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Abstract

We extend two earlier papers [1, 2] on the determination of symplectic six - dimensional
thin - lens maps to show how to construct a six - dimensional symplectic thin-lens transport
map for a bending magnet by using the “unexpanded” square root

9 9 1/2
{1 P+ } |
[1+ F(ps))°

of the exact Hamiltonian as was already done in Ref. [2] for quadupoles, skew quadrupoles,
sextupoles, and octupoles. Thus by combining this paper with Ref. [2], one can treat the
whole 1ing in the thin - lens approximation by using the exact Hamiltonian.

“CERN, SL-Division, Geneva, Switzerland
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1 . Introduction

In two earlier papers [1, 2] (which we refer to as I and IT) we showed how to construct
six - dimensional symplectic thin-lens transport maps for the tracking program SIXTRACK [3].
Whereas in paper I we used an approximate Hamiltonian obtained by a series expansion of the

square root '
Ny 1/2
{1 Pt } !
1+ f{po))?
up to first order in terms of the quantity

P2+ p?
1+ fpo))*’

in Il an improved Hamiltonian was introduced by using the unexpanded square root for various
kinds of magnets (quadrupoles, skew quadrupoles, sextupoles, and octupoles) appearing in
a straight section of a storage ring. The outcome was that the thin-lens maps remained
unchanged .and the corrections due to the new Hamiltonian were fully absorbed into the drift
spaces. In II we also presented a symplectic treatment of the nonlinear crossing terms of the
Hamiltonian resulting from the curvature in bending magnets, but only took their lowest order
into account. : : '

In this report we now demonstrate how to treat the bending magnets within a symplectic
thin - lens approximation, taking into account the exact Hamiltonian also.

We achieve this by introducing a generating function in analogy to the method applied by
Ii. Forest and K. Ohmi for the symplectic integration of complex wigglers [4]. The analysis
used in this report can easily be modified for application to a thin-lens synchrotron magnet.

Combining this paper with paper II, we are thus in a position to treat the whole ring without
further approximation. ' , ‘

The equations derived are valid for arbitrary particle velocity, i.e. below and above transition
energy, and shall be incorporated into the tracking code SIXTRACK [3].

The paper is organized as follows: ‘ | '

In section 2 the general canonical equations of motion for a bending magnet in terms of
the exact Hamiltonian are specified. In section 3 we solve the equations of motion by splitting
the Hamiltonian as in paper Il into two parts. The “unsplit” Hamiltonian is treated in section
4, solving the equations of motion in one step. As a byproduct, it is shown in Appendix A
how to construct symplectic thin lens maps for quadrupoles, skew quadrupoles, sextupoles,
and octupoles, using the new method described above. Finally, a summary of the results is
presented in section 5. ‘ '

-2 The Canonical Equations of Motion

2.1 Notation

The formalism and notation in this paper is similar to that of Ref. [1}. Thus we will begin
by simply stating the canonical equations of motion for a bending magnet already used in this
earlier paper and refer the reader to the latter for details.




2.2 The Hamiltonian
For a bending magnet with A
| K24+ K2 # 0; KoK, = 0
the exact Hamiltonian reads as: '
P + 1 }1/2
)

Hbend = pJ_[1+f(po)][1+I($m+I{ZZ]{1_[1+f(p0

] ' 2 1/2
- pa—[1+f(pa)]'-{1 M}

- [l + f(Pa]z
p; + Pl }1/2
)

| b=

l .
+§-[1+Km-$+1{z-,z]2—

-1+ f(ps)) Koz + K- 2] - {1 —

(L+ f(ps
VKy 2+ K, -2+ %Kﬁ-fﬂ-éfff'zg
) 5 5 3172
: Pz T P:
= py— 4 f(pe)]- 41— L%
P { f(pa)] { [1+f(Po]2} |
. . - 9 ! 9 1/2
Py TP
— [+ flpo)) - [ Ko+ K, - 2] - {1——"“—-—"’—} -1
_ : [1 +f(p0)]2
F(o) Ko K- b 5 K2 S K22
= Hr+Hu - | | (2.1)
with |
H = | _f(pa) . [-Kx z+ K, - 2’] + %I{S‘E ) $2 + %I{zz ' Z2 ; ' (228‘)
HII = Hcross*‘Hdrift- ‘ - (22b)
where

‘ ' 2, .2 Y1/?
Hores = —[1+f<pa)1.-[Kw-mufz-zl-({1 B —.1); (2:38)

- 1+ f(ps
it = pept
Harie = pg7[1+f(pd)].{1_[l—f’jr-Tf;]—2-} . (2:3b)
and where f(p,) is given by:
— l - . 2 moc? _ |
flps) = ﬁO\J(l_*__ﬁg Ps) ( EO) -1 (2.4)

(K., and K, are defined in Ref. [1]).




3 Thin-Lens Approximation for a Bending Magnet

In order to represent a bending magnet we divide each lens into a sufficient number of thin
slices of length As. Furthermore, we modify the Hamiltonian (2.1) by writing

~

Hr = Hi(y; so) - As - 8(s — so)

= As-§(s—sq) X

{—f(p,) [Kz(s0) = + K.(s0) - 2] + % [(Ko(s0)]? - 2%+ % [K.(s0)]% - 22} (3.1)

and
Hiena = Hi + Hir (3.2)
whereby H; represents a symplectic kick effective in the region
S0 < 8 < so+e (region I)

"~ and H;r contains nonlinear crossing terms and the drift terms and is effective in the region_
~sote < s < sp+As (region II) .

On approximating Hyenq by "expanding the square root” one obtains the Hamiltonian of

Ref. [2].

In section 4 it is shown how to treat the unsplit Hamiltonian Hieng-

3.1 The Term 7%1

3.1.1 Canonical Equations of Motion

The canonical equations of motion due to the Hamiltonian H; read as:

d LY
ds ° Op,
= 0; (3.3a)
i em
ds P= 7 Oz

= —[Ku(s0))*  As-8(s—so)-a + Ko(so) - As-6(s—s0)- f(ps);  (3.3b)

4, _ L
ds ~ dp.

= 0: (3.3¢c)




d My
ds ' Oz

= —[K.(s0)] - As-8(s — s0) - 2 + Ki(s0) - As - 8(s — s0) - fpe) 3 (3:3)

4 _ OH;
ds © = s
= —[Ku(so) =+ K.(s0) - 2] - As - &(s — s0) - f'(ps) (3.3¢)
4. - O
ds 7 T do
= 0. | - (3.30)

3.1.2 Solution of the Equations of Metion

Equations (3.3a-f) can be solved by integrating both sides ﬁom
sgp to sp+¢
with
0<e — 0

leading to ! :

w(so+€) = z(s0); (3.4a)
po(so+¢) = puls0) — [Ku(so)]’ - As-2(s0) + Ka(s0) - As- fl(ps(s0)] 5 (34b)
z(sp+¢€) = z(s0); (3.4¢)
p(so+€) = pa(so) = [K.(s0)]” - As- z(s0) + K(s0) - As f(pe(50)] ; (3.4d)
o(sote) = 0(50)—[KT(So)-m(SO)%Ifz(So)-z(SO)]-As-f[(po(s())]; ‘(3-4e)

Po(so+€) = pol(so) - , | (3.4f)

These relations which are symplectic were already derived in Refs. [1, 2].

INote that the factors in (3.1b,d, ) which multiply the §—function are continuous functions of s at so.
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3.2 The Term H;;

tor a horizontal bending magnet 2 :
K, # 0; K, =0
we get from (2.2b) and (2.3a,b) the Hamiltonian :

2 2 1/2 :
_ . ’.;[;- —M -
My = =+ ()] K. ({‘ u+f@nf} 1)

2, .2 (U2
Pyt P
~0 101 R

9 2 1/2
_ -u+ﬂmnwKw$+1“{1”ﬁ%3%%F}

+[1+f(pa)]'f{x‘m+pa . (35)

The canonical equations corresponding to the Hamiltonian (3.5) take the form :

d ., OH;r
7T 2 (36)
with
A ‘
¥'o= (¥15 Y2, Y3, Yas Y5, Ye)
= (E:anzapz; O-vptf)
and
S, 0 0 0 —1
§= _Qﬁz 0 3 52:(_!_1 0)1 (37)
0 0 5,
or, written in components:
d . OHrr
N 1 P2 + p? }_1/2 (—2p,)
= —[14 flp -Kx-x+1-~{1——~x—1— S 2
A 0 e ) S sy
- /2
. p£+P2 }1 ' Pz
= +[K,-z+1 -{1———~—z T 3.8a
| U IR T o) (3:82)
d _ _OHu
dspw B dz
/2 ‘
2+p |
= +[1-|—f(pg)]‘f(x- {1———’"’-2—} -1 3.8b
- [T+ F(po)T (3:50)

A magnet bending in the z - direction can be treated in a similar way.

7




d oH
Lot

ds~ Ip,
| 2 2 -1/2 -
= K- . _..,.pa’__{-_pz_} . Pz . ’ )
*K x+1]{1 T+ 7@l T+ (33¢)
4 9Hn
dspz T Bz
= 0; (3.8d)
d OH;
EO- =l+ 6})0
p2+p2 1/2
=_—f(Pa)'[Kx'~"«'+1]'{1—m} + 1+ fips) Ko-z
_ T _ﬂp_}’M ,
I . R e A
= 1+ fi(ps) Koz
! . px+pz V p$+p2
AN {1 [T+ f(p.)] } { 1+fpa)]}-
, _pitp [ +pl]
— Fpy) - [ Kz +1] {1 TR } Tt R
! $+ 2
=~ f(po) [ Kz-2+1] {1 1if§a)]2} +1+f(ps) Ku- @
_ I . T p:r:+pz . N
= —f'(po) [Ks-z+1]- ({1 T3 0IF )+[1 "(p)] 1 (3.8¢)
d _ OHir
ds‘p" T T Tbe
= 0. ' g (3.8f)

Expanding the solution of the equations of motion (3.8) up to first order in As we can
write:

T = :C-I-AS-BHH
Opz
: 2ypr |7V P
= 24+ As-[Ky,-z+1 -{1—————"0“” . } C— 3.9
ot Ao (Koot =50 S5 [T+ f(o)) (3.92)




IHir

Ps = pz— As:

Oz
2 2 if2
pa:+pz )
= po+As-[1+ flp,)]- K, - {1—_—} —1) ; (3.9b)
[+ 7)) 1+ 7 )P
z = z—%—As-aHU
Ip.,
2 2 -1/2
Pz + P Pz
= As- Ky -z4+1]- {1 — =22 e 3.9¢
#tas [ Keet] { [1+f(pa)]“’} [+ 7(p)] (3.9¢)
p: = pz“_AS'a;;i”
= p, ' ' (3.94)
e cr—i—As-aHH
. Bpa
= 0'+AS'[1_f’(pa)]
2 2 -1/2
. Py TP
—As- flpy) [Kp -2+ 1. - —4——=_ -1 ; 3.9¢
s+ f(ps) - z ]({ [1+f(100)]2} ) ‘ ( )
_ My
po' _ pO'_AS. 60'
= p, : _ (3.9f)
with
y = ylso+¢);
§ = y(so+As);
(y = ($=anzapza(7,pa)
and
0<e — 0.
The map
(-"C,anzapz,ff,?a) - (fﬁaﬁmguﬁza&aﬁa) (310)

defined by (3.9) is not symplectic. In order to symplectify eqn. (3.9), higher order terms in
As have to be added on the r.h.s of (3.9). This can be achieved by defining the generating
function :

F(wapa:; Zoﬁz;aaﬁa) - xr'ﬁx‘,'z'}az"'a'ﬁa+/—\5‘HII($)}55¢; zaﬁz;a:pa')

9




so that (3.10) becomes a canonical transformation .
Then :
F = .’L"ﬁx-l-Z']jz"‘O"ﬁo

_2 2 1/2
As (4 - Ke - ___w_e._} _ )
[1+f(p )] K ({1 [1 +f(15.;)]2 1

) 2+ M A
"—As[l'*'f(pa)l{1—[1+f(§a]2} +As - po

= m~ﬁx+z-ﬁz—%—cr-g_ﬁd+As-[l—l-f(ﬁa)]-Km-a:-l-As-ﬁa

: 2 =2 1/2
_As.[1+f(;aa)].[1<x-x+1]-{1—%} , (3.11)

This method has been applied by E. Forest and K. Ohmi to obtain symplectic transfer maps |
for wigglers [4]. :

With the generating function (3.11) the transfer map (3.10) reads as:

, _ OF
= a5,
. _ _ -1/2 _
) SN p% + 7 } (=2
= z—As-[1+ - -I{x‘x—i-l-—{l———x—f - —
Lt #ee)| S R ) S (S
_o _n -1/2 _
Py +P: Pz :
= z+As- [K,-z+1 -{1——3_—} e 3.12a
_ N R 8 S TR M) (3122
_oF
Pe = Bz
- 22 =2 1/2
_ _ Pz + P -
= po—As-[1+ f(p.)] - K- {l—-——} —-1]; (3.12b)
f | L+ 7(2a)P
3The transformation equations due to the génerating function F are:
__ oF OHir
y - 859- _ y+AS 65!; ?
oF _ oH
Py = 6—5 = py-|-A8 ———ayII ;
¥y = ,%2,0.

This transformation is canonical and approximates the real symplectic motion due to eqn. (3.8) up to first order
in As [4].

10




oF

ap.
- e o B2+ 7 s 9%
= sranfeer) (- BT b (3120
. 9F
Pz = E
= P:; | (312(1)
__ aF
o = 8ﬁa
= o+ As- fl(ps)- K, -z +As
iy 2+t "
—AS'f(Pa)'[AI'CE‘Fl]~{1——-—[1+f(p6)]2}
— ] 1 P+ }‘”2 202+ 5] .
—As- I TK, - N S R B <2 cattz Pl .
Do [t 7)) (Ko 1)- {1 DR ey L
= 0'—|-A8+A8'f,(150')‘1r{x°x
' PR -1/2 22 =2
~As - f(po) - [ Ky - o PetrE } { _ Peth }
7o)l ””{ [+ (3 )F T+ 77
A ) ety BB T g
AU {1 [1+f(pa)]2} L+ 7T
= o+ As-[1 - f(D,)]
P 2+t |7V ,
___/_\s-f(pa)-[ﬁx-x-l-l]‘({lhm‘w} —1) ; (3126)
_or
Po = do
= P (3.12f)
Using the relations
(3.13a)

(3.13b)




resulting from (3.12d,f), eqn. (3.12b) takes the form:

S Cs2 2 1/2
Pz = ﬁw_As'[l'*'f(pa)]'I{x‘({1—'%} —1)

or

{Ps — po + As - [1+ f(p,)] Kz}’

= {As-[1+ f(p,)]- Ks} {1 L+ f(po)) u+f@df}

representing a quadratic equation in p, the solution of which reads as:

1.
X
1+ [K, - As]?

Pz =

{px—AS-[l—I—f(pg)]’I{m;:I:AS'[l‘f‘f(pa)]'I{I'd|:1 pg—l_pg ]+ - }

S+ L+ f )
(3.14)
with ,
C = —[Ko-DsPp?+2 (Ko As) 1+ £(po)] P - (3.15)

Comparing eqn. (3.14) with (3.9b), it can be seen that we have to take the positive sign of
" the square Toot in (3.14), so that we may write:

1 %
1+ [Ky - As]

\ i+ 73 ¢ ‘
{f’“” sl )] £ N Ry ik 1) } |

P =

(3.16)

The quantities Z, z, and & are then to be obtained from eqns. (3.12a,c,e) by taking into
account eqns. (3.13) and (3.16).

3.3 The Whole Region 55 < 5 < s + As

For the transfer map T of the whole region sg < s < so+ As we now have:
T = TUOTI ) . (3.17)
where Ty corresponds to region [ and Tjr to region II.

- 12




If we denote (as in Refs. [2, 1]) the initial vector by 7* and the final vector by ¥/, the map

T is described by :

pd = py~[Ke(so)]’ - As- o'+ Ku(so) - As- f(p}) ;

2l = i [Ka(so)l” - As- 2+ Ki(s0) - s f(pi) ;

o/ = o' —[Ku(so) o'+ Kq(s0) - 2] - As - fi(ps) ;

(see eqn. (3.4)) and the map Ty by:

fo_ 1 N
Po = 10K, As?

e as) g6 ([ - BRG], G
{p$+[K$ As]- [1+ f(p})] (\Hl L+ f(pi)] }Jr[l-l-f(pf;)]z

pl = pi;
pl = p

o = Tt As Ko .in)?ﬂp:‘)ﬂ}‘” o
= +A [I&w +1] {1 YT Yk

PN (pg)2.+(p;‘)2}‘”2.ﬁpz_-
+As- [Ky -2t 1] { [1+ £ 1+ 7))

of =o'+ As[1-F(1))]

~As- '(p]) [Ks- 2t +1]- ({1 )+ (p;)z}-llz B 1)

[L+ f(p5))?
with

C = —[Ke-AsP-(pi)+2[K.-As]-[L+ f(p)] - i

(see (3.13), (3.15), and (3.16) combined with (3.12a,c,e)).

(3.18a)
(3.18b)
(3.18¢)
(3.184)
(3.18¢)

(3.18f)

- 1) } ; (3.19a)

(3.19b)

{3.19¢)
(3.19d)

(3.19¢)

(3.19f)

(3.20)



Remarks:

1) One could also use the more symmetric decomposition

T = Ti(As/2)oTyoTr(As/2) . (3.21)

2) The transfer map T is symplectic for an arbitrary As, since 7 and T3 -are symplectic
by construction. In the limit

As — 0

one obtains the exact solution of the canonical equations of motion corresponding to the start-
ing Hamiltonian (2.1).

3) The calculation of the transport map for a bending magnet can easily be extended to
“synchrotron magnets. In this case, the terms

% [K.(s0)]% 2% and % [K.(s0)]?
appearing in the Hamiltonian H; and H; (see eqns. (2.2a) and (3.1) ), have to be replaced by
%[Kﬁ—l—g]wz and %[Kf?—g]-zz

(g is defined in Refs. [1, 2]), while H;r (see eqn. (Z.Zb)) and Ty; in eqn. (3.19) remain
unchanged.

The canonical equations of motion corresponding to the modified Hamiltonian H; may be
integrated in the same way as in section 3.1.1 (see also Refs. [1, 2}).

4 A Symplectic Treatment of Bending Magnets without
Splitting the Hamiltonian |

In this section we treat the “unsplit” Hamiltonian Hpenq, using a generating function in
analogy to eqn. (3.11) for the whole region so < s < sg + As.

4.1 The Hamiltonian
From eqn. (2.1) we obtain for a horizontal (X, = 0) bending magnet :

2 1/2
Hbend = Po— [1 -} f(pa)] . {1 — Lpz]_}

[1+ f(p)?
2 2 /2
_ N Kea. _Ma_z} _)
L+ /(ro) ({1 T+ 7S
_f(pa).1($.$+%f(§.m2, (4.22)
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4.2 The Geherating Function
In analogy to eqn. (3.11) we define:

F(w'.\ Pz Zy Py O ﬁcr)
= w'ﬁx'*'z'pz+J'p0+A3'Hbend($a Py 2y P2y O, Jﬁa)

= m’ﬁx“"z'ﬁz‘l'a-'laa

— As- 5K, - —M 1/2"
As- L+ f(o)] - K ({1 [1+f(ﬁa)]2} 1)

] it Y
—AS'[1+f(pa)]'{1—[—1W} + As - p,
1

+As-{—f(ﬁo)-K5-x‘+2

K2 x2}

= TPtz Pto-p+As- 1+ f(B,)] Ke -z

) ) i _
~As-[1+f(pa)]-[hx-m+11-{1—»W} +As: P,

+As. {—f(p‘,) K, -z+ éKf : .:,'“2} .

4.3 The Transfer Map
With the generating function (4.21) the transfer map

l(x: p:c: <, pz, a, po) — (35, Pz, 2, pz: 7, pa)

reads as:

aF
0P,

Tr =

o, 2 -1/2 o=
— :E—As-[1—|—f(g3c,)]-[1{x-x+l]--;—{1 Mp_z} '[I(TQ(?))];

ITENAE

9 9 y—1/2 —
= S - -z ' _M" —_p“‘"—
= a+As-[Ke oz t1] {1 [Hf@a)]z} 1+ 7))

_ or
pm_aw

(4.23)

(4.24a)



Y22

Po

- 2, -9 1/2
Pz — As- L+ f(Po)} K - ({1—%} - 1)

+As-{—f(f,) - Ko + K22} ; | (4.24b)

ar
0p,

‘ =2 ) =2 )12 =
r pm+pz . pz . . C
R R R (e et S v o 2

oF

Bz

[ (4.24d)

OF
0ps

o+ As

5 o N1/2
—As-f'(;ﬁa)-[f{m-x-i—l]-{1—[19’”——{_2)7’)]—2—}

Using the relations

1+ f(ps
- K war M P VT 20 AR
RO R EEE R RS Rl ey 0 ) SR oy o AR
o+ As
o o -1/2 =2 =2
. Py + 7 D R 5 Vi
—AS'f(PJ)'FI{x'$+1]'{1_ [1+f(ﬁd)]2} {1 [1+f(150)]2}
. _ _ -1/2 2 2
o P+ P ptp]
—As- f'(po) [ Ke -2+ 1] {1 - [1+f(23a)]2} L+ )P
o 2 y-1/2
a+As—A.s-f’(ﬁa)-[{f;-xfll-{l—%} ’ (4.24¢)
oF
do
. . (4.24f)
5. = pu (4.25a)
o — (4.25b)
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resulting from (4.22d,f), eqn. (4.22b) takes the form :

S 5 1/2
e (e M)

+8s - {~f(p,) Ky + K2 -}

or
{Pe = Po+ As 1 + f(p,)]- Ko }?
P 7
= (8o [l To)] ) {1 R f?pa)f}
with ,
o = po—As-{—f(p,) K.+ K-z} . - (4.26)
This represents a quadratic equation in 7, the solution of which reads as:
B 1
T IT K A
{ﬁx -85 [ S} K A1+ S K- \J B s } ‘
- (4.27)
with -
C = —[K; As)p?+2-[K,-Ad]-[L+ f(po) - b . | (4.28)

As in section 3, it can be seen by comparing eqn. (4.25) with' the linear approximation of
the equations of motion, that we have to take the positive sign of the square root in (4.25), so
that we may write : '

- 1
P T ¥ K AT |
. ‘ Pt ¢ )

{p“’_” [+ flpo)] - K (\J : [1+f(po)]2}+[1+f(pa)]2 1)} (429)

or, after some analysis:

1 _x
14+ [K, - As]

Pz =

{pg:—[ffx As]-[1 4 K, 2] + [K, - A I+ 120} \jl ey } (4.30)
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with

G = —[K, -As] g 42 (K As)-[1+ K- 2] pe

K AsP [ f(pe) + Kooal {24 f(p) + Kovw} . (431)

The quantities Z, 7, and & are then to be obtained from eqns. (4.22a,c,e) by taking into
account eqns. (4.23) and (4. 27).

Denoting again the initial vector by #* and the final vector by 7/, we thus have for the
whole region sp < 5 < sp+ As:

pi = . x
P T 11 (K. Ds]?

{Pi.-[Km-AS]‘ ([I{z-xf+1]+[1+f(pé)]-‘\]1 (pe " + (p: Héi)}; (4.32)

[1+f(pa)]
pl = p};  (4.32b)
ol = pis (4.32¢)

o = g 5. g N (P;{)z"i'(}’; )2}_1/2_ ps .
o [Keat 1] {3 L+ FP T fGD) (¢:32)

2 2y —1/2 I ‘

,?,’j — Zz' As - I{a';wz { _(pz):) +(péf) } __pz__’ 1.3%2¢
Sty B ety e S ) (4:32¢)

9y —1/2
o = ot As— As- fi(pl) [ Ky -2 { (pe )" 4 ( )} 321
+ | fwl)- | +1]-q1- [+ f(p)]? (4.320)

with

Gi= —[Ks-As](pi) +2 (K, As]- L4+ Ky 2] - pl

— (K- AT [~f(03) + Ko o] {2+ S + Koo'} (4.33)

Note that the transfer map described by (4.30) is symplectic for an arbitrary As by con- ‘
struction and appr0x1mates the solution of the equations of motion in linear order of As. In

the limit

CAs — 0

one obtains the exact solution of the canonical equations of motion corresponding to the start-
ing Hamiltonian (2.1).
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Remark:

Equations (4.32b,c,d,e) have the same form as the relations (3.18b,¢,d, ) corresponding

to the Hamiltonian Hy;. In (4.30a,f) additional terms appear resulting from the Hamiltonian

- H;. , ' _

For example, eqn. (3.14) or (3.17a) is obtained from (4.27) (which is equivalent with
(4.30a) ), if one replaces p, in (4.26) and (4.27) by p,. ' :

5 Summary

By extending Refs: [1, 2], we have shown how to solve the nonlinear canonical equations
of motion for a thin-lens bending magnet and also for a thin - lens synchrotron magnet in the
framework of the fully six-dimensional formalism, taking into account the exact Hamiltonian.

We achieve this with a technique different from Refs. [1, 2] by using a generating function
m a way analogous to that suggested by E. Forest and K. Ohmi in Ref. [4]. o

Since the equations of motion (resulting from a Hamiltonian) are canonical, the transport
maps obtained are automatically symplectic. . - '

The equations derived are valid for a}bitrary particle velocity, i.e. below and above transition
energy, and shall be incorporated into the computer program SIXTRACK. S

Following this thin- lens treatment for the conventional magnet types, a future task could
be to try the construction of the symplectic thin - lens transfer map for the solenoid using the
exact Hamiltonian (without expanding the square root).
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Appendix A: A Symplectic Treatment of Quadrupoles, |
Skew Quadrupoles, Sextupoles, and Octupoles Taking into
Account the Exact Hamiltonian |

A.1 The Hamiltonian

For a straight section containing quadrupoles, skew quadrupoles, sextupoles, and octupoles
the Hamiltonian reads as [1, 2]: ‘ '

: ) 2 1/2
H — pa_[1+f(pa)]-{1 - [%f} '

1 1.
+§g-m2—§g-z2—N-xz

i
o >

+ -(:?:3—3:322)-{—;—4-(24—6:1:222—#:1;4) (A.1)
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(3, N, A, and g are defined in Ref. [1]).

In detail, one has :_‘ _

a) g#0; N=Xd=p=0: quadrupole;

by N#0; g=A=p=0: skew quadrupole;
) A#£0 g=N=p=0: sextupole;

d) u#0; g=N=Xx=0: octupole

A.2 Generating Function
Analogously to eqn. (3.9) we define:

F(m, ﬁz; z) 152; 0-7 150')
= $‘15:c+Z'ﬁz+_0'ﬁo+/—\3'ﬂ(x‘ﬁx; 2, Pzi 05 Do)

= m'ﬁx’*'z'f)z_'fo"ﬁa

2 _2 1/2
_ Pyt D _
_As- [ i1 el .
Ao+ 7] {1 [Hf(z%]z}“ T As b
-I—A.s-{%g-m?—%g-zz—N-a;z
A s g B4 2.2, ol
+E($ —3592)—]—52-(2 -6z’ 2+ %)y . (A2}

A3 Transfer Map
With the generating function (A.2)-the transfer map

($7 pm‘, Z, ‘Pru C’rJ Po) — (ia 16:0: Z, 1527 5-7 _0)

reads as:
;- oF
r = 6?:: -
N 1 .M_m_ﬁﬁﬂ;—)-
= 2= As L+ f(B)] 5 {1 I +f(ﬁa]2} U+ £
PN 5 |
RN PN 5.3 - G S !
= oA {1 [1+f(ﬁa)]2} L+ ()] (A-3_)_
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oF

Pz = 8_$
= ﬁx—l—AS-{;l-g-:c—-N-z-l-%-(mZ—zz)-i-g-l(:rS—_?)a:z?)}; (A.3b)
_ _ OF
< = aﬁz
| i 7" b | '
= 541 m —d2TPs P . A
= ool [1-+_f(ﬁa)]2} T+ /G ; (A3
- _ 9F
PTG
= ﬁz-|—As-{—g-z—N~a:—/\-:cz—|-g—..(23—3mzz)}; | (A.3d)
Lo
aF = aﬁo
= o+ As
. et |7
”As'f(p")'{l e +f(Pa)]2}
, 1 s 177 2R 4]
“AS'[1+f(Pa-)]‘§{1"m} 'ma—)]—s'f(?a)
= o+ As |
N Y ‘”2‘{ Rt R }
se s (- BB (- i
: . T _ -1/2 '
TN R _1ps + Pl
e s {1 - i)
o o y-1/2
= a-{-As—As-f’(ﬁ,,)-{l—%} ; : (A.3e)
_or
Pe = Jdo .
= P - | | (A.3f)
From (A.3b,d,e) we obtain : |
P = px-—As-{—i-g-m—N-z—l—%-(m2—22)+%-(m3—3xz2)};. (A.4a)
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) P, = pz——As{ g-z—N-z-—X- :cz—i—— (° 3:522)}; (A.4b)
Pr = Po. _ - (Ade)

The quantities Z, Z, and & are then to be obtained from eqns. (A.3a,c,¢) by taking eqns.
(A.4) into account.

Using the notation

4

(A.5)
(So + As), ' - {A.6)

=
ey

1

il
@y ey
~

)

o
S

 we may finally write:

bl = pi-As. {+g SN () (P4 e - S(mw.(zf)ﬂ} (ATa)

2.
bl = pi-ds{og F N 0@ O -ERE)) s (A)
Pl = p | (A7)
. -1/2 o .
o~ st As B (Pz)} . ATd
i | { L+ ) L+ ()] (AT
: 2 -1/2 b
Zf — 21.' As - __(p:t:) +(pz) } . P . Te
roo{1- RS | e
of = ¢ s— As- fllpfy- 41 = (pd)? + (p )2}_1/2 '
= ¢+ A AA ) {1 Ter ) L (AT

The relations (A.7a-f) describe the thin-lens map of a lens consisting of a superposition
of quadrupoles, skew quadrupoles, sextupoles, and octupoles. In particular, we get the map of
a pure quadrupole, skew quadrupole, sextupole, and octupole.
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