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The Pionic Formfactor of the Pirst nN Resonance

F. Gutbrod

Abstract:

0ff-shell nN-gscattering in the °/2, /2-state is treated by

the Omnés-Muskhelishvili-method. The left hand cut is represented
by nucleon exchange and by approximate double spectral functions
coming from iterations of nucleon exchange, and on the right

hand cut some inelasticity is assumed. The off-shell amplitude

is roughly determined by the behavior of the Born term taken at
resonance energy, but is not insensitive to the absorption at
high energies. If the formfactor is approximated by a single

poie in momentum transfer, the relevant mass is 1.5 nucleon

mnasses.




I. Introduction

The formfactors of stable particles and resonances with respect
to exchanged pions are of great importance in peripheral models

for processes like

P+ P >
T e p —> N-x--n- + S,o

sl* +‘l’+ "

which one tries to interprete by the diagrams shown in Fig. 1.
The absorptive version of the peripheral model (1) predicts too

(2),(3)
/

high absolute values of cross-section in some cases
while the formfactor version proposed by PFerrari and Selleri(4)
can reproduce these values fairly well in terms of one unknown

(4),(5).

function, which is fitted in one experiment A non-
relativistic model for off-shell scattering has been itreated by
Diirr and Pilkhun(6), who show how formfactors of resonances

arise in potential theory. It is the aim of this paper to in-
vestigate the relativistic problem by dispersion methods, special~
Iézing strictly to the first pion-nucleon resonance N¥. There we
know from the success of the Chew-Low effective range formuia(7)
that the main attractive force responsible for the resonance is
provided by nucleon exchange (NE) together with a smaller con-
tribution from exchange of a scalar object in the t—channel(e).
Furthermore the phase and the inelagsticity are known up to energies

well beyond the resonance, which will help us to fix some para-

meters we need in setting up a model for the resonance.

Usually the electromagnetic formfactors of the nucleon are studied
using dispersion relations in the momentum transfer variable. The

analytic properties of the nN-scattering amplitude in the corres-
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ponding variable, the virtuality of the pion, have been investigat~
ed for special perturbation diagrams(g), but their application is

at least inconvenient in practice because complex anomalous thres-
holds are present. Also the question of intermediate states is

much more complicated than in the nucleon case. Therefore it is
perhaps more powerful to use analytic properties in the subenergy
variable*) 8 = (p2+q2)2 with fixed virtuality le. From dispersion
relations in s for fixed A2 and t = (p1—p2)2, Ferrari and Selleri(1°)
derived an integral equation in s for the off-shell scattering

amplitude f1+(s,132) (i.e. the formfactor of the N*)

SPR A Y SR % 3,“4“(& A') ok s
?u(s,é) b (s,8) W (h 5o (1)
(,M*N‘*

where f?+(s,532) is the Born term arising from NE, and k,= |i;|,

k, =|13‘2[. From this equation and the off-shell unitarity condition
( § is the on-shell phase shift)

3o 41+(51A1) = & Mmd 444-(5:‘& )

the authors deduced for 8 ~~ M*2

g A
LH'(SIA) B &4 { 1 -?;H(H* M) (2)
. 2 - 3 A'L—/“\-_
Here M* means the mass of the N*¥, M = nucleon mass, u = pion mass,

*
and k? (k;) neans k1(k2) taken for s<M 2.

*) See Fig. 2 for kinematical notations. The metric is

Boo = = 849 = " 8yp = " B35 = 1




A more careful treatment of the Born projection was carned
through in Ref. (11) with the result that the bracket in (2)
should be replaced by a factor decreasing less rapidly with 132.
Neither in Ref. (10) nor in (11) the analytic solution of (1)
was explicitly evaluated, but the authors guessed from it

that 4?,”,(3,5‘) should be proportional to the Born term, taken
at § = M¥2,

This approach was questioned by Jackson(12), who arrived at

LKS,A’) - _ﬁ
4”(5,’/“1) &T (3)

starting from the same integral equation and from the same
approximation for e{?i(‘s, AL) as in Ref. (10) ,but his analysis
contains an unjustified contour deformation and a diverging
integral. One might clarify this discrepancy by a numerical
solution of (1), but this is not very instructive as can be

seen by considering (1) for A= m*:

It is known(15) that a one-particle exchange force together
with one-shell unitarity condition for partial waves with
angular momentum {24 needs a cutoff, if the correct thres-
hold behavior is enforced on the amplitude. If the same cut-
off is not inciuded in the off-shell integral equation, its
solution differs for Afi=/“f from the on-ghell amplitude.
Now the cutoff parameters may be functions of the virtuality
of the pion, and to determine these, a physical interpretation
of the cutoff must be found. This will be achieved by a model,

in which double spectral functions are roughly included in
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computing the left hand cut in a partial wave dispersion relation.
The motivation for this and the location of these extra singular-

ities will be taken from analogy with potential theory.

Section II contains kinematical relations and the off-shell
integral equation, which allows to include inelasticity. In
Section III it is explained how the left hand cut of the integral
equation can be approximated, while in Section IV the details

of our model for the N* are discussed. In Section V the

solution of the off-shell integral equation is investigated
numerically and results for the formfactor are given.

Section VI contains conclusions.

Il Kinematics and integral equations

The momenta and the masses of the in- and outgoing particles
are shown in Fig. 2. C? is the squared mass of the virtual
pion. Since both nucleons are on-shell, the T-matrix element
can be written as usual in the form

T(s'tlA'L) < a(Px){Af_x" uB}M(Pd) (4)

)

i *
where A and B depend on A and the variables
2
S = (P;+q‘l.)

t = (p-pPu)? (5)
wn = (P“_C")L

2 , %
*#) The variables are connected by S+trUu= ZM"+M +4
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The partial wave amplitude for angular momentum j = 3/2 and

positive parity is given by
+1

b (5,8 = 3 fan [Roodisi) +Roo it
fGst)

4,_ (5,%)

i}

(6)

V(E,+n)(E,en) A+ (W-1)B]}
V

N
W
TV (Ea=m)(E-n) -A+ (WM)B]

with following notations:

E4 - (S 4 MZ*AZ)/,E,W - O - W?} of Mn(a"'v\:;/v-z 1’!«\440&.?\«,
b, VETE - o ek 6
EL = (S-’rhz-’,!&l)/zw:. Cottn - — @VWS"J 04 W{H‘HA‘\{J 1y
k"‘b = VE:_ Hl - L. - “EVY MaE J“-‘\:\,“ O{ h “ !
o Cvn. = ey of sufosiny pi

£, = W-E, Fy of odgemy piowm
X = —9’ T = Cowm. - SCQHM;“S_ O g e ot --mn&‘p.,‘_._‘,

N - :
nm = H+IM"'— 2,{5152‘,,-&1&2_)()‘

The normalisation is such that for A = A ®
ry
z_ " Hmd
¥4+ (8}/’» ) = (7)

k.

(5 = 3/2, 3/ pion-nucleon phase shift).

*%
If we assume A and B to satisfy a Mandelstam representation )

L
ins t and w also for A é/M’", then e{[“(s, AL) is an analytic

**
) The fourth order box graph has no anonalous threshold in §

and t, ,\4 A* 5/;,/\,"‘ (""‘).



function in the cut s-plane with some kinematical singularities.
If A'= =, the amplitude v -f,, 74 ) has no kinematical sin-
gularites in the W-plane, but for &1:}\1 the square roots in
Bq.(6) produce new short cuts which we neglect. Further singular-
ities which will not be considered arise from the D-wave amplitude

which is coupled with the P-wave through the reflection symmetry(15)
b)) - o p (- 27) ©

The threshold branch points at 4“{._I,—_— n and -f#:__‘, =  are removed

by considering the amplitude

g (W,a%) - {10 (w, 8)

/ 4ok,
Now we can write down a dispersion relation for ’Ef (\rJ‘ L\M)
(}Ag, means integral over the "left hand" cut with the dis-

L.
continuity Ag):

(:@v;}r(»\/ A)cw (

‘:‘J - ‘f e

Py

g

%(WA) JA%Z i}v‘flw +

M

To account in a rough manner for inelasticity, we split Jw\.g("«/’.:fs'}

into its elastic part

T ¥
! ("v\.‘} - #

’ 4 ( L 19 . : 3 s oa ey
A3 (Wat) = G(Wat)e B V() )

and its inelastic part Aﬁ'w (wtﬁl/) , which we assume to be

a given quantity. In Eq.(1o),rj'¥(w) is the complex conjugate



of the complex scattering phase shift in the 3/2, 3/2 state.

The well known solution of (9) and (10) 18(16)

o? MYYNv. % ,2) ' ta i
1) A A 1 2 SO W (W, A’ AW
%(W;A) ( ;A)* W@(w)] W’—W‘iﬁ (11)
Higpn

Dw) = erp{_W_  dw' £ *0)
L wi(w'- t\}--i.;)}

Map (12)
\ o>
o (,27) - ( AG0NA) AW | f A% (WA )W/
L w -W |\1.;—2/4, WI- V— i& (13)

It is reasonable to assume 3,(\0/,[31) = O('\,%'s) also for Al=|:/l~",

Then the existence and uniqueness of (11) is guaranteed if
™, H) = i) comad = -
(W,A) O(W ’ Re & \J-;Zo £ W, Jw\,J_ ‘@i’_?w-zmami) o)

is the absorption parameter), but the convergence of (11) can

. A LJ* * 4 .
be also prooved if np ~ — note y A - <0 ).
For practical purposes this is not suitable because the integrand
of (11) oscillates at infinity if - O . Therefore we

assume ewv\ n > o -

W w0
It has been common practice to approximate the left hand inte-~
grand by the Born term. That this is an unjustified assumption

will be discussed in the next section.



ITII. The left hand cut

The left hand integral (1l.h.i.) in (13) contains the projection

of the Born term which is primarily given by NE. We have

’MNE(W;A}) = Z?I' W;f&" {V(E#M)(Egh) (W- n)Q1(z) +
HVEMEM (et Q20,0

ZF = M~ 2 &, Eq
24,40, 7

Q'L(z) = Legendre function of the second kind.

If we approximate the complete 1l.h.i. by WINE(wvA‘): choose

a reasonable phase shift cg‘(W) and evaluate (11) and (12) for

S,
Azw—,; %(W')\t) differs drastically from 80 (W) = e Z;“S
(examples are given in Section V). .
a ul
This is necessary since if %(%MV-‘-’ g,o(w)' ‘bhenAg(@M‘): ‘ﬁll‘}(w,/a 'g’(W)

with So(w)>, A, and (11) would provide a solution of the integral

equation
o2 nltp 3 : ]
W)= ™M (W +if’?r(W)' ko (W) oW
3(} NE()‘K‘ W""W-—i&

Mrpm
(15)

Mye (W)= Mg (W, 47),

which is known to have no solution(13). One can avoid this

difficulty by considering the amplitude

g(W) = (W W) g(w) (16)
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ingtead of %@0/ where W, is an arbitrary constant. Then instead

of Eq.(15) we have

o agl3
G(W) = (W) 2 LEO o G A7

T (WHW (W W-ie ) (T

Mip
If we solve (17) by the N/D-method, insert the resuting phase
shift into (11) and (12) together with f\M(W)= (\lewcz)"""ug(w),
the resulting g(W) of course coincides with 81,(M1) . By using
the ansatz (16) we have introduced poles at W=t LW, with
unspecified residues, and the variation of the posifion of these poles
and of these residues ag a function ofzf'is unknown, since the
physical nature of these extra singularities is unclear. In the
following we want to comstruct a model, which allows us to
determine the position and the amount of left hand gingular-
ities other than those poles, which bring the solution (11) in
agreement with g (\,,/) . First we note, that the discrepancy
between 3{\\1’“1) and %O(W) would equally well be present in poten-
tial scattering, since apart from inelasticity, Egs. (9)-(13) are
common the nonrelativistic and relativistic problem. It is there-
fore natural to cure the trouble with the same methods in both
cases, namely the inclusion of iterations of the potential rather
than the modifications of the potential at short distance, (i.e.
exchange of particleswith higher masses). That means we have to
include double spectral functions (d.s.f.) to some extent, where
the boundary curves of the d.s.f. are determined by the iterafion

of the NE-diagram, the box graph shown in Fig. 3.
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For this diagram, the d.s.f. _(JA' and 9; belonging to the

functions A and B have been calculated by Ma.ndelstam(ﬂ):

PA:(S,t) - \;IL%: M(W"- H‘)f—z(l-- A+z)k(x

5) (s, t) Jq_(ux_n.)(&l_ M- W Zsz)k(x (18)

W"_ n 4+2

6x> Myta)@=a) - ve
K _ £x> Uy )+
(X'AJ:}) (X 21_,‘__2'“125'/1 of X< \'(3’-4)(%‘-1) 42,

and y is a numerical factor.

The region where QAI and S’B' are nonzero, is shown in Fig. 4.

The quantity K(X,X,Z ) behaves for fixed s like (& — t(s) )—"l near
the boundary curve C, (t(s)is the boundary value of t on C 1)

and for t=>oo SDA' and yé decrease like t-1. Their contributions

to g(vll}f) coming from high values of t are further suppressed
by the fact that the projection into the P-wave introduces a
factor Q4(4+2:%1) which goes like t-z for t > oo . Therefore

in order to calzulate the 1.h.i., it seems to be a good approxim-
ation to assume the d.s.f. to be concentrated in a narrow strip
along the curve C1. Now, if we represent the d.s.f. by a finite
number of s-fu.nctions in the form (forgetting the nucleon spin

for a moment)

o(st) = % C d(s-s) 8 (t-t:)
LeA (19)
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where the points ($;,f;) lie on C,» we can determine the constants

in the following way:

Denote the contribution of @(s,t) to the l.h.i. by Mmge (W)

and that of A 4 to m(W m') by My (W),

Then on the right hand cut

oo g (i p2) = jm« " S WD)

"@(V“)J W' wwr

M4 pr

X(MNE(W')fmf(w')wmw(w’))OU'J’+ (2)

v A gm (w“{,\?) ‘

From (19) we should have approximately

Gm—ﬂ
SV WL AUREE S / .
_hfklwg(w}/u)dw ~ ?Q1(4 +’?"&:_..,) )
Wi (21)

— 2
W-: < ‘SL < wl&-q
Comparing (20) and (21), we get n linear equations for n

constants ci.

The spin of the nucleon allows for 2n constants, since we have
two d.s.f. Sk and FB , and to determine these would perhaps be
possible by treating more partial waves simultaneously.

This is too coumplicated and not adequate in view of the unpre-
cise knowledge of the on-shell phase and absorption. In practice
only two points (s,t) have been retained, and for one of them
5%[ﬁ3 has been taken from the perturbation theoretic expression

(18), while for the other the ratioc has been varied until

%{b/,ﬂz)‘*ﬁ g') (w} in the resonance region.
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The details will be given in the next section, which starts with

a simple parametrisation of the phase shift.

IV. Model for on-shell scattering

In order to have a phase shift andan absorption parameter con-
sist@nt with dispersion relations, we first describe the on-
shell problem by a N/D calculation, which contains a cutoff.

We do not regard this as a real solution ot the on-shell problem,

but only as a phenomenological description of the phase shift.

We write
W+W ( ) N(w)
M+ W" 3' :D(W) (22)

and prescribe the singularities of N(W) instead of calculating

them from given forces. They are

a) the static pole at W = M, (23)

b) a square-root branch point at W = + iW

ey (24)

A.> 0O

with a discontinuity of the form < p

Vweiw, '’
¢) a pair of poles on the imaginary axes at

(25)
W=+ 1wp with free residue Ap

Terms coming from exchange of nucleon isobars and the scalar
meson(s) are neglected.

Thus we have (normalizing D(M) = 1)
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N(W)

]

2
y # Y A
3 —— +2Re s P
3 w-m W-iW, ¥ W- iWp );

0.08%

(26)

i

41.
The square root singularity (24) was introduced because

Im D(W) should behave like Wfor W—= oo, if the total phase
of 8004) is to approach n/E at infinity+). This can be easily
seen(18) from the dispersion relation for D(W). Since A  must

be positive (otherwise N(W) had a zero, the phase of go(W)

would tend to %%T , and a CDD-Pol would be present), the
contribution of (24) acts like a short range attraction, which
is compensated by the poles (25) in order to produce a resonance

at the correct energy.

Inelasticity is taken into account by fixing the ratio R(W) =
Agd/A}'un, with R(W) = 0 for W< 10,7p (this corresponds to a
kinetic energy of 570 MeV in the laboratory). At infinity R is
taken < 1 in order to get a definite Re § . Three choices of
R(W) are plotted in Fig. 5a)-c), together with Red and v

which are obtained by integrating

13 2 7
- V(MW !
D) = 4- w_n_g g&le(w)( + )(4+13(w))otw (27)
win (W-M)(Whwr) (W= W-ie)
Now we can evaluate (11} - (13), where we insert
o (W) = g (W) + A (W4 A
M42ac W‘—'W— ;&
- , (28)
+ 2 = (La(”)‘LL(Uz))/(W-We)

L=1,2

+) Complete absorption is likely to ocecur at high energies, which

requires an imaginary amplitude.
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with Li(w) " 2V (3*2)5%:“) <d¢, + W+ M) Q4(2t) l

2EE, -2 M &
2k,%,

and AQ . ‘) o 3 l N(W) ,1

%m (W’,u ) R &:. D( W) A
The constants d, determine the ratio PA(S;,f;)/fs (5."t.\) .
From the projection formula (6), Eq.(28) should also contain
terms with Qz(zi), which can be omitted safely because of
t. > tml. One point( s;.{:;) will be located at the resonance
position, while the second one cannot be fixed by simple
arguments. Fortunately it turns out that the formfactor is
rather insensitive to its position. The same is true for the
interval, over which the imaginary part of the amplitude has
to be integrated according to Eq.(21). If i = 1, we integrate

fromW =M+ p to 7, and for i = 2 from W to infinity.

The actual positions of the points and of the interval choosen
are shown in Fig. 4. We take d,_"' _Q;(Sutl_)/gqb’ (5”{:..) % 0.7 @
and vary d, , until %(w').") as defined by (11) and (28) agrees
with go(w) near the resonance. The constants C; in (28) are
determined "selfconsistently" as described in Section III.

The values of d.4 obtained thus depend strongly on the behavior
of bz s, and some values for specific phases are listed in

Table 1. The perturbation theoretic value is d.,- 15855

In Fig. 6 we compare the imaginary parts of %,(W), S(W,/A‘)
and Qe (hllp‘), the latter of which is obtained from (11) by

approximating the l.h.i. by W‘NE (\,J) . The curves drawn corres-



pond to phase shift II of Pig. 5b). It should be noted,

that JM&(M,M") does not vanish necessarily at threshold,
since, in our treatment of inelastic effects,ﬁ(\ﬂl) is not
real there. The odd behavior of SNE(w) above the resonance

has been obtained by several authors(19).

The agreement between %o(w) and 3,(”,,4") is not excellent,

but it is hardly justified to try an improvement by taking more
poles into account, since the unknown phase at high energies
plays a too important role evén at low energies. It will be
‘shown in the néxt section, how different models for the phase

affect the predictions for the forufactor.

V. Formfactor of the Resonmance

After having specified the on~shell model, we can apply Egs.(11)

and (28) for At /M" , thus calcdating the formfactor defined by

F(ar) - 1_23%14*_‘)) , | (29)

This is not the complete formfactor of the resonance, since
MNE(W) has to be mulbtiplied by the pionic formfactor''®) of
the nucleon, K(A") s which cannot be calculated presently.
Hence F(AL) describes, apart from the factor 3.4/&‘, the ”

raetio of the nNN* - vertex to the nNN -~ vertex.

We have to discuss, how the parameters Si-l tL,di and W vary
if 414: ,u"' . One finds, that the curve C,l changes only slightly

for A-‘}-zoo/u"l and the corresponding change of 'L-; has no
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effect on the formfactor. We make the assumption that d; and

W remain constant independently of AL , and again moderate

changes do not alter F(A“) :

The behavior of %4“(\“‘&) for A'$4m" is completely unknown. In

order to get an idea of its influence, we calculate the form-

factors for two cases, namely

a) A%,{M(W,Al); A%,;“ ("A/,.,u‘) for all W aadl _._’)L,
b) A 3,\}4(‘;\/,5‘) = O for A" .Q;/u",

2
The results, summarised for A = - 100 ua in Table I, indicate
that the theoretic uncertainty due to the unknown variation of
the inelasticity is not very large. However, different on-shell

L
absorptions bring changes in F(A} y» which are not negligible.

It may be interesting to ask how the formfactor changes if we
modify the Born approximation by introducing a formfactor into

the NE-term, i.e. by substituting

1
1 . (30)
y 3
w - M* A - ﬁ"’_H
A‘L
2 2 2
for single u-pol. The resulting F(A°) for A“=30pis shown

by a dashed line in Fig. 7, together with F(Az) obtained for
A_z = @ , both corresponding to phase shift II. Obviously no
drastic change occurs. In Fig. 7 also the old formfactor cal-
culated by Ferrari and Selleri(w) is plotted (it is given

by the bracket in Eq.(2)). The result of Jackson(12) is
2
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VI. Discussion

Although the projection of the NE-graph gives a bad approximation
to the 1.,h.i. in Eq.(11), its value at the resonance energy

largely influences the formfactor (see Table I). The reason for

this can be found in Egs. (20) and (21), which couple the strength
of the extra left hand singularities to the Born term. This is
certainly adequate in potential theory, and that it is not unreason-
able here is indicated by the photoproduction of the N¥. There

the situation is quite similar: For the reasonant magnetic dipol
amplitude M33 one has the same integral equation as in nN-off-

shell scattering and, up to a congtant factor, nearly the

same contribution from the NBE~graph. The CGLN~formula(2°)

*\
Msa("‘/)’}’ ’W?NE.K(M/ QD(W)
e (MY

(31)

where hﬂwgyod) is the Born term for photoproduction coming from
NE, agreeslexcellently with experiment(21), but cennot be ob-
taineal'?) as an exact solution of Eq.(9). If we again intro-
duce the d.s.f. representing iterations of the potential, Eq.(51)
becomes clear, since the potential generates (up to the constant
factor) the same iterations. If we would produce agreement
between %(ifﬁv and goOJ) by adding a short range potential

term to VMNE(MV, the appearance of the same potential in photo-

production would be a mere accident.
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A different way to make the Omnds method work has been discussed
in connection with photoproduction(19). It uses a real phase
shift § with the property &(ec) = 7, and this makes the
solution of Eq.(9) nonunique or, expressed alternatively, allows

for a CDD-pol.

The parameters of this pol may be adjusted to bring the solution
of (9) in agreement with %J&U near the resonance. Besides the

fact, that such a phase would make the dynamical calculation of
the N* impossible, the variation of the CDD-pol parameters with

A" seems difficultto estimate.

Of course our results differ from those of Ferrari and Selleri(1°)
(see Fig., 7) due to the approximate technique used by these
authors in calculating the NE—projection(11). In prineiple,

their statement, that the formfactor is proportional to the

Born term at resocnance, is not in strong contradiction with the

present calculations.

If we want to fit F(A.a) by a pol-formula, writing

| 1
F(a*) = —
A - A=
AT
we obtain _/le 2,"2. P“ll-j-_ 20%, » where the error reflects our

imcomplete knowledge of the phase shift. By looking at the diagram

shown in Fig. 8a), which represents the coupling between n, N and
R =

N* in our model, one would expect /L = Y% M due to the normal

cut in A2, starting at A= 4 M.
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Intermediate states with masses smaller than 4 M2 are not
completely neglected. If they can be represented by diagrams
of the type shown in Fig. 8b), they contribute to the in-
elasticity in the W-channel and are contained in 3x“(“ﬁﬁh)'
Diagrams like those of Fig. 8c) are expected to give rise

to the formfactors K (Az) of the nucleon, Perhaps the most
dangerous approximation was made by neglecting the exchange

of a low mass scalar-meson, whose contribution to the 3/2,
3/2-state has been estimated by Donnachie et al(a) to give

an attractive force with a strength relative to the NE-term
of 25 0/o. Due to the small mass of the hypothetical  -~meson
the corresponding Born term drope rapidly with decreasing £32:
Assuning VHG = 3}A , the projection of the Born term is
reduced by a factor 3 for 42 = =15 uz, and if we could
multiply it by the same formfactor K(A?) as m, (w 4') , then
F(A") should be lowered by 16 °/o (and by 25 %/o at A2=-1oop2).
This of course depends strongly on the mass of the G -meson
and on the high energy behavior of the exchange graph, and

both are unknown at present.

The author is indebted to Professors H. Joos and G. Kramer and
to Dr. Simon for useful discussions.
The numerical calculations have been performed by the IBM T7o44

of DESY.
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Pigure Captions:

Fig. 1 Exemples for one-pion exchange graphs with production of N*,
FPig. 2 Kinematical notations for off-shell scattering.

Fig. 3 TFpurth order diagram for nN-scattering.

Fig. 4 Boundary curve C1 for the diagram of Fig. 3

Fig. 5a) Phase ghift I The data marked by x are taken from
Refs. (22) and (23).
5b) Phase shift II

5¢) Phase shift III

Fig. 6 Imaginary parts of %(W,M‘), %o (U) and %NE (WI/‘“"‘))
corresponding to phase shift II.

Fig. 7 Formfactor F(Az)’ corresponding to phase shift II. A2 ig

defined in Eq. (3¢). The curve denoted by FS is the
Ferrari-Selleri formfactor given in Eq. (2).

Pig. 8 Some diagrams with intermediate states of low mass in
the A2-channel.
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