i — — ! ds
Brn \ 241 —z) 231 — =327 dz(: - 1)
N 174 5 o0
_ (AR \ dE m\_ma;\f ds” QPO E+R (o1 /4)/ 2m]s" f7
'Yz (r) R 2k o
s = o s .
Vo e, RE 1) coth w
x Duls)ex 1\ Dat o L = ds 19)
\ uls)exp BJo 2 “ 2m \ tanh?® v th sinh u ? 9)
ufUt=u’
Lmq.\vnuﬁ \.:.u.z.. _m_u . _“.uou_

Here the path integral for the hyperbolic Scarf-like potential [48. 51] has been used. The
Gireen’s function G E) of the fourth conditionally solvable Natanzon potential is thus
given by
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With the abbreviations By = 2-(ho+1—hy), By = 2 (ho+ 1+ k), €1 = 20%/m, o1 = 4by

2m
we get the following quantization condition (n € IN)

VO — a1 By + 2 = /By — B = /By — coFn . (54)

This equation is again an equation of fourth degree in E,. Equation (54) is an obvious
generalization of the corresponding case of [1], where the eigenvalue equation was a cubic
equation. and can be solved in a similar way as the previous case.

2.5 A modified Manning-Rosen potential I.

In the fifth class of potentials we want to investigate, we modify the hypergeometric

Natanzon potential according to

_ MHN? -1+ WC — )+ Ry
2m R(z)

Valr)
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v P (55)

where R{z) = agz® + the, and z = z(r) is again implicitly defined by the differential
cquation = = 2z(1 — z3/y/R(z). If we make the Ansatz B = 2, we get z = 1 —e™2",
# = 0. In the original Natanzon potential we obtain the Manning-Raosen potential. In the
present case we get
Bt F—3/4 hy 3
Vir) = — 1-— - . 56
tr) 2 U l—e % + V1I—e 7 4l —e )2 (36)
This potential may called due to its singular structure, a modified Manning-Rosen po-
tential. Such a “cenditionally solvable potential” seems to be new. We perform the same
space-time transformations as in the previous two cases and obtain
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x \ Dz(s)exp w\o M o gm\ﬂsf tanh z | |ds (58)
ri0)=z'
n\ E 8T o B (59)
B 271

(58) corresponds to the path integral of the Rosen-Morse potential as discussed in [26. 47].
However, we encounter in the present case the same difficulty as in the discussion of the
two confluent conditionally solvable Natanzon potentials. The transformation z = z(x)
maps (0,1) — IR, and (58) is therefore a radial path integral. But the Rosen-Morse
potential is defined in the entire IR and due to the odd tanh z-term we cannot continue to
the entire real line. Hence, we must apply the same technique as in the first two examples
and therefore the Creen’s function G(¥*)(E) of the fifth conditionally solvable Natanzon
potential is given by

GV EY " 7 E) = Gir" v E) — (60}

QA A 5 |
with the Green’s function G{E) given by
1/2
. m {8 R(r") T(m; — Lp)T(Lg +my + 1)
Gir", v E) = 5
h z(rz(r") I'{my + my+ 1) (my —ma + 1)

x

(m1—-m2)f2 mi+mal/2
b—fz(r) 1 —/z(r") * 1+ /z(r) 1+ 4/z(r") fmatmal/
7 2 2 2
L+ yfe(r)
2

ey {—Lg+ M, Lg+m +1lim +mg+ 15

L —yfze(r)
X Ihm+aﬂuhm+3~+#3~\3m+ﬁ% . (61}

Here I have used the abbreviations

Lp = {62)
myy = (63)
and have further set
2 ImagF
vi=f+1 - 22 . (64)

Note that the number » is a square root and the specific sign it takes may vary in
different examples. We obtain consequently the transcendental quantization condition for
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the bound state energy-levels £

2P = Le(Bu) + ma(Ex) hp(En) + mu(En) + Ly (Ey) + ol B} + 1:4) o (65)
In the case of B = z*, i.e., for the potential
WMM
Virj= — B - , (66)

2m i\l —e ¥
we obtain the quantization condition
2F ﬁ — Lg(E) + may(En)y Lo B + () + 1l By + g E,) + 1 WV . (67)

where we have set

- 1 2 1 -
Lg(E) = MI%@IM, (68)
. 1 3 2m . 1 3 9m

mualE) = G/BHA--S7E£; m|>|m|wwm. (69)

2.6 A modified Manning-Rosen potential II.

In the sixth class of potentials we want to investigate, we modify the hypergeometric
Natanzon potential according to
B fr(z -+ — )+ b2 -2 B wmn,.%

Vs(r) = Zm R(2) + . 2—1, (70)

z

where R{z) = agz? + zbg, and z = z(r) is again implicitly defined by the differential
equation 2’ = 2z(1 — 2)/4/R(z). Repeating the analysis as in V5 we obtain an additional
factor e in the A,-term, therefore producing another modified Manning- Rosen potential.
lLe.,

n? —3/4 hye” 3
f+1- f »\ b —— _ )
l—e 2 Jl—e ¥ 4l —e )
We perform the same space-time transformations as in the previous cases and obtain with
v as in (64)

Vir) = (71)

r(e=r?

RO ) = \ Dr{t) exp w\un ﬁﬁa ;&

ci2
r{t)=rt
12
B R(r)R(r") \ dE \:ﬂ,;\ e
Tz (m)z(r) (1 = (D = 2(r) R 2nh
(e )=a"
. m. ER(z)
* ﬂe\l_ Dz(s)exp m\ 75 TRl =2
ke f by 3

T8m\ (1 — 2y * 221 — z)? 4231 - )
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! 4 ﬂ.\&
— R{r')R{r") .\ m.mmlmﬁ;\uo s O BT =1 [a)f2m )"
z{r)z(r) R 27h o
2ls"y=a”
i m #* , tanh
b \ Diris)exp \\ it [ = Htanh®z 4 ._SE dsy (T3}
- hta |2 2m 3 cosh r
dE _pr '
— ~1ET/h um Bl 5 ¥
Jog e TG (74)

The path integral (73) is the path integral for the hyperbolic barrier potential as dis-
cussed in [48]. however in the half-space IR*. Applying the same method as for G!Y)(E),
the Green's function G} E) of the sixth conditionally solvable Natanzon potential is
therefore given by

G(r". =(0}; E)G(=(0).": E}

AEN A E) = Gt B) - T p AM:_E .

(75)
with the Green's function G(E) given by

1/2
m [ B 18(r") I'(my = LI(L, +my 4+ 1)

BN 20 T{ry + ma + Dl (m; = mz + 1)
[ =ma)/2 {mi+ma41/2)/2
1— /(") 1 — Sz (e z(r! ”
(1 e 1+ 2 r) L)
2 2 2 2
L+ 4/z.(r
Xofy | =L+ M L, +my+ Limy + g+ 1 %v:
. b=z ()
x5 Ihc+;_§_.hn+3:+rdﬁISS.TT,% . (T6)
Here I have used the abbreviations
1 . 2
L, = = /\?r:a:l\ﬂ,gml . (77}
2 h
1- . 2m 1 i
Mmya2 = \W/\.WATP\—\S\ﬂQCMW M\.&iﬂﬁ_ycm . :.NS

Note that the minus-sign in the first term in m; s is due to the reality condition of the
problem, c.f. [48]. Bound states with energy E.,, are determined by the equation

2Fi{ = LEy) + mu B L) + my(B) + Limg(Fo) + ma(Ea) + 158) . (79)

A more detailed investigation, and of the special case B = z*, is left to the reader.
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3 Summary and Discussion.

In this article the path integral treatments of six classes of “conditionally solvable Natan-
zon™ potentials have been presented. For the analysis of these problems I have used the
path integral approach. In spite of the fact that the potentials are defined only implicitly
and may even not be known analytically. it has been possible to caleulate the Green’s
function in terms of the variable r, and the functions H(r) and h{r), respectively :z(r).
The poles of the Green’s functions have given the bound state energy-levels, i.e., we have
obtained transcendental equations in terms of parabolic cylinder functions, hypergeomet-
rie functions, and equations of fourth degree, respectively, and the cuts have provided the
scattering states.

The two “conditionally solvable confluent Natanzon potentials™ (5) and (16) are but
two simple solutions of the potential classes V| and Vi, respectively, where oy = 0. The
general structure of the potential ¥; modifies the Conlomb interaction by adding a long-
range effect. V, instead has a confinement character. The special case o) gives trivial
results, and there seem to be no more other simple potentials.

It remains to consider not only the real solutions of the eigenvalue equations, but
also the other possible complex solutions as well. For instance in (27}, we have found
an asymptotic behaviour of the bound state levels which is in accordance with the result
of {1]. There only real solutions were allowed because the zeros of the Airy function are
known to be real. By a suitable choice of parameters all solutions of (27) need not to
be real. The existence of complex solutions, i.e. resonances, depends on how strong a
potential barrier is above the energy of the lowest lying scattering states. It is known
that (3) can have such resonance states [37], and this feature of locating rescnances in
scattering processes was one of the reasous to study potentials like (3). Therefore it should
be worthwhile to make a numerical investigation along these lines, respectively a detailed
Green’s function analysis. This would fix the requirements which of the three solutions
of the cubic equation (27} or of the four solutions of (43, 34) actually contribute to the
spectrum, and which are unphysically and must be discarded. In particular, resonance
states would add to the variety of potential forces in nuclear physics and elementary
particle physics for states which are subject to decay.

On the other hand, the potential (14) has 2 confinement character, and its power-
dependence describes phenomenological a gg interaction, as supported by lattice QCD,
c.f. [32] and references therein. Therefore both potentials can due to their four parameter
structure serve as a proper refinement of important phenomenological models.

In [53] de Souza Dutra and Girlich have presented two-dimensional extensions of the
potentials (5) and {16} according to {w, A > 0)

2
W) = Tle? + ) + o [V B arctanty/n) - 3] 50
i = 1,2 and Vi(r) the potential (5) and Vi(r) the potential (16). With the coordinate
choice £ = uecosy, ¥y = usiny the problem is separable. However, the same line of
reasoning as sketched in section 2.1 concerning the proper boundary conditions applies
as well. Therefore the transcendental equations for the eigenvalues m._ﬂu (13, 22), now for
the variable v > 0, determine the separation constant which enters in (80). This vields
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eventually a radial harmonic osciilator path integral with

T2y gl 14
Vi(u) = ™ol g B A+ B =174 /

2 2mn u? ' (81)

which is easy to solve, e.g. [21, 23, 27, 40].

In the second set of Aypergeometric conditionally solvable Natanzon polentials the
bound-state solutions are determined by an equation of fourth degree which complicates
the expressions analvtically. In both cases the bound-state energy-levels with the wave-
functions and the scattering solutions can be obtained in principle. However, due to the
complicated structure of the equations, and the fact that a more simple case has already
been discussed in an earlier paper [1], an explicit evaluation is omitted. The six path
integral representations (8, 19, 353, 49, 58) and (73) together with the explicit form of the
corresponding Green’s functions (11, 20, 37, 51, 60) and (75) therefore contain the former
path integral solutions as special cases, and at the same time generalize them.

In the set of potentials (31) and (48) the choice R{z) o 2? is explicitly excluded, so one
can either set by = 0 or ¢o = 0. Choosing b = 0 yields = = w: + tanh ), z € R, leading
to the two modified Rosen-Morse potentials of [1]. The structure of the two potentials is
such that they can describe a complicated scattering process by wells or troughs on the
real line. The alternative ¢q = 0 gives z = coth?r, » > 0, and leads to the Rosen-Morse
and the hyperbolic barrier potential of [48, 51], respectively, and therefore gives no new
features.

In order to include in the hypergeometric case 8 x 2%, where 2 = 1 —e™, r > 0, which
gives in the original Natanzon potential the Manning-Rosen potential, I have modified
the structure of ¥, once more. | have obtained two new potentials which I have called
due to their singular behaviour “modified Manning-Rosen” potentials. The effect of the
potentials can be interpreted as modifying a Coulomb interaction in a space of constant
curvature, e.g. [54, 53] and references therein. Alternatively, they combine the effect of
screening a Coulomb potential with a long range behaviour according to (3}. In both cases
the quantization conditions are transcendental equations involving the hyvpergeometric
function.

I have therefore found four classes of “conditionally solvable hypergeometric Natanzon
potentials” with either complicated scattering properties on the real line, or modified
screening features for singular potentials. In particular, the potentials (56, 66) and {71)
provide explicit solutions in terms of the radial variable r which appear to be new.

The particular features of the "conditionally solvable Natanzon potential” also clarify
the origin of their solubility. The term which is proportional to %* guaranties this very
fact. Whereas in [2]-{5] this term seems to come in “by hand” and has to be chosen in a
suitable way, its structure is fixed becanse it ¢s a Schwarzian derivative. The incorporation
of this term in the potential arises therefore ir a natural way, similarly as the Schwarzian
derivative appears in the space-time transformation of path integrals, and the guantum
potential AV in the definition of path integrals on curved manifoids.
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