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In this seminar I want to talk about the violation of some basic physical con-

cepts caused by applying formalgroup theoretical methods to elementary

particle physics . What I want to present is a critical review of the so called

SU (6) - symmetry. I will neither discuss group theoretical details nor

numbers and experiments. What I want to talk about are the basic ideas

and the main defects of the different approaches wühin the SU (6) business.

In particular, I will discuss the connections between the different approaches

which are of a logical» quasi logical or nonlogical nature. As we have

learned in Prof. Källen* s seminar talk, such connections may be at best

illustrated by a diagram containing boxes and lines.

So, let us start with the SU (6) box

SU ( 6 )

Now we will look at this box by using a microscope in order to discover

its fine-structure. What we will see is illustrated by the following dia-

gram.

You see different boxes connected by unbroken, broken or forbidden lines

expressing the logical, quasi logical or nonlogical nature of the considered

connection.

Before going into the details let me make two statements which will be

the main conclusions of this talk:

Statement 1:

It doesn't exist any'SU (6)-symmetri^*theory of strong interaction which

fulfils all of the following requirements

a) Relativistic invariance

b) Locality (Crossing- symmetry),

c) Completeness of the physical states (Unitarity of: the S-matrix)
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Statement 2:

The approachof current algebras may be considered äs a certain dynamical

concept within the general framework of axiomatic quantum field theory.

Now I will discuss some of the details contained in the diagram:

I. Static SU (6) ( SU (6) g ):

In a rough description this is an extension of the nonrelativistic supermul-

tiplet theory of Wigner (known in nuclear physics) by the Substitution

SU (Z) -* SU (3)

(This description is a rough one, because the SU (4)content of SU (6),«.

is different from SU (4)Tir. This follows from the different phvsical
x Wigner. L y

interpretation of the fundamental representation of SU (4) in the two cases.)

Therefore SU (6)s is a nonrelativistic theory of spin-independence of the

interaction between elementary particles. I remind you on the meaning of

spin-independence: Consider for example NN-forces, thenspin independence

~=* -*
means that you may have & « ^" terms, but no tengDr-forces or spin-

L £

orbit couplings.

Defects of SU (6) S :

a) Nonrelativistic theory

b) Important p-wave couplings are forbidden:

N -/*- N + T T , N

Consider the NN-rr-vertex, In the nonrelatavistic limit it is proportional

t o X (^ < q ) X s i.e. it contains explicitly a spin-orbit coupling which
C* J-

fails to be SU 2)e invariant.
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1) 2)
II. Relativ!stic invariant, nonlocal models (Radicatti Gürsey ,Schroer )

This is an imrnediate extension of the concept of spin-independence t o

relativistic theories* This is a possible marriage between SU (6) and the

Poincare group P without constructing a larger group C* •> The SU (2) con-

tent of SU (6) in this case is Wigner' s little group for time-like p with
2 T1

p > 0. At first this little group is only defined in the subspace of fixed

p „ But what we want is an operator-representation within the wholeu. r

Hilbert-space H. It turns out that such an operator representation may be

structed only within a subspace for fixed particle numbernH . Therefore

we need a theory with particle number conservation. This is necessarily

a nonlocal theory: Consider a local field operator A (x) acting on the

vacuum /^ (x) f 0^ . Innortrivial theories this state always contains

components with an arbitrary particle number!

In the following consideration I restrict myself to the SU (2) spin-content

of SU (6).

Hi
The one-particle subspace contains particles of mass M. Then the operators

of our SU (2) are defined äs follows:

S«1' = -i- a/1 (A - l ) T (1)l M i p ' n

where P is an operator f If p is a c-number, the/\s a special Lorentz-
p

transformation which transforms p rotational free from the rest System into

the moving System. It is identic with the boost1 -transformation introduced

by Prof. Matthews in his lecture.

"T (DM is the representation of the Bargman-Wigner spin operator in

H , i.
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Then we get explicitly for the S«

(T
( i )

M v i |
M + P

o

The operators M ^ Pe ' S* do not constitute a closed com-

mutator algebra{ For this consider the following counter example:

M ... . ,. . , *" • *"
°J

... . ,,.«
J ' J

Therefore, we have not constructed a larger group G which contains P

and SU (6).

H :
n

I will not give an explicit construction of the S, . for n a 2. It should
-» (n)

only be mentioned that the S, . are in general functions of the represent

ation of the M and Pg in all n one-particle subspaces, i.e.

'S f / M (1) M (n) P(1) P<n>
S(n) = S(n) < yuv / " ^uv ** t" P<S )

This means: In each H we have a different SU (6) group! The relativistic

generalization of spin-independence of the interaction may then be formul

ated äs usual

[ «w , 1<nO . o

where H^ ' is the Hamilton-operator acting in H .
n

It may be that such nonlocal models become some physical interest if one

looks for a relativistic generalization of the static quark model discussed

in the lectures by Prof . Thirring.

III. Construction of a larger group G

In the following we denote by P the covering group of the connected part of

the Poincare" group. We have now to discuss two cases.
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lila. P c G .

From a naive point of view one would look for a group G with t he following

properties:

1. P c G

2. T" is an invariant subgroup of G (T = translations)

3. The action of G on ~T preserves the Minkowski metric (i .e. , if

g 6 G , t heng I/'P g " 1 ^ P/1 P' ).

This is an extension of requirernent Z .

The little group in G/T for a time-like translation is SU (6) (this means:

we can the states for a given p classify according to SU (6)).

Michel and other people have ahown that such a group does not exist, be-

cause according to requirements 1.-3. the little group cannot be a simple

one.

So let us drop requ. 3. (this seems to be the only possibility). The refore

the number of momenta has to be enlarged. According to Rühl the smallest

group with the required properties is

G - T36 x SL (6 ,C)

Because of ~T 0 / we are in a larger Hilbeit space, and this is the crucial
00

point, the physical Hilbeot-space is not an invariant subspace with respect

to G . Therefore S, i.e. the operator which transforms the physical

outgoing into the physical ingoing states, is not an unitary operator.

The restriction to the so called hybrid^ groups for ccUinear or coplanar

processes does not prevent the violation of unitarity. This has been explicitly

demonstrated for q q and q q scattering by Alles and Amati. It turns

out that unitarity and crossing symmetry only allow the trivial S-matrix
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in this case.

III b . Group jgxtension.

P = G/Q

Q =internal symmetry group which is an invariant subgroup of G

For central extensions it has been shown (Michel and other people) that

G - P® Q

If Q:> SU (6) then ß^ SL (6 ,c)

This P must not be the physical Poincare group, because grpup theory only

teils us that this P is isomorphic to the physical P, so let us write

G - P' ® Q.

To interpret this G äs an relativistic generalizationof the concept of spin

independence, one may argue according to Michel äs follows:

Suppose it exists an unitary representation of G in the physical Hubert

space with the following prescription:

Consider any many particle state in momentum space

i --- Pn» **) i --- - *** ) where the "n . are the internal degrees

of freedom (spin unitary spin), whereby the P* only acts on the momenta p »

and Q acts only on the «7 . .

Now what is the physical Poincare group P: P consists ofp* and the

SL (Z, c) content of SL (6, c).
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IV. Broken^ymrnetries ,

It turns out, that the mentioned prescription given for G is in contradic-

tion to any particle interpretation of field theory. This means: G has no

unitary representation in the physical Hilbeltspace.

To show this let us first consider old fashioned Langrangian field theory

L = L + L
o int

If the theory contains spin l/Z particles, then L has the form

This L cannot be invariant with respect to P* because of the presence of

the v„ . which is not transformed bvP* . But the L. mav be formallv
'/*• ' 3 int - -J-

invariant with respect to G

Let us consider some examples within the Quark-model (restricting our

selves to four-fermion interactions without derivatives):

Q = S L J 6 . C ) :

Q = U (6.6)+ : L.nt = g (¥± )2

Q = U (6 ,6) ' : L. = g' ( « )2

It turns out, that this formal invariance of the interaction Langrangian

is only a game ~with the insertion of certain functions depending on Y~ma-trices

and Gell-Mann's K .. But this game has nothing to do with a symmetry, about

which we speak only if there exists an unitary representation of the underly-

ing symmetry group in the physical Hilbertspace.

This game with -y-matrices and A . leads to relations between certain

unrenormalized coupling constants. Some theoretists like it to compare

the predictions for the ratios of these unrenormalized coupling constants

with the ratios of renormalized coupling constants äs measured by experim-
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ental physicists. In some cases one gets a rather good agreement! Now we

know that in general first order perturbation theory does not work for strong

interaction physics. This means, if we get agreement of the mentioned game

with experirnents we have a Situation which is by no means understood. It

may be that it is possible to understand such partial successes by a careful

study of broken symmetries within the framework of current algebras. I

want to make one further remark to this game: It turns out» that the cal-
in

culation of effective vertices first order perturbation theory äs mentioned

violates the original idea of spin-independence, because of the spin-orbit

coupling terrns contained in the free field (Wigner-B argman) equations.

V. Current algebra.

We have seen, that the Lagrangian formulation of broken symmetries may

fulfil all our requirements with the exception of the symmetry requirement

itself. But nevertheless we have certain relations between unrenormalized

coupling constants.

Therefore the question arises: Is there any nonperturbation theoretic form-

ulation of broken symmetries, which contains the mentioned ratios between

unrenormalized coupling constants in a certain approximation. Indeed, such

a scherne exists, namely the approach of equal time current commutators

(for the details I remind you of the lectures given by Prof. Moffat). It turns

out, that one obtains the same ratios between coupling constants äs in first

order perturbation theory, if one restricts one s elf t o the one-particle con-

tributions within the dispersion theoretical treatment of current commuta-

tion relations according to Fubini , Furlan and Rossetti. The many-

particle contributions,if they are physical interpretable, are a numerical

measure of the renormalization effects (äs an example I refer to the Adler-

Weisberger relation). In the cases, where the many-particle contributions

are not physical interpretable two different approximation schemes may

be discussed:

1. The approximation of the two (resp. three) - particle contributions by

the relevant resonances

+) I am grateful to the audience for mentioning this possibility. , _
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2= The extension of the dispersion-theoretic one-particle contribution

to a local one-particle contribution, whereby the latter contains the füll

contribution of the one-particle interrnediate state in the commutator.

In such an approach the füll vertex-structure of the one-particle matrix

elements of currentSand not only the coupling constants are taken into

++)account

Finally, I only want to mention, that all problems connected with the de-

pendence of certain results on current commutators on the frame of

reference may be solved by considering only local approximations resp.
3)local decompositions of matrix elements of current commutators .

VI«. Miscellaneous remarks.

There are some boxes at the diagram I have not yet discussed.

Dispersion relations: In this context the usual N/D Job is meant, whereby

äs an input certain one-particle exchange diagrams are taken äs driving

forces. The ratios of coupling constants at the vertices of the OPE - diagram

may be taken from the first Order perturbation results of broken symrrEtries.

' Bootstrap* ^ If one does not like perturbation theoay for the mentioned

coupling constants, one may try to determine them, if possible, self-con-

sistently. So, the bootstrap we are speaking about in this context is the

bootstrap in a certain technical sense and not the general bootstrap-philos-

ophy (which seems to be empty from the point of view of general local

field theory !)

-H-) Some work along this line is in progress.
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