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INTRODUCTION 

Understanding the internal structure of hadrons in terms of quarks and gluons (partons), 
and in particular how quarks and gluons provide the binding and spin of the nucleon, is 
one of the outstanding problems in particle physics. The region of large fractional parton 
momentum x, being at the borderline between inclusive and exclusive processes, is of 
particular interest in this respect, as it provides valuable information about the dynamics 
of quark confinement. 

Generalized parton distributions [1] (GPDs) are a powerful tool to address these 
questions. While ordinary parton distributions measure the probability of finding a 
parton with fractional longitudinal momentum x in the fast moving nucleon at a given 
resolution 1/Q, ang no information on the transverse distribution of partons is provided, 
GPDs describe the coherence of two different hadron wave functions, one where the 
parton carries fractional momentum x + ~ and one where this fraction is x - ~, from 
which information on the transverse motion and binding of partons can be gathered '[2]. 

Moments of GPDs are amenable to lattice calculations [3,4]. In this talk I will present 
some selected results obtained by the QCDSF collaboration [5]. 

1 Talk given at HiX2004, Marseille, France. 
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FIGURE 1. The leading diagram for deeply virtual Compton scattering. 

GENERALIZED PARTON DISTRIBUTIONS 

Let me introduce some notation first and briefly comment on the lattice calculation. 
Consider the deeply virtual Compton scattering process depicted in Fig. 1, where P = 
Pl + P2, Il = PI - P2, q = (ql + q2)/2 and ~ = qll/qp. At high energies and large 
Q2 = _q2 an operator product expansion (OPE) becomes effective. For ~ =°the OPE 
can be mapped onto a parton model description [6]. In this case the momentum transfer 
of the struck quark is purely transverse, i.e. Il = (O,Al.)' Throughout this talk I shall 
consider the case ~ =°only. 

The soft part of this process can be parameterized by unpolarized and polarized 
GPDs [1], Hq(x, 1l2, Q2), Eq(x, 1l2,Q2) and Hq(x, 1l2, Q2), Eq(x, 1l2,Q2), respectively. At 
zero momentum transfer, Il = 0, they coincide with the ordinary parton distributions. 
For example 

Hq(x,0,Q2) = q(x,Q2), 
(1) 

- 2 (2Hq(x,O,Q ) = Ilq x,Q ). 

The GPDs are not directly calculable, but only their moments: 

l dxX'Hq (x,/),2,fi) =A~+I (/),2), 

101 
dxX' Eq(x,/),2, Q2) =B!+I (A.2), 

, (2) 

!o 
1 . 

- 2 2 -q 2 
o ddHq(x,1l ,Q ) =An+l (Il ), 

where AZ, BZ, AZ and bZ are generalized form factors, which can be related to (off
forward) nucleon matrix elements of certain operators. The lowest form factors (for 



n = 0) are 

Ai(~2) = Flq(~2), 

Bi(~2) =Fi(~2), 


Ai (~2) = Gl (~2), 
(3) 


Bi (~2) = G~(~2), 


where Ft, Fi are the Dirac and Pauli form factors and Gl, G~ the axial vector and 
pseudoscalar form factors of the nucleon. At ~2 = 0 we have 

(4) 


When Fourier transformed to impact parameter space, both 

(5) 

admit a probability interpretation. While Hq(x, bi, Q2) describes the probability of 
finding a quark of flavor q with fractional momentum x at impact parameter b..L, 
Hq(x, bi, Q2) measures the fraction of the nucleon's spin carried by the quark q with 
fractional momentum x and at impact parameter b..L. 

The generalized form factors are obtained from nucleon matrix elements of local 
operators, 

(6) 

which we compute on the lattice. Similar formulae hold for the polarized case. To match 
the Wilson coefficients, the (bare) lattice operators must be renormalized: 

(7). 


Due to bad convergence of lattice perturbation theory, this is gradually being done 
nonperturbatively [7]. 
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FIGURE 2. The non singlet generalized form factors A:-d and A::-d, together with a dipole fit. 

The calculations I am going to present have been performed using Wilson fennions 
with Nf = 2 flavors of light dynamical quarks. The lightest quark mass that has been 
reached so far corresponds to a pion mass of 0(500) MeV. Our smallest lattice spacing 
is a:::::: 0.07 fm, which translates into a cut off of:::::: 2.8 GeV. 

LATTICE RESULTS 

Once we know the generalized form factors, we can reconstruct the GPDs. Consider 
Hq(x, A2 , Q2). The generalized form factor can be written 

l dxX'Cq(x,t:,.2) = A~+l (t:,.2)/A~+l (0). (8) 

All we have to do is find Cq(x, A2) by an inverse Mellin transform. The corresponding 
GPD is then given by the convolution integral 

2 2 x 2 211 dyHq(x,A ,Q ) = -Cq(-,A )q(x,Q ). (9) 
x y y. 

In Fig. 2 I show the 112 dependence of the first three nonsinglet generalized form 
factors A~-d and A~-d, respectively, for some particular coupling and quark mass. The 
form factors are well described by the dipole ansatz 

(10) 


The solid lines show a dipole fit, and the dashed lines indicate the error. We note here that 
the various form factors are well separated, and that their slopes decrease with increasing 
n. This does not come unexpectedly. For x -+ 1 we expect Hq(x, bi, Q2) to approach a 8-, 
like function in b-L' This requires that An (1l2 ) -+ const. as n -+ 00. Fitting the form factors 
with a dipole is purely phenomenological. It provides us with a means to measure the 
change in slope by monitoring the extracted dipole masses. In Fig. 3 I show the dipole 
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FIGURE 3. The dipole masses Mn and Mn extracted from the generalized form factors shown in Fig. 2 

masses Mn and (for the polarized case) Mn as a function of n. Our results obtained so far 
support a Regge-like behavior 

M~ = c+n/a'. (11) 

An important issue is the extrapolation to the chirallimit. In lack of any guidance from 
chiral perturbation theory, we have to rely on more or less phenomenological fits. At the 
physical point we find c ~ -0.5 GeV2 and l/a' ~ 1.1 GeV2. The singlet form factors 
give generally different c's and a"s. 

Assuming that the Refige behavior continues to hold for the higher moments as well, 
we can compute Cq (x,l1 ). We find 

Cq (x,l12) = 8(I-x)+a'l12 (2+a'l12Inx) xa'(c-l1
2
). (12) 

Taking q(x, Q2) from the literature and Fourier transforming (9) to impact parameter 
space, we finally obtain Hq(x, bi, Q2). In Fig. 4 I show the distribution of the valence u 
quark in the proton at the scale Q2 =4 Ge V2 as a function of x and the impact parameter 
b1.. It appears that at small x the proton looks like a doughnut, being largely empty 
in the middle, while at larger values of x the hole closes and the distribution becomes 
increasingly narrow. Similar results are found for Hq(x, bi, Q2). 

Let us discuss the behavior at large x in some more detail now. For x -t 1 we find 

Hq(x, bi, Q2) ~ const.e-bJj4a'(1-x) q'(x, Q2). (13) 

Assuming that q' (x, Q2) remains finite as x -t 1, we are then led to 

(b3J ~ 4const. (I-x). (14), 

While the impact parameter is the transverse distance between the struck parton and the 
center of momentum of the nucleon, an estimate of the transverse size r 1. of the nucleon 
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FIGURE 4. The generalized parton distribution Hu (x, bi ,Q2) of the proton as a function ofx and impact 
parameter b = Ib..L1 at Q2 =4 GeV2. 

is provided by the distance between the struck quark and the system of spectators. Its 
average square is given by [8] 

( 2) (b3J (15)
r..l = (l-x)2' 

Hence, the average transverse size, r = J(ri), of the nucleon diverges like (1 _x)-1/2 
in the limit x ~ 1. This behavior can certainly not be reconciled with confinement. 
Perhaps our dipole ansatz for the generalized form factors is too crude. Or it was 
premature to assume a Regge-like behavior of the dipole masses. Future calculations 
will have to tell. 

CONCLUSIONS 
.

I have presented first lattice results for the lowest three moments of GPDs for Nf = 2 
flavors of dynamical quarks. Our findings, though very crude yet, kill already many 
models of the spatial structure of the nucleon in the literature. There are still many 
problems to overcome. The most immediate challenges are to extend these calculations 
to more realistic quark masses, so that controlled extrapolations to the chiral limit can 
be performed, and to higher moments. 
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