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The eigenvalue problem of the scalar Bethe - Salpeter equation
is solved by application of the vertical Dyson representation. The
method of solution is developed in complete analogy to the solution of
Schrodinger's equation by a Stieltjes representation in case of a Yu-
kawa potential. The eigenvalues are zeros of a characteristic deter-

minant, which can be understood as a generalization of the nonrelati-

vistic Jost function.






I. Introduction

Recently Coester [1] has proposed relativistic particle guantum
mechanics as a possible alternative of gquantum field theory. From the
mathematical point of view Ccester's approach has the virtue to be
based on the firm ground of functional analysis, but physically it
suffers from serious shortcomings. It does not offer physical argut-
ments for the choice of interaction operators, nor does it seem pos-
sible to include the principle of causality in a simple way. As a con-
sequence of causality matrixelements should satisfy dispersion relat-

ions as in field theory.

The opposite situation is encountered in field theory. We consider
as an example the formulation of the relativistic two-body system in
terms of the Bethe-Salpeter equation. Here the principle of causality
is included from the outset and possible approximations for the inter-
action can be taken from perturbation theory. On the other hand the
mathematical structure of the eigenvalue problem is obscure. It is the

purpose of this paper to shed some light on this question.

To avoid kinematical and renormalization difficulties we consider
the B-S equation for a S-wave bound state in a super-renormalizable
theory of three scalar fields with trilinear interaction. Our approach
to the solution of the eigenvalue problem is based on a suitable adapt-
ion of Jost's method to the relativistic situation. We shortly review
the solution of Schrddinger's equation in momentum space for a S-wave
bound state in a Yukawa potential in See. II. A Stieltjes transfor-
mation leads to an inhomogeneous integral equation for the spectral
functicn [2], [3], which can be solved by iteration. The relationship
of this method to Jost's approach to a solution of the differential
equation in configuration space is investigated. In Sec. III we sum-
marize the general properties of the relativistic B-5 amplitude and
decompose it into a one-particle singular and a regular part. This

device is crucial for a successful adaption of the nonrelativistic



method to the B-S equation, which is the subject of Sec. IV. We use
the vertical Dyson representation as a possible substitute of the
Stieltjes representation and transform the B-S equation into an in-
homogeneous integral equation for the spectral function by splitting
off the one-particle singular part. This is done for the ladder ap-
proximation, but the method applies equally well to the complete B-S
equation. The integral equation can again be solved by iteration,
while the boundary conditions are expressed in terms of two coupled
integral equations for the absorptive parts of the two vertex functi-
ions with one particle off the mass shell. The Predholm determinant of
this system is the generalization of the nonrelativistic Jost funct-

ion.
II. The Nonrelativistic Amplitude

In analogy to the relativistic formulation we describe a bound
state of two particles in the nonrelativistic theory by the two-point

amplitude

’X(’C‘)X};) = G?rr)% <0/71(W("?)3ﬁ()&))/73> | (2.1)

where T means Wick's chronoclogical operator and x stands for
- .
X = {x,xO = t}. The field operators 7V1(X1) and 1f}e(x2) are related
to spinless particles with masses m, and m,. They satisfy the commutat-

1 2
ion relations

[%@Ex), BRG] = SGR-F) | e=12 | o)

All other commutators vanish. The theory is supposed to be invariant

under Galilean transformations. The invariant '"mass shell' conditions

read (K = 1) :

7 2
%r_l,—?"":a/ H %"f’wzg’ (2.3)

for the basic particles and
— 2

_ _ (2.4)
Py ey R =e&>0
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for the bound state with binding energy o

The amplitude (2.1) can be writtfn in the form
=2 =3
. (5? xgx,_ ~ P Kag +,t:,u)
L]
X(ox) = < (x-x) € = / (2.5)

where

Ply) = @) <o) T{H(E)REINIPD> (2.6)

According to the definition of the T-operator we have

Ply) = @TE<OI (L) KNP @(“m)f-@ﬂ)}%o/?’/d)?’(')/?)}{;T(’y,,) (2.7)

et

The factors of the 6-functions in (2.7) can be represented by Fourier

1ntegrals

@ <ol (L) e DIP = j:,%’ Uy ?-%%)C;»@J) @ff})(Q-{-f}"P(o)]’P)

oY (2.8)
@ <o | ¥ 1) B@IP> ﬁ‘l, ST ”)5"((??) -(%-%) ?)<7+ /%;rp)

where we have chosen the normalization:
@ <o RO F> =1 , v=12 (2.9)

The restriction of the support of the Fourier transforms in (2.8) to

the mass shell parabolas

- 2.
E&+3" e (%-7) Bev) =
LE (B)-o; G -(Fr)=e e

is of course enforced by the conservation of particle numbers. By sub-
stitution of (2.8) into (2.7) and Fourier transformation we obtain the

following representation of the two-particle amplitude in momentum

space: -7 y %%
7C(q) (-?”'),rfd*:-/@ ( )C’O()
<, car) <2+=f/wo)/?> L @I<E-9 /%P> } (2.11)
2
(7") (3‘2 +q,)—‘bé Cﬁj_ (2!-'70 - tE
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Let us assume that the bound state has zero angular momentum.
f(q) can then be considered as a function of the two Galilean inva-

riants
) Z-7
-G _(2eg) 5= _(29) e

The sum 31 + 32 is independent of ¢, and related to the energy of

the relative motion:

Zz

S =gy + 8 £

£:7) = mi(E-3)
"&(z, ‘?) (z, 7 ; =£_:+£: (2.13)

gt My .

3'|-x

The matrixelements in (2.11) are the Schrddinger wave-functions of the
relative motion. They do not depend on 7, y because ¢, ig fixed by
the corresponding mass shell relation. Hence they depend on 51 + 82
only. Finally the vanishing of the equal time commutator together
with (2.8) tells us that both matrixelements can be represented by the

same function
@ <2rq | NP> = F(s+s)=(a) <E-9/%@)P> (2.14)

These statements enable us to write the amplitude in a form that takes
into account the restrictions imposed by Galilean invariance, spectiral

conditions and equal time commutation relations:

f'(q)': 72"(54)5':«)'=—(2—::51, &—f;s‘ + ?1{1'6—} F(S_,-f'&) (2.15)

L 1
= e GGy [ ers)
MN(s+s) = (s+5.) F (s+s) (2.16)

is the nonrelativistic vertex function.

The function

The properties of the vertex function depend. on the dynamics of

the system under discussion. PFor comparison with the relativistic case

-5~



it is convenient to set up the dynamical problem in terms of a Bethe-

Salpeter (B-S) equation. The B-S equation with a local two-particle

potential V(?1 - -;2) reads (eﬂo =9/9Xm m)

(<0r +{.1", A,)(Q‘on +£;,;; Az ) Xy %)= < VIR-R)Cra-1) Xy k) (2.17)

Separation of the center of mass (s.{2.5)) leads to

"\

[’Pa +02, +____ (“E +v?)} .02, +— ‘f?'-Vy)??(y)ﬂ'l/(?)&%)ﬁ"(’f) (2.18)

The Fourier transform of (2.18)

’ - _ e 1 Ve,
£ =G (@ 5‘%m,-(%wc)—fé)@?&ﬁ“’)’/z,,;(%—%)~;£) VTN )

has the structure required by (2.15). If we introduce the "insatz"
(2.15) into (2.19), we can perform the q! integration to obtain Schré-

dlnger s equation in momentum space for the wavefunction ?:(31+S )

F(x®) -
F(3%) = i |eted) V(£-2)) F(2")
+ ; ]

2.20
; (2.20)

The potential in closest agreement with the relativistic B-S

equation, we shall study later on, is the Yukawa potential

-1
A€ V@) =-2 1
Vi) = - i I V&) CONEE SV (2.21)
' 6

where )\ and’fL are parameters. The equation

fz )\
FOB?) =~ fﬁ"(z’zza)ﬂ A, NG oz
‘= 2Me,
has been solved by Wanders [2] and Blankenbeder and Cook [3] by means

of a Stieltjes transformation that displays the analytic properties of

the wavefunction ;:(kz). For comparison with the solution of the rela-

—6-




tivistic problem we shortly outline this method in a form convenient

for our purposes.

We consider (2.22) as an integral equation for the nonrelativistic

vertex function

k) = (£° +o("'\ F(4*) (2.23)
Introducing the spectral representation (stieltjes transform)
rew) = fas' ek (2.24)
we obtain

ms 9(s) (s A 4 A )
i £ - 3 o 4D, [or @ (e~ ) 220

The integrals over £ space occurring in (2.25) are of the same type

and can be simplified by symmetrical integration, e.g.

dr (X
I= f (“,‘2') +/u.1- ," f_P".Pz,‘ 2, 2(4_2)&1*‘?2*(4_:)4 (2.26)

The integral over Z can be dispersed with the standard formula

(s. [4])

1 oo
4 ds'
dz i (s 1 .
oj 2(-2) A4 2 (k") +2) A NN A k) S el
oz Vea)
where
Ala,4,c ) = a*+ 45+ e* - 208 — 220 - 26 (2.28)
7 -

Finally we substitute (2.27) into (2.26), interchange the order of in-
tegrations and evaluate the k' integral. This yields the result of

Blankenbecler and Namtu ES]



= /
T (Y~ A — (2.29)
Y5 s'+ 4% :
Gurt)

Using (2.29) we may derive from (2.25) an integral equation for @ (s),

365) = X' Ti-ot) §0s) O(5m o) ~NgEs) J5 L&) 6o ot) (250
=

with ™)
bs‘ ¢

Equation (2.30) may be considered as an inhomogeneous integral

equation for the function g(s)/(s - 0(2), which can be solved by in-

version
o6)  _ A\'If«e) €° ’(5‘) 2) o)
S6) = AT 226 g Mn\ﬂs?(ss}am«)f G) o
x Q(S—Ow-r-cx)’)
It is shown in appendix A that the resolvent 7?(s,§) is bounded by

&) ff‘)(x")
[RGs) < 226 e"‘/’{/“jd” P (2.32)
e :
It is, therefore, an entire function of )j and can be expressed by the

Neumann series

rR(SS Z L K(”‘)(S:s) where K(s,5)= - ‘S?;;‘(ST) 9@",{""@)‘9). (2.33)

Observing that

O (s~pural) = — k(s,-«’-) (2-34)

- dL
we can write the solution (2.31) in a more compact form

P6) - _ X' TCx®) Ris-«2) (2.35)

§-o®
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Integration of (2.35) yields

PEo) (442 [ds RG-a7) ) = 0, (2.36)
because of (2.24).

It is important to realize that the function
<o
N ¢
fol-ix) = 1+ A" [ds Rs-a?) (2.37)

is the Jost function fo(k) with argument k = -i®X . As is well known
(s. e.g.[6]), fo(k) is analytic in the complex k plane cut along the
positive imaginary axis from k = é ip to infinity in the case of a
Yukawa potential (2.21). This is just what the representation (2.37)
says. Hence (2.36) is identical with the statement that a bound state
is a zero of the Jost function on the negative imaginary axis. As is
seen from (2.36) and (2.33%) zeros can occur only for an attractive po-
tential ( A> 0), because fo(——iO&) > 0. if Aj( 0. According to the

general properties of the Jost function the number of zeros is finite

fe].

III. General Properties of the Relativistic Amplitude

The simplest matrixelement arising in the fieldtheoretic descript-
ion of a bound state due to the interaction of two fields is the two-

point amplitude

X(xyxa) = @O* K0 T (A (x) AG) P> (5.1)

where T is again Wick's chronological operator and x is the four-vector
(x°,¥) . For the sake of simplicity we assume that the field operators
Aq(x1) and Az(xz) are asymptotically related to neutral scalar par-

ticles with masses m, and m and transform like scalars under the in-

1 2’
homogeneous Lorentz group. They are supposed to commute for spacelike

distances



[Ax), Aee)] =0, G-x)°<0 , v€=12  (3.2)

The mass shell conditions are

P=pe—P=mt  p = pa-B = (3.3)

/

for the basic particles and
2 z >3 2 = )
Pom Q=T a0 e e (3.4)
for the bound state with binding energy eband spin zero.

By translation invariance we have

. - P X%
'X(X‘.',X“_) = ('P(ti"r&) e : A (3.5)
where
Ply) = O™ <o) P(A(F)A-2)1P> (3.6)

We decomposecgccording to the definition of the T-operator

Pl) = @) <o| Ar(Z) A LIPS 80n) + @< 0 |AL2)A(R)IP> 663 )3-T)

To introduce the spectral conditions we expand the matrixelement in

(3.7) in a complete set of physical states:

@ <0 | AL(2) AC)IP> = [y & T 8ot me) o) <Gl AONIPS +

+ [ds 8at+s) O() <0l A0)]9:> @* < gl AC0)2> |
. (3.8)

@t <ol A,(2)AQR)IT> = [ty T [ 5a24mi)Oan) <t/ AteN > »
+ [a d(93+¢) 6(%0) <O] A(0)14>@*<q. [ A, (o)1 P> 7

where 2
S A (3.9)
We have used the normalization
@ <ol A;(0) I p:> = 4 3 =12 (3.10)

-10-
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and have given the one particle contributions with masses My, m, and
the continuum contricutions explicitly for comparison with the non-

relativistic expansion (2.8).

The Lorentz invariance of the amplitude

Pls) = Fan <ol [A(2) ACHLIP>

,, Y | (2.11)
»§ ECPEM* <o |[A,(2) ALCL)TIP>

depends critically on the condition of locality (3.2). To secure the
causal structure of the amplitude we use the Jost-lILehmann-Dyson repre-
sentation in Dyson's volume from [7] for the matrixelement of the com-

mutator

(@l <ol [A2) AL2IP> = Jay ™™ [ fﬂu Efqu) d(G-0%2) (X5} (3,12)
[%

The support of ﬁJ()\E,U,) is restricted to the region

u, € Vo u.ell (5.13)

Moy uﬂwrifo) ”mi, - b Z

my - la;:; Hhe e U

Bl

it

) Fe

]

and V+ is the forward light cone. (We assume M > [m1—m2f). Observing
(5.13) we can decompose (3.12) into its gositive and negative fre-

guency part.
(JT)%<0/A1(§)/$(_£)/P> =ﬁ“7 eﬂﬂfb\z‘/d"u (%) d"(_’(f—u}z—z\a) < (A*u)
0

(3.14)

(e o[ A (-2) A2} P> = ﬁ? e"I” /:Azj.&fw_ Qlu.-9.) 4 (1> %) 67A% 1)

Ignoring the question of subtractions required by the possibly singular
behaviour of the matrixelement (3.12) at % = 0 we obtain the follow-
ing representation of ¢ (% )

= [ iy [ s [ A ) (3.15)
(€) fd e ‘ﬁ(,\ ﬁu

(9-u) — A7+ s
—11-
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By Lorentz invariance the Fourier transform

‘P(ﬂ)'(—)sﬁye Ply) = ﬁ ﬁ’“ ::(: u))\,+‘:s = f(2'9Y) (3.16)

depends only on the scalar invariants gﬁ)qf’and ?L/ where the latter

is to be considered as fixed.

A more refined representation exhibiting the one particle singu-
larities of f( Qr% Qif ) is obtained from the Dyson representation of

the vertex function/' *):

L, [(q592) = (-m?)(-m2) F(339Y)

g 2
Plalt g2 fdA‘ A P w)
(%)q + : G-1)°- A rie

.a)
g (3.17)

!

where

P 92) = 2, fy <7 8n) <ol [,(2), Gl 2IIPS

2 u) v
ﬁ‘* M == ﬁ'ye“”ax?‘@/'r(a(z);l(-g))/»’ (3589

!

and

J;’(K’) = ( o + m;") ,4"(1') ,. 1= 12, (3.19)

Hence the support of ¢ ( Ati( ) is given by (3.13) with m, and m, re-
placed by the least masses of the continua C1 and 02. The structure of
the polynomial 7D( q*t Q-L ) depends on the dynamics. (We have assumed
that fields and currents commute for equal times).

*) r’dlffere from the fleldtheoretlc vertex function 7' by a factor
!
QF(?-»z) Az;(?-") A (7*1) Az:(?—‘) , where 4y and 4z are Feynman's

Green's functions for interacting and free fields respectively.

-12-
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Next we introduce the quantities

= 7':,(”7'1) ’")z,) = 7"(4",‘3 7":”)

F(4) = ﬁ(?,.i m,) — ﬁ(m,‘}mf) Ear)e ﬁ’(mliq}) — T, m?) (3.20)
%2_ m”-’ / q_z B mzL

and decompose }k“nﬂqfﬂ into a one-particle singular part and a

regular part f-g(q,.z q_")

2,2 ﬁt(i') = 7
)C(‘f*-)q- = {(q* mi)(aem 9 ‘?'“z ;;(7) } +7&(?-‘; £)

(3.21)

1 /2,2 e 2,
FrGia2) -@;) CRr { P(a59%) ~ Fim2q2) - T3 m)
+ i;(h;;nf2}

The residues of the singular part are related to physical matrixele-

ments

@)’ <[ AOHP>  q,>0
—15;;37 + (32 =
o ax) <o [AO)P-a>  9,<0

L 4R ={W <wlAofr Tro>0

42~ m (3.22)
@)’ <o | Ao)IP-4> 4, <o

_ (.271')3 <7"/J"(o)lp>qé'=m:‘ = () <?+’3:L(0”’P>/q}= ;.

In cases where single variable dispersion relations can be proved for
the vertices with two particles on the mass shell:
oG .
3
@ <al J0)1 > = ﬁ{si(s)_z_ <A p )| P> = Jf__ﬁ_(‘“!__ (3.23)
a4 a, !

the one-particle singular part of f(q:}qf) is local, i.e. the cor-
responding contribution to the matrixelement of the commutator vanishes

for spacelike distances. The singular part may then be considered as a

-13-
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one-particle approximation of .f(1+34}) that is in agreement with
locality. As we shall show in the next section, the regular part is
completely determined by the singular part in the simple model of the

B-S equation in ladder approximation.

IV. The Ladder Approximation

We now turn to the properties of the two-point amplitude in the
ladder approximation. Let us assume that the fields A1(x) and Az(x)
interact with a neutral scalar field C(x) of masa/u.with the property

<o/Cex)IP> =¢ (4.1)

Then the ladder approximation of the B-S equation reads in configurat-

ion space

'X(&,a.,):-g"ﬁ‘r,'ﬁﬂg' 14 (&-*,; Mf)fdr(&'&',- m3) $ A(x- /) X(x,,'x;') I (4.2)

or in momentum space

’ 1 ‘oL /2
(#,42) =——¢ 1 _f(q9%) .
Fis (?f =m) (1-!" mZ) @t 9 @-99‘-/,,“’ ; R

where ? is the coupling constant, and all masses have small negative
imaginary parts. The corresponding equation for the vertex function
~

(7" = " within the ladder approximation) is

‘o2 1 1 1 2
202) _ % / . o T
T'(%:9%) “5,37 [‘“7 ATt ot e T/ (4-4)
The Polynomial 'P(%’} ?—") in (3.17) vanishes due to (4.1). Equation
(4.4) is then in agreement with locality, if the integral operator on
the r.h.s. of (4.4) reproduces the general form of the Dyson represen-
tation
= -~
raiet) = Jas [d’u L
) 3 r+‘.e ‘.(q_u)&- . (4’ 5)

=1d-



Actually even the vertical Dyson representation

is compatible with (4.4). It is well known [B] that the vertical re-
presentation as proposed by Deser, Gilbert, and Sudarshon [9] is not
a completely general one, i.e. it does not follow from the general
postulates of local field theory alone. Its validity depends on the
interaction. In this respect we have a similar situation as in the
nonrelativistic case, where the existence of the Stieltjes transform

(2.24) is due to the analytic properties of the Yukawa potential.

Because the representation (4.6) seems to be generally valid in
perturbation theory ( {jO] }, it is natural to use it also for the so-
lutions of the B-S equation as has first been suggested by Wanders [2}.
It remains, however, an open gquestion, whether every solution can be
represented by (4.6). (But see in this connection the work of Ida and
Maki []1]). We shall not discuss the problem of unigueness here, but

restrict ourselves to solutions of the form (4-6).

Formally (4.5) and (4.6) are related by

!
F(50)= [da 9(52) S(u+rzf) (4.7)
-
While the more general form

$Csu) = [dz 9(52) S(u+2E) (4.8)

of Dyson's spectral function follows from the assumption that a Fou-
rier-Bessel transform exists with respect to the variables '7z'and y;p

of the commutator matrixelement of the currents [ﬁE],

. ’ " Fd ra —L!Z(P' )
<ol [1(2) 2.C201P> =" f;f j;lz ps2) Ay 7)€ %/ (4.9)
[e] -0

-15)
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one cannot conclude from (4.8) via the spectral conditions (3.13) that
(4+z)}’ A ; (+-z}E ¢ V.

§>, ,;'52,3‘2”0, /”4.[(_‘4_' £ m_'_/l‘( (,- )ﬁ; (4.10)

and (4.7) holds, because Dyson's volume form (4.5) is not unique.
Nevertheless, we shall see that the solutions of (4.4) satisfy the
support conditions (4.10).

We now introduce the representation (4.6) into (4.4) and, simi-
larly as in the nonrelativistic case (2.25), split off the contribut-

ion from the double pole term of f(ﬁ,;:';‘ ) (3.21):

fl
5 F ' 4
jdsz 114 Z)I‘ e | }:lz [j’ ‘_(§I$_ jd‘i? _i____ :
5-(9- L ) L & - MYz} -9 -/u"
{ 4 4—2’7 / (4.11)
X .f..( L _z . ) (7
2)(9 } \q. “”’x q_ - J g_ (14'2'3?); f
J
where
Z z > i
=_J: - M(zZ) = m, Bz oms1=Z _ (4—1‘)7/:
@nt | = vz ? (4.12)

= Mz(m,} 3, )

By symmetrical integration we find

!

!

/

' 4 1 4
I= vﬁ@,‘ ~ — = [z 2
'(7‘4')2—/4‘“ gl=m~ A= J-/ i i : (4.13)

=9 0(/4-4 0—«_):‘1;’;) = ‘!4~(\l(¢'4.z E ""

The integral over < can be dispel"sed as (2.27):
1 e , 2 A 2
- - ..»’" - M.("Z)
o %fdz fd‘“ 'rj" B (4.14)
7Y ’1(-;/' Mzl T—(3e2fy

The second term in (4.11) is of the same type, because

e
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4+2’ a-z' 4
f? Y L £ 7 T i
(7-*7') -t m* 9%~ mr [ ¥-(9+2F)
<+t
_ I‘:l 4—K
=z |4 (4.15)

-

0

where

o(/uz + (1-a) ﬁ"(S:z:z) — x(4-«) (3+2£)*

M:(‘S",z:z)= m.,"(lf,zz) 3'+(4- :)4 -—Ml( )/Az) @ 2)4 )

f(s ! 2>z
Z,2 (-2t —'"b,( ) (4.16)
M- (3'2 Z) 4+zq' (4"'2 "‘”31(4—7') (4 ,zz)___ ) z<zl
“z

Using (4.14) we finally obtain the following equation for the spectral

function ¢ (5’! z )

$(3,z) =

A F’('mqﬁ mt) 9“’( 3z) 9( g — QurM(z})‘) -

1 (4 . 17)
— / Sz - /! *
o oo S g0 ) - e )
where
(4)( < M ) _ &2 Sy M* (4.18)
3 1//1(3’/*} M?)

(4.17) can be considered as
for §(%,z ), but in contrast to
not of the Volterra type. To see
the iterated terms are different

mogeneous term is bounded by the
T = w,(z) = (et M(z)"

and for the n-th term we have

Woy (2) = véhazruﬂha (}~+ PL(ﬂfﬁ(z)

l<z<z

an inhomogeneous integral equation
the nonrelativistic equation it is
this, we determine the region, where
from zero. The support of the inho-

curve

(4.19)

) i Qs M (w22 (4.20)

z<2<4

m= & -~ . -17-



The details of this minimi®ation problem are given in appendix B, the
result is sketched in Fig. 1. As long as anomalous thresholds exist,
the support decreases with increasing order of iteration. This is in
complete analogy to the nonrelativistic case, where only anomalous
thresholds occur. But in the relativistic case the anomalous thresholds
pass the normal thresholds after a finite number N of iterations, and
the support of all higher order terms is bounded by the same curve

wW,(z), equ. (B 7), (B 8) of appendix B.

The preceding discussion makes clear, in which sense the singu-
larities of the vertex function 77(q*i q,L ) in the ladder approximat-
ion are "majorized"by the lowest order term. From (4.6) and (4.17) we

have

o s oL § (< M)
T“(3,92) = A T'(mis mi) |dz j5 = ;
/ [ Jm(z»z ¥l ()0 + )G 42D

The singularities of /76{Q4% qf‘), considered as a function of two
complex variables 7:) 9- , are easily derived from (4.21). The normal
thresholds

cffzgm» ma)© , q_2= Qum‘)"?' (4.22)

result from endpoint singulatities of the z-integration at z = + 1

respectively, while the singular manifold ( DB])

2_/4_1 /Lcl-f- m'l_ %L ,ul + m:__ ?_2.
2 2 z z 2. ; 2 2 —
—_— ¢(q+;q_1} ?’) = /ld.z-f- My —7+ rlh-, A h‘l‘L"" my —P - o' (4.25)
Vahs m?z"?--l' miem — P* 2Zm
is due to a double root of
L _ o Az L/1-2\ L /- f
(o - 42(42) ¢ (1) = =97 - s

o pit e g ) — (amt) () — (et ) (5E) = o

-18-
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LN ¥
If one of the variables % ;% is on the mass shell, (4.23%) gives
the anomalous thresholds. This agrees with equ. (B 2) of appendix B,
2,2
because 49( 9+ 9-) P ) is proportional to the discriminant of the

quadratic equation equivalent with (4.24).

A more consistent approach to the solution of the B-S equation
(4.4) is suggested by the general structure (3.21) of the amplitude
(9% 9% ). 1f we split the r.h.s. of (4.4) into the contributions
from the complete one-particle singular part and the regular part of
f( q+%,Qf')Iinstead of separating off only the double pole singular-
ity as in (4.11), we are led to the following integral equation for
the spectral function 9(‘§)z )s

§(52) = A T(mim) (5, 1)) 6(5 = (ur M) =

_Afdz ﬁk __gglz__ 53(4)( T M (F, ;z)) o (5__ (g/'z :Z)) 2)
:3 s (4.25)
- _j';iT PS' K(S,:B(z‘) c«)(§) M:'(*g"zfz)) 9(§_Q‘+ ’L(?.:,z:z))')
+A Jan f“i(—g‘ﬂ— 0« (s, H(5)2)2) O(3 - G+ Fils 2/2)f)

where

_s, /"l,.z'({,'z:z) zhz

M(“S/ Z’z)= (4.26)

M (;’ ) z'<z

in contrast to the definition (4 16) of M2. The first three terms re-
sult from the one-particle singular part, while the last term is due
to the regular part of ¥ ( ﬁ}ﬂ 9% ). (4.25) can also be derived from
(4.17) by adding and subtracting the last term of (4.25). Equ. (4.25)

assumes a mMore transparent form, if we use

T A=2 T’ 2 '!-tg,
5= S+ (-2 - () ) %= S tre ,,)" = (% )y o)
4__2 z=

as integration variables for the second and the third term respective-

-19-
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ly, and introduce the quantities (s.(4.12))
+1
?1(5«)=fdz ¢ (1°(s1,m2) ) | ﬂ(&){,&% §(Mlmis,2)z)  (4.28)
-9 3

This yields

9(§z) RF(" 7'7.3) g)m(g Mz(m m‘)z))@(s Q“'“"M(mq”‘z z}))_
“R-J.ds 94( ) ()(z' MZ(S" ml)z;)) 9(? &A-#M( mz)z,))i}_

Qm S

.2
_A dS ?z,(sz.} @) Y Mr_ g ~ o o (4 9)
S s ) 65— gt

4_/1‘1;{ __L‘}'_E'_i__ S)m/ M(§z.¢_))c}(:—0u.+l\1(§zz)))

T MY
It is shown in appendix B that the minima of L,y &, are tantamount to
}
the anomalous thresholds CC.,@) G,’(‘) respectively. The meaning of ¢ (S,,)

and 9:,(5}-) becomes clear from the representation (4.5) with one of

the variables <]+7:‘ q_z‘ on the mass shell

(a5 m) = JﬁdS'Tﬁ—(%_ [7(m54%) = jds ”‘(‘) (4.30)
a 7T al”

2.

Hence, the coupling constant F(m1 ,» m ) of the bound particle can also

be expressed in terms of & (54) or ?:1{31}'

Equ. (4.29) should be considered as the relativistic analogue of {

(2.30). It is, in fact, an integral equation of Volterra type, and the
resolvent (solving for Q (S'z )/(E- M)

R(5=l52) = 2, A7 K (5215/7)

n=4

, ) EI ST . (4.31)
K(?,z/T,z') = s g(_g,:i(zsxi " )) 9(3’—9A+M(3;z.,'z))")

is an entire function of }L . Fig. 2 shows the relevant domains of de-

pendence for the kernels of (4.17) and (4.29). The convergence of the

Neumann series (4.31) is proved in appendix C.

-20-



- 20 -

As in the nonrelativistic equation ({(2.31), (2.34)) we can express

the inhomogeneous terms of (4.29) by the kernel,

@)(‘S M¥(m.* my 2) )z
5 - M{() ’ ) G(I'ﬁ*M(”s) ”z))) K({z/ﬂ(m,,mz,z),z)/zi__t,

¢“s, M(5,me’2)) . : (4-32)
ey 2 o(3- Q—c M(S,,m”z))) k(; z/M(s,,m“z) )/z-d

&) 2 2
S SCS,;C( ):153.,7-5)) O(5-(ptt(m s, =)) = K (5] M'{m,ﬁsg)z')'z')/z:d‘l

where the kernel in the first line is actually independent of z'. Hence

§Csz) = AT, m2) R(sz | M(mimtz)2)],

3 i B R (5l 1o,y )
afﬂ %=

2 Jds ECL (s M)

a)

(4.33)

Referring to (4.28) we get a system of coupled integral equations for

8 (S4) and 9:,(31.) from (4.3%3):
SO L AT () Kea (s =2 fis) R Cost) ZEL asa)

S
A fs! a5 50) B)
&= mr

G A Pmim) K, (5 ) - A [ds, (ACEVRIC/ (4:22)

S-—rn‘

where e.g. B Afds‘,'ku(ghs{) %(s) '

t
“%." mz’-

+4
Ka(sysi) = fdz o= R(”T%mﬁz},Z/Mz(&ﬁmzfz'),z')/, (4.36)
- z=-1

etc. A similar system of equations for the absorptive parts f}(3h)

and §,(S.) has been obtained by Nakanishi [14] in the unphysical

-21-



case P2<f 0. His approach is based on a double spectral representat-
. . . . 2

ion of 4 { . i7" ) that is valid only, if P” < 0. The more gemeral

vertical Dyson representation leads to corresponding results in the

physical region of eigenvalues (P2 > 0).

The system (4.35) of coupled Fredholm integral equations is the
relativistic generalization of (2.%6). The much more complicated
structure of these equations is of course due to the fact that the
B-S equation is a fourth order partial differential equation in confi=-
guration space, whereas the nonrelativistic Schrddinger eguation is
only a second order ordinary differential equation (for fixed angular
momentum). Further light is shed on this point by an analysis of the
case P = 0, where the B-S equation reduces to a fourth order ordinary

differential equation. From (4.6) we have with P = O
r(q) = fdfﬂw,- (4.37)
;  S=qtee

Again we split the amplitude f (7L) into a one-particle singular
part and a regular part }%( qb)

77 lz.) ] 77 z
'C(‘fz') (’”’ . + 1 _ z(mz)‘ ~ )CR\/?;) (4.38)

2 2 &
"‘"'71 m,— G, ?‘ - my ’7)1z — T,

We then obtain the following integral equation for the spectral funct-
ion Q@(7% ) from the B-§ equatlon (4.4) with P = O:

ngu)
§(x) = — R W S A r’("*‘h) fds g(ﬁ(S’ Ss) 6(3’ ( """"'/) _
TOnd)_ =’
—_ mg) ‘ .
27 P [ds 5’()(3'51) Qk:g' gu»,,k)) " (4.39)

(rEum)*

+ 20 [d5’ 5’(") fds 9“(% $)B(5-(uriT))
(‘S’ .Lj(w'__m‘t) \_S[
This equation is again of Volterra type and can be sclved by iteration.

. . . . 2 z PR 4
Introducing the solution into the representation (4.37) for §'= m jandq=m,

we are led to a system of two linear equations for the constants

~02.
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11(m12), r1(m22):
T(mp) = aw D(m?) + @ T(md)

(4.40)
P(’"}.‘) = Ay, r’(mrz) + Qg 7-'("’21) ;
which is the analogue of (4.55). Each of the elements Qi is given as
a power series in }\- The eigenvalues A must satisfy
au(A) -4 du(ﬂl)

a,() = = (4.41)
Qyq (1) Gy (A)~ 1

The characteristic determinant Aoéi)is the generalization of the Josti
function to a fourth order differential equation. In the general case
P2> 0 finally, the Jost function blows up to the Fredholm determinant
A(\R,’F’") of the system (4.35) and the eigenvalues of the B-5 equat-

ion (4.4) are obtained by solving
A(A,PE) = (4.42)

for Aor P*. Every element of A(Jl,?z) is expanded into powers of A
as the nonrelativistic Jost function j%(;lfﬁ).

Qur approach does not answer the question whether the eigenvalues
in A or 7°Lare real. As in the nonrelativistic case, operator analysis
offers more powerful tools for an attack on such questions. We know
from the pioneering work of Wick [15] that the eigenvalue problem of
the B-S equation (4.4) is equivalent to that of a completely continuous
hermitian integral operator in the egual mass case. This is also true
for P = 0O in the unequal mass case, but for P2 > 0 the type of the A-

spectrum is still an open question.
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Appendix A: Bound for the Nonrelativistic Resolvent.

We use the following bounds for the iterated kernels of lowest

order:

|KG)] = =5 O(s- i)

[ k@@s)) = 3260 fd,, iﬁf’f;i 6(s-Gui)) <

S - u‘9“€2‘
) ) 9(4) X4 Seiva.
€ o Jom r-# 6(s-GprizY)
(/a.-ﬂs)“' (A-1)
) ; oL f“‘(s) x, y’(«) .?(” 2
/k (S,S)/ = e «E d X 3 xz_(:’_) e(s_é“*r&—")z <
Q“Ps')" guﬂx,)"
< 8%y [ . £ @)
S — o2 x—%-l [d« f Q S= /n,,f/))—
les- s
s o)
q!. 4[ (fdt (X‘)) Q(S 9“*‘6‘)‘)
Qstf
The generalization to If(@”(gsol is obvious. Hence
-1 &
R(ss) € Z XK (“’(“)/<f{’ w{/zl'/f f_:{’:’ (4.2)
=

LD 6 (s- (s ;;;)1)

Appendix B: Support of Iterated Terms.

From (4.16) we have

M:. (Wo ) )'z,: z) . (4;2) + M=) +0- zn);? - m;"(%') (Azz) - (-2 41_‘

A-z'
j_, (B.1)
9 I} ’ - »!2 - i/A-%
ME (e 7x) = 22 CVE () (), it en) s
T

We first minimize the expressions
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() ¥ () B (A2 M g
. z (7= ) Sy (i +%——) a”

~442k1 4%7 —Ag2'g 1
2 (B.2)
i, (M) o) E - m(E) ) e (- LB ) -
~152'¢1 455' _1<z'¢q 1%& =

If absolute minima occur at points —-A4<% Zﬁ{)gyﬁ)g 4 , these are the
anomalous thresholds with respect to the variables ﬁh;) 7_2, Other-

wise the minima are given by the boundary values at 2z = 1 respective-

= (mep)” "= (mern)”

Next we minimize (B.1):
iy MZ(W(za) z'z) = (me(z))z'z (’H‘z) +a(‘)( ) x: a)‘% %% zc 4
! oLy ™
—1$%'sZ O“+*“@f' —4$zsg;
J‘lm M- (W,(z) z 2) (Mm( )) O"* ME)) z,

=¢z'c @ (42) # mi () ~ (- 1< 26 2

ly, i.e.

(B.3)
D¢z

and obtain

W, (=) =J{’”L'{OL+ a)(z)) g“+Mm(z))j (B.4)

Repeating the procedure we find a sequence of anomalous thresholds

Wig-1 (z'} + (1~ ”')-z- 2 /g (4-1) @)
oo o (5 )= a®>as . >a,
~t<z¢d Z (B.5)
\ ! 2 2 2/Av2 1) 4
\AM/WA-.(z)%'Iz) —m( %2 ) L*)>a(¢ _,__.>az”
' \ A—z' '
-1¢2¢1
and after g finite number of steps we arrive at
2 w) z
= (h‘h}‘l}d.) ) aL = (mz+/g_) ' (3.6)
This yields
(M6 P = m F(5E) # Ol (52) —(-=)
-1z ¢ 1 (B.7)

i

( M_("’(z))” (i) (42) + o (252 ) =122
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and

W, (=) = \/aw{&_“_Mmz)) ( +M(”) ))z} (B.8)

Hence the support decreases with each step as long as k € N and is
bounded by Wu(Z) for all iterated terms of order k > N (Fig.1).

should be noted that anomalous thresholds related to higher normal
thresholds, e.g. (m1+%p]2, can appear below the normal thresholds (B.6).

But they also disappear from the physical sheet after a finite number

of iterations.

Appendix C: Bound for the Relativistic Resolvent.

The proof of convergence for the Neumann series of the relati-
vistic resolvent is slightly more involved than in the nonrelativistic

case, because the kernel (4.31)
Ly 9 (3 MU(E =)
K(},jz/?}z) = K(_)Mz.(zggi z Z)) 6(\5 -H"f(?z Z))) (c.)

is unbounded (s. (4.18)). But the second iterated kernel

+1 g “) =2 —2, 1
' § M rd 1 ) )
m(?,z/?,f):ﬁzvj;ﬁ gUCE, M(T, z) g (E,M?Ez'z’))(c.z

o T~ MY z) ' 3, - M¥(z,)
Guefilsml 9T~ s F (5,22
is bounded. The singularities of the integrand are due to the zeros
of (s. (2.28))

AL i, M5 220) = (5= Gus FPN(E, ~ Gu= 7))

-1

. _ _ (c.3)
A5 pr F(5202) = ((Fep)* = M) GFofi= FY)
Since il
St M52z _ N G M) M2
- e Y < T EmE <4
Trpt— /7’2-(34,21,2)
" Mie) < Z (C.4)

A ¢ 2 . 1 ¢ 1
(5= (p=FP)% SVl 1 (05 ~F9" " Vv - 26-
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inside the domain of 1ntegrat10n, we may write

/k(z) ( dz,
) 7253 f 1//4,4( 'n'z,)

M (54,74,2) {VI /4)

X

“

(c.5)

d
S 3(31 = Qrer M2 g (- M($z¢2)+(y?—,u)‘i

Gur FCE, 7)™

Next we evaluate the 3; ~integral

1 A
A 2 - E
J xV.Vb—x« Vr-a VaZ

(c.6)

and determine the minimum value of M(S:z:z,) from (4.26) and (4.16):

Shn. /‘_’I(E',IZZZ#,) = V3

REERY !

!
for large enough values of 5. This yields

/ ,K(z)/

<(;Ef).."_ 7 7 -
Y3 VeE Vel (peiF)F)

is a square-integrablée kernel.

(2)

Hence K

The third i}erated kernel ,

y = a) M e !
4<ﬂ%:3?5/3$39=:J%21J&§ (S;'M (5, ] 2%9 P
e FiCs ) S M

0 (8, P (si22) (s Mis,z,2)
S, ~ MY(z2) S~ M*(z)

+1
¥J;§, 399
-1 (/‘&*H(g'.‘ z"l 214))2‘

can be estimated in a similar way. With

oo v

1 ol
Jax £ - &
a X Ve a Va /!

G(s-

(c.7)

(c.8)

(c.9)

Gt Bl 5 2)f)

(C.10)
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(C.4) and (C.7) we find

+! oo s ror VAR IR )) w2 A e
[ Jom fas, ZXRICE2RD [ < Fofe e
- Zy) ‘gt +Yr
(/'uf-ﬁ('g;z:%))"’ 4 /u /‘" -

The second integral is bounded by (C.8) with V¥' replaced by ﬁ?tf&’

because

\/é,,',,, ﬁ(§4 z,,z;.) = ju+ Vs (c.12)

—4@24$‘/ M
Za
Hence
[KD[ < [ K9] Plrars) (c.13)
where
‘-,Zf 1 A
(—P(X‘} = Z‘: »/—A;— /4+X" . (C.14)

The generalization

/k(n)} < /K("‘“‘)/ C’D((,n-z,)/uﬂ?) y m=34 .. (C.15)

is obvious and proves the convergence of the Neumann series.
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Figure Captions.

Fig., 1: GSuprort of iterated terms of the integral
equation ( 4.17 ) (W = 2)

Fig. 2: Domrin of derendance for the kernels of the
integral eguations (4.17 ) ( hatched ) =nd
(4.29 )(cross-hatched).
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