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The Pionic Formfactor of the Pirst nH" Resonanoe

F. Gutbrod

Abatract;

Off-Shell TsN-scattering in the v2, /2-state is treated by

the Omnes-Muskhelishvili-method. The left hand out is represented

by nucleon exchange and by approximate double spectral functions

coming from iterationa of nucleon exchange, and on the right

hand out some inelasticity is assumed. The off-shell amplitude

is roughly determined by the behavior of the Born term taken at

resonance energy, but is not insensitive to the absorption at

high energies. If the formfactor is approximated by a single

pole in momentum transfer» the relevant mass is 1.5 nucleon

raasses.
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I . Introduction

The formfactors of stable particlee and resonances with respect

to exchanged pions are of great importance in peripheral models

for processes like

N* •*"* I/-Y

, -r , , *• n

which one tries to interprete by the diagrams shown in Fig. 1 .

The absorptive version of the peripheral model ^ ' predicts too

high absolute values of cross-section in some cases^ ''̂  ,

(4)while the formfactor version proposed by Ferrari and Selleri^

can reproduce these values fairly well in terms of one unknown

function, which is fitted in one experlment* ' '̂  ' " A non-

relativistic model for off-ehell scattering has been treated by

Dürr and Pilkhun^ ' , who show how formfactors of resonances

arise in potential tneory. It is the aim of this paper to in-

veetigate the relativistic problem by diapersion methods, special-

".tzing strictly to the first pion-nucleon resonance N*. There we

(7)know from the succees of the Chew-Low eff ective ränge f ormulax '

tnat the main attractive force responsible for the resonance is

provided by nucleon exchange (HE) together with a smaller con-
/Q\n from exchange oi' a scalar object in the t-channel̂  '.

Furthermore the phase and the inelasticity are known up to energies

well beyond the resonance, which will help us to fix some para-

meters we need in setting up a model for the resonance.

Usually the electromagnetic formfactors of the nucleon are studied

using dispersion relations in the momentum transfer variable. The

analytic properties of the TcN-scattering amplitude in the corres-
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ponding variable, the virtuality of the pion, have been investigat-
( Q}

ed for special perturbation diagramsv ', but their application is

at least inconvenient in practice because complex anomalous thres-

holds are present. Also the question of intermediate states is

much more complicated than in the nucleon case. Therefore it is

perhaps more powerful to use analytic properties in the subenergy

*) / \ A 2
variable ' s = (Pp+q2) wi"th fixed virtuality £\ From dispersion

- 2 t \2 H
relations in s for fixed Zi and t = (p^-pp) , Ferrari and Sellerix

derived an integral equation in s for the off-shell scattering

, 2^ / v
amplitude f (a, A ) (i.e. the formfactor of the K*)

oo

•Q O _v

where fT (s,̂  ) is the Born term arising from NE, and k - | pj ,

k? H|̂ |» From this equation and the off-shell unitarity condition

( i is the on-shell phase shift)

"' '

2
the authors deduced for s -̂  M*

,.1 t,

l
-r' \)
: —s

Here M* means the mass of the N*, M = nucleon mass, |i * pion mass,

and k (k„) means kJ|(k2) taken for s=M .

*) See Fig. 2 for kinematical notations. The metric is

oo - «11 " - »22
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A more careful treatment of the Born projection was carrJed

through in Ref. (11) with the result that the bracket in (2)
2

should be replaced by a factor decreasing less rapidly with £

Neither in Ref. (lo) nor in (11) the analytic solution of (l)

was explicitly evaluated, but the authors guessed from it

that -̂ (S,̂ ^ should be proportional to the Born term, taken

at $ = M*2.

(12)
This approach was questioned by Jackson^ ', who arrived at

starting from the same integral equation and from the same
. T>

approximation for t (i A ) äs in Ref. (lo) biit his analysis

contains an unjustified contour deformation and a diverging

integral. One might clarify this discrepancv by a mimerical

solution of (1), but this is not very instructive äs can be

seen by considering (1) for &v= f? ;

(13)
It is knownv J/ that a one-particle ezchange force together

with one-shell unitarity condition for partial waves with

angular momentum i'Z'l needs a cutoff, if the correct thres-

hold behavior is enforced on the amplitude. If the same cut-

off is not inciuded in the off-shell integral equation, its

solution differs for A*"= J^~ from the on-shell amplitude.

Now the cutoff pararaeters may be functions of the virtuality

of the pion, and to deterraine these, a physical Interpretation

of the cutoff must be found. This will be achieved by a model,

in which double spectral functions are roughly inciuded in



Computing the left hand cut in a partial wave dispersion relation,

The motivation for this and the location of these extra singular-

ities will be taken from analogy with potential theory.

Section II contains kinematical relations and the off-shell

integral equation, which allows to include inelasticity. In

Section III it is explained how the left hand cut of the integral

equation can be approximated, while in Section IV the details

of our model for the N* are discussed. In Section V the

solution of the off-shell integral equation is imrestigated

numerically and results for the formfactor are given.

Section VI contains conclusions.

II Kinematics and integral equations

The momenta and the masses of the in- and outgoing particies

are shown in Fig. 2. ^ is the squared mase of the virtual

pion. Since both nucleons are on-shell, the T-matrix element

can be written äs usual in the form

*)
:

(4)

Awhere A and B depend on A and the variables

s = (Pif <U)*
-t = O, - Pt)* (5)

U = ( P„ -<ii )L

*) The variables are connected by $ + t+^=-2.M +A* + -̂



The partial wave araplitude for angular momentum j = 3/2 and

positive parity is given by

with following notations

= ,

("S

_ »/ p
V t

C

- -

— C-

The normalisation is such that for

A * P/>vv\

«r

(o « 3/2, 3/2. pion-nucleon phase shift).

-X"
If we assume A and B to satisfy a Mandelstam representation

in .s "t and IA also for A £/**~t then 2 ($>,&!") is an analytic
' / M4-x ' /

) The fourth order box graph has no anonalous threshold in ̂

and "t f \1 £?~ -

(7)
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function in the cut s-plane with some kinematical singularities,

If A*~= /̂ "*- the amplitude W^-j^J.vVöV has no kinematical sin-

gularites in the V-plane, tut for A*"̂  .u* the square roots in

Eq.(6) produce new short cuts which we neglect. Further singular-

ities which will not be considered arise from the 3)-wave amplitude

( 1which is coupled with the P-wave through the reflection symmetryv

(a)

The threshold branch points at k. , =. o and ^ ~ ̂  are removed•i ^ -

by considering the amplitude

Now we can write down a dispersion relation for <-.
;

means integral over the "left hand" cut with the dis-

continuity A s)s

J W'- W
L

To account in a rough manner for inelasticity, we split

into its elastic part

and its inelaetic part Aty: (vJ £^~ ) . which we assume to be
<J *"-' v t t t

a given quantity. In Eq.(lo),d (w) is the complex conjugate
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of the complex scattering phase ehift iß the 5/2, 5/2 atäte

The well known solution of (9) and (lo) ±a^ '

w'- w
MV*

T ! 777—'t r
M W ( l̂  '

w- w
L

It is reasonable to assume %(\dt£~) - ö (-̂  ̂ also for 4

0?hen the existenoe and uniqueness of (11) is gnaranteed if

-*̂ > a,

is the absorption parameter), but the oonvergence of (11) can

* r* A
be also prooved if ft ̂ -7 (note g1" -d^wü* *̂ *Tr: L-f Vo ̂

*- W •St-'̂
For practical purposes this is not siiitable because the integrand

of (11) oscillates at infinity if h -y O . Therefore we

assume (>Cŵ  V? > O •
*

It has been common practice to approximate the left hand inte-

grand by the Born term. That this is an unjustified assumption

will be discussed in the next section,
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III, The left band out

The left band integral (l.h.i.) in (1?) contains the projection

of the Born terra which is primarily given "by NE. We have

Q (̂) » Legendre function of the second kind.
•v

If we approxiraate the complete l.h.i. "by Wi (V/,Â ^ choose

a reasonable phase shift £> (V) and evaluate (11) and (12) for

differs i~
\s are given in Section V).

This is necessary since if Q̂ W,/̂

with P(W)^^ and (11) would provide a solution of the integral

equation

(15)

w .

which is Icnown to have no solution^ 5^. One can avoid this

difficulty by considering the amplitude
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instead of ̂ (Wh where Wc is an arbitrary constant. Then instead

of Eq.(l5) we have

If we solve (1?) by the N/D-method, inaert the resutting phase

shift into (11) and (12) together with >Vv\(W^ = (W + Ŵ ^̂ Ê

the resulting g(W) of course coincides with &0C^) " ̂ using

the ansata (16) we have introduced poles at W^iLWc with

unspecified residues, and the Variation of the position o{ tljese. pot

-̂and of these residues äs a function of^\s unknown, since the

physical nature of these extra singnlarities is unclear. In the

following we want to construct a model, which allows us to

determine the position and the amount of left hand singular-

itiee other than those poles, which bring the solution (11) in

agreement with Q V̂s/J • First we note, that the discrepancy

between ̂ Wju?")and ̂ o(W) would equally well be present in poten-

tial scattering, sincev apart from inelasticity, Eqs. (9)~(13) are

coTnmön the nonrelativistic arid relativistic problem. It is there-

fore natural to eure the trouble with the sarae methods in both

cases, namely the inclusion of iterations of the potential rather

than the modifications of the potential at short distance, (i.e.

exchange of particleswith higher masses). That means we have to

include double spectral func-frions (d.s.f.) to some extent, where

the boundary curves of the d.s.f. are determined by the iteration

of the NE-diagramf the box graph shown in Fig. J.
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Por thia diagram, the d.s. f. P and O* belonging to the

(17)functions A and B have been calculated by Mandelstanr ' :

with

1 *' ' "
and y is a numerical factor.

The region where O and P are nonzero, is shown in Fig. 4.
.ffc

The quantity K(X,X/i ) behaves for fixed s like (-t — t(s) ) near

the boundary curve C1 (^(^)±B the boundary value of t on C1)

; i -1
and for t -=• <r o and. p decrease like t . Their contributionsJA ^B
to •TW/ coming from high valuee of t are f urther suppressed

by the fact that the projection into the P-wave introduces a

"*"factor Q (*f 4 1 ) which goes like t"*" for t -> co . Therefore
•(•ft̂

in order to calculate the l.h.i., it eeems to be a good approxim-

ation to assume the d.s. f. to be concentrated in a narrow atrip

along the curve C1 . Now, if we represent the d.s. f. by a finite

number of o -functions in the form (forgetting the nucleon spin

for a moment)

<?<vt)= r ̂
L«-! (19)
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where the points (̂ ,~t't) lie on C,., we can determine the constants

in the following way:

Benote the contribution of £> (s,t ) to the l.h.i. by -vvip (W )

and that of A ̂  ̂ o ^(WJXJ bjj 'm'm (w ) •

Then on the right hand cut

Nt/*-
, \

+ (20

From (19) we should have approximately

1 S *•
'C- -R

(21)

Comparing (2o) and (21), we get n linear equations for n

constants c..
i

The spin of the nucleon allows for 2n constants, since we have

two d.s.f. P and P . and to determine these would perhaps be
"X &

possible by treating more partial waves simultaneously.

Thie is too complicated and not adeguate in view of the unpre-

cise knowledge of the on-shell phase and absorption. In practice

only two points (B,t) have been retained, and for one of them

has been taken from the perturbation theoretic expression

(18), while for the other the ratio has been varied until

^ Q \ "*ne resonance region



The details will be given in the next section, which starte with

a simple parametrisation of the phase shift.

IV. Model for on-shell scattering

In order to have a phase shift and an absorption parameter con-

sistgnt with dispersion relations, we first describe the on-

shell problem by a N/D calculation, which contains a cutoff .

We do not regard this äs a real solution öl" the on-shell problem,

but only äs a phenomenological description of the phase shift.

We write

o« (22)

and prescribe the singularities of N(W) instead of calculating

them from given forces. They are

a) the static pole at W = M, (25)

b) a equare-root branch point at W = + iW
x8 (24)

with a discontinuity of the form - ÜLä — A, > O.
/wTTv^' s

c) a pair of poles on the imaginary axes at
(25)

W « + iW with free residue X .- p p

Terms coming from exchange of nucleon isobars and the scalar
/Q\^ ' are neglected.

Thus we have (normalizing D(M) » 1)
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N(W)= i^£
3 \/ - M MI .... "i— U ;

VM — l- ., r , - -

(26)

4x - 0-028 -

The square root singularity (24) was introduced because

Im B (W) should behave like V^^or V-s^ °o ( if the total phase

of g (W) is to approach n/2 at infinity*' . This can be easily

seerA ' from the dispersion relation for D(W). Since \ must

be positive (otherwise N(W) had a zero, the phase of gQ(v)

would tend to ^f , and a CLD-Pol would be present), the
4*

contribution of (24) acts like a short ränge attraction, which

is compensated by the poles (25) in order to produce a resonance

at the correct energy,

Inelasticity is taken into account by fixing the ratio R(w) =

4§«l/̂ A with R(W) = 0 for W ̂  1o,7^ (this corresponds to a
tfUt

kinetic energy of 570 MeV in the laboratory). At infinity R is

taken < 1 in order to get a definite Re S - Three choices of

R(W) are plotted in Fig. 5a)-c), together with Red and ̂ ,

which are obtained by integrating

00

W- H

Now we can evaluate (11) - (1?), where we insert

M^/V (28)

-t- z: ̂
+) Complete absorption is likely to occur at high energies, which

requires an imaginary amplitude.
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wlth U«) -

"•

and

The constanta d. determine the ratio JA\̂ ' *

From the projection formula (6), Eq.(28) should also contain

terms with Q2(z,), wnich c*n be omitted safely because of

"t* ̂  ̂^ - One point( S^t;) will be located at the resonance

Position, while the second one cannot be fixed by simple

arguments. Fortunately it turns out that the formfactor is

rather insensitive to its position. The same ie true for the

interval, over which the imaginary part of the amplitude has

to be integrated according to Eq.(2l). If i - 1, we integrate

from V - M + ji to "W, and for 1 - 2 from "W to infinity.

The actual positions of the points and of the interval choosen

are shown in Fig. 4. We take d^ &S$±&)/?£ (&, O ^ O.?/»-

and vary d^ , until 9-(W/AL ) äs defined by (11) and (28) agrees

with ^otW) near the resonance. The constants Cj in (28) are

determined "seifconsistently" äs described in Section III.

The values of oL obtained thus depend strongly on the behavior

of b , and some values for specific phases are listed in

Table 1. The perturbation theoretic value is öL» 1.85.

In Fig. 6 we compare the imaginary parts of ̂ „(W), ̂Ĉ ,/* /

and ^r(W/*%J tne latter of which is obtained from (11) by

approximating the l.h.i. by V V i - (̂ /) • The curves drawn corres-
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pond to phase shift II of Fig. 5b) „ It should be noted,

that 3*»v<}fW/*>') does not vanish necessarily at threshold,

since, in OUT treatment of inelastic effects,eü(W) is not

real there. The odd behavior of Q..-/U/} above the resonance
dNCV™ '

(19)has been obtained by several authorsv '.

The agreement between 0̂(Wy and CL(wyu^i8 not excellent,

but it is hardly justified to try an improvement by taking more

poles into aooouzrt, since the unknown phase at high energies

plays a too xmportant role even at low energies. It will be

shown in the next section, how different models for the phase

affect the predictions for the formfactor.

V. Formfactor of the Resanance

After having specified the on-shell model, we can apply Eqs.(H)

and (28) for A*/** , thus calculating the formfactor defined by

(29)

Thie is not the complete formfactor of the resonance, since

/*̂ i (W) has to be multiplied by the pionic formfactor^ ' ofWE
the nucleon, K(AX) , which cannot be calculated presently.

Hence F(A j describes, apart from the factor Rf/̂ , , the

ratio of the nNN* - vertex to the TtNN - vertex.

We have to discuss, how the parameters S^, ̂  Q(,« and V vary

T- iif 4^/i - One finds, that the curve C.. changes only slightly

for A^-J^»oyA*L and the corresponding change of .̂ has no



effect on the formfactor. We make the assumption that d; and

W remain constant independently of A , and again moderate

changes do not alter r-(A / .

The behavior of Q, (WA1) for ̂  +/̂  is completely unknown. In
a^vv1 /

order to get an idea öl' its influence, we calculate the form

factors for two cases, namely

a) A U / 4 - A - - U " for all

AX 2The results, summarised for /> » - 1oo M in Table I, indicate

that the theoretic uncertainty due to the unknown Variation of

the inelasticity is not very large. However, different on-shell

absorptione bring changes in F(4 , which are not negligible.

It may be interesting to ask how the formfactor changes if we

modify the Born approximation by introducing a formfactor into

the NE-term, i.e. by substituting

(30)

l*
2 2 2for single u-pol. The resulting F(4. ) for X -Joti is ehown

o
by a dashed line in Fig. 7» together with F( A ) obtained for

A " °° » both corresponding to phase shift II. Obviously no

drastic change ocours . In Fig. 7 also the old formfactor cal-

culated by Ferrari and Selleri^ ' is plotted (it is given

( 12*)
by the bracket in Eq.(2)). The result of Jackson^ ' is
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VI. DiscusBion

Although the projection of the NE-graph gives a bad approximation

to the l.h.i. in Eq.(ll), its value at the resonance energy

largely influences the formfactor (see Table l). The reason for

this can be found in Eqs. (2o) and (21), which couple the strength

of the extra left hand singularities to the Born term. This is

certainly adequate in potential theory, and that it is not unreason-

able here is indicated by the photoproduction of the N*. There

the Situation is quite eimilar: For the reasonant magnetic dipol

amplitude M,, one has the same integral equation äs in 7tN"-off-

shell scattering and, up to a constant factor, nearly the

same contribution from the NE-graph. The CGLN-formula

where Vr^ (\*/J is the Born term for photoproduction coming from

~'^ (21lNE, agrees excellently with experimentv ', but cannot be ob-

(1 9)tained^ ' äs an exact solution of Eq.(9). If we again intro-

duce the d.s.f. representing iterations of the potential» Eq,(5"0

becomes clear, since the potential generates (up to the constant

factor) the same iterations. If we would produce agreement

between ot(̂ ^ and J|0(W) by adding a short ränge potential

term to ^kipfW) » the appearance of the same potential in photo-

production would be a raere accident.
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A different way to make the Omnäs method work has been discussed

(19)in connection with photoproductionv ' . It uses a real phase

shift o with the property a («o) = n, and this makes the

solution of Eq.(9) nonunique or, expressed alternatively, allows

for a CDD-pol.

The Parameters of this pol may be adjusted to bring the solution

of (9) in agreement with 'JjW near the reeonance. Besides the

fact, that such a phase would make the dynamical calculation of

the N* impossible, the Variation of the CDD-pol Parameters with

A*" seems dif f icult to estimate.

Of coiirse our results dif f er from those of Ferrari and Selleri^ '

(see Fig. 7) due to the approximate technique used by these

M 1lauthors in calculating the NE-projection^ J , In principle,

their Statement, that the formfactor is proportional to the

Born term at resonance, ia not in strong contradiction with the

present calculations .

o
If we want to fit F(A ) by a pol-fornmla, writing

A

A ~

we obtain J\_ & 3, l H +_ AsO°/0 t where the error reflects our

imcomplete knowledge of the phase shift. By looking at the diagram

shown in Fig. 8a), which represents the coupling between n, N and

H* in our model, one would expect -A «=• 4- M due to the normal

2 2cut in £ , starting at ̂  s 4 M.
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2
Intermediate states with masses smaller than 4 M are not

completely neglected. If they can be represented by diagrams

of the type shown in Fig. 8b), they oontribute to the in-

elasticity in the W-channel and are contained in Q,- /W. .4*")'

Diagrams like those of Fig. 8c) are expected to give rise
p

to the formfactors K (̂  ) of the nucleon. Perhaps the most

dangerous approximation was made by neglecting the exchange

of a low mass scalar-meson, whose contribution to the 5/2»
fQ\e has been estimated by Donnachie et al̂  ' to give

an attractive force with a strength relative to the NE-term

of 25 °/o. Due to the small mass of the hypothetical «5 -meson
2

the corresponding Born term drops rapidly with decreasing ̂  :

Assuming >H = 3JU, , the projection of the Born term is

2 2
reduced by a factor 3 for 4 = -15 M » and if we could

Q

multiply it by the same formfactor K(A ) äs *%=tw|̂  » then
o o

F(ÄV should be lowered by 16 °/° (and by 25 /o at 4 —1oo|i )

This of course depends strongly on the mass of the 15-meson

and on the high energy behavior of the exchange graph, and

both are unknown at present.
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Phase

I

II

III

*2
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00

2

00

i

1

0

1

0

1

1

0

*i

6. o

6,0

2.o

2.o

9.o

2.o

2.o

P(-1oo n2)

o.55

0.61

o.48

o.41

o.44

o.51

o.55

>„(-*>• >2>

o.65

o.81

0.60

o.74

o,48

0.68

o.87

V-1oo *2>

0.429

0.395

0.429

2 2
Table I. Variation of the formfactor F(A ) for different phase shifts. \s defined in Eq.(3o). If i-l(o), the

o
inelastic part g. (W,A ) in Eq.(28) is taken equal to its on-shell value (equal to zero). The quantity'in
d, is defined in Eq. (2ö). By F,T,,( A ) we mean

l JSJi.i . j ...

at reeonance energy^jug (A1^»-^^—l
N M£ (

, and 2-, .) is the ratio of the Born terms
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Figure Captions ;

Fig, 1 Examples for one-pion exchange grapha with produotion of N*,

Fig. 2 Kinematioal notations for off-shell scattering.

. 3 Fburtk Order diagram for nN-scattering.

Fig. 4 Boundary curve C1 for the diagram of Fig. 3

Fig. 5a) Phase shift I The data marked by x are taken from
Refs. (22) and (2?)-

Phase shift II

5c) Phase shift III

Fig. 6 Imaginary parts of <%(^ttf)t %<, (\j) and

oorresponding to phase ehift II.

2 2
Fig. 7 Formfactor F(A ). corresponding to phase shift II. X is

defined in E<j. (?o). The curve denoted by FS is the

Ferrari-Selleri formfactor given in Eq.. (2).

Fig. 8 Some diagrams with intermediate states of low mass in
2

the A -channel.
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