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The eigenvalue problem of the scalar Bethe - Salpeter equation

is solved by application of the vertical Dyson representation. The

method of solution is developed in complete analogy to the solution of

Schrödinger's equation by a Stielt^es representation in case of a Yu-

kawa potential. The eigenvalues are zeros of a characteristic deter-

minant, which can be understood äs a generalization of the nonrelati-

vistic Jost function»





I. Introduction

Recently Coester Ql] has proposed relativistic particle quantum

mechanics äs a possible alternative of quantum field theory. From the

mathematical point of view Coester1 s approach has the virtue to be

based on the firm ground of functional analysis, but physically it

suffers from serious shortcomings . It does not offer physical arfl-lX--

ments for the choice of interaction operators, nor does it seera pos-

sible to include the principle of causality in a simple way. As a con-

sequence of causality matrixelements should satisfy dispersion relat-

ions äs in field theory.

The opposite Situation is encountered in field theory. We consider

äs an example the formulation of the relativistic two-body System in

terms of the Bethe-Salpeter equation. Here the principle of causality

is included from the outset and possible approximations for the inter-

action can be taken from perturbation theory. On the other hand the

mathematical structure of the eigenvalue problem is obscure. It is the

purpose of this paper to shed some light on this question.

To avoid kinematical and renormalization difficulties we consider

the B-S equation for a S-wave bound state in a super-renormalizable

theory of three scalar fields with trilinear interaction. Our approach

to the solution of the eigenvalue problem is based on a suitable adapt-

ion of Joat's method to the relativistic Situation. We shortly review

the solution of Schrödinger1 s equation in momentum space for a S-wave

bound state in a Yukawa potential in See. II. A Stieltjea transfor-

mation leads to an inhomogeneous integral equation for the spectral

function f2l , fj] , which can be solved by iteration. The relationship

of this method to Jost's approach to a solution of the differential

equation in conf iguration space is investigated. In See. III we sum-

marize the general properties of the relativistic B-S amplitude and

decompose it into a one-particle Singular and a regulär part. This

device is crucial for a successful adaption of the nonrelativiatic
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method to the B-S equation, which is the subject of See. IV. We use

the vertical Dyson representation äs a possible substitute of the

Stieltjes representation and transform the B-S equation into an in-

homogeneous integral equation for the spectral function by Splitting

off the one-particle singular part. This is done for the ladder ap-

proximation, but the method applies equally well to the complete B-S

equation. The integral equation can again be solved by iteration,

while the boundary conditions are expressed in terms of two coupled

integral equations for the absorptive parts of the two vertex funct-

ions with one particle off the mass Shell. The Fredholm determinant of

this System is the generalization of the nonrelativistic Jost funct-

ion.

II. The Wonrelativistic Amplitude

In analogy to the relativistic f ormulation we describe a bound

state of two particles in the nonrelativistic theory by the two-point

amplitude

where T means Wick's chronological operator and x Stands for

x = {^»XQ = tj. The field operators ̂  (x ) and Yip(x2^ are

to spinless particles with masses m and m . They satisfy the commutat-

ion relations

*>.), T/̂ >J] = S(*-1>) } *- ̂  . (2.2)
All other commutators vanish. The theory is supposed to be invariant

under Galilean transf ormations . The invariant 1lmass shell" conditions

read ( A = 1 ) :

=^ (2-5)
for the basic particles and

* -P (2-4)
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for the bound state with binding energy £ .

The amplitude (2=1) can be written in the form

\ J-> / l V ' ̂"i***

where

According to the definition of the T-operator we have

The factors of the 9-functions in (2.7) can be represented by Fourier

integrale:

(2.8)

where we have choaen the normalization:

= rf *--4Z. (2.9)

The restriction of the support of the Fourier transforms in (2.8) to

the mass shell parabolas
X 'B' -̂  \*»'
/ r — a l f ̂ ^ \ cr (2.10)

is of course enforced by the conservation of particle n&mbers. By sub-

stitution of (2.6) into (2-7) and Fourier transformation we obtain the

following representation of the two-particle amplitude in momentum

space: „ r -t/ff'-ftVo)

T"
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Let us assume that the bound state has zero angular momentum.

f(q) can then be considered äs a function of the two Galilean inva-

riant s

/T? ~>}^ /''P ;?)*
(2.12)

The sum ff + #? is independent of *fc and related to the energy of

the relative motion:

The matrixelements in (2.11) are the Schrödinger wave-functions of the

relative motion. They do not depend on 0̂ , because fy is fixed by

the corresponding mass shell relation. Hence they depend on g, + &-

only. Finally the vanishing of the equal time commutator together

with (2.8) teils us that both matrixelements can "be represented by the

same function

These statements enable us to write the amplitude in a form that takes

into account the restrictions imposed by Galilean invariance, spectral

conditions and equal time commutation relations:

(2.15)

-rv, r +-The function

i s the nonrelativistic v er t ex function .

The properties of the vertex function depend, on the dynamics of

the System under discussion. For comparison with the relati vistic case
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it is convenient to set up the dynamical problem in terms of a Bethe

Salpeter (B-S) equation. The B-S equation with a local two-particle

Potential V(x" - "x2 ) reads

Separation of the center of mass (s. (2. 5)) leads to

The Fourier transform of (2.18)

has the s tructure required by (2.15)- If we introduce the "Ansatz"

(2.15) into (2.19)» we can per form the q ' Integration to obtain Sc

dinger's equation in momentum space for the wavefunction i(8.-tS}

The potential in closest agreeraent with the relativistic B-S

equation, we shall study later o n, is the Yukawa potential

Nwhere S\d M, are parameters. The equation

*- - ' A= ,
(2-22)

has been solved by Vanders £2] and Blankenbeder and Cook £$1 by means

of a Stieltjes transf ormation that displays the analytic properties of

the wavefunction r"'(k ). For comparison with the solution of the rela-
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tivistic problem we shortly outline this method in a form convenient

for our purposes.

Ve consider (2.22) äs an integral equation for the nonrelativistic

vertex function

(2.23)

Introducing the spectral representation (stieltjes transf orm)

we obtain

(,25)

The integrals over •* space occurring in (2.25) are of the sarae type

and can be simplified by symmetrical Integration, e.g.

J=

The integral over z can be dispersed with the Standard formula

where

Finally we substitute (2.27) into (2.26), interchange the order of in-

tegrations and evaluate the k' integral. This yields the result of

Blankenbtcler and NamtU
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r ^s' •*
J vT l̂̂ F,•j * *

Using (2.29) we may derive from (2.25) an integral equation for

with

Equation ( 2 . J O ) may be considered äs an inhomogeneous integral

/

p
( 5 - <X ) , which can be solved "by in-

version

It is shown in appendix A that the resolvent 7?(s,s') is bounded by

It is, therefore, an entire function of A and can "be expressed by the

Heumann series

. (2>33)

Observing that

) /\'~ /. . .,\t\ /_ ,,\)

we can write the solution (2.J1) in a more compact form

= -A' rc-o,-; 7?̂ -̂ ;. (2.55)



Integration of (2. 55) yields

00

+7d fes *&,-«*)) = <rt (2-36)

because of (2.24).

It is important to realize that the function

(2.57)

is the Jost function f (k) with argument k = -io( . As is well known

(s. e.g.[6J), f (k) is analytic in the coinplex k plane cut al'ong the

positive imaginary axis from k = -_• iii to infinity in the case of a

Yukawa potential (2.21). This is just what the representation (2.57)

says. Hence (2.56) is identical with the Statement that a bound state

is a zero of the Jost function on the negative imaginary axis. As is

seen from (2.56) and (2.55) zeros can occur only for an attractive po-

tential ( A> 0), because f (-i<*) > 0. if A< 0. According to the

general properties of the Jost function the number of zeros is finite

M.

III. General Properties of the Relativistic Amplitude

The simplest matrixelement arising in the f ieldtheoretic descript-

ion of a bound state due to the interaction of two fields is the two-

point amplitude

f Ax.) (r*)/-P (3-0

where T is again Wick's chronological operator and x is the four-vector

(x ,x J . For the sake of simplicity we assume that the field operators

A,(x ) and A2(x2) are asymptotically related to neutral scalar par-

ticles with masses m and nu , and transf orm like scalars under the in-

homogene ous Loren t z group . They are supposed to commute for spacelike

distances
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The mass shell conditions are

fg m fa -/£*= />»/- . jk = f>i -%, - *>"/ (3-3)

for the basic particles and

?*= ?/-'?*= "2 , ̂ = «,+ t-e. (5.4)

for the bound state with binding energy ̂  and spin zero.
D

By translation invariance we have

-»' 7*.
7f <>«,**) = ̂ fr-

where

Ve decomposevSccording to the definition of the T-operator

5-7)

To introduce the spectral conditions we expand the matrixelement in

(3-7) in a complete set of physical states:

(3.8)

where

?± = ̂ ±f . (3.9)

We have used the normalization

ft'> = d } +=1,£ (3.10)
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and have given t he one particle contributions with masses DI, , m„ and

tiie continuum contricutions explicitly for comparison with the non-

relativi stic expansion (2.8) .

The Lorentz invarianee of the amplitude

,ß )
- /

depends critically on the condition of locality (3-2). To secure the

causal structure of the amplitude we use the Jost-Lehmann-Dyson repre

sentation in Dyson's volume from L7j for the matrixelement of the com

mutator

The support of 0̂ ( A , 'U, ) is restricted to the region

Zt. 6 l/. ty € V
"* + > + (3-13)

A >s -Aaur V 0 / n - ~ ~ ]/td: my - (#/- / uien Z{+^ £L ) ' * ) * - J - A .

and V is the forward light cone. (Ve assume M > /m -m / ) . 0"bserving

(3.13) we can decompose (3.12) into its positive and negative fre-

quency part.

Ignoring the question of subtractions required by the possibly singular

behaviour of the matrixelement (3-12) at y = Q we obtain the follow-

ing representation of cf (nj )
c-o

*f**u) (3.15)
f-w) -AVt'e

-1 1-
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By Lorentz invariance the Fourier transform

depends only on the scalar invariants <̂ * <£_ *n£ *P y where the latter

is to be considered äs fixed.

A more refined representation exhibiting the one particle singu-

larities of f ( ff } *?- ) is obtained from the Dyson representation of

the vertex functionP * J :

.-̂̂ )i- A2-
where

and

4 V*; . t' = y,£ ( 3 . 1 9 )

•

Hence the support of f ( A , U, ) is given by (3.1?) with m and mp re-

placed by the least masses of the continua C and C^. The structure of

the polynomial r ( ?t ; 9- ) depends on the dynamics. (We have assumed

that fields and currents commute for equal times).

*) Pd i f fe r s f rom the f ieldtheoret ic vertex function ' by a factor

fy faf) Aeffe*) Aif(l+2)Ä2rM ) where 4/ and 4^ a r e F e y n m a n ' s

Green ' s func t ionafor interacting and free fields respectively.
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Next we introduce the quantities

(3.20)

and decompose /C^-t-j*?-/ into a one-particle Singular part and a

regulär part r^^

The residues of the Singular part are related to physical matrixele

ments

m L

L

In cases where single variable dispersion relations can be proved for

the vertices with two particles on the mass shell:

CM)

- - _A£L_ (5-23)

the one-particle Singular part of /~̂ ?v-̂  =?-i) is local, i.e. the cor-

responding contribution to the matrixelement of the commutator vanishes

for spacelike distances. The Singular part may then be considered äs a

-13-
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one-particle approximation of ^+rf-i that is in agreement with

locality. As we shall show in the next section, the regulär part is

completely determined by the Singular part in the simple model of the

B-S equation in ladder approximation.

IV. The Ladder Approximation

We now turn to the properties of the two-point amplitude in the

ladder approximation. Let us assume that the fields A.(x) and A2(x)

interact with a neutral scalar field C(x) of mass Jtwith the property

<OlC(*)/7>> =-(? (4.1)
4

Then the ladder approximation of the B-S equation reads in configurat-

ion space

t

or in momentum space

£ U/ _£̂ ilf̂ L_ (4.3)
* ?

where a is the coupling constant, and all masses have small negative

imaginary parts. The corresponding equation for the vertex function
r-J

( i = P within the ladder approximation) is

«•«
The Polynomial r ( fyj ̂) in (3*17) vanishes due to (4.1). Equation

(4.4) i s then in agreement with locality, if the integral operator on

the r. h. s. of (4-4) reproduces the general form of the Dyson represen-

tation

= fr UJ (4.5)
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Actually even the vertical Dyson representation
oo +*

r *t£ -
is compatible with (4.4). It is well known [öj that the vertical re-

presentation äs proposed by Deser, Gilbert, and Sudarshon [9j is not

a completely general one , i.e. it does not follow from the general

Postulates of local field theory alone. Its validity depends on the

interaction. In this respect we have a similar Situation äs in the

nonrelativistic case, where the existence of the Stieltjes transf orm

(2.24) is due to the analytic properties of the Yukawa potential.

Because the representation (4-6) seems to "be generally valid in

perturbation theory ( JjO] ), it is natural to use it also for the so-

lutions of the B-S equation äs has first been suggested by Wanders jj_2j

It remains, however, an open question, whether every solution can be

represented by (4.6). (But see in this connection the work of Ida and

Maki L! ij ) . Ve shall not discuss the problem of uniqueness here, but

restrict ourselves to Solutions of the form (4.6).

Formally (4*5) and (4-6) &re related by

Vhile the more general form

ÖC

$($.*)<?(-*+*£) (4.8)

of Dyson's spectral function follows from the assumption that a Fou-
Ä- -t

rier-Bessel transform exists with respect to the variables y and y-'

of the commutator matrixelement of the currents |_12j ,

^7 tz.fP'3.}t- r \ f)
jwr \df. fei;z) Afäzj & (4.9)j j j - / \ f
0 —QO
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one cannot conclude from (4«ö) via the spectral conditions (3. 1 5) that

^2<| e v; ) (*-z}£ /- lc

C 4 " 1 0 )

and (4'7) holds, because Dyson's volume form (4-5) is not unique.

Nevertheless, we shall see that the Solutions of (4-4) satisfy the

support conditions (4-10).

We now introduce the representation (4-6) into (4-4) and, simi-

larly äs in the nonrelativistic case (2.25), split off the contribut-

ion from the double pole term of j-(^r". •' " ) (?.2l):

(är X*.*) _ m # fjf-j(s;*'> __ U
4 J --̂ -̂ r J J r-MV,v J -'

' ^ ' J~ • J

(4.11)

where

= /lYV, ^/, 2; .

By symmetrical integration we find

The integral over o<" can be di spe l"sed äs

.*•* °°
.2. C

_ ^ , \1 * * H

r v " J / ^ ^ j ^ ^ n

The second term in (4.11) is of the same type, because

-16-
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__ ̂  .

=
r

where

.16)

t,

(4.14) we finally obtain the following equation for the spectral

funotion J ( ? z-)

r r / ' o (4.17)
" "̂ r*' /**' ̂5„t,:r ̂ J(̂ j ̂ (^'^) ö(r- fr-* £*(*!*,*$)—i ' y

where

2 »
_ ^_ , ^ -. Arf*̂ **

(4.18)

(4.17) can be considered äs an inhomogeneous integral equation

for §"(^,Z,)> but in contrast to the nonrelativistic equation it is

not of the Volterra type. To see this, we determine the region, where

the iterated terros are different from zero. The support of the inho-

mogene ous term is bounded by the curve

and for the n-th term we have

(4-20)
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The details of this minimi^ation problem are given in appendix B, the

result is sketched in Fig. 1. As long äs anomalous thresholds exist,

the support decreases with increasing order of Iteration. This is in

complete analogy to the nonrelativistic case, where only anomalous

thresholds occur. But in the relativistic case the anomalous thresholds

pass the normal thresholds after a finite number W of iterations, and

the support of all higher order terms i s "bounded by the same curve

W^z.)» equ. (B 7), (B 8) of appendix B.

The preceding discussion makes clear, in which sense the singu-

larities of the vertex function P'( y+ „̂ ) in the ladder approximat-

ion are "majorized"by the lowest order term. From (4-6) and (4.17) we

have

The singularities of f7 \+ , <$-L )» considered äs a function of two
j, Z.

complex variables (X . y_ , are easily derived from (4.21). The normal

thresholds

\
(4-22)

result from endpoint sirigulatities of the z-integration at z = + 1

respectively, while the singular manifold ( jj $] )

-t ^ t- ,1, , i „*•

(4.25)

is due to a double root of

(4.24)

= o-
-18-



If one of the variables ty. >?- is on the mass shell, (4-23) gives

t he anomalous thresholds. This agrees with equ. (B 2) of appendix B,

because <f>( 9+ / ?- ) ̂  ) is proportional to the discriminant of the

quadratic equation equivalent with (4.24)*

A more consistent approach to the solution of the B-S equation

(4.4) is suggested by the general structure (j.2l) of the amplitude

•f ( <?+* ̂  ). If we split the r.h.s. of (4-4) into the contributions

from the complete one-particle Singular part and the regulär part of

f ( y**')^ ) instead of separating off only the double pole singular-

ity äs in (4.11), we are led to the following integral equation for

the spectral function P ( ̂  z. ):
•* t

^

(4.25)

-i T -

where

Gy' S-̂ 'J ^(S,
4 J ~S-M*(*')

(4-26)

*'<*
2̂

in contrast to the definition (4-16) of M . The first three terms re-

sult from the one-particle Singular part, while the last term is due

to the regulär part of f( <?+2} ̂  ). (4-25) can also be derived from

(4-17) "by adding and subtracting the last term of (4.25). Equ. (4-25)

assumes a more transparent form, if we use

,.
' *

Jt Ä

as Integration variables for the second and the third term respective

-19-



ly, and introduce t he quantities (s. (4=12))

(4-28)
-f

This yields

(4.29)

It is shown in appendix B that the minima of i;., 4* are tantamount to

the anomalous thresholds fl^ * C3- respectlvely. The meaning of fy(s«)

and Ĵ Xs*,/ tecomes clear from the repreaentation (4*5) with one of
7 o

the variables Q+ . Q on the mass shell

Hence, the coupling constant / (m , m„ ) of the bound particle can also

be expressed in terms of & C St } or fÄ jfst j .

Equ. (4.29) should be considered äs the relativistic analogue of

(2.30). It is, in fact, an integral equation of Volterra type, and the

resolvent (solving for ̂  ( *£ / z~ ) / (" T- M*fä}

(4-31)

is an entire function of A • Fig. 2 shows the relevant domains of de-

pendence for the kernels of (4.1?) and (4.29)* The convergence of the

Neumann series (4-31) is proved in appendix C.
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As in the nonrelativistic equation ((2.51), (2.54)) we can express

the inhomogeneous terms of (4-29) by the kernel,

/<>,
? ^ - » v -/ ~> -/ rifr ,...„,_*^z))-j= w^inw*,*/,*^

*$- M*fr)

(4-52)

T -

V MVx}
v V /

where the kernel in the first line is actually independent of z'. Hence

(4.53)
- A \*SL ^(5"[ K(T, * / M*Ĉ * 5-,x/),*'-)/'.̂ .̂

Referring to (4.28) we get a System of coupled integral equations for

?, Cs-i) and fjtĈ ,) from (4-35):

r • f /V ')
T1 ". (4-54)

5.-

etc. A similar System of equations for the absorptive parts

and &($*.) has been obtained by Nakanishi [l4j in the unphysical

-21-
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2
case P < 0. f-jis approach is based on a double spectral representat-

2
ion of -j- ( •.'_'. l-" ) that is valid only, if P < 0. The more general

vertical Dyson representation leads to corresponding results in the
o

physical region of eigenvalues (P *> 0).

The System (4.55) of coupled Fredholm integral equations is the

relativistic generalization of (2.36). The much more complicated

structure of these equations is of course due to the fact that the

B-S equation is a fourth order partial differential equation in confi

guration space, whereas the nonrelativistic Schrödinger equation is

only a second order ordinary differential equation (for fixed angular

momentum). Further light is shed on this point "by an analysis of the

case P = 0, where the B-S equation reduces to a fourth order ordinary

differential equation. From (4-6) we have with P = 0

(4.37).
Again we split the amplitude f- ( Q^ ) into a one-particle singular

part and a regulär part

(4-38)

We then obtain the following integral equation for the spectral funct

ion 9 ( t ) from the B-S equation (4.4) with P = 0:
' j'. ̂*— \-

(4'39)

This equation is again of Volterra type and can be solved by Iteration.
, v 2. 2- / i. i

Introducing the solution into the representation (4-37.) for ̂  = ̂  *"*«?=wl

we are led to a system of two linear equations for the constants

_ 22-
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(4.40)

which is the analogue of (4. 55)» Each of the elements Q.<& is given äs

a power series in /\ The eigerrvalues -A. must satisfy

-d
(4-41)

The characteristic determinant o - is the generalization of the Jost

function to a fourth order differential equation. In the general case
2

P > 0 finally, the Jost function blows up to the Fredholm determinant

of the System (4-35) and the eigenvalues of the B-S equat-

ion (4-4) are obtained "by solving

A(A^) = fr (4.42)

f or A or 'P*'. Every element of A(J-t'P3~) is expanded into powers of

äs the nonrelativistic Jost function jo

üur approach does not answer the question whether the eigenvalues

in J\ or "P are real. As in the nonrelativistic case, operator analysis

offers more powerful tools for an attack on such questions. We know

from the pioneering work of Vick fl 5l that the eigenvalue problem of

the B-S equation (4-4) is equivalent to that of a completely continuous

hermitian integral operator in the equal mass case. This is also true
2 ~\r P = 0 in the unequal mass case, but for P > 0 the type of the A—

spectrum is still an open question.
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Appendix A: Bound for the Nonrelativistic Resolvent.

We use the following bounds for the iterated kernels of lowest

order:

S - «*

(s1/ l—TJ~ h
, -li "* ' f A 1 ̂/M*tS'J ^ A. 1 J

The generalization t o /K ($,$') l i s obvious. Hence

/A'/ " ' / K'^')l < ™ **PJ/A'I Ur Ä.̂  ^ U"2)

^

Appendix B: Support of Iterated Terms.

From (4.16) we have

(B.1)

We first minimize the expreesions
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.2)

If absolute minima occur at points -^« «/*' /̂J ̂  l ; these are the
* o

anomalous thresholds with respect to the variables ̂  > f- • Other-

wise the minima are given by the boundary values at z = ± 1 respective

Next we minimize (B.l):

,

* * * -*<***•**
and obtain

(E-4)
Repeating the procedure we find a sequence of anomalous thresholds

(B. 5)

and after a finite number of steps we arrive at

This yields

= ̂T-H ^-C'^-tC^) -(<-'*)? -'/«z 4 y (B. 7)

-25-



and

B • 8

Hence the support decreases with each step äs long äs k ̂  N and is

"bounded by W#(z,) for all iterated terms of order k > K (Fig.t). It

should be noted that anomalous thresholds related to higher normal

thresholda, e.g. (m +2u) , can appear "below the normal thresholds (B. 6)

But they also disappear from the physical sheet after a finite number

of iterations,

Appendix C: Bound for the Relativistic Resolvent*

The proof of convergence for the Neumann series of the relati-

vistic resolvent is slightly more involved than in the nonrelativistic

case, because the kerne l (4-31 )

is unbounded (s. (4.18)). But the second iterated kernel

f'^^^^^j.
-s- M&) " - « - (c'z

i s bounded. The singularities of the integrand are due t o the zeros

of (s. (2.28))

s; ̂ Mfc

Since

.*• _ M VT e/z„) A VL~— (M*- M*-) s
—i—LL. — SJ +. £:. LL! L < /l +

(C.4)

* - /̂
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inside the doraain of Integration, we may write

(c-5)

(l

Next we evaluate the -integral

(C.6)

and determine the minimum value of M(T/'zJzf) from (4-26) and (4.16):

M (*,*',*< - vr (C-7)

-r*for large enough values of 5 . This yields

f 2lHence Kv ; is a square-integrable. kernel

The third iterated kernel ,

-

can be estimated in a similar way. Vith

X- G,

(c.9)

(C.10)
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(C.4) and (C-7) we find

The second integral is "bounded "by ( C . 8 ) with V? ' replaced by

because

Hence

where

=

The generalization

i s obvious and proves the convergence of the Neumann series

-28-
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Figure Captions.

Fig. 1: Support of iterated terms of the integral

equation (4.17 ) (ff = 2)

Fig. 2: Domain of de rendance for the kernels of the

integral equations (4.17 ) ( hatched ) and

(4.29 ) (er os s-hatched).
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