
FIRST EXPERIENCE WITH PL/I IN A UNIX ENVIRONMENT

SEAS AMB9 (PL/I Project - Group)

26th September 1969

E. Bassler

DESY - R02 -
Notkestr. 85

2000 Hamburg 52

ABSTRACT

An interactive graphic program for the analysis of high energy phys-
ics data, originally written in PL/l for an IBM, has been ported to the
VAX and APOLLO Workstation. This paper describes the experiences
made when transferring a program of 100000 lines of code, äs well äs
some differences in the Computers of IBM , DEC/VAX and APOLLO
Workstations and especiaüy in their PL/I-Compilers,

Abstract

CONTENTS

INTRODUCTION l

GEP-PACKAGE 2

FIRST GENERAL VIEW 4

SOME GENERAL D1FFERENCES 6
Byte swapping 6
Floating point numbers 6
EBCDIC - ASCII 6
SYSLIB concatenation 7
Dynamic allocation and libraries 7
Füll screen I/O 8

PL/I DIFFERENCES IBM - NONIBM 9
Character sei 9
Default values 9
Passing arguments of procedures 11

PL/I procedures 11
Non-PL/I procedures 11

Compiler restrictions on the VAX or APOLLO 11
Multi label 11
Multi assignment 12
Non-connected arrays and cross-sections 12
DO-lists 12
Parameterless functions 12
Label-arrays 13
Terminal I/O 13
On-conditions 13
Further restrictions for the APOLLO 14

IMPLEMENTATION 15

CONCLUSION 16

Contents

INTRODUCT1QN

DESY is an institute for research in high energy physics with about
600 scientiats and students from about 80 German and foreign labo-
ratories. At present a new 6.3 km long starge ring, called HERA, is
being constructed, äs well äs 2 huge detectors having a volume of
about 2000 m**3 and weighting 3000 tons each. These detectors will
record more than 3 Tbytes of data each year, which have to be ana-
lysed using histogram and graphic program packages. One of these
packages is GEP (Graphical Editor Program), which was written at
DESY on the IBM-computer. GEP was used in 1988 at DESY on the IBM
Computer in more than 185000 batch Jobs and 81000 interactive ses-
sions. For HERA-times it is planned that the large amounts of data
are to be analysed at the DESY Computer center and in the home
Institutes. Therefore there is a strong requirement for common port-
able Software. When I started to write the GEP program in I960,
portablity was not so important. We had smaller experiments and
collaborations, l IBM 3033 and 2 IBM 168 Computers for the data anal-
ysis and some mini-computers äs DEC/VAX-Computers. These were
used äs online Computers or äs so called 'number crunchers' to
reduce the data rate to be transferred via a fast online link (50 - 100
kbytes/sec) from the experiments to the DESY Computer center. On
the DESY site at present, we have l IBM 3090/180E Computer and l IBM
3084Q Computer with the MVS/XA operating System, these will be
upgraded before HERA starts running. We also have more than 500
alphanumeric and 100 graphical terminals online and remote termi-
nals at other Institutes, in addition to roughly 40 IBM or IBM
compatible PCs, 40 DEC/VAXes from 8700 to VAX Workstations with
VMS, 15 APOLLO and 10 SUN Workstations with UNDC. Thus there is
interest to get the GEP-package, which was written on and for the
IBM-computer, running on DEC/VAX-computers and UNIX Work-
stations

Introduction

GEP-PACKAGE

The GEP-package has two parts, a batch part and an Interactive part.
In a batch Job the analysed data are printed äs line printer graphics
and optionally a data base is generated for further interactive data
maniputation. The batch part is written in FORTRAN (30000 lines) and
the interactive part in PL/I (100000 lines). Both parts have already
been transferred to VAX-Computer s in 1985/1986.

The interactive GEP part offers many options.

• verious graphic presentations

• 3-dim. presentation with hidden line technique

• synopsis of complete pictures

• hardcopies of the produced pictures

• complete pictures can be embedded into documents generated
by SCRIPT/VS (Document Composition Facüity) or TeX

• graphical input (e.g. for text offsets)

• user defined line types or Symbols

• interactive fitting by user supplied functions

other numerical manipulations,
histograms bin by bin

such äs arithmetics with

• affine transformations of polygons and texts

* interactive HELP option

There are two modes for the interactive GEP module: a
1-terminal-mode using the graphical terminal for both alphanumeric
and graphic I/O. and a so-called 2-terminaI-mode with an alphanu-
meric terminal for füll screen dialog and a graphic terminal for
graphic I/O, or 2 different Windows on a Workstation.

GEP-package

The total interactive module has a size of 1.8 Mbytes (GKS-Version S.5
Mbytes) with about 200 kbytes of additional workspace. It is organized
into about 350 subroutines and consists of 100000 lines of program
code. 2000 lines commonly used äs structures or texts are stored in
120 text-macros. which are inserted into the program before compi-
lation by the PL/I-preprocessor INCLUDE-statements.

E.g.: On the IBM the text-macro for the Compiler option is 'REORDER;'.
On the VAX and on the APOLLO this Option is not available and the
text-macro is replaced by ';'-

There are some subroutines of the IBM-version written in ASSEMBLER,
namely the subroutines for the dynamic allocation, the füll screen
I/O and the I/O of the data base, which is partitioned organized.
Unfortunately these subroutines are highly coupled with the GEP pro-
gram and we had to huild up the calllng sequences to VAX and UNIX
service routines.

A further problem to be solved was the Interface to the graphic ter-
minal. On the IBM we use the AGF-Plotfile, which is a pre-GKS Stand-
ard of the Arbeitsgemeinschaft der Großforschungsanstalten (AGF).
For the VAX we originally used a simple Interface from the
AGF-Plotfile to the PLOT10 package of Textronix (written in FORTRAN).
One AGF-Plotfüe-routine, which dynamically loads the calligraphic
fonts, was written in ASSEMBLER and we had to replace it by a
PL/I-procedure, which reads the fönt coordinates.

GEP-package

FIRST GENERAL VIEW

I do not know whether the LPI-PL/I Compiler has a common root
with the VAX-PL/I-compiler, which is based orginally on the
PL/I-compiler of R. Freiburghouse. His PL/I Compiler has also been
successfully adapted by Wang, Data General, Prime, Control Data Cor-
poration, Honeywell-Bull, CII. and Stratus Computer Inc.. Some of
these companies have disappeared, but PL/I has survived.

For porting to APOLLO Workstations, it was helpful to already have the
PL/I code portable for VAXes. and so I shall also report on the
portation to the VAX. To be portable to APOLLO Workstations, it is
reasonable to use a subset of the IBM and VAX PL/l and it is. of
course, better to know this subset before. It is easier to write with
the restrictions than to remove them. But this was not our Situation.

Before we transferred the program in 1985 to the VAX, we studied two
old papera of Walter Mueller from the Gesellschaft für
Schwerionenforschung (GSI), 'PL/I comparison.' VAX-V2.0 <—>
IBM-Release 3.1' and 'Common DEC - IBM PL/I Standard', to estimate
the extent of the necessary modifications (now VAX V3.2 - IBM V2R2).
We found many discrepancies between the Compilers, but only a few
were important for our program. which unfortunately happens fre-
quently beginning with different default values. So we decided to
initially use separate program source management, keeping the
source easily transferable. Later we decided for for a common source
management using preprocessor macros.

For the APOLLO Workstation we used the PL/I Compiler from the Lan-
guage Processors, Inc., LPI, in Framingham MA (USA). This Company
offers Compilers for BASIC, C, COBOL, FORTRAN, PASCAL, PL/I, and RPG
II and a debugger named CodeWatch, for microprocessors such äs
M690XO, Intel 80386, and WE32XXX under versions of UNfXftm).
XENIX(tm), and DOS. LPI products will also be available for M88000
and Sun SPARC(tm)-RISC-based processors. Their PL/I is a füll
Implementation of ANSI PL/I X3.74-1981 General Purpose Subset with
extentions with 3 optimizations levels. One of their customers is a
division of General Electric, GE Solid State, who transferred more
than 200000 lines of PL/I code of their chip testing program MIMIC
(Module Imitating Modern Integrated Circuits) and 25000 lines PL/I

First General View

code of their R-CAP program (RCA Circuit Analysis Program) to run
on SUN-3 and APOLLO DN3000 Workstations under UNIX. - By the way,
the Company had a similar portability problem. They decided against
using a language translater to convert PL/I source into C source code
because of the risk in reprogramming an existing application and
also because of the large required Urne factor.

For DESY we bought the Version 03.02.00 of LPI-PL/I for APOLLO
AEGIS/UNIX System V Rel.9.5 in Sept. 1987, but the plan of porting to
UNIX Workstations has been frozen for some time. Meanwhiie there
have been 3 or 3 Updates for the Compiler available and the latest
release is ordered. So it is possible that there are improvements in
the LPI-PL/I Compiler, which I can not report on. E.g. the removal of
the following wicked Compiler error: we have to compile PROCs with
further ENTRYs with optimization level 2 instead of 3 (dead code elim-
ination) to get the ENTRY-externals resolved.

First General View

SOME GENERAL DIFFERENCES

BYTE SWAPPING

On the IBM and APOLLO the bytes are counted from left to right, on
the VAX from right to left. However the bits are counted from left to
right on the IBM and from right to left on the VAX and APOLLO. Thus
there is a difference in the half word addressing. if e.g. füll words and
half words are overlaid. This is valid for FORTRAN, too. The first half
word on the IBM is the first on the APOLLO, but the second on the VAX.
In our program there are only a few of these overlays and we have
solved this problem of storage and read-out by using a special (ma-
chine dependent) subroutine.

In a similar way it is valid for the PL/I-function UNSPEC with btt
strings or integer numbers. The result is different.

DCL B_PAT BIT(16) ALIGNED;
DCL I_PAT BIN FIXED(15);
I_PAT=1;B_PAT=UNSPEC(I_PAT);
VAX-result : '10000000000000'B
IBM-,APOLLO-result: '00000000000001'B

FLOATING POINT NUMBERS

The internal representation of floating point numbers is different. If
you copy data sets from one Computer to another one, one has to do
more than copy the bit-stream. One has to transform each floating
point number into the right floating point representation for the tar-
get machine. It is similar for the character representation.

EBCDIC - ASCII

On the IBM main frame, EBCDIC is used for characters, while on the
VAX and APOLLO ASCII is used. The collating-sequence is different.

EBCDIC-sequence: $, a- z, A- Z, 0-9
ASCII-sequence: $.0-9. A- Z, a-z

Some General Differences

In the old Version of our program, we had introduced a hidden
EBCDIC-dependence. We had overlaid characters and positive integer
in the same stored word. Using EBCDIC, there is a simple test for the
program logic. If the integer is negative, it is interpreted äs a char-
acter string. This is no longer valid in ASCII. Fortunately we could
circumvent this problem in most of the cases by using other program
dependent tests. The reminder was reduced to 10 special character
strings, which have to be tested.

We use the EBCDI-Code of characters äs an index into vector tables
for our calligraphic fonts (Hershey - fonts). To keep these tables and
the defim'tions for special symbols unique, we have to translate each
character on the VAX and APOLLO from ASCII to EBCDIC before it can
be graphically drawn. We put this translation into the special symbol
translation procedure, which 1s always called before drawing.

SYSL1B CONCATENATION

For the linkage of the executable module, there is a similar concal-
enation of libraries on the VAX, but the search algorithm on the VAX
is different. On the IBM the search for unresolved references always
begins with the first SYSLIB-library, while the VAX Starts the search
with the library where the unresolved references were found, and
continues all the following libraries. A reference in the first library.
which is referred in the second one. will not be resolved. If several
libraries are used, the library Organisation on the IBM has to be
changed to keep a one to one correspondence with the modules in
the libraries of the VAX. Under UNIX the linkage is again controtled in
a different way.

DYNAMIC ALLOCATION AND LIBRARIES

On the VAX and APOLLO there are different dataset managements. So
the subroutines for the dynamic allocation and the partitioned
organized I/O had to be written using DEC/VAX or UNIX System sub-
routines. The VAX-expert decided for user-specified libraries. The
UNIX-expert decided against the archive-file organization. He has
built up the library-structure on the hierarchical file system.

Some General Differences

Most of the PL/I-ENV1ROMENT attributes are different on the VAX. For
the APOLLO there are no ENVIRONMENT options for the OPEN state-
ment.

It is important that on VAX and APOLLO there are common run-time
libraries for all languages. That means an executable module can be
executed on VAXes with VMS and APOLLOs of the M680XO series without
a PL/I Compiler.

FÜLL SCREEN I/O

We use füll screen I/O for the alphanumeric I/O dialog and have
designed our own full-screen package, which is highly coupled with
the GEP program. We can interface the calling sequences to the
alphanumeric functions of GDDM by a small package of about 500
lines of code. For the VAX we use DEC/VAX System subroutines
(Screen Management Facility SMF of VAX/VMS). For UNIX the prob-
lems are under study.

Some General Differenceg

PL/I DIFFERENCES IBM - NONIBM

CHARACTER SET

There are some restrictions in the character set. '9' and '#' are not
allowed in any names of PL/I on the VAX and APOLLO. The '$' in
external references is reserved for VAX system references.

DEFAULT VALUES

The data-type defaults for the DECLARE statement are different:

IBM-default (FORTRAN-rule):
(A-H.O-Z) DEC FLOAT(6)
(I-N) BIN FIXED(lö)

FIXED --> DECIMAL(5,0)
FLOAT —> DECIMAL(6)
BINARY — > FLOAT(21)
DECIMAL —> FLOAT(6)

VAX default:
BIN FIXED(31)

FIXED —>
FLOAT —>
BINARY — >
DECIMAL — >

APOLLO-default:
BIN FIXED(15)

FIXED — >
FLOAT —>
BINARY — >
DECIMAL —>

BINARY(31,0)
BINARY(24)
FIXED(31,0)
FIXED(IO.O)

BINARY(15.0)
BINARY(23)
FIXED(31,0)
FIXED(5.-1)

On the APOLLO the Compiler option '-longint' changes the default pre-
cision for FDCED BINARY from (15) to (31).

PL/I differences IBM - nonIBM

To get a common Standard, we had first declared all used variables
and changed our FLOAT(6) declarations into DEC FLOAT (for the VAX in
1985). But then we found differences. DEC FLOAT and BIN FLOAT are
equivalent on IBM and VAX. but not on the APOLLO. If DEC FLOAT is
used on the APOLLO the mantisse of floating point number is l digit
smaller and the exponent has a ränge up to E+3Q8. The ränge of sin-
gle floating point numbers is from 0.29*E-38 to 1.7*Et38 on the VAX
and APOLLO, if FLOAT BINARY is used.

Different from the LPI-PL/1-manual, the size of DEC FLOAT is 12 bytes
long instead of 4 bytes long This is especially important if passing
floating point numbers to routines of another language e.g.
GKS-rautines. which are written in FORTRAN. There is a second dif-
ference between BIN FLOAT and DEC FLOAT. With BIN FLOAT, up to 32k
bytes can be dynamically allocated. with DEC FLOAT up to 32k
12byte-words. The double precision is different. We have to use BIN
FLOAT(52). DEC FLOAT(16) is interpreted on the VAX äs quadro preci-
sion and for LPI-PL/I BIN FLOAT(53) generates an error.

PL/I differences IBM - nonIBM10

PASSING ARGUMENTS OF PROCEDURES

PL/l_p_r oc edures

By default, on the VAX and APOLLO, PL/I passes all arguments. except
character strings and arrays with non-constant extents, by
reference. The attributes of the arguments always have to be speci-
fied in the parameter descriptor list of the ENTRY declaration and
must not be omitted or indicated by an asterisk. On the IBM we had
used this options for structures and for entries of ASSEMBLER sub-
routines.

Non-PL/I procedures

All arguments of the procedures can be passed on the VAX or APOLLO
to non-PL/I procedures either by immediate value, by reference or
by descriptor. There is no OPTIONS (ASM.INTER) and no
OPTIONS(FORTRAN) but an OPTIONS(VARIABLE) for a variable number of
arguments. We had to replace the corresponding text-macros in the
ENTRY declarations.

COMPILER RESTRICTIONS ON THE VAX OR APOLLO

The following list is not complete, but gives the differences, which
often occur in our program.

Multi label

Multi labels simply occur after removal of some program text.

A:
B:

They are not allowed and have to be separated by a semicolon.

PL/I differences IBM - nonIBM11

Mulli asstgnmeni

Multi assignments are not allowed.

A.B = 0;

On the IBM this gives a better code.

Non-connected arrays and cross-secttons

Cross-sections are not allowed in assignment statements or in decla-
rations.

A(M) = 0;

In the array assignment, the array has to be connected.

DCL l A(10).
2 B DEC PLOAT,
2 C DEC FLOAT;

C = 0.0; /* not allowed on the VAX or APOLLO,
has to be replaced by a DO-loop */

DO-lists

There are restrictions for DO-lists. The foüowing form is not allowed.

DO I = 2 , 5 TO 7;

Parameterless functions

Parameterless functions require a pair of parenthesis on the VAX.

DCL P PTR;
P = NULLQ;

PL/I differences IBM - nonIBM12

The LPI-PL/I Compiler offers a SETNULL Option, where the return val-
ue of the NULL-pointer can be set.

Label- arrays

Label arrays have to be declared only on the IBM

DCL L(2) LABEL; /* must not be declared on the VAX and APOLLO */
statements

statements

statements
L(2):

Terminal I/O

We get our terminal input in the line mode by

DCL ICHAR CHAR(79);
GET EDIT(ICHAR){A(79));

For the APOLLO we had to change the formet list of the EDIT state-
ment into

DCL ICHAR CHAR(79);
GET EDIT{ICHAR)(A);

Otherwise you have lo enter 79 characters. Fortunately we control
our terminal I/O in one single procedure and so we had to make this
change only once.

On-conditions

For some ON-conditions the abbreviations äs UFL are not supported
and have to be replaced by the füll specification äs UNDERFLOW. The
ON CONVERSION has to be replaced by ON ERROR on the APOLLO.

PL/I differences IBM - nonIBM13

Further reatrictions for the APOLLO.

For automatic variables there are further restrictions: e.g. The INI-
TIAL attribute is only possible for STATIC variables. The ränge of
automatic variables is restricted to 32K, for larger arrays STATIC var-
iables have to be declared.

We had some trouble with PICTURE'ed variables, but I want to note
thal we do not have the latest version of the LPI-compiler.

The REFER Option for self-defining structures is not supported by LPI.
Fortunately, we can circumvent this problem in our program.

There is a Compiler option '-lowcase', which converts all uppercase
names of internal and external variables and constants to lowercase.

The filenames in the TITLE-option are case-sensitive.

Some nested statements cannot be compiled, if the length of a CHAR-
ACTER VARYING is unknown at compile-time.

DCL (X.S) CHAR(20) VAR;
X=TRIM(TRIM(S));

This has to be resolved into separate statements

DCL (X,Y,S) CHAR(20) VAR;
X=TRIM(S);
Y=TRIM(X);

Because of the fact that IBM does not support the nice TRIM-function,
we have no statements of this kind

PL/I differences IBM - nonIBM14

IMPLEMENTATION

For the Implementation on the VAX. I was supported by a physicist, H.
Zobernig, who is system manager of the DEC/VAX-Computer. We
started in April 1985 and had the 1-terminal-mode ready to lest in
October 1985. We did not work full-time, and estimate the consumed
Urne to be 3 months. Much Urne was spent in programming the I/O
package on the VAX. Much time was also spent in the replacement of
the default declarations. All variables are now declared. Most of the
multi-assignments. DO-lists and cross-sections could be found by a
simple FIND-operation of '=' and '.' on the total source text. but hade
to be individually replaced for any multi-assignment that was not
context-free. (e.g. IF I = 0 THEN A.B = 0.0;). Most of the program
source modifications were done on the IBM. The tnulti-label errors
were removed on the VAX.

At first we decided to keep separate program source on the IBM and
VAX, so it was easy to change. E.g. The final modifications of 30000
lines of code for the full-screen-mode for the VAX had taken two days
on the IBM and one additional day on the VAX to get it free of
PL/I-errors. The total Implementation, including the
full-screen-package, took 2 months in spring 1986. But then we
ported the VAX source code back to the IBM for most of the routines
controlled by INCLUDE preprocessor statements. This code was used
for the APOLLO version. A summer-student untrained in UNIX started
work on the APOLLO version in the middle of July with part-time
support of a semi-experienced UNIX-expert for our special
I/0-package. We underestimated the work on the I/O package with
respect to the time-schedule, We do have a proto-type ready, which
will be releaaed for 0-test when the new LPI-PL/I Release for
APOLLO-UNIX Rel 10.1 becomes available.

For the future development we Intend to migrate to keyed-access I/O
using VSAM on the IBM. indexed-sequential files on the VAX. and
C-ISAM(tm) of INFORMIX for UNIX. Personally I will continue in the
SAA-PL/Mine.

Implementation15

CONCLUS10N

There is a PL/I Compiler available in the UNIX environraent, It covers
the subset G with extensions. This is a subaet of the OS-PL/I of IBM
and DEC/VAX PL/I. If one wants to use this Compiler, it has to be
studied firat, Trhether the ränge of the language is large enough. This
was the case in our application and we have a proto-type of our PL/I
module under a UNIX-operating-system.

Conclusion 16

