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and the following lines "byt

therefore in the case of a free current where the vertex K is a

constant, the sum of the one-particle and the partially connected
18) !

three-particle contribution is covariant. ' In the interacting case

such an approximation to the commutator would violate causality and

Viel<i ö. non-covariant expression. In orcler to get a covariant änswer

in the one-particle approximation, one may attempt to construct a so-

called "local one-particle approximation". Some aspects of this

problem are discussed with the help of the Jost-Lehmann-Dyson repre-

sentation in the next section.
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Abstract;

In this paper we give a rigorous formulation of Gell-Mann's

equal time commutation relations in the framework of general

quantum field theory. We snow that sum rules of the Adler -

Weisberger typ can be derived without making any additional

assumptions on the high-energy behavior of amplitudes. Ve

discuse two different methods of derivation, the first one

is an improved version of the Fubini-Furlan method, the

second one avoids the application of the G-auß-Theorem and

uses the Jost-Lehmann-Dyson - representation directly for

the commutator of currents. In neither caae we get a dependence

on the frame of reference.
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I. Introductory remarks

The most convincing sueess of the equal time commutation

relatione between vector and axiaivector currents originally

proposed by M.Gell-Mann ' is the derivation of sura rules of
2\e Adler-Weisberger typ"'. In the original Präsentation of

Adler and Weisberger this derivation was very involved and

assumptions on the interchange of certain iimits had to be

made. Fubini and Furlan^' proposed subsequently a simpler and

aestetically more appealing method, however, the connection

of their results with the equal time commutation relation

for the space integral of currents remained Eomewhat vague.

Not only did the rough handling of Gauß's theorem induce

certain ambiguities connected with the interraediate one particle

contributions, but also was. the .impression given äs if in addit-

ion to the equal time commutation relations assumptione on the

high energy behavior (subtractions) had to be made.

We show that a careful formulation of the C.R. which takes into

account the distribution theoretical aspects will take care of

the high energy problem, whereas a more detailed discussion on

the use of Gauß-theorem for field operatOrs will resolve the

ambiguities for low energies (i.e. the intermediate one particle

ambiguity).

Finally we will discuss (in section 4) the application of the

Jost-Lehmann-Dyson representation to the commutator. In this

way one can give a treatment which does not rely on retarded



fimctions and is in spirit very close to the original treatment

o±' Adler and Weisberger.

We will discuee the mentioned Statements in the framework of

general quantum field theory '. However, the mathematical

rigour of oiir presentation is modest and more on the level of

the LSZ formulation than present day axiomatic field theory.

2, Definition of charges

The first problem we investigate is the question in what sense

a "charge" operator Q can be connected with a conserved current

J r X ̂  (O

We observe first, that irrespective of the conservation law (1)

the matrix element

(2)
,^X , .„>.

r
is a smooth and fast decreasing function in x, whenever

and \/ are quasilocal states, i.e. states of the form

= Z

where the A's are from the basic set of local fields (resp.

currents) in terms of which the theory is defined, and "Ĵ  are
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fast decreasing smooth functions. Here we assumed »

and the restricted spectrum condition, i.e. the non occurrance

of zero rest-raass states.

The smoothness property of (2) comes (due to translational

invariance of the vacuum expectation values) directly from

the smoothness of the g1 s, whereas the fall-off property for

large x uses in addition locality and is a special case of

the so-called linked cluster property '. Hence the spatial

integral

t) | f> «t V (4)

always exists and defines a bilinear form.

In the conserved case we expect, however, to be able to define

an operator Q called " Charge", and we try for the connection

with the Charge density the following formula

ß-
i.e. we ask in what eense the sequence of unbounded operators

j (fRff„) has an operator lirait.

In choosing our space and time smearing functions ^j^m we

followed the Suggestion of Kastler, Robinson and Svieca ':

-fy > ö ( A^f £T c [-T, T] (r & xt-d
(6a)

< 'S (6b)
& |j?/ >T?-L



Hopefully the limes (5) turns out to be independent of T, so

that T -* o is superf luous .

We first want to show that (5) cannot exist in the sense of

strong convergence:

Statement I <̂ /sl ,'

with d -̂  & unless j (x) «. $
J/*

Proof: For a conservecL current we have the following

7}Källen - Lehmann I y representation:

hence

(8)

We have

where 4 (r) iß the derivative of (6b) for R = 0,
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By change of variable:

Inserting (lo) into (8) using addition theorem for sin and cos

and taking only the leading term in R we obtain:

with

U)

The coefficient of the leading term vanishes if and only

8)
if f(äC*) = 0' . According tu a well known theorem ' this

is equivalent to \, t>;) =̂ 0" .
^/

It is easy to see that with our choice of infinity smooth

test function in time, the leading term is approached faster

than any inverse.power 'in R.

Next we want to show that the limes (5) exists in the weak

sense.on a dense set of statea. First we show for this purpose

that the vacuum is annihilated weakly.

Statement 2

.

for states £ of the form ^ y =\i]ch(?) U(x")^lc> where

B is quasilocal, i.e. of the form (5). U(x) is the trans-

lational operator and h(x) is a smooth function which decreases
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for large r auch that

?) = Cr (14)

T--^oo

This statement is the transcription of a Lemma by Kastler,

Robinson and Swieca from

field theoretical framework.

Robinson and Swieca ' from their algebraic framework to the

Proof :

As in the paper of Kastler, Robinson and Swieca we "divide"

by the energy operator. Here we use the fact that if

E l o)> is a quasilocal state of the form (?) with £o/B /o)= o»
1

then/i^>= 77 B/o^ is again quasilocal. This is so since the

smearing function g (R, ...p ) in (5) which according to the

finite rest-mass spectrum condition can be chosen äs

^ M
-P^'0 for -̂ 1 f>it> < - (M = smallest rest-mass)

=- -i

allow the division by 5T p^t and yield again smooth and fast

decreasing test functions, and hence | ̂ ? is again quasilocal.

Therefore we have :

ST LLM'.i^VTC.TT-HI1'/ J « / * r ' ^ y \ 4 ' I M I X J j l - < . J , J J / T > (14)

where j » component along the radius vector x.

Now we consider the left hand state äs the sum of two states



The first state is effectively localized in the sphere with

"R
radius /2 and the second one behaves in norm äs

, ̂  oQ 'ii
(2

- 0
This estimate holds because of Ruelle's result '

Tor all N>o, and the assumed fall off properties of h(x)

The contribution to (14) from the effectively localized

first state is

and hence because the matrix element vanishes again faster
o

than any inverse power of (x-y) , the Integration ( 1?) leads to

a function of R which vanishes rapidly for R ̂ co „ For the second

state in (15) we use Schwarz inequality and obtain

CP

If we wüuld use for f space smearing functions of the typ (6b)

with L « constant, we obtain for the second norm

jr T̂) 0>[| <
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However, by using instead of (6b) a sequence of"stretched"

functions

where f(r) is a smooth function which is one inside a certain

fixed radius and vanishes outside a larger radius, we obtain

for the derivative

dl f f ̂ \ <L

and hence for the norm

^ O r\r with (16) we obtain a vanishing right hand side in

(18) for R^oo .

We would like to raention that our estimates are optimal in

any conserved current theory. This can easily be seen by

taking a state l J^ •= IJV JifxV l (X*/T)|°̂  w:̂ k

Such a state is still normalizable, however, a consideration

which is similar to the statement I shows that

vanishes if and only if

0. Hence we have learned that in any theory the formula

ß =

breaks down, if one of the states in which the weak limes is

taken has a "long ränge".
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If the connection between the j (Aa»^m) and a- Charge operator
O H l

(2o) makes any senee, both operators should have a dense domain,

which is independent of R. The "natural" domain of j8(f-,f_)

are the quasilocal etates and hence one would expect that Q,

has to have the vacuum in its domain. But then we can show that

a nonconserved eurrent can not give rise to an operator Q. This

' 9)was first conjectur.ed'and nlade plausible^ by .S- Colemail'. .

Statement III (Coleman) :

For a nonconserved current u \

the linear form

is unbounded in

Here |̂^ is again a quasilocal state ĵ  = B |oj>

with B äs in the previous case .

Proof ; Again dividing the state | J^ by the energy operator

one obtains :

(22)

1?

with

The firet term vanishes according to the previous consideration.

We want to show that the second term is unbounded in

Por this purpose we choose a sequence of quasilocal states

äs

, /T) /<»// F)
(23)
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The norm behaves for large / like

Theref ore

/ JT
P/v />

which can be made arbitrarily large by choice of

Since

r -l- P* M i
and hence II l dJ-^H f=r /̂ 7-/.̂ > M* <

l f "JR\3 unbounded in

Let us now come back to the formula (2o) in the conserved case.

We consider the action of j-, (f_,fm) on the dense set of states
° K J.

B I o) äs in formula (5) however, with compact aupport test funct-

ions K (x. ,,x_)
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According to locality t he first term is independent of R for

large R and again has the form (?) with compact Support test

functions. The last term converges weakly to zero äs R -* o£> .

Hence the formula (25) defines an operator Q which hae its

domain all states (?) with compact support test functions and

furthermore the operator Q can be applied repeatedly on this

domain. It is Just slightly more complicated to see that also

quasilocal states; i.e. states with noncompact (tut decreasing)

test function and multiparticle in- (out) states with non -

overlapping- wave functions belong to the domain of Q.

Finally it is worthwhile to mention that all our considerations

go through if the ourrent has other tensorial indices in addition

to the index in which the conservative law holds i.e. for currents

In this case the decomposition of the two point function into

Standard covariants is more involved, however, due to the re-

quirement that all relations hold for arbitrary &, . . . \i we obtain

the same result.

3. Formulation of equal time commutation relations

We want to consider at first the case of commutation rglations

between space integrals over time components of conserved or

nonconserved current densities.



Statement; <^W \~ ' L (± _ [ > ' K fr f^l/,"K\ (26)

between TCP invariant states.

Prooft If 0 is the TCP operator we have

f >=

because of the choice of Symmetrie test functions f_ and f m.ti. i

Henoe we have (2$. Here the index i,K designates any vector

or axial vector current. If the state (d)) is the vacuum we can

due to the fact that | 0̂ > is rotational invariant omit the

smearing in space.

In the literature one finds very often the Statement that the

vacuum expectation value of the equal time commutator vanishes.

This is wrong because there is no equal time meaning to this

quantity. Even for free field currents the two-point function

although perfectly well defined äs a Wightman distribution oan

not be given meaning for equal times. £owever, our Symmetrie

time smearing process takes care of this problem, i.e. it truncates

the matrix element automatically.

In order to avoid a lengthy discussion due to generalities we

take äs a model case the axial vector commutation relations

of Adler and Weisberger. The currents jp (x) lead after

smearing in time to one particle truncated expectation values



t-ns ,c-is
n ' X. TT/ l o / M , -L-I-) d/ y — < V ( / I flf^ /" ' /-*> f *V ' f- -. ^ \ i j | j« ( - a / J ' / 1 T ' \I l (f/ \ (X i -4 T) \ ^ /

J ° 7 J o J/JT /0 (27)

which are infinitly smooth functions in x and y and decrease

in these variables faster than any inverse power. This statement

5)is a direct consequence of Ruelle's results1 ' since the one

particle (wave packet) etates are quasilocal. Hence the Inte-

gration with f„ (x) f_ (y) and the limit R-» oo causes no
n n

difficulties. *

In our nonconserved current case the result will, however,

depend on the tirae smearing function f„,(t), The statement of

equal time commutation relation in the case of our special

expectation value now is the assertion that

] If > = 2 (28)

where I, is the 3rd component of the isospin operator.

Such an assertion does not run into any obvious difficulties

with the principles of quantum field theory. Eowever, an explicit

perturbation theoretical check in some renormalizable models

would certainly add a lot to the credibilaty of relation

Ve will discuss this problem in a future paper.

*) Here and in the following a smearing in space superfluous

since the spatial integrale converge in the ordinary sense. We

will, however, keep the f 's because they serve äs a convenient

reminder that the spatial Integration in general cannot be inter-

changed with other limits.
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Symbollically we could write

If we only consider the left hand Bide between states which

lead to fall off properties in x and y and hence to the

existence of "R -* co . All so-called quasilocal states certainly

belong to the set of admissable states, but a more detailed

investigation shows that (£9) can also be taken between multi -

particle in- (or oiit) states with nonoverlapping wave packets .

We will later see that the existence of _ implies a hiffhT -» o * ö

energy property which can be sharpened by saying how fast the

right hand side is approached.

Consider now (ommitting the Index 5)

t

Ja ( T = - Jo r ^ Ja -r (5oa)

and

i
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Lemma 1

t on
o -t

t

0

t->

(51»)

• PJIP

(31*)

Here | Ĵ ^ and | <J> ̂  are quasilocal states and

in order to prove (?1a) we have to show that:

-f-

(32)

O

where tr (truncation ) indicates subtraction of the vacuum



expectation values*.

Ve prove that every single term in (32) goes to zero. Consider

for example the first term explicitly

U+L

5)
According to Ruelle ' the truncated matrix element

<t
i.e. is a smooth function which decreasee rapidly in both

variables x and jr. Henoe after Integration with £, (y) the

remaining expression decreases rapidly in x and hence the

integral over the ring R 4 (x)̂  R + L gives a decreasing funct

ion in R. Therefore the first commutator decreases rapidly

äs R-> oo . The arguraent for the decrease of the other terms

äs well äs for (?1b) is the same.

*) If the Integration over the t'B is performed äs in the Lemma

the vacuum expectation value of the commutators vanishes, hence

the tr-uncation would be superf luous. However, working with

the integrands only, the truncation is necessary for the

existence of the limes R —> oö .
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Specializing [ J*^ — | ^f^> — l | f} jfif) 2-f to a one par
-— J ai po

ticle state (proton state) with a smooth decreasing wave

5lpacket (f?) (such stateB are quasilocal ') and using

lemma I we obtain:

'R-*̂ >
v —"U

H-

We now want to show, that the cantribution for large t of the

2nd and 3̂ d term vanishes.

Since:

<r
the one-particle intermediate atate drops OUT and therefore

the sum of the second and third term can be written äs:

-t W

term with <+) *̂  ̂ and t -& -t
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Here E ̂  -̂  is the prejector onto t he (improper) subspace

with momentum P and total mass W J> M + n, where M + |i is

the mass of the smallest two particle intermediate state.

If the matrix element of this projector between states creat-

ed by application of smeared out local fields would be a L̂

integrable function of W, then the tirae limit t -***» in (55)

would according to the Riemann-Lebesgue leraraa oscillate

to zero. This matrix element of the projector is closely

related to the continuous contribution of the absorptive part

in forward dispersion relations. If one could prove the local

(in every finite V intervall) L - integrability of such ab-

sorptive parts, then the term (35) drops out in the limit ~t -̂

Such a pro'perty, although it is true in perturbation theory,

has not been derived in general field theory and hence we

are forced to make a technical assumption.

In the fourth term (34) one obtains the following one particle

intermediate state contribution (neutron) for the case of

equal masses of proton and neutron:

fa) ̂  j
fü (36)

Here we already took T —^ O

This term gives explicitly:

1 f \ \ (37)
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where GA is defined by K(0) = 2MG.

The first term on the right hand side can be written (Integration

over onetT) äs:

where we have omitted the wave packet Integration. This in turn

one can wri'le o,s

(39)

if the function is an analytic function in tu which approaches

a continuous boundary value around m = o.

That this is indeed the case will become evident later on.

Furthermore it is advantageous to write (59) äs

o

(40)
This is allowed because if j is real and negative the integral

is an analytic function of tu (since the commutator vanishes if

(x/^lxpl + 2 T ) and due to the smearing in time there is

no subtraction in the Hilbert-relation

(41)

v-

0 '-f- to

(42)
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From now on the arguraent goes äs in the case of derivation of

dispersion relations. One uses the analyticity properties of

M __ (üj,0, 5 ) in ? *n o^der to achieve the analytic continuation

needed in (4o). Due to the presence of the time smearing function

fT there is , however, no high energy problem. As in the case of

dispersion relations for scattering amplitudes, one separates

the one particle contribution explicitly.

The only one particle contribution comes from M_and is :

l <f\ \ O ̂  i\0) \f> ^ (i1-- HV ,
(45)

Because of

(44)

we obtain

2 / . . ^
1 -/ *- k" i w'*J i A

( wi i u / — /o \ -j ,1 J T
T l X TT J X ÖB UJ 4- U

u? -*o ,
(46)

since

and f -̂  1 for T —» o this term compeneates exactly the term

with the minus sign in (37)-
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The rest of the contribution in (4o) can be written with the

help of the Goldberger-Treimann relation äs '':

00

r (47)0̂ J '

"E*T / v t V= ^ ^ /• i l
where >̂ ̂  (w'77 is analytic up to 7Ä-W and ̂ T̂ i fw,^y

•+•
is the physical total cross aection of ja n ~~ scattering,

The wave packet y fy*J i» (34) is now dropping out on both

hand sides and we obtain the Adler-Weisberger relation:

« (u..) - ,

The existence of the limes T-^o gives the restriction on the

4+1 / ^
high energy behavior of <^~^rr" (i~J,Q) ~ ^/»n* (' w. oJ and

hence leads to the absence of subtractions .

It is evident that the rate of convergence for / -* O in (50)

is directly related to the rate of decrease of <T̂ T*"- l^tO) - ^~prri

Therefore the high energy behavior of the extrapolated cross

section has a direct space time significance in terms of equal

time commutation relations.

The problem of the connection between o~ 'v {u>>ü) and (5~ t <^t ,

2}
has been studied by Adler ' in a model. If one could prove

the analyticity of <r" ('-]iV in j; not only in a strip around
17)

the realj'-axis y but in a circle around ^ = 0 with radius ji,

U
then by using the positiv definiteness öl" 0~ fat on the real



axis and applying the maximum modulus principle one could derive

äs a model independent relation. TJnf ortunately this property

does not ailow to controll the difference appearing in (48) in

a model independent way.

The independence of the sum rule on the frame of reference

is in our language the independence on the wave packet *£

In order to see this independence it was very important to use

locality of the currents (in the form of proven analytic pro-

perties). If we first insert a complete set of intermediate

states in (38) "before analytic continuation this independence

on the frame of reference would (äs in the original derivation

of AW) not be manifest. The interraediate states after analytic

continuation do not correspond in a simple way to the inter

mediate state of the naive insertion.

If we insert in the commutator of

the one particle intermediate state (neutron) we obtain:

O ( -I ̂  \ 'J
•*if* ̂  P*' ̂

whereas the "crossing Symmetrie" i.e. the partially connected

contribution from the 3"Par"kicle intermediate state (one particle

antiparticle pair, one neutron)
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(50)

leads to

^ Q \e their sum is covariant ' and equal to the sum of t he

boundary term and the term from the one particle pole in the

dispersion relation. The sum of these terms is part of a so -

called "local" one-particle approximation. This point is dis-

cussed with the help of the Jost-Lehmann-Dyson representation

in the next section

In this section we have studied the commutatlon relation be-

tween space Integrals. Often one also formulates commutation

relation between densities, for example

(52)

or equivalently

The validity of such commutation relations is more model -

dependent, and therefore more doubtful. The derivation of sum

rules is , however, much less complicated for that case. In the

next section we will study such relations from the point of

view of the Jost-Lehmann-Hyson representation.



4. Proof of sum rules by using the Jost-Lemann-Dyson represen-
tation

In this section we want to give a direct proof of sum rules

by using the Jost-Lehmann-Dyson (JLD)-representation for the

matrix element of current commutators .

Since we have previously understood the delicate points of

equal time commutation relations with the use of testing

functions, we feel free to take a more formal attitude in the

f ollowing.

4. 1 Pefinitions and kinematics

übavoid unnecessary complioations with higher spins we consider

the simple but nontrivial example of a truncated one-particle

matrix element of the commutator between a vector current i (x)
p

and a scalar operator t(y) for scalar particles of mass n

(55)

1 l -2.where p̂  = K.

Then we define the Fourier transform of F.̂  with respect to the

relative coordinate x - y by

. , (54)/ J r
with = frjLt3*- and A ̂  ~
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We assume some selection rules which allow the following

intermediate states in (55)*?

if y or / O (55a)

with V^ "2 K

and

0

t̂̂

According to eq. (55) 7v has support for (in the apecial

frame P = (a,o,oto)):

<? ^ a -
/ 0 /

S*-r

Because of Lorentz covariance f may be decomposed äs follows

(57)

*) For these selection rules we think of a physical example:

The one-particle states in (53) are TC -mesons and j resp.

t transform with respect to SU, like the (+1) resp. (-1)

component of a V-spin vector. Then the particles of mass m

will be K-mesons.



where the B, are invariant functions of the independent scalar

produots formed by the veotors P, q and .4.

-*) (58)

The remaining invariants are determined by

l ^2 - ^ and "P A — /̂r " ̂  ~r r'A~ c (59)
Purthermore we consider the expression

(60)

and the correaponding Fourier transform r

4-2 General consequences from locality

We assume, that ju,(x) and t(y) are local with respect to each

other:

(62)

With (62) and Lorentz covariance we have JLD-representations

for the functions B. resp.T"" i

(63)
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resp

(in the following we suppress the variables P and A in the

JLL-spectral functions). The spectral functions f+ and ĵ

have support in D (u, s)

Because r is determined by the B. through eq. (57) and (61 )f

one poesible spectral function *£ with support in D may be

given in terms of the X' äs follows

t.

|>-f> - f ]

(64)

(65)

a 3

Now we make the additional assumption that r̂  (Xj ̂  } has an

egual time meaning in the sense explained in the previous

section. Necessary and sufficient for this would be the existence

of the following integrale

<"'

Vith the conditions (66), /̂  is given at equal times äs

f ollows

(67)
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An immediate consequence of eq. (67) is the Lorentz invariance

of the matrix element of the equai time eommutator between the

Charge

and the operator t

(6d)

K1

From this fact an important conclusion for the approximate treat-

ment of (68) may be drawn:

Every local approximation for Fn,(x,y) with JLD-spectral functions

fulfilling (66) leads to a Lorentz invariant approximation for (68),

Now it is well known that an approximation which considers only

a finite number of intermediate states in (53) is in nontrivial

theories always a nonlocal approximation. Therefore, the covariance

difficulties appearing in connection with older one-particle appro-

14)
ximations of Fubini,Furian and other authors ' are a consequence

of the violation of locality. In such cases it is necessary, to

take into account a locai completion ' of the "primitive one -

particle approximation".

4.3- Sum rules

Statement; If the y^ (u,̂ ) decrease in s äs fast äs demanded by

the existence of the integrals (66) we have the following-

equation for vf. in the equal time limit

\) + *^ (69)
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-rr /y
where M? is a retarded resp. advanced function (related to~F )

n

which is defined by its unsubtracted JLD-representation (accord-
t*-*

ing to eq. (50) we have ~F̂  ( O, M^ A* o) -, M
B / ):

(7o)

and

&

where g and (p are vertex functions defined by the one-particle

matrix elements of j., resp. t:

[O?^Ä, jf^v (72.)

resp.

(72t)

We have

= 6 if ^ =« (73)

by assuming time reversal- invarianoe and hermiticxty of the

neutral component of j„, i.e. in this case the one-particle

matrix element of j fulfills the continuity equation



Statement (69) contains not only the existence of the Fubini -

Furlan-Rosetti relation '

(75)

for our model, however, beyond this it gives a unique pre-

scription for the definition of the different terms appearing

in (75).

There are more advantages of the present method: It is known

that in the case of axialvector currents and equai masses

(i.e. m = ji) the bounüary terms and the one-particle contribution

from the retarted commutator in (75) are not well defined seperate-

ly, only their sum exists. Such a problem does not arise in the

derivation of sum rules with the aid of the JLD-representation.

Of course eq. (69) has not yet the form of a sum rule. In the case

of zero momentum transfer, i.e. A = 0, it is possible to extend

the r.h. s. of eq. (69) to the r.h.s of a sum rule directly by

using the JLD-representation, i.e. we have

, /*<*•

v ( u i £ ) r ~(OtSrlolc~)
* =- ~ Uj- —T—T (76)

The proof of eq.(y6) follows immediately by insertion of the

JLD-representation (64) for r ^ into the r.h.s. of eq.(76)

(we only have to use, that (̂wî / == ̂  ̂ or ^ "̂  as

shown below).



"k*

According to eq. (56) and (74) 7"̂ 3, $'/0, ö) has the follow-

ing support

S' ̂  2̂ -(̂ ŷ  (77a)

$'=hS if ^>M (77b)

t u)
(77o)

The physical Interpretation of the r.h.s. of eq.. (76) is the usual

one, if the operators t(y) reep. 0 | M may be identified with

interpolating field operators describing asymptotically physical

partioles.

We only mention, that it is not possible to proof a relation

analogous to eq. (76) for A^O by only using the JLD-repre-
/•v̂

sentation for T7 (this is connected with the possibility of

proving dispersion relations for nN-scattering for instance in

the forward case with the aid of the JLD-representation for the

16*)retarded commutator of the pion currents only ', whereas

for A=£0 the proof is more complicated 7.

Now we come to the proof of the Statement eq. (69). With eq.(67)

and (7o) our statement is equivalent to the following assertion.

Assertion:

(78)
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Proof!

Next we show that [ ̂*&~~u'/ - ̂J Q: supp

As shown in appendix A we have the following decoraposition

for the

- fr|0(K-rj* n,-, ""-^ (79)

.-, (u,j) = 6 if $ * (Ah- i-)a

(80)

and

L / • . - (81)

"\/ /A2) •=? r\" ^ "? ĵK^A; ü /•

(81) is unique up to terms which are different from sero only

at the pointn= (fXt-^) ^--.pjand giving a vanishing contribution

to the B.. Of course the same decomposition is true for

with a function ^C^ (&'i)

According to the kinematics we have

Therefore, with the decomposition (79) applied to ̂ and
f*-f

the JLD-representation for r^ eq. (64) we obtain:

(82)
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On the other band the r. h. s. of eq. (82) vanishes for m

according to eq. (74). Therefore

* o
(85)

How by eq.(65) ̂  is a linear functional in the // , therefore

we have another decomposition for

(84)

As can easily be seen with the aid of eq.(79)-(8l) for the

and eq.(65), the decomposition (84) is identical with the

decomposition (79) for , i.e.

eq-(83)= <?
(85)

With the prescription (85) for ̂  , we may insert it into the

l.h.s. of eq.(78) and get immediately by partial Integration

r
J

u

Finally we have to show that the Y defined by eq.(8l) is iden

tical with the X, defined by eq. (7l) for m = (i:
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By the same arguments leading to eq. (82) we have

(86)

On the other hand B, may be decomposed into the contributions

from the one- and many-particle intermediate states

where we have according to the spectral conditions and

eq. (72), (75) f or m = ^

(i}

— o> (A) 1(0? 6&l,

4.4 Some remarks to "one-particle approximations"

In cases for which J IM and M^J have no physical Interpre-

tation the sum rule is a formal one, i.e. not calculable. In

such cases we would restrict ourselves to a one-particle appro-

ximation. As already discussed in subsection 4.3., the so -
(i)

called "primitive one-particle approximation" fV is a

non-iocal one which leads in our model for m> p, to a non -

Lorentz invariant expression for the matrix element of the

equal-time commutator of the Charge with t(o). Therefore it

is necessary to find a local one-particle approximation rv. ,

-r~ w 1 S) '
which contains K* , i.e. we demand '

~F~ —» T
/ . j. •?_ j
I f T**"/*'/ "—̂  tVt *

(i-P> * V-f



Statement;

-r-Independent of its non-uniqueness j~j» is different from the

one-particle contribution in the sum rule.

Proof:

Ve consider the simplest case A ~ 0 and m = n. As shown in

the previous subsection, the one-particle contribution to the

sum rule is given by the contribution of the fä & > i.e. we
f—'

have in terems of rV, :

On the other hand r„ is given by

i.e. the one-particle contribution to the sum rule only contains

the coupling constants but not the füll vertex structure of the

matrix elements eq. (72).
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Appendix A

A theorem on the aupport of the JLD-spectral functions

The spectral functions have the well known support

We now decompose y ' into two parts

where ŷ,' o have support inj/0 :
' i l

(A3)

(A4)

Assertion: 1.)

20

with =0 if M

if - «3*-

Proof ;

The domain Ĵ  coneiats of all points (u, s) for which the
2

hyperboloids (q-u) -s = 0 are admissable in the sense of

Dyson ' with the subsidary condition (u,s)̂  U£ , i.e. we

have for k€^ in the Lorentz-frame P - (a, o, o, o) for fixed

-and Q but arbitrary q:



> -Q+- V -v + ? (A5)

(A6)

with

Up to this point we have not yet used the discrete nature of

the one-particle hyperboloid

I.

Next we show that Uc ^Ij^^ö for kv> > A-v •
/ -% A*/

Consider eq. (A5) and (A6) for one particular 9 * ? =" ̂

Then we obtain

7 ff? ^ -^ (A7)

l - r -̂  ^ a- JC^-y-A «T-/l 2 mc / /
(AS)

From (A8) we infer U0 -^ 0 . Therefore (A?) may be fulfilled

only for m = M. and £ 2 0 if /f / -* 0* •

II.

Now we show that for m = u only the isolated point u = -p is

contained in D .o



For this purpose we must add to (A5)> (A6) the discrete nature

of the one-particle hyperboloid.

We must distinguish two different cases:

1. Won-overlapping hyperboloids, i.e. J7, " •••

l ~~ "-̂ 7' , . r~ "> —•**'
lf — ̂  f 7^* -+ "i ^ '/ c - " tf( ̂ / ' A- -̂  '/

for arbitrary q. According to the spectrum conditions this is

^ V ,
the case for a ̂  /l /*

Then we have:

For fixed A and d s U- must fulfill (A6) and either (A9)

or (A10) for every q_.

(A9)

(A1o)

According to I. it is not possible to fulfill (A9) and (Alo)

simultaneously. On the other hand (A6) + (A9) have the unique

solution ui0 =r — a , u ~ t £ ~ 6! .

2. Overlapping hyperboloids ( Q >f/-l)> i»e. J5,! '" ̂ ' if

Ci -
/ '

only for |̂ T/ > | QJ. j , where / '/-/ is the intersection of the

.

hyperboloids ̂  = — '-\• -l ̂  -t- ̂  and

One gets
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Then we have:

For fixed 4 and 9, U must fulfill (A6) for every q and

where

= { -2. -a

i?i
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b) either (A9) or (A1o) for /"?/ >

Now we have according to a) and b) by using explicitly the

form of 4 1 :

If for fixed H (uo-r -̂  ) £ S - ̂ -

for / / * ! / , than

in particular for ~*f~=? */% (remember: t? / Z-<- ̂% )•

But this is impossible aa shown in I. Therefore, U0 -f- 4" €

must fulfill in the overlapping case eq. (A9) too and we have

again the unique solution M0 ~ — ̂  . i* ™ 0 j £ — d >

III. According to II. the point s = (̂4 -u ) is an isolated

point in D which is accompanied only by the isolated point

U --p . Therefore we have the following representation for y-

(A12)

o if ^ -> u

Derivatives of the o -functions in (A12) cannot appear, because

the B. are proportional to J (Oĵ f) ~h/ on *̂ e one-particle mass

Shell. This representation (A12) for J o is unique up to terms,

which are different from zero at the point 7

only but give a vanishing contribution to B..

>

Corallary;

The hyperboloid (t*-*)-S*0 is not admissible for ^ -

because it is a monoton function of s and the eq. (A?) and (A8)

are inconsistent for 5^0.

With that we have proved the second part of our assertion:
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