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Abstract

Starting with equal time commutation relations for the isospin
current densities)sum rules for isovector form factors are
derived in a manifestly covariant way. Locality is taken into
account by means of dispersion relations. For scalar and
pseudoscalar particles the most general sum rule is obtained.
This sum rule is applied to electromagnetic form factors

of mesons and nucleons.



§1. Introduction

Usually it is assumed that the well known commutation relations

for the total isospin operator Iy

Lo = » . (1,1
[—‘-0(1 l-ﬁ] 1 éoygaf‘zsf ’ )
imply that the time component of the isospin current density
go,o( C?,f«‘) related to Iy by

Tt = [d% fou (#) (1,2)
1)

obeys esqual time commutation relations of the following form

[ B2), Jop (R12)] = Ceasy Joyln) $OCR-2)  (1,3)
In this paper we want to explore the consequences of thess
isospin current density commutation relations with respect to
electromagnetic form factors of pions and nucleons. A first step
in this direction has been made by Balachandran, Kummer and
Pietschmann.” 7, Taking equ (1,3) between ons-nucleon states of
momentum p' and p and inserting a complete set of intermediate
states on the left hand side of equ (1,3) these authors obtained
the isovector form factor of the nucleon as an infinite series of
matrix elements of all possible electroproduction processses. This
procedure has the disadvantage that the result is inconsistent
with locality if the left hand side is approximated by a findte
number of intermediate states. For the case p=p' one obtains
only trivial results, A different msthod to study the content
of the local commutation relations(%B) has been pointed out by
Adler 3) in connection with high energy nsutrino reactions. He
considered instead of Jox (X,t) the following momentum

dependent operators:

D7) = [k & F acee) (1,4)
For retarded products of such operators he derived squations
in which sgual time commutetors of the g C?tf) appear.
He startel from noncovariant matrix elemesnts and not all steps
of this derivation can be followed with sase. It leads to
nontrivial results also for p=p'. His prorodure is similar to
the tschnique used to derive a relation for the axial-vector
coupling constant renormalization in }3 - decay.a) Pre-—
sumably the simplest way of deriving th& relation is by means
of dispersion relations deyiged by Fubini, Furlan and Rosetti.s)

These authors rederived Adler's relation in a manifestly

covariant way. It is desirable to apply this method alsc in



connection with the momentum dependent operators I«C?Tt)

to obtain sum rules for electromagnetic or weak interaction form

6)

rence to electroproduction in a completely covariant manner.

factors. In this paper we derive sum rules with special refe-
We start with a matrix element which is related to the scattering
amplitude of virtual photons of isaspin one on nuclsons. Tkis
matrix element is reduced further by applying GauB thesorem in
section @ and the most general sum rule for the cass of scalar
nucleons is established. Important steps are the application of
dispersion relations for the retardsd matrix element and the use
of crossing relatiens., In section 3 this sum rule is further
explocited for pion form factors. Section 4 contains the analo-
gotis derivations for nulson form factors. Here we do not consider
the most general case. We take p=p' and work only with the

7)

spin independent part of the matrix slement.

§2. Oerivation of a General Sum Ruls

We start with the equel time commutator of isospin currents in

the following form:

R [N "x@)/ ., .
P gn0), g OVJIp> = 07 (R) veumy <plppifp>  (2,1)
Here Z”P‘Ct) is the isospin current operator, so chosen that
the aperator '],.,,a be hermi tdadv [&:4,1,3) . This

cocmmutator appesars if we reduce the following matrix elemant
N,
iq 3 _ g .
'7/1‘,/_% = - z{zﬂfaﬁr Glx) e <f‘/[j/.,¢0d} J!ﬁ (")]/f’> (2,2)
multiplied with i; by applying GauBl theoram:

/

P Jms = -0’ fo 06) (i &) <pllgne), gaoife>

— AT N . 778’
e [are 9tx,) 5 e (TPl om0, Juto] >
+ &)’ f A 06) e ¥ <PIL VY (), el lp>
= @03 [dhx dox) e " <py Lo <)y s OI]IR>

r @ Jte O0) 7T <p | Yl Jys @I 1p> 23

The four vector q' has bsen chossen with an imaginary part in the
forward light cone. Then the contribution at the boundary X,»>oo
vanishes. The slectromagnetic interactions are taksn into account

in lowest perturbational order only. Then the isospin current can



be considered to be conserved, so that

FBMJA(“(K‘) =0 (2,4)
and we have
7:“' 7;‘v' Y (.»?ﬂ'_)s‘/;ﬁx‘ I, ) & A ﬂ'.{#‘;'/l o (x), 7% ({z}] /P/\ (2,5)
The right hand side of equﬁgs) can be evaluated with the halp of
the commutator squ (2,1) by specifying squ (2,5) to # =0
This gives us the following sum rule:

o = CE i f . o) (2,6)
? .7;&&‘&/‘ = T a:‘:a(ﬂa’ <]‘3 I/ _;;,‘](’, ) jf’) (<7

In the following twe sections we shall reduce the left hand side
of equ (2,6) for some special examples and shall try to express
it by measurable quantities. First mé%%ghsider the case of pions.
Let us seperate the isospin part of the pion wave functions in
the state vectors fﬁ} and lpc>. Then we consider Z;%wﬁ
as s matrix in the isospin space of the pions. In this spacse
?Zv/«ﬁ has the following decomposition:
(_s)

7f.zl

)
")tlf),((lﬂ = /“_VA c{;/, + Z{_ﬁj 'tz] + th’ 2;5]

where 4 (ﬂ=ﬂlﬁ) is the isospin operator for the pion. The

(2,7)

matrix elements 71 ((41 ﬂkri) may be decomposed into
in-variapt Functinns. for ;p/ f,p)>baing state vectors of particles
with_spin zero, the most gensral form of the matrix slements

‘7;,"” for all three =142, is( the index i will be
omitted) :

Taw = TG TP, o+ TG + 16) 8k + 56 G

+ 1) Bty + To) 6P+ Toto) BE, + Tte) T

FT) Qut, + T0) &l + T Ml

(2,8)
Here we have introduced i:= 7’*ﬂ(‘ﬁ and used the conventional
notation,
> ; I p
P = %pp) 2 = PO
. .ﬁ(.?‘ -—
= £ -4 = &£, ; Vel g
C( z ( ""?) /%_ i /,;; 6(;-, {_},
- Y.
K= gvg=pf
Besides 7Zs the invariant Funeztions ?; depend on P <2; X‘j

G-K, we have TP+ Ki =fp+p / Q&% X4 = #(7° 9 y PK— CF'-/‘?/
and (K = # (71'7JJ . With this expansion we cbtain the



following expression for ?5“' 7/';‘, :
(
7 v = {(M;,’Pk) T+ (@ F0k) T + (Qb+ £&2) 7}}
+ &p{ (&% t6)T + B, +(» w4 PE) T+ (Phtf ey i’lof? (2,9)

Fhf (QK +1k)T + B+ Corg7) Ty + (R FRU)T
It will bes assumed that the invariant amplitudes 77 (1»)0_,)
2.

2
obey unsubtractsd dispersion relations in Al w:.th 75
and QXK held constant
éi.]
oy (1) f f pl
7} = v (2,10)
61-) ¢e)
The absorptlve parts ,4 () of Tj () are
determined by the decompos:.t;mn of A/,,w‘“ﬂ , where ;4/4;/ is
the absorptive part of T/M; :
Tes = @ Aonap + Duiap (2,11)
and A/W,"‘/’ has the re;\:r{esentatlon:
3 g x }
A
A/w,“p ——@n)fd‘fx e </°‘/[67N“ &), 07,/3(0)]/,0> (2,12)
Of courss the isospin dBcOI‘npOBltht‘l of AM /3 is as in equ(2,7)
and the invariant functions J (P‘) are defined by the expansxon

equ (2,8).B8ecause of current consaruatlon the amplitudes AJ“("")
are not all independent. From 7 /4/,.., =0 the folleowing
thres equatlans are obtained : .

(v+ #7k) 4‘1 + (& +,1611<) Aw#— (&k+ +k2) A 4" <o

(8*+3 qk) /4(' + 4“’ + (P+ é’Pk)AM,L (7%‘4—-%) 74-";

(&K+ikz) A-"* i,zg r (oi22k) A L (&% $ak) 149 ‘-0 (2,13)
In the same way three mors conditions result from ,4“ ? =9

which we do not write down becauss they are not nesdad in the

following discussion. The three conditions in equ (2,13) can be used

to reducs 7{"" /‘,ﬁ" . We obtain :
‘) g (17
’/‘, — J ]
L = - B [ A @ 4 fu A
"" ') 2,14
-Gt S A /4 . (2,14)
Now we show that the coefficients of @p ‘doand fp in invariance.

squ (2,14) vanish for +=2 a3 a consequence of crossing symmetry and TN

For the full matrix element crossing symmetry tells us that

*
77 {7
(}wﬂﬂ (p14') M)) = Do (P71 2-7) s



From this relation the crossing symmetry relations of the invariant

amplitudes can be read of®:

<r/-‘;(«‘)(p))¥ _ 7{@)(“/’) for

< L "
=43 ; J= 4,2.,3/ 4, ‘!,40!44

J z'= 2 ) ;]‘: 5,6, 7§
me ’)* Gqried ;o =13 . g 56,7F
Iy = - . -4 g /
(j ») /J (-») for R 1Y (2,16)

From PT- invariance ws deduce that the absorptive part 4ﬂu/qﬂ
(Equ(2,12” is real. Then it is evident from the ﬁgfssing relations
equ@.16)that the integrals over /EQJ and A7 vanish. In the
following we shall explore only that part of the sum rule eaqu (2,6)
where the right hand side doss not vanish that means on the left
hand side we consider @nly the term which is antisymmetric in «&

and /3 . In that part only the amplitudes a4ja?9J) appear in

the sum rule. With-the result of equ (2,14) the sum ruls then has

the simple form:

v Eugy @) <p] Joy0) Ip> = — [tgty] P 2 qfd»’/lf’(u')

We remark that in this derivation only the equal time commutation

(2,17)
relation equ (1,3) betwesn the zero components of the current
densities was needed and no extension to other components of the

current density was necessary.

3. Sum Rule for Electromagnetic Form Factors of Mesons.

The amplitudse Aqa%ﬁjis connected with the antisymmetric isovector
part of the amplitude for scattering of virtual photons by pions.
In the following we shall exploit the sum rule squ (2,17) by keeping
in the integral only terms comming from the pion intermediate
state and from the resonant production of vector mesons. Besides the
pion ths main contribution comes from 2“+I‘—> o) . The J?ZqéJf
contribution can also he caleculated but from the experimental limit
on ﬁP_>-VE%~a’ we see that the <P contributes
to equ (2,17) at most one tenth of the <« contribution. The
one~particle terms arse calculated from
A/w,x/s =% ﬂt"m B(ms) S(m* x¥)
@0 <l G o) > P < Jup o) 1> SCmp'9)
—@m? <pl Jup (o) |n> @’ <| Gup 01| > (- p ~7')) ]

K is the mass of the intermediate state. The current matrix

(3,1)

element of the pion has the following form:

0" <P o @)12> = G ($97°) (phpl 4 (5,2)




.
Qris the alectromagnetic form factor of the pion normalized to

G (o) =1 The left hand side of equ (2,17) is
‘ o 33 . ) B - i
k(2 &aﬁd/ (“F) <—P/g.,,,(0‘)/f7> = (77;,'("(1) ’2?0 [{Fﬂ‘){:’@_} (3 4)
]
The single-particle terms are easily calculated from equ (3,1).
Since we need only the amplitude A:”(u} for the sum rule the
other amplitudes Aj“J are not written down.

ASG) = 25 G (32) Gre?) o6y ) G(Babo)+ SP-0f=m )ecz-ao;}(a 5)

For the « contribution we need the W%y vertex for virtual

photons. We write it in the following form:

PR P I ; = » Pz . oo !t
o = . - & vy
Cr) Spr ] Juw ) pg> = buy Gro (5p)) TPt el (a.6)
p' and ™ are momentum and polarization vecter of the ), P

is the momentum of the pian. The functian Gmois the electra-

magnetic T —cw transition form factor. The contribution af
the < to A is
ACD) = = F 6ro(42) Gra(®) (462 a?) |
s ECOR) = m3) G(Reg) + S CPAN mE) (J(Z’va,.)} (3,7)

Now we include also the “p meson as intermediate state. for the
tf particle contribution we have equ (3,7) with G%w replaced by
éﬂnﬁ etc. Under the hypothesis that these thrse mesons al-

ready saturate the sum rule we obtain the following equation

between the slectromagnetic form factors of ", @ and &

bw (k) = G (3%) Goig?) + 24K a ) { 0(0?) e (3% + Grp (%) Grw (%)

(3,8)
A special case of this relatiaon has been derived by Cabibbo
and Radicati 3) starting from commutation relations for the
electric dipole moment operators. We set g =q' and have from

equ  (38)
‘ l,-
A = GZcgt) — (Gmé?)+ Qm,o('?‘)) (3,9)

If we take the first derivative of this last equation and set g=0

we arrive at :

2 .
> = 2. ( / z ) a - )
f % Gﬁq (OJ + (7/;({9 (0) (3,10\
-7
In the following we neglect the centribution of the 39 and replace
. 2 , < .
G by the partial width 7:{,._72, of the decay &@-» T2 :

2 2 2 \3
‘ . . Wy — Mg
Ty = G () @

24 g,
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the formula of Cabibbo and Radicati is rederived.a) e insert the

w7 -
yperimental number for ’qu = (43‘+a3‘) Mev. Then the re-
sult for the pion radius is (vr‘_ V2 (b3f' &us) not to

far away from a recent experimentally determined value (F,})% (030*0/4-}.£é
The special case g=q' is advantageous also in other

rgspects. In this case the contribution of the continuum to the

integral in equ (2,17) can be expressed by electroproduction cross

+

sections on pions:

f
e +r% — c ¥R (state of isospin I )

The relation between the continuum part of Afzkp) and the
longitudinal and transversal slectroproduction cross section will
be derived in connection with sum rules for nucleons in the next
section. lle denote by Uﬁqf?ﬁs) and 0;(é€$) the trans-
versal and longitudinal photoproductiaon cross section of virtual
photons for excitation energy $= CP+Q)L . In terms of thesse
cross sections the sum ruls equ (2,17) with the one-pion contri-

bution separated is :

2
A4 = Gz(e2) + dS'

(3,12)

"{o‘v rs -
C?} )a’f-’ﬁc-it I=0 * O—(q‘s{}’rl‘-? T=4 “ dtf S:Jfrr
where 0’(7,5) is the isovector part of the sum L@:S)?'O'r(?ﬁ)

§4 Sum Rules for Nucleon. Electromagnetic Form Factors.

In this section we shall derive a sum rule for the isovector part
of the electromagnetic form factor of the nuclson., Again we separate

the isospin part of the nucleon wave functions in the state vectors

[p.r> and  /pir'D which now decribe protons or neutrons of

momentum p and p' and polarization r and r! respectively.
. i)

The matrix element 4unqﬂ defined in equ (2,2) is decomposed in

the isospin space of nucleons as follows:

o7 - o) , @)
/,uv‘u(/j - 7,.7“ Ore\(ﬁ ke ['z;‘; ﬁ] (4,1)
. . a1 &) £
The twe isospin independent amplitutes 4uJ' and 2::Lj obey the

crossing relations:

7“’0 Cpira f’»";‘i)jat = (4)(7"'” "f ff—?)

77 Y, P L / z) / foy
(/ (flr;‘f,/' Plrl?)) = - 7/3“" (?’rlﬂ_7l' ?’rl*?)

(4,2)
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In this paper we shall not explors the full content of the equal

time current commutation relatiaons applied te nucleaons. We consider
the matrix slement twﬂqd(f{fi?; F;ﬁ*?) only for the special
case ! =r’ . Furthermore we take thhe average over the polarization

¥ . This way we use only the spin independent part of the

scattering empiitude TﬁV%6 . We :all this polarization
average apgain Tufxﬁ(f‘:f i) . The decompasition of
Y el !

s (f}; p.9 )=} is given by equ (2,8) written down for matrix
elements of a spin zero particle. Then all derivations of sectiaon
4 are also valid for this special nucleon matrix elemsnt, The

sum rule can be read off immediately from equ (2,17):
2 Ay (er; 3 i \} <p '!‘IF j){ Gl pes “)j.{;:; sd P & it 4 fii; 0 (4,3)
Now we further specialize to p=plb Then the inteoral on the right
hand side of equ (4,3) can be expressed by form i=zcteryfor slastic
and inelastic scattering of electronton unpolarized nucleons.lt is
clear that only the isovesfor part of these form factors contri-
butes to equ (4,3). The term dependent directly on the selastic

nucleon form factor is sasily established by evaluating the one-nu-

clean contribution te the absorptive part A/“ﬁ {egu (18). The
nuleon form factors

— C.: s - q,- o !\;«1 - j H ‘4’-5

Ty m - ?‘7#5 - . anid L P -T Lt (4,4)
are defined hy (w is the mass of the nucleon) :

ki

Y - N S iy f T i e Al T et 2
G gl G sy ) B E ) e PR R ) fug)

For p = p ' the left hand side of equ(4,3) is :

. er_ B ; . .
Tan < Fy <Y i - o - ) e T I vy e A fe— .
afi I G o f*[ ()’/“.! A ‘.3:/ /‘\Jr = & e 2 ;_»’2" f{,("p 'J.’.?:’ Vo 3 B )_, < vf{ﬁ (4’ 6)
. - _ﬁﬂﬂfq) .
and the one-nucleon contrlbutlon to Ay e is
N
S I Cijzz — / T
(ﬁi (,-,:a) = — I i/ bty o
o A - ?,/&'&-;'W
i R o Y o~ P . P ) (4’7)
b 8 ; ke \ \f;r?)ﬁ»ﬂ 41’ j/ﬂ.’( ;e ég’_s(f“”""-;ij"m f_,.M’:!.) ‘j;lt ?‘3»’1:}
d ~
The contipnuum part in equ(ﬁﬁ) will be expressed by the inelastic
form factors T et and TRog5 as introduced by
Gourd1n1°) = is the total excitation =zmemy 5= firgj e

Although the dependence of the cross section for scattering of
elstrons by uniyoclarized nucleons has been derived by many people

we repeat it here for completeness and we derive shortly‘f/iatlon

‘i

between Ai’ and G, and O respectively.

N
{2
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The cross section for the scattering of electrons by unpolarized

protons is calculated from
Ao (‘,ﬂm)_:efng’
= 7 _w/3527f_;af" Y T 24

where k and k' are the momenta of the initial and final

glectron. My stands for the mass of the slsctran. épv is the

current tensor of the electron vertex

:2‘-/ Z 1:(&:"') TN, "‘;:(‘ép")‘?’v N
= 244 + Ah) + 2 G (m- £€)
and A

/uy is the current tensor of the proton vertex:

‘€“v =

Ao = = [ds [ato, Gipn ) ICrg—pa) TCpi-s)
» i) < Plagml pa> @07 <pujgeip>

With the expansion

Ao = apeps v bpets v 9ep) + C Gty + A s

the cross section equ (4.8) is transformed in:

p ‘o o 2 2%’
6&7-._ ?# /f)é' %; -4nnl4idit2n Qi { a - é%% f?’éépf zag?

We have set Me=¢0 and have evaluatad the tensor produyct in the

Far (F,4s the clechun Scottirmg dndile v that forms

(4,8)

(4,9)

(4,10)

(4,11)

(4,12)

laboratory frame as usual) ha corresponding photoproduction cross

section (q :o) is:

2
O = € j:(—dé}
T T el |
The transversal cross section 67~ for virtual photons (‘7"?: o)
is defined accordingly:
- e
V@3> - mi*
and is then substituded for d in the elsctrosproduction cross
section: _ o2 A A 4’”;4{4/ c‘nz%
= 7 27 oz
CIEEI T T
J Y ] 22
— m
‘Z’ 9, + 0L + @7) 7 o Jlfgﬁ%éjf

...._?2—”12-

2

IT £(-4)

The amplitude a has baen replaced by

2 - 2 fﬁ
emr = —fn VEnt— eyt a

in accordance with the usual conventions. With thesse definitions

the continuum contribution te ASQCL*) is:

(4,13)

(4,14)

(4,15)

(4.16)




1"

(@ ~ 2
W) = w (;{n)zm (ais) + %)

x{ G (pra)—5)Glparqs) + I(Gpa)=s) G(kc-*ffa)}

In equ(%rﬁ the cross sections are elso defined with respect to the

(4,17)

isospin factor ﬁ}[fa,fﬁ] . It is convenient however toc introduce
the cross ssections for total isaospin I. The conversion is sasily
done since

z) - . o
T = )y, — £ (o), (4,18)

The vector part of the electroproduction cross ssection is: (9), + (o)y,
With thess definitions the sum rule derived from
equ (4,3),(4,7) and(4,17) qoes over inbits final form:

V2 2 vZ ~
—— é; - i"'r. é; 62 1
/f == — L;_;.m M -_— ‘2-—“17’04 l/d& ;/(/)‘?)z_ m"’ff
agm ™

. v Vv i L v 4419
"{(OZ *“Tr)'/,_ -z (= '*C"r)%; (4,19)
This equation agress with the sum rule as derived by Adlsr for

3)

and Bucella, Veneziano and Gatto.

7
specified to electroproduction by Gourdin
7)

neutrinc reactions

Let us computs the first 7L' derivative of equ{(4,19) and put 7z=0
le(o) = 4 E Py
E - Ter EM

V -
GM (o) = Sp (4,20)
Oy ¢e, s) =

we immediately obtain a sum rulse derived in ref, B from

Using

commutation relations of selectric dipols moment opsraors:

.
() - i = # - T} - [ ()~ o)

D, (4,21)
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