Interner Bericht DESY F1-79/01 Mai 1979

> Hadronische Zweikörper- und Quasi-Zweikörper-Endzustände im Zerfall der J/ ψ - und ψ '-Resonanzen sowie bei Schwerpunktsenergien zwischen 4,0 und 5,2 GeV

<

von

• •.

M. Schliwa

Eigentum der Property of	DECY	Bibliothek liorary
Zugang: Accessions:	4. OKT . 1 9	79
Leihfrist: Loan period:	7 To	a e ays

.

.

* *

·

-

Hadronische Zweikörper- und Quasi-Zweikörper-Endzustände im Zerfall der J/ψ- und ψ'-Resonanzen sowie bei Schwerpunktsenergien zwischen 4,0 und 5,2 GeV

> Dissertation zur Erlangung des Doktorgrades des Fachbereichs Physik der Universität Hamburg

Gutachter der Dissertation :	Prof. Dr. P. Schmüser
	Prof. Dr. P. Söding
Gutachter der Disputation :	Prof. Dr. P. Schmüser Prof. Dr. V. Blobel
Datum der Disputation :	30. April 1979

Prof. Dr. H.V. von Geramb Vorsitzender des Promotionsausschusses und Sprecher des Fachbereichs Physik

vorgelegt von Manfred Schliwa aus Itzehoe

> Hamburg 1979

Seite

I. <u>Einleitung</u>	4
II. Beschreibung des Experimentes	6
1. Der Doppelningspeicher DORIS	6
2. Das Doppelarmspektrometer DASP	7
2.1. Der Magnet	9
2.2. Der Innendetektor	10
2.3. Der Außendetektor	13
2.4. Experimentetrigger und -kontrolle	15
III. Datenreduktion	16
1. Reduktionsstufe I	17
2. Reduktionsstufe II	17
3. Datenmenge	20
IV. Ereignisauswahl	21
1. Verfahren	21
2. Berechnung von Verzweigungsverhältnissen	24
3. Auswahlkriterien	25
3.1. Wechselwirkungspunktsschnitt	26
3.2. Höhenstrahlungsschnitt	29
3.3. Spuren - Schnitte	29
3.4. Akzeptanz - Schnitte	31
3.5. Teilchenidentifikationsschnitte	33
3.6. Schauerenergie – Schnitte	38
3.7. Paar - Schnitte	43
V. Auswertung von u - Paaren	44
1. μ - Paare aus dem Zerfall der J/ ψ - Resonanz	44
2. µ - Paare aus dem Zerfall der ψ' - Resonanz	48
3. μ - Paarerzeugung im Energiebereich von 4,0 bis 5,2 GeV	50
VI. Auswertung der Daten im J/ ψ - Bereich	53
1. Endzustände mit 2 Pionen : = - X	53
2. Endzustände mit einem Pion und einem Kaon : π K X	62
3. Endzustände mit 2 Kaonen : K K X	67
4. Endzustände mit einem Meson und einem Nukleon : π p X, K p X	72
5. Endzustände mit einem Proton und einem Antiproton : p $\overline{\mathrm{p}}$ X	78

VII. Auswertung der Daten im ψ^* - Bereich	85
1. Endzustände mit 2 Pionen : ⊕ ⊕ X	85
2. Suche nachÜbergängen zwischen Charmonium - Zuständen	89
3. Endzustände mit 2 Kaonen : K K X	94
4. Endzustände mit Proton und Antiproton : p p X	97
5. Endzustände mit 2 Hadronen und einem Photon : h h X	100
6. Endzustände mit einem Pion und einem Kaon : - K X	103
7. Endzustände mit einem Meson und einem Nukleon : – p X und K p X	105
VIII. Auswertung der Daten im Energiebereich von 4,0 bis 5,7 GeV	105
1. Endzustände mit 2 Pionen : 🕤 🖘 X	107
2. Endzustände mit einem Pion und einem Kaon : - K X	110
3. Endzustände mit 2 Kaonen : K K X	113
4. Endzustände mit Proton und Antiproton : p \overline{p} X	113
5. Endzustände mit einem Meson und einem Nukleon : – p X und K p X	115
IX. Diskussion der Ergebnisse	116
1. Ergebnisse aus Zerfällen der J/ ϕ – und \downarrow^+ – Resonanzen	116
l.l. Quantenzahlen der J/u – und ↓° – Resonanzen	117
1.2. SU(3) - Klassifikation der J/ ι - Resonanz	121
1.3. Formfaktoren	123
1.3.1. Nukleon - Formfaktor	123
1.3.2. Pion - und Kaon - Formfaktor	123
1.4. Strahlungszerfälle der 🥲 - Resonanz	127
2. Ergebnisse aus den Nessungen im Energiebereich von 4.0 bis 5,2 GeV	132
2.1. Erzeugung von Mesonen mit Charm	132
2.2. Zerfall von Mesonen mit Charm	135
2.3. Der Cabibbo – Winkel	138
X. Zusammenfassung	140
XI. <u>Anhang</u>	142
A.1. Spurerkennung im Außendetektor	142
A.2. Spurerkennung in den Proportionalkammern des Innendetektors	144
A.3. Spurzusammenführung	145
A.4. Impulsbestimmung	146
A.5. Impulsauflösung	148
A.6. Massenbestimmung	154
A.7. Schauerenergiebestimmung	155

A.8. Akzeptanzbestimmung	155
A.9. Zerfallskorrektur	157
Literaturverzeichnis	160
Danksagung	165

Die Untersuchung der Elektron-Positron-Vernichtung bei Schwerpunktsenergien von mehr als 3 GeV hat in den letzten Jahren zu vielen neuen und wichtigen Entdekkungen geführt¹, die das Verständnis vom Aufbau der Materie und ihren Wechselwirkungen erheblich beeinflu3 und erweitert haben. Zu diesen Entdeckungen zählen die extrem schmalen Resonanzen J/ ψ (3.096) und ψ '(3.684), die Ende 1974 bei BNL² und SPEAR³ nachgewiesen wurden, der unerwartet hohe hadronische Wirkungsquerschnitt und dessen schwellenartiger Anstieg bei 4 GeV Schwerpunktsenergie⁴, der Nachweis eines neuen, schweren Leptons π^5 und in jüngster Zeit der Nachweis weiterer schmaler Resonanzen τ (9.46) und τ '(10.02) am e⁺e⁻-Speicherring DORIS bei DESY⁶, deren Existenz schon in einem Experiment am Fermilab nachgewiesen worden war⁷.

Die Untersuchungen der J/ ψ -Teilchenfamilie lieferten entscheidende Belege für das Quark-Modell, das bis 1974 kaum mehr als ein Ordnungsschema zur Klassifizierung von Hadronen war. Das Quark-Modell⁸ erklärt die Resonanzen J/ ψ und ψ' und den Anstieg im hadronischen Wirkungsquerschnitt bei 4 GeV mit der Existenz eines neuen, schweren Quarks – des "charm"-Quarks c – das zu den "alten" 3 Quarks u, d, s hinzukommt. Die Existenz des c-Quarks war schon vor der Entdekkung der J/ ψ - und ψ' -Resonanzen gefordert worden, um eine Symmetrie zwischen Leptonen und Quarks herzustellen⁹ und um die Abwesenheit von strangeness-ändernden neutralen schwachen Strömen zu erklären¹⁰.

Im Rahmen des Quark-Modells werden die J/,- und c'-Resonanzen als gebundene Zustände eines charm-anticharm cc-Systems interpretiert, wobei J/; der vektorielle Grundzustand und c' die erste Radial-Anregung ist¹¹. In Analogie zum Positronium nennt man diese Zustände "Charmonium"¹². Aus diesem Modell folgt die Existenz einer Reine weiterer cc-Bindungszustände, die durch Strahlungsübergänge aus den J/c- und c'-Resonanzen entstehen können. Der erste Nachweis eines solchen Zwischenzustandes gelang dem DASP-Experiment¹³ in der Zerfallskette $\psi' \to P_c$, $P_c \to \gamma J/$; Danach wurden am Speicherring SPEAR weitere Zustände^{14,55} und außerdem ihre hadronischen Zerfälle beobachtet¹⁵.

Der Anstieg des hadronischen Wirkungsquerschnittes in der e⁺e^{*}-Vernichtung oberhalb 4 GeV Schwerpunktsenergie läßt sich im Quark-Parton-Modell¹⁶ dadurch erklären, daß in diesem Bereich das virtuelle Photon nicht nur an qq-Paare "alter" Quarks, sondern zusätzlich auch an cc-Paare koppelt:

Durch Anlagerung eines weiteren Quark-Paares q \overline{q} entstehen Mesonen mit "offenem" Charm (D, F-Mesonen), die aus je einem c- und einem u-, d-, oder s-Quark bestehen. Wegen der Erhaltung der Charm-Quantenzahl bei starken und elektromagnetischen Wechselwirkungen können diese nur über die schwache Wechselwirkung zerfallen; sie haben daher eine kleine Zerfallsbreite. Der Nachweis dieser schmalen Mesonen gelang an den Speicherringen SPEAR¹⁷ und DORIS¹⁸ und war ein Erfolg des Charm-Quark-Modells.

Da sowohl die J/ ψ - als auch die ψ '-Masse unterhalb der Schwelle für die Erzeugung von Mesonen mit Charm liegen, können sie nicht in diese zerfallen. Alle anderen hadronischen Zerfälle sind aber nach der OZI-Regel¹⁹ unterdrückt. Nach dieser empirischen Regel sind alle Zerfälle in Endzustände unterdrückt, die keine Beimischung von Quarks des Anfangszustandes haben. Dies führt zu der relativ langen Lebensdauer von J/ ψ und ψ '.

In dieser Arbeit werden alle Endzustände mit mindestens 2 geladenen Hadronen betrachtet, die in den Außenarmen des Doppelarm-Spektrometers DASP²⁰ am Speicherring DORIS bei DESY in 3 verschiedenen Energiebereichen nachgewiesen werden. Negen der kleinen Akzeptanz des DASP-Außendetektors kann man praktisch außer Hadron-Paaren nur noch Endzustände mit drei Hadronen auswerten, wobei das dritte Hadron über die fehlende Masse gegen die Gesamtmasse des e⁺e⁻-Systems identifiziert werden muß.

Im Bereich der Resonanzen J/ \ddagger und \Downarrow ' lassen sich damit Aussagen über die Formfaktoren bei verschiedenen Energien, über den Isospin und die SU(3)-Eigenschaften der Resonanzen machen. Die Formfaktoren gewinnt man aus den Verzweigungsverhältnissen der Resonanzen in Hadron- und Müon-Paare und die Isospin-Zuordnung aus dem Vergleich von hadronischen Endzuständen, die sich nur durch ihre Ladungszuordnungen unterscheiden. Unter der Annahme, daß J/ ψ und \ddagger ' gebundene cc-Quark-Zustände sind, sollten sie sich bezüglich der SU(3)-Klassifikation wie Singuletts verhalten. Das läßt sich z. B. durch Vergleich der Zerfälle in Vektor- und pseudoskalare Teilchen prüfen. Bei der Analyse von \sharp '-Zerfällen besteht die Möglichkeit, den Zerfall von Zwischenzuständen in zwei Hadronen zu beobachten. Im Schwerpunktsenergiebereich von 4,0 bis 5,2 GeV, in dem ebenfalls Messungen durchgeführt wurden, kann man Mesonen mit Charm durch ihren nichtleptonischen Zerfall z.B. D⁰ $\rightarrow K^{-} \pi^{+}$ nachweisen und durch die Unterdrückung des Zerfalls D⁰ $\rightarrow \pi^{-} \pi^{+}$ eine Messung des Cabibbo-Winkels versuchen.

Die für die Analyse verwendeten Daten wurden in mehreren Meßperioden in den Jahren 1975 bis 1977 genommen. Ergebnisse aus einem Teil der Daten sind bereits früher in Dissertationen behandelt worden²¹⁻²⁸.

II. Beschreibung des Experimentes

II.1. Der Doppelringspeicher DORIS

Abbildung 1 zeigt das System der Teilchenbeschleuniger von DESY vor dem Ausbau mit PETRA.

ABB. 1 BESCHLEUNIGER- UND SPEICHERRINGANLAGEN BEI DESY

Der Doppelringspeicher DORIS besteht aus zwei unabhängigen, übereinander angeordneten Ringen, in denen Elektronen und Positronen in entgegengesetzten Richtungen umlaufen und sich in zwei Wechselwirkungspunkten unter einem Winkel von 24 mrad vertikal kreuzen.

Die Füllung des Ringes geschieht über die Linearbeschleuniger I und II und das Synchrotron, in dem Elektronen und Positronen beschleunigt und dann in den Doppelring eingeschossen werden. In den DORIS-Ringen sind die umlaufenden Teilchen zu Paketen ("bunches") gebündelt. Maximal 480 Pakete von je etwa 3 cm Länge können gespeichert werden³⁰; in den hier beschriebenen Messungen wurden meistens 120 Pakete gespeichert. Nach einer Füllzeit von mindestens 5 Minuten Dauer beträgt der gespeicherte Strom etwa 200 mA und sinkt in 4 bis 6 Stunden auf etwa 100 mA ab. Dabei ist die Lebensdauer der Strahlen vom Restgasdruck in den Strahlrohren abhängig, der zwischen 1 und 5 x 10^{-9} Torr betrug.

Ein Maß für die Zahl der Zusammenstöße von Elektronen und Positronen pro Zeiteinheit ist die Luminosität L. Für eine Reaktion mit dem Wirkungsquerschnitt α ist die Ereignisrate dN/dt gegeben durch dN/dt = Lr. Die Luminosität ist umgekehrtproportional dem Produkt aus der Querschnittsfläche der Strahlen (F), der Umlauffrequenz (f) und der Zahl der Pakete (B) und proportional den Stromstärken der Strahlen (I): L $\sim \frac{1^2}{BbF}$. Sie erreichte im Jahr 1977 nach Optimierung der Optik etwa L = 3 × 10³⁰ cm⁻² s⁻¹ für eine Strahlenergie von 2,5 GeV. Unter Berücksichtigung der Füllzeiten, Ausfälle und Verluste durch Totzeiten des Spektrometers führte dies zu einer mittleren integrierten Luminosität von 50 bis 100 nb⁻¹/Tag.

II.2. Das Doppelarmspektrometer DASP

Das Doppelarmspektrometer DASP³¹ ist seit Ende 1974 in der nördlichen Wechselwirkungszone von DORIS aufgebaut (unteres W in Abb. 1). Es wurde von Angehörigen der RWTH Aachen, des DESY, der Universität Hamburg, des MPI München und der Universität Tokyo gebaut und betrieben²⁰.

Abb. 2 zeigt eine Generalansicht des Doppelarmspektrometers. Man erkennt die symmetrische Anordnung in zwei Armen - den Außendetektor - und den herausgezogenen Innendetektor, der das Strahlrohr (SR) umschließt.

- 8 -

Der Innendetektor erfaßt etwa 70 % des vollen Raumwinkels und besteht aus Szintillationszählerhodoskopen mit Proportionalrohrkammern und Vieldrahtproportionalkammern, mit denen man die Richtungen von geladenen und ungeladenen Spuren messen kann. Elektronen und Photonen werden durch den Nachweis ihrer Schauerbildung identifiziert.

Ein geladenes Teilchen, das im Außendetektor nachgewiesen wird, durchläuft einen horizontal ablenkenden Dipolmagneten (M), Proportional- und Funkenkammern (DK), Flugzeitzähler (F), Schauerzähler (S) und ein Müon zusätzlich Eisenplatten (Fe) und Reichweitezähler (R).

In den nächsten Abschnitten folgt eine genauere Beschreibung der Detektorkomponenten mit ihrer physikalischen Verwendung. Dabei wird folgendes Koordinatensystem verwendet:

"HALLE" und "TOR" kennzeichnen die in x-Richtung angeordneten Außendetektorarme.

II.2.1. Der Magnet

Der DASP-Magnet³² besteht aus zwei identischen H-Magneten mit normalleitenden Spulen. Die geometrische Akzeptanz der Magnetöffnungen beträgt für den Azimutalwinkel $\ddagger \approx \pm 10^{\circ}$ und für den Polarwinkel $\varTheta \approx 48^{\circ} - 132^{\circ}$. Die beiden Magnete sind oben und unter durch Flußbrücken miteinander verbunden und lassen sich auf Schienen zusammen mit den Außenarmen auseinanderziehen. Spiegelplatten an den Ein- und Austrittsöffnungen bewirken, daß das Magnetfeld am Rand schnell abfällt. Durch gegensätzliche Polung erreicht man, daß das Feld entlang der Strahlachse verschwindet und die Elektron- und Positronstrahlung nicht beeinflußt werden.

Das Magnetfeld wurde in einem Raster von 5 x 5 x 5 cm 3 , d. h. in ca. 65 000 Raumpunkten mit einer 3-Komponenten-Hallsonde vermessen. Da die Felder für

Halle- und Torarm, aber auch für Feldpunkte, die symmetrisch zur x-Achse liegen, bis auf ±1 Gauß übereinstimmten, wurde nur ein Viertel eines gemessenen Magnetfeldes abgespeichert und für die Impulsbestimmung verwendet. Abb. 3a, b und c zeigen die 3 Feldkomponenten B_x, B_y und B_z des 500 A- und 1000 A-Magnetfeldes längs einer Achse bei y = 20 und z = 50 cm. Das Feld wurde bei maximaler Felderregung (1480 A und 2,5 MW) und bei einer Stromstärke von 300 A vermessen. Die integrierten magnetischen Feldstärken längs der x-Achse betragen 18,54 - .02 bzw. 4.044 ±.005 kGm, die Feldsättigungen 7 bzw. 0 %. Bei den J/0- und 0'-Daten wurde überwiegend ein Magnetfeld mit 1000 A Strom erzeugt, die integrierte Feldstärke für dieses Feld beträgt 13,27 ±.04 kGm, die Sättigung etwa 1,5 \approx^{33} .

Um die Vielfachstreuung in der Luft zwischen Innen- und Außendetektor zu verringern, wurden die Magnetspalten mit Helium-Säcken ausgefüllt. Die Impulsauflösung verbesserte sich durch diese Maßnahme um etwa 0,1 bis 0,2 °.

II.2.2. Der Innendetektor

Im feldfreien Raum zwischen den Magneten und den Flußbrücken befindet sich der Innendetektor, Abb. 4 zeigt einen vertikalen Schnitt durch den Detektor. Das Strahlrohr ist von 22 Szintillationszählern umgeben, von denen 20 oberhalb und unterhalb des Strahlrohres und 2 in Richtung des Außendetektors liegen (Bezeichnung: OS). Dieses Strahlrohr-Hodoskop dient zur Unterscheidung von geladenen und neutralen Teilchen und ist Teil des Triggersystems.

Die geometrische Anordnung des Innendetektors legt eine azimutale Einteilung im Oktanten nahe. Die Oktanten I und V überdecken die Außendetektorakzeptanz und unterscheiden sich im Aufbau von den übrigen 6 Oktanten. In ihnen wird die Bahn geladener Teilchen vor dem Magneten durch zwei Proportionalkammern (P1, P2) und eine Funkenkammer (P3) gemessen. Die Proportionalkammern bestehen aus 3 Signaldrahtebenen, deren Drähte im Abstand von 2 mm gespannt sind. Die Richtungen der Drähte bilden Winkel von 0, 90 und $78,2^{\circ}$ gegen die y-Achse. Die Drahtfunkenkammer (P3) besteht aus 2 Ebenen in 1 cm Abstand, die Drähte sind im Abstand von 1 mm unter 0° und $6,83^{\circ}$ zur Senkrechten ausgerichtet. Die Winkelauflösung dieser 3 Kammern beträgt ca. 5 mrad.

Weiterhin enthalten diese Oktanten je einen Gas-Cerenkovzähler 34 mit einem Brechungsindex von n = 1,0014, der als Schwellenzähler betrieben wird. Die

ABB. 4 SENKRECHTER SCHNITT DURCH DEN DASP ~ INNENDETEKTOR

Impuls schwelle für Elektronen beträgt 8 MeV/c, für Müonen 2 GeV/c und für Pionen 2,65 GeV/c.

Vor den Proportionalkammern befinden sich noch Szintillationszähler (OSS) mit 3 Fotovervielfachern, die als Startzähler für die Flugzeitmessung dienen. Hinter den Cerenkovzählern befinden sich weitere Zähler (OSM), die für die Definition eines Ereignistriggers verwendet werden (s. u.). Die Oktanten II, IV, VI und VIII (Seitenteile) und die Oktanten III und VII ("Oben-Unten"-Teile) bestehen jeweils aus 4 gleichartig aufgebauten Moduln³⁵. Auf 1 cm breite Szintillationszähler folgt eine 0,5 cm dicke Bleilage und danach 3 Ebenen von Proportionalrohrkammern, deren Ebenen um 30° bzw. 60° gegeneinander gedreht sind. Hinter diesen 4 Moduln befindet sich ein Blei-Szintillator-Schauerzähler mit 35 mm Blei. Insgesamt befinden sich etwa 11 Strahlungslängen Blei in einem Oktanten. Photonen konvertieren in den Bleilagen der Moduln; ihre Schauer lassen sich in den Proportionalrohrkammern verfolgen. Die Genauigkeit der Richtungsbestimmung für Photonen wurde mit QED-Ereignissen des Typs $e^+e^- \rightarrow \gamma\gamma$ zu $\Delta\theta$ = 16 mrad, $\Delta\varphi$ = 28 mrad für die Seitenteile und $\Delta\theta$ = 45 mrad, $\Delta\varphi$ = 26 mrad für die Oben-Unten-Teile bestimmt⁵⁷. Die Energie von Photonen ergibt sich aus der Summe aller in den Zählern gemessenen Pulshöhen. Die Energieauflösung beträgt $\Delta E/E = 0.16/\sqrt{E}$ für die Seitenteile und $\Delta E/E = 0.18/\sqrt{E}$ (E in GeV) für die Oben-Unten Teile⁵⁸.

Elektronen lassen sich von Photonen dadurch unterscheiden, daß bei ihnen die Ringzähler (OS) und die erste Zählerlage in den Zähler-Blei-Rohrkammer-Systemen ansprechen. Nichtschauernde Teilchen (Hadronen, Müonen) lassen sich anhand der geringen Zahl von gesetzten Proportionalrohren erkennen²¹; ihre Winkelauflösung beträgt etwa 20 mrad.

Im Bereich des Innendetektors befindet sich der Luminositätsmonitor³⁶, der parallel zum eigentlichen Experiment Bhabha-Streuung unter Winkeln von 6-10⁰ mißt. Bei diesen kleinen Winkeln besitzt die Bhabha-Streuung einen großen Wirkungsquerschnitt, so daß sich hohe Zählraten ergeben. Mit dem aus der QED bekannten Wirkungsquerschnitt ergibt sich die Luminosität aus : L = $dN/dt/c(e^+e^- \rightarrow e^+e^-)$

II.2.3. Der Außendetektor

Der DASP-Außendetektor gestattet in einem kleinen Raumwinkel eine hohe Impulsauflösung und eine gute Teilchentrennung für geladene Teilchen.

Abb. 5 zeigt eine Aufsicht des gesamten DASP-Detektors, in der die Komponenten des Außendetektors gut zu erkennen sind. Hinter den Magneten befinden sich 5 magnetostriktive Funkenkammern²², die die Spuren von geladenen Teilchen messen. Jede Kammer besteht aus 2 Ebenen (empfindliche Fläche 5,6 x 1,65 m²) in einem Abstand von 1 cm; der Drahtabstand beträgt 1 mm. Die Drähte sind unter 0⁰ und $6,98^{\circ}$ zur Senkrechten gespannt. Die Ortsauflösung in einer Ebene beträgt ca. 0.4 mm.

Hinter den Funkenkammern steht ein Flugzeitzählerhodoskop aus 31 Szintillationszählern (gesamte Fläche: 6,20 x 1,72 m²). Jeder Zähler ist an beiden Enden mit je einem Fotovervielfacher bestückt. Damit kann die Flugzeit von Teilchen zwischen OSS- und Flugzeitzählern mit einer Auflösung von $\sigma(t) \approx 0,3$ ns bestimmt werden³⁷.

Die auf die Flugzeitzähler folgende Schauerzähleranordnung (gesamte Fläche: 1,86 x 0,6 m²) dient zur Unterscheidung zwischen Elektronen und Hadronen. Sie besteht aus 11 einzelnen Zählern, die in Blei-Szintillator-Lagen-Bauweise ausgeführt und 6,2 Strahlungslängen dick sind. Jeder Zähler ist mit 2 Fotovervielfachern an beiden Enden ausgerüstet. Eine bessere Elektronenidentifikation insgesondere für kleine Teilchenimpulse – erhält man mit den Čerenkovzählern vor den Magnetöffnungen.

Müonen lassen sich mit Hilfe des anschließenden Reichweitedetektors identifizieren³⁸. Er besteht aus Eisenplatten mit einer Gesamtdicke von 60 cm, die die Hadronen absorbieren. Dahinter stehen 9 Szintillationszähler (gesamte Fläche: 7,8 x 2,6 m²), mit je einem Fotovervielfacher, in denen Müonen mit Impulsen von mehr als 900 MeV/c nachgewiesen werden. Pionen durchdringen mit kleiner Wahrscheinlichkeit die Eisenwand. Nach Ref. 39 beträgt sie für Pionen mit 1,5 GeV/c Impuls 6,4 % (bei senkrechtem Auftreffen).

II.2.4. Experimentetrigger und -kontrolle

Um während der Datennahme möglichst viele verschiedene Ereignistypen erfassen zu können, sind beim Doppelarmspektrometer mehrere gleichberechtigte Trigger aufgebaut. Für das Thema der vorliegenden Arbeit sind jedoch nur die Außentrigger²² von Bedeutung. Eine Beschreibung des Innendetektortriggers findet man in Ref.21.

Für den Außendetektor existieren 2 Trigger: der Inklusiv- und der Paartrigger. Ein Inklusivtrigger ist definiert durch die Koinzidenz von mindestens einem Flugzeit- und Schauerzähler F*S in einem Außenarm (H, T) mit den zum gleichen Arm gehörenden Innendetektorzählern OS * OSS * OSM :

$$T_{H,T}^{\text{incl}} = (OS * OSS * OSM * \sum F * \sum S)_{H,T}$$

In diese Koinzidenz geht außerdem ein Veto für die Totzeit des Außendetektors ein.

Der Paartrigger wird zusätzlich bei gleichzeitigem Ansprechen des Hallen- und Tor-Inklusivtriggers gesetzt. Typische Zählraten im Bereich der J/ ψ -Resonanz waren ~1 Hz für den Inklusiv- und 0,02 Hz für den Paartrigger. Pro Meßlauf wurden in etwa einstündiger Dauer 10 000 Trigger verschiedener Ereignisklassen registriert, darunter etwa 25 Paar- und 1000 Inklusivtrigger.

Sind die Bedingungen für einen Trigger erfüllt, wird ein Signal an eine Elektronikkontrolleinheit gegeben, die die weitere Datennahme stoppt und die Einlese der verschiedenen Daten in den Kleinrechner veranlaßt²². Die Zählerstände (z.B. vom Luminositätsmonitor) werden über einen CAMAC-Branch-Highway, die Register, ADC- und TDC-Werte über einen CAMAC-Scanner und die Proportional- und Funkenkammerdaten über spezielle Interfaces übertragen.

Der Kleinrechner - eine PDP11/45 - kontrolliert den gesamten Meßablauf, stellt die Daten zu festen Formaten ("Ereignisrecords") zusammen und überträgt sie an den Großrechner des DESY-Rechenzentrums (IBM 370/168). Dort werden die Daten zunächst auf eine Magnetplatte geschrieben und später, wenn der Plattendatensatz etwa zur Hälfte gefüllt ist, auf ein Magnetband übertragen ("Dump").

Über einen zweiten Kleinrechner - eine PDP 11/40 - hat man Zugriff zu den auf der Magnetplatte stehenden Ereignissen und kann eine Teilauswertung der Daten durchführen. Auf diese Weise erhält man schnelle Informationen über Wirkungsquerschnitte und Luminositäten und kann die Effizienz von einzelnen Detektorkomponenten über bildliche Darstellungen von Einzelereignissen verfolgen. Außerdem dient dieser Rechner der Detektorüberwachung, indem er Hochspannungen kontrolliert und z. B. die Ergebnisse von Testläufen ausgibt.

III. Datenreduktion

Insgesamt wurden ca. 46 Millionen Innen-, Inklusiv- und Paartrigger genommen und an den IBM-Rechner übertragen. Nur ein Bruchteil davon stammt aus e^+e^- -Stößen. Der weitaus größte Teil wurde durch Strahl-Gas-Reaktionen bzw. durch Höhenstrahlung ausgelöst.

- 16 -

Dieser Abschnitt beschreibt die Abtrennung der e⁺e⁻-Ereignisse, bei denen der Paar- oder Inklusiv-Trigger gesetzt war.

III.1. Reduktionsstufe I

In einer ersten Reduktion werden Ereignisse verworfen, die nicht weiter auswertbar sind.

Das sind bei Außendetektor-Ereignissen solche, bei denen keine Spur in den Funkenkammern des Außendetektors gefunden wird. Von dieser Bedingung sind Ereignisse, bei denen der Paartrigger gesetzt ist, ausgenommen. Alle Paartrigger-Ereignisse werden bedingungslos in die Menge der reduzierten Daten aufgenommen, das gilt auch für die Reduktionsstufe II. Die Begründung für diese Ausnahme liegt darin, daß es einerseits verhältnismäßig wenig Paar-Ereignisse gibt, andererseits man diese Ereignisse zur Beurteilung der Ansprechwahrscheinlichkeit von Detektorkomponenten oder Auswertungsprogrammen benutzen kann.

Eine Aubenspur wird gefunden, wenn in den 5 Funkenkammern des Aubendetektors wenigstens 3 Funken in der (x,y)- und der (x,z)-Projektion gefunden werden und die mittleren absoluten Abweichungen der Funken von einer angepaßten Geraden weniger als 0,18 cm in der z-Projektion bzw. 3,3 cm in der y-Projektion betragen. Weitere Einzelheiten der Außendetektorspursuche werde im Anhangskapitel XI.A.1. beschrieben.

Inklusiv-Trigger-Ereignisse werden in dieser Stufe um etwa 20 , Innendetektor-Trigger-Ereignisse um etwa 50 - 70 $^\circ$ (siehe Ref. 109) reduziert.Insgesamt verbleiben nach der ersten Reduktion noch fast 16 Millionen Ereignisse, davon sind etwa 1 – Paar-, 30 – Inklusiv- und der Rest Innendetektor-Trigger Ereignisse.

III.2. Reduktionsstufe II

In dieser Stufe werden nur Außendetektor-Trigger-Ereignisse weiter reduziert. Zusätzlich zu Paar-Trigger-Ereignissen werden nur solche Ereignisse akzeptiert, für die mindestens eine Innendetektorspur in den Proportionalkammern gefunden wird. Diese Spur muß zu einer der gefundenen Außendetektorspuren passen. Außerdem wird für mindestens eine dieser Spuren verlangt, daß die Impulsbestimmung erfolgreich abgeschlossen wurde ("vollständige Außenspur"). Die Ursachen für die Verluste in dieser Stufe sind folgende:

- Etwa 70 ⁻ der Daten aus der vorangegangenen Reduktionsstufe sind reine Innendetektor-Trigger-Ereignisse, die hier nicht weiter ausgewertet werden.
- In etwa 40 45 der Inklusiv-Trigger-Ereignisse wird keine Innenspur gefunden.
- Bei ca. 45 der Ereignisse paßt die gefundene Innenspur nicht zu einer der Außenspuren.
- Sei ca. 2 ' scheitert die Impulsbestimmung.

Die Reduktion bei In-lusiv-Trigger-Ereignissen beträgt also menn als 20. Die Ursache für diese hohe Reduktionsnate liegt darin, daß viele Inklusiv-Trigger eine Koinzidenz von einer Strahl-Gas-Reaktion im Innendetektor und von Köhenstrahlung im Außendetektor sind. Nach der Reduktion verbleiben ungefähr 730 000 Ereignisse.

Bedingung für eine erfolgreiche Spursuche im Innendetektor ist im allgemeinen, da. in jeder Projektion der Proportionalkammern eine Spur aus je 2 Funken gefunden wird, die zu einer räumlichen Spur kombinient werden kann. Wenn diese Forderungen nicht erfüllt werden, wird versucht, eine Spur aus mindestens 6 Funken zu rekonstruieren. Bedingung für die Zusammenführung von Außen- und Innenspur ist, daß die Differenz der z-Werte der bis zur Magnetmitte verlängerten Spurstücke weniger als 21 cm beträgt. Die Impulsbestimmung erfolgt dadurch, daß die Bann des Teilchens vom Außendetektor in den Innendetektor verfolgt und iterativ der Impuls solange verändert wird, bis die rückverfolgte Bahn der gemessenen Innenspur möglichst nahekommt. Die mit diesem Verfahren erreichten Impulsauflösungen zeigt Abb. 6 für p-Paare in den 3 Energiebereichen, die in dieser Arbeit betrachtet werden. Eine genauere Beschreibung der Innendetektorspursuche, der Spurzusammenführung und der Impulsbestimmung mit einer Diskussion der Impulsauflösung erfolgt im Anhang in den Abschnitten A.2. bis A.5..

Die Ergebnisse der Spursuche und der Impulsbestimmung werden den übrigen Daten der "überlebenden" Ereignisse hinzugefügt, die Rohdaten der Funkenkammern und der Zänler-Innalte werden gelöscht. Außerdem werden weitere Informationen zur Identifizierung der Teilchen im Außendetektor wie Pulshöhen von Szintillations- und Gerenkovzählern, die Flugzeit der Teilchen $\beta = v/c$, die zu den Spuren gehörende Schauerenergie und die Zahl der angesprochenen Reichweitezähler ermittelt. Die

Massen- und Schauerenergiebestimmung wird im Anhang in den Abschnitten A.6. und A.7. beschrieben.

III.3. Datenmenge

Aus der Datenmenge der Reduktionsstufe II ("TP-Bänder") werden für die weitere Analyse in dieser Arbeit Ereignisse aufgrund folgender Kriterien herausgezogen:

- Nur Ereignisse aus Meßläufen, bei denen keine Außendetektorkomponenten defekt waren (>96 % aller Meßläufe).
- 2. Alle Ereignisse, bei denen der Inklusiv-Trigger gesetzt ist, die zwei Spuren im Außendetektor besitzen und bei denen die zu den Spuren gehörenden Flugzeitzähler angesprochen haben.
- 3. Alle Ereignisse mit gesetztem Paar-Trigger.

Mit diesen Bedingungen erhält man 150 717 Ereignisse.

Ein spezieller Datensatz enthält die zu jedem guten Meßlauf gehörende integrierte Luminosität. Abb. 7 zeigt die Verteilung der integrierten Luminosität in Abhängigkeit von der Schwerpunktsenergie für die hier ausgewerteten Daten.

- 20 -

Tabelle I gibt an, innerhalb welcher Strahlenergien Daten ausgewertet werden, wie sich die verschiedenen Magnetfeldströme auf diese Daten verteilen und wie hoch der Anteil an Ereignissen ist, bei denen die Gerenkovzähler im Detektor eingebaut waren.

Bereich	Strahl- energie	Ereig- nisse	integrierte Luminosität	A 006	Ant Son A	eile () 1000 A	Ceren+ov-
	(Ge¥)		no		300	1000 11	zanler
J/.	1,543-1,547	44865	710,0	13,5	31,1	55,4	31,1
3,6 GeV	1,79 -1,82	5785	590,2	77,8	22,2	0	100,0
	1,838-1,844	34620	1589,4	3,5	3,7	92,8	86,2
4,0-5,2 GeV	1,99 -2,6	65447	7541,3	76,9	23,1	0	100,0
		1					

Tabelle I Datenmenge

Die verschiedenen Anteile wurden mit Hilfe der π -Paare in den einzelnen Energiebereichen ermittelt (s. Kapitel V).

IV. Ereignisauswahl

IV.1. Verfahren

In dieser Arbeit werden Endzustände mit mindestens zwei geladenen Hadronen h^{-} (= $-^{+}$, K^{-} , p, p) untersucht, also Reaktionen der Art:

(1) $e^+e^- - h^+h^- X$,

oder im Falle der Resonanzanregung:

(2) $e^+e^- - J/... t' - n^+n^- X_-$

Die beiden Hadronen können im gleichen Arm oder in verschiedenen Außenarmen des Doppelarmspektrometers nachgewiesen werden.

An den neutralen Endzustand X werden grundsätzlich keine weiteren Forderungen gestellt. Existiert außer den beiden Hadronen kein weiteres Teilchen, geben die Reaktionen (1) und (2) die Erzeugung von Hadronpaaren an, die schon mit einer kleineren Datenmenge in der Arbeit von Ref. 22 behandelt wurde. Resonanzen lassen sich entweder direkt im Massenspektrum der beiden Hadronen m_{h+h-} oder im Massenspektrum von X oder durch Kombination eines Hadrons of mit einem fehlenden Teilcher Chachweisen. Letzteres ist allerdings nur möglich für fehlende Teilcher mit Heinen Massen wie ... ^O oder K⁰, bei duren der Untergrund aus Zerfallskanälen mit vier oder mehr Teilchen gering ist.

Endzustände mit 2 oder 3 Teilonen lassen sich gut erkennen, wenn man das Quadrat der fehlenden Masse my gegen die invariante Masse m_{h+h-} aufträgt ("Massenkorrelation"). Dies wird für alle Kombinationen von je 2 Hadronen (* , rK, KK, +p, Kp und pp) in den 3 Energiebereichen durchgeführt.

Die Massenkorrelation set an folgender Skizze dargestellt:

- (1) Direkt erzeugte Hadronpaare: $m_{h^+h^-} = m_{e^+e^-}$, die fehlende Masse muß Null, die Impulse müssen gleich und die Winkel kollinear sein.
- (2) Bereich für reinen 3-Körperzerfall $e^+e^- \rightarrow h^+h^- X^0$ oder für den Fall, daß ein Hadron mit X^0 eine Resonanz bildet. Bei der Projektion auf die m_X^2 -Achse entsteht eine Spitze.

In einem Quasi-Zweikörperzerfall $e^+e^- \rightarrow X^1Q$ ist der Bereich (3) wieder durch eine Spitze in der Projektion auf die m²_v-Achse gekennzeichnet.

Zur Unterdrückung von Untergrundreaktionen beim Nachweis von 3-Teilchen-Endzuständen wird zweierlei unternommen:

- 1. Da der Anfangszustand durch die Optik und Energie des Speicherringes festgelegt ist und zwei der drei Vierervektoren durch die Messungen im Außendetektor vollständig bestimmt sind, ist bei Annahme der Masse des 3. Teilchen (χ^0) die Kinematik einfach überbestimmt und eine Anpassungsrechnung (1-C Fit) auf die Reaktion e⁺e⁻ - h⁺h⁻ χ^0 möglich⁴⁰. Verworfen werden Ereignisse, deren π^0 für diese Reaktion größer als 3,8 (in einigen Fällen 4,7) ist. Diese Grenzen entsprechen χ^2 -Wahrscheinlichkeiten von 5 (bzw. 3 %.
- 2. Besitzt eine Untergrundreaktion ebenfalls eine fehlende Masse, die der Masse von X⁰ entspricht, ergibt sich auch für dieses Ereignis eine Anpassung mit hoher χ^2 -Wahrscheinlichkeit. Solche Ereignisse lassen sich jedoch durch eine Sichtprüfung eliminieren. Dabei wird der Innen- und Außendetektor in mehreren Projektionen mit allen Detektorkomponenten dargestellt und nach Spuren besonders im Innendetektor gesucht, die nicht bei der betrachteten Reaktion entstehen können, z. B. wenn außer den beiden Hadronen h⁺ und h⁻ noch weitere geladene Teilchen vorhanden sind, das fehlende Teilchen aber ein :⁰ sein soll, das nur in 2 Photonen zerfällt. Der Untergrund, der bei dieser Methode nicht erkannt wird - etwa weil die für die Untergrundreaktion signifikanten Teilchen außerhalb der Akzeptanz des Innendetektors liegen - wird anhand der Ereignisse, die schon die Anpassung verworfen hat, abgeschätzt.

Um die Bildung eines Resonanzzustandes in einem 3-Körperzerfall zu zeigen, kann man sich von den 3 möglichen Kombinationen zu je 2 Teilchen auf zwei beschränken: erstens auf h⁺h⁻ und zweitens auf diejenige Kombination h⁺x⁰ oder h⁻x⁰, die die

kleinere invariante Masse besitzt. Trägt man dann m_{h'XO} gegen m_{h+h-} auf, läßt sich entscheiden, ob ein Quasi-Zweikörper- oder ein reiner 3-Körperzerfall vorliegt.

IV.2. Berechnung von Verzweigungsverhältnissen

Physikalisch interessant ist die Frage, welcher Bruchteil von allen J/u- oder ψ '-Zerfällen über einen bestimmten Zerfallskanal abläuft. Das Verzweigungsverhältnis bei den Resonanzen J/ ψ und ψ ' ist das Verhältnis der Zerfallsbreiten (ψ stehe für J/ ψ oder ψ '):

$$\frac{\Gamma(\psi \rightarrow h^{\dagger}h^{T}X^{O})}{\Gamma(\psi \rightarrow alles)} =$$

Zahl der beobachteten Ereignisse h⁺ h⁻ X⁰ (Zahl der u-Teilchen) (Nachweiswahrscheinlichkeit für h⁺ h⁻ X⁰)

Die Zahl der erzeugten ψ -Teilchen erhält man aus dem Verzweigungsverhältnis und der Zahl der beobachteten Ereignisse eines bekannten Zerfallkanals. Beim DASP-Detektor bietet sich wegen der klaren Signatur und der hohen Statistik der Zerfall in $\mathbb{L}^+\mathbb{L}^-$ -Paare an.

Ein besonderer Vorteil für diese Art der Normierung besteht darin, daß die Korrekturfaktoren für Schnitte entfallen, die sowohl bei der Auswahl von Hadronals auch bei der von L-Paaren gemacht werden, da sie sich bei der Berechnung des Verzweigungsverhältnisses wegkürzen.

Zusätzlich entfallen Korrekturen für den Anfangszustand (durch Abstrahlung von Photonen, durch Unsicherheiten der Strahlenergiemessung), aber auch einige Korrekturen für die analysierten Endzustände, etwa für:

- Triggerverluste durch Ausfall einzelner Zähler, die den Trigger definieren
- Spurverluste durch Nichtansprechen von Proportional- und Funkenkammern
- Verluste durch Spursuch- und Impulsbestimmungsprogramme, insbesondere wenn "falsche" Funken verwendet werden
- Systematische Fehler bei der Ermittlung der Nachuciswahrscheinlichkeit

Die Nachweiswahrscheinlichkeit für den Endzustand h $^+h^-X$ berechnet sich aus der Akzeptanz c für die beiden Hadronen im Außendetektor und dem Korrekturfaktor

 $\gamma_{h^+h^-\chi},$ der die Verluste durch Schnitte berücksichtigt, die bei den z-Paaren nicht gemacht werden.

Die Berechnung der Akzeptanz eines Zenfallskanals enfolgt durch ein Monte-Carlo-Programm, das unter Berücksichtigung der Winkelverteilung des Zenfalls beide Hadronen bis zum akzeptanzdefinierenden Zähler im Außendetektor verfelgt (s. Kap. XI. A.S.). Dauit ergibt sich das Verzweigungsverhältnis dus:

$\frac{f(t_{1} - h^{\dagger}h^{\dagger}X)}{f(t_{2} - alles)}$	=	Zahl den Zahl den	n beob. Ereig n beob'µ'-E	beob. Ereign. h ⁺ n ⁻ X beob <mark>+</mark> u ⁻ -Ereignisse				
			-(_:) -(n ⁺ h ⁻ X)	"(. +) "(. – alles)				

Wenn eine nachgewiesene Resonanz in mehrere Ladungszustände zerfallen Fann, wie z. B. $K^{*-} = K^{-,0}$ oder K^{0--} , werden die nicht beobachteten Kanäle mittels Isospin berücksichtigt.

Ein systematischer Fehler entsteht bei der Ermittlung der Akzeptanz und der Korrekturfaktoren -. Er beträgt 10 bis 20 und ist in den Fehlerangaben zu den Verzweigungsverhältnissen nicht enthalten.

Im folgenden werden die Auswahlkriterien gemeinsam für U-Paar- und Hadronen-Ereignisse beschrieben.

IV.3. Auswahlkriterien

u-Paare lassen sich aufgrund eines angesprochenen Reichweitezählers und des Nachweises von 2 entgegengesetzt geladenen Spuren in beiden Spektrometerarmen eindeutig identifizieren. Da Hadronen auf Grund der starken Wechselwirkung schon im Eisen vor den Reichweitezählern verlorengehen, andererseits Müonen ohne die Informationen aus den Flugzeit- und Schauerzählern erkannt werden, sind die Schnitte zur Identifikation von Hadronen unabhängig von den Auswahlkriterien für u-Paare. Man kann daher mit den u-Paaren die Wirkung von einigen der im folgenden beschriebenen Schnitte beurteilen.

IV.3.1. Wechselwirkungspunkts-Schnitt

Diesen Schnitt ist für E-Paare nicht notwendig,unterdrückt aber Strahl-Gas-Ereignisse, bei demen 2 Dionen in dem Au endetektor gelangen.

Abb. 3 zeigt fün -Paare den Mittelwert y₀ der y₀-Werte gegen die Abweichung der z₁-Werte von Mittelwert z_n des Weunselwinkungspunktes. Abb. da und 5 die Projektionen davon. Der Mittelwert z_n engipt sich aus den Spunen von Brabha-Ereignissen, die in der Gleichen Melläufen im Innendetelton nachgewiesen wurden. Durch den Bezug auf den Mittelwert wird unabhängig von Verschiebungen des Wechselwinkungspunktes, die sich durch Anderung der Strahllage oder der Strahldivergenz engeben Vörber, geschnitten :

(1)
$$z_0 = z_0 - z_0$$
, $z_0 = (y_0 + y_0)/2 + 1, z_0 = 0$

Die in Abb. 8 eingezeichneten Schnitte verwenfen folgende Anteile an gaten ..-Paaren:

J∕Lereich	,'-Bereich	4 - 5 GeV-Bereich
0.3	0.45	0.3

Die Wirkung dieser Schnitte für Ereignisse mit 2 Dionen im Endzustand läßt sich aus Abb. 9 ersehen, in der für die 3 Energiebereiche die auf den flittelwert z_m bezogene Wechselwirkungspunktsverteilung nach allen Schnitten (bis auf den Schnitt (1)) dargestellt ist. Die Abschätzung des Anteils von Strahl-Gas-Ereignissen innerhalb der Schnitte (1) geschieht durch Anpassung einer Geraden an die außerhalb der Spitzenregion liegenden Seitenbänder; wie die folgende Tabelle zeigt, steigt der Strahl-Gas-Anteil mit der Strahlenergie:

		1	\mathbf{J}/\mathbf{c}		4 - 5 GeV	
Durch Schnitte (I) verworfen	()	•	8,1	9,1	16,5	
Anteil von Strahl-Gas-Ereignissen		1				
innerhalb der Schnitte (I)	()	,	0,8	1,5	4,0	

Für Ereignisse mit anderen Massenkombinationen (-K, KK, ...) ist außer für die p=-Kombination im 4,0 bis 5,2 GeV-Bereich der Untergrund an Strahl-Gas-Ereignissen vernachlässigbar klein.

IV.3.2. Höhenstrahlungs-Schnitt

Da in dieser Arbeit nur Ereignisse mit zwei Spuren in den Aulendetektorarnen ausgewentet werden, müssen auch Höhenstranlungsereignisse diese Bedingung erfüllen. Solche Ereignisse lassen sich Jedoch leicht erkennen: Wegen der "ialschen" Flugrichtung in einem der beiden Arme liefert die Flugzeitmessung in dieser Arm eine negative Flugzeit, weil der Zählen im Außenam fruhen ansphach als der Startzählen OSS am Strahlrohn. Den Schnitt fordert also:

$$(\Pi) \quad \exists_{H} > 0 \quad \text{und} \quad \exists_{T} > 0$$

Der Anteil an Höhenstrahlungsereignissen liegt vor dem Schnitt bei 0,1 bis 0,2 $^\circ$.

IV.3.3. Spuren-Schnitte

Dieser Schnitt wurde eingeführt, um ein Mab für die Qualität einer Außendetentorspur zu bekommen. Dabei gent man davon aus, daß durch Zerfall von Pionen oder Kaonen im Außen- oder Innendetektor Spuren gefunden werden, deren Funken größere Abweichungen von einer "störungsfreien" Spur besitzen. Als "störungsfreie" Spur wird die bei der Impulsbestimmung von außen nach innen röckverfolgte Bahn der Teilchen verwendet (s. Anhang A.4.). Gibt es in den Proportionalkammern des Innendetektors mindestens 2 Funken in der z-Projektion in weniger als 3 cm Abstand von der rückverfolgten Bahn, lautet die Definition der "Spurgüte" S:

S: =
$$z_{R3} - z_{F} + z_{SP} - z_{F}$$

z_{RB} = z-Werte der rückverfolgten Bahn im Innendetektor z_{SP} = z-Werte der angepaliten Spur im Außendetektor z_F = z-Werte der gemessenen Funken

Die Schnittgrenze ergibt sich aus der Betrachtung von L-Paar-Spuren :

(III)
$$S(p) - 1, 1 + 6 \cdot e^{-3p}$$
 cm

Die angegebene Abhängigkeit des Schnittes vom Impuls p ergab sich aus einer Monte-Carlo-Simulation von Spuren, bei denen Vielfachstreuung, Energieverluste und Ortsauflösungen der Proportional- und Funkenkammern berücksichtigt wurden. Die Vergrüberung von S bei kleinen Impulsen ist auf den größeren Anteil der Vielfachstreuung zurückzuführen. Die Verteilung von S mit dem Schnitt für – Peare zeilt Abb. 10.

Durch den Schnitt gehen 3,3 – aller u-Paare verloren. Abb. 11 zeigt deren invariante Massen.

- 31 -

Die durch den Spurschnitt verworfenen Ereignisse besitzen eine deutlich schlechtere Massenauflösung als die μ -Paare, die nach allen Schnitten bleiben. Innerhalb eines Massenintervalls von 100 MeV um den Sollwert von 3,1 GeV liegen nur 29 \pm der invarianten Massen der durch den Schnitt verworfenen Ereignisse; bei "guten" Ereignissen liegen dort 89 \pm . Daß der Schnitt (III) unabhängig von der Teilchenart ist, ergibt eine Prüfung der Wirkung des Schnittes auf Proton-Spuren aus dem Zerfall J/ $\psi \rightarrow p\overline{p}$, wo 3 + der Ereignisse verlorengehen.

Wie aus der Definition der Spurgüte ersichtlich, kann im Innendetektor auf eine durch die Spursuch-Programme gefundene Spur verzichtet werden, wenn nur in 2 von den 3 z-Ebenen je ein Funke vorhanden ist. Das ist nützlich bei Daten, in denen z.B. eine Proportionalkammer ausgefallen und die Spursuch-Wirksamkeit daher klein ist. Durch den Spurschnitt gehen zwar 2,8 ° µ-Paar-Ereignisse verloren, aber es werden 4,2 % gute Ereignisse ohne Innenspur hinzugewonnen.

Der Spur-Schnitt verwirft außerdem Ereignisse, in denen in einem Außenarm 2 Spuren durch das Auftreten von Doppelfunken gefunden werden (s. Anhang A.I.). Wenn man zusätzlich noch verlangt, daß der Winkel zwischen 2 Spuren im Innendetektor größer ist als 50 mrad, werden auch Ereignisse verworfen, bei denen durch ein im Strahlrohr konvertiertes Photon 2 Elektronen in einem Außendatektorarm nachgewiesen werden.

IV.3.4. Akzeptanz-Schnitte

Die Akzeptanz von Teilchen mit hohem Impuls ist im wesentlichen durch die Magnetöffnung und die geometrischen Abmessungen der Flugzeitzähler festgelegt. Da diese Zähler Teil des Triggersystems sind, scheint ein Schnitt überflüssig zu sein. Bei Meson-Paaren muß die Flugzeitzählerakzeptanz jedoch auf die etwa 15 - kleinere Reichweitezählerakzeptanz eingeschränkt werden, da diese sonst nicht von u-Paar-Ereignissen unterschieden werden können, bei denen die Müonen an den Reichweitezählern vorbeifliegen. Daher wird bei Meson-Paaren für jede Spur gefordert :

(IVa)

.z_{₽W}| < 372 cm

 z_{RW} = z-Wert des Durchstoßpunktes der Außendetektorspur durch die Ebene der Reichweitezähler bei x = 700 cm.

Für die y-Werte der Durchstoßpunkte ist kein Schnitt notwendig; sie liegen mindestens 20 cm vom Rand der Zähler entfernt.

Die Notwendigkeit dieses Schnittes demonstriert Abb. 12, in der die Verteilung der z_{RW} -Werte von Pion-Paaren aus dem Zerfall der J/ $_{v}$ -Resonanz bei Verwendung der Flugzeitzählerakzeptanz dargestellt ist:

Da Mübren aus der Paarenzeugung hohe Impulse(Strahlimpulse) besitzen, wird die Refonweitezählerakzeptanz nur für Hadronen mit nohen mittleren Impulsen verwendet:

	<u>i</u> u =	(p _n + p _T)12 -	>	1,1 GeV c	für J1 -Daten
(IVb)	p		>	1,3 GeV/c	für -Daten
	p		>	1,6 G eV/c	für 4-5 GeV-Daten

Die Verluste durch diese Bedingungen betragen maximal 0,7 – und werden bei der Analyse der "-Paare bei den verschiedenen Energien berücksichtigt.

Für kleinere Impuls-Mittelwerte von Mesonen- und für alle Impulse von Baryonen-Ereignissen wird die Flugzeitzählerakzeptanz verwendet:

(IVc) $z_{FZ} \sim 310$ cm mit $x_{FZ} \approx 475$ cm

IV.3.5. Teilchenidentifikations-Schnitte

Für die Teilchenidentifikation wird das aus der Flugzeit- und Impulsmessung berechnete Hassenquadrat verwendet (s. Kap. XI.A.6.):

$$m(p, r) = p - \frac{1 - r}{r}$$

(2)

Da die Messungen vom Impuls plund der Seschwindigkeit - in guter Näherung unabhängig voneinander sind (die Abhängigkeit besteht nur über den Flugweg, der eine Funktion des Impulses ist), ergibt sich der Fehler des Massenquadrats zu:

(1)
$$\Delta m^{2}(\mathbf{p},t) = 2 \sqrt{m_{0}^{2} \left(\frac{p}{p}\right)^{2} + E^{2} \left(\frac{m_{0}^{2}}{t}\right)^{2}}$$

(2) $\Delta m^{2}(\mathbf{p},t) = 2 \sqrt{m_{0}^{2} \left(\frac{p}{p}\right)^{2} + p^{2} E^{2} c^{2}}$

= Ruhemasse des Teilchens ۳₀ = Weglänge vom Start- bis End-Flugzeitzähler L(p) ۸t = Zeitauflösung der Flugzeitzähler $\frac{dp}{dn}$ (n,m₀) = Impulsauflösung

In Abb. 13 sind die Verteilungen der Massenquadrate für u-Paare für die 3-Energjebereiche zusammen mit einer angepaßten Normalverteilung dargestellt. Aus den Standardabweichungen dieser Funktionen läßt sich zusammen mit den Impulsauflösungen (Abb. 6) nach obiger Formel der Fehler der Flugzeitmessung berechnen:

		J/t.	. •	4 - 5,2 GeV
	(GeV)	0,002 0,001	0,003 0,003	0,019 · 0,006
•(m·)	(GeV·)	0,089 · 0,001	0,106 - 0,002	0,19 - 0,006
> 5.1(m·)	()	5,2	4,7	2,8
<u>;(p)</u> p	()	1,12 ± 0,023	0,95 ± 0,024	2,72 · 0,187
<l></l>	(cm)	486 ± 0,2	486 ± 0,4	487 · 0,5
	(GeV/c)	1,536 + 0,001	1,65 + 0,003	2,25 0,006
-:(t)	(nsec)	0,305 0,004	0,315 ± 0,006	0,325 + 0,010
↓ (t)	(nsec)	0,305 • 0,004	0,315 ± 0,005	0,325 0,010

Tabelle II Massen- und Zeitauflösungen

ABB. 13 MASSENQUADRAT VON MÜONEN

Der relativ hohe Anteil von Müonen mit Abweichungen im Massenquadrat von mehr als 50 ist auf das Versagen von Start- und/oder Endzählern in der Flugzeitmessung zunückzuführen.

Zur Identifizierung von Hadronen n wird entsprechend der Formel (2) bei einem Vielfachen der Impuls- und Zeitauflösung geschnitten:

$$(V)$$
 m TOF m_h ,

$$m_{\hat{h}} = 2 \sqrt{m_{0\hat{h}} (f_1 \cdot \frac{p}{p})} + E_{\hat{h}} p_h c \cdot \frac{1}{L^2} (f_2 \cdot t)$$

mit
$$\frac{\Delta p}{p}$$
 = 0,01, L = 510 cm und Δt = 0,3 nsec

Die Faktoren f, werden dabei so gewählt, daß einerseits möglichst alle Massenquadrate eines Hadrons innerhalb der Schnitte liegen, andererseits aber bei Energien von mehr als 1 GeV die Massenbereiche für verschiedene Hadronen nicht zu sehr überlappen. Aus diesem Grund werden für πKX -Ereignisse kleinere f $_2$ -Werte als für $\pi\pi X$ -Ereignisse verwendet.

In Abb. 14 ist das aus der Flugzeitmessung berechnete Massenquadrat gegen den Impuls für Ereignisse mit 2 Hadronen aus J/u-Zerfällen aufgetragen. Zusätzlich sind die Schnitte für die Auswahl von je 2 Hadronen der gleichen Art eingezeichnet. Man sieht, daß der Massenschnitt bei Ereignissen mit Pionen so liegt, daß bei Impulsen von weniger als 250 MeV/c sowohl Elektronen als auch ein Teil der Müonen abgetrennt werden.

Die Faktoren f_i , die die Grenzen der Massenbereiche für die verschiedenen Kombinationen von 2 Hadronen festlegen, sind in Tabelle III angegeben :

	ππ	ттХ	кк	ккх	₽Ţ	ррХ	7 	кх К	р q	אדע ר
f_1 J/s f_2	15 2,24	15 2,24	9 2,45	9 2,45	15 3	15 3	12 2,24	15 1,73	15 3	15 2,24
k_(m ²)	3	2,50	3,60	3,0	5,3	6	2,50	2,25	7	3
f ₁	15	15	9	9	15	15	50	15	15	15
o'⊢f,	2,24	2,24	2,45	2,45	3	3	2	1	3	2,24
k. (m)	3	2,30	3,60	2,50	6	5,2	2,0	1,35	7	3
4_5 ∫ ^f 1	15	15	9	· 9	15	15	50	15	15	15
$GeV \int f_2$	2,24	2,24	2,45	2,45	3	3	2	1	3	2,24
ka(m ²)	3	1,85	3,60	1,70	5	5	1,75	1,4	5	2

Tabelle III Massenschnitte

Die hohen Werte für f_1 bei allen Teilchen berücksichtigen, daß bei dem Schnitt (V) c(p)/p = 0.01 gesetzt wurde, unabhängig von Teilchenart, Magnetfeldstärke und Impuls; für kleine Impulse bei kleinen Magnetfeldern kann c(p)/p aber dreimal so groß sein (s. Kap. XI.A.5.).

Für die Normierung der Verzweigungsverhältnisse müssen bei den u-Paaren dieselben Massenschnitte wie bei der Auswanl von hadronischen Ereignissen angewandt werden.

 $J/\psi \rightarrow h^+ h^- X$

м2

1.2

1.1

1.0

0.8

0.7

0.5

Mop 0.9

 (GeV^2)

Verwendet man dazu einfach die gleichen f_i -Werte wie bei der Hadron-Auswahl und die Gleichung (V), so stellt man fest, dat bei "Paaren nicht bei gleichem Vielfachen der Massenauflösung der Hadronen geschnitten wird. Dafür lassen sich 2 Gründe angeben:

Wegen der Guadratischen Abnängigkeit der Hassenauflösung von der Energie der Teilonen Tegt bei Eleinen Impulsen der erste Term unter der Eurzel in Gleichung (V) die Schnittgrenzen fest. -Paare werden jedoch gerade bei nohen Impulsen gemessen, wolder erste Term verhachlässigt werden kann. Zum zweiten gibt es wenig Hadronen dit hohen Impulsen, so dat deren Hassenauflösung auf Grund der geringen Statistik kleiner erscheint.

Zur Veranschaulichung dient Abb. 15, in der das Massenquadrat für 2 Hadron-Ereignisse bei der J/L-Resonanz mit hohen Inpulsen dargestellt ist

Berechnet man z. B. die Massenauflüsung für pp-Paare mit den f_1 -Werten aus Tabelle II nach Gleichung (V), so engibt sich eine Auflösung von $(m^2) = 0.075$ GeV- (mit Berücksichtigung von (p), p = 0.011 und L = 490 cm). Die finjassung einer Normalverteilung an die Verteilung der Proton-Massen engibt jedoch ein $(m^2) = 0.06$ GeV. Der Schnitt in beträgt für pp-Paare 0.32 GeV und liegt damit beim 5.3-fachen der Massenauflösung. Verwendet man aber bei der Normierung auf Graare die gleichen fisienen wie bei den up-Laeren, so wurde nan nun bei dem 3-fachen der Auflösung schneiden!

Für die Normierung wird dahen durch Anpassung von Normalverteilungen bei jedem Hadron festgestellt, bei welchem Vielfachen - der Massenauflösung der Schnitt (V) liegt; die Werte von klehthält Tabelle III. Da kleigentlich eine Funktion der Teilchenenergie ist, ergibt sich eine sostematische Normierungsunsicherheit von ca. 3 \pm

IV.3.6. Schauerenergie-Schnitte

Elektronen im Außendetektor lassen sich durch ihre nohe Pulshöhe in den Schauerzählern erkennen. Die Abtrennung von Bhabha-Paaren über die Messung der Schauerenergie ist nur für Daten notwendig, bei denen die Gerenkovzähler noch nicht im Detektor eingebaut waren, d.h. insbesondere bei den J.-Daten (siehe Tabelle I). Bei Daten mit Gerenkovzählern wird verlangt, daß keiner dieser Zähler angesprochen hat.

Bei Daten mit Čerenkovzählern lätt sich die Linkung von Schauerenengie-Schnitten beurteilen. So zeigt Abb. 16, in der die Schauerenergie gegen den Impuls aufgetragen ist, daß für kleine Impulse die Trennung von Pionen und Elektronen über die Schauerenergie nur schwer möglich ist. Es werden daher für kleine Impulse andere Schnitte als für große Impulse gemacht.

Für Daten ohne Čerenkovzähler werden folgende Schnitte für Ereignisse mit 2 Pionen oder einem Pion und einem Kaon im Endzustand vorgenommen:

- 39 -

Schnitt (VIa) fordert für eines der beiden Teilchen eine Schauerenergie, die kleiner ist als das Dreifache von minimalionisierenden Teilchen. Für das zweite Teilchen wird bis zum Zehnfachen der Schauerenergie für minimalionisierende Teilchen zugelassen. Durch diese Wahl der Schnitte wird ein großer Teil derjenigen Hadronen erfaßt, die im Schauerzähler stark wechselwirken und bei denen daher eine hohe Schauerenergie gemessen wird. Die Forderung nach einem Hadron mit weniger als 250 MeV Schauerenergie stellt sicher, da3 die Kontamination durch Elektron-Paare gering ist.

Die Verteilung der Schauerenergie von Elektronen läßt sich aus Bhabha-Ereignissen ersehen, bei denen beide Cerenkovzähler angesprochen haben. Abb. 17 zeigt die Verteilung der Schauerenergie von Elektroner mit einem mittleren Impuls von 1,5 GeV/c. Bei 0,24 (11^{+}) der Elektronen wird eine Schauerenergie von weniger als 0,25 (0,7) GeV gemessen.

Ereignisse mit Pionen werden dadurch erkannt, daß keiner der beiden Cerenkovzähler angesprochen hat. Abb. 18 zeigt die Schauerenergie von Pionen mit hohen Impulsen, 14 bzw. 4.4 aller Pionen liegen oberhalb der Schnitte von 0.25 bzw. 0,7 GeV. Abb. 19 reigt die Schauerenergie-Verteilung von Kaonen. 12.6 (7,7,5) aller Kaonen besitzen eine Schauerenergie von mehr als 0,25 (0,7) GeV.

Schnitt (VIb) verwinft ele-Eneignisse, in denen ein Photon von mehr als 400 MeV Energie im Endzustand abgestrahlt wurde. Bei diesem Schnitt wird ausgenutzt, daß trotz der Abstrahlung Elektron und Positron noch nahezu kollinear sind. Die Wirkung des Schnittes zeigt Abb. 20, in der 2-Teilchen-Ereignisse mit mindestens einem angesprochenen Cerenkovzähler und mittleren Impulsen von weniger als I,1 GeV/c eingetragen sind.

Bei der U'-Resonanz werden 4,5 - der ==X-Ereignisse durch diesen Schnitt verworfen, bei den J/g-Ereignissen 2,1 .

Ursache für die Ereignisse mit mindestens einem Elektron, die in Abb. 20 oberhalb des Schnittes liegen, sind bei den C'-Daten Zerfälle des schweren Leptons π⁵, konvertierte Photonen oder ~-Elektronen. Berücksichtigt man, daß etwa 1,5 . aller Pionen den Gerenkovzähler setzen²⁸, so ist der Anteil an Elektronen unter den mrX-Ereignissen bei den mi-Daten kleiner als 1,5 %, bei den J/1-Daten kleicer als 4.3

- 40 -

EREIGNISSE MIT EINEM IDENTIFIZIERTEN ELEKTRON

Bei Daten mit vornandenen Gerenkovzählern wird auf den Schauerenergie-Schnitt verzichtet. Pei Ereignissen mit einem Meson im Endzustand wird gefordert :

$$(\text{VIC}) \qquad \frac{PH}{c_1} + \frac{PH}{c_2} + \frac{PH}{c_2} + \frac{PH}{c_2} = \frac{PH}{c_1} + \frac{PH}{c_2} + \frac{PH}{c_1} + \frac{PH}{c_1} + \frac{PH}{c_2} + \frac{PH}{c_1} + \frac{PH}{c_1} + \frac{PH}{c_1} + \frac{PH}{c_2} + \frac{PH}{c_1} + \frac{PH}$$

Ausgenommen von diesem Schnitt sind Breignisse, in dener beide Teilchen die GerenLovzähler unter einem Polarwirkel von $\sim 90^{\circ}$ durchfliegen. In diesem Bereich stalen zwei Spiegelplatten zusammen, so dar dert eine geringere Anspreuwannscheinlichkeit besteht. Wenn cos $_{\rm h^+}$ + cos $_{\rm h^-}$ = 0.16 rad ist, werden die Kriterien (VIa) oder (VIb) angewendet.

Bei der Auswahl von .-Paaren wird der Schauerenergie-Schnitt gemacht, der auch bei den .-Paaren angewendet wird. Abb. 21 zeigt die Schauerenergieverteilung von Müonen. Durch den Schnitt oehen 0.9 der Ereignisse verloren. In 51 dieser verlorenen Ereignisse haben beide Teilchen die Schauerenergie Null (diese Ereignisse werden auch bei den Hadron-Ereignissen verworfen, siehe Annang Kap. A.7.). 46 setzen nur einen Reichweitezähler; sie sind sehr wahrscheinlich Transmissionsereignisse von Hadronen oder Elektronen. Nur 4 von 0.9 Verlusten) sind L-Paare, deren Schauerenergie oberhalb der Schnitte liegen, d. h. es geht nur ein gutes Ereignis durch den Schnitt verloren.

IV.3.7. Paar-Schnitte

Paarereignisse sind im Schwerpunktssystem des zerfallenden Teilchens kollinear. Da wegen der Optik der Speicherringstratien das Schwerpunktssystem nicht völlig im Laborsystem ruht, werden die Vierervektoren der gemessenen Teilchen in das Schwerpunktssystem transformiert und dort der Akollinearitätswinkel Me^{C.M.} (= Winkeldifferenz gegen 180[°]) berechnet. Für ein Paar-Ereignis mul

(VIIa) $\mathbb{M}^{C+m_*} \ll 5^0$ sein.

Abb. 22 zeigt die Akollinearitätswinkelverteilung von L-Paaren der J/L-Resonanz.

Durch diesen Schnitt werden 2,9 $^{\circ}$ der .-Paar-Ereignisse verworfen. Der Anteil an .-Paaren, deren Akollinearitätswinkel durch Abstranlung eines reelien Pnotons im Endzustand größer als 5⁰ ist, wird durch ein Monte-Carlo-Programm⁴¹ ermittelt und beträgt nur 0.6 . Die restlichen 2,3 $^{\circ}$ der .-Paare sind Ereignisse, bei denen ein Photon im Anfangszustand abgestrahlt wurde oder ein hadronisches Ereignis einen Reichweitezähler gesetzt hat. Bei Hadron-Paar-Ereignissen wird außerdem auf die Differenz zwischen Gesamtenergie W und der invarianten Hadron-Hadron-Masse geschnitten:

Für Hadron-Paare ist damit der Akollinearitätswinkelschnitt überflüssig, nicht jedoch für u-Paare, wo der Winkelschnitt einen Teil der QED-"-Paare verwirft, die als Untergrund bei der Normierung von Verzweigungsverhältnissen auftreten.

V. Auswertung von ..-Paaren

Für die Normierung der Verzweigungsverhältnisse werden in den 3 Energiebereichen u-Paare aus 3 verschiedenen Prozessen verwendet:

J/1-Bereich:	J/.	
-'-Bereich:	. 1	x J/,, J/, - 2+2
4,0 bis 5,2 GeV-Bereich:	e ⁺ e ⁻	<pre>+⁺[−] (QED-Paare)</pre>

Die angeführten Prozesse sind jeweils die stärkste Quelle von .-Paaren.

V.1. .-Paare aus dem Zerfall der J/ --Resonanz

Zur :-Paarerzeugung im Energiebereich der J/:-Resonanz tragen 2 Prozesse bei¹:

NICHTRESONANTE (QED) -- PAARE

Resonanzzerfälle in -Paare

Für die Normierung interessiert nur der Resonanzzerfall. Der QED-Anteil an den beobachteten U-Paaren muß abgezogen werden. (Der Interferenzanteil der beiden Amplituden ist klein und mittelt sich bei Integration über die Resonanz heraus¹).

Die Auswahlkniterien für u-Paare sind in vonhengenenden Kapitel zusammen mit denjenigen für Hadronen beschnieben worden. Sie werden nier noch einmal kunz zusammengestellt:

- 2 Spuren in verschiedenen Annen mit Unterschiedlicken Ladungen
- Mindestens I Reichweitezähler gesetzt.
- Beide Spuren im Wecnselwinkungsbunktsvolunen (11).
- Schnitt gegen Höhenstrahlung (II).
- Spur-Schnitt (III).
- Beide Spuren in der Reichzeitezählerakzeptanz $\left(\mathrm{IV}\right)$ a und b.
- Schauerenergie-Schnitt (VIa) (wie für 2-Pion-Lreignisse)
- Paar-Schnitt (VIIa): Avollinearitätswinkelschnitt.

Innerhalb eines Massenschnittes von 7 (m²) liegen 3834 m-Paare, deren effektive Massen in Abb. 23 gezeigt sind. Der Ausläufen zu kleinen Massen hin entsteht durch Abstranlung reeller Protonen

Mit den Massenschnitten von Tabelle III ergeben sich folgende Anzahlen von II-Paar-Ereignissen, die bei der Normierung von hadronischen Endzuständen verwendet werden :

	···· Ç	КK	51.K	μp	i-p≠	E)	104
3639	3503	3763	3669	3520	5.97	3547	3743

Esinne+ turien

Kurrelturen sind nur für den QLD-Duitrag und für die Schnitte notwendig, die nicht such bei den Hadron-Auswahl temacht werden, d. h. als: für die Frederung nach einem gesetzten Reichweitezählen in die miden Schnitt auf den A-bilinearitütswinkel. Durch den Akseptanzschritt im 1,1 GeV/digenen keine guter -Faams verlonen

a) Dorch den Woll meanifätsschnitt werden ole – Haben verworfen (siere Kap IV.3.7.) $S_{\rm atol} = 1.0067$. Dieser Wort beröcksichtigt nur der frührenhung vor Photoren in Endrostand; wenn ber Abstranlung en Annamenistano för Hibearifätswinkelson mehn als 5° auftreten, wird mit örcherheit wegen der kleinen totalen. Resenendbreite vor 69 keV⁴² kein 1. -Teiloner endeart, eine soneltum ost dass umrötig.

b) Die Fondertie für den Fall, das beide Deinnweitezählen nicht angesone nen haben, 185t sum aus den Anzeni von Mionen Berenhnen, die num einen Zählem gesetzt haben. Dabei Buß berücksichtigt wendes, daß zentiftende Pionen oder Basnen ebenfalls einen Reichweitezählen setzen Winnen. Diese Badrunfschen Ereignisse haben jedoch inspriante . -Massen von Wenigen als 3 GeV (wit Ausrichse der Venigen inPaare), was man zur Abtrennung diesen Ereignisse ausbutzen Rann.

Oberhalb der Grenze von 3 GeV hat bei $c_0 = 5.3$ aller U-Paare nur ein Peichweitezähler angesprochen; aus dieser Zahl erhält man eine Ansprechwahrscheinlichkeit von 94.7 . Die Wahrscheinlichkeit, daß bei beiden Müonen die Reichweitezähler versagen, beträgt also nur $(0.053/2)^* = 0.07$. (* $p_W = 1.0007$).

Der Anteil der Ereignisse mit invarianten Massen unterhalb 3 GeV, bei deren rein Reichweitezählen angesprochen hat, beträgt 8,7 –. Man erhält die Zahl der multihadronischen Ereignisse unter den u-Paaren aus folgender Formel :

$$N_{\rm gib} = N_{1\rm RH} - \frac{N_0}{1 - 1} = \frac{N_{2\rm RW}}{0} N_{2\rm RW} N(m_{\rm eff} + 3.0 {\rm GeV})$$

 $\Gamma = \frac{r_0}{r_0} - N_{2RW}$ ist den Anteil an Ereignissen met einem gesetzten Zählen auf

Grund der Zählerineffizienz, berechnet aus der Anzahl der Ereignisse mit 2 gesetzten Zählern N_{2RW}. Die Rechnung ergibt 13,1 multihadronische Ereignisse oder 0,34 % (η_{mh} = 0,9966).

c) Der QED-Anteil läßt sich am besten bei einer Energie bestimmen, die so weit oberhalb der J/ ψ -Resonanz liegt, daß diese durch Abstrahlung von harten Photonen nur mit sehr kleiner Wahrscheinlichkeit erreicht werden kann. Das ist bei den Messungen mit einer Schwerpunktsenergie von 3,6 GeV der Fall. Mit den gleichen Auswahlkriterien wie bei den J/ ψ -Daten ergeben sich 90 μ -Paare. Die Übertragung dieser Zahl auf die Schwerpunktsenergie von 3,1 GeV geschieht mit folgender Überlegung:

Der totale elektromagnetische Wirkungsquerschnitt für die Erzeugung von $\mu\text{-Paarren beträgt}^{43}$:

(1)
$$\sigma_{\text{tot}} = 86,84 \frac{\beta_{\mu}}{E_{c.m.}^2}$$

Experimentell bestimmt man diesen mit Hilfe der gemessenen integrierten Luminosität $\int L dt$:

(2)
$$\sigma_{\text{tot}} = \frac{N_{\mu\mu}}{\epsilon \int L dt} , N_{\mu\mu} = Zahl der \mu - Paare$$

 $n_{\mu\mu}$ enthält die Korrekturen für die Schnitte und für die Spurverluste bei beiden Energien. Die Korrekturen müssen nicht notwendig gleich sein, da die Daten zu verschiedenen Zeiten genommen wurden. Angesichts des kleinen QED-Beitrags werden die Korrekturfaktoren $n_{\mu\mu}$ ebenso wie die beiden β_{μ} als gleich angenommen, und es ergibt sich aus (1) und (2):

$$N_{3,1}^{QED} = \frac{\varepsilon_{3,1} E_{3,6}^2 \int_{3,1}^{L dt} U dt}{\varepsilon_{3,6} E_{3,1}^2 \int_{3,6}^{L dt} L dt} N_{3,6}^{QED}$$

 $\varepsilon_{3,1}$ und $\varepsilon_{3,6}$ sind die Akzeptanzen bei den beiden Energien. Wegen der hohen Impulse der µ-Paare sind sie trotz unterschiedlicher Magnetfelder nahezu gleich. Für den QED-Beitrag zu den J/ψ-µ-Paaren ergibt sich: N_{3,1}^{QED} = 147,6 Ereignisse (n_{QED} = 0,9615).

Insgesamt ergibt sich als Korrekturfaktor für den Zerfall $J/\psi \rightarrow \psi^{+} \psi^{-}$:

η_{υμ} = "acol * "RW * "mh * "QED = 0,9648

V.2. μ -Paare aus dem Zerfall der ψ' -Resonanz

Nach Ref. 45 beträgt das Verzweigungsverhältnis der ψ '-Resonanz in μ -Paare (0,93 ±0,16) %, das der J/ ψ aber (6,9 ±0,9) 5⁴². Da insgesamt (57 ±8) % aller Zerfälle der ψ '-Resonanz über die J/ ψ -Resonanz verlaufen⁴⁴, erhält man höhere μ -Zählraten, wenn man den Zerfall der J/ ψ -Resonanz in μ -Paare zur Normierung benutzt. Die Akzeptanz für den Kaskadenzerfall ist zwar um etwa 20 % kleiner als bei dem direkten ψ '-Zerfall, dafür entfällt jedoch die Korrektur für den QED-Beitrag.

Die Auswahlkriterien sind die gleichen wie bei den J/ ψ -Daten mit Ausnahme des Akollinearitätsschnittes, der wegen der Bewegung des J/ ψ -Teilchens im Laborsystem nicht beibehalten werden kann. Bei dem Akzeptanzschnitt werden mittlere Impulse von mehr als 1,3 GeV/c gefordert.

Innerhalb des 7 $\tau(\rm m^2)$ -Schnittes befinden sich 1492 Ereignisse, deren invariante Massen Abb. 24 zeigt.

Zur Abtrennung der μ -Paare aus dem direkten ψ '-Zerfall werden Ereignisse mit μ a-Massen von mehr als 3,3 GeV verworfen. Nach den Massenschnitten aus Tabelle III bleiben folgende Anzahlen von μ -Paaren:

τų	чтХ	КК	ккх	1	pp	•	рӯҲ	١	⊤КХ	1	трХ
905	854	922	375	i	939	ł	939	Ì	719	I	930

Korrekturen

Der Schnitt bei 3,3 GeV verwirft etwa 0,4 & der Kaskaden-µ-Paare, deren invariante Masse durch fehlerhafte Impulsmessung oberhalb des Schnittes liegen. Diese Verluste werden durch gleich große Gewinne wettgemacht, die man durch direkte µ-Paare erhält, deren invariante Masse durch Abstrahlung eines Photons im Endzustand unterhalb von 3,3 GeV liegt. Der Anteil von µ-Paaren, bei denen im Anfangszutand ein Photon abgestrahlt wurde, ist wegen des fehlenden Akolline-

aritätsschnittes größer; diese Ereignisse lassen sich jedoch leicht erkennen, weil der Vektor der (kleinen) fehlenden Masse in die Richtung der Strahlachse zeigt. Abb. 25 zeigt die Korrelation m_x gegen \cos_{m_x} mit dem Schnitt. 17 Ereignisse mit m_x < 0,3 GeV und $|\cos_{m_x}| > 0,9$ werden verworfen.

Der Akzeptanzschnitt p^2 - 1,3 GeV verwirft 2 gute :-Kaskadenereignisse, der eben beschriebene Schnitt ebenfalls, die Korrektur für diese 4 Ereignisse beträgt 0,42 - ($r_{\rm p}=1,0043$). Die Verluste durch Nichtansprechen beider Reichweitezähler beträgen – ermittelt aus Ereignissen mit $m_{\rm LU}\cong 3,58$ GeV – 0,12 - ($r_{\rm p}=6,9$, $m_{\rm RV}=1,0012$)

Der Untergrund an Ereignissen mit Hübnen aus Zerfällen von Hadronen oder schweren Leptonen ergibt sich zu \cdot_{mh} = 23,3/360 = 2,43 (\cdot_{mh} = 0,9751). Insgesamt ergibt sich als Korrekturfaktor für den Zerfall:

7.3. p-Paarerzeugung im Energiebereich von 4 bis 5,2 GeV

Die Auswahlkriterien für QED-.-Paare in diesem Bereich sind die gleichen wie bei der J/t-Resonanz. Geändert werden die Akzeptanz- und Akollinearitätswinkelschnitte: der mittlere Impuls muß größer als 1,6 GeV/c, der Akollinearitätswinkel kleiner als 15° sein.

Innerhalb 5 m(m²) liegen 827 Ereignisse, die Verteilung der invarianten Massen zeigt Abb. 26. Die Häufungen spiegeln die Verteilung der Luminosität wider.

Nach den Massenschnitten aus Tabeile III ergeben sich folgende Ereigniszahlen:

		X	KK		ККХ	pp		ррХ	KX		p X
776	ļ	620	 815	•	587	827		327	547	i i	724

- 50 -

Korrekturen

Der Akzeptanzschnitt \overline{p} 1,6 GeV/c verwinft 6 gute .-Paare, der Korrekturfaktor dafür beträgt $\frac{1}{\overline{p}}$ = 1,0073. Zur Beunteilung der Effizienz der Reichweitezähler werden die Ereignisse herangezogen, deren invariante Massen oberhalb von 95 der Gesamtenergie liegen (siehe Abb. 27). Die Zahl der Ereignisse mit einem gesetzten Reichweitezähler beträgt 5 , daraus ergibt sich $\frac{1}{RW}$ = 1,00062. Durch den Akollinearitätswinkelschnitt gehen etwa 2 : gute L-Paare verloren $\frac{41}{racol}$ ($\frac{1}{racol}$ = 1,02).

Der Anteil an Untergrund mit Massen von weniger als 95 der Gesantenergie und nur einem gesetzten Reichweitezähler beträgt 2,85 Ereignisse oder 0,34 ($\gamma_{mh} = 0,9966$). Die Ursache für diesen Untergrund ist nicht nur bei Zerfällen multihadronischer Ereignisse zu suchen, sondern auch bei müonischen Zerfällen des schweren Leptons γ_{-}^{-1} . Mit der Annahme eines Verzweigungsverhältnisses von 13 für $\gamma_{-}^{-1} + 2 \gamma_{-}^{-1} + 2 \gamma_{-}^{-1}$ und 1 Wahrscheinlichkeit dafür, das irgendein Zerfallsteilchen des zweiten schweren Leptons einen Akolinearitätswinkel von weniger als 15⁰ mit dem ersten bildet und der Mittelwert aus beiden Impulsen grö-Ber als 1,6 GeV/c ist, ergibt sich ein Beitrag von weniger als 0,2 (da für punktförmige Spin 1/2-Teilchen $\gamma_{tot} = \gamma_{tot}^{-1}$).

Eine zusätzliche Quelle von D-Paaren könnte der Zerfall von höher angeregten Charmonium-Resonanzen in p-Paare sein. Die resonanzartigen Strukturen im totalen hadronischen Wirkungsquerschnitt ergeben einen zusätzlichen Peitrag zum hadronischen Wirkungsquerschnitt von:

$$\Delta R = (e_{hadron}/e_{hadron})_{res.} = (e_{hadron}/e_{hadron})_{nichtres.} = 2.1 \cdot 0.3 = \frac{47}{2}$$

Zieht man den Beitrag vom schweren Lepton : ab, ergibt sich ein 1R von etwa 1.4. Das mittlere Verzweigungsverhältnis $r_{\rm ec}/r_{\rm tot} = r_{\rm pc}/r_{\rm tot}$ (e-p-Universalität angenommen) der Struckturen beträgt 0.001 , der pp-Beitrag zu den QED-p-Paaren ist also mit 0.0014 i zu vernachlässigen.

Ebenfalls zu vernachlässigen sind u-Faare aus dem Zerfall der u'-Resonanz, die durch Abstrahlung eines Photons im Anfangszustand erreicht werden könnte (siehe Abb. 26). Insgesamt ergibt sich der Korrekturfaktor zu :

VI. Auswertung der Daten im J. -Bereich

Die oben beschniebenen Auswahlkniterien auf Erefgnisse mit 2 Hadmonen im Erdzustand seien noch einmel kunz zusammengestellt:

- Mindestens 2 Spuren mit unterschiedinungen Ladungen
- Beide Spuren im Wechselwirkungspunksbereich (I).
- Schnitt gegen Höhenstrahlung (II).
- Spun-Schnitt (III).
- Akzeptanzschnitte entsprechend dem Mittelwent den beiden Impulse (IV) a. b. c.
- Schauerenergie-Schnitte (VI) a + b oder c.
- Teilchenidentifikationsschnitte nach Tabelle III.
- Paan-Schnitte (VII) a una p für Kompinationen mit gleichen Teilchen.

Zusätzliche Schnitte - etwa zur Abtrennung eines speziellen Zerfallskanals werden bei der Behandlung der verschiedenen Massenkombinationen beschrieben.

VI.1. Endzustände mit 2 Pionen: -*--*

Nach allen Schnitten verbleiben 2936 Ereignisse. Die Korrelation des Audrats der fehlenden Masse m_{χ}^{2} gegen die ---Masse zeigt Abb. 28, die Verteilung der invarianten Massen m_{χ}^{-} ist in Abb. 29 dargestellt. Die Kurve zeigt die Massenverteilung, die sich ergibt, wenn man die invariante Masse von Pionen aus aufeinander folgenden Ereignissen bildet. Es ist keine signifikante Erhöhung über dieser Kurve zu sehen, d. h. man erkennt keine bekannte Resonanz, die in 2 Pionen zerfählt. Bei der invarianten Masse von 3,1 GeV liegen 7 Ereignisse, die alle die Paar-Schnitte überstehen und damit dem Paarzerfahl J/ $_{\chi}$ - -⁺-⁻ zuzuerdnen sind. Deutlicher sieht man dies, wenn man die Impulskorrelation der ---Ereignisse in Abb. 30 betrachtet; die 7 Ereignisse liegen bei dem Soll-Impuls von 1,54 GeV/c und sind deutlich von den Impulsen der Übrigen Ereignisse getrennt.

Vor der Berechnung des Verzweigungsverhältnisses müssen folgende Korrekturen betrachtet werden:

 Falls bei einem :-Paar beide Reichweitezähler nicht ansprechen, wird es als --Paar identifiziert. Innerhalb der Schnittgrenzen für die Pionen-Auswahl

findet man 2529 :-Paare. Die Mahrscheinlichkeit, daß beide Reichweitezahler versagen, beträgt für diese Ereignisse 0,054 . Es müssen also 1.4 Ereignisse als Untergrund abgezogen werden.

- Die Wannscheinlichkeit, dat ein e⁺e⁻-Paar die Schauerenergieschnitte von 0.25 bzw. 0.7 GeV unterschreitet, beträgt 0.000/7 (s. Kap. IV.3.6.). Ordnet man den Elektronen die Pionenmasse zu, so ergeben sich 1330 e⁺e⁻-Paare, deren Massen innerhalb des Intervalls von ±50 MeV um die J4.-Masse liegen; die Konnektur beträgt also 0.36 Ereignisse.
- 3. Aus Abb. 18 ergibt sich die Wahrscheinlichkeit, daß für das 1. Pion eine Schauerenergie von weniger als 0,25 GeV und für das 2. Pion eine Energie von weniger als 0,7 GeV gemessen wurde, zu 62^{-1} . Baraus ergibt sich als Korrekturfaktor für die Verluste an $^{-1}$ -Ereignissen durch den Schauerenergieschnitt $\gamma_{\rm Sch}$ = 1,22. Da aber dieser Schnitt nur für jene 70⁻¹ der Daten gilt, bei denen die Cerenkovzähler noch nicht eingebaut waren, ermäßigt sich $\gamma_{\rm Sch}$ auf 1,16.
- 4. Durch den Schnitt auf die invariante Masse von etwa 2,2 $\sigma(m_{np})$ gehen etwa 4 $^{\circ}$ Ereignisse verloren (γ_{m} = 1,042).

- 5. Pionen können beim Durchgang durch den Detektor mit der Materie der Komponenten wechselwirken und dadurch verlorengenen. Die entsprechende Absorptionskorrektur wurde mit den Meßdaten des totalen Pion-Nukleon-Wirkungsquerschnittes⁴⁸ für die Materiebelegung von etwa 4,2 g/cm² - abhängig vom Pionimpuls - berechnet; sie ergibt: "abs = 1,092 für beide Pionen.
- 6. Ereignisse mit einem zerfallenden Pion gehen verloren, da das Zerfallsmüon in jedem Fall einen so hohen Impuls besitzt. daß ein Reichweitezähler gesetzt wird. Pionen mit einem Impuls von 1,54 GeV/c haben eine mittlere Weglänge von L = 516 cm; die Zerfallswahrscheinlichkeit beträgt: e_{dec} = 1 e^{-Lm/pc} = 0,058, daraus ergibt sich n_{dec} = 1,127.
- 7. Auch ohne Zerfall besitzen Pichen eine endliche Wahrscheinlichkeit, die 60 cm Lisen vor den Reichweitezählern zu durchdringen und einen Zähler zu setzen. Nach Ref. 39 ergibt sich die Transmissionswahrscheinlichkeit aus:

$$x_0 = 1.8 + 3.6 \cdot p$$

= 13 + 4.74 \ n

- x Dicke des Eisens (cm)
- p = Impuls des Pions (GeV/c)

Unter Berücksichtigung von schrägen Einfallswinkeln für die Pioren ergibt obige Formel eine Wahrscheinlichkeit von $\frac{1}{t} = 4.5 - (\frac{1}{t} = 1.09)$.

Die Korrekturen und die Winkelverteilung der Pionen enthält folgende Tabelle :

7	Ereignisse
1,4	
0,36	6
5,24.2,65	Ereignisse
1,16	
1,042	
1,092	
1,127	
1,09	
1,62	
o sin ⁰ e	
	7 1,4 0,36 5,24+2,65 1,16 1,042 1,092 1,127 1,09 1,62 2,5in ² e

Mit den Akzeptanzen aus Kap. XI.A.8. ergibt sich ein Verzweigungsverhältnis von:

$$\frac{\Gamma(J/\psi + \pi\pi)}{\Gamma(J/\psi + \mu)i} = \frac{N_{\pi\pi} + \pi_{\pi\pi}}{N_{\mu\nu} + \pi_{\mu\nu}} \frac{\varepsilon(\psi)}{\varepsilon(\pi\pi)} = \frac{5,24 - 2,65}{3639} \frac{1,621 - 0,0304}{0,9648 - 0,05}$$
$$= (0,145 - 0,073)$$

Mit dem Verzweigungsverhältnis $\frac{\Gamma(J/4 + \sigma r)}{\Gamma(J/4 + alles)} = 0,069 \pm 0,009$ aus Ref. 42 ergibt sich:

$$\frac{\Gamma(J/\psi \rightarrow \pi r)}{\Gamma(J/\psi \rightarrow a \text{ Nes})} = (0,010 \pm 0.005)$$

Der systematische Fehler beträgt weniger als 10 ⁺ und setzt sich aus 2 ⁺ Fehler der Akzeptanzbestimmung und etwa 8 ⁺ Fehler in der Normierung und der Nachweiswahrscheinlichkeit zusammen.

Die Verteilung des Quadrats der fehlenden Masse (Abb. 31) zeigt eine deutliche Häufung bei m⁴ = 0. Da es nur 7 τ -Paare gibt, kann diese Häufung nur durch die Endzustände $\pi^{\frac{1}{2}}\pi^{-}\pi^{-}$ oder $\tau^{+}\pi^{-}\gamma$ entstanden sein.

Abb. 32 zeigt die Verteilung der invarianten Massen $m_{q^+ \tau^- \tau^0}$, wenn als fehlendes Teilchen ein neutrales Pion angenommen wird. Die Spitze liegt bei der Masse des J/q-Teilchens, d. h. die Annahme eines fehlenden Pions ist gerechtfertigt. Bei einem $-^+-^-v$ -Endzustand sollte die Spitze etwa 60 MeV oberhalb der J/q-Masse liegen; ein kleiner Beitrag dieses Endzustandes kann nicht ausgeschlossen werden. Zur Unterdrückung des Untergrundes wird folgendes unternommen:

1. Alle Ereignisse mit $m_X^2 + 0.25 \text{ GeV}^2$ werden einer 1-C Anpassung mit der Hypothese $J/_+ + \pi^+ \pi^- \pi^0$ unterworfen. Ereignisse mit einer Anpassungswahrscheinlichkeit von mehr als 5 % werden behalten (107 Ereignisse). Abb. 33 zeigt die Wahrscheinlichkeitsverteilung mit dem Schnitt. Als Impulsfehler werden die in Kap. XI.A.5. beschriebenen Funktionen benutzt. Die Spurgüte S wird zusätzlich zur Fehlerabschätzung des Impulses herangezogen; wenn S größer als der Mittelwert von S über viele Spuren ist, wird der Impulsfehler mit einem Faktor K = S/(0.23 + 6 e^{-3p}) multipliziert, höchstens jedoch mit dem Faktor 2. Die verwendeten Winkelfehler $\pm e$ und $\pm e$ ergaben sich aus der Winkeldifferenzver-

tenlung von μ -Paaren zu $\pm = 4$ mrad und $\pm = 6$ mrad. In Abb. 34 ist die kleinere inv. Masse der beiden möglichen Kombinationen der geladenen Pionen mit dem neutralen Pion gegen die inv. Masse der beiden geladenen Pionen aufgetragen. Unter diesen 107 Ereignissen erkennt man 5 Ereignisse, für die m_+_in der Nähe der c⁰-Masse liegt, also aus dem Zerfall J/. + $-^0$, - stammen können. In diesem Fall fliegen die beiden geladenen Teilchen in denselben Spektrometerarm. Abb. 34a und b zeigen die Projektionen von Abb. 34, man sieht ein deutliches z^{\pm} -Signal in Abb. 34b.

2. Bei der Sichtprüfung dieser Ereignisse stellt sich heraus, daß 15 von ihnen verworfen werden mußten: 12 von ihnen hatten zusätzliche geladene Spuren im Innendetektor und 3 von ihnen Akoliinearitätswinkel von weniger als 1^o. Letztere sind sicherlich dem r⁺-⁻_T-Endzustand zuzuordnen. Die invarianten Massen der verworfenen Ereignisse sind in den Abb. 34 a und b gestrichelt einge-zeichnet. An die verbleibenden Ereignisse ist eine Anpassung an das .-Signal mittels einer relativistischen Breit-Wigner-Funktion folgender Form einge-zeichnet⁴⁹:

N(m)
$$\frac{m - r^{2}(m)}{(m^{2} - m^{2})^{2} + m^{2}_{O}r^{2}(m)}$$

- $\operatorname{mit} \mathbb{T}(\mathsf{m}) = \mathbb{T}\left(\frac{\mathsf{p}}{\mathsf{p}}\right)^{\mathsf{T}}$
 - p(p_) = Impuls des Pions im Schwenpunktssystem des --Mesons der Masse m(n_)

Die 3 Ereignisse mit $m_{r^{\mp}=0} \leq 0.6$ GeV stammen aus dem 3-Körperzerfall $\partial_{r^{\pm}} \rightarrow \gamma^{+} \gamma^{\pm} \sigma^{0}$. Die Monte-Carlo-Simulation dieses Zerfalls ergibt, dab 2 ≥ 0.5 weitere Ereignisse unterhalb der eingezeichneten Kurve diesem Zerfall zuzuordnen sind. Damit ergeben sich 82 Ereignisse für den Zerfall $r^{\pm} \rho^{\mp}$ und 5 Ereignisse für den Zerfall r^{0} .

Korrekturen

Untergrundereignisse, deren fehlende Masse bei der ^O-Masse liegt, aber im Innendetektor z. B. wegen fehlender Spuren nicht als Untergrund erkannt werden können, überstehen die Auswahlkriterien. Ihr Anteil wird aus den Daten

die bei der Anpassung verworfen wurden, zu 944 Ereignissen abgeschätzt. Wegen der niedrigeren Impulse der geladenen Pionen aus dem Zerfall 37. – π^2 steigt die Wahrscheinlichkeit, das eleige-Endzustände mit entsprechend niedrigen Impulsen die Schauerenergie-Schnitte unterschreiten; sie beträgt für einen mittleren Elektronen-Impuls von 1,25 GeV. d.: 0,0048. Etwa 200 elei-Ereignisse mit $\overline{p} > 1,1$ GeV/d und invarianten Massen m_{ele} < 3,0 GeV ergeben eine Korrektun von einen Freignis. Eine Korrektun für u-Paare, die durch Versager von Reich-weitezählern als -⁴-⁴-⁹-Ereignisse erscheinen, sind zu vernachlässigen.

Eei der Korre-tur für den Schauerenergie-Schnitt im Falle von Pionen ist zu berücksichtigen, daß 17 – der Ereignisse mittlere Impulse von weniger als 1.1 GeV/d haben. Eine Korrektur für diesen Teil ist unnötig, da die Pionen aus dem τ_P -Zerfall in diesem Impulsbereich um mehr als 10⁰ abollinear sind (zum Schauerenergieschnitt siene Kab. IV.3.6.).

Die verwendeten Korrekturfaltoren und die Winkelverteilungen für den J/t- und .-Zerfall (siehe Kap. XI.A.8.) sind in der folgenden Tabelle zusammengestellt:

	J/t , [‡]			82	Ereignisse
-	Nichterkannter Unterg	jrund		10·4	П
	Gesamtzahl			72+9	n
	Korrekturen				
	Schnitt auf Schauerer	nergie	sch	1,12	
	Schnift auf Anpassung	"fit	1,06		
	Absorption		^{'l} ahs	1,086	
	Zerfall		dec	1,125	
	Transmission		° t	1,07	
	Gesamtkorrektur		ι.	1,55	
	Winkelverteilungen :	Helizitätssystem vo	on J/;	- 1 +	cos
		Helizitätssystem v	on r	: sin	p. 14
				1	

Das Verzweigungsverhältnis beträgt :

 $\frac{\Gamma(J/1 - \tau^{+}c^{+})}{\Gamma(J/1 + \tau^{+}alles)} = \frac{72.9}{3583} \cdot \frac{1.55}{0.9648} \cdot \frac{0.0304}{0.0084} \quad (0.069.0.009) = (0.81 - 0.14)$

Die Korrekturen für den Zerfall J/; τ^{0} , c^{0} , $\tau^{+}\tau^{-}$ sind nur für die Absorption, für den Zerfall und für den Schnitt auf die Anpassungswahrscheinlichkeit notwendig, alle anderen entfallen. Die Gesamtkorrektur beträgt :

Das Verzweigungsverhältnis beträgt :-

Für dem reinen 2-Körperzenfall J $(-)^{+-0}$ bleiben nach Abzug für michterkannten Untergrund und für $-\infty$ -Ereignisse 4 Freignisse. Der Gesamtkonrekturfaktor beträgt : (+) = 0 = 1,48, damit ergibt kich als verzweigungsverhältnis:

VI.2. Endzustände wit einem Piow und etwel Kaon ($\sim E$)

Die Auswahlkriterien entsprechen denen der Auswahl von Erdzuständen mit 2 Pionen, mit Ausnahme der Schauerenergie- (s. Kap.IV.3.6.) und der Teilehenidentifikationsschnitte (z. Tab. III).

Zusätzlich werden Schnitte in der Impulsverteilung der Pionen und Kaonen durchgeführt, um den Untergrund an -* "X-Ereignissen zu reduzieren. Dabei wird daven ausgegangen, daß weren der Erhaltung der "Seltsankeit" der Zerfall in $K^{(-)} E^0$ die kleinste fehlende Masse enthält und der 2-Körperzenfall $J^{(-)} = K(F)$, $F^{(+)} = \pi K$ die größten Kaon- und Pion-Impulse liefert. Der Impuls des Kaons aus dem Zerfall $J^{(-)} = -K^* K^{(+)}$ ergibt sich zu :

$$(\vec{p}_{K}^{*}) = (\vec{p}_{J}^{*}) = (\vec{m}_{J}^{*}) = (\vec{m}_{K}^{*}) = (\vec{m}_{K}^{*}) = (\vec{m}_{J}^{*}) = (\vec{m$$

Der maximale Pion-Impuls ergibt sich, wenn beim $K^{\star^+}\text{-}Zerfall das \, K^0$ im Laborsystem ruht :

$$E_{\mu}^{\text{max}} = E_{K^{\bullet}} - m_{K}^{\circ} = 1.13 \text{ GeV} \qquad \qquad \vec{p}_{\mu}^{-\text{max}} = 1.13 \text{ GeV/c}$$

Für die meisten Ereignisse liegt der Pion-Impuls jedoch niedriger; es wird daher bei 1,0 GeV/c geschnitten, ohne daß K⁺K^{*-}-Ereignisse radurch verlorengehen. Bei den Kaonen wird bei 1,42 GeV/c geschnitten, das sind etwa 3 Standardabweichungen oberhalb des maximal möglichen Kaon-Impulses bei dem Zerfall J/ ϕ + KK^{*}.

Nach allen Schnitten bleiben 302 Ereignisse. Die Korrelation des Quadrats der fehlenden Masse gegen die invariante πK -Masse zeigt Abb. 35, die Verteilung

der invarianten Masse Abb. 36. In der Verteilung des Quadrats der fehlenden Masse m² (Abb. 37) erkennt man eine Spitze beim Kaon-Massenquadrat. Daß wirklich ein K^0 das fehlende Teilchen ist, zeigt Abb. 38, in der die invariante Masse vom $-K^+K^0$ -System gezeigt wird.

33 Ereignisse mit einer fehlenden Masse von weniger als 0,66 GeV werden einer 1-C Anpassung auf die Reaktion $J/j \simeq -{}^{\dagger}K^{\dagger}K^{0}$ unterworfen. Nach einem Schnitt von 3 5 auf die Wahrscheinlichkeit bleiben 30 Ereignisse. Abb. 39 zeigt wieder die kleinere Masse der beiden Kombinationen $\pi^{\pm}K^{0}$ oder $K^{\pm}K^{0}$ gegen die πK -Masse, Abb. 39a und b die Projektionen davon. Man sieht zwei Bereiche : einen mit 3 Ereignissen bei m $\sqrt{+}$ 0,9 GeV und einen zweiten mit 27 Ereignissen bei $\pi_{r}^{\pm}K^{\circ} \approx 0.9$ GeV, entsprechend den Zerfällen $J/\psi \rightarrow K^{\circ}\overline{K}^{*\circ}$, $\overline{K}^{*\circ} \rightarrow \pi^{-}\overline{K}^{+}$ und $J/\psi \rightarrow K^{+}\overline{K}^{*+}$, $K^{*+} = -^{+}\overline{K}^{\circ}$.

Eine Sichtprüfung dieser Ereignisse ergibt, daß 10 von ihnen verworfen werden müssen, da im Innendetektor außer den zwei geladenen Spuren auch Photonen vorhanden sind. Vermutlich handelt es sich dabei um Ereignisse aus dem Zerfall $J/I = \pi^+ \pi^- \pi^0$, bei denen ein Pion die Kaon-Masse zugeordnet bekam und die restlichen 3 Pionen die fehlende Kaon-Masse ergeben.

Die Ereigniszahlen und Korrekturen für die beiden Zerfälle enthält die folgende Tabelle :

$J/: \rightarrow K' K^{*+}$	i	17 Ereignisse
Nichterkannter Untergrund Gesamtzahl		2 " 15 - 4 ,1 Ereignisse
Korrekturen		
Schnitt auf Schauerenergie	ch	1,07
Schnitt auf Anpassungswahrscheinlichkeit	it	1,04
Zerfall d	ес	1,63
Absorption	bs	1,063
Gesamtkorrektur		1,93
$J/\gamma \rightarrow K^{0} \overline{K}^{10}$		3 Ereignisse
Korrekturen		
Schnitt auf Anpassungswahrscheinlichkeit 🦷 🦷	it	1,04
Zerfall "d	ec	2,53
Absorption "al	bs	1,067
Gesamtkorrektur		2,81

Die unterschiedlichen Korrekturfaktoren für K K^{s+} und $K^{0}\overline{K}^{s0}$ sind eine Folge der kleineren Kaon-Impulse, die bei dem Zerfall der K s0 -Resonanz entstehen und daher eine größere Zerfallswahrscheinlichkeit besitzen (siehe Kap. XI.A.9.).

Als Verzweigungsverhältnisse für die beiden Zerfallskanäle ergeben sich unter Berücksichtigung der Clebsch-Gordan Koeffizienten für den K^{*}-Zerfall :

$$\begin{array}{l}
\mathbf{B} \left(\mathbf{K}^{\mathbf{X} \pm} + \pi^{*} \mathbf{K}^{0} \right) = 2/3 \qquad \mathbf{B} \left(\mathbf{K}^{\mathbf{Y}0} - \mathbf{K}^{+} - \overline{}^{-1} \right) = 2/3 \\
\frac{\Gamma(J/\psi \rightarrow \mathbf{K}^{\pm}\mathbf{K}^{\mathbf{Y}^{+}})}{\Gamma(J/\psi \rightarrow a) \mathrm{les}} = \frac{15\pm4,1}{3547} \cdot \frac{1,93}{0,9648} \cdot \frac{0,0304}{0,00747} \cdot \frac{3}{2} \cdot (0,069\pm0,009) = (0,36\pm0,11)^{-2} \\
\frac{\Gamma(J/\psi \rightarrow \mathbf{K}^{0}\mathbf{K}^{\mathbf{Y}0})}{\Gamma(J/\psi \rightarrow a) \mathrm{les}} = \frac{3\pm1,7}{3547} \cdot \frac{2,81}{0,9648} \cdot \frac{0,0304}{0,0025} \cdot \frac{3}{2} \cdot (0,069\pm0,009) = (0,31\pm0,18)^{-2} \\
\end{array}$$

Es besteht die Möglichkeit, das Verzweigungsverhältnis vom J/z-Zerfall in $K^0\overline{K^{\bullet 0}}$ auch über den Zerfall des K^0 -Mesons gemäß $K^0 \xrightarrow{B=0,5} K_S^0 \xrightarrow{B=0,69} -^+-^- zu$ bestimmen.

In Abb. 28 erkennt man im Bereich $(0,42 \le m_{\perp} \le 0,58 \text{ GeV}, m_X^2 < 1.1 \text{ GeV})$ 11 Ereignisse, von denen jedoch nur 4 Ereignisse eine 1-C Anpassung auf den Zerfall $J/u \Rightarrow -^+\pi^- K^{*0}$ überstehen. Auf Grund der Sichtprüfung muß eines von diesen 4 Ereignissen verworfen werden, das Verzweigungsverhältnis der 3 restlichen Ereignisse beträgt :

$$\frac{\Gamma(J/4 \rightarrow K^0 \bar{K}^{00})}{\Gamma(J/4 \rightarrow alles)} = \frac{341.7}{3583} \cdot \frac{1.3}{0.9648} \cdot \frac{0.0304}{0.002} \cdot \frac{1}{0.5} \cdot \frac{1}{0.686} \cdot (0.069 \pm 0.009) =$$
$$= (0.35 \pm 0.21)^{-4}$$

Innerhalb der großen Fehler gilt offenbar :

$$\Gamma^{-}(J/\psi \rightarrow K^{\dagger}K^{\dagger}\overline{F}) = \Gamma^{-}(J/\psi \rightarrow K^{0}\overline{K}^{\dagger 0})$$

VI.3. Endzustände mit 2 Kaonen : K^+ K^- X

Die Auswahl der Ereignisse erfolgt mit denselben Kriterien wie sie bei den --X-Ereignissen beschrieben wurden. Geändert sind die Schauerenergie- und Massen-Schnitte. Zusätzlich werden Ereignisse mit Kaon-Impulsen von mehr als 1.53 GeV/c (etwa 4 Standardabweichungen oberhalb des K-Paar Impulses) und mit Mittelwerten der Flugzeit-Massencuadrate $\overline{m_{FOF}} = (m_{K_1} + m_{K_2}^2)^2 < 0.11$ GeV² verworfen (3 Ereignisse).

Abb. 40 zeigt das Quadrat der fehlenden Masse m_X° gegen die invariante Masse $m_{K^+K^-}$ von 74 Ereignissen, die alle Auswahlkriterien überstanden haben. Die Verteilung der invarianten Massen (Abb. 41) zeigt ein deutliches Signal von 7 K⁺K⁻-Paaren bei 3,1 GeV, das auch durch die Paar-Schnitte nicht verlorengeht. Man erkennt die 7 K-Paare gut in der Impulskorrelation in Abb. 41b. Wegen der geringen Zahl von Elektron- und Müon-Paaren in den Massengrenzen für Kaon-Paare (\simeq 65 Ereignisse) ist sowohl die Zahl der e⁺e⁻- als auch der u-Paare, die ein K⁺K⁻-Paar vortäuschen können, vernachlässigbar klein. Die übrigen Korrekturen enthält die folgende Tabelle :

$J/ \rightarrow K^+ K^-$		7 Ereignisse
Korrekturen		
Schnitt auf Schauerenergie	nsch	1,17
Absorption	ⁿ abs	1,063
Zerfall	îdec	2,28
Gesamtkorrektur	966	2,84
Winkelverteilung W (e)		$\sim \sin^2 0$

Das Verzweigungsverhältnis beträgt :

 $\frac{T(J/\psi \rightarrow K^+K^-)}{T(J/\psi \rightarrow alles)} = \frac{7\cdot 2.6}{3763} \cdot \frac{2.84}{0.9648} \cdot \frac{0.0304}{0.0509} \quad (0.069-0.009) = (0.022 \pm 0.009)^{-1}$

Die Verteilung des Quadrats der fehlenden Masse in Abb. 42 zeigt ein starkes Signal für kleine fehlende Massen nahe der \neg^{0} -Masse. Abb. 43 zeigt die K⁺K⁻ \neg^{0} -Masse ohne die Paar-Ereignisse. Die 6 Ereignisse mit invarianten Massen oberhalb von 3,2 GeV sind $\pi^{+}\tau^{-}\pi^{0}$ -Ereignisse, denen Kaon-Massen zugeordnet wurden; sie werden weggeschnitten.

Ereignisse mit fehlenden Massen von weniger als 0.5 GeV werden einer 1-C Anpassung auf den Zerfall $J/\pm \rightarrow K^+ K^{-,0}$ untervorfen. 16 Ereignisse besitzen eine Wahrscheinlichkeit von mehr als 3 ; die Korrelation $m_{K,\pi}^{-0}$ gegen m_{KK}^{-} dieser Ereignisse zeigt Abb. 44. Auf Grund der Sichtprüfung müssen 5 Ereignisse verworfen werden; die restlichen Ereignisse ergeben ein deutliches $K_{\pm}^{+,-}$ -Signal (Abb. 44b). Sie stammen also aus dem Zerfall $J/\psi \rightarrow K^+ K^{\pm,+} - K^+ \pi^0$. Die Korrekturen für das Verzweigungsverhältnis betragen :

ABB. 44 INVARIANTE MASSE KT[®] GEGEN INVARIANTE MASSE KK

$J/_{V} \rightarrow K^{\pm} K^{\pm +}$		11	Ereignisse
Nichterkannter Untergrund		2	n
Gesamtzahl		9±3,3	Ereignisse
Korrekturen			
Schnitt auf Schauerenergie	n _{sch}	1,11	
Schnitt auf Anpassungswahrscheinlichkeit	n _{fit}	1,05	
Absorption	nahs	1,057	
Zerfall	n _{dec}	2,93	
Gesamtkorrektur	acc	3,61	
Winkelverteilungen wie bei $\pi^{\pm} \rho^{\pm}$			

Mit dem Clebsch-Gordan Koeffizienten 1/3 für den Zerfall $K^{\star\pm}\to K^{\pm-0}$ ergibt sich ein Verzweigungsverhältnis von :

$$\frac{\Gamma(J/\psi \rightarrow K^{\pm}K^{\pm})}{\Gamma(J/\psi \rightarrow \text{alles})} = \frac{9\pm3,3}{3689} \cdot \frac{3,61}{0,9648} \cdot \frac{0,0304}{0,0144} \cdot 3 \cdot (0,069+0,009) = (0,40\pm0,15) \text{ b},$$

in guter übereinstimmung mit dem Wert aus dem Zerfall $K^{\pm} \rightarrow \pi^{\pm} K^0$.

In Abb. 40 erkennt man ein Ereignis mit $m_{KK} = 1,044$ GeV und einer fehlenden Masse von 0,527 GeV. Dieses Ereignis wird dem Zerfall $J/\oplus \rightarrow n\Phi$, $\Phi \rightarrow K^+K^-$ zugeordnet, da im Innendetektor keine weiteren geladenen Spuren zu erkennen sind, wie man es bei dieser Zerfallskette erwartet. Die Abweichungen der gemessenen Massen von den \sim und (-Massen liegen innerhalb der Massenauflösungen : $\sigma(m_{i}) = 12$ MeV, $\sigma(m_{i}) = 45$ MeV. Unter Beachtung des Verzweigungsverhältnisses B ($t \rightarrow K^+K^-$) = 0,486 48 und dem Korrekturfaktor von $n_{ij} = n_{abs} \cdot n_{dec} = 6,15$ ergibt sich ein Verzweigungsverhältnis von :

$$\frac{\Gamma(J/\psi \rightarrow \eta \Phi)}{\Gamma(J/\psi \rightarrow alles)} = \frac{1 \pm 1}{3689} \frac{6,15}{0,9648} \frac{0,0304}{0,0091} \frac{1}{0,486} (0,069\pm0,009) = (0,082\pm0,09)$$

VI.4. Endzustände mit einem Meson und einem Nukleon : - p X, K p X

Bei der Auswahl dieser Ereignisse ändern sich gegenüber der $\pm rX$ -Ereignisauswahl die Massenschnitte für die Protonen (siehe Tab. III) und der Schauerenergieschnitt, durch den jetzt nur Ereignisse verlorengehen, bei denen beide Teilchen weniger als 30 MeV Schauerenergie besitzen. Es wird bei allen Ereignissen die Flugzeitzählerakzeptanz verwendet. Lepton-Paare, bei denen für eine Spur eine Flugzeit gemessen wurde, die der eines Protons entspricht, werden durch einen Impulsschnitt bei den Nukleonen abgetrennt : $p_N < 1,2$ GeV/c (dieser Wert liegt

höher als alle denkbaren Impulse von mpX-Ereignissen).

Es bleiben nach allen Schnitten 128 Ereignisse, deren Massenkorrelation Abb. 45 zeigt. Abb. 46 zeigt die Verteilung der invarianten -p-Massen, Abb. 47 die Verteilung des Quadrats der fehlenden Massen.

Bei $m_X^\circ = 0.9 \text{ GeV}^2$ erkennt man ein deutliches, relativ untergrundfreies Signal für den Zerfall $J/z \rightarrow p_\pi \bar{n}$ oder $\bar{p}_\pi^+ n$. Abb. 48 zeigt, daß sich die Masse von J/ψ ergibt, wenn man als fehlende Masse die des Neutrons annimmt und $m_{n\pi\pi}$ bildet.

Daß Strahl-Gas Ereignisse, bei denen ebenfalls ein Proton und ein Pion in die Außendetektorarme gelangen können, bei diesem Zerfall keine Rolle spielen, erkennt man aus Abb. 49. Dort sind die invarianten p π -Massen mit m $_{\rm X}$ < 1,04 GeV gegen den z-Wechselwirkungspunkt des Protons(Antiprotons) aufgetragen. Nur 2 Ereignisse liegen außerhalb der eingezeichneten Schnittgrenzen auf den Wechselwirkungspunkt; die Wahrscheinlichkeit, daß sich ein Strahl-Gas Ereignis unter den p π n-Ereignissen befindet, ist daher sehr klein. Untergrund aus anderen Zerfallskanälen läßt sich unterdrücken, wenn die Ereignisse mit m $_{\rm X}$ < 1,04 GeV einer 1-C Anpassung unterworfen werden. Von 24 Ereignissen haben 17 eine Wahrscheinlichkeit von mehr als 5 %, daß sie aus dem Zerfall J/ ψ -> p \approx n stammen. Unter diesen 17 Ereignissen befinden sich 8 $\overline{p}\pi^+n$ - und 9 $p\pi^-\overline{n}$ -Ereignisse. Bei diesen Ereignissen konnten keine weiteren Spuren festgestellt werden, die dem angenommenen Zerfall widersprechen.

Abb. 50 zeigt die kleinere der $p\pi$ - oder $n\pi$ -Kombinationen gegen die Masse der np-Kombination, Abb. 50a und b die Projektionen davon mit **d**em Verlauf der

ABB, 49 WECHSELWIRKUNGSPUNKT DES PROTONS GEGEN INVARIANTE MASSE

Phasenraumverteilungen bei reinem 3-Körperzerfall der J/ ψ -Resonanz. Es gibt keinen Hinweis für die Bildung einer Nukleon-Resonanz n π oder p π ;insbesondere nicht für den Isospin-verletzenden Zerfall J/ $\psi \rightarrow n\overline{\Delta}^{O}(1232)$.

Die folgende Tabelle enthält die Korrekturen für die Zerfälle : $J/\psi \to p\pi^-\bar{n}$ und $J/\psi \to \bar{p}\pi^+n$:

$J/\psi \rightarrow p \pi \overline{n}$		9 Ereignisse
Nichterkannter Untergrund		1 "
Gesamtzahl		8±3 Ereignisse
Korrekturen		· ·
Schnitt auf Anpassungswahrscheinlichkeit	- fit	1,052
Absorption	r _{iabs}	1,07
Zerfall	r dec	1,10
Gesamtkorrektur	uee	1,24
$J/\psi \rightarrow \overline{p} \pi^+ n$		8 Ereignisse
Nichterkannter Untergrund		1 "
Gesamtzahl	7	±2,8 Ereignisse
Korrekturen		
Absorption	η _{abs}	1,216
Gesamtkorrektur	405	1,41
Winkelverteilungen : isotroper 3-Körperzerfall		

Damit ergeben sich die Verzweigungsverhältnisse zu :

$$\frac{\Gamma(J/\psi + \overline{p\tau}, \overline{n})}{\Gamma(J/\psi + alles)} = \frac{8 \pm 3}{3743} \frac{1,24}{0,9648} \frac{0,0304}{0,00222} (0,069\pm0,009) = (0,26\pm0,09) \approx \frac{\Gamma(J/\psi + \overline{p\tau}, \overline{n})}{\Gamma(J/\psi + alles)} = \frac{7 \pm 2,8}{3743} \frac{1,41}{0,9648} \frac{0,0304}{0,00222} (0,069\pm0,009) = (0,26\pm0,1) \approx \frac{1}{2}$$

Da es doppelt geladene Baryonen gibt, kann man auch gleich-geladene Pionen und Protonen (Antiprotonen) kombinieren und versuchen, den Zerfall $J/\psi \rightarrow \Delta^{++}\Delta^{--}$, $\Delta^{++} \rightarrow p\pi^+$, $\Delta^{--} \rightarrow \overline{p} \pi^-$ nachzuweisen.

Abb. 51 zeigt die Massenkorrelation von 61 gleich-geladenen πp -Kombinationen, Abb. 52 die invariante $p^\pm \pi^\pm$ -Masse.

7 Ereignisse liegen in den Massengrenzen $|m_{\Delta} - m_{pm}| < 0,1$ GeV und $|m_{\Delta} - m_{\chi}| < 0,2$ GeV (siehe Abb. 51), 3 von ihnen haben nur 2 weitere geladene Spuren im Innendetektor, wie man es bei dem Zerfall $J/\psi \rightarrow \Delta^{++}\Delta^{--}$ erwartet. Bei zweien dieser Ereignisse werden \overline{p} und π^{-} , bei dem dritten Ereignis p und π^{+} in einem Außenarm nachgewiesen.

Mit einer mittleren Absorptionskorrektur von 1,16 und einer Pion-Zerfallskorrektur von 1,09 ergibt sich auf Grund dieser 3 Ereignisse ein Verzweigungsverhältnis von :

$$\frac{\Gamma(J/\psi \to \Delta^{++}\Delta^{--})}{\Gamma(J/\psi \to alles)} = \frac{3\pm 1.7}{3743} + \frac{1.27}{0.9648} + \frac{0.0304}{0.0012} + (0.069\pm 0.009) = (0.18\pm 0.1)$$

Dieser Wert muß als obere Grenze angesehen werden, da in ihm auch Ereignisse aus dem 4-Körperzerfall $J/\psi \rightarrow p \ \overline{p} \ \pi^+ \ \tau^-$ enthalten sein können.

Endzustände mit einem Kaon und einem Proton oder Antiproton konnten für unterschiedlich geladene Kombinationen (+-) nicht nachgewiesen werden. Bei gleich geladenen p[±] K[±] X-Ereignissen gibt es ein Ereignis mit m_{pK} = 1,73 GeV und m_x = 1,013 GeV sowie 3 zusätzlichen geladenen Spuren im Innendetektor.

VI.5. Endzustände mit einem Proton und einem Antiproton : p p X

Die Änderungen der Auswahlkriterien gegenüber den $\pi\pi X$ -Ereignissen sind schon im vorigen Abschnitt beschrieben worden. Nach allen Schnitten verbleiben 415 Ereignisse. Die Korrelation von m_{pp} gegen m²_x zeigt Abb. 53. Die Verteilung der invarianten p p -Massen in Abb. 54 wird von den Paar-Ereignissen bei der J/ ψ -Masse dominiert. Zusätzlich ist in Abb. 54 der Untergrund aus unkorrelierten Ereignissen eingezeichnet (ohne p p - Paare).

Nach den Paar-Schnitten verbleiben 133 p \overline{p} - Paare. Abb. 55 zeigt die Impulskorrelation aller p \overline{p} X-Ereignisse. Eingezeichnet sind die Proton-Impulsgrenzen für den Zerfall J/ $\psi \rightarrow \Lambda^0 \overline{\Lambda}^0$, $\Lambda^0 \rightarrow \overline{p} \pi^+$. Zwischen diesen Grenzen und dem Häufungspunkt der Impulse von den Paar-Ereignissen erkennt man weitere Ereignisse, die aus den Zerfällen von J/ $\psi \rightarrow p \overline{p} \pi^0$ oder J/ $\psi \rightarrow p \overline{p} \gamma$ stammen können.

Abb. 56 zeigt die Akollinearitätswinkelverteilung im J/ ψ -Schwerpunktssystem, schraffiert die Verteilung der p \overline{p} - Paare.

- 78 -

PAARIMPULS

0.0 25.0 ≁0^{c.m.} (GRAD) Die Winkelverteilung der Paare ist in Abb. 57 aufgetragen, θ ist der Winkel zwischen Proton und e⁺-Flugrichtung. Wegen der unsymmetrischen Akzeptanz für den Polarwinkel θ bei fester Ladung des Teilchens und bei fester Magnetfeldrichtung müssen an den beiden äußersten Intervallen Gewichte angebracht werden, die dem Anteil der verschiedenen Feldrichtungen entsprechen. Für unterschiedliche Azimuthalwinkelakzeptanz und für die Magnetfelder, deren Polarwinkelakzeptanz kleiner als $[\cos \theta_1] \leq 0,54$ ist, werden ebenfalls Gewichte angebracht.

Eine Anpassung mit der Funktion 1 + $a \cdot \cos^2 \theta$ ergibt $a = 1,7 \pm 1,7$ mit $\chi^2 = 0,61$ bei 4 Freiheitsgraden, eine Anpassung proportional zu sin² θ ergibt χ^2 = 4,4 bei 5 Freiheitsgraden. Für die Akzeptanzermittlung wird als Winkelverteilung 1 + $\cos^2 \theta$ angenommen.

Bei der Berechnung des Verzweigungsverhältnisses müssen nur Verluste durch Absorption ($n_{abs} = 1,17$) und durch die Paar-Schnitte ($n_p = 1,015$) berücksichtigt werden ($n_{p\overline{p}} = n_{abs}$, $n_p = 1,19$) : $\frac{\Gamma(J/\psi + p \ \overline{p})}{\Gamma(J/\psi + alles)} = \frac{133\pm12}{3820} \cdot \frac{1,19}{0,9648} \cdot \frac{0,0304}{0,0355} \cdot (0,069\pm0,009) = (0,25\pm0,04) \%$

Nach Ref. 1 ist der nichtresonante pp-Wirkungsquerschnitt $\sigma(p\overline{p}) \le 0,008 \sigma(\mu z)$ (90 % Vertrauensgrenze), der Beitrag von nichtresonanten pp-Paaren beträgt also weniger als ein Ereignis.

Abb. 58 zeigt die Verteilung der fehlenden Masse der ppX-Ereignisse; die Paarereignisse sind dabei ausgeschloßen. Man erkennt deutliche Signale bei den Massen von π^0 und n, aber auch Erhöhungen bei den Massen von ω und n', allerdings nur 1,5 Standardabweichungen über dem Untergrund, dessen Verlauf ebenfalls eingezeichnet ist.

Relativ untergrundfrei ist der Zerfall $J/\psi \rightarrow p \ \bar{p} \ \pi^0$. Von 22 Ereignissen mit $m_{\chi} < 0.26$ GeV liefern 18 eine Wahrscheinlichkeit von mehr als 5 ~ für diesen Zerfall. Davon zeigen 4 Ereignisse zusätzliche geladene Spuren im Innendetektor, bei 2 weiteren Ereignissen liegt der Vektor der fehlenden Masse in Strahlrichtung; da im Innendetektor keine weiteren Spuren zu sehen sind, kann man diese Ereignisse auf nichtresonante $p\bar{p}$ -Erzeugung zurückführen, wobei im Anfangszustand ein reelles Photon abgestrahlt wurde.

Abb. 59 zeigt die Korrelation der $p\pi^0$ - und $p\overline{p}$ -Massen der verbleibenden Ereignisse, Abb. 59a zeigt die invariante $p\overline{p}$ -Masse (schraffiert die 6 verworfenen Ereignisse), Abb. 59b die kleinere Masse der $p\pi^0$ oder $\overline{p}\pi^0$ Kombination; in beiden Abbildungen sind die Phasenraumverteilungen der entsprechenden Massen des 3-Körperzerfalls eingezeichnet. Wie bei den $p\pi$ n-Ereignissen ist auch hier keine Resonanzbildung im Endzustand festzustellen.

Nach Abzug von einem Ereignis für nichterkannten Untergrund ergibt sich mit $\eta_{pp\pi} o = \eta_{abs} \eta_{fit} = 1,25$ ein Verzweigungsverhältnis von :

 $\frac{\Gamma(J/\psi \rightarrow p\overline{p}\pi^{0})}{\Gamma(J/\psi \rightarrow alles)} = \frac{11\pm3.5}{3827} \cdot \frac{1.25}{0.9648} \cdot \frac{0.0304}{0.0054} \cdot (0.069\pm0.009) = (0.14\pm0.04) \%$

(Wie bei den $p\pi n$ -Ereignissen wird die Akzeptanz auf Grund von isotropen Winkelverteilungen ermittelt, siehe Kap. XI.A.8.)

Der Zerfall der J/ ψ -Resonanz in das X(2,82)⁵⁰ und dessen Zerfall in pp-Paare wird nicht beobachtet. Mit 90 % Vertrauensgrenze ($\stackrel{\circ}{=}$ 2,3 Ereignissen) ist das Produkt der Verzweigungsverhältnisse :

$$\frac{\Gamma(J/\psi \to \gamma X)}{\Gamma(J/\psi \to alles)} \frac{\Gamma(X \to p\overline{p})}{\Gamma(X \to alles)} < \frac{2.3}{3827} \cdot \frac{1.18}{0.9648} \cdot \frac{0.0304}{0.0239} \cdot 0.069 = 6.5 \cdot 10^{-5}$$

Abb. 58 zeigt 12 Ereignisse aus dem Zerfall $J/\psi \rightarrow p\overline{p}\eta$ über einem Untergrund von 20 Ereignissen. Mit einer Absorptionskorrektur von $\eta_{abs} = 1,21$ gewinnt man damit ein Verzweigungsverhältnis von :

 $\frac{\Gamma(J/\psi \rightarrow p\overline{p}n)}{\Gamma(J/\psi \rightarrow alles)} = \frac{12\pm5.6}{3827} \frac{1.21}{0.9648} \frac{0.0304}{0.0033} (0.069\pm0.009) = (0.25\pm0.12) \%$

Für 6 Ereignisse über einem Untergrund von 13 ergibt sich für den Zerfall J/ψ + $p\overline{p}_{\omega}$ ein Verzweigungsverhältnis von :

 $\frac{\Gamma(J/\psi \rightarrow p\overline{p}\omega)}{\Gamma(J/\psi \rightarrow alles)} = \frac{6\pm 4,3}{3827} \frac{1,24}{0,9648} \frac{0,0304}{0,0022} \cdot (0,069\pm 0,009) = (0,19\pm 0,14) \%$

Für 3 Ereignisse über einem Untergrund von 3 ergibt sich für den Zerfall $J/\psi + p\bar{p}n'$:

 $\frac{\Gamma(J/\psi \rightarrow p\overline{p}n')}{\Gamma(J/\psi \rightarrow alles)} = \frac{3\pm2.4}{3827} + \frac{1.28}{0.9648} + \frac{0.0304}{0.00095} \quad (0.069\pm0.009) = (0.23\pm0.19) \%$

Für die 3 oben genannten Verzweigungsverhältnisse werden isotrope Winkelverteilungen zugrundegelegt.

Die Verzweigungsverhältnisse in $p\overline{p}$, $p\overline{p\pi}^{0}$, $p\overline{pn}$, $p\overline{p\omega}$ und $p\overline{pn}$ ' sind alle etwa gleich groß, insbesondere sind Zerfälle mit n- und n'-Mesonen nicht bevorzugt gegenüber denen mit π^{0} - oder ω -Mesonen. Man beachte jedoch, daß der Zerfall in $p\overline{pn}$ ' etwa gleich groß ist wie der in $p\overline{pn}$, obwohl der Phasenraum für den Zerfall in $p\overline{pn}$ ' viel kleiner ist.

VII. Auswertung der Daten im w'-Bereich

Die Auswahlkriterien in diesem Kapitel sind dieselben wie bei den J/ ψ -Daten bis auf eine Änderung der Massenschnitte für πKX -Ereignisse und eine höhere Impulsgrenze ((p_H + p_T)/2 < 1,3 GeV/c) für den Akzeptanz-Schnitt.

VII.1. Endzustände mit 2 Pionen : $\pi \pi X$

Abb. 60 zeigt die Massenkorrelation und Abb. 61 die Verteilung der invarianten $\pi\pi$ -Massen mit dem Verlauf des Untergrundes aus unkorrelierten Ereignissen. Deutlich sichtbar ist ein K^D_c-Signal.

Nach den Paar-Schnitten verbleiben 3 $\pi^+\pi^-$ -Paare (siehe Abb. 61); sie sind auch in der Impulskorrelation in Abb. 62 erkennbar.

Die Korrekturen für leptonischen Untergrund sind geringer als bei den J/ ψ -Daten, da das Verzweigungsverhältnis der ψ '-Resonanz in Lepton-Paare kleiner ist⁴⁵. So gibt es in den Massengrenzen für $\pi\pi$ -Paare nur 355 μ -Paare und etwa 700 e-Paare. Die Wahrscheinlichkeit für gleichzeitiges Versagen von 2 Reichweitezählern beträgt 0,0012 (s. Kap. V.2.), so daß von den 3 π -Paaren nur 0,43 Ereignisse als Untergrund abgezogen werden müssen. Die Wahrscheinlichkeit, daß die 3 π -Paare Elektron-Paare sind, ist sehr klein, da für alle Teilchen die Schauerenergie kleiner als 250 MeV ist und bei keiner Spur ein Čerenkovzähler angesprochen hat. Die Verluste an π -Paaren durch den Schauerenergie-Schnitt sind kleiner als bei den J/ ψ -Daten, da nur etwa 14 % der Daten ohne Cerenkovzähler genommen worden sind (s. Tab. I). Die nötigen Korrekturen sind in der folgenden Tabelle zusammengestellt :

$\psi' \rightarrow \pi^+ \pi^-$	3	Ereignisse
Beitrag von µ-Paaren	0,43	u
Gesamtzahl	2,57 ± 1,7	Ereignisse

Korrekturen		
Schnitt auf Schauerenergie	n _{sch}	1,03
Absorption	nabs	1,09
Zerfall	n _{dec}	1,11
Transmission	n _t	1,12
Gesamtkorrektur		1,41
Winkelverteilung W (0)		$\sim sin^2 \theta$

Für die Berechnung des Verzweigungsverhältnisses benötigt man das Verhältnis

 $\frac{\Gamma(\psi' \rightarrow J/\psi X)}{\Gamma(\psi' \rightarrow alles)},$ weil die Normierung auf die Gesamtzahl der erzeugten ψ' -Teilchen

über die Kaskadenzerfälle $\psi' \rightarrow XJ/\psi$, $J/\psi \rightarrow \psi^+ \mu^-$ erfolgt. Aus Ref. 44 entnimmt

man : $\frac{\Gamma(\psi' \rightarrow J/\psi X)}{\Gamma(\psi' \rightarrow alles)} = 0.57 \pm 0.08$. Damit ergibt sich ein Verzweigungsverhältnis

von :

 $\frac{F(\psi' \rightarrow \pi\pi)}{F(\psi' \rightarrow alles)} = \frac{2,57\pm1,7}{905} \cdot \frac{1,41}{0,9805} \cdot \frac{0,0243}{0,0501} \cdot (0,069\pm0,009) \cdot (0,57\pm0,08) =$

$$= (0,0077 \pm 0,0053) \%$$

Die Verteilung des Quadrats der fehlenden Masse (Abb. 63) zeigt über dem eingezeichneten Untergrundsverlauf eine Spitze bei $m_X^2 \approx 0$. Die Annahme, daß das fehlende Teilchen wie bei den J/ ψ -Daten ein π^0 ist, widerlegt Abb. 64, in der die invariante Masse des $\pi^+\pi^-\pi^0$ -Systems gezeigt wird (die 3 π -Paare wurden fortgelassen). Der überwiegende Teil der $\pi^+\pi^-\pi^0$ -Massen > 3,6 GeV liegt oberhalb der ψ' -Masse, was zeigt, daß das fehlende Teilchen kein π^0 , sondern ein Photon ist. Eine weitere Untersuchung des Zerfalls $\psi' \rightarrow \pi^+\pi^-\gamma$ folgt in Kapitel VII.5..

Weiterhin ist in Abb. 63 ein kleines Signal von 7 ± 3 Ereignissen über einem Untergrund von 2 Ereignissen bei der fehlenden Masse vom J/ ψ zu sehen. Diese Spitze erwartet man bei dem Zerfall (1) $\psi' \rightarrow \pi^+\pi^- J/\psi$.

Daß trotz des hohen Verzweigungsverhältnisses von 32 $\%^{44}$ für diesen Kanal nicht mehr Ereignisse zu sehen sind, liegt daran, daß für die meisten (93 %) der ψ '-Daten ein hohes Magnetfeld (1000 A-Feld) verwendet wurde (s. Tab. I). Der Abschneideimpuls für dieses Feld beträgt etwa 400 MeV/c, während bei dem Zerfall (1) die Pion-Impulse im Mittel bei 280 MeV/c liegen.

Bei der Berechnung der Akzeptanz ist zu berücksichtigen, daß die Verteilung

der Rückstoßmassen m $_{\chi}$ des Zerfalls $\psi^+ \to X J/\psi$, der zu 86 % über den $\pi\pi$ -Kanal verläuft⁵¹, eine Konzentration bei hohen fehlenden Massen zeigt. Eine Erklärung dieser Form des Spektrums bietet die Annahme, daß der Zerfall (1) über die Bildung der skalar-isoskalaren e-Resonanz abläuft^{52,25}. Dieses Spektrum läßt sich reproduzieren, wenn man die Phasenraumverteilung der $\pi\pi$ -Massen mit einem Faktor p⁴ wichtet⁵³ (p_ = Pion-Impuls im nn-Ruhesystem). Mit einer Winkelverteilung $\sim 1 + \cos^2\theta$ für den Zerfall $\psi' \rightarrow \epsilon J/\psi$ ergibt sich eine Akzeptanz von 0,0098 %, wenn die fehlende Masse gegen das $\pi\pi$ -System auf 9,5 < m² < 9,6 GeV² beschränkt wird. Der Korrekturfaktor für den Zerfall beträgt n_{dec} = 1,75 und für Absorption von Pionen n_{abs} = 1,15, die Gesamtkorrektur beträgt 2,41. Damit berechnet man ein Verzweigungsverhältnis von :

 $\frac{\Gamma(\psi' \rightarrow \pi\pi J/\psi)}{\Gamma(\psi' \rightarrow alles)} = \frac{7\pm 3}{854} \frac{2,41}{0,9805} \frac{0,0243}{0,00098} \cdot (0,069\pm 0,009) \cdot (0,57\pm 0,08) =$

 $= (19.6 \pm 9.2) \%$

Durch die kleine Statistik und die Unkenntnis der genauen Form des $\pi\pi$ -Massenspektrums beträgt der systematische Fehler bei diesem Verzweigungsverhältnis etwa 25 %.

VII.2. Suche nach $\pi^+\pi^-$ -Obergängen zwischen Charmonium-Zuständen

In Ref. 54 wird vorgeschlagen, die pseudoskalaren Partner von J/ ψ und ψ' : r_ und n_c^{\dagger} über den Zerfall (2) $\psi^{\dagger} \rightarrow \gamma n_c^{\dagger}$, $\eta_c^{\dagger} \rightarrow \pi^{\dagger} \pi^{\dagger} \eta_c^{\dagger}$ zu identifizieren. Das η_c^{\dagger} sollte dabei im Rückstoßspektrum von $\pi^{\dagger} \pi^{\dagger} \gamma$ -Kombinationen nachgewiesen werden.

In Analogie zum Zerfall $\psi' \rightarrow \pi^+\pi^- J/\psi$ kann man annehmen, daß auch im Zerfall (2) die $\pi\pi$ -Massen eine ϵ -Resonanz bilden und daher bevorzugt hohe $\pi\pi$ -Massen auftreten. Daher wird zunächst versucht, Häufungen im $\pi^+\pi^-$ -Massenspektrum zu finden und dann das $n_{\rm r}$ und das fehlende Photon in Korrelation mit diesen Häufungen nachzuweisen. Identifiziert man das n_c mit dem X(2,82)⁵⁰, so ist der für Übergänge zwischen Charmonium-Zuständen interessante Bereich auf $m_{\pi\pi}$ < 0,86 GeV beschränkt. Wenn man für das n_c den Zustand bei 3,45 GeV^{14,55} verwendet, sollte man eine $\pi\pi$ -Massenhäufung bei 0.62 GeV sehen.

Abb. 65a zeigt das Massenspektrum für Pionen, die in verschiedenen Außendetektorarmen nachgewiesen wurden, aufgetragen in 20 MeV Schritten. Abb. 65b zeigt dieses Spektrum nur für Daten mit dem 1000 A-Magnetfeld, Abb. 65c für Daten

ERFIGNISSE/20 MEV

- 91 -

mit dem 300 A- und 500 A-Magnetfeld. In allen 3 Abbildungen ist eine signifikante Spitze im Bereich 0,78 < $m_{\pi\pi}$ < 0,8 GeV und in Abb. 65c zwei Erhöhungen bei $m_{\pi\pi} \approx 0,63$ sowie bei $m_{\pi\pi} \approx 0,56$ GeV zu sehen. In allen Abbildungen sind die Untergrundkurven aus unkorrelierten Ereignissen eingetragen. Die Massenauflösungen im Bereich von 500 bis 800 MeV betragen 10 - 15 MeV.

Abb. 66 zeigt die Korrelation zwischen dem Quadrat der fehlenden Masse und der $\pi\pi$ -Masse in größerem Maßstab als Abb. 60. Man sieht, daß die Spitze bei m $_{\pi\pi} \approx$ 0,56 GeV mit der fehlenden Masse der J/ ψ -Resonanz korreliert ist, also aus dem Zerfall $\psi' \rightarrow \pi\pi$ J/ ψ stammt.

Die Anhäufung bei $m_{\tau\pi} \simeq 0,63$ GeV kann zufällig entstanden sein (über dem eingezeichneten Untergrund in Abb. 65a beträgt das Signal nur 1,5 Standardabweichungen). Diese Spitze stimmt jedoch mit dem Wert überein, den man aus dem Zerfall (3) : $\psi' \rightarrow \gamma \chi(3,45), \chi(3,45) \rightarrow \pi^+ \pi^- \chi(2,82)$ erwartet (auch das Spektrum der fehlenden Massen ist konsistent mit dieser Zerfallskette). Verwendet man die 3 Ereignisse über dem in Abb. 65a eingezeichneten Untergrund als obere Grenze, so berechnet man ein Verzweigungsverhältnis von :

$$\frac{\Gamma(\psi' \rightarrow \gamma\chi(3,45))}{\Gamma(\psi' \rightarrow \text{alles})} = \frac{\Gamma(\chi(3,45) \rightarrow \pi\pi\chi(2,82))}{\Gamma(\chi(3,45) \rightarrow \text{alles})} < \frac{6.5}{854} \cdot \frac{1.68}{0.9805} \cdot \frac{0.0243}{0.000165} \cdot (0.069 \pm 0.009) \cdot .(0.57 \pm 0.08) = 7.6\%$$

$$(90\% \text{ Vertrauensgrenze})$$

Für die Berechnung der Akzeptanz wird eine $\pi\pi$ -Massenverteilung wie bei dem Zerfall $\psi' \rightarrow \pi\pi J/\psi$ angenommen, d.h. der Phasenraum für die $\pi\pi$ -Massen wird mit p_{π}^{4} gewichtet. Die Winkelverteilung für den Zerfall $\psi' + \gamma\chi(3,45)$ ist $\sim 1 + \cos^{2}\theta$, die Verteilungen für die Zerfälle $\chi(3,45) \rightarrow \epsilon\chi(2,82)$ und $\epsilon \rightarrow \pi^{+}\pi^{-}$ werden isotrop gewürfelt. Der Korrekturfaktor für Absorption und Zerfall der Pionen beträgt 1,68.

Die Spitze bei $m_{\pi\pi} \approx 0.79$ GeV liegt mehr als 3 Standardabweichungen über dem in Abb. 65a eingezeichneten Untergrund. Daß sie kein statistischer Effekt ist, beweisen auch die Abb. 65b und c. Auf Grund der Massendifferenz könnte man diese Spitze dem Zerfall (4) $\psi' + \gamma X(3,6)$, $X(3,6) + \pi^+\pi^- X(2,80)$ zuordnen, wobei X(3,6)den von DESY-Heidelberg in Strahlungszerfällen der ψ' -Resonanz entdeckten Zustand bezeichnet⁵⁶. Die Annahme, daß die Spitze ein Signal für das ω -Meson ist, führt wegen der kleinen Zerfallsbreite des ω -Mesons in 2 Pionen (B = 1,3 %)⁴⁸ zu unglaubwürdigen Verzweigungsverhältnissen für $\psi' + \omega x$ oder $\psi' + \gamma \langle y, P_c, n_c' \rangle$ $\rightarrow \gamma \omega x$. Auch die Zerfallskinematik (das ω -Meson wird fast ausschließlich im Laborsystem ruhend erzeugt) spricht gegen solche Zerfallskanäle. Aus entsprechenden Gründen scheiden auch Zerfälle wie $\psi' + \pi\pi$ H oder $\psi' + XY, Y + \pi\pi$ H aus, wobei Y und H "alte" Hadronen mit hohen Drehimpulsen sein könnten.

Eine Analyse der Spuren im Innendetektor ergibt, daß die mittlere Zahl der Photonen pro Ereignis im Intervall 0,78 < $m_{p\pi}$ < 0,8 GeV 1,5±0,3 beträgt, während es im Bereich ±100 MeV um dieses Intervall nur 1,0±0,12 Photonen/Ereignis gibt. Abb. 67 zeigt die Korrelation der $\pi\pi$ -Massen mit den Photon-Energien aller gefundenen Spuren. Man erkennt einige Photonen mit Energien um 80 MeV, die aus dem Übergang $\psi' \rightarrow \gamma X(3,6)$ stammen können, möglich ist jedoch auch eine Herkunft aus π^0 -Zerfällen. Abb. 68 zeigt die Korrelation mit den invarianten Massen aller

 $\gamma\gamma$ -Kombinationen. Bei m_{$\pi\pi$} \approx 0,79 GeV sieht man Häufungen bei den η - und η '-Massen (beide konsistent mit den Massenauflösungen im Innendetektor). Bei Zerfällen des η_c erwartet man eine hohe Beteiligung an η - und η '-Teilchen⁵⁴. Das η '-Signal kann jedoch aus "falschen" Kombinationen der Photonen entstanden sein, deren Energie im Bereich von 500 - 600 MeV liegt (s. Abb. 67).

Berechnet man das Produktverzweigungsverhältnis aus den 12 \pm 4,3 Ereignissen, die in Abb. 65a oberhalb des Untergrundes liegen, so ergibt sich :

$$\frac{\Gamma(\psi' \to \chi(3,6))}{\Gamma(\psi' \to alles)} = \frac{\Gamma(\chi(3,6) \to \pi\pi\chi(2,8))}{\Gamma(\chi(3,6) \to alles)} = \frac{12\pm4,3}{854} \cdot \frac{1,56}{0,9805} \cdot \frac{0,0243}{0,00083} \cdot (0,069\pm0,009) \cdot (0,57\pm0,08) = (2,6\pm0,9) \%$$

Dabei werden für die Akzeptanzberechnung die gleichen Annahmen wie bei der Zerfallskette (3) gemacht. Mit einer Massendifferenz $\Delta M = m_{\chi(3,6)} - m_{\chi(2,8)} = 796$ MeV läßt sich die Verteilung der $\pi\pi$ -Massen gut reproduzieren (siehe Abb. 65d).

Daß sich fast alle Ereignisse bei $\pi\pi$ -Massen von 790 MeV konzentrieren, ist ein Effekt der in diesem Bereich steil abfallenden 1000 A-Magnetfeldakzeptanz und der kleinen Statistik bei den 300 und 500 A-Magnetfeld-Daten.

VII.3. Endzustände mit 2 Kaonen : K K X

Wegen der höheren Impulse, die bei dieser Schwerpunktsenergie möglich sind und die eine höhere Kontamination durch Pionen zur Folge haben, wird zusätzlich zu

den üblichen Schnitten bei der Auswakl dieser Ereignisse ein Impuls von mehr als 1,82 GeV/c (2 $\sigma(p)$ oberhalb des maximalen K[±]-Impulses) und ein mittleres Massenquadrat aus der Flugzeitmessung von mehr als 0,07 GeV² verlangt.

Es verbleiben 60 Ereignisse; die Korrelation m_X^2 gegen m_{KK} zeigt Abb. 69, die Verteilung der invarianten Massen Abb. 70. Erkennbar sind 2 K⁺K⁻-Paare, die auch die Paar-Schnitte überstehen (siehe auch die Impulskorrelation in Abb. 71). Der Untergrund an Lepton-Paaren ist zu vernachlässigen, die übrigen Korrekturen betragen :

ψ' → K ⁺ K ⁻		2 Ereignisse
Korrekturen		
Schnitt auf Schauerenergie	n _{sch}	1,03
Absorption	nabs	1,056
Zerfall	n _{dec}	2,09
Gesamtkorrektur	900	2,28

Das Verzweigungsverhältnis beträgt :

$$\frac{\Gamma(\psi' \rightarrow K^+K^-)}{\Gamma(\psi' \rightarrow alles)} = \frac{2\pm 1.4}{922} \frac{2.28}{0.9805} \frac{0.0243}{0.0505} \cdot (0.069\pm 0.009) \cdot (0.57\pm 0.08) =$$

= $(0,0096 \pm 0,007)$ %

Das Spektrum der Quadrate der fehlenden Massen (Abb. 72) zeigt wieder eine deutliche Überhöhung bei m_x ≈ 0 (GeV²), jedoch ist auch hier kein Überzeugendes Signal für den Zerfall $\psi' \rightarrow K^+ K^- \pi^0$ zu erkennen (siehe Abb. 73), der Zerfall in K⁺ K⁻ γ wird zusammen mit $\pi^+ \pi^- \gamma$ in Kap. VII.5. behandelt.

- 96 -

VII.4. Endzustände mit Proton und Antiproton : p \overline{p} X

Zur Unterdrückung von Elektron- und Müon-Paaren werden zusätzlich alle Teilchen verworfen, deren Impuls größer als 1,68 GeV/c ist (d.h. deren Impuls 10 MeV/c über dem pp-Paar-Impuls liegt).

Es verbleiben 112 Ereignisse, deren Massenverteilungen Abb. 74, 75 und 76 zeigen. Man erkennt gut den Kaskadenzerfall in die J/ ψ -Resonanz und deren anschließenden Zerfall in pp-Paare.

Es gibt 4 pp-Paare aus dem direkten Zerfall der ψ '-Resonanz. Sie sind auch in der Impulskorrelation in Abb. 76a erkennbar. Mit einem Korrekturfaktor von $n_{p\overline{p}} = \eta_{abs}^{p} \cdot \eta_{abs}^{\overline{p}} \cdot n_{m} = 1,2$ ergibt sich :

$$\frac{\Gamma(\psi^{+} \rightarrow p\overline{p})}{\Gamma(\psi^{+} \rightarrow alles)} = \frac{4\pm 2}{939} \cdot \frac{1.2}{0.9805} \cdot \frac{0.0243}{0.0355} \cdot (0.069\pm 0.009) \cdot (0.57\pm 0.08) =$$
$$= (0.014\pm 0.008) \%$$

Mit Hilfe der $p\overline{p}$ -Paare aus dem J/ ψ -Zerfall läßt sich die Frage beantworten, wie groß das ψ' Verzweigungsverhältnis in Baryonen im Vergleich zur J/ ψ -Resonanz ist. Der Untergrund an $p\overline{p}X$ -Ereignissen aus dem J/ ψ -Zerfall läßt sich abschätzen, da man das Verhältnis N(J/ $\psi \rightarrow p\overline{p}$)/N(J/ $\psi \rightarrow p\overline{p}X$) aus den J/ ψ -Daten kennt. Es beträgt 0,386 mit einer Korrektur von 20 % für die kleinere Akzeptanz der $p\overline{p}$ -Paare aus dem Kaskadenzerfall. Auf Grund der 22 $p\overline{p}$ -Paare aus dem Kaskadenzerfall in die J/ ψ -Resonanz (siehe Abb. 75) erhält man einen Anteil von 57 ± 12 Ereignissen für den Zerfall $\psi' \rightarrow XJ/\psi$, J/ $\psi \rightarrow p\overline{p}X$. Die Zahl der direkten Zer-

fälle $\psi' \rightarrow p\overline{p}X$ beträgt damit 112 - 4 - 22 - 57 = 29 ± 16 Ereignisse. Mit der Akzeptanz und den Korrekturfaktoren aus dem Zerfall J/ $\psi \rightarrow p\overline{p}\eta$ ergibt sich :

$\Gamma(J/\psi \rightarrow p\overline{p}X)$	280±20	1,21	0,0304		
$\Gamma(J/\psi \rightarrow alles)$	3827	0,9648	0,0033	(0,069±0,00 9)	= 0,058 ± 0,009

Im Vergleich dazu ergibt sich für den direkten ψ '-Zerfall (unter der Annahme der gleichen Akzeptanz für den ppX Endzustand) :

$$\frac{\Gamma(\psi' \rightarrow p\overline{p}X)}{\Gamma(\psi' \rightarrow alles)} = \frac{29\pm16}{939} \cdot \frac{1.21}{0.9805} \cdot \frac{0.0243}{0.0033} \cdot (0.069\pm0.009) \cdot (0.57\pm0.08) =$$
$$= 0.011 \pm 0.007$$

Die ψ' -Resonanz zerfällt also 3 – 4 mal weniger häufig in Baryonen als die J/ ψ -Resonanz. Vergleicht man jedoch die Zerfallsbreiten der beiden Resonanzen in pDX-Endzustände so ergibt sich folgendes Verhältnis :

$$\frac{\Gamma(\psi^{*} \to p\overline{p}X)}{\Gamma(J/\psi \to p\overline{p}X)} = \frac{2.5 \pm 1.7}{4 \pm 1.1} = 0.62 \pm 0.45 ,$$

also ein etwa gleiches Verhältnis.

VII.5. Endzustände mit 2 Hadronen und einem Photon : $h^+ h^- \gamma$

Bei Impulsen oberhalb von 1,5 GeV/c ist die Trennung von Pionen und Kaonen über die Flugzeitmessung unzureichend. Bei der Auswahl von $\pi\pi\gamma$ - und KK γ -Ereignissen werden daher - abweichend von den Werten in Tabelle III - größere Massenbereiche zugelassen ($f_1 = 30$, $f_2 = 5$) und die Massenzuordnung mit Hilfe von 1-C oder 4-C Anpassungen entschieden, in denen die Hypothesen $\psi' \Rightarrow \pi^+\pi^-\gamma$ und $\psi' \Rightarrow$ $K^+K^-\gamma$ geprüft werden. Die Wahrscheinlichkeit, daß ein $\pi\pi\gamma$ - einen KK γ -Endzustand mit größerer Anpassungswahrscheinlichkeit vortäuscht, beträgt 6,2 %.

Eine 4-C Anpassung wird für Ereignisse gemacht, bei denen eine weitere Spur in den Proportionalrohrkammern des Innendetektors gefunden wird. Dieser Spur wird die Masse des Photons zugeordnet. Da sowohl die Energie als auch die Winkel von Photonen im Innendetektor gemessen werden, ist eine 4-C Anpassung möglich. Es stellt sich heraus, daß in den meisten Fällen die Massenzuordnung auf Grund der Anpassungswahrscheinlichkeit gut mit der Zuordnung auf Grund der Flugzeitmessung übereinstimmt.

Vor jeder Anpassung wird verlangt, daß die invariante Zwei-Hadron-Masse größer als 2,8 GeV und die fehlende Masse kleiner als 0,5 GeV ist (letztere Grenze liegt etwa bei dem 4-fachen der Massenauflösung von Photonen als fehlendes Teilchen).

Abb. 77a zeigt die Massenverteilung von 40 $\pi\pi\gamma$ und KK γ Ereignissen mit mehr als 2 % Anpassungswahrscheinlichkeit, darunter befinden sich 11 Ereignisse mit einer 4-C Anpassung (in Abb. 77a schraffiert).

Deutlich sind neben den direkten Hadron-Paaren, die die 1-C Anpassung ebenfalls überstehen, Überhöhungen bei 3,41 und 3,55 GeV zu sehen. Sie sind nach Standard-Klassifizierung⁵⁹ 0⁺ (= χ_0)- und 2⁺ (= χ_2)-Zustände, die in 2 Pseudoskalare zerfallen können.

Um die ψ '-Zerfälle in Hadron-Paare abzutrennen, wird verlangt, daß der Akollinearitätswinkel zwischen den Hadronen im ψ '-System größer als 1,5[°] ist. Dieser Schnitt verwirft außer den Hadron-Paaren noch zwei weitere Untergrund-Ereignisse. Abb. 77b zeigt die Massenverteilung der verbleibenden Ereignisse, zusätzlich sind die Massenauflösungen bei den χ -Zuständen eingezeichnet (∞ 20 MeV)

ABB, 77B INVARIANTE MASSE NACH ANPASSUNG UND AKOLLINEARITÄTSSCHNITT

Eine 1-C Anpassung der Hadronen auf die χ_0^- bzw. χ_2^- Massen ergibt, daß alle Ereignisse mit $m_{hh}^- > 3,35$ GeV mehr als 2 % Wahrscheinlichkeit besitzen, zu den nächstliegenden Resonanzen zu gehören. Bei der Sichtprüfung dieser Ereignisse wird im Innendetektor außer den Ereignissen mit einem Photon keine weitere Spur festgestellt. Ein Pionen-Ereignis im χ_0^- Bereich wird als Untergrund abgezogen. Damit werden für die Berechnung der Produktverzweigungsverhältnisse 23 Ereignisse verwendet : beim $\chi_0^- 11 \pi^+ \pi^-$ und 6 K⁺K⁻-, beim $\chi_2^- 4 \pi^+ \pi^-$ und 2 K⁺K⁻- Paar-Ereignisse (die KK-Ereignisse sind in Abb. 77b schraffiert).

Die Auswertung von 3 ppy-Kandidaten im Massenbereich zwischen 3,2 und 3,6 GeV (siehe Abb. 75) ergibt kein Ereignis, das die Anpassung an die Hypothese $\psi' \neq p\overline{p}\gamma$ übersteht. Ein Ereignis mit m $_{p\overline{p}}$ = 3,524 GeV und m $_{\chi}$ = 0,073 GeV ergibt eine akzeptable 1-C Anpassung, geht aber verloren, wenn mit dem im Innendetektor gefundenen Photon eine 4-C Anpassung versucht wird. Da im Außendetektor ein weiterer Schauerzähler durch ein neutrales Teilchen gesetzt ist, muß man dieses

Ereignis dem Zerfall $\psi' \rightarrow p\overline{p\pi}^0$ zuordnen. Die Vektorsumme der beiden Photonen liegt dann auch in der Richtung der fehlenden Masse des p \overline{pX} -Endzustandes. Die beiden anderen Ereignisse stammen möglicherweise aus dem Zerfall $\psi' \rightarrow p\overline{p\pi}^+\pi^-$. Für die Zerfälle $\psi' \rightarrow \gamma\chi_0 \rightarrow \gamma p\overline{p}$ und $\psi' \rightarrow \gamma\chi_2 \rightarrow \gamma p\overline{p}$ werden obere Grenzen berechnet.

Korrekturen

Die Wahrscheinlichkeit, daß ein e⁺e⁻γ-Ereignis ein $\pi^+\pi^-$ γ-Ereignis simuliert, ist vernachlässigbar klein. Außer den Schnitten in den Wahrscheinlichkeitsund Akollinearitätsverteilungen ergeben sich nahezu die gleichen Korrekturfaktoren wie bei den direkten Paaren. Die Gesamtkorrekturen betragen :

$$\begin{split} &\eta(\chi_{0} \rightarrow \pi\pi) = \eta_{sch} \eta_{abs} \eta_{dec} \eta_{t} \eta_{fit} \eta_{acol} = 1,47 \\ &\eta(\chi_{2} \rightarrow \pi\pi) = \eta_{sch} \eta_{abs} \eta_{dec} \eta_{t} \eta_{fit} \eta_{acol} = 1,48 \\ &\eta(\chi_{0} \rightarrow KK) = \eta_{sch} \eta_{abs} \eta_{dec} \eta_{fit} \eta_{acol} = 2,4 = \eta(\chi_{2} \rightarrow KK) \\ &\eta(\chi_{0} \rightarrow p\overline{p}) = \eta_{abs}^{p} \eta_{abs}^{\overline{p}} = 1,17 = \eta(\chi_{2} \rightarrow p\overline{p}) \end{split}$$

Die Akzeptanzen für die betrachteten Zerfälle hängen von der Art des Überganges vom ψ^{+} in die χ -Resonanzen ab, da die Winkelverteilungen der Hadronen von der Art des Überganges abhängig sind. Der Strahlungsübergang von der ψ^{+} -Resonanz $(J^{PC} = 1^{--})$ zum $\chi_{0}^{-} (J^{PC} = 0^{++})$ ändert den Gesamtdrehimpuls J, die Parität P und die Ladungskonjugation C. Wegen P = $(-1)^{L+1}$ und C = $(-1)^{L+S}$ ändert sich der relative Bahndrehimpuls L, aber nicht der Gesamtspin. Ein Übergang mit einer Paritätsänderung und $\Delta L = 0$ ist ein El- oder elektrischer Dipolübergang. Der Übergang vom 1^{--} zum 2^{++} Zustand kann auch über höhere Multipolübergänge (magnetischer Quadrupol M2, elektrischer Oktupol E3) verlaufen. Eindeutige Winkelverteilungen existieren daher nur für den Übergang in den 0^{+} -Zustand, nämlich $1 + \cos^{2}0$ für die Erzeugung und isotrope Verteilung für den Zerfall. Für den Übergäng in den 2^{+} -Zustand wurden Winkelverteilungen für die 3 möglichen Übergänge berechnet⁶⁰. Die Verzweigungsverhältnisse für die Zerfälle über die χ_{2} -Resonanz werden mit der Akzeptanz für den El-Übergang berechnet, für die beiden anderen Übergänge gelten folgende Beziehungen für die Akzeptanzen ε :

$$\frac{\varepsilon(M2)}{\varepsilon(E1)} = 0,65 \quad \text{und} \quad \frac{\varepsilon(E3)}{\varepsilon(E1)} = 0,83$$

Es ergeben sich folgende Produktverzweigungsverhältnisse :

 $\frac{\Gamma(\psi' + \gamma \chi_{0})}{\Gamma(\psi' + alles)} \cdot \frac{\Gamma(\chi_{0} + \pi\pi)}{\Gamma(\chi_{0} + alles)} = \frac{11\pm3,3}{939} \cdot \frac{1,47}{0,9805} \cdot \frac{0,0243}{0,0277} \cdot (0,069\pm0,009) \cdot (0,57\pm0,08) = (0,061\pm0,021) \%$ $\frac{\Gamma(\psi' + \gamma \chi_{0})}{\Gamma(\psi' + alles)} \cdot \frac{\Gamma(\chi_{0} + KK)}{\Gamma(\chi_{0} + alles)} = (0,055\pm0,025) \%$ $\frac{\Gamma(\psi' + \gamma \chi_{0})}{\Gamma(\psi' + alles)} \cdot \frac{\Gamma(\chi_{0} + p\overline{p})}{\Gamma(\chi_{0} + alles)} < 0,0095 \% \quad (90 \% \text{ Vertrauensgrenze})$ $\frac{\Gamma(\psi' + \gamma \chi_{2})}{\Gamma(\psi' + alles)} \cdot \frac{\Gamma(\chi_{2} + \pi\pi)}{\Gamma(\chi_{2} + alles)} = (0,015\pm0,008) \%$ $\frac{\Gamma(\psi' + \gamma \chi_{2})}{\Gamma(\psi' + alles)} \cdot \frac{\Gamma(\chi_{2} + KK)}{\Gamma(\chi_{2} + alles)} = (0,012\pm0,009) \%$ $\frac{\Gamma(\psi' + \gamma \chi_{2})}{\Gamma(\psi' + alles)} \cdot \frac{\Gamma(\chi_{2} + p\overline{p})}{\Gamma(\chi_{2} + alles)} < 0,0075 \% \quad (90 \% \text{ Vertrauensgrenze})$

Das P_c(3,51) kann als 1⁺-Zustand nicht in zwei pseudoskalare Teilchen zerfallen. Unter Verwendung der Akzeptanz und der Korrekturen vom χ_0 bzw. χ_2 ergeben sich folgende obere Grenzen für diese verbotenen Übergänge :

VII.6. Endzustände mit einem Pion und einem Kaon : π K X

Entsprechend der Analyse bei den J/ ψ -Daten wird ein Pion-Impuls < 1,35 GeV/c und ein Kaon-Impuls < 1,73 GeV/c verlangt.

Die Massenverteilungen von 190 Ereignissen zeigen Abb. 78, 79 und 80. Man erkennt ein K³⁰-Signal von 13 Ereignissen, die wie die K⁰_S-Ereignisse zum großen Teil aus dem Zerfall der χ -Zustände stammen. In der Verteilung des Quadrats der fehlenden Masse (Abb. 80) gibt es zwei Ereignisse, die bei der Masse des K⁰ liegen und deren π KK⁰-Masse bei 3,68 GeV liegt, also aus dem Zerfall $\psi' \rightarrow \pi$ KK⁰ stammen können. Sie sind jedoch auch mit Untergrund verträglich.

VII.7. Endzustände mit einem Meson und einem Nukleon : π p X und K p X

Bei πpX -Endzuständen werden nur Ereignisse akzeptiert, bei denen beide Impulse kleiner als 1,68 GeV/c sind und bei denen der Mittelwert der Massenquadrate aus der Flugzeitmessung größer als 0,33 GeV² ist.

Die Massenverteilungen der verbleibenden 53 Ereignisse zeigen Abb. 81, 82 und 83. In der Verteilung des Quadrats der fehlenden Masse entdeckt man ein Ereignis mit $m_X^2 \approx 0,832 \text{ GeV}^2$, das möglicherweise aus dem Zerfall $\psi' \rightarrow \overline{p}\pi^+ n$ stammt, jedoch auch mit Untergrund verträglich ist.

Die Auswertung von KpX-Endzuständen ergibt nur zwei Ereignisse mit $m_{K^-p} = 2,27$ GeV, $m_x = 1,124$ GeV und $m_{K^+p} = 2,193$ GeV, $m_x = 1,313$ GeV.

VIII. Auswertung der Daten im Energiebereich von 4,0 bis 5,2 GeV

Der totale Wirkungsquerschnitt für hadronische Endzustände zeigt 3 Spitzen bei Schwerpunktsenergien von 4,04, 4,16 und 4,417 ${\rm GeV}^{47}$:

Abb. 84 Verhältnis des hadronischen zum μ -Paar Wirkungsquerschnitt als Funktion von der Schwerpunktsenergie

Im die unterschiedliche Stärke von hadronischen Signalen bei diesen Spitzen beobachten zu können, werden die Daten des gesamten Energiebereiches in 4 Intervalle aufgeteilt (siehe Abb. 84) :

Bereich	Energie (GeV)	∫ L•dt nb ⁻¹	µ-Paare
I	3,984 < √s < 4,11	1207	168
II	4,11 < \sqrt{s} < 4,28	1077	133
111	4,28 <√s < 4,52	2723	302
IV	4,52 <√s < 5,2	2534	246
		7541	849

Die Auswahlkriterien für diese Daten entsprechen denen bei der Auswertung für die ψ '-Daten. Im Unterschied zu den J/ μ - und ψ '-Daten waren die Cerenkovzähler bei allen Daten dieses Energiebereiches vorhanden.

VIII.1. Endzustände mit 2 Pionen : π π X

Nach allen Schnitten verbleiben 610 Ereignisse, deren Massenkorrelation in Abb. 85 dargestellt ist. Die Auffächerung in getrennte Bänder entsteht durch die nicht gleichmäßig verteilte integrierte Luminosität (siehe Abb. 7). Die Verteilung der invarianten Masse ist in Abb. 86a für alle Energien dargestellt. Zum Vergleich ist die Untergrundkurve aus unkorrelierten Ereignissen eingezeichnet. Außerdem zeigen Abb. 86b - e die m $_{\pi\pi}$ -Verteilungen getrennt für die Energiebereiche I bis IV.

In Abb. 86a und b erkennt man ein einzelnes --Paar mit einer Masse von 4,034 GeV, gut sichtbar auch in der Impulskorrelation in Abb. 87. Die Strahlenergie für dieses Ereignis beträgt 2,044 GeV, der Akollinearitätswinkel 1,9⁰. In den Schauerzählern wird für beide Teilchen die Energie für minimal-ionisierende Teilchen (~80 MeV) gemessen. Außerdem hat keiner der Čerenkovzähler angesprochen; eine Interpretation als e⁺e⁻-Ereignis ist daher ausgeschloßen. Die Wahrscheinlichkeit, daß beide Reichweitezähler nicht ansprechen, beträgt 0,000625; die Zahl der μ -Paare innerhalb der Massengrenzen für π -Paare beträgt 252, so daß 0,16 Ereignisse abgezogen werden müssen. Eine Korrektur für den Schnitt auf die Schauerenergie entfällt, da ausschließlich die Information aus den Gerenkovzählern zur Abtrennung von Elektronen benutzt wird. Die Übrigen Korrekturen betragen :

ABB. 85 QUADRAT DER FEHLENDEN MASSE VS INVARIANTE MASSE

e ⁺ e ⁻ → ⁺ ⁺ ⁺ ⁻	1	1	Ereignis
Anteil an <u>-</u> -Paaren		0,16	
Gesamtzahl		0,84 '1	Ereignisse
Korrekturen			
Absorption	ⁿ abs .	1,084	
Zerfall	n _{dec} :	1,096	
Transmission	n+	1,15	
Gesamtkorrektur	C .	1,37	

Bezogen auf den gesamten Energiebereich von 4 bis 5,2 GeV ergibt sich :

 $\frac{\sigma (e^+e^- + -\frac{+}{\pi}^-)}{\sigma (e^+e^- + \mu^+\mu^-)} = \frac{0.84 \pm 1}{776} \frac{1.37}{1.025} \frac{0.0258}{0.0510} = (0.073 \pm 0.087)$

VIII.2. Endzustände mit einem Pion und einem Kaon : π K X

Um Fehlinterpretationen von Pionen als Kaonen zu vermeiden, wird zusätzlich ein Kaon-Impuls von weniger als 1,8 GeV/c verlangt.

Die Massenkorrelation von 89 Ereignissen zeigt Abb. 88, die Verteilungen der invarianten Massen in den 4 Energiebereichen zeigt Abb. 89a bis d.

Im Energiebereich I ist in der mK-Massenverteilung ein untergrundfreies Signal bei $_{\pi K} \approx 1,86$ GeV zu erkennen, das den Zerfall eines Mesons mit offenem Charm darstellt¹⁷ : $D^0 \rightarrow \pi K$. Im Energiebereich III ist ein D^0 -Signal nur zu erkennen, wenn man in der invarianten πK -Masse (1,8 < $m_{\pi K} < 1,92$ GeV) und in der fehlenden Masse (2,0 < $m_{\chi} < 2,3$ GeV) schneidet (siehe Abb. 88). In diesem Bereich liegen 8 D^0 (und \overline{D}^0)-Ereignisse, 6 im Energiebereich I und 2 im Energiebereich III. Alle 8 Ereignisse besitzen eine χ^2 -Wahrscheinlichkeit von mehr als 10 % bei einer 1-C Anpassung auf die D^0 -Masse (=1,863 GeV¹⁷), liegen also gut innerhalb der Massenauflösung von etwa 18 MeV.

Die Verteilung der Rückstoßmassen gegen das D 0 (verwendet wird die Masse aus der 1-C Anpassung) zeigt Abb. 90 für den Energiebereich I.

5 Ereignisse haben eine fehlende Masse im Bereich von 2,12 bis 2,17 GeV, ein Ereignis hat eine fehlende Masse von 2,06 GeV. Diese Verteilung erwartet man bei einer assoziierten Erzeugung von Mesonen mit Charm über folgende Reaktionen :

(1)
$$e^+e^- \rightarrow D^0 \overline{D}^{*0} (\overline{D}^0 D^{*0})$$
 (oder : $D^+ D^{*-} (D^- D^{*+})$)
(2) $e^+e^- \rightarrow D^{*0} \overline{D}^{*0}$ (oder : $D^{*+} D^{*-}$)

D¹ kennzeichnet die vektoriellen Partner der D-Mesonen (Quantenzahlen : $J^P = 1^-$) mit Massen von 2,0086 ± 0,001 GeV für D^{*+} und 2,006 ± 0,0015 GeV für D^{* 0} 61. Die D^{*}-Mesonen zerfallen elektromagnetisch : D^{*} + γ D oder stark : D^{*} + π D ⁶².

Das Ereignis mit m_x = 2,06 GeV stammt daher wahrscheinlich aus der Reaktion (1): $e^+e^- \rightarrow D^{*0} D^0$ oder $e^+e^- \rightarrow D^{*+} D^ \downarrow_{\rightarrow \pi^+} D^0$ $\downarrow_{\rightarrow \pi^+} D^0$ $\downarrow_{\rightarrow \pi^-} K$

Die Herkunft aus der Reaktion $e^+e^- \rightarrow D^{*0}D^0$, $D^0 \rightarrow \pi K$ ist unwahrscheinlich, da die fehlende Masse größer als die D^{*} -Masse ist.

Die anderen 5 Ereignisse stammen wahrscheinlich aus der Reaktion (2), wo sich die Rückstoßmasse gegen das rachgewiesene D^0 aus $-D^1$ oder $_3D^2$ zusammensetzt. Auf diese Weise ergibt sich die Spitze bei Rückstoßmassen von 2,16 GeV. Diese Interpretation der Herkunft der 6 D^0 -Ereignisse befindet sich in übereinstimmung mit dem Impulsspektrum von D^0 -Teilchen, bei den man knapp oberhalb der D^1D^2 -Schwelle kleine Impulse (200 MeV/c) für D^1D^2 -Ereignisse und etwas größere Impulse (550 MeV/c) für DD^2 -Ereignisse erwartet.

VIII.3. Endzustände mit 2 Kaonen : K K X

Bei diesem Endzustand wird zusätzlich verlangt, daß der Mittelwert der Massenquadrate aus der Flugzeitmessung größer als 0,11 GeV² ist. Durch diese Bedingung werden 2 Ereignisse weggeschnitten; weitere 2 Ereignisse werden verworfen, weil eine der beiden Spuren mit hoher Wahrscheinlichkeit ein Pion ist. Die Massenkorrelation der verbleibenden 10 Ereignisse zeigt Abb. 91.

Es sind weder Strukturen noch K-Paare zu entdecken. Als obere Grenze für die Erzeugung von K-Paaren ergibt sich mit einem Korrekturfaktor von n_{KK} = 2,04 :

$$\frac{\sigma(e^+e^- \rightarrow \kappa^+\kappa^-)}{\sigma(e^+e^- \rightarrow \pi^+\mu^-)} < \frac{2,3}{815} \frac{2,04}{1,025} \frac{0,0258}{0,0509} = 0,28 \cdot 10^{-2} \quad (90 \quad \text{Vertrauensgrenze})$$

Die 10 KKX-Ereignisse teilen sich wie folgt auf die 4 Energiebereiche auf : Bereich I (1), Bereich II (2), Bereich III (6) und Bereich IV (1).

VIII.4. Endzustande mit einem Proton und einem Antiproton : p p X

Bei diesen Endzuständen wird zusätzlich im Impuls und im Massenquadrat aus der Flugzeitmessung geschnitten :

Es bleiben 6 Ereignisse, deren Massenkorrelation Abb. 92 zeigt. Da keine $p\bar{p}$ -Paare gefunden werden, wird das Verhältnis der Wirkungsquerschnitte als obere Grenze angegeben :

$$\frac{\sigma(e^+e^- + pp)}{\sigma(e^+e^- + v^+v^-)} < \frac{2.3}{827} \cdot \frac{1.165}{1.025} \cdot \frac{0.0258}{0.0348} = 0.23 \cdot 10^{-2} \quad (90 \quad \text{Vertrauensgrenze})$$

ABB, 91 QUADRAT DER FEHLENDEN MASSE GEGEN INVARIANTE MASSE

Von den 6 Ereignissen liegt ein Ereignis im Bereich I, eins im Bereich II, 4 im Bereich III und keins im Bereich IV, obwohl dieser Bereich oberhalb der vermuteten Schwelle für die Erzeugung von gecharmten Baryonen liegt und man dort eine erhöhte Anzahl von Ereignissen mit Barvonen erwarten könnte⁶³

VIII.5. Endzustände mit einem Meson und einem Nukleon : π p X und K p X

Wie bei den ppX-Ereignissen wird auch hier bei den Protonen in der Impulsverteilung geschnitten. Bei den Mesonen darf der Čerenkovzähler nicht angesprochen haben.

Nach allen Schnitten verbleiben 73 Ereignisse. Wegen des in diesem Energiebereich höheren Strahl-Gas Untergrundes werden nur Endzustände mit Antiprotonen betrachtet, weil $\overline{p}_{\tau}^{+}X$ -Ereignisse bei Strahlenergien von weniger als 2.6 GeV durch Elektron-Nukleon Prozeße nicht erzeugt werden können. Diese Beschränkung verwirft 62 von den 73 Ereignissen! Die Massenkorrelation der verbleibenden 11 Ereignisse zeigt Abb. 93, die invariante \overline{p} -⁺-Masse Abb. 94.

3 Ereignisse liegen im Bereich I, 1 im Bereich II, 4 im Sereich III und 3 im Bereich IV. Bei der Schwerpunktsenergie von 5 GeV gibt es ein Ereignis mit einem Antiproton und zwei Pionen in den Außenarmen. Die invariante Masse $m_{\pi_{1}}+$ _beträgt 3,083 GeV, die fehlende Masse 1,842 GeV und die invariante $\overline{p_r}^+$ -Masse 2,044 GeV. Dies Ereignis ist mit Sicherheit kein gecharmtes Baryon, da weder ein $\overline{\mathbb{M}}^0$ nachgewiesen wird noch der Zerfall $\overline{\mathbb{R}}_c^- + \pi^+ \overline{\mathbb{M}}^0$, $\overline{\mathbb{M}}^0 + \overline{\mathbb{p}}_\pi^+$ überhaupt möglich ist (Erhaltung der Baryonenzahl).

Die Auswertung der pKX-Endzustände ergibt nur ein Ereignis mit einer invarianten Masse von m_{nK}^{+} = 2,086 GeV und einer fehlenden Masse von 2,843 GeV (E_{cm}^{-} -5.0 GeV1.

IX. Diskussion der Ergebnisse

IX.1. Ergebnisse aus Zerfällen der J/ $_{\psi}\text{-}$ und $_{\xi}\text{'-Resonanzen}$

Im Charmonium-Nodel) sind die J/g- und g'-Resonanzen mebundene Zustände eines Charm-Quarks c und seines Antiquarks c ($c\overline{c}$), wobei J/τ als Grundzustand und vals erster radial angeregter Zustand interpretient werden. Die nahe Verwandtschaft zwischen J/g und g' wird durch den höhen Anteil der Kaswagenzerfälle $\psi^* \to J/\psi X$ (B > 50 $^{-})^{44}$ belegt. Der Nachweis von Zuständen P $_{c},~\chi$ zwischen den beiden Resonanzen^{13,14} und von Mesonen, die aus einem c-Quark und einem der 3 Quarks u, d oder s aufgebaut sind, sind starke Stützen dieser Interpretation 17,18

Wegen der Ernaltung der Charm-"Ladung" sind hadronische Zerfälle im co-Grundzustand nur durch die Vernichtung der Quarks in Photonen oder Gluonen möglich. Ein Zustand mit J = 1 kann elektromagnetisch in ein virtuelles Photon oder über die starke Wechselwirkung in 3 Gluonen zerfallen⁶⁴ (in Analogie zum Zerfall des Ortno-Positroniums). Ein Vergleich der entsprechenden Kopplungskonstanten \sim und

 α_s ist mit Hilfe einer Eichtheorie der starken Wechselwirkung – der Quantenchromodynamik QCD⁶⁵ – möglich. Nach dieser Theorie ist die starke Kopplungskonstante α_s von der übertragenen Energie abhängig⁶⁶ :

$$\alpha_{s}(E) = \frac{\alpha_{s}(E_{0})}{1 + \frac{25}{12\pi} \alpha_{s}(E_{0}) \ln(E/E_{0})^{2}} \qquad (E_{0} = Normierungskonstante)$$

Mit wachsender Energie nimmt die Kopplungsstärke ab (asymptotische Freiheit). Bei der J/ ψ -Resonanz kann man die Kopplungskonstante α_s aus dem Verhältnis :

$$\frac{\Gamma(J/\psi \rightarrow 3 \text{ Gluonen} \rightarrow \text{Hadronen})}{\Gamma(J/\psi \rightarrow e^+ e^-)} = \frac{5(\pi^2 - 9)}{18\alpha^2} \alpha_s^3 \quad \text{gewinnen}^{64} : \alpha_s \approx 0,2.$$

Bei diesem kleinen Wert können hadronische Zerfälle der J/ ψ -Resonanz näherungsweise mit Hilfe der Störungstheorie berechnet werden : die starke Kopplung ist daher $\sim \alpha_s^3$. Da der elektromagnetische Zerfall $\sim \alpha$ und $\alpha_s^3 \approx \alpha$ ist, zerfällt die J/ ψ -Resonanz etwa zu 1/3 elektromagnetisch und zu 2/3 stark (gemessenes Verhältnis 31 : 69 %). Die kleinen Kopplungskonstanten erklären auch die relativ lange Lebensdauer der J/ ψ - und ψ ⁴-Resonanzen.

Wegen der hohen Masse der J/u-Resonanz kann sie in viele hadronische Endzustände zerfallen. In Tabelle IV sind die in dieser Arbeit beobachteten Zerfälle der beiden Resonanzen mit den gemessenen Verzweigungsverhältnissen zusammengefaßt. Die Obereinstimmung mit den Ergebnissen anderer Experimente (vor allem SLAC-LBL) und mit früheren Messungen von DASP ist sehr gut. Abgesehen von den Meson-Paaren und den Kaskadenzerfällen der ψ' -Resonanz beträgt ein typisches Verzweigungsverhältnis für einen einzelnen Kanal weniger als 1⁻¹, das des stärksten bisher beobachteten Zerfalls $B(J/u + \pi^+\pi^-\pi^+\pi^-\pi^0) = (3,64\pm0,52)$.⁶⁷.

IX.1.1. Quantenzahlen der J/g- und g'-Resonanzen

Da sowohl die Erzeugung als auch der Zerfall der Resonanzen über Einphotonaustausch abläuft, erwartet man, daß sie wie die bekannten Vektormesonen $_{\odot}$, $_{\odot}$ und ϕ die Quantenzahlen des Photons J^{PC} = 1⁻⁻ tragen. Diese Zuordnung ist experimentell durch den Nachweis einer destruktiven Interferenz unterhalb der Resonanzenergien zwischen der nichtresonanten $_{\odot}$ -Paarerzeugung und der Breit-Wigner-Resonanzamplitude für den $_{\odot}$ -Zerfall bestätigt worden ^{42,45}. Außerdem ist die Winkelverteilung für $_{\odot}$ -Paarerzeugung \sim 1 + cos² $_{\ominus}$ und man beobachtet keine Vorwärts-Rückwärts Asymmetrie. Die Zuordnung J^P = 1⁻ ist demnach konsistent mit

Kana]	Diese Arbeit ()	And. Experimente (1)	Referenz
J/ψ → π ⁺ π ⁺	0,01 ±0,005	0,016±0,016 0,01±0,007	69 (SLAC-LBL) 68 (DASP)
→ K ⁺ K ⁻	0,022 ± 0,009	0,02 ± 0,016 0,014 0,014	69 (SLAC-LBL) 68 (DASP)
→ p p	0,25 ±0,04	$\begin{array}{c} 0,22 \pm 0,02 \\ 0,19 \pm 0,03 \\ 0,23 \pm 0,03 \end{array}$	70 (SLAC-LBL) 71 (PLUTO) 68 (DASP)
→ ~ [±] ρ + π ⁰ ρ ⁰	1,10 ±0,27	$\begin{array}{rrrr} 1,3 & \pm 0,3 \\ 1,0 & \pm 0,2 \\ 1,6 & \pm 0,4 \\ 1,2 & \pm 0,3 \end{array}$	72 (SLAC-LBL) 73 (DESY-Heidelberg) 74 (PLUTO) 68 (DASP)
+ π [±] ε`	0,81 ±0,17	0,83 ±0,2 0,78 ±0,19	72 (SLAC-LBL) 68 (DASP)
→ π ⁰ ρ ⁰	0,29 ±0,15		
-► K [±] K ^{* ∓}	0,38 ±0,09	$0,32 \pm 0,06$ $0,41 \pm 0,12$	69 (SLAC-LBL) 68 (DASP)
→ K ^o K ^{ro}	0,33 ±0,14	0,27 ±0,06	69 (SLAC-LBL)
→ ηΦ	0,082±0,09	$0,1 \pm 0,06$	69 (SLAC-LBL)
⇒ pπ ⁺ n + pπ ⁻ n	0,26 ±0,1	0,21 ±0,028	70 (SLAC-LBL)
→ p μ τ ^ο	0,14 ±0,04	0,1 ±0,015	70 (SLAC-LBL)
→ p p̄ n	0,25 ±0,12	0,23 ±0,04	70 (SLAC-LBL)
→ p μ ω	0,19 ±0,14	0,16 ±0,03	70 (SLAC-LBL)
→ p p ח'	0,23 ±0,19	0,18 ±0,06	70 (SLAC-LBL)
→ `X(2,8)-γpp	< 6,5.10 ⁻³	< 4.10 ⁻³	70 (SLAC-LBL) (90 ± c.1.)
+ ^ ⁺⁺ ^	< 0,18±0,1	≈ 0,09±0,01	70 (SLAC-LBL)
	0,0077 ± 0,0053	< 0,005	75 (SLAC-LBL, 90 % c.1.)
→ K ⁺ K ⁻	0,0096±0,007	< 0,005	75 (SLAC-LBL, 90 🕆 c.1.)
-+ p p	0,014 ± 0,008	0,023±0,007	75 (SLAC-LBL)
→ r ⁺ π J/ψ	19,6 ±9,2	36 ± 6 32 ± 4	44 (SLAC-LBL) 76 (DASP)
→ X(3,6) γ	2,6 ±0,9		
$ \stackrel{\rightarrow}{\longrightarrow} \chi(3,45)_{Y} \\ \stackrel{\leftarrow}{\longrightarrow} \pi^{-}X(2,8) $	< 7,6 (90 % c	.1.)	
$\begin{array}{ccc} + \gamma & \chi_0 \rightarrow \gamma \pi \tau \\ + \gamma & \chi_0 \rightarrow \gamma K K \\ + \gamma & \chi_0 \rightarrow \gamma p p \end{array}$	0,061 ± 0,021 0,055 ± 0,025 < 0,0095 (90	0,075 ± 0,021 0,078 ± 0,023 % c.l.)	51a (SLAC-LBL) 51a (SLAC-LBL)
+ $\gamma \chi_2$ + $\gamma \pi \tau$ + $\gamma \chi_2$ + $\gamma K K$ + $\gamma \chi_2$ + $\gamma p p$	0,015 ± 0,008 0,012 ± 0,009 < 0,0075 (90	0,019±0,008	51a (SLAC-LBL)

Tabelle IV : J/ψ und ψ' Verzweigungsverhältnisse

den Daten. Aus der negativen Parität ergibt sich eine negative Ladungskonju~ gation C.

Da das J/ ψ in kohärenter Weise in der Photoproduktion erzeugt werden kann⁷⁷, ist das J/ ψ ein Meson und hat daher eine definierte G-Parität. Der Vergleich des direkten (starken) Zerfalls der J/ ψ -Resonanz in geradzahlige oder ungeradzahlige Anzahlen von Pionen zeigt, daß die G-Parität negativ ist. Die scheinbare G-Paritätsverletzung durch den Zerfall in $\pi^{+}\pi^{-}$ -Paare wird dadurch erklärt, daß dieser Zerfall elektromagnetisch über ein virtuelles Photon verläuft, gemäß dem folgenden Graphen :

Bei elektromagnetischen Wechselwirkungen bleibt die G-Parität nicht erhalten.

Der Isospin I der J/ ψ -Resonanz muß wegen G = C·(-1)^I, G = -1, C = -1 Null oder 2 sein. Welche der beiden Möglichkeiten richtig ist, gewinnt man aus der Betrachtung von Endzuständen, die in verschiedenen Ladungskombinationen auftreten können :

Endzustand <u>π</u>ρ

Bei dem Zerfall eines Isospin 0 - Zustandes in zwei Isospin 1 - Zustände treten die 3 Endzustände $\pi^+\rho^-$, $\pi^0\rho^0$ und $\pi^-\rho^+$ gleich häufig auf. Daraus folgt: $\Gamma(\pi^\pm\rho^+)$: $\Gamma(\tau^0\rho^0)$ = 2 : 1, was gut mit dem gemessenen Verhältnis von (2,8 + 1.3) : 1 übereinstimmt. Für I(J/ ϕ) = 2 gilt : $\Gamma(\tau^\pm\rho^\mp)$: $\Gamma(\pi^0\rho^0)$ = 1 : 2, was keinesfalls mit den Messungen zu vereinbaren ist.

2. Endzustand K K

Für einen 1/2 x 1/2 Isospin-Endzustand gilt : $\Gamma(K^{+}K^{++})$: $\Gamma(K^{0}K^{+0}) = 1 : 1$, was ebenfalls gut mit dem gemessenen Verhältnis von 1,15±0,58 übereinstimmt. Ein Isospin 2 - Zustand für das J/0 ist ausgeschlossen, wenn der KK^{*}-Zerfall ein direkter Zerfall ist, was das mit dem πp -Zerfall vergleichbar hohe Verzweigungsverhältnis nahelegt.

3. Endzustand N \overline{N} π

Wenn I(J/ ψ) = 0 ist, muß I(N π) = 1/2, I(N π) = 1/2 (oder I(NN) = 0) sein. Da für einen Isospin 1 x 1/2 – Endzustand gilt : $|1/2, -1/2\rangle = -1/\sqrt{3} \cdot 0, -1/2\rangle = -\sqrt{2}/\sqrt{3} |-1,1/2\rangle$ muß $\Gamma(pp\pi^{0})$: $\Gamma(pn\pi^{-}) = 1$: 2 und $\Gamma(pp\pi^{0})$: $\Gamma(pn\pi^{+}) = 1$: 2 sein, was gut durch die Messung bestätigt wird : $\Gamma(pp\pi^{0})$: $\Gamma(pn\pi^{-}) = 0,54 \pm 0,25 = \Gamma(pp\pi^{0})$: $\Gamma(pn\pi^{+})$. Wenn I(J/ ψ) = 2 wäre, müßte $\Gamma(pn\pi^{-})$: $\Gamma(pp\pi^{0})$: $\Gamma(pp\pi^{0}$

4. Endzustand p p

Wie im Falle des Endzustandes KK^{*} ist der Zerfall $J/\psi \rightarrow p\overline{p}$ nur möglich, wenn $I(J/\psi)$ Null oder 1 ist. Diese Aussage ist nur dann richtig, wenn man nachweist, daß die $p\overline{p}$ -Paare aus dem direkten (starken) Zerfall von J/ψ stammen.

Abb. 95 zeigt das Verhältnis $\sigma(e^+e^- \rightarrow p\overline{p})/\sigma(e^+e^- \rightarrow \mu\mu)$, abhängig vom Quadrat der Schwerpunktsenergie s. Die eingezeichnete Kurve gibt den auf μ -Paare normierten Verlauf der oberen Grenze des Wirkungsquerschnittes für nichtresonante $p\overline{p}$ -Erzeugung wieder⁷⁸. Die gemessenen Werte für beide Resonanzen liegen deutlich oberhalb dieser Kurve, insbesondere oberhalb der oberen Grenze, die von SPEAR bei s = 9 GeV² gemessen wurde.

5. Endzustand η φ

Das Auftreten dieses Zerfallkanals mit einem Verzweigungsverhältnis, das mit dem von anderen direkten Zerfällen vergleichbar ist, läßt nur den Isospin Null für J/ ϕ zu.

Diese Isospin-Zuordnung wird außerdem durch die Abwesenheit von isospin-verletzenden Zerfällen wie $J/\Downarrow \rightarrow N \ \overline{\bigtriangleup} \ (\overline{N} \ \land)$ bestätigt.

Alle oben angeführten Punkte stützen die Zuordnung von $\mathbf{1}^G$ = $\mathbf{0}^-$ für die J/ $\psi-$ Resonanz.

Durch das Auftreten der Zerfälle $\psi^+ \rightarrow \pi^+ \pi^- J/\psi$ und $\psi^+ \rightarrow \pi^0 \pi^0 J/\psi$ im Verhältnis 2 : 1 sowie durch den Zerfall $\psi^+ \rightarrow \eta \partial/\psi$ mit einem hohen Verzweigungsverhältnis^{44,51} muß man der ψ^+ -Resonanz die gleichen Quantenzahlen zuordnen.

IX.1.2. SU(3) - Klassifikation der J/ψ -Resonanz

Wenn das J/ ψ den gebundenen Zustand eines Quark-Antiquark-Paares darstellt, das nicht in dem SU(3)-Schema enthalten ist, erwartet man, daß es sich bezüglich SU(3) wie ein Singulett verhält. Ein SU(3)-Singulett mit C = -1 kann nicht in zwei Mesonen desselben SU(3)-Multipletts zerfallen, deren I = Y = 0-Komponenten die gleiche Ladungskonjugation haben¹. Daher sind für ein SU(3)-Singulett Zerfälle in $\pi^+\pi^-$, K^+K^- , $K^0\overline{K}^0$, $\rho^+\rho^-$, $K^{+0}\overline{K}^{+0}$ und $K^{++}K^{+-}$ verboten, während Zerfälle in $\pi\rho$, $K\overline{K}^*$ oder $K^+\overline{K}^{+*}$ (1420) erlaubt sind.

Aus Tabelle IV entnimmt man, daß Zerfälle in Mesonpaare $\pi\pi$, KK unterdrückt sind gegenüber Zerfällen wie $\pi\rho$ oder KK^{*}, wie man es für einen Singulett-Zustand erwartet. Das mit dem Zerfall in Pion-Paare vergleichbar hohe Verzweigungsverhältnis für Kaon-Paare zeigt, daß auch dieser Zerfall über ein virtuelles Photon (siehe Graph (1)) verläuft.

Ein SU(2)-Singulett fordert gleiche Zerfallsraten in verschiedene Ladungszustände eines hadronischen Endzustandes (z.B. $\pi\rho$), ein SU(3)-Singulett fordert gleiche Stärke für Zerfälle in verschiedene Mitglieder der gleichen SU(3)-Multipletts. Demnach erwartet man gleiche Zerfallsraten für Zerfälle in $\pi\sigma$, KK^{*} oder $\pi^{\phi}\phi^{a}$ (π^{ϕ} und ϕ^{a} bezeichnen den reinen Oktettzustand von m und ϕ).

Nach einer Korrektur für den p-Wellen-Phasenraum (folgt aus der Paritätserhaltung) und für den $\phi-\omega$ Mischzustand ergibt sich für einen SU(3)-Singulett Zustand : $\Gamma(\pi^+\rho^-)$: $\Gamma(K^+K^{+-})$: $\Gamma(\eta \varphi) = 1$: 0.85 : 0.5 (mit r als reinem Oktett-zustand). Die gemessenen Werte aus Tab. IV ergeben :

 $\mathbb{T}(\neg^+ \wp^-) : \mathbb{T}(K^+ K^{*-}) : \mathbb{T}(\gamma \flat) = 1 : (0,47 \pm 0,15) : (0,22 \pm 0,23)$ in grober Übereinstimmung mit der SU(3);Singulett Annahme.

Die Abweichungen lassen sich mit der Annahme einer kleinen Beimischung einer Oktett- (A₈) zur dominanten Singulett-Amplitude (A₁) erklären. Da $r(\pi^+ \rho^-) \sim |A_1 - 2|A_8|^2$ und $r(K^+ K^{\pm -}) \sim |A_1 + A_8|^2$ sind⁷⁹, ergibt sich für das Verhältnis der Amplituden (δ ist die relative Phase zwischen A₈ und A₁) :

$$\frac{A_8}{A_1} \cos \delta = -0.1 \pm 0.06$$

Anteile von 10 \pm an SU(3)-Symmetriebrechung findet man auch bei Hadronen, die aus u-, d- und s-Quarks zusammengesetzt sind.

Bei der Rechnung wurde vernachlässigt, daß die Zerfälle auch über virtuelle Photonen verlaufen und mit den direkten hadronischen Zerfällen interferieren können. Daß der Anteil der Zerfälle über Einphotonaustausch (Amplitude A_Y) klein ist, zeigen die Zerfälle in $K^0\overline{K}^{*0}$ und $K^{\pm}K^{*+}$, für die bei Annahme einer reinen Singulett-Amplitude für J/ψ gilt : $\underline{r}(K^0\overline{K}^{*0}) \sim |A_1 - 2|A_Y|^2$, $\underline{r}(K^{\pm}K^{*\mp}) \sim |A_1 + A_Y|^2$ Mit den Werten aus Tab. IV ergibt sich ein Verhältnis von :

$$\frac{A_{\gamma}}{A_1}\cos\delta = 0,02\pm0,08$$

IX.1.3. Formfaktoren

IX.1.3.1. Nukleon - Formfaktor

Der differentielle Wirkungsquerschnitt für die Erzeugung von pp-Paaren über die elektromagnetische Wechselwirkung ist proportional dem Quadrat der elektrischen und magnetischen Formfaktoren $(G_F, G_M)^{43}$:

$$\frac{d\sigma}{d\varrho} = \frac{\alpha^2 m^2 \beta}{s^2} - \left[G_{E} \left[\frac{2 \sin^2 \theta}{4m^2} + \frac{s}{4m^2} \right] \left[G_{M} \left[\frac{2}{4} (1 + \cos^2 \theta) \right] \right]$$
 m = Nukleonmasse

Wegen des Faktors s/4m² ergibt sich in der nichtresonanten pp-Erzeugung bei hohen Energien eine Winkelverteilung $\sim 1 + \cos^2 0$.

Da die pp-Paare aus dem direkten Zerfall der J/U-Resonanz stammen (siehe Kap. IX.1.1.) haben die Formfaktoren eine andere Bedeutung. Man parametrisiert die Winkelverteilung dieses Zerfalls durch Dichtematrix-Elemente $\rho_{\lambda\bar{\lambda}}$, wo λ , $\bar{\lambda}$ die Helizitäten von p und \bar{p} angeben (+1/2)⁹² :

$$(1) \quad \frac{\mathrm{d}\sigma}{\mathrm{d}\Omega} \quad \sim \quad \rho_{\frac{1}{2}\frac{1}{2}} \, \sin^2\theta + \frac{1}{2} \, \rho_{\frac{1}{2}-\frac{1}{2}} \left(1 \, + \, \cos^2\theta\right)$$

Wegen der Paritätserhaltung P = $(-1)^{L+1}$ haben p und p einen relativen Bahndrehimpuls von L = 0 oder L = 2. Der Zusammenhang mit den Dichtematrixelementen ist folgender :

(2) s - Welle :
$$\rho_s = c_{11} + 2 \rho_{1-1}$$
, d - Welle : $\rho_d = -2\rho_{1+} + c_{1++}$

Die Winkelverteilung des Zerfalls $J/q \rightarrow p\bar{p}$ (Abb. 57) ist mit $1 + cos^{2}e$ verträglich. Das bedeutet, daß $p_{\frac{1}{2}\frac{1}{2}} = 0$ ist und eine Mischung aus s- und d-Welle im Verhältnis p_{s} : $p_{d} = 2$: 1 vorliegt. Bei einer isotropen Winkelverteilung müßte nach (1) $e_{\frac{1}{2}-\frac{1}{2}} = 2 e_{\frac{1}{2}\frac{1}{2}}$ sein, d.h. nach (2) ($p_{d} = 0$) läge eine reine s-Welle vor.

IX.1.3.2. Pion - und Kaon - Formfaktoren

Der Zerfall der Resonanzen in π -Paare verläuft über ein virtuelles Photon, das an die Resonanzen koppelt (siehe Kap. IX.1.1.). Wegen der SU(3)-Symmetrie für ein SU(3)-Singulett gilt dies auch für den Zerfall in K-Paare. Die Stärke von Zerfällen über ein virtuelles Photon γ_{μ} in hadronische Endzustände läßt sich

$$\begin{array}{ll} \text{mit} & \mathbb{P}(J/\gamma \rightarrow \gamma_V \rightarrow \text{Hadronen}) &= & \sigma(\gamma_V \rightarrow \text{Hadronen})^{(1)} &= & \mathsf{R} = 2.5 \\ & \mathbb{P}(J/\gamma \rightarrow \gamma_V \rightarrow \mu | u) &= & \sigma(\gamma_V + \mu | u) & \text{nichtres.} \end{array}$$

abschätzen¹ :

$$\frac{\Gamma(J/\psi \rightarrow \gamma_{\chi} \rightarrow Hadronen)}{\Gamma(J/\psi \rightarrow alles)} = R \frac{\Gamma(J/\psi \rightarrow \mu u)}{\Gamma(J/\psi \rightarrow alles)} = (17, 3 \pm 2, 3) \%$$

Der Anteil der r_{\pm} - und KK-Endzustände an allen hadronischen Zerfällen des virtuellen Photons bei s = 9,6 GeV² beträgt :

$$\frac{\sigma(\gamma_{V} \rightarrow \tau\pi)}{\sigma(\gamma_{V} \rightarrow \text{Hadr.})} \bigg|_{s=9,6} = (0.06 \pm 0.03) \land, \frac{\sigma(\gamma_{V} \rightarrow \text{KK})}{\sigma(\gamma_{V} \rightarrow \text{Hadr.})} \bigg|_{s=9,6} = (0.13 \pm 0.06) \%$$

Für φ' -Zerfälle ergeben sich unter Berücksichtigung des Beitrages des schweren Leptons τ : $R_{on} + R_{\tau} = R_{off} + R_{\tau} = 2,8$ folgende Verhältnisse :

$$\begin{array}{l} \Gamma(\downarrow^{+} \rightarrow \gamma_{\mathbf{y}} \rightarrow \operatorname{Hadronen}) &= 2.8 \cdot (0.93 \pm 0.16) &= (2.6 \pm 0.45) \\ \Gamma(\downarrow^{+} \rightarrow \operatorname{alles}) \\ \hline \sigma(\gamma_{\mathbf{y}} \rightarrow \operatorname{Hadr.}) \\ \hline \sigma(\gamma_{\mathbf{y}} \rightarrow \operatorname{Hadr.}) \\ \hline s=13.6 \end{array} = \begin{array}{l} (0.3 \pm 0.2) &; \\ \sigma(\gamma_{\mathbf{y}} \rightarrow \operatorname{Hadr.}) \\ \hline \sigma(\gamma_{\mathbf{y}} \rightarrow \operatorname{Hadr.}) \\ \hline s=13.6 \end{array} = \begin{array}{l} (0.37 \pm 0.3) \\ \hline s=13.6 \end{array}$$

Die Erzeugungsrate von Meson-Paaren ist von dem Formfaktor $F_{\tau,K}(q^2)$ abhängig, der die nicht-punktförmige Wechselwirkung am 2-Hadron-Vertex berücksichtigt :

$$\sigma_{tot}(e^+e^- \rightarrow h^+h^-) = \frac{\pi \alpha^2}{3s} \beta_h^2 |F_h(q^2)|^2, \quad q > m_h, \quad \beta_h = \frac{p_h}{\epsilon_h}$$

Innerhalb der großen Fehler ist keine Änderung des Formfaktors bei den beiden Energien festzustellen.

Da die Erzeugung von μ -Paaren innerhalb und außerhalb der Resonanzenergien ebenfalls über ein virtuelles Photon verläuft, kann man die Formfaktoren bestimmen, indem man das Verhältnis $\sigma(e^+e^- \rightarrow \pi\pi)/\sigma(e^+e^- \rightarrow \pi\pi)$ bzw. bei den Resonanzen $\Gamma(\psi \rightarrow \pi\pi)/\Gamma(\tau \rightarrow \mu\pi)$ bildet.

Mit dem totalen Wirkungsquerschnitt für $\mu\text{-Paar-Erzeugung}$:

$$\sigma_{tot}(e^+e^- \rightarrow \mu^+\mu^-) = 4 \frac{\pi \alpha^2}{3s}$$

(der Faktor 4 berücksichtigt die verschiedenen Spineinstellungen der Müonen) ergibt sich :

$$|F_{\hat{h}}(q^2)|^2 = \frac{4}{\epsilon_{\hat{h}}^3} \frac{\Gamma(\psi \Rightarrow hh)}{\Gamma(\psi \Rightarrow \mu u)} = \frac{4}{\epsilon_{\hat{h}}^3} \frac{\sigma_{tot}(e^+e^- \Rightarrow hh)}{\sigma_{tot}(e^+e^- \Rightarrow u\mu)}$$

Die folgende Tabelle enthält die Formfaktoren für alle 3 Energiebereiche und zum Vergleich Werte, die sich aus einfachen ρ - und 2-Pol Ansätzen für die Formfaktoren ergeben :

Endzustand	√s = q (GeV)	F(e ²) ² 10 ⁻³	ρ -Pol : $F_{\tau}(q^2)^{12} = 1/(1 - s/m_{\odot}^2)$ 10 ⁻³
J/5 → π ⁺ π [*]	3,096	5,8±3,0	4,4
$\gamma^+ \rightarrow \tau^+ \tau^-$	3,684	33,0 - 24,0	2,1
e*e	4,45	2,9±2,9	1,0
			$\phi - Pol : F_{K}(q^{2})^{(1)} = 1/(1 - s^{2}m_{\phi}^{2})$
$J/\psi \rightarrow K^+K^-$	3,096	15,0±6,0	14,8
$v^* \rightarrow K^+ K^-$	3,684	46,0:34,0	6,9
e [†] e [−] → K ⁺ K [−]	4,45	< 12	3,1

Tabelle V : Formfaktoren

Mit der Annahme, daß z-, ω - und φ -Pole die Hadronerzeugung dominieren, Lann man unter Benutzung von SU(3) und linearen, scharfen Pol-Termen für φ , ω , \uparrow das Verhältnis der Anzahl der K⁺K⁻- zu den $\gamma^{+}e^{-}$ -Paaren berechnen⁹³:

$$\begin{split} C(s) &= \frac{N(KK)}{N(--)} = \frac{(\beta_{K})^{3} (1/2 P_{\omega} + 1/6 P_{\omega} + 1/3 P_{\omega})^{2}}{P_{\omega}^{2}} \\ &= \frac{P_{m}^{2}}{P_{\omega}^{2}} \quad \text{und} \quad P_{p,\omega,\Phi} = \frac{m_{p,\omega,\Phi}^{2}}{P_{p,\omega,\Phi}^{2}} (m_{v,\omega,\Phi}^{2} - s)^{2} \end{split}$$

Den Vergleich der Rechnungen für $\mathsf{C}(s)$ mit den gemessenen Werten gibt die folgende Tabelle wieder :

	C(s) berechnet	C(s) gemessen
J/u-Bereich	1,45	2,30±1,4
υ' -Bereich	1,49	1,25±0,8
4-5 GeV-Bereich	1,52	< 4,1

Die theoretisch berechneten C-Werte stimmen gut mit den gemessenen überein.

Wie sich die Messungen der Pion- und Kaon-Formfaktoren im Vergleich zu denen von Frascati⁹³ darstellen, zeigt Abb. 96a für Pionen und Abb. 96b für Kaonen. Die in Abb. 96a eingezeichnete Kurve ergibt sich nach der in Ref. 95 (Gounaris und Sakurai) angegebenen Formel. Die Kurve in Abb. 96b gibt die theoretische Erwartung auf Grund des :-Pols wieder.

IX.1.4. Strahlungszerfälle der u'-Resonanz

Interpretiert man die \ddagger' -Resonanz als angeregten gebundenen Zustand aus cc-Quarks, so muß es eine Reihe weiterer Zustände geben, die durch Strahlungszerfall der υ' -Resonanz erzeugt werden können (ähnlich wie bei den Übergängen beim Ortho/Parapositronium). Die Quantenzahlen dieser Zustände werden in spektroskopischer Notation : N+1 $^{2S+1}$ L_J durch die Zahl der Knoten der Wellenfunktion N, durch den Bahndrehimpuls L, durch den Spin S und durch den Gesamtdrehimpuls J gekennzeichnet. Ihre Parität P = $(-1)^{L+1}$ und Ladungskonjugation C = $(-1)^{L+S}$ ist eindeutig festgelegt (Schreibweise : J^{PC}).

Die Massen der Charmonium-Zustände hängen von der Art des verwendeten Quark – Potentials ab. Wegen der hohen Masse des c-Quarks ($\approx 1/2 \ m_{J/\psi}$) verwenden die meisten Modelle zur Beschreibung der Charmonium-Zustände die Schrödinger-Gleichung in nichtrelativistischer Näherung. Das "Standard-Modell" ⁸⁰ verwendet ein Potential der Form :

$$V(r) = V_0 - \frac{4}{3} \frac{\alpha_s}{r} + a r$$

Für kleine Abstände r geht dieses in ein Coulomb-ähnliches Potential über und es treten Spin-Spin-, Spin-Bahn- und Tensor-Kopplungen auf. Bei großen Abständen verhindert der dritte Term im Potential das Erscheinen von freien Quarks ("con-finement").

Das mit diesem Modell berechnete Spektrum mit den Quantenzahlen J^{PC} zeigt die Skizze auf der nächsten Seite. Unter den Niveaus stehen die Massen der identifizierten Teilchen (in GeV), mit Fragezeichen die Massen der Teilchen, denen noch keine endgültigen Quantenzahlen zugeordnet werden konnten.

Durch die Spin-Spin-Wechselwirkung spalten die Zustände mit Bahndrehimpuls L = 0 in 2 unterschiedliche Niveaus auf (Hyperfein-Aufspaltung), wobei die Singulett-Zustände (n_c, r_c') leichter als die Triplett-Zustände (J/ ψ , ψ ') sind. Durch Spin-Bahn- und Tensor-Wechselwirkungen spalten die Zustände mit Bahndrehimpuls L = 1 und L = 2 in 4 Niveaus auf : 1 Singulett- (${}^{1}P_{1}$ bzw. ${}^{1}D_{2}$) und 3 Triplett-Zustände (${}^{3}P_{2}$, ${}^{3}P_{1}$, ${}^{3}P_{0}$ bzw. ${}^{3}D_{2}$, ${}^{3}D_{1}$).

Die 3 Triplett-P-Zustände χ_0 , P_c/χ_1 und χ_2 konnten von DASP¹³ und SLAC-LBL^{14,15} über den Strahlungszerfall von ψ' nachgewiesen und deren Quantenzahlen in der angegebenen Massenreihenfolge bestimmt werden⁵⁹. Die Zerfallsbreiten sind kon-

sistent mit den theoretischen Erwartungen⁸³.

Der in dieser Arbeit beobachtete Zerfall von $\chi_2(3,55)$ und $\chi_1(3,41)$ in pseudoskalare Hadronpaare befindet sich in Übereinstimmung mit den Messungen von SLAC-LBL und stützt die Zuordnung einer natürlichen Spin-Parität ($J^P = 0^+, 1^-, 2^+, \ldots$) für diese Teilchen. Der Zerfall eines Teilchens mit $J^P = 1^+$ in 2 Pseudoskalare ist wegen der Spin-Paritätserhaltung verboten und wird auch nicht beobachtet.

Die Hyperfein-Aufspaltung der ${}^{3}S_{1}$ -Zustände stellt das Charmonium-Modell vor bisher nicht gelöste Probleme. Wenn man das η_{c} ($\equiv 1 \; {}^{1}S_{0}$ -Zustand) mit dem $X(2,82)^{50}$ und das η_{c}^{*} ($\equiv 2 \; {}^{1}S_{0}$ -Zustand) mit dem $\chi(3,45)^{14}$, 55 identifiziert, entstehen sowohl für die Größe der Massenaufspaltung als auch für die Zerfallsbreiten Widersprüche zwischen theoretischen Abschätzungen und gemessenen Werten^{54a,81}. Durch den Nachweis eines neuen Zustandes bei 3,6 GeV, der in Stahlungszerfällen der ψ '-Resonanz von der DESY-Heidelberg-Collaboration

1

entdeckt wurde⁵⁶, erhält man einen weiteren Kandidaten für das η'_{c} . Im Folgenden werden in diesem Zusammenhang 3 mögliche Ursachen für die Entstehung der $\pi\pi$ -Massenspitze bei 800 MeV diskutiert.

1. Sie könnte durch den Übergang vom $\eta_c^+(3,6)$ zum $\eta_c(2,82)$ entstanden sein :

$$\psi' \rightarrow \gamma \gamma c'(3,6)$$
$$\rightarrow r^{+} \tau^{-} \gamma_{c}(2,82)$$

Die Masse des η_c müßte wegen der oberen Grenze der η_T -Massenspitze bei knapp 800 MeV auf einen Wert von etwa 2,8 GeV geschoben werden. Dieser Wert liegt jedoch innerhalb der Fehlergrenzen für 7(2,82) : $m_{\chi} = 2,82 \pm 0,014 \text{ GeV}^{50}$.

Bei dieser Interpretation ergeben sich folgende Schwierigkeiten :

- Der Zustand $\chi(3,45)$ müßte dann ein D- oder 4-Quark-Zustand sein
- Bei Vernachlässigung des langreichweitigen Terms im Quark-Potential kann man die Massenaufspaltung zwischen $^3{\rm S-}$ und $^1{\rm S-Zustand}$ berechnen 82 :

$$\Delta M = \frac{32 \pm 3}{m_c^2} s |\psi(0)|^2, \qquad m_c = c-Quarkmasse$$

Die Wellenfunktion am Ursprung $_{\mathbb{Q}}(0)$ ist proportional der leptonischen Zerfallsbreite der Resonanzen^{82} :

$$T(\psi \rightarrow 1^+1^-) \sim \psi(0)^{1/2} / m_{11}^2$$

Aus der Massenaufspaltung zwischen J/ ψ und $\eta_c(2,8)$ kann man dann die Aufspaltung zwischen ψ' und η'_c unabhängig von α_c und m'_c berechnen :

$$\mathcal{M}(\psi' - n_{c}') = \frac{|\psi(0)|^{2}}{|\psi(0)|^{2}} \frac{\Delta M(J/\psi - n_{c})}{\Delta \psi} = \frac{m^{2}\psi'}{m_{J/\psi}^{2}} \frac{\Gamma(\psi' + \mu^{+}\mu^{-})}{\Gamma(J/\psi + n_{c})} \frac{\Delta M(J/\psi - n_{c})}{\pi M(J/\psi - n_{c})} = 183 \text{ MeV}$$

Nach dieser Abschätzung liegt m(η_c^+) bei 3,5 GeV und damit näher zum $\chi(3,45)$ als zum X(3,6). Relativistische und dynamische Korrekturen zu $|\psi(0)|$ können diesen Wert nur dann ändern, wenn sie für J/ ψ und υ^+ verschieden sind.

- Die Zerfallsbreite $\Gamma(\psi^++\gamma\eta_c^+)$ läßt sich in ähnlicher Weise abschätzen. Für M1-Übergänge gilt^{83} :

IX.1.4.(1)
$$\Gamma(n_i^{3}S_1 \rightarrow n_f^{-1}S_0) = \frac{16 \alpha}{27 m_c^2} k^3 < n_f^{-1} |n_i^{-1}|^2$$
, K = Photonenergie

Das Überlappungsintegral'<n $_{f}$ |n $_{i}$ >'2 muß für gleiche Hauptquantenzahlen

 n_f = n_i etwa 1 und für n_f $\frac{1}{7}$ n_i klein sein. Bei Annahme von gleichen Überlappungsintegralen für die Übergänge 2 3S_1 + 2 1S_0 und 1 3S_1 + 1 1S_0 ergibt sich :

 $\Gamma(\psi^{*} \rightarrow \gamma n_{C}^{*}) = -\frac{k^{*+3}}{k} \Gamma(J/\psi \rightarrow \gamma n_{C}^{*}) - k^{*} = Photonenergie \ f \ddot{u} r \ \psi^{*} \rightarrow \gamma n_{C}^{*}$

Mit $l'({\rm J}/;\,\to\,\gamma r_{\rm C})$ < 1,2 keV aus Messungen über das inklusive Photonenspektrum 55a folgt daraus :

Diese Werte sind um etwa eine Größenordnung kleiner als die theoretischen Abschätzungen mit Gleichung IX.1.4.(1), wenn für m_c = 1,65 Gev⁸¹ und für <n_f|n_i<'z = 1 angenommen wird :

$$\begin{array}{rcl} & \Gamma(\psi^+ \to \gamma \pi_{C}^{+}(3,6)) < 1,1 \ \text{keV} & (\ B \ < \ 0,5^{+\prime} \) \\ & \Gamma(\downarrow^+ \to \gamma \pi_{C}^{+}(3,45)) < 19 \ \text{keV} & (\ B \ < \ 8,4 \) \end{array}$$

Mit der Annahme, daß

IX.1.4.(4)
$$\frac{\Gamma(\eta_c^{+} \rightarrow \pi^+ \pi^- \gamma_c^{-})}{\Gamma(\gamma_c^{+} \rightarrow \text{alles})} \approx 0.5$$
 (wegen Isospin $(\eta_c^{+}) = 0$ mu3 dies Verhältnis kleiner als 0.67 sein)

erhält man zum Vergleich den gemessenen Wert aus Tabelle IV :

 $T_{gem}(\psi' + \gamma n_c^*(3,6)) \approx (11,9+4,1) \text{ keV} \quad (B \approx (5,2+1,8) \in)$

Dieser Wert ist um den Faktor 10 (bzw. 400 bei Ungleichung IX.1.4.(2)) größer als die theoretischen Schätzungen. Aus Messungen über das inklusive Photonenspektrum^{55a} erhält man als obere Grenze B($\psi' \rightarrow \gamma X(3,6)$) < 1,7 %, was etwa 1/3 kleiner ist als der hier gemessene Wert.

2. Der Zustand X(3,6) wird als Singulett-D-Zustand ${}^{1}D_{2}$ mit den Quantenzahlen $J^{PC} = 2^{+-}$ interpretiert. In diesem Fall kann die scharfe Massenspitze bei 800 MeV dadurch erklärt werden, daß die Pionen einen höheren relativen Bahndrehimpuls besitzen. Nimmt man an, daß die Pionen einen 2^{+} -Zustand bilden, so muß bei der Akzeptanzberechnung die Phasenraumverteilung der ---Massen mit einem zusätzlichen Faktor p_, insgesamt also mit p_{\pi}^{a} gewichtet werden. Die Akzeptanz ist dann etwa 1,8 mal größer als bei einem 0⁺-Zustand der Pionen und es ergibt sich ein Verzweigungsverhältnis von :

$$\frac{\Gamma(\psi^{+} \rightarrow \gamma^{1} D_{2})}{\Gamma(\psi^{+} \rightarrow \text{alles})} \frac{\Gamma(\frac{1}{2} D_{2} \rightarrow \tau \gamma_{c})}{\Gamma(D_{2} \rightarrow \text{alles})} = (1, 3 \pm 0, 5)$$

Mit der IX.1.4.(4) entsprechenden Annahme B $({}^{1}D_{2} \rightarrow \pi\pi\pi_{c}) \ge 0.5$ ergibt sich :

 $\Gamma(\psi' \to \gamma^1 D_2(3,6)) \quad \hat{\chi} \quad (5,9\pm2,3) \text{ keV} \qquad (B \not\approx (2,6\pm1,0))$ Auf Grund der ${}^{3}D_1$ - und ${}^{3}S_1$ -Mischung der ψ' -Resonanz mit 40 ${}^{3}D_1$ -Anteil⁸⁵ ergibt sich eine Zerfallsbreite für den übergang ${}^{3}D_1 \to \gamma^1 D_2$ von weniger als 0,5 keV⁸⁶. Auch in diesem Fall unterscheidet sich die theoretische Abschätzung von dem gemessenen Wert mehr als einen Faktor 10.

Wenn man trotzdem diese Erklärung (oder die 3. Interpretation) für die ---Massenspitze bei 800 MeV akzeptiert, könnte man die Massenspitze bei 630 MeV dem Zerfall

$$' \rightarrow \gamma \tau_{c}'(3,45)$$

 $\rightarrow \tau^{+} \tau^{-} \tau_{c}(2,8)$ zuordnen.

Mit der Annahme IX.1.4.(4) ergibt sich aus der gemessenen oberen Grenze (siehe Tab. IV) :

$$\Gamma(\psi' \rightarrow \gamma \eta_c^+(3, 45)) < 34.6 \text{ keV}$$
 (90 Vertrauensgrenze)

Dieser Wert liegt höher als die obere Grenze der Abschätzung IX.1.4.(3) und als die obere Grenze aus der Messung von inklusiven Photonenspektren⁸⁷ : $\Gamma(\psi^* \rightarrow \gamma \chi(3,45)) < 6$ keV.

Die beiden bisher angeführten Interpretationen können nicht das relativ hohe Produktverzweigungsverhältnis B($\psi^{+} + \gamma r_{c}^{+}$) B($\eta_{c}^{+} + \gamma l_{c} \psi$) von (6±4) 10⁻⁹ tür $\eta_{c}^{+} \in \chi(3,45)$ oder (1,8±0,6) 10⁻³ für $\gamma_{c}^{+} = \chi(3,6)$ erklären. Theoretische Schätzungen dafür liegen wegen der stark unterdrückten M1- (oder M3-) Obergänge zwischen η_{c}^{+} und J/c bei 3·10⁻⁶.

3. Diese Schwierig-Eiten überwindet die Annahme, daß X(3,6), $\gamma(3,45)$ und X(2,8) gebundene 4-Quark-Zustände doge sind⁸⁸. In Analogie zu den Mesonen R(970) (I = 1, $J^P = 0^+$) und S'(993) (I = 0, $J^P = 0^+$), die als söge-Zustände gedeutet werden und deren Massen unterhalb der Masse von \tilde{e} (#sš-Zustand, $J^P=1^-$) liegen, wird X(2,8) als nicht aufgelöstes Dublett \tilde{e}_c, S_c^+ interpretient⁸⁹. In diesem Bild ist y(3,45) ein doss-Zustand und X(3,6) vielleicht ein angenegter 4-Quark-Zustand.

Die ==-Massenspitzen entstehen dann bei den Übergängen zwischen 4-Quark-Zuständen, in deren weiteren Zerfällen ebenfalls viele Photonen und m-Mesonen entstehen können. Möglich ist in dieser Interpretation auch der Zerfall _' \rightarrow =⁺=⁻X(2,88), wobei X(2,88) der in =⁻p-Reaktionen nachgewiesene Zustand ist⁹⁰, der möglicherweise mit dem X(2,82)⁵⁰ identisch ist. Nach Ref. 91 kann dieser Zustand nicht mit dem n_c identifiziert werden, weil der Wirkungsquerschnitt für die hadronische Produktion eines coqq-Zustandes eine Größenordnung größer ist als der für die Erzeugung eines n_c.

IX.2. Ergebnisse aus den Messungen im Energiebereich von 4,0 bis 5,2 GeV

IX.2.1. Erzeugung von Mesonen mit Charm

Im Quark-Parton Modell verläuft die Hadronerzeugung als zweistufiger Prozeß, in dem zurächst ein Quark-Antiquark Paar erzeugt wird, das anschließend in Hadronen fragmentiert¹⁶. Bei genügend hoher Schwerpunktsenergie verläuft die Erzeugung eines Mesonpaares mit "offenem" Charm gemäß folgendem Graphen :

Wenn die Energie des bei der ele-Vernichtung erzeugten virtuellen Photons nicht für die Bildung eines charm-anticharm Mesonpaares ausreicht (wie es in dem Graphen dargestellt ist) kann der Zerfall des co-Paares nur über die Vernichtung in ein zweites virtuelles Photon oder in 3 Gluonen (oder in ein realles Photon und zwei Gluonen) verlaufen (siehe Kap. IX.1.).

Sunch den Nachweis von Mesonen mit offenem Chann muß das Chonungsschema für Hadmonen von $S_{2}(3)$ auf SU(4) erweitent werden. In den Skizze auf der nächsten Seite ist das Hexadekuplett der pseudoskalaren Mesonen mit den Quarks, aus denen sie sich zusammensetzen, dardestellt¹.

Für die Vektormesonen, deren charm-Mitglieder D- und F- heißen, existiert ein entsprechendes Bild.

Bei Überschreiten der Schwelle für die assoziierte Erzeugung von Mesonen mit Charm (z.B. DD, FF, DD', FF') erhöht sich der hadronische Wirkungsquerschnitt, wie man es in Abb. 84 sieht. Die Strukturen in Abb. 84 entstehen durch Überlagerung von solchen Schwellen mit rasch abfallenden Formfaktoren und höher angeregten Charmonium-Zuständen (z.B. 3 ${}^{3}S_{1}$ oder 4 ${}^{3}D_{1}$). Insbesondere von der "Resonanz" bei 4,04 GeV Schwerpunktsenergie nimmt man an, daß sie eine Überlagerung des 3 ${}^{3}S_{1}$ -Zustandes mit der Schwelle für D'D'-Erzeugung darstellt⁸¹. Abb. 97 zeigt, bei welchen Schwerpunktsenergien W die Schwellen für die Erzeugung von Charm-Mesonen (cq, cq) im Vergleich zu Charmonium-Zuständen (cc) und den "Resonanz"-Spitzen im totalen Wirkungsquerschnitt lieden.

Die Schwelle für die D^{*}D^{*}-Erzeugung liegt bei W = 4,01 GeV, die 5 in dieser Arbeit nachgewiesenen D^{*}D^{*}-Ereignisse sind bei einer Schwerpunktsenergie von 4,03 GeV erzeugt worden (siehe Kap. VIII.2.). Der Mittelwert der D⁰-Massen von allen 8 Ereignissen beträgt 1,873 ± 0,017 GeV in guter Übereinstimmung mit dem bei SPEAR gemessenen Wert von 1,863 ± 0,001 GeV^{96,17}.

ABB, 97 SCHWELLEN FÜR CHARM-MESONEN-ERZEUGUNG UND CHARMONIUM-NIVEAUS Daß bei dieser Schwerpunktsenergie kein DD- und nur ein DD'-Ereignis gesehen wird, hat folgende Gründe :

- Die Detektorakzeptanz für $D^*\overline{D}^*$ -Erzeugung ist etwa um den Faktor 2 größer als für DD-Erzeugung, weil sowohl die D'- als auch die D^O-Teilchen (bei dem Zerfall $D' \to \pi^0 D^0$) an der jeweiligen Schwelle erzeugt werden und das D^O daher im Laborsystem nahezu ruht. Die Akollinearitätswinkel beim Zerfall $D^0 \to K^{\pm}$ sind $\leq 10^0$. Bei einem DD-Ereignis gelten diese Bedingungen wegen der größeren kinetischen Energie der D-Mesonen nicht.
- Nach Ref. 81 liegt bei W = 4,0 GeV eine Nullstelle der p-Wellen-Zerfallsamplitude für den Resonanzzerfall 3 ${}^{3}S_{1} \rightarrow c\overline{q} + \overline{c}q$ (q = u, d), deren Quadrat bei der Abschätzung der Beiträge der 3 möglichen D-Meson Zerfälle (DD, $D\overline{D}^{*} + \overline{D}D^{*}$, $D'\overline{D}^{*}$) eingeht. Bei W = 4,03 GeV erwartet man folgendes Verhältnis der Wirkungsquerschnitte :

 $D \overline{D}$: $(D \overline{D}^* + \overline{D} D^*)$: $D^* \overline{D}^* = 0,1$: 4 : 1,

was in etwa mit gemessenen Werten übereinstimmt $^{1/}$.

IX.2.2. Der Zerfall von Mesonen mit Charm

Wegen der Erhaltung der Charm-"Ladung" bei der starken und der elektromagnetischen Wechselwirkung können Mesonen mit offenem Charm nur über die schwache Wechselwirkung zerfallen.

Nach der GIM-Theorie¹⁰ der schwachen Wechselwirkung koppelt der geladene Strom, der bei Charm-Meson-Zerfällen auftritt, in unterschiedlicher Stärke an die Quarks. Als Ma3 für die Stärke von unterdrückten und bevorzugten Übergängen zwischen den Quarks dient der Cabibbo-Winkel : $\theta_c \approx 13^{\circ}$. Die Stärke der Übergänge läßt sich gut in dem folgenden (I_3 , Y, C)-Diagramm veranschaulichen⁹⁸ (Übergang ----vsin θ_c) :

Nichtleptonische, Cabibbo-bevorzugte D^0 -Zerfälle lassen sich durch folgendes Diagramm wiedergeben⁶⁴ :

Wegen der starken Kopplung des c-Quarks an das s-Quark treten bei Charm-Meson-Zerfällen bevorzugt Mesonen mit "Seltsamkeit" (z.B. K-Mesonen) auf. Von den Zweikörper D⁰-Zerfällen K⁻π⁺, K⁻ρ⁺, K^{*-}π⁺, K^{*-}ρ⁺ kann in dieser Arbeit wegen der Beschränkung auf geladene Spuren im Außendetektor nur der Endzustand Knachgewiesen werden.

Nichtleptonische F $^{\sharp}$ -Zerfälle verlaufen über das folgende Diagramm :

Im Gegensatz zu D⁰-Zerfällen können hier ¢-Mesonen im Endzustand auftreten, z.B. F⁺ \leftrightarrow t⁻⁺ oder p^+ . t-Mesonen können durch ihren Zerfall in K⁺K⁻-Paare nachgewiesen werden (B = 48,6 %)⁴⁸.

Die Inspektion der K⁺K⁻X-Ereignisse in Abb. 91 ergibt ein Ereignis mit m_{KK} = 1,023 GeV, m_{χ} = 2,863 GeV und p_{ϕ} = 0,617 GeV/c bei einer Schwerpunktsenergie von 4,5 GeV. Im Innendetektor sind 4 weitere geladene Spuren und 2 Photonen mit niedriger Energie ($E_{\chi} \approx 100$ MeV) zu sehen, von denen eines in den Schauerzählern des Tor-Außenarmes nachgewiesen wird. Das K⁺K⁻-Paar bildet eine invariante Masse, die in dem Massenbereich für das ¢-Meson liegt : m_{χ} = 1,019 ± 0,005 (Fehler aus der Massenauflösung des DASP-Detektors !). In Anbetracht der zwei Photonen liegt vermutlich folgender Zerfall vor :

$$e^+e^- \rightarrow F^{*+} F^{*-} \qquad \tau^- ; , \varphi \rightarrow K^+ K^-$$
(1)
 $\downarrow \rightarrow \gamma F^- ($
 $\star z^- ; , \varphi \rightarrow K^+ K^-$ (2)

Die Monte-Carlo Simulation beider Zerfälle ergibt, daß die Zerfallskette (2) auf Grund der fehlenden Masse auszuschließen ist.

Wendet man das Anpassungsprogramm für F-Zerfälle in $\pm n^{99}$ auf dieses Ereignis an, ergeben sich für die $\pm \pi$ -Spurenkombination, die der F-Masse von Ref. 99 am nächsten kommt, folgende F- bzw. F'-Massen :

F F' - Anpassung :
$$M_F = 2,03 \pm 0,03$$
 GeV, $M_F = 2,14 \pm 0,02$ GeV
F' F' - Anpassung : $M_F = 1,96 \pm 0,03$ GeV, $M_F = 2,11 \pm 0,03$ GeV

In Ref. 99 werden folgende F - Massen angegeben :

$$M_{E} = 2,03 \pm 0,06 \text{ GeV}$$
 und $M_{E} = 2,14 \pm 0,06 \text{ GeV}$

Zur Berechnung eines Verzweigungsverhältnisses werden die Daten verwendet, bei denen die Erzeugung von FF – Paaren möglich ist (d.h. im Bereich 4,1 < $E_{\rm cm}$ < 5,0 GeV)⁹⁹. Es ergibt sich :

$$\begin{aligned} \pi^{*}(e^{+}e^{-} \rightarrow F \ \overline{F} \) \ \Gamma(F \rightarrow \uparrow\uparrow) &= 1\pm 1 \quad 15,36 \quad 0,0258 \quad 1 \\ \pi^{*}(e^{+}e^{-} \rightarrow u^{+}h^{-}) \ \Gamma(F \rightarrow alles) &= 470 \quad 1,025 \quad 2\cdot 0,006 \quad 0,486 \\ &= 0,141 \pm 0,141 \end{aligned}$$

Für die Akzeptanzberechnung werden bei Schwerpunktsenergien von 4,17 GeV F^+F^- , bei 4,42 GeV F^+F^- und bei 4,6 GeV F^+F^- -Paare erzeugt und die K^+K^- -Paare über die Zerfallskette $F^{++} \rightarrow vF^-$ (B = 1), $F^- \rightarrow v^-$; und $\phi \rightarrow K^+K^-$ in einem Außenarm nachgewiesen. Mit einer Wichtung entsprechend den gemessenen integrierten Luminositäten ergibt sich eine Akzeptanz von 0,006 und ein Korrekturfaktor von 15,36 für die Absorption und den Zerfall der K-Paare (der Faktor 2 für die Akzeptanz berücksichtigt, daß der Zerfall nur eines der beiden F-Mesonen simuliert wurde).

Zur Abschätzung von $\pi(e^+e^- \rightarrow FF)/\pi(e^+e^- \rightarrow \pi\pi) = -R_F$ werden die Daten der inklusiven π -Produktion aus Ref. 99 herangezogen. Nach einer Wichtung entsprechend den integrierten Luminositäten ergibt sich :

$$\frac{\sigma(e^+e^- \rightarrow F, \overline{F})}{\sigma(e^+e^- \rightarrow \mu^+ \pi^-)} + 2 \cdot B(F + \pi X) = 0.745 \pm 0.27$$

In Ref. 99 wird als untere Grenze $B(F\to rX)\simeq 34$, angegeben. Mit diesem Wert ergibt sich :

$$\begin{array}{ll} \sigma(e^+e^- \rightarrow F^-F^-) &=& R_F^- < -1, 1 \pm 0, 4 & \text{und damit}: \\ \hline \sigma(e^+e^- \rightarrow L^+L^-) &=& R_F^- < -1, 1 \pm 0, 4 & \text{und damit}: \\ \hline 1(-F^+ \rightarrow -\pi^+ \Phi^-) &\geq& (12, 8 \pm 13) \\ \hline \Gamma(-F^\pm \rightarrow -\pi^+ \Phi^-) &\geq& (12, 8 \pm 13) \end{array}$$

In Ref. 100 wird für dieses Verzweigungsverhältnis 4 – 5 – aller nichtleptonischen F-Zerfälle abgeschätzt.

Die F-Produktion unterscheidet sich von der D-Produktion dadurch, daß im Mittel mehr Kaonen in den Endzuständen auftreten (siehe Diagramme), d.h. auch Ereignisse mit 2 Kaonen sollten häufiger auftreten. Abb. 98 zeigt die Zahl der KKX-Ereignisse – normiert auf die Zahl der μ -Paare – in den 4 Energiebereichen. Zum Vergleich sind in dieser Abbildung die Verhältnisse N(π KX)/N(μ L) eingezeichnet; man erkennt bei den KKX-Ereignissen eine Erhöhung bei Schwerpunktsenergien um die "Resonanz"-Spitze bei 4,44 GeV, bei der auch eine erhöhte Erzeugung von F F^{*}- und F^{*} F^{*}-Ereignissen stattfindet⁹⁹.

IX.2.3. Der Cabibbo - Winkel

Der schwache Zerfall von Mesonen mit Charm bietet die Möglichkeit, die GIM – Hypothese¹⁰ zu prüfen. Nach dieser Theorie muß der Übergang zwischen d- und u-Quark in gleicher Stärke wie zwischen c- und s-Quark auftreten, d.h. der Cabibbo-Winkel für diese Übergänge muß gleich sein. Aus Messungen der semileptonischen Zerfälle von Baryonen n $\rightarrow p$ e^T ∇ , $\Lambda^{2} \rightarrow p$ e^T ∇ und $\Sigma^{T} \rightarrow n$ e^T ∇ hat man den Cabibbo-Winkel bestimmt zu :

$$sine_{c} = 0,23 \pm 0,003$$
 oder $E_{c} = (13,3 \pm 0,17)^{0}$

In Diagramm (1) enkennt man, daß der Zerfall $D^0 \rightarrow K^- r^+ \sim \cos^2 \gamma_c$ ist, weil an beiden Vertices ein erlaubter übergang stattfindet. Ersetzt man den $c \rightarrow s$ Obergang durch den unterdrückten Übergang $c \rightarrow d$ (siehe Diagramm (3)), erhält man für den Zerfall $D^0 \rightarrow r^+ \tau^-$ eine Proportionalität : $\sim \sin \theta_c \cdot \cos \theta_c$.

Aus dem Verhältnis $\mathbb{P}(D^0 \to \pi^+\pi^-)/\mathbb{P}(D^0 \to K^-\pi^+)$ erhält man dann :

$$\frac{\Gamma(D^{0} \to \pi^{+}\pi^{-})}{\Gamma(D^{0} \to K^{-}\pi^{+})} = \frac{\sin^{2}\theta_{c} \cdot \cos^{2}\theta_{c}}{\cos^{4}\theta_{c}} = \tan^{2}\theta_{c}$$

Entsprechendes gilt für den Zerfall $D^0 \rightarrow K^+K^-$, bei dem $\sin\theta_c$ im Diagramm (3) am 2. Vertex auftritt :

$$\frac{\Gamma(D^{0} \rightarrow K^{+}K^{-})}{\Gamma(D^{0} \rightarrow K^{-}\pi^{+})} = \tan^{2}\Theta_{C}$$

Da eine nennenswerte D⁰-Produktion nur in den Energiebereichen I und III beobachtet wurde, beschränken wir uns auf diese Bereiche. Dort gibt es in den Massengrenzen von Kap. VIII.2. 8 Ereignisse für den Zerfall D⁰(\overline{D}^0) $\rightarrow \pi^+ K^-(\pi^- K^+)$ und ein Ereignis für den Zerfall D⁰(\overline{D}^0) $\rightarrow \pi^+ -$.

Korrekturen sind nur für unterschiedliche Auswahlkriterien bei --- oder -K-Ereignissen, für die unterschiedlichen Zerfallsverluste bei Pionen und Kaonen und für unterschiedliche Akzeptanzen notwendig. Für die Abschätzung der Akzeptanz wird die Zerfallskette $e^+e^- \rightarrow \overline{D}^{+0}$, $D^{+0} \rightarrow \tau^0 D^0$, $D^0 \rightarrow K^-\tau^+$ $(\tau^-\tau^+)$ verwendet, wobei als Winkelverteilung für den 1. Zerfall $\sim \sin^2 e$, für den 2. Zerfall \sim 1 + cos² θ und eine isotrope Verteilung für den Zerfall des D-Mesons in die beiden Pseudoskalare angenommen wird. Die Werte der Korrekturen enthält die folgende Tabelle :

.

Korrektur	Fak t or
p-Wellen Phasenraum $P(D^{O} \rightarrow \tau K)/P(D^{O} \rightarrow \tau \tau)$	0,934
p-Wellen Phasenraum $P(D^0 \rightarrow -K)/P(D^0 \rightarrow KK)$	1,089
Akzeptanz ($D^{O} \rightarrow \pi K$) $\varepsilon(\tau K)$	0,0236
Akzeptanz $(D^0 \rightarrow \pi\pi)$ $r(\pi\pi)$	0,0252
Akzeptanz $(D^0 \rightarrow KK)$ $\varepsilon(KK)$	0,0218
Zerfall $(D^0 \rightarrow \neg K)$	2,14
Zerfall $(D^0 \rightarrow \pi\pi)$	1,17
$7erfall (D^{O} \rightarrow KK) \qquad \qquad$	4,52
Absorption $(D^0 \rightarrow -K)$	1,060
Absorption $(D^0 \rightarrow \pi\pi)$	1,076
Absorption ($D^0 \rightarrow KK$)	1,056
Verhältnis der i-Paare in den Massengrenzen : $n_{(\pi \pi X/\pi KX)}$	0,882
Verhältnis der μ -Paare in den Massengrenzen : $r_{m}(KKX/\pi KX)$	0,932

Damit ergibt sich für den Cabibbo-Winkel :

$$\begin{aligned} \tan^{2}\theta_{C} &= \frac{\Gamma(D^{0} \to \pi^{+})}{\Gamma(D^{0} \to \pi^{+}K)} = \frac{N(\pi^{+})}{N(\pi^{+}K)} \cdot \frac{\eta_{dec}}{\eta_{dec}} \frac{\eta_{des}}{\eta_{des}^{+}K} \cdot \eta_{m}(\pi\pi X/\pi KX) \cdot \frac{P(\pi^{+}K)}{P(\pi\pi)} \frac{\varepsilon(\pi^{+}K)}{\varepsilon(\pi\pi)} = \\ &= \frac{1 \pm 1}{8 \pm 2.8} \cdot \frac{1.17}{2.14} \cdot \frac{1.076}{1.060} \cdot 0.882 \cdot 0.934 \cdot \frac{0.0236}{0.0252} = 0.054 \pm 0.054 \\ \text{oder} \quad \theta_{C} &= (13 + \frac{5.2}{13})^{0} \end{aligned}$$

Dieser Wert stimmt gut mit dem Welt-Mittelwert überein : θ_{c} = 13,3:0,17⁰.

Da keine KK-Ereignisse in dem Massenbereich für das D^0 -Meson gesehen werden, wird als obere Grenze (90 $_\odot$ Vertrauensgrenze) folgender Wert berechnet :

$$\tan^{\frac{1}{2}} e_{c} = \frac{\Gamma'(D^{0} \to K^{+} K^{-})}{\Gamma'(D^{0} \to \pi^{+} K^{-})} < 0,66 \quad \text{oder} \quad \theta_{c} < 39^{0}.$$

X. Zusammenfassung

Es wurden Endzustände mit mindestens zwei geladenen Hadronen aus Zerfällen der J/ ψ - und ψ '-Resonanzen sowie bei Schwerpunktsenergien von 4,0 bis 5,2 GeV untersucht. Aus den Spektren der fehlenden Masse konnte in vielen Fällen ein drittes Hadron nachgewiesen werden, so daß auch die Untersuchung von Quasi-Zweikörperzerfällen möglich war.

Die Berechnung von Verzweigungsverhältnissen erfolgte durch Normierung auf μ -Paare; bei Zerfällen der ψ '-Resonanz auf die u-Paare aus dem Kaskadenzerfall in die J/ψ -Resonanz.

Für J/ ψ -Zerfälle konnte in Endzuständen mit 3 Mesonen die Bildung von Resonanzen nachgewiesen werden. Bei Zerfällen in 2 Baryonen und einem Meson wurden keine baryonischen Resonanzen beobachtet.

Die gemessenen Verzweigungsverhältnisse (siehe Tabelle IV, Seitelle) stützen die SU(2)- und SU(3)-Singulett Zuordnung für die J/ψ -Resonanz.

Bei beiden Resonanzen konnte der Zerfall in Meson- und Baryon-Paare nachgewiesen werden. Die Ergebnisse sind konsistent mit der Annahme einer direkten (starken) Kopplung von J/ψ (und ψ) an die $p\overline{p}$ -, z- und KK -Endzustände sowie

der Erzeugung von $\pi^+\pi^-$ und K⁺K⁻-Paaren über ein virtuelles Photon. Es wurden die Pion- und Kaon-Formfaktoren bei ;s['] = 3,096 und 3,684 GeV ermittelt. Ihre Werte befinden sich in Übereinstimmung mit einfachen γ - bzw. Φ -Pol Ansätzen.

In $\pi^+ \tau^- \gamma^-$ und $K^+ K^- \gamma$ -Endzuständen konnte der Zerfall der γ^+ -Resonanz in Charmonium-Zustände mit gerader Ladungskonjugation $\chi(3,41)$ und $\chi(3,55)$ und deren Zerfall in Mesonpaare nachgewiesen werden. Außerden wurden Hinweise auf die Existenz eines Kaskadenzerfalls zwischen Charmonium-Zuständen über den $\pi^+ r^-$ -Kanal entdeckt.

Im Schwerpunktsenergiebereich um 4,03 GeV konnte im rK-Snektrum ein D^O-Signal, im Bereich um 4,44 GeV eine erhöhte Produktion von KKX-Endzuständen festgestellt werden. Außerdem konnte ein Ereignis nachgewiesen werden, bei dem ein F-Meson in ein -- und ein 4-Meson zerfällt. Das Verzweigungsverhältnis, das auf Grund dieses Ereignis berechnet wird, befindet sich in übereinstimmung mit theoretischen Erwartungen.

Durch Vergleich von Cabibbo-unterdrückten zu -erlaubten D⁰-Zerfällen wurde der Cabibbo-Winkel zu $\theta_c = (13 + 4.3 - 7.0)^0$ bestimmt. Diese Messung stimmt gut mit dem Wert überein, der aus semileptonischen Zerfällen von C = 0, S = 0,1 - Baryonen gemessen wurde, und befindet sich im Einklang mit der GIM-Hypothese.

XI.A.1. Spurerkennung im Außendetektor

Die 5 magnetostriktiven Funkenkammern eines Außenarmes werden in jeder Ebene durch 2 parallele Eisen-Cobalt-Bänder ausgelesen²², in denen die Signale in entgegengesetzten Richtungen zu den Enden der Kammern laufen. Wenn in beiden Auslesedrähten Funkensignale zwischen den Bezugsmarken gefunden werden, wird für die Spursuche der Mittelwert dieser Signale als "Funke" verwendet. Um sicherzugehen, daß die Mittelung nur für Signale gemacht wird, die wirklich zum gleicher Teilchendurchgang gehören, muß die Differenz der Signale im Bereich $|S_1 + S_2 + 0.1| < 0.37$ mm liegen (die Auflösung durch die Signallaufzeitdigitalisierung beträgt 0.25 mm). Die 0.1 mm berücksichtigen die doppelte Formationszeit der Signale, durch die eine "natürliche" Differenz zwischen den Signalen entsteht. Das unterschiedlichen Vorzeichen entstehen durch die verschiedenen Ausleserichtungen in den Funkenkammern der beiden Aufenarme. Gibt es mehrere Funken in diesem Bereich, wird der Mittelwert der minimalen Differenz gebildet. Falls ein Auslesedraht keine Signale lieferte, werden die Signale des anderen Drahtes unter Berücksichtigung der Formationszeit als "Funken" verwendet.

Die Spursuche verwendet diese Funken und beginnt in der (x,z)-Ebene (z-Projektion), in der Funken aus allen 5 Kammern zur Verfügung stehen. Ausgehend von je einem Funken in den am weitesten auseinanderliegenden Kammern werden innerhalb einer Straßenbreite von ± 2 cm von der Verbindungsgeraden weitere Funken in den dazwischenliegenden Kammern gesucht. Wird in mindestens einer weiteren Kammer ein Funke gefunden, so wird eine Gerade an die Funken angepaßt.

Die mittlere absolute Abweichung $\overline{\Delta z}$ der gefundenen Funken von der angepääten Geraden entscheidet darüber, ob die Spur akzeptiert wird. Gibt es mindestens 4 Funken in der "Straße" und ist die mittlere Abweichung $\mathbb{Z}z > 0,1$ cm, so wird die Anpassung einmal ohne denjenigen Funken wiederholt, der am weitesten von der angepääten Geraden entfernt liegt. In der z-Projektion werden dann alle Spuren akzeptiert, deren mittlere Abweichung $\overline{\Delta z} = 0,06(6 - n_z)$ cm ist $(n_z = z$ -Zahl der Funken in der z-Projektion).

Wegen der unterschiedlichen Orientierungen der gedrehten Ebenen (2 sind um $+7^{\circ}$, 3 um -7° gegen die Senkrechte gedreht), werden die Funkenkoordinaten dieser Ebenen mit Hilfe der gefundenen z-Funken in die (x,y)-Ebene (y-Projektion) transformiert. Wenn in einer Funkenkammer kein z-Funke gefunden wurde, wird der z-Wert von der angepaßten Geraden verwendet. Die Spursuche in der y-Projektion verläuft genauso wie in der z-Projektion, die Schnittgrenzen sind wegen des kleinen Winkels von 7⁰ um einen Faktor 6 größer. Vollständig akzeptiert ist also eine Außenspur nur dann, wenn in beiden Projektionen mindestens 3 von 5 Funken gefunden werden, deren mittlere Abweichungen von einer angepaßten Geraden weniger als 0,18 cm in der z-Projektion und weniger als 3,3 cm in der y-Projektion betragen.

Im Laufe der Messungen stellte sich heraus, daß sehr häufig (bei 40 - 50 % aller Funken) zwei Funken bei einem Teilchendurchgang vorhanden waren. Abbildung 99 zeigt für den Hallen-Arm die Differenz der z-Werte von Spur- und Nachbar-Funken Az gegen die Steigung der Spur in der z-Projektion tan α_{τ} .

Man erkennt deutlich, daß die Bildung von Doppelfunken erst oberhalb von $\tan \alpha_z = 0,4$ einsetzt und die Differenz dann systematisch mit $\tan \alpha_z$ ansteigt. Eine Ursache für diese Doppelfunken konnte nicht gefunden werden.

Wenn in wenigstens 3 Funkenkammern in beiden Ebenen solche Doppelfunken gemessen werden, kann eine zweite Außenspur in wenigen Zentimetern Entfernung gefunden werden. In ca. 8,8 % aller gefundenen Außenspuren gibt es in 4 cm Entfernung in der mittleren Funkenkammer eine zweite Spur.

Um die Zahl der Doppelspuren zu verringern, wird vor der Anpassung der Geraden (aber bei schon bekannter Steigung) nach Doppelfunken in den in Abb. 99 eingezeichneten Bereichen gesucht und – falls gefunden – durch die Bildung des Mittelwertes auf einen Funken reduziert. Der Anteil an Doppelspuren ging dadurch auf etwa 0,9 % zurück.

XI.A.2. Spurerkennung in den Proportionalkammern des Innendetektors¹⁰²

Zunächst werden die als "Funke" bezeichneten Durchstoßpunkte der Teilchen in den 3 Ebenen der Proportionalkammern des Innendetektors ermittelt. Haben mehrere nebeneinander liegende Drähte einer Ebene angesprochen, wird als "Funke" die Mitte dieser Drahtgruppe verwendet, dabei sind "Lücken" von zwei nebeneinander liegenden Drähten zugelassen.

Die Spursuche wird zunächst getrennt in den Ebenen (x,z), (x,y) und (x, α) für jeden Spektrometerarm durchgeführt (α ist die um 12,8[°] gegen die Senkrechte gedrehte Achse). Für jeden Arm stehen in den (z, y, α)-Projektionen (3, 3, 2) Achsen mit Meßpunkten zur Verfügung (die y - Werte der P3-Kammern erhält man durch Kombination jedes Funkens der z-Achse mit denen der um 7[°] gedrehten Achse). Die Achsenabschnitte der Spuren in den 3 Projektionen müssen in dem Bereich $|z_0| < 15$, $|y_0| < 3$ und $|\alpha_0| < 5$ cm liegen. Die Spursuche in den Projektionen geht dabei von allen Kombinationen der Funken in den P1- und P2-Kammern aus und sucht innerhalb eines Bereiches von 2 cm um die verlängerte Spur nach zugehörigen P3-Funken. Wird dort ein Funke gefunden, so wird für diese Projektionsspur eine Gerade angepäßt.

Anschließend werden die Projektionsspuren zu räumlichen Spuren kombiniert, wobei die lineare Abhängigkeit der Spurstücke und ihre Fehler verwendet werden. Bei mehreren Spuren in einem Arm ist auf diese Weise meistens noch keine eindeutige Zuordnung(:jede Projektionsspur gehört zu genau einer räumlichen Spur) möglich. Aus der Anzahl der Spuren in den Projektionen läßt sich jedoch erkennen, wieviel räumliche Spuren sich maximal zusammensetzen lassen (z.B. k Spuren). Es werden dann alle Kombinationen von k räumlichen Spuren gebildet, wobei in einer Kombiation jede Projektionsspur nur einmal auftreten darf. Die endgültigen Spuren sind dann durch die Kombination mit dem kleinsten si festgelegt. Anschließend wird mit den Funken dieser Spuren eine Anpassung auf eine räumliche Spur durchgeführt. Für die weitere Auswertung werden die Winkel und Startorte dieser Anpassung verwendet.

In einigen Fällen ist es nicht möglich, in jeder Projektion eine Spur zu finden, insbesondere nicht in der α -Projektion, wo nur 2 Achsen zur Verfügung stehen. Wenn jedoch in 2 Projektionen genau eine Spur gefunden wurde, kann die dritte Projektionsspur aus diesen beiden berechnet werden.

In einem zweiten Programm wird mit den Funken, die in dem oben beschriebenen Verfahren keiner räumlichen Spur zugeordnet werden konnten, versucht, eine räumliche Spur aus 5 Funken zu konstruieren. Alle Spuren, die auf diese Weise noch rekonstruiert werden konnten (etwa 5 - aller Spuren), werden den schon gefundenen Spuren hinzugefügt.

XI.A.3. Spurzusammenführung

Eine vollständige Außenspur in einem Arm erhält man erst, wenn die im Innenund Außendetektor gefundenen Spurstücke zu einer Gesamtspur kombiniert werden konnten.

Dazu werden alle Innenspurstücke mit den Projektionssteigungen $\tan_{z} < 1,3$ und $\tan_{y} < 0,24$ mit allen Außenspurstücken kombiniert. Es werden die Durchstoßpunkte der beiden Spuren durch die Magnetmitte berechnet und diejenigen Spurstücke als zusammengehörig angesehen, deren Differenz in den z-Werten Δz_{M} kleiner als 21 cm ist. Die Magnetmitte ist dabei nicht fest vorgegeben, sondern eine Funktion der Spursteigung der Innenspur in der z-Projektion : $x_{M} = -20 \tan^{2}\alpha_{z} + 214$ cm.

Wenn mehrere Außenspuren zu einer Innenspur passen (oder umgekehrt), entscheidet die kleinere Differenz der y-Werte der Durchstoßpunkte über die Zuordnung.

Außenspuren, denen keine Innenspur zugeordnet werden konnte (meistens wenige Prozent aller Außenspuren, wenn jedoch eine Proportionalkammer ausfiel, bis zu 40 °), werden gekennzeichnet und erhalten die zugehörigen Innenspurparameter über dis Impulsbestimmungsverfahren (siehe Kap. XI.A.4.).

XI.A.4. Impulsbestimmung

Bei einer vollständig rekonstruierten Außendetektorspur wird der Impuls dadurch bestimmt, daß man mit einem geschätzten Startimpuls¹⁰³ die Bahn des Teilchens rückwärts vom Außendetektor in den Innendetektor verfolgt und dann den Impuls so lange (iterativ) ändert, bis die durch das Magnetfeld verfolgte Bahn der gemessenen Innenspur möglichst nahe kommt. Diese Rückwärtsverfolgung hat folgende Vorteile :

- die Spurparameter (Winkel, Orte) sind in der z-Projektion durch die höhere Zahl der Funkenkammern und deren bessere Auflösung genauer gemessen
- die Wahrscheinlichkeit, keine oder "falsche" Spuren zu rekonstruieren, ist im Innendetektor viel größer als im Außendetektor.

Die Annäherung zwischen zurückverfolgter Bahn und gemessener Spur Δs wird durch eine Winkel- und eine Ortsdifferenz bestimmt : $\Delta s = \Delta z_{P3} - L \cdot \Delta tan \alpha_z$ $\Delta z_{P3} = Differenz der z-Werte von rückverfolgter Bahn und Funke in P3-Kammer$ $<math>\Delta tan \alpha_z$ = Differenz der Steigungen in der z-Projektion

L = Spurlänge im Innendetektor bis etwa Magnetmitte

Für kleine Winkeldifferenzen $\Delta \tan \alpha_z < 3 \text{ mrad ist } L = \pm 180/\cos \alpha_z \text{ (das negative Vorzeichen gilt für den Tor-Arm), sonst wird L mit einem Faktor <math>\exp(-700 \pm \tan \alpha_z^2)$ multipliziert, so daß bei großen Winkeldifferenzen $\Delta s \approx \Delta z_{P3}$ ist. Aus der Spurabweichung Δs berechnet man die Impulsänderung Δp beim ersten Mal nach Formeln für ein kastenförmiges Magnetfeld, bei den weiteren Iterationsschritten wird linear interpoliert. Die maximale Impulsänderung ist auf 15 des Impulses beschränkt, sofern der Impuls kleiner ist als das 1,3-fache des Strahlimpulses.

Das Verfahren wird abgebrochen, wenn nach 5 Iterationsschritten der Impuls größer als das 3-fache des maximalen Impulses (= Strahlimpuls), $\Delta s < 0,05/p^2$ cm GeV/c² oder $\Delta p < 0,003$ GeV/c ist. Bei vollständigen Spuren ist eine dieser Bedingungen nach 3 bis 4 Iterationen erfüllt. Nach 10 Iterationen wird ebenfalls abgebrochen; als Impuls wird dann der zuletzt korrigierte Wert verwendet. - 147 -

Aus folgenden Gründen kann die Spurverfolgung beim ersten Mal scheitern :

- Die Bahn verläuft außerhalb des z-Wertebereichs der gemessenen Feldpunkte. Das kann bei steilen Spuren geschehen, deren Impuls zu groß geschätzt wurde. Als Abhilfe wird der Impuls um 20 MeV/c verringert, sofern er vorher kleiner als das 2-fache des maximalen und größer als der Abschneideimpuls für das vorliegende Magnetfeld ist und der Impuls vorher nicht schon vergrößert wurde.
- 2. Die Bahn verläuft außerhalb des y-Wertebereichs des Magnetfeldes (an der schmalsten Stelle des Magneten muß |y| < 25 cm sein). Das kann auf Grund des größeren Winkelfehlers in der y-Projektion ($\sim 5 \text{ mrad}$) geschehen. In diesen Fällen wird die y-Steigung der Außenspur $(\tan \alpha_y)$ korrigiert : $\Delta \tan \alpha_y = y_k \cdot 0, 1/(x_3 x_k)$, wobei x_k , y_k die Koordinaten des Punktes sind, an dem das Teilchen das Magnetfeld verläßt und x_3 der x-Wert der mittleren Funkenkammer ist. Diese Korrektur ist ebenfalls notwendig, wenn der korrigierte Impuls zu groß wird. Bei einer Spur wird sie jedoch höchstens 40 mal angewendet.
- Wenn der Startimpuls zu klein geschätzt wurde, wird die Bahn im Magnetfeld aufgewickelt. Zur Korrektur wird der Impuls um 30 MeV/c erhöht, wenn er vorher nicht schon wegen 1. verringert wurde.

Bei jedem Iterationsschritt wird außerdem geprüft, wie nahe die rückverfolgte Bahn dem durch die Innenspur gemessenen y_0 -Wert des Wechselwirkungspunktes kommt. Wenn für vollständige Außendetektorspuren $|y_r - y_0| > 2$ cm ist, wird die Steigung der Außenspur in der y-Projektion tanay korrigiert durch :

 $\Delta \tan \alpha_v = (|y_r - y_0' - 1, 4)/x_3$ (x,y in cm).

Wenn $\Delta \tan \alpha_y > 3$ mrad ist, wird noch vor der Impulskorrektur die Bahnverfolgung wiederholt (höchstens jedoch 10 mal). Bei der Impulsbestimmung von Teilchen, bei denen keine Innenspur gefunden wurde, gelten schärfere Kriterien, weil die Steigungen und Orte der rückverfolgten Bahn die fehlenden Spurparameter ersetzen müssen :

Für $|y_r - y_0| > 1$ cm beträgt die Steigungskorrektur :

$$\Delta \tan \alpha_v = (|y_r - y_0| - 0,7)/x_3$$

Da bei diesem Verfahren sowohl die Steigung der Spur vor dem Magneten als auch ein gemessener Funkenort in der P3-Kammer benötigt wird, beides jedoch nicht immer gemessen wird, müssen in diesen Fällen vor der eigentlichen Impulsbestimmung Schätzwerte für diese Größen ermittelt werden :

Wenn eine vollständige Spur gefunden wurde und nur der z-Funke in der P3-Kammer fehlt, wird er mit Hilfe der Spurparameter berechnet.

Wenn keine Innenspur gefunden wurde, wird versucht, aus einzelnen Funken in der z-Projektion eine Spur zu rekonstruieren. Dazu wird zunächst die Verbindungsgerade zwischen dem Durchstoßpunkt der Außenspur durch die Magnetmitte und dem Soll-Wechselwirkungspunkt (ermittelt aus Bhabha-Paaren in den gleichen Meßläufen) berechnet und die zu dieser Geraden nächstliegenden Funken innerhalb einer Straßenbreite von ±9 cm in der Reihenfolge P3-P2-P1 gesucht. Wird überhaupt kein z-Funke gefunden, ist die Steigung dieser Verbindungsgeraden verwendet. Wird ein Funke gefunden,ergibt sich die Steigung aus diesem Funken und dem Soll-Wechselwirkungspunkt. Werden 2 Funken gefunden, wird die Steigung aus diesen beiden Funken ermittelt. Die Werte der z_{P3} -Funken werden mit der Geradengleichung berechnet, sofern in der P3-Kammer kein Funke gefunden wurde.

In den Fällen, wo 2 Funken gefunden werden, wird nachgeforscht, ob es von den Spursuchprogrammen gefundene Spuren in der Nähe der Verbindungsgeraden gibt (dies ist nur möglich für Fälle, bei denen die Spurzusammenführung wegen $\Delta z_M > 21$ cm gescheitert ist). Wenn es Innenspuren gibt, deren z-Projektionssteigung um weniger als 30 mrad von der Steigung der Verbindungsgeraden abweicht und bei denen der erste gefundene Funke weniger als 2,5 cm von der Spur entfernt liegt, wird die Spurzusammenführung nachgeholt (bei wenigen Prozent aller Außenspuren).

Bei vollständigen Außenspuren wird außerdem geprüft, ob der gefundene z_{p3} -Funke weniger als 0,4 mm von der Innenspur entfernt liegt. Wenn dies nicht der Fall ist und auch die Steigungsdifferenz zwischen Verbindungsgerader und Innenspur kleiner als 20 mrad ist, wird die z-Steigung der Innenspur durch die Steigung ersetzt, die man aus dem z_{p3} - und einem z_{p2} - oder z_{p1} -Funken berechnen kann.

XI.A.5. Impulsauflösung

4

Abb. 6 zeigt die Impulsauflösung Ap/p = $(p - p_s) \cdot 100/p_s$ (%) für µ-Paare bei den 3 verschiedenen Energien, wobei sich der Soll-Impuls aus der Schwerpunktsenergie ergibt :

$$p_{s} = \sqrt{0,25 E_{cm}^{2} - m_{\mu}^{2}}$$

- 150 -

Da die Auflösung von der Magnetfeldstärke abhängt, ist in Abb. 6 eine Überlagerung von verschiedenen Auflösungen dargestellt, je nach den Anteilen der einzelnen Feldstärken (siehe Tabelle I). Abb. 100a, b und c zeigt die Impulsauflösung für μ -Paare der J/ ψ -Resonanz für das 300 A, 500 A und 1000 A Magnetfeld. Wegen des Strahlungsschwanzes wird die Anpassung der eingezeichneten

Normalverteilungen nur für Werte oberhalb des Maximums durchgeführt. Es ergeben sich bei einem mittleren Impuls von 1,54 GeV/c folgende Auflösungen :

	300 A	500 A	1000 A
<u>σ(p)</u> (%)	1,80±0,09	1,54 ± 0,04	0,94±0,02

Bei einem kastenförmigen Magnetfeld berechnet man den Impuls aus Ablenkwinkel α und dem Produkt aus Magnetfeldstärke B und Länge des Magnetfeldes :

(1)
$$p(GeV/c) = \frac{3 \cdot B(kG) \cdot L(m)}{sin\alpha}$$

Diese Formel gilt näherungsweise auch für das DASP-Magnetfeld. Daher sollte die Impulsauflösung proportional der Magnetfeldstärke und diese wiederum proportional dem Strom I sein.

Die gemessenen Werte legen eine Skalierung der Impulsauflösung gemäß

$$\frac{\sigma(p)}{p}$$
 (%) = 2,2 - 0,00125 · I (A)

nahe.

Um die Auflösungen von Abb. 100 zu erreichen, mußten verschiedene systematische Fehler korrigiert werden (alle Korrekturen werden mit μ -Paaren ermittelt) :

- 1. In die Justierung der Proportional- und Funkenkammern relativ zueinander¹⁰⁵ muß auch das Koordinatensystem des Magnetfeldes eingeschloßen werden. Da jede Justierung bis auf einen Summanden und einen Faktor unbestimmt ist, werden für jede Meßperiode der x-Anfangswert und die Ausdehnung des Magnetfeldes in x-Richtung so lange variiert, bis die Impulsverteilung symmetrisch zum Sollwert liegt und die Standardabweichung am kleinsten ist.
- Bei den Resonanz-Daten werden außerdem systematische Differenzen der Mittelwerte der Impulsverteilungen zwischen den verschiedenen Meßperioden und Außenarmen korrigiert (einige Promille), die durch Verschiebungen der

- 151 -

Resonanzenergien entstanden waren.

3. Die Impulsverteilung von Daten, die mit dem 1000 A Magnetfeld genommen wurden, zeigt systematische Abweichungen (s. Abb. 101), die vom Winkel α_{χ} gegen die Symmetrieachse des Magnetfeldes – der x-Achse – abhängig sind. Diese Abweichungen sind bei den Impulsen von Daten mit dem 300 A-Magnetfeld nicht zu sehen und sind auf die Unkenntnis des 1000 A-Feldes zurückzuführen, das aus dem 300 A-Feld und dem 1480 A-Feld errechnet wurde.

Die Korrektur für diese Abweichungen erhält man durch die Anpassung eines Polynoms der 3. Ordnung in $\cos \alpha_{\chi}$ an die in Abb. 101 gezeigte Verteilung; sie beträgt z.B. für den Hallenarm :

$$\frac{\Delta p}{p} = -0.148 + 0.163\cos\alpha_{\chi} + 0.227\cos^{2}\alpha_{\chi} - 0.247\cos^{3}\alpha_{\chi}$$

Diese Korrektur ergibt eine Verbesserung der Impulsauflösung von etwa 7 %. Für Impulse von weniger als 0,7 GeV/c wird der Impuls um $\Delta p = (p - 0,7) \cdot 0,03$ GeV/c korrigiert.

4. Zusätzlich wird bei jedem Teilchen auf den Impulsverlust korrigiert, den es

beim Durchtritt durch die Materie des Strahlrohres und der Detektorkomponenten bis zu den Funkenkammern erleidet.

Wie sich die Impulsauflösung in Abhängigkeit vom Impuls ändert, wird mit einem Monte-Carlo Programm untersucht, in dem verschiedene Teilchen durch das gesamte Spektrometer verfolgt und die Auflösungen der Proportional- und Funkenkammern, die Vielfachstreuung in Materie und Luft sowie der Energieverlust simuliert werden können. Auf diese Weise erhält man auch Informationen über die Impulsauflösung von Teilchen mit kleinen Impulsen.

Abb. 102a, b, c und d zeigen die Impulsauflösung (S) gegen den Impuls für 4 verschiedene Teilchen bei dem Magnetfeld mit einem Strom von 300 A. Besonders bei Teilchen mit großen Massen erkennt man, daß die Impulsauflösung durch 2 unabhängige Effekte bestimmt wird :

 Bei kleinen Impulsen überwiegt der Fehleranteil aus der Vielfachstreuung (ein großer Beitrag entsteht durch die Vielfachstreuung in der Luft zwischen Proportional- und Funkenkammern) :

$$\Delta \alpha \approx \frac{14 \text{ MeV/c}}{p \beta} \sqrt{\frac{L}{L_R}}$$
, $\frac{L}{L_R}$ = Dicke der Materie in Strahlungs-

Mit $\beta = p/E$:

$$\Delta \alpha = a / p^2$$

Eingesetzt in die Ableitung von Gleichung (1) :

(1')
$$\Delta p = -\frac{3 \cdot B \cdot L \cdot \cos \alpha}{\sin^2 \alpha} \Delta \alpha = b \cdot p^2 \cdot \Delta \alpha$$

(2) $\frac{\Delta p}{D} = \frac{a \cdot b}{p} = \frac{A}{D}$

- Bei großen Impulsen (> 1 GeV/c) ist der Fehler durch die begrenzte Winkelauflösung der Proportional- und Funkenkammern festgelegt, die unabhängig vom Impuls der Teilchen ist. Gleichung (1') ergibt :
 - $(3) \qquad \frac{\Delta p}{p} = B \cdot p$

Der Anteil der Vielfachstreuung ergibt für große Impulse ($\beta = 1$) nur noch eine Winkelabhängigkeit, die proportional 1/p ist : $\Delta \alpha = a / p$ und daraus ergibt sich mit Gleichung (1') :

 $(4) \qquad -\frac{\Delta p}{p} = C$

Für die Impulsauflösung ergibt sich damit folgende Abhängigkeit vom Impuls :

5)
$$\frac{\Delta p}{p} = \sqrt{\frac{A}{p}^2 + B^2 p^2 + C^2}$$

Die in Abb. 102 eingezeichneten Kurven sind Anpassungen mit dieser Funktion. Es ergeben sich folgende Werte für A, B und C :

	Müonen	Pionen	Kaonen	Protonen
A (% GeV)	0,29±0,12	0,32±0,13	0,91±0,20	1,53±0,39
B (%/GeV)	0,99±0,12	0,91 ± 0,13	1,02 ± 0,16	0,99±0,25
C (🖉)	$1,31 \pm 0,16$	$1,41 \pm 0,16$	1,16 ± 0,39	1,24 ± 0,75

Wie man es aus der Definition von B und C erwartet, sind diese Größen unabhängig von der Teilchenmasse, während der Parameter A den Faktor a enthält, der proportional der Energie der Teilchen und damit von der Art des Teilchens abhängig ist.

Die gemessene Impulsauflösung aus μ -Paaren verschiedener Energie befindet sich in Obereinstimmung mit den Werten aus dem Monte-Carlo Programm. Für Impulse von 1,54 GeV/c wird (1,8±0,09) % gemessen, das Programm liefert (2,0±0,6) %. Für einen mittleren Impuls von 2,25 GeV/c ergibt sich (2,7±0,15) % als gemessener und (2,6±0,5) % als Monte-Carlo Wert.

XI.A.6. Massenbestimmung

Die Flugzeit τ eines Teilchens, das in einen Außenarm fliegt, wird durch die zeitlich verzögerten Signale in den OSS- und den Flugzeitzählern im Außendetektor gemessen. Diese Zeiten werden auf elektronische Zeitverschiebungen³⁷ und auf die Lichtlaufzeiten in den 1,72 m langen Zählern im Außendetektor korrigiert. Letzteres ist möglich, weil die Flugzeitzähler oben und unten von Fotovervielfachern angesehen werden und man über die Außenspur Kenntnis vom Durchstoßpunkt des Teilchens besitzt. Geeicht wird die Flugzeitmessung mit Müonen aus dem Zerfall der Resonanzen oder aus dem QED-Prozeß $e^+e^- \rightarrow \mu^+\mu^-$.

Die Berechnung von $\beta = v/c = L/\tau c$ ist erst möglich, wenn man den Flugweg L kennt. Da dieser vom Impuls und der Steigung der Spur im Innendetektor abhängig ist, berechnet man L aus Funktionen, die man vor den Messungen aus Monte-Carlo Rechnungen gewonnen hat. Mit der Kenntnis von β und des Impulses p berechnet man das Massenquadrat des Teilchens durch :

$$m^2 = p^2 (1/\beta^2 - 1)$$

Die Massenauflösung und die Identifizierung der Teilchen im Außendetektor wird in Kap. IV.3.5. beschrieben.

XI.A.7. Schauerenergiebestimmung

Mit Hilfe der Schauerzähler im Außendetektor ist eine Unterscheidung zwischen Elektronen und Mesonen möglich. Man berechnet die in einem Zähler deponierte Schauerenergie $E_{\rm sch}$ aus der gemessenen Pushöhe Ph über die Beziehung¹⁰⁴ :

$$E_{sch} = (Ph - Pd) \cdot F$$
,

wobei Pd das vor den Messungen mit Höhenstrahlung ermittelte Piedestal und F ein Eichfaktor ist, den man aus Testmessungen in einem Elektronenstrahl von 1 GeV Energie gewonnen hat. Der Sättigungsbereich der Zähler beginnt etwa bei Energien von 1 GeV.

In einigen Meßläufen war irrtümlich das Außengate zu lange offen, so daß der Hochspannungspuls der Funkenkammern alle Zähler gesetzt hatte. In diesen Fällen wird die Schauerenergie im Auswerteprogramm der Reduktionsstufe II zu Null gesetzt. Geschah dies in beiden Außenarmen, entfällt die Unterscheidungsmöglichkeit zwischen Pion- und Elektron-Paaren.

XI.A.8. Akzeptanzbestimmung

Bei Detektoren mit kleiner geometrischer Akzeptanz muß man bei jedem Zerfallskanal mit Hilfe eines Monte-Carlo Programmes prüfen, welcher Anteil der nachgewiesenen Teilchen in die Akzeptanz des Spektrometers fällt. Entscheidend geht dabei die Winkelverteilung der Teilchen im Endzustand ein.

Die e^+e^- -Vernichtung in ein virtuelles Photon liefert einen Gesamtdrehimpuls J = 1 und eine zur z-Achse transversale Polarisation; wegen der Kopplung an das virtuelle Photon gilt dies auch für die Resonanzen.

Daher existieren für Hadron- und Müon-Paarzerfälle einfache Winkelverteilungen

im DASP-Koordinatensystem¹⁰⁶ (siehe die folgende Tabelle VI). Bei Endzuständen, die aus einer Kette von aufeinanderfolgenden Zerfällen entstanden sind, wie z.B. $J/\psi + \pi c$, $\rho \to \pi \pi$ oder $\psi' \to c J/\psi$, $c \to \pi \pi$ sind die Winkelverteilungen der nachgewiesenen Teilchen mit denen der Zwischenzustände korreliert. Mit Hilfe des Dichtematrixformalismus lassen sich jedoch analytische Funktionen für diese Verteilungen angeben^{107,24}. So gilt für eine Zerfallskette der Art : V + P V', V' $\to P_1P_2$ (P = Pseudoskalar, V,V' = Vektormesonen) folgende Winkelabhängigkeit :

A.8.(1)
$$W(\theta_{P_1}, \Phi_{P_1}, \theta) = \sin^2 \theta_{P_1} (1 + \cos^2 \theta + \sin^2 \theta \cos^2 \Phi_{P_1})$$
,

wobei θ im DASP-Koordinatensystem und θ_{P_1}, ϕ_{P_1} im Ruhsystem des zerfallenden Vektormesons V' definiert sind. Das Koordinatensystem (x',y',z') des Mesons V' ist folgendermaßen definiert : die z'-Achse liegt in Flugrichtung, die y'-Achse ist durch das Kreuzprodukt \vec{z} x \vec{z} ' und die x'-Achse durch \vec{y} x \vec{z} ' gegeben.

Nach der Simulation des Zerfalls V' \rightarrow P₁P₂ im Ruhsystem von V' folgt eine Lorentztransformation in das Laborsystem und eine Rotation, die die Vierervektoren von P₁ und P₂ in das DASP-Koordinatensystem überführt.

Bei einer Zerfallskette der Art $V \rightarrow S(P) V'$, $S(P) \rightarrow P_1P_2$ (S = skalares Meson) ist die Winkelabhängigkeit durch den ersten Zerfall festgelegt :

$$A.8.(2) \qquad W(\theta) = 1 + \cos^2\theta$$

Der zweite Zerfall besitzt eine isotrope Winkelverteilung.

An die Simulation der Kinematik und der Winkelverteilungen schließt sich die eigentliche Akzeptanzbestimmung an.

Dazu werden die erzeugten geladenen Teilchen einer bestimmten Reaktion durch den gesamten Detektor bis zu den akzeptanzbestimmenden Szintillationszählern (Flugzeit- oder Reichweitezähler) verfolgt; die Akzeptanz ist dann derjenige Anteil an Ereignissen, für den beide Hadronen (bzw. Müonen) in den Außendetektorarmen innerhalb der Akzeptanzschnitte von Kap. IV.3.4. nachgewiesen werden. Die verschiedenen Magnetfeldstärken werden entsprechend ihren Anteilen an den µ-Paaren, die zur Normierung der Verzweigungsverhältnisse benutzt werden, berücksichtigt. Bei der Verfolgung der Teilchen werden das begrenzte Auflösungsvermögen der Funken- und Proportionalkammern, die Vielfachstreuung und der Energieverlust simuliert. Anschließend durchlaufen die Daten, die auf diese Weise gewonnen werden, die Programme der Auswertungskette und es werden alle Schnitte gemacht, die auch bei der Auswertung der gemessenen Daten gemacht werden. Dies sind bei nichtzerfallenden Teilchen die Schnitte in der invarianten Masse und in der Wahrscheinlichkeit der kinematischen Anpassung des simulierten Zerfalls. Durch die Simulation der Streueffekte erhält man Informationen über die Massenauflösungen. Zusätzlich gewinnt man bei 3-Körperzerfällen mit der Akzeptanz gewichtete Phasenraumverteilungen für Kombinationen von zwei Teilchen.

In der Tabelle auf der nächsten Seite sind noch einmal die Akzeptanzen aller betrachteten Zerfälle zusammengestellt (wegen der Impulsabhängigkeit der Akzeptanzschnitte gelten für einige Reaktionen unterschiedliche Definitionen, deren Anteile an der Gesamt-Akzeptanz angegeben sind).

Zusätzlich werden in dem Akzeptanzermittlungsprogramm die Korrekturen für die Absorption und für den Zerfall der Teilchen ermittelt, die in die Akzeptanz des Spektrometers fallen. Sie sind ebenfalls in der Tabelle VI zusammengestellt.

XI.A.9. Zerfallskorrektur¹⁰⁸

Vor der Verfolgung von Teilchen, die auf dem Weg durch das Spektrometer zerfallen können (Kaonen und Pionen), wird auf Grund des Zerfallsgesetzes die Weglänge bis zum Zerfall gewürfelt. Wenn der Zerfallsort vor den Schauerzählern des Außendetektors liegt, wird dort die Zerfallskinematik nach bekannten Verzweigungsverhältnissen⁴⁸ ausgewürfelt und das geladene Zerfallsteilchen weiterverfolgt. Wenn die dabei entstehenden Zerfallsmüonen mehr als 860 MeV/c Impuls besitzen, kann ein Reichweitezähler gesetzt werden. In diesem Fall wird das Ereignis als verloren betrachtet, auch wenn die Spursuchen und die Impulsbestimmung bei der Rekonstruktion des Ereignisses erfolgreich sind. Bei den zerfallenden Kaonen wird berücksichtigt, daß in 33 % aller Zerfälle keine Müonen entstehen. Ereignisse mit nichtmüonischem Zerfall gehen nur dann verloren, wenn die vollständige Rekonstruktion des Ereignisses scheitert.

Insbesondere bei zerfallenden Kaonen geht ein großer Teil an Ereignissen dadurch verloren, daß das aus der Flugzeit berechnete Massenquadrat kleiner ist als die untere Schnittgrenze bei den Teilchenidentifikationsschnitten (s. Kap. IV.3.5.) oder daß die Spurabweichung S (s. Kap. IV.3.3.) zu groß ist.

		Winkel- verteilung	Akzeptanz	Zerfalls- korrektur	Absorp. korr.	Bemerkungen
J/ψ →	цμ	$1 + \cos^2 \theta$	0,0304			RwZ-Akzeptanz
	п 1 Т	sin²θ	0,05	1,127	1,092	u
	КК	sin²θ	0,0509	2,28	1,063	11
	рp	$1 + \cos^2\theta$	0,0355		1,17	FZ-Akzeptanz
	π [±] ρ [∓] ∽π [∓] π ⁽	A.8.(1)	0,0084	1,125	1,086	22 % FZ~, 78 % RwZ-Akz.
	^{π⁰ρ⁰ _{∽π}+_π-}	A.8.(1)	0,0015	1,240	1,08	FZ-Akzeptanz
	π ⁺ π ⁻ π ⁰	isotrop	0,0051	1,124	1,086	24 % FZ-, 76 % RwZ-Akz.
	K [±] K [₮] ∓ ᆄ₭ [∓] ℼ ^{ଡ଼}	A.8.(1)	0,0144	2,93	1,057	31 % FZ-, 69 % RwZ-Akz.
	K _∓ K, ±	A.8.(1)	0,0075	1,63	1,063	78 % FZ-, 22 % RwZ-Akz.
	K⁰K [*] ⁰ ⊷K [±] π	A.8.(1)	0,0025	2,53	1,067	FZ-Akzeptanz
	K⁰K [≯] ⁰ ⊾→π+ _π -	1 + cos isotrop	0,0020	1,144	1,083	FZ-Akzeptanz
	η Φ ┗→K ⁺ K ⁻	A.8.(1)	0,0091	5,85	1,051	FZ-Akzeptanz
	pπ_n pπ_n	isotrop	0,00222	1,10	1,07 1,216	FZ-Akzeptanz
	ppπ ⁰	isotrop	0,00543		1,19	FZ-Akzeptanz
	ppŋ	isotrop	0,00332		1,21	FZ-Akzeptanz
	ppω	isotrop	0,00220		1,24	FZ-Akzeptanz
	ppn'	isotrop	0,00092		1,28	FZ-Akzeptanz
	γX(2 <u>,</u> 8) ⊶pp	1 + cos²θ isotrop	0,0239		1,18	FZ-Akzeptanz
	∆ ⁺⁺ ∆ ⊷pπ	1 + cos²θ isotrop	0,0012	1,09	1,16	FZ-Akzeptanz
ψ' +	XJ/ψ ເ⇒ μ⊔	s. Ref.25	0,0243			RwZ-Akzeptanz
	ππ	sin²θ	0,0501	1,11	1,087	и
	кк	sin²θ	0,0505	2,09	1,058	n
	рр	$1 + \cos^2 \theta$	0,0355		1,20	FZ-Akzeptanz
	εJ/ψ ⊶ τπ	l + cos²θ isotrop	0,000098	2,1	1,15	FZ-Akzeptanz
	γX(3,6) ⊷rπX	1 + cos²θ isotrop	0,00083	1,38	1,135	FZ-Akzeptanz
	γχ(3,45)) 1 + cos²θ isotrop	0,000165	1,45	1,16	FZ-Akzeptanz

.

	Winkel- verteilung	Akzeptanz	Zerfalls- korrektur	Absorp. korr.	Bemerkungen
$\psi' \rightarrow \gamma \chi_{0} \qquad \qquad$	1 + cos ² θ isotrop isotrop isotrop El-Überg. "	0,0277 0,0271 0,0294 0,0422 0,0418 0,0372	1,118 2,135 1,116 2,02	1,089 1,058 1,2 1,088 1,058 1,2	RwZ-Akzeptanz RwZ-Akzeptanz FZ-Akzeptanz RwZ-Akzeptanz RwZ-Akzeptanz FZ-Akzeptanz
e ⁺ e ⁻ → μ μ → π π → K K → p p	$1 + \cos^2 \theta$ $\sin^2 \theta$ $\sin^2 \theta$ $1 + \cos^2 \theta$	0,0258 0,0510 0,0509 0,0348	1,096 1,93	1,082 1,056 1,165	RwZ-Akzeptanz " FZ-Akzeptanz

Tabelle VI : Akzeptanzen, Zerfalls- und Absorptionskorrekturfaktoren

Bei der Akzeptanzberechnung für den Zerfall $J/\psi \rightarrow K^{\pm}K^{\mp\tau}$, $K^{\mp\tau} \rightarrow K^{\mp}\pi^{0}$ gehen durch die Massenquadrat- und Spur-Schnitte 36 % der Ereignisse mit mindestens einem zerfallenden Kaon (13 % aller Ereignisse) verloren. Vor diesen Schnitten gingen ca. 62 % (41 % von allen) Ereignisse verloren, weil durch den Zerfallsprozeß keine Innen- oder Außenspur gefunden wurde oder die Impulsbestimmung scheiterte. Bei der kinematischen Anpassung der "gemessenen" Vierervektoren an die Reaktion $J/\psi \rightarrow K^{+}K^{-}\pi^{0}$ gehen nochmals 19 % (2 % aller Ereignisse) der bis dahin überlebenden Ereignisse mit einem Zerfall verloren.

Man kann die Akzeptanz auch ohne Simulation der Zerfälle und der Streueffekte ermitteln und erhält aus der Differenz zu der vollständigen Simulation Informationen über die Akzeptanzvergrößerung (oder Verkleinerung) durch Zerfall, Vielfachstreuung und Energieverluste. In dem oben angeführten Beispiel beträgt diese Vergrößerung 7 %, bei anderen Reaktionen – abhängig von der Impuls- und Winkelverteilung – 3-5 %, auch Verkleinerungen bis zu 10 % treten auf.

Literaturverzeichnis	
1. B.H. Wiik, G. Wolf, DESY 78/23 (1978)	
Vera Lüth, SLAC-PUB-1873 (1977)	
2. J.J. Aubert et al., Phys. Rev. Lett. 33, 1404 (1974)	
3. J.E. Augustin et al., Phys. Rev. Lett. 33, 1406 (1974)	
G.S. Abrams et al., Phys. Rev. Lett. <u>33,</u> 1453 (1974)	
4. J.E. Augustin et al., Phys. Rev. Lett. <u>34</u> , 764 (1975)	
J. Burmester et al., Phys. Lett. <u>66B</u> . 395 (1977)	
5. M.C.Perl et al., Phys. Rev. Lett. <u>35</u> , 1489 (1975)	
M.C.Perl et al., Phys. Lett. <u>63B</u> , 466 (1976)	
G. Flügge, DESY 77/35 (1977)	
6. C. Berger et al., Phys. Lett. <u>76B</u> , 243 (1978)	
C.W. Darden et al., Phys. Lett <u>76B</u> , 246 (1978)	
J.K. Bienlein et al., DESY 78/45 (1978)	
7. S.W. Herb et al., Phys. Rev. Lett. <u>39</u> , 252 (1977)	
W.R. Innes et al., " " <u>39</u> , 1240 (1977)	
8. A.W. Hendry, D.B. Lichtenberg, IUHET-26 (1978)	
0.W. Greenberg, Annual Rev. of nuclear and particle science 28 (197	8)
9. J.D. Bjorken, S.L. Glashow, Phys. Lett. <u>11</u> , 255 (1964)	
10. S.L. Glashow, J.Hiopoulos, L.Miani, Phys. Rev. <u>D2</u> , 1285 (1970)	
11. I. Appelquist, H.D. Politzer, Phys. Rev. Lett. <u>34</u> , 43 (1975)	
A.De Rujula, S.L. Glasnow, $34, 46 (1975)$	
E. Eleficitien et al., $\underline{34}$, 369 (1975)	
12. Albe Rujula, Ibilist Kohlerenz (1970) 13. W. Braunschweig et al. Phys. Lett. 578, 407 (1975)	
14. W Taponbaum of all Phys. Rev. Lett. 35, 1323 (1075)	
15. G.J. Feldman et al., " " 35. 821 (1975)	
16. G.J. Feldman, M.J. Perl, Phys. Lett. 190, 233 (1975)	
17. G. Goldhaber et al., Phys. Rev. Lett. 37, 255 (1976)	
I. Peruzzi et al., """ 37, 569 (1976)	
18. W. Braunschweig et al., Phys. Lett. 63B, 471 (1976)	
R. Brandelik et al., DESY 77/44 (1977)	
J. Burmester et al., DESY 76/53 (1976)	
19. S. Okubo, Phys. Lett. <u>5</u> , 165 (1963)	
G. Zweig, Cern-preprint TH 401 (1964)	
J. Tizuka et al., Prog. Theor. Phys. 35, 1061 (1966)	

20. DASP - Collaboration : R. Brandelik, W. Braunschweig, H.-U. Martyn, H.G. Sander, D. Schmitz, W. Sturm und W. Wallraff I. Physikalisches Institut der RWTH Aachen D. Cords, R. Felst, R. Fries, E. Gadermann, H. Hultschig, P. Joos, W. Koch, U. Kötz, H. Krehbiel, D. Kreinick, H.L. Lynch, W.A. McNeelv, G. Mikenberg, K.C. Moffeit, D. Notz, M. Schliwa, A. Shapira, B.H. Wijk und G. Wolf Deutsches Elektronen Synchroton DESY, Hamburg J. Ludwig, K.H. Mess, A. Petersen, G. Poelz, J. Ringel, O. Römer, R. Rüsch, K. Sauerberg und P. Schmüser II. Institut f
ür Experimentalphysik der Universit
ät Hamburg W.de Boer, G. Buschhorn, W. Fues, C.von Gagern, G. Grindhammer, B. Gunderson, R. Kotthaus, H. Lierl und H. Oberlack Max-Planck-Institut für Physik und Astrophysik, München S. Orito, T. Suda Y. Totsuka und S. Yamada Department of Physics, University of Tokyo 21. J. Ludwig, Dissertation DESY int. Bericht F35-77/01 (1977) 22. H. Lierl, - 11 Univ. München MPI-PAE/Exp. El. 65 (1977) 23. W. Sturm, н RWTH Aachen HEP 77/07 (1977) н. 24. H.G. Sander, 11 HEP 77/08 (1977) 25. E. Gadermann. DESY int. Bericht F22-78/05 (1978) 26. R. Fries. F1-78/01 (1978) 27. R. Rüsch. 11 F1-78/02 (1978) .,, 28. J. Ringel, F35-78/02 (1978) 29. Vorschlag zum Bau eines 3 GeV e^te⁻-Doppelspeicherringes für DESY (1967) 30. H. Wiedemann, Herbstschule für Hochenergiephysik, Maria Laach 1973 31. DESY Handbuch : Doppelarmspektrometer DASP 32. Typ 2M90, DESY int. Bericht B2 372 (1972) 33. H. Hultschig, DASP-int. Notiz 11 (1974) 34. O. Römer, Diplomarbeit DESY int. Bericht F35-76/01 (1976) 35. S. Diekmann, Diplomarbeit Hamburg 1975 36. K. Sauerberg, 0 DESY int. Bericht F22-74/02 (1974) E. Gadermann, F22-74/01 (1974) 37. W. Braunschweig et al., RWTH Aachen HEP 75/11 38. H.G. Sander, Diplomarbeit RWTH Aachen HEP 74/07 39. T.L. Atwood, Thesis Univ. of Maryland, Techn. Report 77-040 (1977) 40. Das Programm stammt von Herrn Dr. W. Koch, DASP-int. Notiz 39 (1975)

41. K. Sauerberg, Dissertation Hamburg 1979 42. A.M. Boyarski et al., Phys. Rev. Lett. 34, 1357 (1975) 43. D. Schildknecht et al., DESY 71/28 (1971) 44. G.S. Abrams et al., Phys. Rev. Lett. 34, 1181 (1975) 45. V. Lüth et al., **u** u u 35, 1124 (1975) 46. R. Brandelik et al., Phys. Lett. 73B, 109 (1978) 47. R. Brandelik et al., " 768, 361 (1978) 48. Particle Data Group, Rev. of Mod. Phys. 48, No. 2, Part II (1976) 49. M.L. Perl, High Energy Hadron Physics, John Wiley & Sons (1974) 50. W. Braunschweig et al., Phys. Lett. 67B, 243 (1977) S. Yamada, Proc. Conf. Hamburg 1977, S. 69 51. W. Tanenbaum et al., Phys. Rev. Lett. 36, 402 (1976) 51a.W. Tanenbaum et al., Phys. Rev. D17, 1731 (1978) 52. M. Chaichian, M. Hayashi, Phys. Lett. 61B, 178 (1976) J. Schwinger et al., UCLA/75/ TEP/8 (1975) 53. E. Gadermann, pers. Mitteilung 54. C. Quigg, J.L. Rosner, Fermilab-Pub-77/40-THY (1977) 54a.M. Greco, M. Krammer, Phys. Lett. 69B, 313 (1977) 55. U. Timm, DESY 77/52 (1977) 55a.C.J. Biddick et al., Phys. Rev. Lett. 38, 1324 (1977) 56. W. Bartel et al., DESY 78/49 (1978) 57. D. Kreinick, DASP-int. Notiz 102 58. J. Ringel, pers. Mitteilung 59. M.S. Chanowitz, F.J. Gilman, SLAC-PUB 1746 (1976) 60. Die Verteilungen wurden von Herrn Dr. W. Koch berechnet 61. R. Rapidis et al., Phys. Rev. Lett. 39, 526 (1977) 62. E.J. Feldman, M.L. Perl, SLAC-PUB 1972 (1977) 63. G. Wolf, Intern. School of Physics "Enrico Fermi", Varenna (1977) M. Piccolo et al., Phys. Rev. Lett. 39, 1503 (1977) 64. H. Schopper, DESY 77/79 (1977) 65. H. Fritsch et al., Phys. Lett. B47, 365 (1973) D. J. Gross, F. Wilczek, Phys. Rev. D8, 3633 (1973) S. Weinberg, Phys. Rev. Lett. 31, 494 (1973) 66. T. Appelquist, H.D. Politzer, Phys. Rev. Lett. 34, 43 (1975) н н. н 34, 365 (1975) T. Appelquist et al., . . . 34, 46 (1975) A.De rujula, S.L. Glashow,

67. J. Burmester et al., DESY 77/50 (1977)

68. W. Braunschweig et al., Phys. Lett. 578, 297 (1975) W. Braunschweig et al., " " 63B, 487 (1976) 69. F. Vannucci et al., Phys. Rev. D15, 1814 (1977) 70. I. Peruzzi et al., " D17, 2901 (1978) 71. P. Harms, Diplomarbeit DESY int. Bericht F33-78/02 (1978) 72. B. Jean-Marie et al., Phys. Rev. Lett. 36, 291 (1976) 73. W. Bartel et al., Phys. Lett. 64B, 483 (1976) 74. G. Alexander et al., DESY 77/72 (1977) 75. G. Feldman, priv. Mitteilung 76. B.H. Wiik, Stanford Konf. 1976 77. B.Knapp et al., Phys. Rev. Lett. 34, 1040 (1975) 78. F.M. Renard, Phys. Lett. 47B, 361 (1973) 79. H. Kowalski, T.F. Walsh DESY 76/02 (1976) 80. A.De Rujula et al., Phys. Rev. D12, 147 (1975) R. Barbieri et al., Nucl. Phys. B105, 125 (1976) 81. K. Gottfried, Proc. Conf. Hamburg 1977 Y. Hara, Proc. Conf. Tokyo 1978 82. H.J. Schnitzer, Phys. Rev. Lett. 35, 1540 (1975) J. Pumplin et al., " " 35, 1538 (1975) 83. J.D. Jackson, Europ. Conf. on Part. Phys., Budapest 1977 84. H. Harari, Phys. Lett. 64B, 469 (1976) 85. L.B. Okun, M.B. Voloshin, ITEP 152 (Moskau 1976) V.a. Novikov et al., Phys. Rep. 41C, 1 (1978) 86. J.D. Jackson et al., Proc. Conf. Tokyo 1978 87. E. Hilger, Konf. Aachen (1977) 88. A.De Rujula, R.L. Jaffe, MIT preprint CTP 658 (1977) F. Gutbrod et al., DESY 78/48 (1978) 89. H. Lipkin, Fermilab-Conf.-77/93-THY (1977) 90. W.D. Apel et al., Phys. Lett. 72B, 500 (1978) 91. G. Eilam et al., McGill Univ., Montreal (1978) 92. D. Cords, DESY 78/32 (1978) 93. M. Bernardini et al., Phys. Lett. 46B, 261 (1973) 94. V. Sidorov, Konf. Tbilisi 1976 95. G.J. Gounaris, J.J. Sakurai, Phys. Rev. Lett. 21, 244 (1968) 96. I. Peruzzi et al., Phys. Rev. Lett. 39, 1301 (1977) 98. M. Böhm, H. Joos, DESY 78/27 (1978) 99. R. Brandelik et al., DESY 78/63 (1978)

- 100. J.L. Rosner, Konf. Coral Gables 1977
- 101. K. Kleinknecht, Proc. Conf. London 1974
- 102. Die Programme stammen von den Herren Drs. Koch und Kreinick
- 103. M. Schliwa, Diplomarbeit Hamburg 1973
- 104. K. Sauerberg, pers. Mitteilung
- 105. M. Schliwa, DASP-int. Notiz 70
- 106. Y. Tosa, Nagoya Univ. DPNU-34 (1976)
- 107. E. Celeghini, Proc. of Int. School "Enrico Fermi" XLVI (1971)
 - G. Kramer, T.F. Walsh, DESY 72/46 (1972)
- 108. M. Schliwa, DASP-int. Notiz 96
- 109. R. Brandelik, Dissertation RWTH Aachen 1979

Danksagung

Die vorliegende Arbeit entstand im Rahmen der Experimente der DASP-Kollaboration. Allen Mitgliedern dieser Kollaboration danke ich für das gute Gelingen der Experimente und die vielen Hilfen während der Durchführung und der Auswertung der Messungen.

Insbesondere danke ich Herrn Dr. G. Wolf für die Anregung und Betreuung dieser Arbeit sowie für die sorgfältige Durchsicht des Manuskriptes.

Den Herren Drs. H.-U. Martyn und E. Gadermann danke ich für die Überlassung von Monte-Carlo-Programmen und Herrn Dipl.-Phys. K. Sauerberg für die Versorgung mit Monte-Carlo μ -Paaren.

Herrn Dr. G. Mikenberg danke ich für die Beratung bei dem F-Meson-Ereignis. Mein Dank gilt außerdem Frau Siemer für die mühevolle Schreibarbeit.

Lebenslauf Manfred Schliwa

30.6.1944	Als Sohn des Kaufmannes Max Schliwa und seiner Ebefrau Ella, geb. Hansen, in Itzehne geboren
1951 - 1955	Besuch von Volksschulen in Itzehoe und Hamburg- Altona
1955 - 1 9 65	Besuch des Gymnasiums für Jungen in Altona
Februar 1965	Abitur
1965 - 1967	Ableistung des Wehrdienstes
SS 1967	Beginn des Physikstudiums
SS 1969	Diplom-Vorprüfung
1971	Beginn der Diplomarbeit Thema: "Ein schnelles Impulsberechnungsverfahren für Funkenkammermagnetspektrometer"
SS 1973	Diplom-Hauptprüfung
1973 - Ende 1976	Wissenschaftlicher Angestellter am Max-Planck-Institut für Physik und Astrophysik in München. Mitarbeit am DASP-Experiment
Seit 1977	Wissenschaftlicher Angestellter am Deutschen Elektronen- Synchrotron DESY in Hamburg. Beginn der Dissertation