Interner Bericht DESY F1-76/04 Juni 1976

-Fyr

10

今天二十十

DESY. Bibliothek 10, AU6. 1976

Elektroerzeugung der Endzustände $\pi^-\Delta^{++}$, $\pi^+\Delta^{\circ}$ und $p\pi^+\pi^-$

von

Klaus Wacker

47

D i s s e r t a t i o n zur Erlangung des Doktorgrades des Fachbereichs Physik der Universität Hamburg

> vorgelegt von Klaus Wacker aus Hamburg

Hamburg 1976

Die vorliegende Arbeit entstand als Dissertation im Rahmen eines Experimentes, das von einer DESY – Universität Hamburg – University of Glasgow – Kollaboration am DESY durchgeführt wurde.

Genehmigt vom Fachbereich Physik der Universität Hamburg

Referent : Prof. Dr. Söding

Koreferent: Prof. Dr. Schmüser

Mündliche Prüfung: 20. 5. 1976

Prof. Dr. Kramer (Sprecher des Fachbereichs Physik)

ABSTRACT

٦.

ι,

This thesis describes results of an electroproduction experiment using a 7.2 GeV/c electron beam from the DESY Synchrotron, which was incident on a hydrogen target inside a streamer chamber. Scattered electrons in the kinematical range $0.3 < Q^2 < 1.4 \text{ GeV}^2$ and $m_{\text{proton}} = W < 2.8 \text{ GeV}$ where detected in a counter setup and triggered the chamber. The streamer chamber detected all outgoing charged particles.

The analysis of the events yielded a sample of about 37000 inelastic electron scattering events (including only part of the two-prong events). Radiative corrections and checks for systematic errors where done with a geometry simulation program.

The subjects of this investigation are the 4-constrained channel $\gamma_V p \rightarrow p \pi^+ \pi^-$ and the reactions $\gamma_V p \rightarrow \pi^- \Sigma^{++}, \pi^+ \Sigma^0$ and $p \pi^+ \pi^-$ (non-resonant) in this channel. Following are the results:

- The channel cross section has a similar W-dependence in this Q²-region as in photoproduction. The fall-off with Q² is faster at all W than the fall-off of the total cross section for virtual photons.
- The fraction of the non-resonant contribution to the channel rises with Q^2 . Its contribution to the total cross section grows with Q^2 . Therefore, this reaction may be a prototype for those processes that build up the total cross section.
- The reaction $\gamma_V p \rightarrow \pi^- A^{++}$ can phenomenologically be described by the gauge-invariant Born-term model (GIOPE) with a Q²-dependence given by vector dominance.
- From the Q²-dependence of the $\pi^- \wedge^{++}$ cross section near threshold, the nucleon axial-vector form-factor is measured using a model of Adler and Weisberger . Up to Q² = 1.4 GeV² the form-factor is well described by a dipole form with a mass of m_A = (1.18 \pm 0.07) GeV.
- The $\pi^+ \Delta^c$ cross section in this channel is generally consistent with being 1/9 of that of $\pi^- \Delta^{-++}$, in accordance with the GIOPEprediction. Only in the region 1.5 - 1.7 GeV the $\Delta^{\circ} / \Delta^{++}$ ratio is bigger and rises with Q².

7 --• •

INHALTSVERZEICHNIS

•:

Ϊ,

.

•

 TOVEDZETOUNTO	

Seite

1.	Einleitung	1
2.	Experiment und Auswertung	3
2.1	Aufbau und Durchführung des Experimentes	3
2.1.1	Strahl und Target	3
2.1.2	Streamerkammer und Magnet	4
2.1.2.1	Funktion und Aufbau der Streamerkammer	4
2.1.2.2	Der Magnet	Ó
2.1.3	Zähleranordnung	6
2.1.3.1	Triggerzähler	6
2.1.3.2	Elektronik und Kleinrechner	7
2.1.3.3	Proportionaldrahtkammern	8
2.1.3.4	Vetozähler	8
2.1.3.5	Zähler zur Strahlüberwachung	9
2.2	Auswertung	9
2.2.1	Mustern der Filme	9
2.2.2	Messung	11
2.2.3	Geometrische Rekonstruktion	
2.2.4	Kinematische Rekonstruktion	
2.2.5	Ionisationsentscheidung und Auswahl der Messungen	16
2.2.6	Ereignisauswahl	17
3.	Strahlungskorrekturen	19
3.1	Definition der kinematischen Variablen	19
3.2	Notwendigkeit von Korrekturen	21
3.3	Vertex- und Propagatorkorrektur	23
3.4	Simulationsprogramm STYX	23
3.5	Bremsstrahlung	25
3.6	Coulombstreuung	26
3.7	Simulation der Reaktion ep $\rightarrow e \pi^{-} z^{++}$	27
3.8	Simulation der Reaktion ep \rightarrow ep e^{0}	28
3.9	STYX-Auswertekette	29
3.10	Berechnung des Korrekturfaktors	30

<u>Seite</u>

1

12

.

•

4.	Totaler und Kanalwirkungsquerschnitt	31
4.1	Akzeptanz	31
4.2	Totaler Wirkungsquerschnitt	31
4.3	Wirkungsquerschnitt des Kanals $\gamma_{ij} p \rightarrow p_{\pi}^{+} \pi^{-}$	32
4.3.1	Fehlerquellen und Korrekturen	32
4.3.2	Ergebrisse	34
n Narionio	Resonante und nicht-resonante Beiträge zum Kanal	
	$\gamma v^{p} \rightarrow p^{m+m}$	35
o.1	Trennung der Reaktionen	35
5.2	Ergebnisse	37
5.3	Der nicht-resonante Anteil	38
6.	Die Reaktion $\gamma_{v} p \rightarrow \pi^{-} A^{++}$	40
6.1	Der Wirkungsquerschnitt als Funktion von W und Q ²	41
6.2	Der differentielle Wirkungsquerschnitt	41
0.0	Zerfalls- und Polarisationswinkel	42
6.4	Das eichinvariante Ein-Pion-Austausch-Modell (GIOPE)	47
6 . 5	Bestimmung des Axialvektor-Formfaktors des Nukleons	49
6.5.1	Bemerkungen zur theoretischen Grundlage	50
6.5.2	Ergebnisse und Vergleich mit anderen Experimenten	53
7.	Die Reaktion $\gamma_{\rm V} p \rightarrow \pi^+ Z^0$	55
7.1	$x^{++} - x^{\circ}$ - Interferenz	55
7.2	Der Wirkungsquerschnitt	5 7
8.	Zusammenfassung	58
	Anhang A	60
	Anhang B	62
	Anhang C	64
	Danksagungen	
	Literaturverzeichnis	
	Tabellen	
	Verzeichnis der Abbildungen	
	Abbildungen	

1. EINLEITUNG

٦.

٩,

Experimente über die Streuung hochenergetischer Photonen an Nukleonen haben gezeigt, daß sich das Photon in diesem Fall nahezu wie ein Hadron verhält. So ist zum Beispiel die elastische Streuung diffraktiv, der totale Wirkungsquerschnitt verläuft bis auf einen konstanten Faktor ähnlich dem der Pion-Nukleon-Streuung, und die Multiplizitäten und relativen topologischen Wirkungsquerschnitte gleichen denen von Hadronwechselwirkungen. Der Hauptunterschied, der sich zeigt, wenn man den Verlauf des totalen γp -Wirkungsquerschnitts mit dem Mittel vom π^+p - und π^-p -Wirkungsquerschnitt vergleicht, ist auf die Existenz von Kontakttermen zurückgeführt worden (COL 73), das ist in der Bornschen Näherung die Kopplung eines Photons mit drei Hadronen an einem Punkt. Solche Terme ergeben sich aus der Forderung der Eichinvarianz. Insbesondere ist der Kontaktterm für die Reaktion $\gamma p \rightarrow \pi^- \Lambda^{++}$ diskutiert worden; experimentell wurde nachgewiesen (LÜK 71), daß dieser Beitrag vorhanden und die Ursache für die Größe des Wirkungsquerschnittes an der Schwelle ist.

Die Elektroproduktion ist in der Ein-Photon-Näherung die Streuung raumartiger virtueller Photonen mit dem Massenquadrat $-Q^2$ *. Als Fortsetzung der Photoproduktion ($Q^2 = 0$) läßt sie sich dazu benutzen, die Q^2 - Abhängigkeit einzelner Reaktionen zu untersuchen und durch Messung der jeweils maßgeblichen Formfaktoren ein besseres Verständnis des Reaktionsmechanismus zu gewinnen. Speziell für den Kontaktterm bei der $\pi^{-} \wedge^{++}$ -Erzeugung sind dafür verschiedene Ansätze denkbar. Wenn die Kopplung punktförmig ist, würde man einen konstanten Formfaktor und damit einen relativ sehr großen Wirkungsquerschnitt bei hohen 0^2 erwarten. Ein anderes Modell geht davon aus, daß die Kopplung durch Vektormesonen vermittelt wird (BAR 72). In diesem Fall koppelt das Photon an ein --Meson: die Punktkoppelung besteht hier zwischen ρ , p, Λ und π . Ein anderer Ansatzpunkt ergibt sich aus der Stromalgebra in Verbindung mit der PCAC-Hypothese. Danach kann aus dem Schwellenverhalten der $\pi^{-} \wedge^{++}$ -Erzeugung der Axialvektor-Formfaktor des Nukleons gemessen werden (ADL 68).

Mit Einarmexperimenten beobachtet man bei der Messung des totalen inelastischen Elektroproduktionswirkungsquerschnitts, daß sich das Photon

* Zur Definition der kinematischen Variablen siehe Abschnitt 3.1

im tief-inelastischen Bereich ($Q^2 \gtrsim 1$ GeV², Energie des Hadronsystems W $\gtrsim 2$ GeV) nicht mehr hadronähnlich verhält. Insbesondere hängen die Strukturfunktionen des Protons näherungsweise nicht von Q² und W einzeln, sondern nur von einer daraus gebildeten dimensionslosen Größe ab (Skaleninvarianz). Auch unterscheiden sich die Wirkungsquerschnitte am Neutron stark von denen am Proton.

4

7

Ein Experiment, mit dem diese Fragen untersucht werden können, muß außer dem gestreuten Elektron im Übergangsgebiet zwischen der Photoproduktion und dem tief-inelastischen Bereich auch die erzeugten Hadronen im vollen Raumwinkelbereich nachweisen können. Das ist zum einen erforderlich, um die gewünschte Reaktion identifizieren zu können, zum anderen, um nicht nur den gesamten, sondern auch den differentiellen Wirkungsquerschnitt einer Reaktion und die Zerfallswinkelverteilungen im gesamten kinematischen Bereich messen zu können. Die Streamerkammer ist dazu ein gut geeignetes Instrument.

In diesem Experiment wurde ein 7.2 GeV/c-Elektronenstrahl aus dem DESY-Beschleuniger auf ein Wasserstofftarget innerhalb einer Streamerkammer geschossen. Gestreute Elektronen im kinematischen Bereich 0.3 < Q^2 < 1.4 GeV² und Protonmasse < W < 2.8 GeV wurden mit einer Zähleranordnung nachgewiesen und lösten die Aufnahme des Ereignisses aus. Mit der Streamerkammer wurden alle geladenen auslaufenden Teilchen nachgewiesen. Die ca. 37 000 * inelastischen Elektronstreuereignisse wurden von einer Kollaboration von DESY und den Universitäten Glasgow und Hamburg ausgewertet.

In dieser Arbeit wird der Kanal $\gamma_{V} p \Rightarrow p \pi^{+} \pi^{-}$ untersucht, der die Resonanzbeiträge $\Delta^{++}\pi^{-}, \Delta^{0}\pi^{+}$ und bei höheren W p ρ^{0} enthält. Der Schwerpunkt dieser Arbeit liegt auf der Untersuchung der Endzustände $\Delta^{++}\pi^{-}$ und daneben $\Delta^{0}\pi^{+}$. Weiter wird das Q²-Verhalten des nichtresonanten Beitrags zum p $\pi^{+}\pi^{-}$ -Kanal im Hinblick auf die tief-inelastische Elektronstreuung näher untersucht. Die ρ^{0} -Erzeugung wurch an anderer Stelle untersucht und veröffentlicht (J0076). Außerdem sind aus diesem Experiment Ergebnisse über ω -Erzeugung sowie über inklusive Reaktionen und topologische Wirkungsquerschnitte veröffentlicht worden (J9075).

Die Arbeit gliedert sich wie folgt: Im Kapitel 2 werden zunächst der experimentelle Aufbau und die Auswertung beschrieben. Kapitel 3 enthält

- 2 -

^{*} Zweispur-Ereignisse sind nur zum Teil ausgewertet.

Strahlungs- und andere Korrekturen. In Kapitel 4 wird die Bestimmung des Kanalwirkungsquerschnittes beschrieben. Die Aufteilung des Kanals in Beiträge von resonanten und nicht-resonanten Reaktioner sowie die Untersuchung des nicht-resonanten Beitrags wird in Kapitel 5 durchgeführt. In Kapitel 6 wird die Reaktion ep $\rightarrow e\pi^{-1} \Delta^{++}$ und in Kapitel 7 die Reaktion ep $\rightarrow e\pi^{++} \Delta^{0}$ untersucht. Kapitel 8 gibt eine Zusammenfassung der Ergebnisse.

2. EXPERIMENT UND AUSWERTUNG

•

2.1 Aufbau und Durchführung des Experiments

Der experimentelle Aufbau besteht aus drei Hauptkomponenten:

- 1. Elektronenstrahl und Wasserstofftarget
- 2. Streamerkammer und Magnet zum Nachweis und zur Impulsmessung aller geladenen Sekundärteilchen
- 3. Zählerarme zum Nachweis des gestreuten Elektrons

Abbildung 2.1 zeigt den experimentellen Aufbau.

2.1.1 Strahl und Target

Der Elektronenstrahl wird bei der Endenergie von 7.2 GeV über einen Zeitraum von 2-2.5 msec langsam aus dem DESY-Synchrotror ejiziert. Der Magnetstrom des Synchrotrons wird während dieser Zeit nahezu konstant gehalten (flat top). Bei einer Wiederholrate von 50 Hz ergibt sich damit ein Tastverhältnis von 10-12.5%. Über ein 65 m langes Strahlführungssystem wird der Strahl horizontal und vertikal fokussiert und dispersionsfrei auf das Target gelenkt. Der Strahldurchmesser am Ort des Targets beträgt 3 mm. Éine genauere Beschreibung der Strahlführung findet sich bei Meincke (MEI 73).

Die zulässige Intensität des Strahls wird begrenzt durch den Untergrund von rein elektromagnetischen Reaktionen, das sind hauptsächlich Elektronen, die durch Bremsstrahlung im Target Energie verloren haben und auch langsame Anstoßelektronen vor allem im Target. Es hat sich gezeigt, daß eine mittlere Rate von 3 sichtbaren Bremselektronen pro Streamerkammerbild die Auswertung nicht beeinträchtigt. Damit ist die Intensität des Strahls auf etwa 80 Elektronen während der Gedächtniszeit der Streamerkammern begrenzt. Das entspricht bei einer Gedächtniszeit von ca. 2 µsec. etwa 5 \cdot 10⁶ e7sec. Die gewünschte Intensität wird mit dem ersten Kollimatorenpaar eingestellt. Die Messung des Strahlstromes erfolgt mit einem DESY-Quantameter, dessen Eichkonstante auf 5% genau bekannt ist.

a "

Das Target ist ein Zylinder aus 25 μ m starker Kapton-Folie mit 9 cm Länge und 1.5 cm Durchmesser, der mit flüssigem Wasserstoff gefüllt ist und in Längsrichtung vom Strahl durchsetzt wird. Es befindet sich in einem Vakuumgefäß aus dem Schaumstoff "Rohacell 51" mit Fenstern aus 50 μ m starker Kapton-Folie für Strahl-Ein- und Austritt. Die Targetkonstante beträgt 3.78 \cdot 10²³ Protonen/cm². Die Länge entspricht 0.0107 Strahlungslängen (einschl. Folien).

2.1.2 Streamerkammer und Magnet

2.1.2.1 Funktion und Aufbau der Streamerkammer

Geladene Teilchen erzeugen auf ihrem Weg durch das Gasvolumen der Streamerkammer Elektron-Ion-Paare. Durch Anlegen eines kurzzeitigen (ca. 10 ns) Hochspannungsimpulses von der Stärke einiger 10 kV/cm setzt lokal Gasentladung ein und führt zu leuchtenden Streamern, die die Teilchenbahn markieren (BUL 67, LAD 69, ECK 72a).

Die Streamerqualität hängt entscheidend von der Gaszusammensetzung und der Höhe und Dauer des Hochspannungsimpulses ab.Wünschenswert sind möglichst kleine Streamer, um eine genaue Messung der Spur zu ermöglichen, andererseits genügend Helligkeit und Kontrast, um die Spuren fotografieren zu können. Außerdem muß die Bildung von sog. "Flares" in Grenzen gehalten werden, das sind Funkendurchbrüche, die durch Ionisationszentren in der Nähe von Feldüberhöhungen an den Drahtnetzelektroden ausgelöst werden können und Teile der Spuren überdecken können. Die Häufigkeit dieser Erscheinung hängt stark von der Feldstärke ab.

Als Gasfüllung hat sich Neon als am günstigsten erwiesen (LAD 76). Eine ausreichende Streamerhelligkeit wird damit im Vergleich zu anderen Gasen (He-Ne-Mischungen, oder Neon mit Zusätzen von Isobutan) mit kleineren Streamern (ca. 15 mm lang, 1.5 - 2 mm Ø) bei einer noch nicht zu hohen Feldstärke von ca. 18 kV/cm erreicht.

- 4 -

Die Gedächtniszeit, das ist die Zeit, in der die Zahl der Ionenpaare auf das 1/e-fache gesunken ist, beträgt in reinem Neon einige 100 μ sec. Wie aus dem vorigen Abschnitt ersichtlich, ist eine möglichst kleine Gedächtniszeit wünschenswert, sie muß nur größer sein als die Zeit für die Bildung des Triggerimpulses und für das Anlegen der Hochspannung. Dies wird durch den Zusatz des elektronegativem Schwefelhexafluorid(SF₆) erreicht. \approx 0.1 ppm SF₆ führen zu einer Gedächtniszeit von 2 μ sec.

Die Streamerkammer wird durch die Mittelelektrode, an die die Hochspannung gelegt wird, in zwei Teile geteilt. Vorder- und Rückwand bilden die Masseelektroden. Um den Hochspannungsimpuls mit genügend schneller Anstiegs- und Abfallzeit (ca 2 nsec) anlegen zu können, sind die Elektroden Teil eines geschlossenen Wellenleiters. Die Hochspannung wird in einem Marx-Generator erzeugt und im Blumleinsystem, das ist ein System von koaxialen Wellenleitern, auf die gewünschte Form und Dauer gebracht. Er wird dann durch die Streamerkammer geleitet und dahinter in einem Abschlußwiderstand reflexionsfrei absorbiert.

Das empfindliche Volumen der Kammer ist 100 cm lang, 60 cm hoch und 46 cm tief. Um in die Kammern hineinsehen zu können, besteht die Vorderwand aus Mylarfolie, und Vorder- und Mittelelektrode sind als Drahtnetz ausgeführt. In einem Abstand von 128.8 cm vor der Vorderelektrode befinden sich drei Kameras, die untereinander einen Abstand von je ca. 41 cm haben. Die Objektive vom Typ Zeiss Distagon haben eine Brennweite von 36mm,eine Öffnung von f:2 und bilden die Spuren in der Streamerkammer 1 : 40 verkleinert auf einen 35mm-Film ab. Der Film ist hochempfindlich (5000 – 10 000 ASA) und dabei noch genügend feinkörnig, um einzelne Streamer aufzulösen. In die massive Rückwand der Kammer sind Bezugsmarken eingelassen, die von Leuchtdioden beleuchtet und mitfotografiert werden, um eine räumliche Rekonstruktion zu erlauben.

Der Strahl wird durch die Mitte des Blumleinsystems in die Kammern geführt und trifft nach ca. 25 cm auf das Target. Von den Kameras gesehen vor und hinter dem Strahl und vor dem Target sind 2 mm starke Plexiglasstreifen angebracht, die dazu dienen, langsame & -Elektronen abzubremsen. Der Raum innerhalb dieses sogenannten " &-Fängers", der mit Folien vom Rest der Kammer getrennt ist, ist mit einem weniger empfindlichen Gasgemisch (5-10% He, 90-95% Ne) gefüllt, so daß die ca. 80 Elektronen, die pro Gedächtniszeit die Kammer durchqueren, keine zu starke Spur erzeugen, die alles überdecken würde.

Abb. 2.2 zeigt die Aufnahme eines typischen Streamerkammerereignisses.

.

2

2.1.2.2 Der Magnet

Um Ladungsvorzeichen und Impuls geladener Teilchen messen zu können, sitzt die Streamerkammer in einem Magneten, der in der Mitte der Kammer ein Feld von 18 kG in -z -Richtung erzeugt (d.h. in Blickrichtung der Kameras). Das Feld ist im größten Teil des empfindlichen Volumens auf 57 homogen.

Das Magnetfeld ist an 2067 Punkten mit einer Hallsonde in drei Komponenten vermessen worden, und zwar in einem Raum, der das empfindliche Volumen der Streamerkammer und die Gebiete, in denen sich der Strahl und das gestreute Elektron bewegen, umfaßt. Der Meßfehler der Hauptkomponente beträgt 1% oder weniger. Für die Auswertung auf der Rechenanlage wird die Feldstärke von einem Interpolations-Unterprogramm in Abhängigkeit vom Ort aus den Meßergebnissen berechnet (DAU 72, DAU 73).

2.1.3 Zähleranordnung

2.1.3.1 Triggerzähler

Die Aufgabe der im folgenden beschriebenen Anordnung ist es, Elektronen aus hadronischen Streuprozessen im gewünschten kinematischen Bereich nachzuweisen, um den Auslöseimpuls für die Streamerkammer zu liefern. Dabei müssen diese von folgenden anderen Teilchen unterschieden werden:

a) Elektronen oder Positronen aus elektromagnetischen Wechselwirkungenb) Hadronen, insbesondere --, aus Photo- oder Elektroproduktion im Target.

Die gestreuten Elektronen werden in zwei Zählerarmen nachgewiesen, die etwa symmetrisch rechtsund links von der sogenannten "elektromagnetischen Ebene" liegen, das ist die Ebene senkrecht zum Magnetfeld, in der der Strahl liegt (Abb. 2.1). Die Reaktionsprodukte aus elektromagnetischen Reaktionen, wie Bremsstrahlung oder Elektronenpaarbildung, entstehen unter sehr kleinen Winkeln zum Strahl und bleiben daher bei Ablenkung durch das Magnetfeld in dieser Ebene.

Jeder Zählerarm ist in drei hintereinanderliegende Ebenen senkrecht zur Strahlrichtung unterteilt. Die ersten beiden Ebenen sind zu beiden Seiten des Strahls in je drei Szintillationszähler unterteilt. Diese sind so angeordnet, daß eine Koinzidenz aus entsprechenden Zählern der Ebenen 1 und 2 grob die Trajektorie eines Teilchens definiert, das aus der Richtung des Targets kommt. Ebene 3 ist die Frontfläche einer Schauerzähleranordnung, die zur Trennung des Elektrons von anderen Teilchen, insbesondere Pionen, dient. Der Schauerzähler besteht aus 12 Bleiplatten von je 0.5 cm Dicke (~ 1 Strahlungslänge), die hintereinander angeordnet sind im Wechsel mit 12 Szintillatorschichten. Das Licht aller Szintillatoren wird über Lichtleiter auf die Kathode eines Photomultipliers geleitet. Nach der vierten Blei-Szintillatorlage, also im Schauermaximum, ist Platz gelassen für einen 8 cm dicken Plexiglasblock, der als Cerenkov-Zähler wirkt.Die Frontfläche des Schauerzählers ist bis auf einen 4 cm breiten Rand mit dem sogenannten Gesichtszähler bedeckt, einem Szintillationszähler, der dafür sorgt, daß keine Teilchen registriert werden, die den Schauerzähler am Rand treffen. Der genaue Aufbau und die Eichung des Schauerzählers ist bei Greubel (GRE 73) beschrieben. Die Pulshöhen von Schauer- und Plexiglaszähler sind für Elektronen proportional zur Energie mit einem relativen Fehler, der beim Schauerzähler $\angle E/E = 0.3/ \rightarrow \overline{E/GeV}$ und beim Plexiglaszähler ∧E/E = 0.5/ √E/GeV beträgt. Für die Bildung des Triggerimpulses wurde ein Signal von diesen Zählern dann akzeptiert, wenn die Pulshöhe über einer Schwelle lag, die um zwei Standardabweichungen niedriger gesetzt wurde als die Pulshöhe eines 2 GeV-Elektrons.

2.1.3.2 Elektronik und Kleinrechner

Die Signale aller Zähler werden von einer schnelle elektronischen Logikschaltung zu einem Auslöseimpuls für die Streamerkammer verknüpft. Dabei wird für jeden Zählerarm das Signal "Master links bzw. rechts" gebildet, das aus einer Koinzidenz von Gesichts-, Schauerund Plexiglaszähler mit der Oder-Summe aus den drei Koinzidenzsignalen der Ebenen 1 und 2 besteht. Ein Triggerimpuls wird erzeugt, wenn Master links oder rechts vorliegt, ohne daß gleichzeitig einer der Vetozähler (Abschn. 2.1.3.4) angesprochen hat. Außerdem werden von der Elektronik die Zählraten von Einzelzählern und Koinzidenzen gebildet.

Ein Kleinrechner vom Typ PDP 8 übernimmt Steuerung, Überwachung und Datenerfassung. Bei jedem Triggerimpuls werden die Information, welche der Triggerzähler angesprochen haben sowie die Pulshöhen von Schauerund Plexiglaszählern eingelesen und zusammen mit der Bildnummer, die auch auf dem Film erscheint, zur späteren Auswertung auf Magnetband gespeichert. Weiter werden nach je 1000 Triggern die Zählraten eingelesen sowie der Elektronenfluß im Strahl, der durch einen an das Quantameter angeschlossenen Integrator aufsummiert wird.

2.1.3.3 Proportionaldrahtkammern

In jedem Elektronenarm stehen zwischen den Ebenen 2 und 3 zwei Proportionaldrahtkammern, die eine mit 60 senkrechten, die andere mit 145 waagerechten Drähten von je 5 mm Abstand. Sie dienen zur Verbesserung der Impulsmeßgenauigkeit für das gestreute Elektron (siehe Abschn. 2.2.3). Aufbau, Arbeitsweise und Verwendung in den Analyseprogrammen sind bei Sander (SAN 74) beschrieben.

2.1.3.4 Vetozähler

Elektronen, die irgendwo in der Strahlführung aus der Sollbahn gestreut werden, können unter Umständen in den Zählerarmen ein am Target gestreutes Elektron vortäuschen. Um diese Teilchen zu markieren, sind an einigen Stellen Vetozähler angebracht. Vor dem Eintritt des Strahls in das Blumlein-Rohr steht ein Zähler mit einem Loch an der Stelle der Sollbahn. Kurz vor Eintritt in die Streamerkammer stehen je ein Zähler oberhalb und unterhalb des Strahls. Die Vetozähler unterdrücken ca. 55% der Triggerimpulse.

2.1.3.5 Zähler zur Strahlüberwachung

Hinter der Kammer in Richtung der Tangente an den Strahl im Target steht ein Schauerzähler, der die im Target gebildeten Bremsquanten registriert. Ein Szintillationszähler unterhalb des Strahlaustritts aus der Kammer registriert abgebremste Elektronen mit Energien zwischen 2.8 und 3.2 GeV. Die Koinzidenzzählrate dieser beiden Zähler gibt ein Maß für die Materiedicke, gemessen in Strahlungslängen, die der Strahl im Bereich des Targets durchquert. Sie wird benutzt, um den Strahl vor dem Lauf des Experiments auf die Mitte des Targets zu justieren und diese Lage während des Laufs zu überwachen.

2.2 Auswertung

• -

Die Filme sind zu 79% in Hamburg, zu 21% in Glasgow ausgewertet worden. Soweit es um technische Details geht, bezieht sich die folgende Darstellung auf die Arbeit in Hamburg; der grundsätzliche Ablauf ist in beiden Labors der gleiche.

Die Organisation der Auswertung wird durch das Programmsystem INDEX (BLO 71) unterstützt. Dabei werden zu jedem Ereignis Informationen über den Durchlauf durch jede Station der Auswertekette auf einer Datei gesammelt. Durch Zugriff zu dieser Datei ist es dann möglich, automatisch zu entscheiden, ob ein Ereignis eine bestimmte Station noch zu durchlaufen hat.

2.2.1 Mustern der Filme

Jede Streamerkammeraufnahme wird in zwei unabhängigen Durchgängen darauf untersucht, ob ein Elektron-Proton-Streuereignis darauf zu sehen ist (1. und 2. Scan). Kriterium dafür ist eine negative Spur, die aus dem Target kommt und die Streamerkammer oberhalb der durchgehenden Elektronen verläßt. Nur solche Spuren können die Triggerzähler getroffen haben. Wenn ein Ereignis gefunden wurde, werden Bildnummer, Spurzahl und Zahl der sichtbaren Zerfälle seltsamer Teilchen notiert. Dabei werden, wenn möglich, Bremselektronen weggelassen. Diese werden an folgenden Kriterien erkannt:

 a) Der Winkel in der Bildebene zwischen der Spur und dem Strahl muß O sein. Dies kann geprüft werden, wenn die Spur (mit dem Auge oder einer Schablone) nach hinten in den Targetbereich verlängert wird.

- b) Auch der räumliche Winkel muß O sein, d.h. das Elektron muß in der elektromagnetischen Ebene bleiben. Das kann auf zwei Weisen geprüft werden:
 - aa) Man sieht, wo die Spur die Kammer verläßt. An der Kammerwand ist die Mittelebene durch die Befestigung der Mittelelektrode kenntlich gemacht.
 - bb) Man kann die Bilder der Spur in zwei stereoskopischen Ansichten zur Deckung bringen.
- c) Bremselektronen entstehen im allgemeinen nicht gleichzeitig mit dem Ereignis. Altere Spuren kann man daran erkennen, daß sie schwächer sind.

In Zweifelsfällen werden diese Spuren zunächst mitgezählt. Bei den (seltener auftretenden) Positronen aus Paarerzeugung wird ebenso verfahren. Um den Elektronenfluß im Strahl bestimmen zu können, werden außerdem die Bildnummern vom ersten und letzten Bild einer Filmrolle und von unbrauchbaren Bildern notiert. Die Scandaten werden über Eingabepulte und einen Kleinrechner auf Magnetbänder geschrieben und vom INDEX-System weiterverarbeitet.

Wenn die beiden Scans nicht übereinstimmen, wird das Bild einem Vergleichsscan unterzogen, der von einem Physiker durchgeführt wird. Das war bei 10 - 20% der Ereignisse notwendig. Die häufigsten Diskrepanzen waren:

- a) Ein Ereignis wird von einem Scan ganz übersehen. Das ist bei ca. 1% der Ereignisse der Fall, so daß die Wahrscheinlichkeit, ein Ereignis in beiden Scans zu verlieren, vernachlässigbar klein ist.
- b) Es gibt Unterschiede in der Spurzahl. Dafür sind u.a. folgende Gründe von Bedeutung:
 - aa) Zweifel über ein Bremselektron oder Positron.
 - bb) Eine kurze Spur wird in der N\u00e4he des Targets durch einen Lichtblitz (Flare) oder die Spur eines langsamen Elektrons oder die Streukammer teilweise oder in einer Ansicht ganz verdeckt.
 - cc) Eine sekundäre Wechselwirkung im Bereich der Streukammer wird nicht als solche erkannt, sondern die Spuren werden zum Primärvertex gezählt.

Auch nach dem Vergleichsscan bleiben noch Zweifelsfälle, die erst nach der Messung geklärt werden können.

2.2.2 Messung

Die Bilder der Ereignisse werden von Hand auf Meßtischen der Firma Vanguard Instrument Corp. vermessen. Datenerfassung und verschiedene Steuerungsfunktionen werden dabei automatisch mit Hilfe eines Kleinrechners durchgeführt, der einen direkten Anschluß an das DESY-Rechenzentrum hat (SCH 70, HIL 72).

Es werden in jeder Ansicht fünf Bezugsmarken und etwa 10 Punkte pro Spur, gleichmäßig verteilt auf die ganze Länge, gemessen. Die Genauigkeit für die Messung von Spurpunkten beträgt ca. 7.3 µm auf dem Film.

Die Meßgenauigkeit wird unmittelbar nach der Messung kontrolliert, indem geprüft wird, ob die Punkte einer Spur in einer Ansicht innerhalb der geforderten Genauigkeit auf einem Kreis liegen. Es hat sich gezeigt, daß diese Prüfung nicht alle Fehler erfaßt. Häufig war keine räumliche Rekonstruktion möglich, obwohl das Prüfkriterium erfüllt war. Durch sorgfältiges Arbeiten der Meßoperateure kann dieser Fehler vermieden werden.

Weiter hat sich im Verlauf der Messungen zu diesem Experiment gezeigt, daß die Meßgenauigkeit einiger Tische durch Verschleiß abnahm. Diese wurden daraufhin umgebaut, wobei das Meßprinzip geändert wurde. Während vorher die x- und y-Koordinaten der Position der Filmbühne durch Digitisierung der Drehung je einer Spindel gemessen wurden, werden diese nun direkt mit Hilfe von optischen Strichgittern (Firma J. Heidenhain) gemessen.

Die Überwachung der Meßgüte erfolgte einerseits mit Hilfe der Ergebnisse der geometrischen Rekonstruktion (maßgeblich ist das THRESH-Residuum, s.u.), andererseits wurden von Zeit zu Zeit Filmkopien von geeichten Strichgittern ausgemessen. Dabei wurde eine Genauigkeit von 4-5 µm erreicht.

2.2.3 <u>Geometrische Rekonstruktion</u>

Die räumliche Rekonstruktion der Spuren anhand der gemessenen Punkte wird mit der sogenannten "massenabhängigen" Version des Programmes THRESH (CER 67) durchgeführt, die die Anderung des Krümmungsradius durch Anderung des Magnetfeldes entlang einer Spur berücksichtigt. Das Programm wurde so modifiziert, daß alle drei Komponenten des Magnetfeldes benutzt werden (SJY 73). Das Ergebnis der Rekonstruktion sind die auf den Anfangspunkt der Spur bezogenen Parameter 1/..., a = Radius, Neigungswinkel gegen die x-y-Ebene () und Azimut um die z-Achse ().

Zur Beurteilung der Meßgüte wird das Residuum berechnet:

Darin ist n die Gesamtzahl der Meßpunkte einer Spur und d_i der senkrechte Abstand des i-ten Meßpunktes auf dem Film von der in die Filmebene projizierten angepaßten Spur. Abb. 2.3 zeigt die Verteilung des Residuums für Triggerspuren und für positive und negative Hadronspuren.

Jede Spur wird aus der Kammer fortgesetzt, um zu prüfen, ob das Teilchen die Zählerarme erreicht haben kann. Wenn ja, werden die Durchstoßpunkte der Spur durch die vier Ebenen, in denen die Triggerzähler und die Proportionaldrahtkammern stehen, mit ihren Fehlern berechnet, und festgestellt, ob das Teilchen einen Triggerimpuls ausgelöst hat.

Der Vergleich der so ermittelten Position der Teilchenspur in der Drahtkammerebene mit der durch die angesprochenen Drähte gemessenen wird dazu benutzt, die Spurparameter genauer zu bestimmen. Das Verfahren ist bei Sander (SAN 74) beschrieben. Dadurch werden die Fehler der Parameter der Triggerspur etwa um die Hälfte verringert. Der Impulsfehler des gestreuten Elektrons beträgt danach $\Delta p = p^2/p_{MDM}$ mit $p_{MDM}= 250$ GeV/c, und der Fehler des Streuwinkels ist 1 mrad.

Schließlich werden die Spuren ins Target zurückverlängert, um den gemeinsamen Ursprungsort (Vertex) zu finden (EMA 70). Da die Spuren sich wegen der Meßfehler nicht exakt schneiden, wird derjenige Punkt gesucht, bei dem die Summe der Abstandsquadrate zu den Spuren minimal ist. Die Spurparameter und deren Fehlermatrix werden auf den vertexnächsten Punkt umgerechnet.

Für jedes negative Teilchen wird geprüft, ob es ein Bremselektron sein könnte. Wenn der Winkel zwischen der Spur und dem Strahl im Bereich des Targets innerhalb von drei Standardabweichungen mit O verträglich ist, wird dies angenommen. Das Ereignis wird dann ohne die betreffende Spur noch einmal berechnet und ausgegeben. Die endgültige Entscheidung, ob die Spur zum Ereignis gehört, wird von einem Physiker getroffen (s. Abschn. 2.2.5). Anschließend wird im Programm GEODEC (DIT 70) der Energieverlust berechnet, den die Teilchen im Target und der umgebenden Materie (Rohacell-Kasten und Plexiglasplatte) erleiden. Der Impuls wird entsprechend vergrößert und zu den Fehlern von Impuls und Winkeln werden die Beiträge von der Vielfachstreuung quadratisch addiert. Dabei werden für positive Spuren nacheinander die Massen von Proton und Pion eingesetzt, bei negativen nur die vom Pion. Für das gestreute Elektron ist der Effekt vernachlässigbar.

2.2.4 Kinematische Rekonstruktion

Die kinematische Rekonstruktion wird mit Hilfe des Programms GRIND (CER 67) durchgeführt. Die Ereignisse werden zunächst nach der Zahl der Spuren klassifiziert. Dann werden Massenhypothesen angenommen, bei denen den Spuren unter Berücksichtigung der Erhaltungssätze für Ladung, Baryonenzahl, Leptonenzahl und Seltsamkeit die Massen von Proton, Kaon, Pion und Elektron zugeordnet werden. Mit den Erhaltungssätzen für die drei Impulskomponenten und die Energie stehen nun vier Zwangsbedingungen zur Verfügung. Wenn alle Impulskomponenten aller beteiligten Teilchen gemessen sind, hat man damit ein vierfach überbestimmtes Gleichungssystem, mit dessen Hilfe die Hypothese getestet und die Spurparameter verbessert werden können. Der Grad der Überbestimmtheit (auch Zahl der Freiheitsgrade genannt) reduziert sich, wenn unbekannte Parameter auftreten, was in folgenden Fällen eintritt:

- a) Ein neutrales Teilchen war an der Reaktion beteiligt. Dieser Fall wird dadurch berücksichtigt, daß auch Massenhypothesen mit einem neutralen Pion oder einem Neutron im Endzustand gerechnet werden.
- b) Ein geladenes Teilchen bleibt im Target stecken oder wird von einem Lichtblitz, Untergrundspuren oder der Streukammer verdeckt, so daß es gar nicht oder nur in einer Ansicht sichtbar ist.
- c) Eine Spur ist zu kurz. In diesem Fall können gewöhnlich noch die Winkel, nicht aber die Krümmung gemessen werden.

Wenn es mehr als vier unbekannte Parameter gibt, kann das Ereignis nicht vollständig rekonstruiert werden. Daraus folgt, daß Ereignisse mit einem fehlenden geladenen Teilchen nur rekonstruiert werden können, wenn kein neutrales Teilchen dabei war. Bei Ereignissen mit zwei oder mehr neutralen Teilchen kann nur die Summe der Vierervektoren der neutralen Teilchen angegeben werden. Es werden folgende Massenhypothesen angenommen:

2	-	Spur:	ер 🕂	ep(π^0)
			ep →	en "
4	-	Spur:	ер •	ep -+ - (- 0)
			ep 🖓	en <u>+</u> +-+
			ер –	ерК ⁺ К ⁻
6	-	Spur:	ер	ep
			ep ·	en = + + + - = -
			ер →	ерК ⁺ К ⁺ _т -
8	-	Spur:	ер 🕂	ep ++++

Dazu gehören jeweils alle Vertauschungen verschiedener Teilchen mit gleicher Ladung.

Zur Prüfung einer Hypothese wird zunächst der "fehlende" Vierervektor $p_f = (E_f, p_f)$ als Differenz aus den Summen der Vierervektoren der einlaufenden und der sichtbaren auslaufenden Teilchen berechnet. Eine Hypothese wird verworfen, wenn die "fehlende Energie" E_f um mehr als drei Standardabweichungen kleiner als 0 ist, oder wenn das Quadrat der fehlenden Masse $m_f^2 = p_f^2$ nicht innerhalb von drei Standardabweichungen mit 0 oder dem Quadrat der Masse des ungesehenen Teilchens übereinstimmt. Die Hypothese wird auch verworfen, wenn die negative Spur, der die Elektronmasse zugeordnet wurde, nicht mindestens die erste Zählerebene erreichen kann.

Dann werden eine Anpassung nach kleinsten Quadraten und ein χ^2 -Test durchgeführt. χ^2 - ist gegeben durch

$$x^{2} = \sum_{i=1}^{N} \sum_{j=1}^{N} (m_{i}-f_{j})(m_{j}-f_{j}) G_{ij},$$

wobei m_i ein gemessener Paramter (1/p, p = Impuls, λ oder c einer Spur), f_i ein angepaßter Parameter und G_{ij} die inverse Fehlermatrix für m_i ist. Die f_i und eventuelle ungemessene Paramter u_k werden so bestimmt, daß χ^2 minimal wird unter der Nebenbedingung, daß die vier Energie- und Impulserhaltungsgleichungen erfüllt sind. Eine Hypothese wird nicht akzeptiert, wenn χ^2 größer als die Grenze des Konfidenzintervalls zur Wahrscheinlichkeit 10⁻⁷ ist. Bei vier Freiheitsgraden ist die Grenze bei $\chi^2 = 38$. Der Energie- und Impulserhaltungssatz kann nicht nur zur Prüfung von Hypothesen bei einzelnen Ereignissen, sondern auch zum Auffinden systematischer Fehler der Apparatur verwendet werden. Wir haben dazu 4-Spur-Ereignisse herangezogen, bei denen eine Anpassung mit vier Freiheitsgraden an die Hypothese ep $\rightarrow ep\pi^+\pi^-$ erfolgreich war.

Von folgenden Größen werden Häufigkeitsverteilungen gemacht:

- a) Fehlende Energie (Abb. 2.4). Wir finden, wie erwartet, ein Maximum bei 0 mit einer Gaußischen Breite von 150 MeV sowie einen Ausläufer zu positiven Energien, der durch Strahlungsereignisse (siehe Abschn. 3) verursacht wird.
- b) Quadrat der fehlenden Masse (Abb. 2.5). Es zeigt sich ein schmales Maximum (Varianz ≈ 0.004 GeV²), das leicht nach negativen Werten verschoben ist (≈ - 0.001 GeV²). Diese Verschiebung wird auch in Blasenkammerexperimenten beobachtet und läßt sich durch Argumente der Fehlerrechnung erklären (siehe z.B. DRE 71).
- c) χ^2 (Abb. 2.6). Im Bereich kleiner χ^2 zeigt diese Verteilung das erwartete Verhalten, während es einen Überschuß von Ereignissen mit großem χ^2 gibt. Die Hauptursache dafür ist Bremsstrahlung des ein- oder auslaufenden Elektrons (Abschn. 3.2, 4.3.1).
- d) Die sogenannten Pulls, die definiert sind durch

$$Pull_{i} = \frac{m_{i} - t_{i}}{\sqrt{\sigma^{2}(m_{i}) - \sigma^{2}(f_{i})}}$$

stellen ein Maß dar für die Abweichung der gemessen Größe m_i vom wahren Wert, gemessen in Standardabweichungen. Ihre Verteilung sollte einer normierten Gaußverteilung folgen. In Abb. 2.7 sind die Pulls von 1/p, λ und ϕ für den Strahl, das gestreute Elektron und für positive und negative Hadronen dargestellt. Folgende Parameter können damit überprüft werden:

- Die Fehlerrechnung des Geometrieprogramms. Es war erforderlich, alle Fehler um einen Faktor 1.8 zu erhöhen, um die richtige Breite der Pulls zu erhalten.
- Die Strahlparameter werden nicht der einzelnen Messung entnommen, da sie weit genauer aus dem Strahlaufbau und der Synchrotronenergie bekannt sind. Sie können mit der Pullverteilung überprüft werden.
- Die Lage der Proportionalkammern relativ zum Streamerkammer-Koordinatensystem läßt sich mit Hilfe der Pulls des gestreuten Elektrons am genauesten justieren.

Alle Pullverteilungen in Abb. 2.6 haben mit ausreichender Genauigkeit ein Maximum bei 0 und eine Gaußische Breite von 1. Die Pulls von 1/p und : haben durch Strahlungseffekte einseitige Ausläufer.

2.2.5 Ionisationsentscheidung und Auswahl der Messungen

Nach der Rekonstruktion werden die Bilder der Ereignisse mit den Rechenergebnissen verglichen. Dabei werden folgende Punkte beurteilt:

- Meßgüte: Ein Ereignis wird nachgemessen, wenn das THRESH-Residuum einer Spur größer als 10µ oder bei schlecht meßbaren Spuren größer als 15µ ist (diese willkürliche Grenze verursacht die Kante in den Verteilungen Abb. 2.3). Es wird geprüft, ob alle Ereignisspuren gemessen sind und alle gemessenen Spuren zum Ereignis gehören. Die meisten schlechten Messungen werden bereits vom Rechner nach der geometrischen Rekonstruktion erkannt. Über das INDEX-System wird die Nachmessung veranlaßt.
- Ionisationsstärke: Die Schwärzung einer Spur auf dem Film hängt von der Zahl der primären Ionenpaare ($\sim 1/z^2$) in der Streamerkammer und damit bei bekanntem Impuls von der Masse des Teilchens ab. Außerdem hängt sie vom Neigungswinkel und vom Ort in der Kammer ab (EMA 70): S $\frac{1}{z^2}$ $\frac{1}{z^2}$ K (λ , :)

Der Korrekturfaktor K wurde empirisch mit Hilfe von Ereignissen ermittelt, die aufgrund einer eindeutigen Hypothese mit vier Freiheitsgraden eine bekannte Massenzuordnung haben. Er berücksichtigt die zusätzliche Lichtabsorption durch die Mittelelektrode im hinteren Teil der Kammer, andere ortsabhängige Lichtabsorptionseffekte und mögliche Inhomogenitäten des elektrischen Feldes. Schwankungen der Schwärzung durch kurz- oder langzeitige Änderungen der Streamerkammerparameter werden dadurch ausgeglichen, daß man die relative Schwärzung im Vergleich zur Spur des minimal ionisierenden gestreuten Elektrons betrachtet.

Im allgemeinen kann bei positiven Spuren mit Impuls kleiner als 1 GeV/c und (2005) 0.8 rad zwischen Pion und Proton entschieden werden. Dadurch wird die Zahl der kinematisch möglichen Massenhypothesen wesentlich verringert. Bei Ereignissen mit einem fehlenden geladenen Teilchen kann das Kinematikprogramm für Hypothesen ohne neutrale Teilchen die Impulskoordinaten des fehlenden Teilchens berechnen. Wenn der berechnete Impuls so groß ist, daß das Teilchen nicht im Target alle kinetische Energie verloren haben kann (²√ 140 MeV für Protonen, ²√ 40 MeV für Pionen), und wenn er in einem gut sichtbaren Winkelbereich liegt, werden diese Hypothesen verworfen.

Die Ergebnisse der Entscheidungen werden auf Lochkarten übertragen und dem INDEX-System sowie dem Entscheidungsprogramm POLLUX (DRE 70) zugänglich gemacht. POLLUX überträgt vom GRIND-Ausgabeband die gut gemessenen Ereignisse, und von diesen nur die akzeptierten Hypothesen, auf das Enddatenband, das sogenannte DST (Data Summary Tape). Da es in weniger als 1 in 1000 Fällen vorkommt, daß zwei negative Teilchen auf ihrer Bahn einen Triggerimpuls erzeugt haben können, können bei der Hypothesenauswahl Ambiguitäten bei der Zuordnung des Elektronszu einer der negativen Spuren automatisch vermieden werden. Bei der Zuordnung der übrigen Teilchen können dagegen noch Ambiguitäten vorhanden sein.

2.2.5 <u>Ereignisauswahl</u>

Das DST enthält noch die Ereignisse, bei denen ein π⁻ die Triggerzähler getroffen hat. Diese werden mit Hilfe der Pulshöhe im Schauerund Plexiglaszähler entfernt. Dazu wird aus dem Impuls der Triggerspur und dem Auftreffort im Zähler die für ein Elektron erwartete Pulshöhe und deren Fehler berechnet. Die Ortsabhängigkeit der Pulshöhe ist in Testmessungen ermittelt worden (GRE 73). Zeitliche Schwankungen der Hochspannung o.ä. werden dadurch ausgeglichen, daß die Umrechnungsfaktoren von der Film- und Bildnummer abhängig gemacht werden(KRA 76).

Ein Ereignis wird nicht akzeptiert, wenn die Pulshöhe PH im Schauerzähler um mehr als drei Standardabweichungen ΔPH kleiner als der erwartete Wert PH_b ist. In Abb. 2.8a ist die Verteilung der normierten Pulshöhe (PH - PH_b) / ΔPH gegen die Energie aufgetragen. In Abb. 2.8b ist die Pulshöhe im Plexiglaszähler, dividiert durch ihren Erwartungswert, gegen die Energie aufgetragen. Ein Ereignis wird nicht akzeptiert, wenn die Pulshöhe kleiner als die in Abb. 2.8b eingezeichnete energieabhängige Grenze ist. Die Anhäufung unterhalb dieser Grenze ist auf Pion-Trigger zurückzuführen.

Die Hauptquelle für ----Trigger ist die Photoproduktion von 3-Spur-Ereignissen. Da die ----Ausbeute mit geringer werdender Energie rasch ansteigt und gleichzeitig die --e-Trennung schlechter wird, werden 3-Spur-Ereignisse nur akzeptiert, wenn die Energie des Triggerelektrons größer als 3.8 GeV ist. Auf die durch alle diese Schnitte entstehenden Verluste wird mit Hilfe des Programmes STYX korrigiert (Kapitel 3 und Abschnitt 4.3.1).

.

3

Tabelle 2.1 gibt eine Übersicht über die Zahl der in den fünf Läufen des Experimentes ausgewerteten Bilder und Ereignisse. Weiter ist dort u.a. der gesamte Elektronenfluß im Strahl für die ausgewerteten Filmbereiche angegeben. Da nicht auf allen Filmen 2-Spur-Ereignisse gemessen wurden, ist auch der Anteil am Fluß für 2-Spur-Ereignisse angegeben. Außerdem sind die Faktoren angegeben, mit denen spurzahlabhängig auf die unmeßbaren Ereignisse korrigiert werden muß.

3. STRAHLUNGSKORREKTUREN

3.1 <u>Definition der kinematischen Variablen</u>

Der führende Term im Elektroproduktionswirkungsquerschnitt ist der Ein-Photon-Austausch, der durch folgenden Graphen veranschaulicht wird:

Die Vierervektoren im Laborsystem sind: $e = (E, \vec{e})$ einlaufendes Elektron $e' = (E', \vec{e}')$ auslaufendes Elektron $q = \gamma_v = e - e' = (v, \vec{q})$ virtuelles Photon $p = (m_p, 0)$ Proton

Das Massenquadrat des virtuellen Photons ist negativ, wir definieren die positive Größe

$$Q^{2} = -q^{2} = 2 \left(-m_{e}^{2} + EE' - |\vec{p}_{e}||\vec{p}_{e}'| \cos_{\Theta}\right) \approx 4 EE' \sin^{2} \alpha/2$$

$$(Q^{2} >> m_{e}^{2}) \qquad (2)$$

wobei ^O der Streuwinkel des Elektrons ist:

 $\cos \circ = \frac{\overrightarrow{e} \cdot \overrightarrow{e}}{|\overrightarrow{e}|}$

Da der ee' $_{\rm Y}$ $_{\rm V}\text{-Vertex}$ aus der Quantenelektrodynamik bekannt ist, läßt sich die Reaktion

$$ep \rightarrow e'h$$
 (3)

zurückführen auf den Prozeß

$$\gamma_{\rm V} p \rightarrow h$$
, (4)

wobei der "Strahl" virtueller Photonen die (imaginäre) Masse $\sqrt{-Q^2}$ und die Energie \vee hat. Die Gesamtschwerpunktsenergie W ergibt sich aus

$$W^{2} = 2 m_{p}^{\vee} -Q^{2} + m_{p}^{2}$$
(5)

Der Strahl enthält - anders als bei reellen Photonen - außer transversalen auch longitudinal polarisierte Photonen. Das Verhältnis der Flüsse von longitudinalen zu transversalen Photonen ist gegeben durch

$$c_{e} = \left(1 + \frac{2 Q^{2} (Q^{2} + \sqrt{2})}{4Q^{2} EE' - Q^{4} + 4m_{e}^{2} (Q^{2} + \sqrt{2})} \right)^{-1} = \left(1 + 2 \frac{Q^{2} + \sqrt{2}}{4EE' - Q^{2}} \right)^{-1} (Q^{2} > m_{e}^{2})$$
(6)

. .

Der transversale Anteil ist polarisiert mit dem Polarisationsgrad ϵ . Der Polarisationsvektor liegt in der durch e und e' aufgespannten Ebene.

hängt bei fester Einfallsenergie E nur von Q^2 und W ab. In unserem kinematischen Bereich liegt es zwischen 0.8 und 1. Abb. 3.1 zeigt die Verteilung von ε als Funktion von W.

Der Wirkungsquerschnitt für Reaktion 4 errechnet sich mit folgender Relation aus dem differentiellen Querschnitt der Reaktion 3 (HAN 64):

$$\frac{d^{2}\sigma}{d\omega dE'} = \frac{d^{2}\sigma}{dQ^{2} dW} \cdot \frac{EE'}{\tau} \cdot \frac{m_{p}}{W} = \Gamma_{t}(q(Q^{2}, W) + \varepsilon\sigma_{t}(Q^{2}, W)) \quad (7)$$

Darin ist t = Wirkungsquerschnitt für transversale Photonen1 = Wirkungsquerschnitt für longitudinale Photonen $<math display="block">t = \frac{\alpha}{2 p^2} \frac{E'}{E} \frac{K}{Q^2} \frac{1}{1 - c}$ Fluß transversaler Photonen 1 = t Fluß longitudinaler Photonen $K = \frac{W^2 - m_p^2}{2m_p}$ Effektive Photonenergie

t (0, W) ist der Photoproduktionswirkungsquerschnitt. σ_{l} tritt in der Elektroproduktion zusätzlich auf. Da in diesem Experiment bei gegebenem Q² und W ϵ nicht variiert wird, messen wir die Summe

$$\sigma (Q^2, W) := \sigma_+ (Q^2, W) + \varepsilon \sigma_1 (Q^2, W) . \tag{8}$$

3.2 Notwendigkeit von Korrekturen

Zusätzlich zum Ein-Photon-Austausch (Graph 3.1.1) tragen Terme höherer Ordnung zur Elektron-Proton-Streuung bei. Zwei (eer)-Vertices hat die "interne Bremsstrahlung"

Die kinematische Analyse dieser Beiträge nach den oben angegebenen Formeln führt dazu, daß die gemessenen Parameter des virtuellen Photons sich von den wahren unterscheiden:

$$v_w = E - k - E' = v_g - k$$
 (3)

$$Q_W^2 = 4(E-k) E' \sin^2 \frac{C}{2} = \frac{E-k}{E} Q_g^2$$
 $Q_W^2 = 4E(E'+k) \sin^2 \frac{C}{2} = \frac{E'+k}{E'} Q_g^2$ (4)

$$W_{w}^{2} = 2m_{p}(v_{g}-k) - \frac{E-k}{E}Q_{g}^{2} + m_{p}^{2} \qquad W_{w}^{2} = 2m_{p}(-g-k) - \frac{E'+k}{E'}Q_{g}^{2} + m_{p}^{2}$$
$$= W_{g}^{2} - 2m_{p}k + \frac{k}{E}Q_{g}^{2} \qquad = W_{g}^{2} - 2m_{p}k - \frac{k}{E'}Q_{g}^{2} \qquad (5)$$

Dabei wurde angenommen, daß das Bremsquant in Richtung des Elektrons emittiert wird ("peaking approximation").

Das Ereignis erleidet also eine Verschiebung im (Q^2, W) -Diagramm, die im folgenden Bild veranschaulicht wird:

Graphen mit drei (ee -)-Vertices sind neben der doppelten Bremsstrahlung die beiden folgenden:

Diese beiden Effekte ändern nicht die Parameter des virtuellen Photons, sondern nur den Fluß.

Elektromagnetische Graphen höherer Ordnung, werden vernachlässigt, ebenso der Zwei-Photon-Austausch:

Dieser Beitrag kann noch nicht berechnet werden. Experimentell kann er durch folgende Effekte untersucht werden:

- a) Abweichungen von der linearen Abhängigkeit des Wirkungsquerschnitts von ε . In der elastischen ep-Streuung (Rosenbluthgerade) wurde keine Abweichung gefunden.
- b) Asymmetrie am polarisierten Target.

c) Unterschiede zwischen $e^- p$ - und $e^+ p$ - Streuung.

Bei Messungen zu Punkt b und c sind keine Anzeichen für Beiträge vom Zwei-Photon-Austausch gefunden worden (TAY 75).

Alle bisher genannten Effekte sind unvermeidlich und unabhängig vom Aufbau des Experimentes vorhanden. Dazu kommen noch die folgenden experimentabhängigen Effekte:

- Das Elektron durchfliegt vor und nach der Streuung Materie und kann darin Bremsstrahlung machen. Diese "externe Bremsstrahlung" hat die gleichen Auswirkungen wie die interne.
- Meßfehler (Abschn. 2.2.2 + 3)
- Verluste geladener Spuren (Abschn. 2.2.4 + 5, 4.3.1).

Die Vertex- und Propagatorkorrektur wird im folgenden Abschnitt beschrieben. Alle anderen Korrekturen werden mit Hilfe des Simulationsprogrammes STYX durchgeführt, das in Abschnitt 3.4 ff. behandelt wird.

3.3 Vertex- und Propagatorkorrektur

Die beiden Graphen 3.2.6 und 7 bewirken, daß der Fluß virtueller Photonen um einen Anteil ϕ_V höher ist als nach Graph 3.1.1. ϕ_V ist gegeben durch (MOT 69, Gl. II. 4 und 5)

$$\delta_{\rm V} = \frac{2\alpha}{\pi} - (\frac{13}{12} \ln - \frac{Q^2}{m_{\rm P}^2} - \frac{14}{9})$$

Im Q²-Bereich von 0.3 bis 1.5 GeV² schwankt $_{\rm V}$ zwischen 6.3% und 7.1.%. Alle Wirkungsquerschnitte werden um diesen Anteil reduziert, um Beiträge der Graphen 3.2.6 und 7 zu beseitigen.

3.4 Simulationsprogramm STYX

Das Programm STYX (NAG 74) hat die Aufgabe, die Erzeugung von Ereignissen in der Streamerkammer und deren Messung zu simulieren. Diese Kunstereignisse durchlaufen dieselben Programme der Auswertekette wie gewöhnliche Ereignisse. Anschließend kann untersucht werden, wie sich aufgrund der in 3.2 beschriebenen Effekte kinematische Größen verschieben bzw. wieviele Ereignisse verlorengehen.

Es wird zunächst der Ablauf des Programms anhand des Flußdiagramms (Abb. 3.1) erläutert.

Am Beginn des Programms werden Konstanten eingelesen und berechnet, die die Geometrie der Kammer festlegen sowie die Materialeigenschaften bei Durchgang von Teilchen.Weiter werden die Art der zu erzeugenden Reaktion eingelesen und die Bereiche kinematischer Variablen. Dann beginnt eine Schleife, die pro Ereignis einmal durchlaufen wird.

Zunächst wird die Vertexposition bestimmt (nach einer Gleichverteilung entlang des Strahls) und der Strahl durch das Target bis zu diesem Punkt verfolgt, wobei Bremsstrahlung (extern und intern) und Coulombstreuung berücksichtigt werden. Dann werden Q^2 und W bestimmt. Dazu wird als Verteilungsfunktion der Wirkungsquerschnitt σ (Q^2 , W) der betreffenden Reaktion benötigt. Da diesererst bestimmt werden soll, muß dafür ein Modell gemacht werden, in das vorläufige Ergebnisse dieses Experiments eingehen sowie Photoproduktionsdaten und Annahmen über das Q^2 -Verhalten.

Zur Festlegung der Lage des Elektrons fehlt nun noch der Azimutwinkel um die Strahlrichtung. Da Strahl und Target unpolarisiert sind, wird für ¢ eine Gleichverteilung angenommen. Der ¢-Bereich wird auf den Halbkreis oberhalb des Strahls eingeschränkt, da Elektronen, die nach unten gestreut werden, die Zähler nicht treffen können.

Nun wird die Bahn des Elektrons zweimal vom Vertex durch das Magnetfeld in die Zählerarme verfolgt. Beim ersten Mal werden ideale Bedingungen angenommen, d.h. keine interne Bremsstrahlung und keine Wechselwirkung mit Materie. Beim zweiten Mal werden interne Bremsstrahlung und Coulomb-Streuung und Bremsstrahlung beim Durchqueren der Streukammer berücksichtigt. In beiden Fällen wird festgestellt, ob das Elektron auf dieser Flugbahn eine MASTER-Koinzidenz auslösen würde.

Wenn das in beiden Fällen nicht zutrifft, wird das Ereignis verworfen. Es handelt sich hier um den Verlust eines Ereignisses, der nur durch die begrenzte Akzeptanz verursacht wird. Dieser Effekt wird durch das in Abschn. 4.1 beschriebene Verfahren berücksichtigt und brauchthier nicht betrachtet zu werden.

Wenn das Elektron dagegen nur beim zweiten Mal die Zähler verfehlt, ist das Ereignis als Verlust zu zählen. Für die spätere Auswertung wird ein 'FAKE'-Satz auf die Ausgabedatei geschrieben, der Angaben über die kinematischen Variablen bei der Erzeugung enthält.

Im umgekehrten Fall, der wesentlich seltener eintritt (ca. 1% der Fälle gegenüber ca. 10%), ist das Ereignis als Gewinn zu zählen. Dies wird für die spätere Ausgabe im 'FAKE'-Satz vermerkt.

Wenn das Elektron beim zweiten Mal die Zähler trifft, wird mit der Ereignisproduktion fortgefahren.

Dazu werden zunächst die Vierervektoren der Hadronen erzeugt. Hier müssen wiederum Annahmen über den (differentiellen) Wirkungsquerschnitt des Prozesses gemacht werden. Die Spuren der Hadronen werden dann durch die Materie der Streukammer verfolgt, wobei Energieverlust und Winkeländerung durch Coulombstreuung berücksichtigt werden. Anschließend werden die Bahnen aller auslaufenden Spuren im empfindlichen Volumen der Streamerkammer berechnet. Für jede Kamera werden auf dieser Bahn Meßpunkte gebildet und auf den Film projiziert. Dort werden die Punkte mit einer Gaußverteilung der Breite 7.3 μ in x-und y-Richtung verschmiert.

Ebenso werden die Bezugsmarken auf die Filme projiziert und mit einem Meßfehler von 6 μ versehen.

Schließlich werden zwei Sätze auf die Ausgabedatei geschrieben:

- Ein 'FAKE'-Satz, der die Parameter jedes Teilches (einschließlich eventueller Bremsquanten) am Entstehungsort enthält. Die folgenden Auswerteprogramme kopieren diesen Datensatz auf ihre jeweilige Ausgabe, so daß er am Ende zum Vergleich mit dem Auswerteergebnis zur Verfügung steht.
- Ein 'GEOM'-Satz, der die Meßpunkte auf dem Film enthält und als Eingabe für THRESH dient.

3.5 Bremsstrahlung

Г

a) externe Bremsstrahlung

Elektronen, die Materie durchqueren, strahlen γ -Quanten ab. Die Zahl d²N der γ -Quanten pro Energieintervall dk und Wegstück dt (gemessen in Strahlungslängen) ist gegeben durch

$$\frac{d^2 N}{dk dt} = \frac{b}{k} \quad \notin \quad (\frac{k}{E}) \quad , \tag{1}$$

wobei näherungsweise gilt b = 4/3, $f(x) = 1 - x + 3/4 - x^2$ (MOT 69, GAS 66). In STYX wird dieser Vorgang mit Hilfe des Unterprogramms RADI (SJY 73) simuliert. Da der Ausdruck (1) infrarot-divergent ist, muß eine Abschneideenergie Δ definiert werden, die klein gegen die Meßgenauigkeit sein muß. Wir benutzen $\Delta = 0.0025$ E. Die Wahrscheinlichkeit, daß beim Durchqueren von Materie der Dicke t (es ist immer t << 1) ein γ -Quant mit größerer Energie abgestrahlt wird, ist

$$W = \int_{\Delta}^{E} t \frac{d^2 N}{dk dt} dk = t \cdot \left(\frac{4}{3} \left(\ln(\frac{E}{\Delta}) + \frac{\Delta}{E}\right) - \frac{5}{6}\right) = t \cdot N \qquad (2)$$

Um festzustellen, ob das simulierte Elektron strahlen soll, wird die Wahrscheinlichkeit mit einer zwischen 0 und 1 gleichverteilten Zufallszahl z verglichen. Ist W < z, strahlt das Elektron nicht, anderenfalls wird mit einer neuen Zufallszahl die abgestrahlte Energie k aus der Wahrscheinlichkeitsdichte

$$\frac{dW}{dk} = \frac{1}{N} \frac{b}{k} \approx \left(\frac{k}{E}\right)$$
(3)

ermittelt. Die dazu notwendige Transformation der Gleichverteilung von z in die Verteilung (3) von k wird mit Hilfe einer numerischen Näherung durchgeführt.

Es wird angenommen, daß das Y-Quant in Richtung des Elektrons abgestrahlt wird (peaking approximation).

b) interne Bremsstrahlung

Nach Mo und Tsai (MOT 69) läßt sich die interne Bremsstrahlung wie externe behandeln, mit je einem Strahler der Länge

$$t_{int} = \frac{1}{b} - \frac{\alpha}{\pi} (\ln - \frac{Q^2}{m_e^2} - 1)$$

vor und hinter der Streuung des Elektrons. Für Q² zwischen 0.3 und 1.5 GeV² liegt t_{int} zwischen 2.26% und 2.54%. Da das gesamte Target 1% einer Strahlungslänge lang ist (Abschn. 2.1.1), ist die interne Bremsstrahlung ca. 5 mal so häufig wie die externe.

Bei der internen Bremsstrahlung vor der Wechselwirkung ergibt sich in STYX die Schwierigkeit, daß Q² vorher nicht bekannt ist, da die Energie des einfallenden Elektrons bei der Wechselwirkung noch nicht bekannt ist. Daher wird an dieser Stelle t_{int} beim mittleren Q² benutzt. Das verursacht keinen großen Fehler, da t_{int} nur schwach von Q² abhängt.

3.6 Coulombstreuung

Beim Durchgang durch Materie streut ein geladenes Teilchen im Coulombfeld der Kerne und verliert dabei Energie und ändert seinen Winkel. Der Energieverlust wird mit Hilfe der Impuls-Reichweite-Beziehung bestimmt. Dazu wurde an die Impuls-Reichweite-Tabellen (TRO 66) von Wasserstoff und Plexiglas Polynome in $\ln \frac{p}{m}$ und $\ln \frac{R}{m}$ angepaßt (ROY 66, EMA 70, DIT 73). Für Rohacell wird die Plexiglastabelle mit entsprechend geänderter Dichte benutzt.

Der Streuwinkel wird nach einer Gaußverteilung gewürfelt, wobei die Breite gegeben ist durch

$$\frac{1}{p} = \left(\frac{21 \text{ MeV/c}}{p + \hat{c}}\right) \sqrt{\frac{L}{Lrad}}$$

Darin ist L die Weglänge des Teilchens und L_{rad} die Strahlungslänge. Diese Formel stellt eine Näherung dar, die für L^{---- L}rad nicht gut erfüllt ist. Der zugehörige Azimut wird gleichverteilt erzeugt.

3.7 Simulation der Reaktion ep $\rightarrow e \pi^- h^{++}$

Das im folgende beschriebene Modell stellt eine grobe Näherung an den differentiellen Wirkungsquerschnitt der Reaktion $ep \neq e_{T} \wedge^{++} dar$. Die erreichte Genauigkeit ist für die Bestimmung der Strahlungskorrektur ausreichend.

Die Q²-Abhängigkeit wird durch den <u>P</u>-Propagator beschrieben:

$$\sigma(Q^2, W) = \sigma(0, W) \cdot \left(\frac{m^2}{Q^2 + m^2 \rho}\right)^2$$
 (1)

Der Photoproduktionswirkungsquerschnitt wird wie folgt parametrisiert:

$$\sigma(0, W) = 45 \ \mu b \ \cdot \ (\frac{1.6 \ GeV}{W})^4 \qquad W < 1.5 \ GeV \qquad (2)$$

$$\sigma(0, W) = 75 \ \mu b \ \cdot \ (\frac{W - W_s}{0.04 \ GeV + W - W_s}) \qquad W > 1.5 \ GeV \qquad (2)$$

$$(W_s = m_p + 2m_s)$$

Der Hadronendzustand wird durch den folgenden Satz von unabhängigen Variablen vollständig beschrieben:

Der differentielle Wirkungsquerschnitt schreibt sich dann:

$$\frac{d^{5}}{d; d \cos j d \approx j d t dm_{p \pi^{+}}} \propto q_{p\pi^{+}} M^{2}$$
(3)

 q_{p}^{+} ist der Impulsbetrag von p und π^{+} in deren Schwerpunktsystem und ist proportional zum Lorentz-invarianten Phasenraumelement (NYB 69).

Das Matrixelement schreiben wir

$$M_{\perp}^{\perp 2} = BW_{\Delta} \quad (m_{p \pi^{+}}) \cdot f(t)$$
 (4)

Wir nehmen also isotropen Zerfall an und Gleichverteilung in ϕ . Die Massenabhängigkeit BW_A (m_{pπ⁺}) ist eine relativistische Breit-Wigner-Funktion mit massenabhängiger Breite und wird im Anhang A beschrieben. Für die t-Abhängigkeit wird gesetzt (WOL 74):

$$f(t) = (0.13 \text{ GeV}^2 - t) e^{At} \text{ mit } A = 8 \text{ GeV}^{-2}$$
 (5)

Wenn die fünf Variablen entsprechend der Verteilung 3 ausgewürfelt sind, können die Vierervektoren der auslaufenden Teilchen rekonstruiert werden.

3.8 Simulation der Reaktion ep \rightarrow ep ρ 0

Der Wirkungsquerschnitt $\sigma(Q^2, W)$ der Reaktion $\gamma_V p \rightarrow p_{\rho} \circ$ wird durch den Photoproduktionswirkungsquerschnitt σ (0, W) beschrieben, multipliziert mit einer Q²-Abhängigkeit, die aus dem Vektordominanzmodell (FRA 69) folgt:

$$(Q^{2},W) = \frac{\left(\frac{p_{\gamma}^{*}(0)}{p_{\gamma}^{*}(Q^{2})}\right)}{p_{\gamma}^{*}(Q^{2})} \left(\frac{m_{\rho}^{2}}{m_{\rho}^{2}+Q^{2}}\right)^{2} (1 + \varepsilon \xi^{2} - \frac{Q^{2}}{m_{\rho}^{2}}) e^{-6(t_{\min}(Q^{2})-t_{\min}(0))} \sigma(0,W)$$

Darin ist $p^*(0)$ bzw. $p^*_{\gamma}(Q^2)$ der Impuls im Schwerpunktsystem für ein reelles bzw. virtuelles Photon. Für ε^2 , das die Größe des longitudinalen Wirkungsquerschnitts mißt, wird 0.5 gesetzt (J00 76).

Zur Beschreibung des Hadronendzustandes wird der folgende Satz von Variablen benutzt:

m <u>.</u> +	Effektive Masse von π^+ und π^-
t _p	Quadrat des Viererimpulsübertrages vom ein- auf das
F	auslaufende Proton
- ⁶H, Φ_H Richtung des Zerfalls-π⁺ im Helizitätssystem, das ist ein Θ -Ruhesystem, dessen z-Achse in Richtung der σ-Flugrichtung im CMS zeigt und wo die y-Achse senkrecht auf z und dem virtuellen Photon steht.
- $\Psi = \phi_{\text{H}} \Phi$ ist der Azimut des ρ um die γ -Achse, d.h. die Drehung der p - ϵ - Ebene gegen die e-e'-Ebene. Bei Vorwärtsstreuung ist ϵ die Drehung der $\pi^+ - \pi^-$ - Ebene gegen die e-e'-Ebene.

Die Abhängigkeit des Wirkungsquerschnitts von diesen Variablen ist

$$\frac{d^{5}_{i\tau}}{dm_{r}+r_{r}-dt_{p}^{2}ds_{H}^{2}} + q_{\pi}+r_{r}-|M|^{2}$$

mit $M_{c}^{2} = BW_{c}^{2}(m_{r}+r_{r}-r_{r})e^{At}W(\cos \alpha + \phi + \phi)$

Die Breit-Wigner-Funktion BW $_{\rm o}$, die die Resonanzform des $_{\rm o}$ $_{\rm be-}$ schreibt, ist in Anhang A gegeben.

Die Winkelverteilung wird beschrieben durch

W (cos
$$\mathbb{S}_{H}$$
, Ψ) = $\frac{3}{4\pi (1 + \epsilon R)}$ (sin² \mathbb{H} (1+ $\epsilon \cos 2 \oplus \mathbb{H}$) + 2 R cos²)
(R = $\frac{\mathbb{S}_{1}^{-}(\mathbb{H})}{\mathbb{S}_{+}(\mathbb{H})}$)

Diese Verteilung ergibt sich unter der Annahme der s-Kanal-Helizitätserhaltung (ECK 72, RAB 74).

3.9 STYX-Auswertekette

Die von STYX produzierten Ereignisse werden von den gewöhnlichen Auswerteprogrammen weiterverarbeitet. Dabei sind an einigen Stellen weitere Simulationsschritte nötig.

Nach der geometrischen Rekonstruktion prüft ein Programm, ob ein Ereignis nachzumessen ist. Dies ist der Fall, wenn die Rekonstruktion einer Spur nicht gelungen ist oder wenn das Residuum größer als eine ionisationsabhängige Grenze zwische 10 und 15 μ ist. Für solche Ereignisse wird die Messung der Spuren von STYX noch einmal simuliert. Dieses Verfahren wird zweimal durchgeführt.

Nach der kinematischen Rekonstruktion wird die Ionisationsentscheidung und die endgültige Auswahl der Ereignisse simuliert.

3.10 Berechnung des Korrekturfaktors

Mit dem Korrekturfaktor wird der experimentell gefundene Wirkungsquerschnitt multipliziert, um auf die in Abschnitt 3.2 genannten Effekte zu korrigieren. Er ist im wesentlichen das Verhältnis der Zahl n_1 der in einem Intervall von Q², W (und von eventuellen Hadronvariablen h wie Impulsübertrag, Zerfallswinkel) erzeugten Ereignisse zu der Zahl n_2 der in diesem Intervall nach der Auswertung gefundenen Ereignisse oder Hypothesen. Hierzu werden die künstlichen Ereignisse den gleichen Auswahlkriterien unterzogen wie die experimentellen.

Genauer müssen noch folgende Effekte berücksichtigt werden:

- a) Da der korrigierte Wirkungsquerschnitt sich auf den Sollwert der Einfallsenergie E beziehen soll und der Verlauf des Wirkungsquerschnitts von E abhängt, dürfen in n₁ keine Ereignisse mitgezählt werden, bei denen das einfallende Elektron gestrahlt hat. Dafür werden die Korrekturfaktoren für alle Q², W, h-Intervalle mit dem davon unabhängigen Verhältnis der Zahl aller erzeugten Ereignisse zur Zahl der erzeugten Ereignisse ohne Strahlung des einfallenden Elektrons multipliziert.
- b) Der Verlust von Ereignissen dadurch, daß auch die letzte Nachmessung gescheitert ist, wird im Experiment spurzahlabhängig anhand der Musterungsergebnisse korrigiert. Dieser Faktor wird aus dem STYX-Korrekturfaktor pauschal herausdividiert, so daß eine eventuelle Abhängigkeit dieser Korrektur von den kinematischen Variablen erhalten bleibt.
- c) Die Wahrscheinlichkeit, ein Ereignis dadurch zu verlieren, daß das gestreute Elektron strahlt und die Triggerzähler nicht mehr trifft, ist nur von Q² und W, nicht von h abhängig. Um die statistische Genauigkeit zu erhöhen, wird dieser Faktor daher auch unabhängig von h berechnet.

Der Wert des Korrekturfaktors schwankt etwa zwischen 1.1 und 1.3 .

4. TOTALER UND KANALWIRKUNGSQUERSCHNITT

4.1 Akzeptanz

Als Akzeptanz bezeichnen wir die Wahrscheinlichkeit, daß ein gestreutes Elektron mit gegebenem Q² und \lor die Triggerzähler trifft. Da Strahl und Target nicht polarisiert sind, ist die Akzeptanz gegeben durch den Bereich des Azimutwinkels ¢, innerhalb dessen die Zähler getroffen werden. Ein von S.J. Yellin geschriebenes Programm (SJY 73) berechnet für ein Netz von Q² – \lor -Punkten iterativ die Grenzen der \Leftrightarrow -Bereiche der einzelnen Triggerzähler, wobei jeweils die Bahnen gestreuter Elektronen vom Target in die Zählerebenen durch das gemessene Magnetfeld integriert werden. Weitere Programme berechnen durch Interpolation in Q² und \lor das Gewicht jedes Ereignisses, mit dem es für die Berechnung des Wirkungsquerschnitts gezählt werden muß und das gleich dem Kehrwert der Akzeptanz ist. Außerdem wird an dieser Stelle die Vertex- und Propagatorkorrektur angebracht.

Abb. 4.1 zeigt die Akzeptanz für Lauf 5 dieses Experiments als Funktion von Q^2 und W.

4.2 <u>Totaler Wirkungsquerschnitt</u>

Der totale Elektroproduktionswirkungsquerschnitt $\circ(Q^2, W)$ (Gl. 3.1.8) wurde mit Einarmexperimenten wesentlich präziser bestimmt als es mit diesem Experiment möglich ist. Wir benutzen daher Einarmmessungen (STE 75) zur Normierung. Tabelle 4.1 zeigt das Ergebnis einer Polynomanpassung mit Berücksichtigung von Resonanzen an die Daten (SCA 75). In Tabelle4.2 sind die Faktoren aufgeführt, mit denen die von uns gemessenen Wirkungsquerschnitte multipliziert werden müssen, um auf die Einarm-Werte zu kommen.

Die Korrektur ist von Q² und W abhängig und beträgt bis zu 22%. Sie ist darauf zurückzuführen, daß in diesem Experiment die Akzeptanz nur relativ ungenau bekannt ist. Dieser Effekt hat außer auf die Größe der absoluten Wirkungsquerschnitte keine weiteren Auswirkungen. Es gibt 7889 gute Ereignisse mit einer akzeptierten Hypothese für die Reaktion

$$ep \rightarrow ep -+--$$
(1)

Um systematische Fehler zu vermeiden, werden nur die 5524 Ereignisse aus Lauf 5 für die Bestimmung des Wirkungsquerschnitts herangezogen.

4.3.1 Fehlerguellen und Korrekturen

Es sind zwei Arten von Fehlern möglich:

- 1. Ein Ereignis, das tatsächlich aus der Reaktion ep \rightarrow ep $\tau^+\tau^$ stammt, geht verloren.
- 2. Ein Ereignis aus einer anderen Reaktion wird fehlinterpretiert.

Die χ^2 -Grenze bei der kinematischen Rekonstruktion (Abschn.2.2.4, Abb. 2.6) ist so groß gewählt, daß Fehler 1. Art aufgrund von Meßfehlern praktisch auszuschließen sind. Die Wahrscheinlichkeit dafür ist 10^{-7} bei Gaußisch verteilten Fehlern. Tatsächlich hat die Fehlerverteilung stärkere Ausläufer, da zum Beispiel die Vielfachstreuung keiner Gaußverteilung folgt. Auch sekundäre Wechselwirkungen tragen dazu bei. Den Hauptbeitrag für große χ^2 liefert jedoch die Bremsstrahlung, die die Kinematik verfälscht.

Die Hauptbeiträge zu Fehlern 2. Art liefern Ereignisse der Reaktion $ep \rightarrow ep -^{+}-^{-}-^{0}$. Eine Simulation dieses Kanals mit STYX hat gezeigt (BEN 76), daß ca. 5% dieser Ereignisse eine Anpassung an den Kanal $ep \rightarrow ep r^{+}-^{-}$ geben. Die χ^2 -Verteilung dieser Ereignisse ist flach.

Bei 3-Spur-Ereignissen, bei denen eine geladene Spur fehlt, kann die Wahrscheinlichkeit für Fehler 2. Art größer sein, da die Zahl der Freiheitsgrade von vier auf eins reduziert ist. In Abb. 4.2 ist die Laborstreuwinkelverteilung von p, \ddagger und π^- einmal für gemessene Spuren, das andere Mal für rekonstruierte Spuren gezeigt. Man sieht, daß um $\% = 90^{\circ}$ und $c = 90^{\circ}$ bzw. 270°, d.h. in Richtung des Targethalters oder direkt auf die Kameras zu, gemessene Pionspuren fehlen, während sich rekonstruierte Spuren dort häufen. Quantitativ werden die Lücken nicht ganz aufgefüllt (bis auf ca. 30 Ereignisse =0.4%), was sich dadurch erklären läßt, daß der Fehler der Winkel der rekonstruierten Spur in einigen Fällen sehr groß ist. Diese Spuren tragen dann zum Untergrund in der Streuwinkelverteilung bei.

Weiter finden sich einige rekonstruierte π^{-1} in der Nähe von $\ell =0$, was zwei Ursachen haben kann: Entweder wurde das π^{-1} vom δ -Fänger verdeckt, oder es hat die Reaktion $\gamma p \rightarrow p \pi^{+}\pi^{-1}$ stattgefunden, wobei das wahre π^{-1} getriggert hat und als Elektron angesehen wird, während ein hypothetisches π^{-1} eingeführt wird, das den fehlenden Impuls aufnimmt. Die Zahl solcher Ereignisse wird zu ca. 30 ($\pm 0.4\%$) abgeschätzt.

Für Protonen sind große Streuwinkel \odot kinematisch verboten. Die meisten rekonstruierten Spuren liegen in einem Gebiet um $\pm = 270^{\circ}$, das durch den δ -Fänger verdeckt wird. Der Energieverlust im Target spielt für den Verlust einer Spur keine so große Rolle, da bei den meisten Ereignissen der minimale Impulsübertrag auf das Proton zu groß ist (außer bei W > 2 GeV und kleinen effektiven Massen von π^+ und π^-).

Wir finden also, daß die Kontamination der 3-Spur-Ereignisse weniger als 1% vom Kanalwirkungsquerschnitt beträgt. Diese Ereignisse werden daher für die Bestimmung von Wirkungsquerschnitten und die weitere Auswertung mitverwendet.

Für die Korrektur wird die STYX-Simulation der Reaktionen ep \rightarrow ep $_{\rho}^{0}$ und ep \rightarrow e $\pi^{-} \lambda^{++}$ benutzt.Die Korrekturfaktoren aus den beiden Einzelreaktionen stimmen im kinematischen Überlappungsbereich überein. Die Werte sind in Tabelle 4.3 aufgeführt. Ein typischer Wert des Korrekturfaktors ist 1.22, d.h. daß ca. 18% weniger als die ursprünglich erzeugte Zahl von Ereignissen wiedergefunden wurde. Die Hauptursachen sind:

- Das Elektron strahlt und trifft die Zähler nicht mehr (-8%)
- Die Anpassung an die richtige Massenhypothese ist nicht erfolgreich, hauptsächlich wegen zu starker Bremsstrahlung (-8%)
- Das Elektron trifft die Zähler, obwohl es ohne Strahlung und Coulombstreuung nicht getroffen hätte (+0.7%)
- Das Ereignis fällt unter den Pulshöhenschnitt (-0.6%)
- Eine negative Spur nahe der Strahlrichtung wird für ein Bremselektron gehalten (-0.5%)
- Die Topologie des Ereignisses wird nicht erkannt, weil bei mindestens zwei Teilchen die Ladung nicht bestimmt werden kann (-0.5%).

Die im folgenden angegebenen Ergebnisse enthalten nur die statistischen Fehler. Dazu muß ein systematischer Fehler von 10% berücksichtigt werden, der sich zusammensetzt aus 5% für die Unsicherheit bei der Abtrennung des $p = \frac{1}{2} e^{-}$ -Kanals, 4% für die Strahlungskorrektur und 7% für die Normalisierung des Wirkungsquerschnitts.

4.3.2 Ergebnisse

Tabelle 4.4 enthält den Kanalwirkungsquerschnitt in kleinen Q² – und W-Intervallen zusammen mit den jeweiligen Ereigniszahlen. Der Verlauf des Wirkungsquerschnittes als Funktion von W ist in Abb. 4.3 für drei Q²-Intervalle und für die Photoproduktion dargestellt. Wir finden für alle Q²-Intervalle einen qualitativ ähnlichen Verlauf wie bei Q² = O, nämlich einen schnellen Anstieg von der Schwelle bis W = 1.6 GeV, danach einen langsamen Abfall.

Abb. 4.4 zeigt das Verhalten des Wirkungsquerschnitts mit Q² für fünf W-Intervalle. Eingezeichnet ist der Verlauf des totalen $\gamma_v p$ -Wirkungsquerschnittes normiert auf den Kanalwirkungsquerschnitt bei Q² = 0. Wir finden, daß der Kanalwirkungsquerschnitt überall schneller mit Q² abfällt als der totale. Die Frage, ob dieser Abfall für alle am Kanal beteiligten Reaktionen gleich ist, wird u.a. in den folgenden Kapiteln untersucht.

5. RESONANTE UND NICHT-RESONANTE BEITRAGE ZUM KANAL $\gamma_{\nu}p \rightarrow p \pi^{+}\pi^{-}$

In den Abb. 5.1 - 5 sind die Verteilungen der effektiven Massen von p π^+ , $\pi^+\pi^-$ und p π^- in drei Q² - und fünf W-Intervallen dargestellt. Wir sehen, daß bei kleinen und mittleren Energien die Erzeugung von Δ^{++} (1232) der wichtigste Resonanzbeitrag ist. c^0 (770)-Erzeugung setzt bei der Schwelle von W = 1.7 GeV ein und dominiert bei hohen Energien. Δ^0 (1232)-Erzeugung ist bei allen Energien gering. Die Massenverteilungen verhalten sich also qualitativ gleich denen der Photoproduktion; es sind keine zusätzlichen Resonanzbeiträge sichtbar.

5.1 Trennung der Reaktionen

Zur quantitativen Trennung der Reaktionen wird die Verteilung der Ereignisse mit Hilfe der "maximum-likelihood"-Methode analysiert. Da nur zwei der drei effektiven Massen voneinander unabhängig sind (es gilt die Relation $m_{p\pi}^2 + m_{\pi^+\pi^-}^2 + m_{p\pi^-}^2 = W^2 + m_p^2 + m_{\pi^+}^2 + m_{\pi^-}^2$), genügt es, die Verteilung im sogenannten Dalitz-Diagramm in Abhängigkeit von zwei Massenquadraten zu betrachten. In Abb. 5.6 ist als Beispiel das Dalitz-Diagramm für 1.3 < W < 1.5 GeV gezeigt. Die kinematischen Grenzen, die von W abhängen, sind für die beiden Endpunkte des W-Intervalles eingezeichnet. Da das Phasenraumvolumenelement in diesen Variablen konstant ist (NYB 69), schreibt sich die Wahrscheinlichkeitsdichte als:

$$\frac{d^{2}W}{dm_{p}^{2}\pi^{+}dm_{\pi}^{2}+\pi^{-}} \approx \alpha_{\Lambda}^{++} \qquad \frac{\frac{BW}{\Delta}(m_{p\pi}^{+})\cdot 2W}{N_{\Delta}}(\cos c_{H\Delta}) + \alpha_{\rho}\frac{BW}{\rho}(m_{\pi}^{+}\pi^{-})\frac{2W}{\rho}(\cos c_{H\rho})}{N_{\rho}} + \alpha_{\Lambda}^{-} \qquad + \alpha_{\Lambda}^{-} \qquad \frac{BW}{\Delta}(m_{p\pi}^{-}) + \alpha_{L}^{-} - \frac{1}{N_{L}} \qquad (1)$$

Die Breit-Wigner-Funktionen BW_{ρ} und BW_{Δ} , die die Resonanzformen von ρ bzw. Δ beschreiben, sind in Anhang A beschrieben. BW_{ρ} enthält den "Ross-Stodolsky-Faktor" (m_p /m_x+ -) (ROS 66), der mit n_{RS} = 4 in der Photoproduktion zur Beschreibung der Resonanzform benötigt wird (ABBHHM, SBT 72). Die Verteilungen der Zerfallswinkel $\Theta_{H\rho}$ und $\Theta_{H\Delta}$ im Helizitätssystem, W_{ρ} (cos $\Theta_{H\rho}$) und W_{Δ} (cos $\Theta_{H\Delta}$) (Anhang A), ist bei der Analyse des Dalitzdiagrammes zu berücksichtigen, da diese Winkel – im Gegensatz zu Zerfallswinkeln in anderen Systemen – nur von den Variablen dieses Diagramms abhängen. Es zeigt sich, daß W fast immer mit einer Gleichverteilung verträglich ist; deshalb und weil es zu wenig Ereignisse gibt, wurde die Δ^{O} -Winkelverteilung nicht berücksichtigt.

Die Normalisierungsfaktoren sind gegeben durch

$$N_{\mu} = \iint BW_{\mu} (m_{p-\mu} + \mu) dm_{\mu+\mu}^{2} dm_{p-\mu}^{2} + dm_{p-\mu}^{2} + D(W)$$

$$N_{\mu} = \iint BW_{\mu} (m_{\mu} + \mu + \mu) dm_{p-\mu}^{2} + dm_{\mu+\mu}^{2} + dm_{\mu+\mu}^{2} + dm_{\mu+\mu}^{2} + dm_{\mu}^{2} + dm_{\mu}^{2}$$

Die Integrale erstrecken sich über den kinematisch erlaubten Bereich D (W) des Dalitz-Diagramms. Die erste Integration kann jeweils analytisch durchgeführt werden, die zweite wird numerisch berechnet. Die Integrale sind unabhängig von den Winkelverteilungen, da diese normiert sind und z.B. beim – die Integration über $m_{p_-}^2$ einer Integration über cos H_{c} entspricht. Sie hängen jedoch von W ab und werden daher für jedes Ereignis durch Interpolation zwischen 10 Stützstellen im betrachteten W-Intervall ermittelt. Die Herleitung dieses Verfahrens wird in Anhang B gegeben.

Die Faktoren α_{k} werden unter der Nebenbedingung $z \alpha_{k} = 1$ nach dem maximum-likelihood-Kriterium iterativ mit Hilfe des Programms MINUIT (JAM 71) optimalisiert. Sie geben die Anteile der Reaktionen

$$v^{p} \rightarrow \Delta^{++--}$$

$$\rightarrow \rho^{0} p$$

$$\rightarrow \Delta^{0} \pi^{+} \qquad (3)$$

$$\rightarrow p \pi^{+} \pi^{-} \text{ (nicht-resonant)}$$

am Kanalwirkungsquerschnitt wieder. Weitere Variable Parameter sind die Dichtematrixelemente r_{33}^{04} des \triangle^{++} und r_{00}^{04} des e^{0} . Auch die Resonanzparameter können variiert werden, wobei denn bei jeder Änderung dieser Parameter die Normierungsintegrale neu berechnet werden müssen. Gute Anpassungen ergeben sich für das e mit einer Masse von m = 780 MeV und einer Breite von r = 150 MeV (IOS 75). Für W > 2 GeV ergibt sich ein Ross-Stodolsky-Exponent von n_{RS} = 4, während für W < 2 GeV ein n_{RS} = 5.2 benötigt wird.

Beim \triangle ergibt für W < 1.7 GeV eine Masse von 1232 MeV eine gute Anpassung. Bei höherer Energie liegt die Masse deutlich niedriger, die Anpassung dieses Parameters ergibt $m_{\triangle} = (1220^{\frac{1}{2}} 3)$ MeV. Die Breite beträgt bei allen Energien 110 MeV.

Zur Kontrolle der Güte der Anpassung werden die Projektionen der Wahrscheinlichkeitsdichte (1) auf die Verteilungen der effektiven Massen berechnet. Sie sind als Kurven in die Histogramme Abb. 5.1 – 5.5 eingezeichnet.

Zur Anpassung werden alle akzeptierten Hypothesen herangezogen, also gegebenenfalls auch zwei Hypothesen von einem Ereignis. Der Anteil mehrdeutiger Ereignisse liegt zwischen 1% bei kleinsten W und 8% beim größten W. Wenn man annimmt, daß sich die effektiven Massen der falschen Hypothesen nicht bei einer der Resonanzmassen häufen, liefern diese keinen Beitrag zu den Resonanzanteilen, sondern nur zu serf. Daher gibt

die Zahl der Ereignisse der Resonanzkanäle, und

$$\alpha_{R}^{E} = \alpha_{R} - \frac{n_{H}}{n_{E}}$$
(5)

ergibt den auf die Ereigniszahl n_E bezogenenResonanzanteil. Die Ergänzung auf 1 ergibt dann den nicht-resonanten Anteil:

$$n_{L} = n_{H} \alpha_{L} - (n_{H} - n_{E})$$
⁽⁷⁾

5.2 Ergebnisse

In Abb. 5.7 und Tabelle 5.1 sind die Anteile der einzelnen Reaktionen am Kanalwirkungsquerschnitt für verschiedene W-Bereiche in Abhängigkeit von Q² dargestellt. Die Punkte bei Q² = 0 sind durch Anwendung desselben Analyseverfahrens auf die Daten des DESY-Blasenkammerexperimentes (ABBHHM) gewonnen worden. Es fällt auf, daß außer für 1.5 < W < 1.7 GeV überall der nicht-resonante Anteil $_{\rm PL}$ in der Elektroproduktion größer ist als in der Photoproduktion. Zum Beispiel finden wir im Bereich 2.2 < W < 2.8 GeV, daß der nicht-resonante Anteil von 17% bei Q² = 0 auf 54% bei Q² \approx 1 GeV² anwächst, während gleichzeitig der p $_{\rm P}$ ^O -Anteil von 66% auf 16% sinkt und der $\pi^- \pm^{++}$ -Anteil etwa konstant um 10-15% bleibt. Es wird in den folgenden Kapiteln gezeigt, daß das Q²-Verhalten der Resonanz-Reaktionswirkungsquerschnitte im wesentlichen durch den $_{\rm P}$ -Propagator bestimmt wird. Der nicht-resonante Anteil fällt offenbar langsamer ab (MEY 73) und ist damit ein Kandidat für eine der Reaktionen, die zum langsamen Abfall des totalen Elektroproduktions-Wirkungsquerschnitts beitragen.

5.3 Der nicht-resonante Anteil

In Abb. 5.8 ist der Wirkungsquerschnitt der Reaktion

$$\gamma_{\rm v} p \rightarrow p \pi^+ \pi^-$$
 (nicht-resonant) (1)

für die beiden oberen W-Intervalle gegen Q^2 aufgetragen. Eingezeichnet ist der auf den Photoproduktionspunkt normierte Verlauf des totalen $\gamma_V p$ -Wirkungsquerschnitts. Wir finden, daß der Wirkungsquerschnitt der Reaktion (1) langsamer mit Q^2 abfällt als der totale. In Abt. 5.9 ist der Wirkungsquerschnitt von Reaktion (1) als Funktion von W, gemittelt über Q^2 dargestellt.

Wir haben bisher angenommen, daß sich Reaktion (1) entsprechend dem statistischen Modell wie der Phasenraum verhält. Diese Annahme kann überprüft werden.

Zur näheren Untersuchung der Reaktion (1) benutzen wir die "channellikelihood"-Methode (CON 74, WDS 74). Der erste Schritt dieses Verfahrens ist mathematisch äquivalent zur maximum-likelihood-Methode (Abschn.5.1) bei der Bestimmung der Zahl der Ereignisse, die zu einer (resonanten oder nicht-resonanten) Reaktion gehören. Zusätzlich werden dabei jedoch zu jedem Ereignis i (i = 1,...,n) die Wahrscheinlichkeiten w_{ij} berechnet, daß das betreffende Ereignis aus der Reaktion j (j=1,...,m oder $j = A^{++}, \rho^{0}, A^{0}, L$) stammt. Es ist

$$w_{ij} = \frac{\alpha_j \cdot n \cdot f_j(i)}{S_j N_j}$$
(2)

mit
$$\alpha_i \cdot n$$
 : Zahl der Ereignisse aus Reaktion j

$$f_j(i)$$
 : Funktion der kinematischen Variablen, berechnet für
das i-te Ereignis, z.B. $f_{\Lambda} = BW_{\Lambda} + W_{\Lambda}$ (cose HA)
oder $f_{L} = 1$ wie in 5.1, Formel 1
 N_j : Normierungsintegrale (5.1, Formel 2)

$$S_j = \sum_{j=1}^{m} \frac{\alpha_j \cdot n \cdot f_j(i)}{N_j}$$
: Normierung der Wahrscheinlichkeit.

In die im folgenden untersuchten Verteilungen geht jedes Ereignis mit dem Gewicht w_{iL} der nicht-resonanten Reaktion ein. Wir betrachten das Intervall 2.0 < W < 2.8 GeV, $0.3 < Q^2 < 1.4 \text{ GeV}^2$.

Die Messung inklusiver Pionerzeugung über $\gamma_V p \neq \pi^{\frac{1}{2}}$ X hat ergeben, daß mit wachsendem Q² mehr π^+ als π^- in Vorwärtsrichtung emittiert werden (WOL 75). Um zu untersuchen, ob dieser Effekt auch bei dieser Reaktion auftritt, betrachten wir die Verteilung der Größe $x = \frac{p^*}{p_{max}^*}$ (p_{π}^* = Longitudinalimpuls, p_{max}^* maximaler Impuls, beide im p_{max} Schwerpunktsystem) des π^+ und des π^- (Abb. 5.10). Das Verhältnis von $\pi^+ zu = \pi^-$ ist bei allen x = 1 verträglich.* Das entspricht der Vorhersage des statistischen Modells.

Allerdings sind die beiden x-Verteilungen selbst nicht mit dem statistischen Modell verträglich, sie müßten z.B. symmetrisch um O sein. Dies spiegelt sich auch in der Verteilung des Viererimpulsübertrages t auf das Proton wieder (Abb. 5.11), die ein deutliches Vorwärtsmaximum zeigt. Im Bereich $t_{min} < t < 0.8 \text{ GeV}^2$ läßt sich die Verteilung durch einen exponentiellen Abfall e^{At} mit A = 3.1 \pm 0.3 GeV⁻² beschreiben. A wurde nach dem maximum-likelihood-Verfahren bestimmt, siehe dazu Anhang B. Für die Summe aller Ereignisse des Kanals ergibt sich A = 3.7 \pm 0.2 GeV⁻², wobei die e^{0} -Produktion die Hauptursache für den stärkeren Abfall darstellt.

Die Verteilungen des Transversalimpulses p_T der Teilchen aus den nichtresonanten Ereignissen und von allen Ereignissen des Kanals ist in Abb. 5.12 gezeigt. Wir finden eine Gaußische Verteilung der Form exp $(-p_T^2 / < p_T^2 >)$ mit einem quadratisch gemittelten Transversalimpuls $\sqrt{\langle p_T^2 \rangle} = (418 \stackrel{+}{-} 23)$ MeV für π^- , $(427 \stackrel{+}{-} 24)$ MeV für π^+ und $(463 \stackrel{+}{-} 6)$ MeV für das Proton. Die beiden Pionen verhalten sich also gleich, weiter verhalten sich π^- und Proton von nicht-resonanten

Geringe Abweichungen lassen sich darauf zurückführen, daß durch die channel-likelihood-Methode die Resonanzeinflüsse nicht völlig unterdrückt werden.

Ereignissen gleich wie dieselben Teilchen aus dem ganzen Kanal. Beim $-^+$ findet man hier einen steileren Abfall, der sich auf die z^{++} - Produktion zurückführen läßt.

Die – –Verteilungen dieser Reaktion können auch mit inklusiven Verteilungen verglichen werden (JOO 75). Dort findet man einen etwas steileren Abfall mit $\sqrt{p_T^2} = (370^{+}10)$ MeV. Inklusive π^+ -und p-Verteilungen können in diesem Experiment nicht gemacht werden, da die Teilchen nicht identifiziert werden können.

6. DIE REAKTION $\gamma_{y} p + - \gamma_{z}^{++}$

Die Photoproduktion des Endzustandes - A⁺⁺ ist eingehend untersucht worden (LÜK 71, LÜK 72, ABBHHM, SBT 72). Es hat sich u.a. gezeigt, daß der Wirkungsquerschnitt dieser Reaktion an der Schwelle rasch ansteigt und die Erzeugungswinkelverteilung isotrop ist, d.h. es liegt eine S-Welle vor. Durch s-Kanal-Resonanzen konnte dieses Verhalten nicht erklärt werden. Dagegen können sowohl der Wirkungsquerschnitt als auch die Erzeugungs- und Zerfallswinkelverteilungen quantitativ gut durch das sogenannte eichinvariante Ein-Pion-Austausch-Modell (GIOPE) (STI 64, LOC 66) beschrieben werden. Hauptbestandteile dieses Modells sind die vier in Abb. 6.1 dargestellten Bornterme, von denen bei niedrigen Energien der Kontaktterm IV dominiert.

Dabei ist die Frage interessant, ob sich die Elektroproduktion dieses Endzustandes ebenfalls durch dieses Modell beschreiben läßt und wie es eventuell modifiziert werden muß. Mit einem Teil der Daten dieses Experiments wurde gezeigt (JOO 74, RAB 74), daß ein Modell von Bartl, Majerotto und Schildknecht (BAR 72), in dem für die Q²-Abhängigkeit ein Vektordominanzansatz gemacht wird, befriedigende Übereinstimmung liefert. Von einem anderen Ansatzpunkt her kann das Q²-Verhalten insbesondere des Kontaktterms an der Schwelle mit dem Axialvektorformfaktor des Nukleons in Verbindung gebracht werden (ADL 68).

6.1 Der Wirkungsquerschnitt als Funktion von W und Q²

In Abb. 6.2 und Tabelle 6.1a ist der Wirkungsquerschnitt der Reaktion

$$\gamma_{V} p \rightarrow \pi^{-} \Lambda^{++}$$
 (1)

als Funktion von W, gemittelt über Q² von 0.3 bis 1.4 GeV², aufgetragen. Wir finden im Bereich der Schwelle, die durch die Breite der \triangle -Resonanz verschmiert ist, einen schnellen Anstieg auf ca. 15 µb.

Zu höheren Energien fällt der Wirkungsquerschnitt ab. In der Photoproduktion (LÜK 72) wurde gefunden, daß dieser Abfall proportional zu E_{γ}^{-2} ist. Wir haben in Abb. 6.3 den Wirkungsquerschnitt gegen die effektive Photonenergie K = (W² - m²_p) / 2m_p doppeltlogarithmisch aufgetragen. Eingezeichnet ist eine Gerade proportional zu K⁻². Der Abfall scheint etwas schneller zu sein, eine Anpassung des Exponenten von K ergibt -2.7[±] 0.2.

Die Abhängigkeit des Wirkungsquerschnitts von Q² ist in den Abb. 6.4 – 6.8 und Tabelle 6.1b in fünf W-Bereichen dargestellt. Wir finden in allen Fällen einen raschen Abfall vom Photoproduktionspunkt her.

6.2 Der differentielle Wirkungsquerschnitt

In Abb. 6.9 ist der differentielle Wirkungsquerschnitt $\frac{d_0}{d_{\infty}}$ für Reaktion (1) dargestellt in Abhängigkeit vom Kosinus des Erzeugungswinkels 0 * zwischen den Richtungen des einlaufenden Protons und des auslaufenden Δ^{++} im Schwerpunktsystem. Dazu sind maximum-likelihood-Anpassungen (Abschn. 5.1) in Intervallen von cos $^{-}$ * durchgeführt worden. Die Wahrscheinlichkeitsdichte (5.1., Gl.1) gilt unverändert auch für diesen Fall, da die Phasenraumdichte in cos 0^* konstant ist und Schnitte in diesen Variablen die Dalitz-Diagramm-Grenzen nicht beeinflussen. Die Daten sind in sechs W-Intervalle unterteilt und über unseren Q²-Bereich gemittelt. Wir finden an der Schwelle eine nahezu isotrope Erzeugungswinkelverteilung. Mit zunehmendem W bildet sich ein stärker werdendes Vorwärtsmaximum heraus. Im W-Bereich von 1.5 bis 1.7 GeV deutet sich ein kleines Rückwärtsmaximum an.

Weiter haben wir den Wirkungsquerschnitt als Funktion des Viererimpulsübertrages t_{p,τ^+} vom Proton auf das p τ^+ -System bestimmt. Die im maximum-likelihood-Verfahren anzupassende Wahrscheinlichkeitsdichte hat hier folgende Form:

$$\frac{d^2 W}{dm_p^2 \pi^+ dm_\pi^2 + \pi^-} = \frac{1}{t} T + \frac{2}{D}$$

Darin ist p_{Δ}^{\star} der Impuls des $p^{\pi^{+}}$ -Systems im Gesamtschwerpunktsystem und $|T|^2$ entspricht der rechten Seite von Gl.1, Abschn. 5.1. Die darin auftretenden Normierungsintegrale enthalten jedoch einen zusätzlichen Faktor $1/p_{\Delta}^{\star}$; außerdem hängen die Integrationsgrenzen nun auch von t ab. Die Integrale werden daher für jedes Ereignis einzeln berechnet.

Die kinematischen Grenzen von t, t_{min} (cos $\Theta^* = 1$) und t_{max} (cos $\Theta^* = -1$), hängen von Q^2 , W und $m_{p\pi^+}$ ab. Insbesondere wird t_{min} bei kleinen W recht groß; t hängt dort stärker von Q^2 als von cos Θ^* ab. Wir bestimmen daher $\frac{d \sigma}{dt}$ nur für größere W von 1.7-2 und 2 - 2.8 GeV (Abb. 6.10, Tabelle 6.2). Der Einfluß von t_{min} und t_{max} wird dadurch korrigiert, daß innerhalb jedes t-Intervalls die effektive Länge dieses Intervalls durch Mittelung über die Ereignisse im Δ^{++} -Massenband bestimmt wird.

Im W-Bereich von 2 - 2.8 GeV läßt sich do /dt von t_{min} bis 0.8 GeV² durch eine Exponentialfunktion e^{At} mit A = (4.2⁺ 0.8) GeV⁻² beschreiben. Im kleineren W-Intervall geht der exponentielle Anstieg nicht bis an die Vorwärtsrichtung heran. Hier finden wir erst ab t = 0.3 bis t = 2 GeV² einen exponentiellen Abfall mit A = (1.43⁺ 0.14) GeV⁻².

6.3 Zerfalls- und Polarisationswinkel

Um Aussagen über die Spineinstellung des Δ^{++} zu erhalten, untersuchen wir die Verteilung der Zerfallswinkel \odot und ϕ des Protons aus dem Δ^{++} . Da diese im allgemeinen auch von der Polarisation des virtuellen Photons abhängt, betrachten wir außerdem die Korrelation mit dem Polarisationswinkel Φ zwischen der e-e'- γ_V - Ebene und der $\gamma_V - \pi^-$ -Ebene. Als Bezugssystem zur Messung der Zerfallswinkel wird das Gottfried-Jackson-System benutzt(Abb. 6.11, GOT 64). In diesem System ist die Bezugsachse z zur Messung von Θ durch die Richtung des einlaufenden Protons im Δ^{++} - Ruhesystem gegeben. Da -z die Richtung des im t-Kanal ausgetauschten Teilchens ist (" π^+ " in Abb. 6.9), wird das System auch t-Kanal-Helizitätssystem genannt und ist besonders zur Untersuchung von Einteilchenaustausch im t-Kanal, wie z.B. «-Austausch geeignet. Die y-Achse steht senkrecht auf der Erzeugungsebene. Die genauen Definitionen der Winkel lauten:

$$\cos i = \frac{(i_{v} + i_{v}) \cdot (e + e^{i_{v}})}{i_{v} + i_{v}} \cdot (e + e^{i_{v}})}$$
(1)
$$\sin i = \frac{((i_{v} + i_{v}) \cdot (e + e^{i_{v}})) \cdot i_{v}}{i_{v} + i_{v}} \cdot (e + e^{i_{v}}) \cdot i_{v}}$$

Die Teilchensymbole bedeuten hier die entsprechenden Dreiervektoren im Schwerpunktsystem der Hadronen.

$$\cos s = \frac{p \cdot p'}{p \cdot p'}$$

$$\cos s := \frac{(\cdot v \cdot p) \cdot (p \cdot p')}{(v \cdot v \cdot p) \cdot p \cdot p'}$$
(2)

(3)

$$\sin z = \frac{((z + z^{-}) \cdot p) \cdot (p \cdot p^{+})}{(z + z^{-}) \cdot p - p \cdot p^{+}}$$

Die Vektoren sind hier im Schwerpunktsystem des z^{++} zu nehmen. In Abb. 6.12 sind die Verteilungen dieser Winkel für verschiedene W-Bereiche gezeigt. Dabei wurden die Ereignisse mit der Wahrscheinlichkeit w_{id} bewichtet, aus dem $e^- z^{++}$ -Endzustand zu stammen (nach der channel-likelihood-Methode, s. Abschn. 5.3). Ereignisse mit w_{id} < 20%, das sind u.a. alle Ereignisse mit m_{pπ}+ > 1.45 GeV, werden nicht berücksichtigt.

Da in diesem Experiment die Spinstellungen der ein- und auslaufenden Teilchen nicht gemessen werden, liegt ein Gemisch von Zuständen vor, daß sich am besten mit Hilfe der Dichtematrix analysieren läßt (FAN 57). Der Zerfall eines Spin- $\frac{3}{2}$ - Teilchens wird durch eine 4 x 4 - Dichtematrix ρ_{ik} (i, k = 2 m = 3,1,-1, -3) beschrieben. Unter Berücksichtigung der Dichtematrix des virtuellen Photons gibt es sechs solcher Matrizen ρ_{ik}^{α} , die den möglichen Polarisationen des Photons und Interferenzen zwischen ihnen entsprechen. Die Winkelverteilung lautet damit (WOL 74, siehe auch ECK 72 und SCH 73):

$$W(\cos\Theta,\phi,\phi) = \frac{1}{1+\epsilon R} [W^{\Theta}(\cos\Theta,\phi) - \epsilon\cos 2\phi \ W^{1}(\cos\Theta,\phi) - \epsilon\sin 2\phi \ W^{2}(\cos\Theta,\phi) + \epsilon R \ W^{4}(\cos\Theta,\phi) + \frac{1}{\sqrt{2\epsilon(\epsilon+1)}} \sqrt{R} \{\cos\phi \ W^{5}(\cos\Theta,\phi) + \sin\phi \ W^{6}(\cos\Theta,\phi) \}]$$

darin ist
$$R = \frac{\sigma_L(ep \rightarrow e\Delta^{++}\pi^-)}{\sigma_T(ep \rightarrow e\Delta^{++}\pi^-)}$$
 und

$$W^{\alpha}(\cos\Theta,\phi) = \frac{3}{4\pi} \{\rho_{33}^{\alpha} \sin^{2}\Theta + (\frac{1}{2} - \rho_{33}^{\alpha}) (\frac{1}{3} + \cos^{2}\Theta) - \frac{2}{\sqrt{3}} \operatorname{Re} \rho_{31}^{\alpha} \cos\phi\sin^{2}\Theta - \frac{2}{\sqrt{3}} \operatorname{Re} \rho_{3-1}^{\alpha} \cos2\phi\sin^{2}\Theta\}$$

$$\alpha = 0,4$$

$$W^{\beta}(\cos\Theta,\phi) = \frac{3}{4\pi} \left\{ \rho_{33}^{\beta} \sin^{2}\Theta + \rho_{11}^{\beta} \left(\frac{1}{3} + \cos^{2}\Theta \right) - \frac{2}{\sqrt{3}} \operatorname{Re} \rho_{31}^{\beta} \cos\phi \sin 2\Theta \right\}$$
$$- \frac{2}{\sqrt{3}} \operatorname{Re} \rho_{3-1}^{\beta} \cos2\phi \sin^{2}\Theta \right\} \quad \beta = 1,5$$

$$W^{\gamma}(\cos\Theta,\phi) = \frac{3}{4\pi} \left\{ \frac{2}{\sqrt{3}} \operatorname{Im} \rho^{\gamma}_{31} \sin\phi \sin 2\Theta + \frac{2}{\sqrt{3}} \operatorname{Im} \rho^{\gamma}_{3-1} \sin 2\phi \sin^{2}\Theta \right\}$$
$$\gamma = 2,6$$

Da wir R nicht bestimmen können (dazu sind Messungen bei anderen Werten von ε nötig), können wir ρ^0 und ρ^4 (entspricht unpolarisierten bzw. longitudinalen Photonen) nicht einzeln messen, sondern nur die Kombination

$$r_{ik}^{04} \equiv \frac{\rho_{ik}^{0} + \epsilon R \rho_{ik}^{4}}{1 + \epsilon R}$$
(9)

Aus dem gleichen Grund können wir von den übrigen Matrizen nur die damit zusammenhängenden Größen

$$r_{ik}^{\beta} = \frac{\varepsilon_{ik}^{z}}{1 + \varepsilon R} \qquad \beta = 1, 2 \qquad (10)$$

bzw.

$$r_{1k}^{\gamma} = 5,6$$
 (11)

messen.

Zur Bestimmung der r_{ik} benutzen wir wiederum die channel-likelihood-Gewichte der Ereignisse, so daß der Einfluß des Untergrundes minimalisiert wird. Mit diesen bestimmen wir die Momente (Erwartungswerte) verschiedener Winkelfunktionen, deren Zusammenhang mit den Dichtematrixelementen in Anhang C zusammengestellt ist.

Die Ergebnisse sind in den Abb. 6.11 und 6.12 und den Tabellen 6.3 und 6.4 dargestellt. Abb. 6.11 zeigt in sechs Intervallen die W-Abhängigkeit der Matrixelemente, gemittelt über unseren Q²-Bereich als Funktion des Erzeugungswinkels cos *. Die Q²-Abhängigkeit der Elemente von r^{04} ist in Abb. 6.11 für drei W-Bereiche gezeigt. In Tabelle 6.3 und 6.4 sind alle Matrixelemente in Q²- und W-Intervallen aufgeführt, und zwar einmal gemittelt über den Erzeugungswinkel, das andere Mal als Funktion von cos __*.

Die Ergebnisse lassen sich wie folgt interpretieren:

- r_{33}^{04} beschreibt die cos (-Abhängigkeit nach Integration über die anderen Winkel. Zum Beispiel ist für $r_{33}^{04} = 0$: W (cos () = 1+3 cos²⁴, $\frac{1}{4}$: W (cos () = const, $\frac{1}{2}$: W (cos () = sin² (). Bei reinem π -Austausch im t-Kanal kann die Spinkomponente m des () nur $\frac{1}{2}$ 1/2 sein, d.h. $r_{33}^{04} = 0$. Das gleiche würde für den Austausch der P₁₁(1470)-Resonanz im s-Kanal gelten. Diese beiden Möglichkeiten sind durch die Daten bei W < 2 GeV definitiv ausgeschlossen. Wir finden an der Schwelle $r_{33}^{04} = 0.31 \stackrel{+}{=} 0.02$ und einen schwachen Abfall mit W. Eine Q²-Abhängigkeit ist nicht feststellbar.

 Aus der Verteilung des Polarisationswinkels : kann bei transversal polarisierten Photonen darauf geschlossen werden, ob das im t-Kanal

 $r_{ik}^{\vee} = \frac{\sqrt{R}}{1 + cR}$

ausgetauschte Teilchen natürliche Parität (P = $(-1)^{J}$) oder unnatürliche Parität (P = $-(-1)^{J}$) hat. Das Maß dafür ist die Spur der Matrix p^{1} bzw. r^{1} :

$$P_{\sigma}^{t} = \frac{\sigma_{t}^{N} - \sigma_{t}^{U}}{\sigma_{t}^{N} + \sigma_{t}^{U}} = 2(\rho_{11}^{1} + \rho_{33}^{1}) = 2(1 + \epsilon_{R})(r_{11}^{1} + r_{33}^{1})$$
(12)

Darin sind σ_t^N bzw. σ_t^U die Wirkungsquerschnitte für Erzeugung durch natürlichen bzw. unnatürlichen Paritätsaustausch im t-Kanal. In Tabelle 6.1 ist P_{σ}^t für zwei Annahmen über R (O und 1) aufgeführt. Da es nur von der Verteilung von Φ abhängt, ist der Fehler kleiner als bei einfacher Fehlerfortpflanzung aus r_{11}^1 und r_{33}^1 . Wir finden, daß bei kleinen Energien P_{σ}^t mit Null verträglich ist, während es ab $W \approx 1.8$ GeV merklich nergativ wird. Das ist damit verträglich, daß bei kleinen Energien der Kontaktterm dominiert, wo keine definierte Parität im t-Kanal vorhanden ist, während bei höheren Energien der <u>m-Austausch überwiegt</u>.

- Die Matrix ρ^5 bzw. r^5 mißt die transversal-longitudinale Interferenz. Die Spur von r^5 ist proportional zum Interferenzbeitrag σ_I zum Wirkungsquerschnitt:

$$\operatorname{Sp} r^{5} = - \frac{2 \sigma_{I}}{\sigma_{t} + \varepsilon \sigma_{I}}$$
(13)

Wir finden, daß Sp r⁵ bei kleinem W mit O verträglich ist, bei größerem W aber bis auf -0.10 \pm 0.03 abfällt. Von der DESY-Gruppe F 32 (DAM 72) wurde d $\sigma_{\rm I}$ /dt bei festem (t-t_{min}) gemessen mit dem Ergebnis, daß es größer als Null ist, im Einklang mit unserem Ergebnis. Es ist zu beachten, daß der in Ref. DAM 72 benutzte Winkel $\phi_{\pi q}$ sich von ϕ um 180° unterscheidet, daher kommt das Vorzeichen in Gl. 13.

6.4 Das eichinvariante Ein-Pion-Austausch-Modell (GIOPE)

In rein hadronischen Reaktionen hat sich gezeigt, daß der Ein-Pion-Austausch (OPE), sofern er nach den Auswahlregeln erlaubt ist, eine wichtige Rolle spielt und vielfach eine quantitative Beschreibung ermöglicht (siehe z.B. WOL 69). Es liegt nahe, dies auch für Photo- oder Elektroproduktionsreaktionen anzunehmen, speziell für die Reaktion $\gamma_{(v)}^{p} - z^{-2}^{++}$ (Abb. 6.1, Graph I). In diesem Fall muß zusätzlich die Eichinvarianz berücksichtigt werden, die durch den OPE-Beitrag allein nicht erfüllt ist. Es ist nicht eindeutig festgelegt, wie die Eichinvarianz zu erreichen ist. Stichel und Scholz (STI 64) haben eine minimale Erweiterung vorgeschlagen, die darin besteht, die Bornterme (Graph II, III, IV) mitzunehmen, bei denen das Photon an die anderen äußeren Hadronlinien und an den Hadronvertex direkt ankoppelt. Dieses Modell beschreibt die Photoproduktion von $\pi^- h^{++}$ quantitativ an der Schwelle und, wenn zusätzliche Absorptionskorrekturen angebracht werden (LOC 66), auch bei höheren Energien (LÜK 71, LÜK 72, SBT 72). Insbesondere zeigt sich, daß der als Korrektur eingeführte Kontaktterm IV das Verhalten bei niedrigen Energien dominiert. Bei höheren Energien wird nur der Bereich kleiner Streuwinkel korrekt beschrieben. Bei größeren Streuwinkeln sagt das Modell auch nach Absorptionskorrekturen einen zu großen Wirkungsquerschnitt vorher.

Der Übergang zur Elektroproduktion ist von verschiedenen Autoren durchgeführt worden (BAR 72, BER 72, LEV 75). In Ref. BAR 72 wird angenommen, daß das Photon zunächst an ein α -Meson koppelt, das dann die hadronische Reaktion auslöst. Dadurch enthalten die transversalen Amplituden den α -Propagator $(1+Q^2/m^2)^{-1}$ und die longitudinalen Amplituden außerdem einen Faktor $\sqrt{Q^2/m^2}$. Mit diesem Ansatz läßt sich der Abfall des Wirkungsquerschnitts mit Q² gut erklären (JOO 74, RAB 74).

Wir haben dieses Modell zum Vergleich mit unseren Daten herangezogen. Dazu wurden mit einem Monte-Carlo-Verfahren die Bornamplituden über die Massenverteilung der \triangle -Resonanz und unter Berücksichtigung des Photonflusses Γ_t über das jeweilige Q²-W-Intervall integriert (WOL 74). Absorptionskorrekturen wurden bei festen Werten von Q², W und der \triangle -Masse berechnet. Dazu werden die Amplituden nach dem Spin J entwickelt, den die Eingangs- bzw. Ausgangsteilchen zusammen bilden, und mit den Streuamplituden S_{ii} bzw. S_{ff} der elastischen $p^{O}N$ -Streuung für den Eingangszustand bzw. $\pi\Delta$ -Streuung für den Ausgangszustand multipliziert:

$$S_{ii} = 1 - C_{\rho} \exp \left(-\frac{(J - 1/2)^2}{2A_{\rho} q_{\rho}^2}\right)$$
 (1)

$$S_{ff} = 1 - C_{\Delta} \exp \left(- \frac{(J - 1/2)^2}{2A_{\Delta} q_{\Delta}^2} \right)$$
 (2)

Darin ist A $_{
m p}$ bzw. A $_{
m \Delta}$ die exponentielle Steigung des differentiellen Wirkungsquerschnitts d $_\sigma$ /dt der elastischen ρp - bzw. $\pi \Delta$ -Streuung und C = $\frac{4\pi}{A_{o}} \sigma_{tot} (\rho p)$ bzw. C = $\frac{4\pi}{A_{\Delta}} \sigma_{tot} (\pi \Delta)$ messen die Stärke der Absorption. q bzw. q sind die Impulse der Teilchen im Gesamtschwerpunktsystem. Die Parameter der p-Streuung kann man mit Hilfe der Vektormesondominanz bei der __o~Photoproduktion messen, während man bei der π \land -Streuung nur, durch das Quark-Modell gestützt, vermuten kann, das die Parameter die gleichen sind wie bei der π N-Streuung. Wir benutzen die Werte A_p = 6 GeV⁻², A_A =8 GeV⁻², $C_{A} = C_{A} = 0.8$, die auch in der Photoproduktion (SBT 72) benutzt wurden. Es ist zu beachten, daß sowohl in der Wahl der Parameter als auch in der Form der Parametrisierung (Gl. 1 und 2) eine gewisse Willkür steckt. Andere Formen für S_{ij} und S_{ff} (LÜK 72) ergeben zwar bei hohen Energien das gleiche Resultat, können sich aber bei niedrigen Energien stark unterscheiden. Wie sich die Absorptionskorrekturen zu niedrigen Energien hin fortsetzen, ist eine offene Frage. Nahe der Schwelle sind sie vermutlich klein.

Die Ergebnisse der Rechnungen sind in die Abbildungen 6.2 und 6.10 -13 mit eingezeichnet. Bei der W-Abhängigkeit des Wirkungsquerschnitts (Abb. 6.2) sehen wir, daß der Anstieg an der Schwelle sowohl der Form als auch der Größe nach wiedergegeben wird. Dieser Anstieg wird vom Kontaktterm, der eine S-Welle ist, verursacht. Bei höheren Energien wird der Wirkungsquerschnitt vom Modell viel zu hoch vorhergesagt. Durch Absorptionskorrekturen (gestrichelte Kurve) kann die Übereinstimmung verbessert werden, unsere Form der Korrekturen liefert jedoch ab $W \simeq 2$ GeV immer noch einen zu hohen Wert.

Der differentielle Wirkungsquerschnitt d σ /d Ω wird bei kleinen Energien relativ gut wiedergegeben, bei größeren Energien ist die Obereinstimmung bei kleinen Streuwinkeln noch befriedigend, während der Abfall mit dem Streuwinkel zu schwach herauskommt. Das gleiche zeigt sich bei d 2/dt.

Bei den Dichtematrixelementen ist im allgemeinen gute Übereinstimmung festzustellen. Insbesondere wird das Verhalten von r_{33}^{04} richtig wiedergegeben. Bei einigen nicht-diagonal-Elementen ist die Übereinstimmung im Schwellenbereich schlechter.

Zusammenfassend kann gesagt werden, daß mit dem eichinvarianten Borntermmodell in Verbindung mit dem Vektordominanzmodell eine quantitative Beschreibung der Reaktion $\gamma_{v}p + e^{-}\lambda^{++}$ im Schwellenbereich möglich ist. Es ist jedoch aus dem folgenden Grund theoretisch nicht befriedigend:

Die Vektordominanz in Verbindung mit dem Kontaktterm führt zu einer Kontaktwechselwirkung von 4 Hadronen (\pm , p, π , \wedge), die Konsequenzen für rein hadronische Reaktionen hat. Für die Reaktion $\stackrel{+}{}_{p}$, $\stackrel{+}{}_{a}$, $\stackrel{0}{}_{a}$ würde der Kontaktterm z.B. bei einem Laborimpuls von 1.75 GeV/c, das ist 100 MeV/c oberhalb der Schwelle, bereits einen Beitrag von 36 mb (ohne Absorptionskorrekturen) zum Wirkungsquerschnitt liefern, während tatsächlich weniger als 2 mb gemessen werden (siehe z.B. WAC 73).

Im folgenden Abschnitt wird eine bessere Erklärung für das Q^2 -Verhalten des Kontaktterms versucht.

6.5 Bestimmung_des Axialvektorformfaktors des Nukleons

Um das Schwellenverhalten der Reaktion $\gamma_V p \neq -2\lambda^{++}$ anschaulich zu verstehen, geht man zum "soft-pion"-Grenzfall über, wo nicht nur der Impuls des Pions Null ist (wie an der physikalischen Schwelle), sondern auch dessen Masse. Das ($\gamma_V = -2\lambda$)-System ist dann in einem S-Wellen-Zustand mit Spin und Parität $J^P = 1^+$, d.h. es ist ein Axialvektor. Das Massenquadrat dieses Systems ist $-Q^2$. Der NZ – Übergang hat also in diesem Grenzfall Axialvektorcharakter und durch Variation von Q^2 kann man den entsprechenden Formfaktor messen.

Im folgenden Abschnitt werden zunächst die theoretischen Grundlagen etwas genauer dargestellt. Anschließend werden die Ergebnisse diskutiert.

6.5.1 Bemerkungen zur theoretischen Grundlage

Der Axialvektorformfaktor des Nukleons ist direkt nur mit Hilfe der schwachen Wechselwirkung meßbar (z.B. in der Reaktion \sim N - μ N'), da der elektromagnetische Strom Vektorcharakter hat. Die Stromalgebra (siehe z.B. LYT 70) postuliert Verknüpfungen u.a. zwischen Vektor- und Axialvektorströmen in Form von Kommutationsrelationen von Strömen zu gleichen Zeiten. Eine Anwendung dieser Relationen ergibt sich bei der Berechnung von Amplituden zu Reaktionen, die außer dem elektromagnetischen Strom ein äußeres Pion enthalten, wie etwa bei der hier untersuchten Reaktion (6.1.1) oder auch bei der Einfach-Pion-Elektroproduktion. Dabei muß die Gültigkeit der sogenannten PCAC-Hypothese vorausgesetzt werden, die besagt, daß die Divergenz eines Axialvektorstromes A_i durch den Pion-Pol dominiert wird, graphisch dargestellt in unserem Fall:

Im "soft-pion"-Grenzfall $k_{\mu} = 0$ (d.h. Impuls und Masse des \leq gehen gegen Null) läßt sich der Beitrag des Terms a berechnen (in einem Bornterm-Modell trägt etwa Graph II (Abb. 6.1) bei, der an dieser Stelle einen Pol hat). Der Term b, der "Kommutatorterm", stellt im wesentlichen den Axialvektor-Übergangsformfaktor $g_{A}^{\star}(Q^{2})$ von p nach Δ dar, wie er auch in der Reaktion $\forall p = \mu \wedge$ gemessen werden kann. Im Borntermmodell entsprücht er dem Kontaktterm zusammen mit Beiträgen vom Pionaustausch (I, IV).

Die vorstehenden Stichworte sind die Hauptbestandteile einer Theorie von Adler und Weisberger (ADL 68). Die Autoren gehen dabei noch einen Schritt weiter und verknüpfen den Übergangsformfaktor mit dem elastischen Axialvektorformfaktor $g_A(Q^2)$ des Nukleons, und zwar in einer Weise, die der CGLN-Theorie (CHE 57) für den Vektor-Übergangsformfaktor analog ist.

Das Ergebnis der Rechnungen von Adler und Weisberger ist ein Wirkungsquerschnitt, der nahezu proportional zu $(g_A(Q^2)/g_A(0))^2$ ist.^{*} Der Term a liefert nur einen kleinen Beitrag und ist proportional zum Vektorformfaktor. Die Rechnungen sind nur im unphysikalischen, exakten soft-pion-Grenzfall gültig. Wir nennen diesen Wirkungsquerschnitt, mit $g_A(Q^2)=1$ gesetzt, $a_{AW}(Q^2)$. Wir benutzen nicht den Absolutwert, sondern nur das Verhältnis $a_{AW}(Q^2)/a_{AW}(0)$, das im wesentlichen das Verhältnis von Übergangs- zu elastischem Axialvektorformfaktor enthält. Der Verlauf ist in Abb, 6.13 dargestellt.

Um zu physikalischen Werten des Pion-Viererimpulses zu extrapolieren, lassen wir uns von der in den vorigen Abschnitten dargestellten Beobachtung leiten, daß der Schwellenbereich vom Kontaktterm, multipliziert mit einem phänomenologischen Formfaktor G (Q²), dominiert wird, d.h. die Daten entsprechen der Form

$$\frac{\sigma(Q^2)}{\sigma(Q)} = G^2(Q^2) \cdot \frac{\sigma_{Born}(Q^2, k)}{\sigma_{Born}(Q^2, k)}$$
(3)

Wenn wir annehmen, daß dies auch beim Übergang k- 0 gilt, erhalten wir (SOD 75)

$$\frac{-(Q^2, k \cdot 0)}{(0, k \cdot 0)} = G^2(Q^2) \cdot \frac{Born(Q^2, k \cdot 0)}{Born(0, k \cdot 0)}$$
(4)

Das Verhältnis der Bornamplituden wird auf folgende Weise berechnet: Die Amplitude des Elektroproduktions-Kontaktgraphen

* $g_A(0) = 1.18$ kommt aus f_{\pm} in Gl. 1 und der Goldberger-Treimann Relation: $2m_p g_A(0) = f_{\pm} \frac{\sqrt{2} g_{\pm NN}}{m^2_{\pm}}$ wird nach Feynmann-Regeln aufgestellt und über die Spins der ein- und auslaufenden Teilchen summiert. Das Ergebnis ist

$$\frac{\lambda}{2} |T|^2 = \alpha^2 \frac{g^2}{4\pi} \cdot \frac{1}{(2\pi)^4 m_\pi^2} \cdot \frac{1}{q^4} (m_\Delta m_p - \Lambda \cdot p)(q^2 + \frac{4}{m_\Delta^2} (e \cdot \Lambda))(q^2 + \frac{4}{m_\Delta^2} (e \cdot \Lambda)) (q^2 + \frac{4}{m_\Delta^2} (e \cdot \Lambda)) (q^2$$

Entsprechend dieser Amplitude, multipliziert mit dem Volumenelement des $(\land - \pi - e')$ -Phasenraums, werden Monte-Carlo-Ereignisse im W-Bereich von 1.3 - 1.5 GeV und in verschiedenen Q²-Intervallen erzeugt. Dabei werden einmal die physikalischen Vierervektoren in Gl. 6 eingesetzt, das andere Mal wird k = 0 (d.h. $\triangle = p + q$) angenommen. Die Masse des \triangle wird nicht variiert. Durch Division durch Γ_t (Gl.3.1.7) bekommt man den Wirkungsquerschnitt für virtuelle Photonen. Der Übergang $k \rightarrow 0$ wird nur im Matrixelement, nicht in Γ_t und dem Phasenraumfaktor gemacht, wie es bei der Berechnung von σ_{AW} ebenfalls gemacht worden ist.

Das Ergebnis der Rechnung, der Faktor

$$\frac{\sigma_{\text{Born}}(Q^2, k \neq 0)}{\sigma_{\text{Born}}(0, k \neq 0)} / \frac{\sigma_{\text{Born}}(Q^2, k)}{\sigma_{\text{Born}}(0, k)}$$
(7)

ist in Abb. 6.14 gezeigt. Damit läßt sich aus dem gemessenen Wirkungsquerschnitt $\sigma(Q^2)$ der durch Gl. 5 definierte extrapolierte Wirkungsquerschnitt $\sigma(Q^2, k \Rightarrow 0)$ errechnen, der mit dem Q^2 -Verlauf von σ_{AW} verglichen werden kann:

$$\frac{\sigma(Q^2, k \neq 0)}{\sigma(0, k \neq 0)} = \frac{g_A^2(Q^2)}{g_A^2(0)} - \frac{\sigma_{AW}(Q^2)}{\sigma_{AW}(0)}$$
(8)

Daraus bestimmen wir $g_A(Q^2)/g_A(0)$.

Die hier verwendete Methode der Extrapolation zum soft-pion-Grenzwert beruht auf Annahmen, die sicher anfechtbar sind. Eine genauere theoretische Untersuchung dieser Frage wird zur Zeit unternommen (BAR 76). Diese berücksichtigt nicht nur einen, dem Kontaktterm zugeordneten Formfaktor, sondern durch eine kovariante Zerlegung vier Q²-abhängige Funktionen. Die hier verwendete Methode ist näherungsweise richtig, wenn die übrigen drei Formfaktoren keinen großen Beitrag liefern, was zu zeigen war, und wenn überdies alle vier Funktionen ein ähnliches Q²-Verhalten haben. Die letztere Annahme wird dadurch unterstützt, daß wir keine starke Abhängigkeit der Dichtenatrixelemente von Q² beobachten (s. Abschn. 6.3).

6.5.2 Ergebnisse und Vergleich mit anderen Experimenten

Das beschriebene Verfahren wurde mit dem in Abb. 6.4 als Funktion von Q² gezeigten Wirkungsquerschnitt der Reaktion 6.1.1 durchgeführt. Das Ergebnis $g_A(Q^2)/g_A(0)$ ist in Abb. 6.15 dargestellt. Als Parametrisierung verwendet man gewöhnlich – in Analogie zum Vektorformfaktor – die Dipolform

$$g_{A}(Q^{2}) = \frac{g_{A}(0)}{(1 + Q^{2} / m_{A}^{2})^{2}}$$
(1)

Eine Anpassung an unsere Daten ergibt

$$m_{\Lambda} = (1.18^{+} 0.07) \text{ GeV}.$$

Dabei ist der systematische Fehler in der Normalisierung des Wirkungsquerschnitts berücksichtigt worden. Andere Formen der Q²-Abhängigkeit lassen sich nicht ausschließen, so liefert etwa eine Monopolform eine ebenso gute Anpassung mit $m_{\Delta} = (0.77^{+} 0.05)$ GeV.

Der Axialvektorformfaktor wurde in drei anderen Elektroproduktionsexperimenten von einer Daresbury-Pisa-Kollaboration, in Frascati und bei DESY (DEL 75, AMA 72, BRA 73) durch Messung der Reaktion

$$ep \rightarrow e^{-\pi}$$
n (2)

an der Schwelle bestimmt. Dort wird der Formfaktor des Nukleons ohne den Umweg über den Übergangsformfaktor gemessen. Andererseits ist die Analyse jener Reaktion schwieriger, weil bereits kurz oberhalb der Schwelle die Δ^+ -Formation im s-Kanal dominiert, die durch eine Multipolanalyse abgetrennt werden muß.

Um den Formfaktor $g_A(Q^2)$ aus jenen Experimenten zu extrahieren, werden mehrere Modelle benutzt, die etwas verschiedene Ergebnisse liefern. Wir

ziehen zum Vergleich mit unseren Daten die mit dem Modell von Dombey und Read (DOM 72, REA 74) gewonnenen Werte heran, da es sich dabei ebenfalls um ein Borntermmodell mit Kontaktterm als Hauptbeitrag handelt. Diese Werte sind in Abb. 6.15 mit eingezeichnet. Eine gemeinsame Anpassung der Dipolform an alle Datenpunkte ergibt

$$m_{\Delta} = (1.16 \stackrel{+}{-} 0.03) \text{ GeV}$$

(mit χ^2 /Zahl der Freiheitsgrade = 0.52). Wir finden also eine sehr gute Übereinstimmung zwischen den Elektroproduktionsexperimenten.

Anders ist es beim Vergleich mit Neutrinoexperimenten (PER 75), die einen Wert von $m_A = (0.89 \pm 0.08)$ GeV liefern (gestrichelte Kurve in Abb. 6.15). Auch bei der Analyse der Neutrinoexperimente werden theoretische Annahmen benutzt. Ein Teil der Diskrepanz kann vielleicht durch das Extrapolationsverfahren nach k = 0 erklärt werden. Die Daten von Ref. DEL 75 und AMA 72 sind auch mit Modellen von Furlan et al. (FUR 69) und Benfatto et al. (BEN 72) analysiert worden. Eine Dipolanpassung an diese Ergebnisse liefert $m_A = (1.00 \pm 0.03)$ GeV bzw. (1.02 ± 0.04) GeV für die beiden Modelle. Diese Werte sind sowohl mit den Neutrino-Daten als auch mit unseren Ergebnissen in vernünftiger Übereinstimmung.

Die Reaktion

$$r_{v}p - -+ 0$$
 (1)
 $-p = -$

bildet einen wesentlich kleineren Beitrag zum p^{++} -Endzustand als der Kanal - + Dies folgt allein schon aus der Isospininvarianz (s. Tabelle 7.1.). Das 2^{0} zerfällt nur zu 1/3 in geladene Teilchen und es wird bei den wichtigsten Ein-Teilchen-Austausch-Prozessen nur 1/3 so häufig erzeugt wie das 2^{++} (I = 1 -Austausch im t-Kanal, I = 1/2 im s- und I = 3/2 im u-Kanal). Außer bei exotischem Austausch und bei I = 1/2-Austausch im u-Kanal, der nur zum 2^{0} beiträgt, wird nur bei I = 3/2 im s-Kanal mehr 2^{0} als 2^{++} erzeugt (um 4/3). Da die Amplitudenverhältnisse unterschiedliches Vorzeichen haben, ist es bei Interferenz mehrerer Beiträge auch möglich, daß das Wirkungsquerschnittsverhältnis kleiner oder größer als 1/9 ist. Das Borntermmodell sagt ein Verhältnis von 1/9 voraus.

7.1 $\therefore^{++} - \therefore^{0}$ -Interferenz

Die Anpassung eines kleinen Anteils mit dem maximum-likelihood-Verfahren ist wesentlich schwieriger als die eines großen. Ein kleiner Anteil reagiert empfindlicher auf eventuelle falsche Annahmen über die Form des Massenspektrum. Die stärkste unüberprüfte Annahme, die in die Wahrscheinlichkeitsdichte (Gl. 5.1.1)eingeht, ist die, daß keine Interferenz auftritt. Bei niedrigen Energien überlappen sich \mathcal{L}^{++} und \mathcal{L}^{0} im Dalitzdiagramm sehr stark. In der Photoproduktion wurde von D.Lüke (LÜK 72) festgestellt, daß eine merklich Interferenz zwischen \mathcal{L}^{++} und \mathcal{L}^{0} vorhanden ist und daß die Berücksichtigung bei der Anpassung den \mathcal{L}^{0} -Anteil beeinflußt, nicht dagegen den \mathcal{L}^{++} -Anteil. Wir haben daher zusätzlich den Interferenzterm

$$I = 2 \alpha \qquad e^{\alpha_{\Lambda} + + \alpha_{\Lambda} 0} \qquad \text{Re} \left(T_{++} T_{0}^{\star}\right) / N_{\Lambda}$$
(2)

in Gl. 5.1.1 berücksichtigt. $\rm T_{++}$ und $\rm T_{_{O}}$ sind komplexe Breit-Wigner-Amplituden:

$$T_{++} = \frac{m_{p} + W_{-}(\cos \frac{H_{-}) T_{-}(m_{p} +)}{q(p +)}}{q(p +)} \cdot \frac{1}{m_{p}^{2} - m_{p}^{2} + -im_{-}^{2}(m_{p} +)} (3)$$

$$T_{o} = \frac{m_{p} - 1}{q (p - 1)} + \frac{e^{i}}{m_{a}^{2} - m_{p}^{2} - m_{a}^{2}} (m_{p - 1})$$
(4)

Zur Definition von \exists , und q siehe Anhang B, ∞ und \exists sind anzupassende Parameter. \vdots ist die relative Phase zwischen \exists^0 und \exists^{++} und \exists ist eine Zahl zwischen O und 1, die die Stärke der Interferenz mißt. Der Parameter \circ ist erforderlich, weil wir über die Spins der ein- und auslaufenden Teilchen und einen Teil der Variablen, die das System vollständig beschreiben, mitteln. Durch diese Mittelung kann es sein, daß die Interferenz sich nur zum Teil im Dalitzdiagramm auswirkt. Es ist zu berücksichtigen, daß das Integral des Interferenzterms über das Dalitzdiagramm nicht verschwindet, daher muß die Normierungsbedingung $\exists_{ijk} = 1$ ersetzt werden durch

n
$$\therefore \circ_{k} + \sum_{i=1}^{n} \int \int I dm_{p\pi^{+}}^{2} dm_{p\pi^{-}}^{2} = n$$
 (5)

(n = Zahl der Ereignisse, D (W_i) = erlaubtes Gebiet des Dalitzdiagramms für das i-te Ereignis).

Bei einem Vergleich der Anpassungen mit und ohne Interferenz zeigt sich, daß alle Anteile bis auf den 2⁰ -Anteil nahezu unverändert bleiben. Die Anderung des 3⁰-Anteils wird ungefähr gerade durch den Zusatzterm in Gl. 5 kompensiert. Die Anpassung ohne Interferenz beschreibt also denjenigen Teil des 3⁰ -Wirkungsquerschnitts korrekt, der nicht weg- oder dazu- "interferiert" wird.

Die erhaltenen Interferenzparameter sind in Abb. 7.1 c + d dargestellt. Wir finden innerhalb der Fehler Übereinstimmung mit den Werten bei $Q^2 = 0$ (LüK 72). Für W > 1.8 GeV ist eine Bestimmung der Interferenzparameter nicht mehr möglich, da das Überlappungsgebiet klein ist.

Die statistische Signifikanz für das Auftreten einer Interferenz ist schwach. Zwar ist durchweg um drei Standardabweichungen größer als 0, jedoch wird die Form der Massenverteilungen nicht wesentlich verbessert. Das χ^2 wird nur etwa um soviel verbessert, wie zu erwarten ist, wenn irgend zwei Parameter zusätzlich eingeführt werden. Wir geben im folgenden für den Bereich kleiner W beide Ergebnisse, mit und ohne Interferenz, an.

7.2 Der Wirkungsquerschnitt

In Abb. 7.1a ist der Wirkungsquerschnitt der Reaktion $v_V p = -\frac{4}{2}\sqrt{0}$ als Funktion von W dargestellt. Wir finden ein Maximum zwischen 1.5 und 1.7 GeV und einen Abfall zu höheren Energien. In Abb. 7.1b ist das Verhältnis R₂ der Wirkungsquerschnitte von $-\frac{4}{2}\sqrt{0}$ zu $-\frac{4}{2}\frac{4}{2}$ dargestellt, das in diesem Energiebereich größer als 1/9 ist. Das gleiche Verhalten wurde auch in der Photoproduktion beobachtet und von D. Lüke (LOK 72) mit der Anregung der D₁₃ (1520)-Resonanz im s-Kanal erklärt. Diese Amplitude allein liefert zwar ebenfalls R₂ = 1/9, aber sie interferiert mit den Borntermen, und zwar mit verschiedenen Vorzeichen für Λ^0 und Λ^{++} . Die beobachtete Phase ; zwischen Λ^0 und Λ^{++} stimmt mit dieser Erklärung überein.

Wenn wir uns das Q²-Verhalten in diesem Energiebereich ansehen (Abb.7.2), finden wir einen Anstieg des ℓ^0 / ℓ^{++} -Verhältnisses mit Q². (Dieser Q²-W-Bereich ist der einzige, in dem das Λ^0 deutlich im Massenhistogramm hervortritt, siehe Abb. 5.2). Das kann in diesem Bild durch das Ansteigen des minimalen Impulsübertrages t_{min} mit Q² erklärt werden, wodurch periphere Reaktionen im Vergleich zu s-Kanal-Anregung unterdrückt werden. Eine quantitative Bestimmung der möglichen D₁₃-Anregung kann mit der vorhandenen Statistik nicht gemacht werden.

In einem Zählerexperiment bei DESY (DAM 72) wurde das $2^{O}/2^{++}$ -Verhältnis im W-Bereich von 2.1 bis 2.6 GeV, bei Q² von 0.25 bis 0.7 GeV² und bei festem Wert von t - t_{min} = 0.04 GeV² gemessen. Das Ergebnis ist in Abb. 7.1 und 7.2 eingezeichnet. Unsere Ergebnisse stimmen damit überein. Damit ergibt sich auch in diesem W-Bereich ein Anstieg von R, mit Q². Die Autoren Damman et al. (DAM 72) stellen jedoch fest, daß auch hier der Effekt auf den Anstieg von t_{min} zurückgeführt werden kann; bei einem Vergleich mit der Photoproduktion bei konstantem t ergibt sich keine Anderung von R, (siehe auch BRS 73).

8. ZUSAMMENFASSUNG

In dieser Arbeit wurde der Reaktionskanal $\gamma_V p \rightarrow p \pi^+ \pi^-$ und die darin enthaltenen Reaktionen $\gamma_V p \rightarrow p \pi^+ \pi^-$ (nicht-resonant), $\gamma_V p \rightarrow \pi^- \pi^+ \mu$ und $\gamma_V p \rightarrow \pi^+ \pi^0$ im kinematischen Bereich 0.3 < Q² < 1.4 GeV², W < 2.8 GeV untersucht und mit der Photoproduktion verglichen. Generell finden wir einen stetigen Übergang von der Photozur Elektroproduktion, ohne Sprünge von Q² = 0 zu kleinen Q² > 0, wie sie etwa bei den relativen topologischen Wirkungsquerschnitten (J00 75) oder beim differentiellen Wirkungsquerschnitt der Reaktion $\gamma_V p \rightarrow \pi^0 p$ (BRS 75) beobachtet worden sind. Die Ergebnisse sind folgende: - Der Kanalwirkungsquerschnitt zeigt in diesem Q²-Bereich einen ähn-

- lichen Verlauf mit W wie in der Photoproduktion, nämlich einen schnellen Anstieg von der Schwelle bis W ≃ 1.6 GeV, danach einen langsamen Abfall. Er fällt bei allen W stärker mit Q² ab als der totale Wirkungsquerschnitt für virtuelle Photonen.
- Der relative Anteil des nicht-resonanten Beitrags zum Kanal steigt mit Q². Sein Beitrag zum totalen Wirkungsquerschnitt wächst mit Q². Damit ist diese Reaktion möglicherweise ein Prototyp für diejenigen Prozesse, die den Wirkungsquerschnitt im tief-inelastischen Bereich aufbauen. Der Endzustand wurde auf Eigenschaften untersucht, die im tief-inelastischen Gebiet gemessen oder von theoretischen Modellen vorhergesagt werden. Wir finden keine Anzeichen für ein Ansteigen des π^+ / π^- -Verhältnisses in Vorwärtsrichtung. Der mittlere quadratische Transversalimpuls negativer Pionen aus dieser Reaktion ist mit(418[±] 23) MeV größer als der inklusiver π^- (J00 75), der wiederum bei unserem Q² größer als in der Photoproduktion ist.
- Die Reaktion $\gamma_V p \rightarrow \pi^- \Delta^{++}$ läßt sich phänomenologisch durch das eichinvariante Borntermmodell mit einer durch die Vektordominanz gegebenen Q²-Abhängigkeit beschreiben. Insbesondere wird der steile Anstieg des Wirkungsquerschnitts an der Schwelle durch den Kontaktterm erklärt. Bei höheren Energien sind Absorptionskorrekturen notwendig. Der Wirkungsquerschnitt fällt im Bereich 1.7 < W < 2.8 GeV mit der effektiven Photonenergie K wie $K^{-(2.7 \pm 0.2)}$. Die Erzeugungswinkelverteilung ist an der Schwelle flach und bildet mit zunehmendem W ein stärker werdendes Vorwärtsmaximum aus. Der differentielle Wirkungsquerschnitt d σ /dt fällt für 2.0 < W < 2.8 GeV

wie e^{At} ab mit $A = (4.2^+ 0.8) \text{ GeV}^{-2}$. Die Zerfalls- und Polarisationswinkelverteilung wird mit Hilfe der Dichtematrix analysiert. Die gemessenen Dichtematrixelemente sind im allgemeinen in guter Übereinstimmung mit dem GIOPE-Modell.

- Die Q²-Abhängigkeit des $\pi^{-} \Delta^{++}$ -Wirkungsquerschnitts an der Schwelle wird nach einem Modell von Adler und Weisberger dazu benutzt, um den Axialvektorformfaktor des Nukleons zu messen. Er läßt sich bis Q² = 1.4 GeV² durch einen Dipolverlauf mit einer Masse von m_A = (1.18[±] 0.07) GeV beschreiben. Das Ergebnis ist in sehr guter Übereinstimmung mit Messungen des Axialvektorformfaktors aus der Einfach-Pion-Elektroproduktion, während in Neutrinoexperimenten ein niedrigerer Wert von m_A gefunden wurde.
- Der $\pi^+ \Lambda^0$ -Wirkungsquerschnitt soll nach dem Borntermmodell um einen Faktor 1/9 kleiner in diesem Kanal sein als $\pi^- \Lambda^{++}$. Der gefundene Wirkungsquerschnitt ist im allgemeinen damit verträglich, nur im W-Bereich von 1.5 bis 1.7 GeV ist das Λ^0 / Λ^{++} -Verhältnis höher und steigt mit Q² an. Dieses Verhalten kann auf den Einfluß von s-Kanal-Resonanzen zurückzuführen sein.

ANHANG A

Breit-Wigner-Funktionen, Verteilungen von cos ${}^{ m C}_{ m H}$

Die Funktionen BW_{μ} und BW_{λ} , die bei der Ereignisproduktion in STYX (Abschn. 3.7, 3.8) und bei der maximum-likelihood-Anpassung (Abschn. 5.1) auftreten, entsprechen dem "enhancement factor" bei Jackson (JAC 64), der, multipliziert mit der Phasenraumdichte, das Massenspektrum beschreibt:

$$BW_{r}(m) = \frac{m}{q} \frac{\Gamma_{r}(m)}{(m_{r}^{2} - m^{2})^{2} + m_{r}^{2} \Gamma_{r}^{2}(m)} \quad (r = \Delta \text{ oder } \rho) \quad (1)$$

q ist der Impuls der Zerfallsteilchen mit Massen m₁, m₂ im Schwerpunktsystem der Resonanz:

$$q(m^2, m_1^2, m_2^2) = \sqrt{\frac{(m^2 + m_1^2 - m_2^2)^2}{4m^2} - m_1^2}$$
 (2)

Für das ϵ wird als massenabhängige Breite $\Gamma_{_{
m O}}$ (m) benutzt

$$\Gamma_{0}(m) = \Gamma_{0} \cdot \left(\frac{q}{q_{0}}\right)^{3} \cdot \frac{2 q_{0}^{2}}{q^{2} + q_{0}^{2}}$$

$$(q_{0} = q (m_{r}^{2}, m_{1}^{2}, m_{2}^{2}))$$
(3)

Weiter wird beim ρ die Formel 1 mit dem Ross-Stodolsky-Faktor (ROS 66)

$$\left(\frac{m}{m_{c}}\right)^{n_{RS}}$$

multipliziert. In STYX wird n_{RS} = 4 benutzt. Als A-Breite benutzen wir

$$\Gamma_{\Delta}(m) = \Gamma_{\Delta} \frac{q}{q_0} \cdot \frac{m_{\Delta}}{m} \cdot \frac{u_1(qr)}{u_1(q_0r)}$$

mit $u_1(x) = \frac{1}{2x^2} \cdot (\frac{2x^2 + 1}{4x^2} \ln (4x^2 + 1) - 1)$ und $r = 2.2 \text{ GeV}^{-1}$

Diese Form stimmt bis m = 1.42 GeV mit phaseshift-Messungen überein (WOL 69).

Die Polarwinkelverteilungen des Zerfalls bezüglich der Helizitätsachse lauten für das $-\epsilon^0$

$$W(\cos \circ H_{\Gamma}) = \frac{3}{4} (1 - r_{00}^{04} + (3 r_{00}^{04} - 1) \cos^2 H_{C}) (0 \le r_{00}^{04} \le 1),$$

für das 🗠 ++

$$\mathbb{W}(\cos \circ_{H_{\Delta}}) = (\frac{1}{4} + r_{33}^{04} + (\frac{3}{4} - 3 r_{33}^{04}) \cos^2 \theta_{H_{\Delta}}) \quad (0 \le r_{33}^{04} \le \frac{1}{2}).$$

Der Zusammenhang zwischen den Zerfallswinkeln und den Massenvariablen ergibt sich aus der folgenden Formel:

$$\cos e_{H_{\Delta}} = \frac{m_{p\pi}^2 - m_p^2 - m_{\pi}^2 - 2 E_p E_{\pi}}{2p_p p_{\pi}}$$

Darin sind E_p und p_p bzw. E_{π^-} und p_{π^-} Energie und Impuls des Protons bzw. des π^- im (p π^+) - Ruhesystem:

$$E_{p} = \frac{m_{p\tau^{+}}^{2} + m_{p}^{2} - m_{\pi^{+}}^{2}}{2m_{p\pi^{+}}}, \qquad p_{p} = \sqrt{E_{p}^{2} - m_{p}^{2}},$$
$$E_{\pi^{-}} = \frac{W^{2} - m_{p\pi^{+}}^{2} - m_{\pi^{-}}^{2}}{2m_{p\pi^{+}}}, \qquad p_{\pi^{-}} = \sqrt{E_{\pi^{-}}^{2} - m_{\pi^{-}}^{2}}.$$

ANHANG B

Herleitung des maximum-likelihood-Ansatzes

Gl. 5.1.1 + 2 ist die Wahrscheinlichkeitsdichte im Dalitzdiagramm für ein festes W. Die tatsächliche Verteilung der Ereignisse aus einem endlichen Q^2 -W-Intervall wie etwa in Abb. 5.6 ergibt sich jedoch durch Integration von 5.1.1 über dieses Intervall, gewichtet mit einer Wahrscheinlichkeitsdichte f (Q^2 , W). Die Tatsache, daß f (Q^2 , W) nicht in die likelihood-Funktion eingeht, wird im folgenden allgemein hergeleitet. Die gleiche Methode läßt sich auch für andere Zwecke verwenden, z.B. wenn man eine Funktion an die Verteilung eines Impulsübertragsquadrates t anpassen will, ohne die Verteilung aller der Variablen zu betrachten, von denen die kinematischen Grenzen von t abhängen (s.Abschn. 5.3).

Gegeben sei eine normierte Wahrscheinlichkeitsdichte w (\vec{x}, \vec{y}) im Definitionsbereich $\vec{x} \in X, \vec{y} = Y(\vec{x})$, die sich in folgender Weise faktorisieren läßt:

$$w(\vec{x}, \vec{y}) = \frac{1}{N_{x}} f(\vec{x}) \cdot \sum_{k=1}^{K} \alpha_{k} \frac{g_{k}(\vec{y}, \vec{\beta})}{N_{k}(\vec{x}, \vec{\beta})}$$

mit

$$\vec{c}, \vec{\beta} = anzupassende Parameter$$

$$N_{k}(\vec{x}, \vec{\beta}) = \int g_{k}(\vec{y}, \vec{\beta}) d\vec{y}$$

$$Y(\vec{x})$$

$$N_{x} = \int_{X} f(\vec{x}) d\vec{x}$$

 $\sum_{k=1}^{K} \alpha_k = 1 \qquad ("Anteile")$

Man überzeugt sich leicht, daß w normiert ist. Es soll also die Ver teilung in \vec{x} nicht von den Parametern $\vec{\alpha}$ und $\vec{\beta}$ abhängen, und die Form der Verteilung in \vec{y} soll nicht von \vec{x} abhängen, sondern nur die Grenzen des Definitionsbereiches Y (\vec{x}) und damit die Normierung N_k. In unserem Fall entspricht $\vec{x} \quad Q^2$ und W, \vec{y} den Dalitzvariablen und Y (\vec{x}) dem erlaubten Bereich im Dalitzdiagramm, dessen Grenzen von W abhängen. Diese Herleitung beschränkt sich jedoch nicht auf diesen Fall, nicht einmal darauf, daß Anteile α_k anzupassen sind, da man K = 1 setzen kann. Für eine Stichprobe von n Ereignissen mit Meßwerten \vec{x}_i, \vec{y}_i (i = 1,..., n) lautet nun die logarithmische likelihood-Funktion

$$l(\vec{\alpha}, \vec{\beta}) = \sum_{i=1}^{n} lnw(\vec{x}_{i}, \vec{y}_{i}) =$$

$$= \sum_{i=1}^{n} lnf(\vec{x}_{i}) - nlnN_{x} + \sum_{i=1}^{n} ln\sum_{k=1}^{K} \alpha_{k} \frac{g_{k}(\vec{y}_{i}, \vec{\beta})}{N_{k}(\vec{x}_{i}, \vec{\beta})}$$

Die ersten beiden Terme dieses Ausdrucks hängen nicht von \vec{a} und \vec{e} ab, man braucht sie also bei der Suche des Maximums von 1 nicht zu berücksichtigen. Da im 3. Term f (\vec{x}) nicht vorkommt, braucht man diese Funktion also bei der Bestimmung der besten Schätzung von \vec{a} und \vec{e} nicht zu kennen.

Man muß diese Funktion jedoch kennen, wenn man experimentelle und angepaßte theoretische Verteilungen vergleichen will, wie in Abb. 5.1 bis 5.5 geschehen. Für diesen Zweck wurde f (W) näherungsweise durch Bildung eines Histogramms ermittelt. ANHANG C

Dichtematrixelemente des \triangle^{++} als Momente von Winkelfunktionen Durch Entwicklung der Wahrscheinlichkeitsdichte W (cos \ominus , ϕ , ϕ) (Gl. 6.3.4) nach orthogonalen Funktionen können die r_{ik} als Erwartungswerte gewisser Winkelfunktionen F (\ominus , ϕ , ϕ) dargestellt werden. Wir berechnen diese Erwartungswerte durch Bildung des Mittelwertes mit Hilfe der Gewichte aus dem channel-likelihood-Verfahren. Die Formeln für Mittelwert und Fehler sind

$$\langle F \rangle = \frac{\Sigma w_{i}F_{i}}{\Sigma w_{i}} \qquad (w_{i} = Gewicht, F_{i} = Wert von F für das i-te Ereignis)$$

$$\sigma^{2}(\langle F \rangle) = \frac{\Sigma w_{i}^{2}}{(\Sigma w_{i})^{2} - \Sigma w_{i}^{2}} \left(\frac{\Sigma w_{i} F_{i}^{2}}{\Sigma w_{i}} - (\frac{\Sigma w_{i} F_{i}}{\Sigma w_{i}})^{2} \right)$$

Im einzelnen ist:

$$\begin{aligned} r_{33}^{04} &= \frac{7}{8} - \frac{15}{8} \cos^{2} \circ \\ r_{11}^{04} &= \frac{1}{2} - r_{33}^{04} \\ \text{Re } r_{31}^{04} &= -\frac{5\sqrt{3}}{8} \sin^{2} \circ \cos \varphi \\ \text{Re } r_{3-1}^{04} &= -\frac{5\sqrt{3}}{8} \sin^{2} \circ \cos 2 \varphi \\ r_{11}^{1} &= -\frac{3}{4\epsilon} (-\cos 2 \phi + 5 < \cos^{2} \theta \cos 2 \phi) \\ r_{33}^{1} &= -\frac{1}{4\epsilon} (7 < \cos 2 \phi) - 15 < \cos^{2} \theta \cos 2 \phi \\ \text{Re } r_{31}^{1} &= \frac{5\sqrt{3}}{4} \frac{1}{\epsilon} \sin^{2} \theta \cos 2 \varphi \cos 2 \phi \\ \text{Re } r_{31}^{1} &= \frac{5\sqrt{3}}{4} \frac{1}{\epsilon} \sin^{2} \theta \cos 2 \varphi \cos 2 \phi \\ \text{Re } r_{3-1}^{1} &= \frac{5\sqrt{3}}{4} \frac{1}{\epsilon} \sin^{2} \theta \cos 2 \varphi \cos 2 \phi \\ \text{Im } r_{3-1}^{2} &= -\frac{5\sqrt{3}}{4} \frac{1}{\epsilon} \sin^{2} \theta \sin 2 \psi \sin 2 \phi \\ \text{Im } r_{3-1}^{2} &= -\frac{5\sqrt{3}}{4} \frac{1}{\epsilon} \sin^{2} \theta \sin 2 \psi \sin 2 \phi \\ r_{51}^{5} &= \frac{1}{\sqrt{2\epsilon} (\epsilon+1)}, \frac{3}{4} (-\cos \phi + 5 \cos^{2} \theta \cos \phi) \\ r_{53}^{5} &= -\frac{1}{\sqrt{2\epsilon} (\epsilon+1)}, \frac{5\sqrt{3}}{4} \sin^{2} \theta \cos 2 \psi \cos \phi \\ \text{Re } r_{3-1}^{5} &= -\frac{-1}{\sqrt{2\epsilon} (\epsilon+1)}, \frac{5\sqrt{3}}{4} \sin^{2} \theta \cos^{2} \phi \cos \phi \\ \text{Re } r_{3-1}^{5} &= -\frac{-1}{\sqrt{2\epsilon} (\epsilon+1)}, \frac{5\sqrt{3}}{4} \sin^{2} \theta \cos^{2} \phi \cos \phi \\ \text{Re } r_{3-1}^{5} &= -\frac{-1}{\sqrt{2\epsilon} (\epsilon+1)}, \frac{5\sqrt{3}}{4} \sin^{2} \theta \cos^{2} \phi \cos \phi \\ \text{Re } r_{3-1}^{5} &= -\frac{-1}{\sqrt{2\epsilon} (\epsilon+1)}, \frac{5\sqrt{3}}{4} \sin^{2} \theta \cos^{2} \phi \cos \phi \\ \text{Re } r_{3-1}^{5} &= -\frac{-1}{\sqrt{2\epsilon} (\epsilon+1)}, \frac{5\sqrt{3}}{4} \sin^{2} \theta \cos^{2} \phi \cos \phi \\ \text{Re } r_{3-1}^{5} &= -\frac{-1}{\sqrt{2\epsilon} (\epsilon+1)}, \frac{5\sqrt{3}}{4} \sin^{2} \theta \cos^{2} \phi \cos \phi \\ \text{Re } r_{3-1}^{5} &= -\frac{-1}{\sqrt{2\epsilon} (\epsilon+1)}, \frac{5\sqrt{3}}{4} \sin^{2} \theta \cos^{2} \phi \cos \phi \\ \text{Re } r_{3-1}^{5} &= -\frac{-1}{\sqrt{2\epsilon} (\epsilon+1)}, \frac{5\sqrt{3}}{4} \sin^{2} \theta \cos^{2} \phi \cos \phi \\ \text{Re } r_{3-1}^{5} &= -\frac{-1}{\sqrt{2\epsilon} (\epsilon+1)}, \frac{5\sqrt{3}}{4} \sin^{2} \theta \cos^{2} \phi \cos \phi \\ \text{Re } r_{3-1}^{5} &= -\frac{-1}{\sqrt{2\epsilon} (\epsilon+1)}, \frac{5\sqrt{3}}{4} \sin^{2} \theta \cos^{2} \phi \cos^{2} \phi \cos \phi \\ \text{Re } r_{3-1}^{5} &= -\frac{-1}{\sqrt{2\epsilon} (\epsilon+1)}, \frac{5\sqrt{3}}{4} \sin^{2} \theta \cos^{2} \phi \cos^{2} \phi \cos^{2} \phi \\ \text{Re } r_{3-1}^{5} &= -\frac{-1}{\sqrt{2\epsilon} (\epsilon+1)}, \frac{5\sqrt{3}}{4} \sin^{2} \theta \cos^{2} \phi \cos^{2} \phi \cos^{2} \phi \\ \text{Re } r_{3-1}^{5} &= -\frac{-1}{\sqrt{2\epsilon} (\epsilon+1)}, \frac{5\sqrt{3}}{4} \sin^{2} \theta \cos^{2} \phi \cos^{2} \phi \\ \text{Re } r_{3-1}^{5} &= -\frac{-1}{\sqrt{2\epsilon} (\epsilon+1)}, \frac{5\sqrt{3}}{4} \sin^{2} \theta \cos^{2} \phi \cos^{2} \phi \cos^{2} \phi \\ \text{Re } r_{3-1}^{5} &= -\frac{-1}{\sqrt{2\epsilon} (\epsilon+1)}, \frac{5\sqrt{3}}{4} \sin^{2} \theta \cos^{2} \phi \cos^{2} \phi \\ \text{Re } r_{3-1}^{5} &= -\frac{-1}{\sqrt{2\epsilon} (\epsilon+1)}, \frac{5\sqrt{3}}{4} \sin^{2} \theta \cos^{2} \phi \cos^{2} \phi \\ \text$$

- 64 -
$$Im r_{31}^{6} = \frac{1}{\sqrt{2\epsilon(\epsilon+1)}}, \frac{5:\overline{3}}{4} < \sin 20 \quad \sin \varphi \sin \varphi >$$

$$Im r_{3-1}^{6} = \frac{1}{\sqrt{2\epsilon(\epsilon+1)}}, \frac{5:\overline{3}}{4} < \sin^{2}0 \quad \sin 2\varphi \sin \varphi >$$

$$Sp r^{1} = 2 (r_{11}^{1} + r_{33}^{1}) = -\frac{2}{\epsilon} < \cos 2 : >$$

$$Sp r^{5} = 2 (r_{11}^{5} + r_{33}^{5}) = \frac{2}{\sqrt{\epsilon(\epsilon+1)}} < \cos : >$$

٠.

•

•

•

DANKSAGUNGEN

Ich danke Herrn Prof. M.W. Teucher sowie Herrn Prof. H. Spitzer und Herrn Dr. G. Wolf, daß sie mir die Teilnahme an diesem Experiment ermöglicht haben.

Allen am Experiment Beteiligten von den DESY-Gruppen F1 und F 52 und den Universitäten Hamburg und Glasgow danke ich für gute Zusammenarbeit und ständige Hilfsbereitschaft. Für wertvolle Anregungen und Hinweise danke ich Herrn Prof. P. Söding.

Ich danke allen, die beim Aufbau und Betrieb des Experiments geholfen haben. Mein besonderer Dank gilt den Mitarbeitern, die stets sorgfältig und hilfsbereit beim Scannen und Messen der Filme mitgewirkt haben. Für freundliche Unterstützung danke ich den Mitarbeitern des DESY-Rechenzentrums.

Nicht zuletzt danke ich Frau H. Siegner für die Anfertigung der Zeichnungen und Frau Seidensticker für das Schreiben der Arbeit.

· LITERATURVERZEICHNIS

АВВННМ	Aachen-Berlin-Bonn-Hamburg-Heidelberg-München-Kollaboration,							
	Phys. Rev. <u>175</u> , 1669 (1968) und Phys. Letters <u>27B</u> , 474 (1968)							
ADL68	S.L. Adler, W.I. Weisberger, Phys. Rev. <u>169</u> , 1392 (1968)							
AMA72	E. Amaldi et al., Phys. Letters <u>41B</u> , 216 (1972). Wir haben							
	die Berechnung des Formfaktors aus diesen Daten von B.J. Read							
	(REA74) benutzt.							
BAR72	A. Bartl, W.Majerotto, D. Schildknecht, DESY 72/4 (1972)							
BAR76	A. Bartl, Seminarvortrag, Hamburg 1976							
BEN72	G. Benfatto et al., Nucl. Phys. <u>B50</u> , 205 (1972); Nuovo Cimento							
	14A, 425 (1973)							
BEN76	C. Benz, Diplomarbeit, Hamburg 1976							
BER72	F.A. Berends, R. Gastmans, Phys. Rev. <u>D5</u> , 204 (1972)							
BL071	Der experimentunabhängige Teil des INDEX-Systems stammt von							
	V. Blobel							
BRA73	P. Brauel et al., Phys. Letters <u>45B</u> , 389 (1973)							
BRS73	F. Brasse, Vortrag auf dem Int. Symp. on Electron and Photon							
	Interactions at High Energies, Bonn 1973							
BRS75	F. Brasse et al., Phys. Letters <u>58B</u> , 467 (1975) und DESY 75-23							
BUL67	F. Bulos et al., SLAC Report No. 74 (1967)							
CER67	CERN-TC-Library							
CHE57	G.F. Chew, M.L. Goldberger, F.E. Low, Y. Nambu, Phys. Rev. 106,							
	1345 (1957)							
COL73	P.V. Collins et al., Phys. Letters <u>44B</u> , 183 (1973)							
CON74	P.E. Condon, P.L. Cowell, Phys. Rev. D9, 2558 (1974)							
DAM72	I. Damman et al., DESY 72/70 (1972)							
DAU72	H. Dau, Interner Bericht DESY F1-72/6							
DAU73	H. Dau, Diplomarbeit, Hamburg 1973							
DEL75	A. Del Guerra et al., Daresbury report DL/P242 (1975)							
	Wir haben die Axialvektor-Formfaktorwerte benutzt, die mit							
	dem Modell von Dombey und Read gewonnen wurden							
DIT70	P. Dittmann, Interner Bericht DESY R2-70/1 (1970)							
DIT73	P. Dittmann, Dissertation, Interner Bericht DESY F1-73/3 (1973)							
D0M72	N. Dombey, B.J. Read, DESY 72/44 und Nucl. Phys. <u>B60</u> ,65 (1973)							
DRE70	G. Drews, 'POLLUX', Programm zur Entscheidung von kinematischen							
	Hypothesen							
DRE71	G. Drews, Dissertation, Interner Bericht DESY F1-71/7							
ECK72a	V. Eckardt, HJ. Gebauer, DESY 72/2 (1972)							

,

٠.

•.

- ECK7? V. Eckardt et al., DESY 72/67 (1972)
- EMA70 E. Maier-Reimer, Diplomarbeit, Hamburg 1970
- FAN57 U. Fano, Rev. Mod. Phys. 29, 75 (1957)
- FRA69 H. Fraas, D. Schildknecht, Nucl. Phys. B14, 543 (1969)
- FUR69 G. Furlan et al., Nuovo Cimento <u>62A</u>, 519 (1969); <u>70A</u>, 247 (1970); Springer Tracts in Modern Physics 62, 118 (1972)
- GAS66 S. Gasiorowicz, Elementary Particle Physics, New York 1966
- GOT64 K. Gettfried, J.D. Jackson, Nuovo Cimento 33, 309 (1964)
- GPE73 D. Greubel, Diplomarbeit, Hamburg 1973
- HAN64 L. Hand, Phys. Rev. 129, 1834 (1964)
- HIL72 B. Hildebrandt, Interner Berich DESY R2-73/1 (1973)
- IOS75 I.O. Skillicorn, private Mitteilung (1975)
- JAC64 J.D. Jackson, Nuovo Cimento 34, 1644 (1964)
- JAM71 F. James, M. Roos, CERN Computer 6000 Series Program Library D506, D516 (1971)
- J0074 P. Joos et al., Beitrag zur XVII. International Conference on High Energy Physics, London 1974 und Phys. Letters <u>528</u>, 481 (1974)
- J0075 P. Joos et al., Beiträge zum International Symposium on Lepton and Photon Interactions at High Energies, Stanford 1975
- J0076 P. Joos et al., p-Produktion by Virtual Photons, wird veröffentlicht in Nucl. Phys. 1976
- KRA76 W. Kraus, Diplomarbeit, Hamburg 1976
- LAD69 A. Ladage, Vortrag auf dem International Seminar on Streamer Chamber Technology, Dubna 1969
- LAD76 A. Ladage, private Mitteilung und Vortrag auf der Konferenz über Experimente bei PETRA, Frascati 1976
- LEV75 P. Levi, W. Schmidt, Beitrag zum Int. Symp. on Lepton and Photon Interactions at High Energies, Stanford 1975
- LOC66 M.P. Locher, W. Sandhas, Z. Physik 195, 461 (1966)
- LOK71 D. Lüke, P. Söding, Springer Tracts in Modern Physics 59 (1971)
- LÜK72 D. Lüke, Dissertation, Interner Bericht DESY F1-72/7 (1972)
- LYT70 D.H. Lyth, An Introduction to Current Algebra, Oxford 1970
- MEI73 W. Meincke, Diplomarbeit, Hamburg 1973
- MEY73 H. Meyer, Vortrag auf dem Int. Symp. on Electron and Photon Interactions of High Energies, Bonn 1973

- MOT69 L.W. Mo, Y.S. Tsai, Rev. Mod. Phys. 41, 205 (1969)
- NAG74 H. Nagel, K. Wacker, STYX-Programmbeschreibung, unveröffentlicht
- NYB69 P. Nyborg, Kinematics of Multiparticle Final States in High Energy Reactions, Department of Mathematics, Agricultural College of Norway, Vollebek, Norway (1969)
- PER75 D.H. Perkins, Vortrag auf dem Int. Symp. on Lepton and Photon Interactions at High Energies, Stanford 1975
- RAB74 E. Rabe, Dissertation, Interner Bericht DESY F1-74/2 (1974)
- REA74 B.J. Read, Nucl. Phys. B74, 482 (1974)
- ROS66 M. Ross, L. Stodolsky, Phys. Rev. 149, 1172 (1966)
- ROY66 R.J. Royston, CERN/TC/PROG66-9
- SAN74 C. Sander, Diplomarbeit, Hamburg 1974, und Interner Bericht DESY F1-75/03 (1975)
- SBT72 SLAC-Berkeley-Tufts-Kollaboration, Phys. Rev. D5, 545 (1972)
- SCA75 M. Scarr, private Mitteilung (1975)
- SCH70 P. Schilling, Interner Bericht DESY R2.70/3 (1970)
- SCH73 K. Schilling, G. Wolf, Nucl. Phys. B61, 381 (1973)
- SJY73 S.J. Yellin, private Mitteilung
- SÖD75 P. Söding, private Mitteilung (1975)
- STE75 S. Stein et al., SLAC-PUB-1528 (1975)
- STI64 P. Stichel, M. Scholz, Nuovo Cimento 34, 1381 (1964)
- TAY75 R.E. Taylor, Vortrag auf der International Conference on High Energy Physics in Palermo (1975) und SLAC-PUB-1613 (1975)
- TR066 W.P. Trower, UCRL-2426 und UCRL-11647
- WAC73 K. Wacker, Diplomarbeit, Interner Bericht DESY F1-73/9 (1973)
- WDS74 W.D. Schlatter schrieb das Programm zur Channel-Likelihood-Analyse
- WOL69 G. Wolf, Phys. Rev. 182, 1538 (1969)
- WOL74 G. Wolf, private Mitteilung
- WOL75 G. Wolf, Vortrag auf dem Int. Symp. on Lepton and Photon Interactions at High Energies, Stanford 1975

Elektronenfluß, Anzahlen von Bildern und Ereignissen und Nachmeßraten

Lauf	Integrier= ter Elek= tronenfluß	Bilder	geme <u>s</u> sene Erei <u>g</u>	akze <u>p</u> tierte Ereig	mit Spurzahl .			An= teil 2- Spur	Nachmeßraten für Spurzahl						
			nisse	nisse	≧ ²	3,4	5 =	Film	1	2	3	4	5	6	· 7 =
1*	3.08.10 ¹¹	57508	6410	3808	1777	1906	125	24.0	1.0	1.014	1.167	1.06	1.38	1.09	1.83
2*	3.98'10 ¹¹	38192	4868	3349	2073	1153	123	100	1.03	1.02	1.083	1.062	1.29	1.157	1.71
3*	4.84'10 ¹¹	22114	9885	7577	5508	1879	190	100	1.20	1.029	1.05	1.08	1.22	1.25	1.33
4 **		33984	3803	2683	1885	735	63	100							
5	20.88.1011	207242	36252	29490	14821	13804	865	31.3	1.020	1.009	1.033	1.027	1.063	1.088	1.108

* Die Daten für Lauf 1-3 stammen von E.Rabe (RAB74)

•

.

+* Für Lauf 4 wurden Elektronenfluß und Nachmeßrate nicht bestimmt, da diese Daten nicht für die Bestimmung absoluter Wirkungsquerschnitte herangezogen wurden.

Tabelle 2.1

W(GeV)	1.1-1.2	1.2-1.3	1.3-1.4	1.4-1.5	1.5-1.6	1.6-1.7	1.7-1.8	1.8-2.0	2.0-2.2	2.2-2.5	2.5-2.8
$Q^2 (GeV^2)$											
0.3-0.4	230.0	338.4	137.3	145.7	153.2	132.7	127.7	100.7	93.6	85.1	79.8
0.4-0.5	179.7	316.3	126.5	124.2	135.9	124.6	112.1	91.0	84.7	76.8	70.4
0.5-0.6	153.8	267.8	112.0	114.8	122.9	111.5	103.4	83.6	77.5	69.7	63.9
0.6-0.7	131.1	229.9	102.5	99.7	113.3	97.5	98.4	76.7	71.2	63.7	58.3
0.7-0.8	127.8	196.7	87.5	90.8	97.8	89.6	89.3	70.4	65.8	59.2	53.3
0.8-1.0	86.0	152.0	75.2	77.6	88.8	78.9	76.6	63.2	59.∠	52.8	47.5
1.0-1.2	63.1	114.2	57.9	61.7	71.1	65.2	64.6	54.2	51.3	46.1	41,2
1.2-1.4	52.7	82.1	46.7	49.4	56.7	53.3	53.3	47.2	44.6	40.5	36.5

Totaler Wirkungsquerschnitt $\sigma_t + \epsilon \sigma_1$ in μb der Reaktion $\gamma_v p \rightarrow Hadronen$ als Funktion von Q² und W (aus Ref. STE75)

• •

Tabelle 4.1

W(GeV)	1.2-1.3	1.3-1.6	1.6-1.8	1.8-2.0	2.0-2.2	2.2-2.8
Q^2 (GeV ²)						
0.3-0.5	1.14	1.22	1.18	0.98	1.0	0.965
0.5-0.8	1.14	1.22	1.18	1.06	1.0	1.05
0.8-1.4	1.14	1.22	1.18	1.06	1.0	1.11

Faktoren zur Normierung auf den totalen Wirkungsquerschnitt

Strahlungskorrekturfaktoren für den Kanalwirkungsquerschnitt $\gamma_v p \rightarrow p \pi^+ \pi^-$

W(GeV)	< 2.0	2.0-2.2	2.2-2.8
Q^2 (GeV ²)			
0.3-0.5	1.22	1.24	1.33
0.5-0.8	1.22	1.24	1.25
0.8-1.4	1.22	1.24	1.15

Tabelle 4.3

W (GeV)	1.3-1.4	1.4-1.5	1.5-1.6	1.6-1.7	1.7-1.8	1.8-1.9	1.9-2.0	2.0-2.1	2.1-2.2	2.2-2.5	2.5-2.8
Q^2 (GeV ²)								-			
0.3-0.4	13.6 1.9	40.3 '3.0	40.9 ·3.0	42.6 ·3.0	36.8 2.8	28.4 ·2.3	26.0 +2.3	24.6 $\cdot 2.3$	18.9 2.1	15.7 ·1.4	9.9 +1.9 2b
	7 3	244	289	295	240	214	181	166	116	206	74 ·
0.4-0.5	14.7 ·1.9	26.8 42.5	37.4 2.8	38.8 ·2.8	35.0 -2.7	26.8 :2.1	21.1	20.4 -2.0	12.2 : 1.6	13.3	7.9 1.0 - Ъ
	77	172	262	276	244	221	177	149	93	234	100
0.5-0.6	7.2	23.4 =2.6	32.1 +3.0	27.6	29.3 $\cdot 2.8$	22.1 22.3	19.0 ·2.3	14.2 +2.0	14.8 -2.1	9.6 :1.1	7.2 1.1 b
	35	1 2 2	170	174	165	134	103	78	66	130	71
0.6-0.7	6.4 1.7	24.8 3.3	26.8 3.3	24.4 $\cdot 3.4$	26.6 ·3.3	19.4 :2.7	15.0 ·2.4	12.6 $\cdot 2.2$	10.8	11.4	5.4 +1.1 ^{2.} b
	2.6	80	96	99	106	71	60	46	39	85	41
0.7-0.8	3.3 -1.5	21.7 ±3.7	21.3 :3.6	24.3 $\cdot 3.7$	31.7 -4.3	20.5 ·3.3	11.3 ·2.5	19.7 ·3.3	9.2 $\cdot 2.3$	11.5 ·1.7	7.9 ·1.6b
	8	45	58	63	7 2	51	34	46	19	61	32
0.8-1.0	4.0 +1.6	16.3 -3.0	19.4 3.1	17.9 ·3.8	18.3 -2.8	14.5 -2.4	11.5 ·2.2	12.6 ·2.3	10.1 ·2.1	8.4 ·1.2	3.6 0.9b
	7	+ 2	56	62	55	∔ 7	50	41	32	6 4	23
1.0-1.4	8.0	12.7	13.5 ·3.4	$21.4 \\ +4.7$	8.5 -2.1	15.6 ·3.2	7.7 ·2.1	10.9	11.5 ±4.9	2.9	3.3 1.3 b
	10	29	36	41	38	5 2	21	19	24	30	15

· · ·

Wirkungsquerschnitte und Ereigniszahlen für den Kanal _{) v}p – p⁻⁺-⁻

• . • .

W	q^2	 .++	р, ^О	_+_0	nicht-
(GeV)	(GeV^2)				resonant
1.3-1.5	0 *	90.6: 1.7		0	9.5± 1.3
i	0.3-0.5	76.9± 8.1	-	6.3: 5.9	16.8± 9.9
	0.5-0.8	65.6± 9.3	-	0 = 0.5	34.4= 7.0
	0.8-1.3	57.2:20.6	_	7.7:12.1	34.8= 6.4
1.5-1.7	0 *	64.1 2.1	7.7: 2.1	15.9± 2.1	12.2: 3.7
!	0.3-0.5	57.8 5.1	7.4± 6.3	10.3+ 3.0	24.5-10.5
	0.5-0.8	48.2± 5.4	12.8 4.9	17.8: 4.0	21.2± 9.3
;	0.8-1.3	55.8- 6.9	16.6±15.1	21.5= 5.0	6.1:16.9
1.7-2.0	o*	37.1± 1.9	41.2± 3.0	5.9± 1.4	12.2± 3.7
	0.3-0.5	32.3: 2.9	43.5± 7.4	0.9± 1.4	23.3± 6.4
	0.5-0.8	28.0± 3.2	46.7± 7.7	5.8: 3.9	19.5: 5.7
	0.8-1.3	24.7 · 3.3	29.8119.2	4.3 2.2	41.2:17.9
2.0-2.2	0 *	22.9 2.3	64.8± 2.1	1.9: 1.9	10.4- 3.5
≱ 1	0.3-0.5	25.7: 5.0	35.8+ 4.3	8.0± 3.2	30.5± 5.5
	0.5-0.8	16.4+ 3.7	33.9 5.0	5.0+ 1.9	44.7± 4.2
	0.8-1.3	20.4= 7.7	45.0±16.3	1.2= 3.9	33.4±10.6
2.2-2.8	0*	14.3± 1.7	66.4 1.7	2.1± 0.4	17.0: 1.4
	0.3-0.5	9.7: 2.0	52.1± 4.7	2.8: 1.8	35.4 3.5
	0.5-0.8	13.4+ 5.0	53.3± 4.2	2.2±1.7	31.1 6.9
	0.8-1.3	15.9: 6.2	29.4:20.1	0.7: 1.5	54.0.11.2

Anteil der Reaktionen am Wirkungsquerschnitt des $p\pi^+\pi^-$ -Kanals (in %)

1

1

* A B B H H M

Tab. 5.1

Wirkungsquerschnitt	der	Reaktion	Υ _ν Ρ	- >	п [—]	· + +	als	Funktion	von	W	und	q^2
nrikansoqueroena=			'v'									

0.3 Q	2 < 1.4 GeV 2
W	$\sigma_t + \varepsilon \sigma_1$
(GeV)	(µb)
1.25-1.3	0.18±0.23
1.3 -1.35	1.10±0.71
1.35-1.4	8.7 ±2.3
1.4 -1.45	14.2±2.1
1.45-1.5	15.4±2.9
1.5 -1.55	11.5±2.8
1.55-1.6	13.5±2.2
1.6 -1.65	13.4±1.8
1.65-1.7	11.6±2.1
1.7 -1.75	8.3±1.3
1.75-1.8	8.1±1.0
1.8 -1.85	5.08±0.84
1.85-1.9	7.47±1.43
1.9 -1.95	3.62±1.17
1.95-2.0	1.97±0.58
2.0 -2.1	3.25±0.67
2.1 -2.2	2.51+0.55
2.2 -2.4	1.08±0.25
2.4 -2.6	0.67±0.21
2.6 -2.8	0.56±0.24

4

-

-

W	q^2	
(GeV)	(GeV^2)	(µb)
1.3-1.5	0.3 -0.4	22.3+3.0
	0.4 -0.5	15.6±1.8
	0.5 -0.65	11.4±1.7
	0.65-0.8	6.95±3.1
	0.8 -1.4	6.66±2.9
1.5-1.7	0.3 -0.5	18.4±2.1
	0.5 -0.8	9.5/1.5
	0.8 -1.3	6.3+2.4
1.7-2.0	0.3 -0.5	9.4±0.9
	0.5 -0.8	6.06±0.75
	0.8 -1.3	3.55+0.57
2.0-2.2	0.3 -0.5	4.89'0.99
	0.5 -0.8	2.22+0.53
	0.8 -1.3	1.77±0.70
2.2-2.8	0.3 -0.5	1.14±0.24
	0.5 -0.8	1.19±0.45
	0.8 -1.3	0.71±0.29

Tab. 6.la

Tab. 6.1b

Differentieller Wirkungsquerschnitt d-/dt der Reaktion $\sqrt{p} \sim -\sqrt{++}$ für 0.3 $< q^2 \sim -1.4$ GeV²

 $1.7 \le W \le 2.0 \text{ GeV}$

2.0 · W < 2.8 GeV

t	do/dt	∴t>	$\sim q^2$ ·
(GeV ²)	(b/GeV ²)	(GeV^2)	(GeV ²)
0.1-0.2	5.89 2.41	0.078	0.425
0.2-0.3	4.29.0.62	0.095	0.463
0.3-0.4	6.38+0.74	0.098	0.463
0.4-0.5	4.81.1.49	0.1	0.511
0.5-0.6	5.43:0.81	0.1	0.523
0.6-0.7	3.85+1.23	0.1	0.518
0.7-0.8	2.93.0.74	0.1	0.552
0.8-0.9	3.28.0.61	0.1	0.525
0.9-1.0	2.92.0.83	0.1	0.539
1.0-1.2	2.02.0.44	0.2	0.574
1.2-1.4	2.33.0.54	0.198	0.572
1.4-2.0	0.87+0.17	0.501	0.662
2.0-	0.07:0.25	0.455	0.781

· •

.

t	d d / dt	<∠t>	< Q ²
(GeV ²)	(ub/GeV ²)	(GeV^2)	(GeV^2)
0.05-0.15	3.15.0.44	0.070	0.480
0.15-0.25	2.42'0.56	0.098	0.491
0.25-0.35	1.29+0.27	0.1	0.526
0.35-0.45	1.07.0.41	0.1	0.529
0.45-0.6	0.61:0.31	0.15	0.506
0.6 -0.8	0.20.0.23	0.2	0.538
0.8 -1.0	0.29.0.13	0.2	0.530
1.0 -1.4	0.36±0.09	0.4	0.566
1.4 -2.0	0.16+0.07	0.6	0.585
2.0 -	0.04 0.04	1.472	0.597

Tab. 6.2

1	W(GeV)	1.3-1.5	1.5-1.6	1.6-1.7	1.7-1.8	1.8-2.0	2.0-2.8
	$Q^2 (GeV^2)$			0.3-	.4		
	r ⁰⁴ 33	.307±.018	.236+.019	.279+.019	.273±.025	.237+.021	.080+.025
	Re r ⁰⁴ 31	.065±.018	.021±.019	.023±.020	043±.025	017022	026'.021
	Re r_{3-1}^{04}	008±.019	.002:.019	0224.021	069025	019±.021	0291.021
	r <mark>1</mark> 1 1	- .024±.027	0431.029	028+.031	017'.038	0271.033	118+.050
	r ¹ 33	.022±.029	.044:.029	.0112.031	005±.040	048'.034	.030+.042
	Sp r ¹	 004±.048	.003±.049	035:.052	0444.064	151±.055	174'.071
(1+))•Sp r ¹	0081.095	.006±.097	070 .102	0884.126	294+.108	321'.135
	Re $r\frac{1}{31}$.024±.027	085±.027	045±.029	028±.036	.029±.032	.0134.044
	Re r <mark>1</mark> 3-1	.037±.027	.041±.027	.0111.029	009:.025	.034±.031	.047 .036
	$Im r_{31}^2$.021±.026	043:.027	057:.028	0681.034	0211.033	042:.037
	$\operatorname{Im} r_{3-1}^2$.052±.027	.064+.027	.039:.029	009:.038	.0754.032	0074.033
	r_{11}^{5}	.021014	016±.016	015±.015	018±.020	018±.018	070±.025
	r_{33}^{5}	014±.015	.002±.015	028:.016	011±.020	004+.018	.0191.020
	Sp r ⁵	.013±.024	0272.024	085±.026	0601.032	0441.029	100:.034
	Re r ⁵ 31	.059±.013	.009±.014	.0 1.015	.011+.019	.015+.017	.001+.021
	Re r 5 3-1	.046+.013	.0401.013	.013±.015	.037±.018	0104.016	.001:.017
	Im r ⁶ 31	.052013	.027+.014	.019±.014	004=.017	.015±.015	.003+.018
	Im r_{3-1}^6	001±.014	.025±.013	.0351.014	0095.018	.054.5.015	.013+.016

Тар. 6.За

•

-

í		·····			• · · · · · · · · · ·		
;	V(GeV)	,	1.3-1.5			+ 1.5-1.7 -	· · *
	$q^2 (GeV^2)$	0.3-0.5	0.5-0.8	0.8-1.4	0.3-0.5	0.5-0.8	0.8-1.4
	r_{33}^{O4}	,330 .022	.264 .033	.288 .061	.289 .017	.185 .025	.268045
	Re $r\frac{0.4}{3.1}$.083024	015 .032	.104 .060	.034 .018	017025	.060 .044
	Re $r\frac{0.4}{3-1}$	006 .025	006 .033	034 .064	013019	.002 .023	028047
	$r \frac{1}{11}$	063034	.049 .049	.012.093	042026	042041	.032070
	$r\frac{1}{33}$.069 .038	064 .050	030096	.0011.028	.077:.038	.050 .071
÷	Sp r ¹	.013063	030.082	037 .151	083046	.070.064	.164 . 118
(1)	+-)•Sp_r ¹	.025.124	059 .164	072.299	164 .091	.137 .127	.322232
	Re $r\frac{1}{31}$.030036	.028045	040.086	058+.025	131037	.088 .067
	Re r <mark>1</mark> 3-1	.062035	.004 .046	037 .088	.050 .026	004 .034	038+.066
	$\lim r_{31}^2$.033033	.023.045	072±.102	042026	099036	.054 .058
	$\frac{1}{1}m = r\frac{2}{3-1}$.0501.035	.026 .047	.158 .097	.072026	.046 .035	066 .060
	r_{11}^5	.027.017	.019025	021.047	013.014	014 .021	032+.035
	r_{33}^{5}	024 .019	009 .026	.039 .050	021.014	016019	.052 .036
	Sp r ⁵	.007.031	.020042	.037082	068023	0615.031	.040 .056
	Re r ⁵ 31	.072.018	.0421.023	.025:.043	.003:.013	.006 .018	.011 .029
	Re $r\frac{5}{3-1}$.048 .017	.044 .024	.044 .048	.034 .013	.0181.016	004 .033
	1m r <mark>6</mark> 31	.052 .017	.055.022	.037 .043	.012 .013	.025 .018	.094 .031
÷	$\lim_{m \to 6} r_{3-1}^6$.004 .019	009023	011 .047	.0301.013	.030'.018	.029 .033

Tab. 6.3b

<u>ب</u> . Dichtematrizelemente des 2⁺⁺ im Gottfried-Jackson-System (Fertsetzung)

$\mathbb{K} \left(\operatorname{GeV} \right)$	·	- 1.7-2.8 -	
$q^2 (G_{\rm e} \nabla^2)$	0.3-0.5	0.5-0.8	0.8-1.4
r_{33}^{04}	.151.019	.224 .023	.367.03
$^{\prime}$ Re $r\frac{0.4}{3.1}$	026 .019	-,037 ,025	001.04
$\frac{Rv}{3-1} = \frac{0.4}{3-1}$	018+.017	0661.023	055°.04
r I	121031	.0321.042	.08106
$r\frac{1}{3}$.040 .028	056 .040	177 .07
Sp r ¹	161047	048066	1921.12
$(1+\cdot) \cdot \text{Sp} \cdot r^{1}$:312 .091	-,090-,128	35523
Re $r\frac{1}{31}$.026 .027	056 .039	.107 .07
Re $r\frac{1}{3-1}$.059025	-,020-,036	02207
Enc. $r\frac{2}{31}$	036 .027	090035	.094 .05
$\frac{1}{1}$ m r $\frac{2}{3}$ = 1	.063025	010036	10706
r_{11}^5	045017	015 .019	+.037 .02
$r\frac{5}{33}$.0071.014	018019	.03403
Sp r ⁵	076024	067.032	006 .06
$\operatorname{Re} r\frac{5}{31}$.008015	.014 .019	.003+.03
$\frac{1}{2} = \frac{1}{2} $	007 .012	.016 .017	.0631.03
$1 \text{ m} \text{ r} \frac{6}{31}$.024 .013	030017	.0114.02
$\lim r \frac{6}{3-1}$.035 .012	002017	.02803

Tab. 6.3c

	•		1	ì		!	1	· .*
·',	,	· · · · · · · · · · · · · · · · · · ·	5	5	5	6	6	· · ·
l r.,	lm rī,	r,	· r.,	Rer,	Re ra,	Im rú,	Im r. ,	Corr
)	3-1	1.1	. 53	3-1	16	31	, <u>s</u> -ju	
-0.152+0.159	0.103434003	- J. CU5 <u>1</u> J. OH	; 0 - 03→±0-036	C+008±0+034	- 0.100±0.031	^.079±0.03L	-0.042±0.036	•
0+050 <u>+</u> 0+066	J.J.U.U.≜J		- J. 221 + J. 337	-0.00720.037	0.01440.036	. J.05 <u>34</u> 0.034	1-0.00340.033	
-0.047+9.774	J. U. 1 () () ()	1-030 <u>-</u> 0-030	-).020+0.040).155 <u>±</u> 0.3333	34 <u>±</u> 0,143.	- J•90070•948	-0.01340.034	Li
1, 1, 1+9, 15,	7*):**)*[1]	البوب بالمحار وال	°−0,033 <u>€</u> 1,345	0.021±0.€78	0.07910.036	-1•01970•038	Ŭ.0JJ <u>t</u>),943	-
- ワー・クエットアイト	2.2.4).)	0.042±3.044	0.0+1:0-051	(F•3) \3±(J•3)44	し ょりどう≜りょけみち	1
(1), (7) ≠ 1, (3)		$J_{\bullet} \subset I = J_{\bullet} \cup J_{\bullet}$	- 1 , 157+1, 149	0.071+0.045	0.04120.050	- J.J) <u>14</u> (J.)4)	- J. 321 to. 342	
- 194 FC 14 € 14 € 14	-) 1 1	i=) • γ +4+,) • ∂ ≥ 1	J. 35++ J. 35+).::: <u>4±</u> 0050	0.040±1.052	0.08153.020	-0.013±0.050	
しゅしんちょう いろう	지 말 같은 것 같은	Ja JJ++-14 J-1	-C. 145+0,)52	0.055 10.047	0.09810.040.	. U.J.34 <u>+</u>),)49	0.04-±0.050	•
	saliti (0+0595 + 045	12、13年 建築時上は15月。	0.147+1.152	0.026+0.039	0.134.0.054	0.06440.060	01
りょしょうりょうかい	ترولية المتحالية	J. J. 3*	- J. 34 (+ J. 36)	1.219+0.243	0.014:5.354	01:003 <u>+</u> 0.344	0.014:0.051	
		· .	-					
りょうしょうしょうかい	ا د ا د د د د), (1), (1), (1), (1) 	0.009+0.033	0.016 (0.030	0.036.01.030	0.024±0.031	0.063±0.032	
0+135±++225	3.1.4+1. 11	5 Jacob 44, Jacob 5	0.02 1±0.03 €	1.044+0.037	0.01P+0.037	0.005+0.738	-0.027+).336	
.=),diri€0, in5). /+1±J+3 +	- U+ U J U+, D+ O+ 0	-0.011±7.045	J_035±0.045	.).074+1.037	1. 164+0.042	- 3.031+0.337	•
- りょしとく たいようかん	U.J.20±J. 1+5	-). U/UE). UHS	-0.001±0.043	0.058±0.044	0.037.0.042	0.067+0.045	0.021+0.042	01
	9 209+3 DP4	-).264053	J. 74 H+ 0. 045	0.0/3+0.040	-0.041+0.052	-0.030+0.052	0.024+J.)41	1
-0.179 <u>+</u> 0.1103	1-0234 1-244	- 1. 319+ 1. 176	-0.014+0.061	0.0117+0.052	-0.082.0.060	0.022+0.047	0.014+0.046	•
(n).1+).±).1 ≤ 4	0	- 3. 033+ 3. 00.3	0.023+0.050	6.050+0.039	0.000+1.144	3.351+3.353	0.095+0.055	
-0.12+±3.14%	- Just Le value	-). ULI + J. 075	-0.015+0.163	0.011+0.049	-3.375+3.346	0.085+0.154	0.025+0.050	•
-9:31:57.101	والمراجع والمراجع والمراجع). 0 1+ 0. 570	0.020+.1.00	-0.1.0+1.055	-3.345+0.344	3.330+0.354	-0.012+1.042	6
1.04.00.037	- 4900 + 9400 +	- 0. 0 55 0. 054	-3.080+3.045	0.041+0.044	3.018+3.348	- 3- 437+3-347	-9.003+0.046	
				0.00.0000000000000000000000000000000000		0.00000000		
1. 1 5-1 4-1 11-5	- 0.001+0.066	- 0.079+0.037	 - 0.010+0.036	0.060+0.032	- C.C36+C C34	0.013+0-032	0.031+0.031	
- 1	- U + U + (+)H)	-). ((+), (),5	$-C_{*} \cup 7 v * ()_{*}) 4 4$	1.13540.146	1.064+0.040	-)-000+0-035	0.071+0.034	
-9.106+9.177	- 1. [] [] .] .]	- 0. 1151 1.0.0	-]. (()6.0.1.160	0.0000.000000000	-0.0.0404040	0.03700.042	0.106+0.162	•
	4.255.1.197	- 1. 1. 1 . 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1.	-)_)1 7+ ()_) ⁶ (- J-J63+3-347	0.00101042	0.037 <u>2</u> 0.042	C .) 144.0 .048	σ
-0.10.0		3		-1.017+1.153	-0.00(1)(1)	0.076+0.769		
		- 1.0.0.0.0.0. - 1.1.+ 1.1.1.a.	0+10340+0300	-0.30540.354	-0.060+0.068	-1 014440 352	- 0 0222 <u>-</u> 0.063	I
- 3 - 1 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2		1.11.1	0.00000002	-0.0000990.004 -0.0000000000		1.025+0.069	0.045+0.148	_
	0.0000000000000000000000000000000000000	1.174.0.064		-0.0000 <u>-0.00</u>	-0.01030.056	0.02010.047	0.002+0.055	
- 1.11 - 7 +0 - 1.41		-)) 154 () (% ?	-3 08:43 357	-0.101 <u>-</u> 0.367		1 11040 069	0.05210.050	7
	11141 AU			-0.10120.047	0.11140.060	-0.221+0.256	-0.00220.000	
	0+1+)+0+	3 * 002, <u>*</u> 0 * 0 / *	-0.013-0.000	-0.01130.044	0.13550.155	-0.001 <u>-0.00</u> 4	-0.03920.74	
-1.139+3.151		-)	- 3 14 14 1 04 6			-0 10140 042		
$= 1 \times 10^{-7} T + 1 \times 10^{-7} T$	0.325+0.05		- 0. 73174 0. 140 3 - 324 4 3 - 354	0.00 20.040	0.053+0.065	-3.32040.044	-1.015+0.349	
- 1.10040					0 16740 350	0.010101040		•
0.1.740.101		- 010 <u>101</u> 01001		0.01040.050	0.130.10.066	-0.027+0.048	0.054+0.058	7
		-1. 047401.051	- 0. 01 0. 0. 0. 161	0.010 <u>+0.0</u> 00	-0 13940 065	-) 04140 051	0.0101010	
1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.	. 1 1.4 1 144			0 115 40 351	-0.120 <u>-</u> 0.049.	10.041 <u>-</u> 0.071	-3.437+5.070	I
			10010 <u>1</u> 40110	10.110.00000000000000000000000000000000	-0.15343.376		-0.020+0.068	
- 1	- 0 - 1 - <u>-</u> 3 - 1 - 5	- 0.00 <u>-</u> 0.074	-0.036+0.080		-0.19040.045	-) 35240 355	0.02010.069	
0.12 <u>-0.1</u>	$= 1 \cdot 1 \cdot 1 \cdot 1 \cdot 1 \cdot 1$	3 1144 1 074	00000000000000000000000000000000000000	0 11840 047	-3 07543 070	-0.00220.000	0.02240.007	8
	0 1 2 A 1 1 1 4		0.020 <u>0</u> 1100	0.11030.007	0.02020.010		0.02/10.043	
0.1007011/1	0+077.0+117	~ MITTO		-0.00030.000	0.101_0.000	0.147.0.007	0.03470.003	
- 1 .11.2+1 162	3 16063 064	1 0154 (1 035		0.00940.031	0 04440 034	0 04240 010	0.05240.029	-
- 0-062 <u>-</u> 91972			-0.035+0.048		0.04430.014	-0.042 <u>-0.09</u> 0	0.10440.042	_
	5.12940 114	- 0.03 <u>77</u> 0.022 - 0.030	-0.00340.040	3 0 16 40 340	0 100 TO 1040	0 13740 040	0 143×0 047	•
- 1.157+5.116	- 104±0 001	- 0.000 <u>-</u> 0.0 4 7		0.014 50.049		0.07110.040	0.14550-040	30
- 0+10++0+140 - 0 166+0 113) 1 1 7 4 <u>-</u> 0 • 0 7 7				-0.01420.050	-0.076±0.050	0.136.0.059	
0 077+0 165	- 0.00970.105			-0.070 20.081		-0.002 <u>-0.05</u> 2	0.12420.050	1
-0.065+0.109	= 0 1	-0.00140.000	0.00540.053					
0.04010100	- 0+14 <u>0+172</u>	-0.001 - 0.009	- 0.00 <u>+</u> 0.00.05	-0.02910.049	-0.07010001	0.00740.050	-0.02110.060	~
-0+004 <u>+</u> 0+105	- C + C + C + C + C - C	-0.04000.034	- 0. 05 4 <u>-</u> 0. 077	0.010101012	-0.02110.056	0.08710.004		~
0.036+0.117		- 0. 1 UBT L. 088	- 0 01 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	-0.030-0.001	-0.109-0.083	0.011.0.092	0.05010.092	
5.050.00111	2+221 22+170	0.011-0.010	0.02250.003	-0.03220.031	0.03440.065	0.010.000	-0.100-0-0-0-0-0-0-0-0-0-0-0-0-0-0-0-0-0	
-0.049+0.357	0.027+0.054			0.001+0.027		0 02040 030	C-01940 074	· · · · · · · · · · · · · · · · · · ·
0.080+0.394	- 0+021 <u>20+0</u> 24	0+075 <u>1</u> 0+034		0.00120-027	- 0.000 <u>7</u> 0.032 		0 08640 045	
- 0.01940.144	0+0+1 <u>-</u> 0+040 0.048±0-115	0 0/08 0 1 2 0 0 0/08 0 1 2 0	1-0.011 <u>+</u> 0.091	- U+U292U+U31		-0.02120.049	0.040-0.070	⊳ •
~0.020+0.144	-0.20040 <u>+</u> 0.113	0+000 <u>0</u> 0+120	- UAUZZZUAUYU - UAUZZZUAUYU	-0.018-0.353	-0.001 <u>-</u> 0.111	-0.045±0.050	0.032-0.010	$\hat{}$
0.052+0.114	J. 3/3 A 110	-0.051 <u>+</u> 0.071	200.02110000	0 012+3 344	-0.06540.009		-0.02440.024	1
-0.165+0.141	0.05840.10	- 0 - 0		-0 053+0 075		- 0.010 <u>10</u> 1047	-0.029+0.044	1
-0.215+0.200	- 0.000 <u>-</u> 0.104	- 3 202 COLDY		-0.03320.073	-0.173+0.1082	-0.13040.070	-0.02020.034	,
-0.142+0.114	- 3.347+3 127		0•17770•052 		-0.1/J_0.108	0 04640 106	-0.04020.043	10 1
-0.316+0.197	0.282+0.140*	- 0. 000-0.103	-0.014+0.073	0.010+0.340	-0.057+0.100	-3.126+0 110	-0.005+0.104	ŝ
0.016+0.160	- 3.009+0_170	0.03440.103		0.05243 344	0.11540.084	0.12640 101	-0.026+0.077	1
	0.00150.110	5.074 <u>4</u> 0.105	WELVELVE VD/	0.072 <u>+</u> 0.004	0.11010.080	0.120TU.101	0.020 <u>1</u> 0.011	L

Tab. 6.4a (Fortsetzung)

Dichtematrixelemente im Gottfried-Jackson-System des \triangle^{++} in der Reaktion $\gamma_v p \Rightarrow \pi^- \triangle^{++}$ in Abhängigkeit von cost für 0.3 $< Q^2 < 1.4$ GeV² und verschiedene W-Bereiche

• cos	*	r ⁰⁴ 33	Re r <mark>04</mark>	Re r <mark>04</mark> 3-1	r 1 1	r <mark>1</mark> 3 3	$\frac{\text{Re}}{31}$	$\operatorname{Re} r \frac{1}{3-1}$	i K (GeV
1.0 4 . 0.8 4 0.6 4 0.2 4 0.2 4 -0.2 4 -0.4 4 -0.6 4 -0.8 4	0.8 0.4 0.2 0.0 -0.2 -0.4 -0.4 -0.8 -1.0	0.356±0.640 0.315±0.545 0.511±0.545 0.514±0.557 0.576±0.557 0.576±0.575 0.536±0.560 0.536±0.574 0.536±0.574	$\begin{array}{c} \mathbf{J}_{+} = \left\{\mathbf{J}_{+} = $	$= 0.016 \pm 0.046$ $= 0.017 \pm 0.052$ $= 0.075 \pm 0.055$ $= 0.015 \pm 0.055$ $= 0.015 \pm 0.055$ $= 0.015 \pm 0.055$ $= 0.175 \pm 0.074$ $= 0.0175 \pm 0.074$ $= 0.075 \pm 0.074$	-0.003±0.059 -0.033±0.072 0.040±0.173 -1.105±0.173 0.017±0.095 0.143±0.093 -0.107±0.452 -0.004±0.106 0.098±0.091 -0.096±0.129	0.005±0.071 0.019±0.074 -).017±0.007 0.17±0.0374 -0.061±7.039 -0.141±0.137 -0.237±0.114 0.071±7.130 0.000+0.121 0.218±0.113	-0.043±0.067 -0.013±0.073 1.06±2.077 1.172±0.064 1.1990.077 0.01±0.197 0.1149.0197 0.1149.0394 -0.154±0.194 -0.0390.074 0.072±0.114	$\begin{array}{c} 0.1024 (0.265)\\ 0.1024 (0.265) (0.275)\\ 0.1024 (0.275) (0.275)\\ 0.104 (0.275) (0.275)\\ 0.104 (0.275) (0.275)\\ 0.037 (0.275) (0.275)\\ 0.037 (0.275) (0.275)\\ 0.037 (0.275) (0.275)\\ 0.113 (0.275) (0.275)\\ 0.113 (0.275) (0.275)\\ 0.134 (0.275) (0.275) (0.275)\\ 0.224 (0.175) (0.275) (0.275) (0.275)\\ 0.224 (0.175) (0.275) (0.275) (0.275) (0.275)\\ 0.224 (0.175) (0.275) (0.$	1.3 - 1.5
1. J + 3. 8 + 0.6 + 0.2 + -0.2 + -0.4 + -3.5 + -3.8 +	0.8 0.4 0.2 0.3 -0.2 -0.4 -0.6 -0.8 -1.0	$\begin{array}{c} 1.315\pm 1.342\\ 1.247\pm 1.455\\ 1.3\pm 1\pm 1.45\\ 1.5\pm 1\pm 1.45\\ 1.5\pm 1.55\\ 1.5$	- J. J J J J J J J J J J J. J J J J J J J J J J J J J J J J J J	- 3. 042 ± 0. 044 - 0. 05 0 ± 0. 05 1 - 3. 007 ± 3. 05 8 0. 11 8 ± 3. 06 8 - 0. 34 5 ± 0. 35 8 3. 325 ± 3. 06 7 0. 399 ± 3. 05 7 0. 398 ± 3. 076 0. 36 3 ± 0. 079 0. 015 ± 0. 043	$\begin{array}{c} -1.026 \pm 9.062\\ 1.154 \pm 0.076\\ 2.022 \pm 0.076\\ 2.022 \pm 0.076\\ -3.042 \pm 0.076\\ -3.042 \pm 0.101\\ -3.282 \pm 0.133\\ -0.173 \pm 2.113\\ -1.216 \pm 0.132\\ -1.201 \pm 0.115\\ 2.01 \pm 0.115\\ -3.015 \pm 0.109\end{array}$	$\begin{array}{c} 0055 \pm 0070\\ -0110 \pm 0076\\ -0029 \pm 0083\\ -0065 \pm 0087\\ -0089 \pm 0087\\ 0089 \pm 0112\\ 0089 \pm 0112\\ 0.257 \pm 0113\\ 0.070 \pm 0115\\ 0.034 \pm 0100\end{array}$	$\begin{array}{c} -9 \cdot 169 \pm 0 \cdot 057 \\ -0 \cdot 218 \pm 0 \cdot 074 \\ -0 \cdot 022 \pm 0 \cdot 074 \\ -0 \cdot 139 \pm 0 \cdot 055 \\ 0 \cdot 059 \pm 0 \cdot 055 \\ -0 \cdot 018 \pm 0 \cdot 015 \\ -0 \cdot 018 \pm 0 \cdot 016 \\ -1 \cdot 178 \pm 0 \cdot 046 \\ -0 \cdot 030 \pm 0 \cdot 078 \\ -0 \cdot 030 \pm 0 \cdot 078 \\ -0 \cdot 030 \pm 0 \cdot 078 \\ -0 \cdot 018 \pm 0 \cdot 078 \\ -0 \cdot 018 \pm 0 \cdot 038 \\ -0 \cdot 018 + 0 \cdot 018 \\ -0 \cdot 018 \\ -0 \cdot 018 + 0 \cdot 018 \\ -0 \cdot 018 \\ -0 \cdot 018 + 0 \cdot 018 \\ -0$	$\begin{array}{c} 0.014 \pm 0.5766\\ 0.165 \pm 6.072\\ 0.289 \pm 0.082\\ -0.105 \pm 0.082\\ -0.010 \pm 0.763\\ -0.023 \pm 0.023\\ -0.023 \pm 0.023\\ -0.023 \pm 0.040\\ 0.035 \pm 0.040\\ 0.035 \pm 0.040\\ 0.055 \pm 0.042\\ -0.005 \pm 0.052\\ \end{array}$	1.5 - 1.6
1.3 * 3.8 * 3.4 * 3.2 * -3.2 * -3.4 * -3.4 * -3.8 *	0.3 0.6 0.2 0.2 0.3 -0.2 -0.4 -0.5 -0.8 -1.0	0	0. (152 0. 349 - 3. (322). 352 J. (352). 058 J. (352). 068 0. (352). 068 0. (352). 071 + 3. (352). 076 J. (352). 077 3. (602). 077	-0.077±0.047 -0.326±0.057 -0.110±3.345 -0.023±3.07 -0.035±0.07 -0.035±0.07 0.044±0.074 0.046±0.073 0.086±0.061	$\begin{array}{c} -0 & .008 \pm 0 & .068 \\ 0 & .109 \pm 2 & .075 \\ -0 & .023 \pm 0 & .392 \\ 0 & .098 \pm 0 & .075 \\ -3 & .075 \pm 0 & .075 \\ -3 & .135 \pm 0 & .109 \\ -0 & .215 \pm 2 & .117 \\ -0 & .099 \pm 0 & .118 \\ -0 & .052 \pm 0 & .167 \end{array}$	$\begin{array}{c} (047\pm0071\\ -0741\pm0030\\ 0.088\pm0095\\ -0.137\pm0.103\\ 1.066\pm034\\ 0.172\pm0.108\\ 0.172\pm0.108\\ 0.112\pm0.118\\ 0.112\pm0.118\\ 0.112\pm0.118\\ 0.087\pm0.113\\ -J.064\pm0.120\end{array}$	$\begin{array}{c} -9.113 \pm 0.067 \\ 3.004 \pm 0.073 \\ -3.033 \pm 0.386 \\ 3.333 \pm 0.387 \\ -3.1077 \pm 0.393 \\ -3.104 \pm 0.104 \\ -3.008 \pm 0.105 \\ 0.018 \pm 0.298 \\ -3.194 \pm 0.113 \\ -3.194 \pm 0.113 \\ -3.140 \pm 0.119 \end{array}$	- 0. COL± 0. 666 C. C87±0. 385 0. 066±0. 097 0.037±0. 096 - 0. C93±0. 196 C. C93±0. 103 C. C94±0. 103 - 0. 094±0. 103 - 0. 043±0. 102 - 0. C8C±C. 093	1.6 - 1.7
1.u J.8 J.5 0.2 -0.2 -0.2 -0.4 -0.4 -0.5 -0.8	0.8 0.4 0.2 0.2 -0.2 -0.4 -0.6 -0.8 -1.0	$\begin{array}{c} J : 26 J \pm 0.26 J \pm 0.2$	- J. (63±).058 - J. 112±0.367 J. 112±0.077 J. 122±J.077 J. 123±J.088 - J. 114±0.067 - J. 125±J.099 J. 115±J.111 - J. 127±0.100 - U. 232±J.085 J. 605±J.084	$\begin{array}{c} 0.005 \pm 0.05 \pm 0$	$\begin{array}{c} 0.049 \pm 0.087\\ -1.080 \pm 0.118\\ -2.071 \pm 0.108\\ -2.049 \pm 0.057\\ -3.070 \pm 0.057\\ -0.050 \pm 0.125\\ -0.050 \pm 0.125\\ 0.019 \pm 0.143\\ 0.023 \pm 0.155\\ 0.052 \pm 3.132\\ 0.163 \pm 0.203\end{array}$	$\begin{array}{c} -2.028\pm0.096\\ 0.151\pm0.109\\ -3.089\pm0.115\\ 0.148\pm0.107\\ 0.026\pm0.127\\ 0.098\pm0.131\\ 0.01\pm0.141\\ -0.095\pm0.150\\ -0.472\pm0.159\\ -0.029\pm0.158\end{array}$	$-3 \cdot 10 + \pm 0 \cdot 0.89$ $-0 \cdot 012 \pm 0 \cdot 102$ $3 \cdot 0.94 \pm 0 \cdot 0.99$ $-0 \cdot 0.45 \pm 0 \cdot 121$ $-0 \cdot 0.94 + 0.093$ $3 \cdot 0.83 \pm 0 \cdot 122$ $-0 \cdot 2.32 \pm 0 \cdot 134$ $-3 \cdot 0.32 \pm 0 \cdot 138$ $3 \cdot 0.75 \pm 0 \cdot 134$ $0 \cdot 0.47 \pm 0 \cdot 138$	$\begin{array}{c} 0 \cdot (3 H \pm 0 \cdot 0 + 2 \\ - (0 \cdot 1 4 S \pm 3 \cdot C \cdot 7 \\ 0 \cdot 1 3 6 \pm 0 \cdot 1 1 \\ - (0 \cdot 0 4 \pm 0 \cdot 1 1 \\ - (0 \cdot 0 4 \pm 0 \cdot 1 1 \\ - (0 \cdot 0 4 \pm 0 \cdot 1 1 \\ - (0 \cdot 0 4 \pm 0 \cdot 1 1 \\ - (0 \cdot 0 4 \pm 0 \cdot 1 \\ - (0 \cdot 1 3 \pm 0 \cdot 1 \\ - (0 \cdot 1 3 \pm 0 \cdot 1 \\ - (0 \cdot 1 3 \pm 0 \cdot 1 \\ - (0 \cdot 1 3 \pm 0 \cdot 1 \\ - (0 \cdot 1 3 \pm 0 \cdot 1 \\ - (0 \cdot 1 3 \pm 0 \cdot 1 \\ - (0 \cdot 1 3 \pm 0 \cdot 1 \\ - (0 \cdot 1 3 \pm 0 \cdot 1 \\ - (0 \cdot 1 3 \pm 0 \cdot 1 \\ - (0 \cdot 1 3 \pm 0 \cdot 1 \\ - (0 \cdot 1 3 \pm 0 \cdot 1 \\ - (0 \cdot 1 3 \pm 0 \cdot 1 \\ - (0 \cdot 1 3 \pm 0 \cdot 1 \\ - (0 \cdot 1 3 \pm 0 \cdot 1 \\ - (0 \cdot 1 3 \pm 0 \cdot 1 \\ - (0 \cdot 1 3 \pm 0 \cdot 1 \\ - (0 \cdot 1 3 \pm 0 \cdot 1 \\ - (0 \cdot 1 3 \pm 0 \cdot 1 \\ - (0 \cdot 1 3 \pm 0 \cdot 1 \\ - (0 \cdot 1 - $	1.7 - 1.8
1.0 3.8 3.5 3.4 0.2 -3.2 -3.2 -3.4 -0.6 -0.8	0.8 0.4 0.2 0.0 -3.2 -0.4 -0.6 -0.8 -1.0	U.213±0.043 J.185±C.CC0 J.283±C.C60 U.115±C.C77 J.373±0.067 J.303±C.C72 U.206±C.C75 U.375±0.C79 J.209±0.106 U.153±C.C888 -	U. (28±0.044 - J. 651±0.061 - J. (531±0.064 J. (53±0.074 J. 144±0.065 - J. 224±0.072 J. 253±0.085 - J. 163±0.073 - J. 163±0.089	-0.037 <u>+</u> 0.042 0.045 <u>+</u> 0.055 -0.045 <u>+</u> 0.052 0.045 <u>+</u> 0.063 0.103 <u>+</u> 0.081 -0.054 <u>+</u> 0.082 -0.050 <u>+</u> 0.070 -0.028 <u>+</u> 0.095 -0.224 <u>+</u> 3.087 -0.380 <u>+</u> 0.080	$\begin{array}{c} -0 & 0.33 \pm 0 & 0.067 \\ -0 & 0.33 \pm 0 & 0.094 \\ -0 & 0.36 \pm 0 & 0.77 \\ -3 & 0.85 \pm 0 & 0.123 \\ 0 & 10.8 \pm 0 & 0.088 \\ -0 & 1.77 \pm 0 & 116 \\ -0 & 0.32 \pm 0 & 118 \\ 3 & 0.45 \pm 0 & 148 \\ 0 & 0.08 \pm 0 & 173 \\ 0 & 0.044 \pm 0 & 147 \end{array}$	$\begin{array}{c} -0.022\pm0.064\\ -0.045\pm0.075\\ -0.095\pm0.088\\ -0.108\pm0.111\\ -0.097\pm0.128\\ -0.014\pm0.128\\ 0.050\pm0.107\\ -0.177\pm0.157\\ -0.348\pm0.190\\ 0.011\pm0.136\end{array}$	$\begin{array}{c} -0.046 \pm 0.063\\ 0.160 \pm 0.080\\ -3.042 \pm 0.093\\ 0.134 \pm 0.190\\ 0.164 \pm 0.190\\ 0.164 \pm 0.190\\ 0.165 \pm 0.101\\ 0.026 \pm 0.101\\ 0.016 \pm 0.121\\ -0.016 \pm 0.133\\ -0.085 \pm 0.163\\ 0.047 \pm 0.139\end{array}$	$\begin{array}{c} 0.101 \pm C. \ 0.61\\ 0. \ 0.15 \pm 0. \ 0.77\\ 0. \ 0.98 \pm 0. \ 0.82\\ - \ 0.328 \pm 0. \ 0.84\\ - \ 0.61 \pm 0. \ 1.31\\ 0. \ 0.74 \pm 0. \ 1.21\\ - \ 0.115 \pm 0. \ 0.99\\ - \ 0.32 \pm 0. \ 1.63\\ 0. \ 230 \pm 0. \ 1.48\\ - \ 0. \ 0.51 \pm 0. \ 1.30\end{array}$	1.8 - 2.0
1.0 + 0.8 + 0.6 + 0.2 + 0.2 + -0.2 + -0.2 + -0.4 + -0.6 +	0.8 0.6 0.4 0.2 0.0 -0.2 -0.4 -0.5 -0.6 -1.0	$\begin{array}{c} 0.146 \pm 0.037\\ 0.199 \pm 0.063\\ - 0.064 \pm 0.109\\ 0.185 \pm 0.064\\ - 0.117 \pm 0.064\\ - 0.117 \pm 0.057\\ - 0.120 \pm 0.121\\ - 0.233 \pm 0.115\\ - 0.064 \pm 0.125\\ - 0.1134 \pm 0.115\\ \end{array}$	$\begin{array}{c} -0.63120.639\\ -3.11220.065\\ 0.69520.124\\ -0.62320.110\\ 0.11220.100\\ -0.6120.100\\ -0.6120.114\\ 0.64020.125\\ -3.13420.117\\ -9.64620.157\\ -0.6162.100\end{array}$	$\begin{array}{c} -0.009\pm0.034\\ -0.005\pm0.065\\ -0.130\pm0.079\\ -0.076\pm0.084\\ -0.129\pm0.056\\ -0.058\pm0.096\\ -0.068\pm0.079\\ 0.066\pm0.079\\ -0.01\pm0.085\\ -0.015\pm0.085\\ 0.056\pm0.091\end{array}$	-0.084±0.073 -0.065±0.128 -0.366±0.216 0.059±0.156 -0.332±0.214 -0.483±0.291 -0.022±0.282 -0.045±0.247 0.026±0.225 -0.020±0.223	-0.011±0.062 0.004±0.120 0.131±0.179 0.149±0.152 0.046±0.165 0.297±0.214 -0.183±0.187 -0.064±0.181 0.171±0.172 0.060±0.179	$\begin{array}{c} 0.040\pm0.067\\ -0.119\pm0.117\\ -0.261\pm0.207\\ 0.127\pm0.156\\ 0.060\pm0.172\\ +0.070\pm0.173\\ -0.079\pm0.188\\ 0.104\pm0.191\\ 0.217\pm0.250\\ 0.182\pm0.172 \end{array}$	0.076 ± 0.055 0.074 ± 0.118 -0.012 ± 0.158 0.025 ± 0.139 -0.139 ± 0.102 -0.122 ± 0.165 0.158 ± 0.111 0.022 ± 0.131 0.107 ± 0.144 0.085 ± 0.158	2.0 - 2.8

.

Dichtematrizelemente im Gottfried-Jackson-System des Z^{++} in der Reaktion $\sqrt{p} = -z^{++}$ in Abhängigkeit von cos + für verschiedene $q^2 = und$ W=Bereiche

1.3 W 1.5 GeV

. 1

.

cos *	r 04 33	Re r <mark>04</mark>	Re $r\frac{04}{3-1}$	$r \frac{1}{1}$	r 1 3 3	Re r <mark>1</mark> 31	Re $r\frac{1}{3-1} \frac{Q^2}{(GeV^2)}$
1.0 4 0.8 J.8 4 J.6 J.6 4 0.4 J.4 4 0.2	U + 3993±U + 399 U + 312±U + 093 U + 312±U + 093 U + 335±C + 086	へ。(コキシ)。(25) コ・12 20 3、25 1 - コ・17 20 2、374 コ・17 30 2、374 コ・17 30 30 3	-0. 114 ± 1.057 -0. JJ1 ± J. J67 -0. 155 ± J. J72 -0.155 ± J. J72 -0.133 ± J. 073	0 •0 594±0 •068 	0.021±0.091 -0.004±0.101 -0.004±0.108 0.259±0.096	-3.034±0.040 0.03±3.397 1.0.122±3.137 0.077±3.082	3.159±0.040 3.345±0.344 3.345±0.344 3.100±0.173
0.2 + 0.0 0.0 + -0.2 -0.2 + -0.4 -0.6 + -0.8 -0.8 + -1.0	$ \begin{array}{c} 0 + 21 + 2 + 0 + 0 + 0 + 0 \\ 0 + 31 + 2 + 0 + 0 + 0 \\ 0 + 40 + 2 + 0 + 0 + 0 \\ 0 + 31 + 2 + 0 + 0 + 0 \\ 0 + 30 + 2 + 0 + 0 + 0 \\ 0 + 1 + 0 + 0 + 0 + 0 \\ \end{array} $		-3.029±).076 -0.120±0.068 -0.202±0.096 -0.097±0.089 -0.059±0.091 -0.107±0.094	$\begin{array}{c} -0 \cdot 102 \pm 0 \cdot 120 \\ +0 \cdot 109 \pm 0 \cdot 126 \\ -0 \cdot 100 \pm 0 \cdot 114 \\ -1 \cdot 047 \pm 0 \cdot 136 \\ \cdot 0.086 \pm 0 \cdot 116 \\ \cdot 0 \cdot 294 \pm 0 \cdot 169 \end{array}$	0.053±0.117 -0.009±0.148 -0.033±0.162 0.037±0.133 0.034±0.161 0.419±0.140	<pre>/ 0+23/±7+134 -0.053±7.14/ -0.053±7.14/ -0.152±7.149 0.152±7.149 0.011+7.149</pre>	$\begin{array}{c} \mathbf{C} \cdot 126 \bullet 3 \cdot 093 & 1 \\ \mathbf{J} \cdot 306 \bullet 2 \cdot 145 \\ \mathbf{J} \cdot 306 \bullet \mathbf{C} \cdot 147 & 0 \\ \mathbf{J} \cdot 30 \bullet 2 \cdot 147 & 0 \\ \mathbf{J} \cdot 319 \bullet 3 \cdot 142 & 0 \\ \mathbf{J} \cdot 314 \bullet 3 \cdot 142 & 0 \\ \mathbf{J} \cdot 314 \bullet 5 \cdot 143 & 0 \end{array}$
$1 \cdot J + 0 \cdot 8$ $3 \cdot 3 + 0 \cdot 6$ $0 \cdot 6 + 0 \cdot 4$ $0 \cdot 6 + 0 \cdot 4$ $0 \cdot 2 + 0 \cdot 3$ $2 \cdot 2 + 0 \cdot 3$ $- 3 \cdot 2 + -0 \cdot 4$ $- 3 \cdot 4 + -0 \cdot 6$ $(- 2 \cdot 3 + -0 \cdot 6)$ $(- 2 \cdot 3 + -0 \cdot 6)$ $(- 3 \cdot 6)$	$ \begin{array}{c} \mathbf{U} \cdot \mathbf{z} \ 7 \mathbf{B} \pm \mathbf{J} \cdot \mathbf{U} \ 7 \mathbf{S} \\ \mathbf{U} \cdot \mathbf{z} \ 7 \mathbf{S} \pm \mathbf{J} \cdot \mathbf{U} \ 7 \mathbf{S} \\ \mathbf{U} \cdot \mathbf{z} \ 7 \mathbf{S} \pm \mathbf{J} \cdot \mathbf{U} \ 7 \mathbf{S} \\ \mathbf{U} \cdot \mathbf{z} \ 7 \mathbf{S} \pm \mathbf{J} \cdot \mathbf{U} \ 7 \mathbf{S} \\ \mathbf{J} \cdot \mathbf{z} \ 7 \mathbf{S} \pm \mathbf{J} \cdot \mathbf{U} \ 7 \mathbf{S} \\ \mathbf{J} \cdot \mathbf{U} \ 7 \mathbf{S} \pm \mathbf{J} \cdot \mathbf{U} \ 7 \mathbf{S} \\ \mathbf{J} \cdot \mathbf{U} \ 7 \mathbf{S} \pm \mathbf{J} \cdot \mathbf{U} \ 7 \mathbf{S} \\ \mathbf{J} \cdot \mathbf{U} \ 7 \mathbf{S} \pm \mathbf{J} \cdot \mathbf{U} \ 7 \mathbf{S} \\ \mathbf{J} \cdot \mathbf{U} \ 7 \mathbf{S} \pm \mathbf{J} \cdot \mathbf{U} \ 7 \mathbf{S} \\ \mathbf{J} \cdot \mathbf{U} \ 7 \mathbf{S} \pm \mathbf{J} \cdot \mathbf{U} \ 7 \mathbf{S} \\ \mathbf{J} \cdot \mathbf{U} \ 7 \mathbf{S} \pm \mathbf{J} \cdot \mathbf{U} \ 7 \mathbf{S} \\ \mathbf{U} \cdot \mathbf{J} \ 5 \mathbf{J} \pm \mathbf{J} \cdot \mathbf{U} \ 7 \mathbf{S} \\ \mathbf{U} \cdot \mathbf{J} \ 5 \mathbf{J} \pm \mathbf{U} + \mathbf{U} \ 7 \mathbf{S} \\ \mathbf{U} \cdot \mathbf{J} \ 5 \mathbf{J} = \mathbf{U} + \mathbf{U} \ 7 \mathbf{S} \\ \mathbf{U} \cdot \mathbf{J} \ 5 \mathbf{U} \ 1 \ 5 \mathbf{U} \\ \mathbf{U} \cdot \mathbf{J} \ 5 \mathbf{U} + \mathbf{U} \ 1 \ 5 \mathbf{U} \\ \mathbf{U} \cdot \mathbf{J} \ 5 \mathbf{U} \ \mathbf{U} + \mathbf{U} \ 1 \ 5 \mathbf{U} \\ \mathbf{U} \cdot \mathbf{J} \ 5 \mathbf{U} \ \mathbf{U} \ 1 \ 5 \mathbf{U} \\ \mathbf{U} \ 7 \mathbf{U} \ 5 \mathbf{U} \ \mathbf{U} \ 1 \ 5 \mathbf{U} \\ \mathbf{U} \ 7 \mathbf{U} \ 1 \ 5 \mathbf{U} \ \mathbf{U} \ 1 \ 5 \mathbf{U} \\ \mathbf{U} \ 7 \mathbf{U} \ 1 \ 5 \mathbf{U} \ \mathbf{U} \ 1 \ 5 \mathbf{U} \ \mathbf{U} \ 1 \ 5 \mathbf{U} \ $	$ \begin{array}{c} -J_{+} \cup J_{+} \cup J_{+}$	$\begin{array}{c} 0, 0 \leftarrow 0, \pm 0, 086\\ -0, 12, \pm 0, 096\\ -0, 10, \pm 0, 095\\ -0, 105 \pm 0, 102\\ -0, 105 \pm 0, 102\\ -0, 105 \pm 0, 102\\ -0, 015 \pm 0, 102\\ -0, 137 \pm 0, 207\\ 0, 160 \pm 0, 128\\ 0, 160 \pm 0, 116\\ -0, 115 \pm 0, 116\\ -0, 115 \pm 0, 160\\ \end{array}$	-0.164±0.115 -0.034±0.104 J.364±0.127 0.011±0.174 0.285±0.214 0.285±0.214 0.295±0.185 0.160±0.185 0.175±0.163 0.247±0.212	$\begin{array}{c} 0.012\pm 9.111\\ 0.069\pm 0.117\\ -0.012\pm 0.156\\ -0.042\pm 0.196\\ -0.044\pm 0.158\\ -0.053\pm 0.158\\ 0.053\pm 0.151\\ -0.058\pm 0.151\\ -0.058\pm 0.178\\ -0.072\pm 0.223\end{array}$	$\begin{array}{c} -9. \ 10.2 \pm 9.1 \ 39\\ -9. \ 11.6 \pm 0.1 \ 17\\ 0. \ 9.7 \ 4.9 \ 1.27\\ 0. \ 9.5 \ 4.9 \ 5.1 \ 7\\ 0. \ 9.5 \ 7 \ 9.1 \ 5.1 \ 7\\ 0. \ 10.5 \ 7 \ 9.1 \ 5.1 \ 7\\ 0. \ 10.5 \ 7 \ 9.1 \ 5.1 \ 7\\ 0. \ 10.5 \ 7 \ 1.27\\ 0. \ 10.5 \ 1.27\\ 0. \ 10.5 \ 1.27 \ 2.1 \ 3\end{array}$	$\begin{array}{c} 0.152\pm0.116\\ 0.000\pm0.125\\ 0.119\pm0.147\\ 0.35\pm0.133\\ 0.15\pm0.133\\ 0.15\pm0.373\\ 0.15\pm0.133\\ 0.15\pm0.133\\ 0.15\pm0.133\\ 0.15\pm0.133\\ 0.15\pm0.133\\ 0.15\pm0.133\\ 0.15\pm0.133\\ 0.03\pm0.134\\ 0.136\pm0.134\\ 0.03\pm0.191\\ 0.03\pm0.191\\ 0.16\pm0.191\\ 0.16\pm0.$
$i \cdot J + 0 \cdot 4$ $j \cdot 4 + 0 \cdot 6$ $j \cdot 4 + 0 \cdot 2$ $- 0 \cdot 4 + 0 \cdot 2$	$ \begin{array}{c} \textbf{u} \cdot \textbf{30} \textbf{1} + \textbf{3} \cdot \textbf{1} \textbf{5} \textbf{0} \\ \textbf{3} \cdot \textbf{1} + \textbf{2} + \textbf{3} \cdot \textbf{1} \cdot \textbf{5} \\ \textbf{4} \cdot \textbf{4} \cdot \textbf{5} + \textbf{5} \cdot \textbf{1} \cdot \textbf{5} \\ \textbf{3} \cdot \textbf{2} \textbf{3} \textbf{4} \pm \textbf{3} \cdot \textbf{1} \cdot \textbf{5} \\ \textbf{3} \cdot \textbf{2} \textbf{3} \textbf{4} \pm \textbf{3} \cdot \textbf{1} \cdot \textbf{6} \\ \textbf{5} \cdot \textbf{2} \textbf{3} \textbf{4} \pm \textbf{3} \cdot \textbf{1} \cdot \textbf{6} \\ \textbf{5} \cdot \textbf{2} \textbf{3} \textbf{4} \pm \textbf{3} \cdot \textbf{1} \cdot \textbf{6} \\ \textbf{5} \cdot \textbf{7} \textbf{4} + \textbf{5} \cdot \textbf{1} \cdot \textbf{3} \\ \textbf{5} \cdot \textbf{7} \textbf{4} \pm \textbf{5} \cdot \textbf{1} \cdot \textbf{3} \\ \textbf{5} \cdot \textbf{1} \cdot \textbf{5} \pm \textbf{5} \cdot \textbf{2} \cdot \textbf{3} \\ \textbf{5} \cdot \textbf{1} \cdot \textbf{5} \pm \textbf{5} \cdot \textbf{2} \cdot \textbf{3} \\ \textbf{5} \cdot \textbf{1} \cdot \textbf{5} \pm \textbf{5} \cdot \textbf{2} \cdot \textbf{3} \\ \textbf{5} \cdot \textbf{1} \cdot \textbf{5} \pm \textbf{5} \cdot \textbf{2} \cdot \textbf{3} \\ \textbf{5} \cdot \textbf{5} \cdot \textbf{5} \pm \textbf{5} \cdot \textbf{2} \cdot \textbf{3} \\ \textbf{5} \cdot \textbf{5} \cdot \textbf{5} \pm \textbf{5} \cdot \textbf{2} \cdot \textbf{3} \\ \textbf{5} \cdot \textbf{5} \cdot \textbf{5} \cdot \textbf{5} \cdot \textbf{5} \\ \textbf{5} \cdot \textbf{5} \cdot \textbf{5} \cdot \textbf{5} \cdot \textbf{5} \\ \textbf{5} \cdot \textbf{5} \cdot \textbf{5} \cdot \textbf{5} \cdot \textbf{5} \\ \textbf{5} \cdot \textbf{5} \cdot \textbf{5} \cdot \textbf{5} \cdot \textbf{5} \\ \textbf{5} \cdot \textbf{5} \cdot \textbf{5} \cdot \textbf{5} \cdot \textbf{5} \cdot \textbf{5} \\ \textbf{5} \cdot \textbf{5} \cdot \textbf{5} \cdot \textbf{5} \cdot \textbf{5} \cdot \textbf{5} \\ \textbf{5} \cdot \textbf{5} \cdot \textbf{5} \cdot \textbf{5} \cdot \textbf{5} \cdot \textbf{5} \cdot \textbf{5} \\ \textbf{5} \cdot \textbf{5} \\ \textbf{5} \cdot \textbf{5} $	$ \begin{array}{c}(5) \underline{t} [2, 1/2] \\ 0, 21 \underline{t} [5, 2+1] \\ 0, 2 \underline{t} [5, 2+1] \\ 0, 2 \underline{t} [5, 1, 1] \\ 0, 2 \underline{t} [5, 1, 2] \\ 0, 2 \underline{t} [5, 1, 2] \\ 0, 3 \underline{t} [5, 1] \\ 0, 4 \underline{t} [5, 1] \\ 0, 4 \underline{t} [5, 1] \\ 0, 4 \underline{t} [5, 2] \\ 0, 4 $	-0.023 ± 0.177 -0.139 ± 0.164 -0.139 ± 0.164 -0.130 ± 0.182 0.265 ± 0.126 0.084 ± 0.2243 -0.130 ± 0.176 0.285 ± 0.331 -0.130 ± 0.178	$\begin{array}{c} 3.016 \pm 0.287 \\ -3.115 \pm 0.314 \\ 0.139 \pm 0.129 \\ -3.434 \pm 0.199 \\ 0.387 \pm 0.159 \\ 0.387 \pm 0.159 \\ 0.772 \pm 0.304 \\ 1.197 \pm 0.304 \\ 1.197 \pm 0.403 \\ -3.376 \pm 0.405 \\ -3.907 \pm 0.405 \\ -3.028 \pm 0.422 \end{array}$	-0.128 ± 0.293 -0.105 ± 0.203 -0.105 ± 0.203 -0.155 ± 0.203 -0.351 ± 0.354 -0.550 ± 0.394 0.554 ± 0.359 0.006 ± 0.573 0.133 ± 0.356	$\begin{array}{c} 2 \cdot 285 \pm 0 \cdot 128 \\ - 3 \cdot 172 \pm 3 \cdot 316 \\ - 3 \cdot 364 \pm 0 \cdot 212 \\ 3 \cdot 136 \pm 0 \cdot 304 \\ - 3 \cdot 309 \pm 3 \cdot 273 \\ - 6 \cdot 126 \pm 0 \cdot 136 \\ - 3 \cdot 654 \pm 3 \cdot 431 \\ - 3 \cdot 965 \pm 3 \cdot 563 \\ - 0 \cdot 142 \pm 3 \cdot 625 \\ 0 \cdot 207 \pm 0 \cdot 338 \end{array}$	$\begin{array}{c} C. 423 \pm C. 246 \\ 0.152 \pm 0.238 \\ 0.072 \pm 0.233 \\ 0.263 \pm 0.174 \\ 0.105 \pm 0.216 \\ 1 \\ 0.105 \pm 0.216 \\ 1 \\ 0.105 \pm 0.216 \\ 1 \\ 0.105 \pm 0.326 \\ 1 \\ 0.564 \pm 0.554 \\ 0.554 \\ 1 \\ 0.425 \pm 0.201 \end{array}$

1.5 · W · 1.7 GeV

1.0 + 0.8 $1.3 + 0.6$ $1.3 + 0.4$ $2.4 + 0.2$ $2.2 + 0.2$ $-0.2 + 0.4$ $-0.4 + 0.6$ $-1.5 + -2.8$ $-0.8 + -1.0$	$\begin{array}{c} \begin{array}{c} \mathbf{j} \cdot 2/1 \pm 3 \cdot 0 \text{sf} \\ \mathbf{j} \cdot 3 + \frac{1}{2} \pm 1 \cdot 2 \text{sf} \\ \mathbf{j} \cdot 3 + \frac{1}{2} \pm 1 \cdot 2 \text{sf} \\ \mathbf{j} \cdot 3 + \frac{1}{2} \pm 1 \cdot 2 \text{sf} \\ \mathbf{j} \cdot 3 + \frac{1}{2} \pm 1 \cdot 2 \text{sf} \\ \mathbf{j} \cdot 3 + \frac{1}{2} \pm 1 \cdot 2 \text{sf} \\ \mathbf{j} \cdot 3 + \frac{1}{2} \pm 1 \cdot 2 \text{sf} \\ \mathbf{j} \cdot 3 + \frac{1}{2} \pm 1 \cdot 2 \text{sf} \\ \mathbf{j} \cdot 3 + \frac{1}{2} \pm 1 \cdot 2 \text{sf} \\ \mathbf{j} \cdot 3 + \frac{1}{2} \pm 1 \cdot 2 \text{sf} \\ \mathbf{j} \cdot 3 + \frac{1}{2} \pm 1 \cdot 2 \text{sf} \\ \mathbf{j} \cdot 3 + \frac{1}{2} \pm 1 \cdot 2 \text{sf} \\ \mathbf{j} \cdot 2 + \frac{1}{2} \cdot 2 \cdot 2 \text{sf} \\ \mathbf{j} \cdot 2 + \frac{1}{2} \cdot 2 \cdot 2 \text{sf} \\ \mathbf{j} \cdot 2 + \frac{1}{2} \cdot 2 \cdot 2 \text{sf} \\ \mathbf{j} \cdot 2 + \frac{1}{2} \cdot 2 \cdot 2 \text{sf} \\ \mathbf{j} \cdot 2 + \frac{1}{2} \cdot 2 \cdot 2 \text{sf} \\ \mathbf{j} \cdot 2 + \frac{1}{2} \cdot 2 \cdot 2 \text{sf} \\ \mathbf{j} \cdot 2 + \frac{1}{2} \cdot 2 \cdot 2 \text{sf} \\ \mathbf{j} \cdot 2 + \frac{1}{2} \cdot 2 \frac{1}{2} \cdot 2 \frac{1}{2} \cdot 2 \frac{1}{2} \frac{1}{2} \cdot 2 \frac{1}{2} $	$\begin{array}{c c c c c c c c c c c c c c c c c c c $
1.0 + 0.9 3.6 + 0.4 3.6 + 0.2 0.2 + 0.3 3.0 - 3.2 -3.2 + -0.4 -3.4 + -0.6 -0.6 + -0.8 -0.8 + -1.3	$\begin{array}{l} 3.225 \pm 0.2 \ \mathrm{old} 1 = 1.25 \pm 2.25 \pm - 3.304 \pm 1.057\\ 0.242 \pm 0.264 + 1.273 \pm 2.372 + 0.373 \pm 0.370 \pm 0.359\\ 0.372 \pm 0.264 + 0.123 \pm 0.374 + 0.375 \pm 0.359\\ 0.372 \pm 0.264 + 0.274 \pm 0.374 + 0.355 \pm 0.375\\ 0.225 \pm 0.267 + 0.274 \pm 0.374 + 0.395 \pm 0.375\\ 0.227 \pm 0.277 + 0.272 \pm 0.275 \pm 0.375 \pm 0.375\\ 0.272 \pm 0.277 + 0.272 \pm 0.275 \pm 0.375\\ 0.2112 \pm 0.272 + 0.277\\ 0.112 \pm 0.272 + 0.277\\ 0.129 \pm 0.272 + 0.274 \pm 0.232 + 0.375 \pm 0.375\\ 0.2719 \pm 0.272 \pm 0.277\\ 0.129 \pm 0.272 \pm 0.277\\ 0.129 \pm 0.272 \pm 0.277\\ 0.129 \pm 0.274 \pm 0.277\\ 0.2719 \pm 0.275 \pm 0.275 \pm 0.275 \pm 0.275\\ 0.2719 \pm 0.275 \pm 0.275 \pm 0.275 \pm 0.275 \pm 0.275\\ 0.2719 \pm 0.275 $	$\begin{array}{c} 2.161\pm 9.277 \\ (1.01\pm 9.277) \\ (1.01\pm 9$
1.0 + 0.8 0.8 + 0.6 0.6 + 0.4 0.4 + 9.2 0.2 + 0.0 0.0 + 0.2 0.2 + 0.0 -0.2 + 0.4 -0.4 + 0.6 -0.6 + -0.8 -0.8 + -1.0	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{bmatrix} -9.097\pm 0.197 & 0.204\pm 0.252 & 0.001\pm 0.244 & -0.328\pm 0.226 \\ 0.079\pm 0.161 & -0.346\pm 0.173 & 0.388\pm 0.203 & -0.051\pm 0.165 \\ -3.05\pm 0.138 & 0.379\pm 0.202 & -3.174\pm 0.144 & 0.012\pm 0.208 & \infty \\ -3.06\pm 0.138 & 0.379\pm 0.121 & 1.15\pm 0.144 & 0.012\pm 0.208 & \infty \\ -3.50\pm 0.172 & 0.152\pm 0.234 & 0.647\pm 0.243 & -0.025\pm 0.231 & 1 \\ 0.350\pm 0.172 & 0.152\pm 0.204 & 0.647\pm 0.243 & -0.025\pm 0.231 & 1 \\ 0.307\pm 0.167 & -0.357\pm 0.266 & -0.028\pm 0.2238 & 0.25\pm 0.231 & 1 \\ -0.333\pm 0.350 & 0.631\pm 0.147 & 0.037\pm 0.247 & 0.190\pm 0.190 & 45 \\ -3.002\pm 0.245 & 0.06\pm 0.238 & -0.793\pm 0.213 & -0.101\pm 0.256 \\ 0.346\pm 0.461 & -0.281\pm 0.301 & 0.494\pm 0.275 & -0.134\pm 0.199 & 1 \end{bmatrix}$

1.3 W = 1.5 GeV

"-Im $r\frac{2}{31}$	$\lim_{r \to -1} r^{2}_{3-1}$	r_{11}^{5}	$r\frac{5}{33}$	$R_{P} = r \frac{5}{3-1}$	Re r_{31}^5	$\lim r_{31}^6$	$\lim r \frac{6}{3-1}$	Q^2
-0.041:0.172	1.135±1.085	J. 0,244 J. 035	J. J. (+).)+5		0.110+0.038		1-0-0-5-0-049	
التري أوروع المروح	J.JU3 13.297). J. 9+ J. 3+6	-)1++)51	0.1.8±0.044	0.013	L 134+0-051	-).045+.).05	· · ·
*u = 7 5 ± 2 + 2 + 4	0.01301.3	-) + C 20 - E C - S	(= 1, 35 (± 0, 05))).34 <u>[</u> 1.046	0.041.040	-3.306-3.354	0.034+7.243	د ب
	- J. Li <u>*</u> J. Li J	J₊ევი€ი⊧ეიე	0.17.40.024	0.108631005	j 0+045+0+073	0+115±0+055) ,) 15 <u>+</u>),)57	í.
0.007±0-113	1.361±0.121	0.011.0.005	-).)1 ' <u>4</u> 0.)55	0.002+0.104))	-),)))),))	-0-060+0-062	: .
0.14110.00	- J. (+/+) . [4/	テロ・レン 地口・ロラン		0.0311.070	0+031 <u>+</u> 0+062		-) -) () <u>+)</u> -) 75	C
		اندر مد <u>ع</u> ادت در ادرا معام ا				J . I		•
1 0.120 <u>-</u> 0.100					- J.+ J.40 - J.+ J.40 - J J.+ J.+ J J.45	- J. 347+3.361	- 0.17740.175	0
-0.047±0.102		- J. J. + 1 + J. J. J	J.113±0.005	¹ .]⊾]54±]⊾]65	1.465+1.164	1.124+0.049	0.115±2.154	
0.018:0	- J. U4 (±3.11)		–). 24.9 <u>+</u> 0055	-0.101+3.364	0.039+0.055	- J - J 16 +) - J 5 3	- 1.344 . 1.054	Ξ.
-0.125±0.117	1.13423-117	- 3. 311+ 3. 371	0.011+0.077	0.13.1.172	- J.J.J.5+J.J.5d	->+(+2 <u>+</u>)_3on	- 9• 9 4 <u>+</u>)• 97 1	•
0.J44t0.J3	- 0.04/20.199	3.13+3.073	-J. 151 <u>►</u> C. 395	-0.005±0.074	0.3554).753	- 1. 303+3. 3451	-4.141+0.085	01
U. 17380-173	U.U. 1:0.2.3	J • L > • • J • L 36	-)) 3 1 - 0 - 1 0 /	· · · · · · · · · · · · · · · /	0.014±0.037	1*)10+0*0935	0.011.013	
0.145±037			- 1, 191 <u>- 1, 04</u> 2	- フォレシス主はようたり。	0.0.720.009	J.J.S_J.J.J.	0.0 9.0 154	
	- Ja JO 41 Ja 1 47	- U. G. (**). E.L.). - 3 - 1 - 5 - 3 - 3 - 5 - 5	עניט גר אירט גע = גרד ר גווער ר	目 ジョブムごきしょしいとう		1.17513.145	- J. 150 <u>+</u> J. 056	0
1 0 1 j = 0 1 j = 1	- 2+10, <u>-</u> 2+14 /} 				-3.0 - 5 - 1.0		$= (f_{+}, f_{-}) + (f_{-}, f_{+}) + (f_{-}, f_{-}) + (f_{-}) + ($	•
0. 93+0.101		-)	1. 14 (+) .) 4 5	0 119 0 0 1 1	3 343+3 315	14 + 0 -) 55	1.015+1.144	
				·	************************			•
-0.16820.149	4+435 <u>*</u> 3+211	- J. CA150.121	2.173.0.142	0.151±0.143	0.130.0.082	0.163±0.100	-0-115±0-112	
-0.113 <u>*</u> 0.318	U•229±0•403	-0.0-442.173	u. J1.)≜0.15ø	0.22340.108	-0.151+).173	-0.05130.112	-J.288+J.113	Ċ
0.272±0. 67	キャロチレキシャンラン	9.143F0.945	-0.1%4 <u>€</u> 0.120	10.137±0.123	0.010.0.129	-3.324+0.119	0+542+241	•
-U.354±0.191	0.00/+0.200	- 3. (77-3.155	0.12.40.110	0.044±0.126	0.17250.150	-0.14720.110	0.121+).148	S
J+258±J+312	- u.u.u <u>1</u> * J. (11	- J. J. L. L. J. L. J. 4	0.121.0.138	0.169±0.173	0.07720.072	0.023±0.150	-0.00.40.134	1
	251×1 4 10	= J=030 <u>=</u> J=099 = () 7755 () 211	-1, 13 (<u>*</u> 1, 19)	1-0-13400-247	[=0+1+0±2+070]	- J.J.46.50+12.4	- 3+3-9±3-123	
	- J+2 + <u>1</u> - JC - J	- 0 + 2 3 <u>5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 </u>	0.70+1.002	1.141+1 147	V+V7/10+L09+	- J+ J7 L <u>+</u> J+ 7 L4 - 3 - 3 J - 7 + 0 - 1 2 2	- J+175±J+117 -0.246+0.261	
0.1/0+0.518	2.622+3.595	- 0 . 1 / C. 21 1	- Ja) 3 / + Ja / Hr.	-0.311+0.311	-0.090+0.4101	1.212+2.044	-0+24020+241	•
-0.212+0.242	J.41.3+J.237	J. 315+ J. 203	-0.199+0.177	-3 3-71+0 122	0.104+0.132	-).070+0.114	0.143+0.152	•
					L			_

1.5 · W · 1.7 GeV

the second se			······································			
$0 \cdot J \cup 1 \pm J \cdot J \cdot 5 = 2$ $-J \cdot 1 + 1 + 3 \cdot 1 + 5$ $-J \cdot 1 + 1 + 3 \cdot 1 + 5$ $-J \cdot 0 + 3 \pm 0 \cdot 5 = 3 \pm 5$ $-J \cdot 0 + 3 \pm 0 \cdot 1 + 5$ $-J \cdot 0 + 3 \pm 0 \cdot 1 + 5$ $+J \cdot 1 + 5 \cdot 1 + 5$	$\begin{array}{c} 2 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\$	$\begin{array}{c} = 0 \\$) $. 341 + 3.02 \pm 0.074 \pm 1.02 \pm 0.074 \pm 1.034 \pm 0.034 \pm 0.034 \pm 0.034 \pm 0.040 \pm 0.04$	$\begin{array}{c} 304^{**}+3.233\\ 3044\underline{+}3.133\\ 0315\underline{+}9343\\ -3321\underline{+}9343\\ -3355\underline{+}9343\\ -355\underline{+}9343\\ -355\underline{+}9343\\ -355\underline{+}9343\\ -315\underline{+}9343\\ -315\underline{+}9343\\ -315\underline{+}9343\end{array}$	$\begin{array}{c}$
$\begin{array}{c} \mathbf{J}_{1} = \mathbf{J}_{1} + \mathbf{J}_{2} + \mathbf{J}_{2} + \mathbf{J}_{3} + \mathbf{J}_{4} + \mathbf{J}$	$ \begin{array}{c} 3 + 1 + \frac{1}{2} + 3 + \frac{1}{2} + \frac{1}{2$	$ \begin{array}{c} \mathbf{J}_{+} (\mathbf{J}_{+}, \mathbf{J}_{+}, \mathbf{J}_{+}$	-3.11	$\begin{array}{c} 0 \cdot 136 \pm 0 \cdot 156 \\ -0 \cdot 126 \pm 0 \cdot 156 \\ 0 \cdot 034 \pm 0 \cdot 051 \\ 0 \cdot 034 \pm 0 \cdot 051 \\ 0 \cdot 030 \pm 0 \cdot 055 \\ -1 \cdot 017 \pm 0 \cdot 055 \\ -3 \cdot 017 \pm 0 \cdot 040 \\ 0 \cdot 034 \pm 0 \cdot 034 \\ 0 \cdot 034 \pm 0 \cdot 034 \\ 0 \cdot 034 \pm 0 \cdot 034 \end{array}$	3.575±)54 (.048±0.)55 0.047±0.553 0.047±0.553 0.047±0.564 -0.341±0.564 -7.14555.744 -3.554±0.75	$\begin{array}{c} 2.524\pm0.543\\ -2.509\pm0.347\\ -2.509\pm0.347\\ -2.509\pm0.347\\ -2.509\pm0.347\\ -2.509\pm0.342\\ -2.502\pm0.342\\ -2.502\pm0.342\\ -2.502\pm0.362\\ -2.502\pm0.3$
-0.008±0.153 -0.295±0.151 +0.042±0.13 -0.242±0.13 -0.242±0.171 -0.242±0.171 -0.376±0.125 -0.93±0.120 0.037+0.265	$ \begin{bmatrix} -3 + 3 + 4 \pm 3 + 1 + 3 + 1 + 4 \pm 3 + 1 + 3 + 1 + 4 \pm 3 + 3 + 3 + 3 + 3 + 3 + 3 + 3 + 3 + 3$	$\begin{array}{c} \textbf{J} \cdot \textbf{J} \cdot \textbf{S} \cdot \textbf{S} \cdot \textbf{L} \cdot \textbf{S} \cdot \textbf{S} \cdot \textbf{J} \cdot \textbf{S} \cdot $	- J. J3 1±0, 303 - J. 121±0, 345 - J. 091±3, 056 - 0, 204±0, 116 - 0, 396±3, 379 - 0, 196±3, 349 - 0, 062±3, 349	$\begin{array}{c} -3 + 3 + 1 + 4 + 3 + 5 + 5 \\ -3 + 4 + 3 + 7 + 2 + 3 + 3 + 4 + 5 \\ -3 + 4 + 2 + 3 + 3 + 2 + 3 + 3 + 3 + 5 \\ -3 + 4 + 2 + 3 + 2 + 3 + 3 + 3 + 3 + 3 + 3 + 3$	-0.06123.365 -3.043+1.375 0.024±0.056 -0.170±0.082 0.039±0.103 0.212±1.087 0.052-0.87 0.052-0.57	$\begin{array}{c} 3.113\pm 3.377 \\ -3.369\pm 0.457 \\ -3.395\pm 0.457 \\ -3.395\pm 0.451 \\ -3.395\pm 0.351 \\ -3.395\pm 0.354 \\ -3.395\pm 0.355\pm 0.354 \\ -3.395\pm 0.355\pm 0.355 \\ -3.395\pm 0.355\pm 0.355\pm$
-0.01/±0.292 0.313±0.242 0.018±0.191 0.132±0.162 0.127±0.100	$\begin{array}{c} J_{+} (3/2) \stackrel{\bullet}{=} (J_{+} (3/2) \stackrel{\bullet}{=} (J_{+} (3/2) \stackrel{\bullet}{=} (J_{+} (J_$	J. J. 4 <u>€</u> J. 127 O. J35 <u>4</u> J. 113 - O. J35 <u>4</u> J. 193 - O. J10 <u>4</u> J. 197 - J. 327 <u>4</u> J. 107	$\begin{array}{c} 0.137 \pm 0.167\\ 0.043 \pm 0.129\\ 0.052 \pm 0.141\\ 0.054 \pm 0.135\\ 0.175 \pm 0.083 \end{array}$	-0.172±3.124 -0.239±0.123 0.001±0.379 3.377±0.130 0.078±0.396	0.00123.143 -0.04740.106 -0.03420.078 0.127 <u>+</u> 0.094 0.227 <u>+</u> 0.107	-).J7.±0.124 - 0.138±J.141).082±0.092 0.114±J.195 0.299±0.132 0.094±).167 0.117±0.112 0.143±0.798 J.214±0.399 -0.761±0.392

Tab. 6.4b (Fortsetzung)

1.7 🔨 W 🗠 2.8 GeV

cos +	r 04 33	Re r_{31}^{04}	Re r ⁰⁴	r <mark> </mark>	r 1 33	Re r <mark>1</mark>	Re r 1 3-1	Q ² (GevV
1.0 + 0.0 3.8 + 3.0	9- 0.1+8±0.63: 9- 0.144±0.640	י 1• C L +± C± 334 1• C L +±C ± 334 1• C± ±L±C± 343	0.001±0.032	-0.071±0.051 -1.125±0.032	0.016 <u>+</u> 0.052 0.072 <u>+</u> 0.072	2 - J.JLJ <u>+</u> U.J53	0.135±0.047 C.COC+C.363	
J.6 + 0.4 J.4 + C.2	しゃ17な生ひゃしから いゃ1つの生じゃした?	- (-)+ (3))± ,+ (300 -)+ (+2±)+ (365	-J.)01±J.J54	-0.247±0.036 -0.139±0.096	0.047±0.39: 0.075+0.046	3 - 0 • 747 ± 0 • 943	0.076±0.075	ω.
0.2 • 0.5 3.0 • -0.2	- U./11±0.07.3 - U.1994C.170	מפט גע <u>א</u> ליים גע.	0.047 <u>0</u> .056	-3.023±0.103	-3.074±0.133	0.033±0.034	- 0.091±0.038	i
-0.2 + -0.4 -0.4 + -0.4	¹ J.135±06) ¹² J.152+0. 64	- J+ C± J€ J+ J32		-0.113±0.094	0.093±0.087	0.183±3.116	6.002±0.093	0
-0.6 + -0.8 -0.8 + -1.0	1.03, 1.03, 1.03, 1.03, 1.03, 1.03, 1.03, 1.03, 1.03, 1.03, 1.03, 1.03, 1.03, 1.03, 1.03, 1.03, 1.03, 1.03, 1.03, 1.03	-). C -). 277	-0.)43±0.000	-3.051 ± 0.134	-0.057±0.140	-3.133 ± 3.118 -3.133 ± 3.121	0.02000.132 0.17420.114	ທ
1.) + 0.8	→ → 	4		-).0442	J.0.33 <u>+</u> J.124	0.09210.123	L.154±L.108	4
J.3 ◆ U.6 J.6 ◆ D.4	0.1//±C.C71		-0.0651.063	0.075 <u>+</u> 0.136	-0.072±0.127	-0-194+0-073	- 3. 67 3 <u>+</u> 6. 112	0
9.4 ★ 0.2 0.2 ★ 0.1	0+.30±C+071	U CALEU 020	-0.053+0.077	(−0+0)[±0+118 (0+114±0+110)	-0.05840.111 -0.02240.111	0.074±0.115 U.109±0.122	0.114 <u>+</u> 0.097 -0.027 <u>+</u> 0.098	5
).) • -0.2	: 0.310*1.027	-0.042 <u>0</u> 080	-0,064±0,095 -0,257±0,089	106±3.149; 117±3.176	- 0.097±0.154 -0.024±0.170	J=0.0+7±0.137 J=0.143±0.164	- 3.254±3.140 3.342±0.157	1
-3.4 • -0.6	1 0.256±0.102 1 0.256±0.640	- 1+124∓1+18[- 1+12471931	- 0+13≠±3+074 0+135±3+083	3+)20±)+194 	-0.085±0.161 -0.244±0.147]-J.158±J.119]-J.012±3.140	0.015±0.111 0.016±0.138	0
-3.d + -1.;	- J+246±0+104 - J+253±0+079	[-J.121±0.122 J.623±3.094	€ 9:0 , ∪ <u>+</u> 2:0 ≤ , 0 ~ . 11:0 , ∪ <u>+</u> 2:0 (, 0) + 22 3 <u>+</u> 3 + 163 / 3 + 06 1 <u>+</u> 3 + 131	-0.299±0.187 0.058+0.131	0.404±0.183	C+252±0+159 + C+112+C+141	8
1.3 + 3.3	+ [J•33L±0•37K	J+ CL3±0+ J85		-0.032±0.115	-0.095+0.135	0.349+0.129	6-024+0-141	+
0.8 € 0.6 1.6 € 0.4	0+530±C+074 0+486±0+114	- 3. c73±3.tC9 3. c>3±3.t23	-0.102±0.141 -0.170±0.153	J.034±0.142 J.334+J.233	-0.006±0.242	0.318±0.177	C = 05 5±0 = 266	0
J.2 ← 0.2 J.2 ← J.J	J+135±0+190 U+257±0+117	3.147 <u>+3.152</u> 0.331+3.183	, 0.207 <u>+</u> J-145 0.327+3.122	-0.020±0.302	0.195±0.194	0.081±0.260	0.138±0.224	00
).J + -9.2 -9.2 + -0.4	J+553±€+694 }-J+618±€+221	- J. 26JE 0.107 J. 212+0.165	0.135 <u>+</u> 0.215 0.052+0.131	0.039±0.151	-0.465+0.415	- 7 • 214±) • 239	$-C_{2}285\pm0.281$	1
-)*A + -0*9 -)*A + -0*9	Ú+543±0•185 J•385+J•154	-J.C+5±J.165 -J.C514J.182	0.052±0.162	0.142 ± 3.291 -0.058+0.263	-0.486±0.266	0.3/7±0.226	-0.001 ± 0.175	•
-2.3 + −1.2	. J•264±1•163	J. (1 + J. 113	-0.1/J±J.130	0.488±0.292	-0.209±0.235	0.311±0.170	- C+106±C+232	
$Im r^2$	1 m m ²	5	5	5	5	6	6	-
$\frac{1 \text{m}}{2} \text{r} \frac{2}{31}$	$\lim r_{3-1}^2$	r ⁵	r ⁵ 33	Re r_{3-1}^{5}	Re r 5 31	Im r ⁶	Im r 6 3-1	
1 m r ² 31 -0.0+(+0.15) -0.0+(+0.15)	$\lim_{t \to 0 \ 0 \ 0 \ 0 \ 0 \ 0 \ 0 \ 0 \ 0 \ 0$	r 5 11 - 0. 0. 6. 0. 0. 1 - 0. 0. 1. 0. 1	5 -0.030±0.005 0.031±0.017	$\begin{array}{r} 8e & 5 \\ -3.019 \pm 0.023 \\ 0.122 \pm 0.042 \end{array}$	Re r_{31}^{5} 3.014±0.027 0.034+0.035	$1m r_{31}^{6}$ 0.053 ± 0.025 0.034 + 0.035	$\begin{array}{c} 1m & r & 6 \\ 1m & r & 3-1 \\ 0.033 \pm 0.022 \\ 0.037 \pm 0.033 \\ 0.033 \pm 0.032 \end{array}$	
$\frac{1 \text{ m} \text{ r}^2_{31}}{\frac{1}{2} \cdot \frac{1}{2} \cdot $	$\frac{1}{1000} \frac{1}{1000} \frac{1}{1000} \frac{1}{1000} \frac{1}{1000} \frac{1}{10000} \frac{1}{10000000000000000000000000000000000$	r 11 - 0. 0+6±0. 011 - 0. 014±0. 011 0. 014±0. 057 0. 017±0. 057	r33 -0.03.140.026 2.03.40.03 -0.03.40.049 -0.03.440.049 -2.31.462.049	Re r_{3-1}^{5} 3 - 1 + 1 + 1 + 3 - 3 - 3 + 3 + 3 - 3 + 3 + 3 - 3 + 3 +	$\begin{array}{r} 5 \\ \text{Re} r_{31} \\ 3.374 \pm 0.327 \\ 0.34 \pm 3.035 \\ 0.317 \pm 0.355 \\ -0.313 \pm 0.355 \end{array}$	$\begin{array}{c} Im & r & 6 \\ \hline 1m & r & 31 \\ \hline 0.053 \pm 0.025 \\ 0.033 \pm 0.036 \\ 0.033 \pm 0.036 \\ 0.033 \pm 0.036 \\ 0.034 \\ $	$\begin{array}{c} Im & r\frac{6}{3-1} \\ 0.033\pm0.022 \\ 3.037\pm0.031 \\ 0.041\pm0.031 \\ 0.059\pm0.039 \end{array}$	0.3
1m r ² 31 -0.04(±0.16) -1.05(±0.16) -1.115(±0.08) -0.55(±0.177 0.05(±0.185) -1.125(±0.00)	$\frac{1}{100} \frac{2}{3-1}$	r 5 r 11 - 0. 0. 64 0. 0. 1 - 0. 0. 64 0. 0. 1 0. 0. 44 0. 0. 7 0. 0. 74 0. 0. 7 - 0. 0. 46 0. 0. 1	r_{33} =0.03.1±0.05 3.27±0.047 =0.09.1±0.049 =0.053±0.049 0.053±0.059 0.127+0.055	$\begin{array}{c} Re & r \\ -3 - 1 \\ -3 - $	Re r_{31}^{5} 3.314 ± 0.327 0.034 ± 3.035 0.317 ± 0.355 -0.013 ± 3.348 -0.016 ± 0.341 -0.016 ± 0.341	$\begin{array}{c} Im & r & 6 \\ Im & r & 31 \\ \hline 0.053 \pm 0.025 \\ 0.03 \pm 0.036 \\ 0.033 \pm 0.036 \\ -0.071 \pm 0.034 \\ 0.028 \pm 0.040 \\ 0.023 \pm 0.043 \end{array}$	Im r_{3-1} 0.033±0.022 0.037±0.031 0.041±0.038 0.059±0.039 0.043±0.049 0.043±0.049	0.3 -
Im r ² ₃₁ -0.04(+0.36) 3.04(+0.34) -1.1(+0.08) -0.05(+0.37) 0.05(+0.30) -0.125±0.00 -0.025±0.095 -0.035±0.095	$\frac{1}{1000} \frac{2}{3-1}$ $\frac{1}{1000} \frac{1}{1000} \frac{1}{100$	5 11 - 0. 0+6±0.013 - 0. 0+45.057 0. 014±0.057 0. 014±0.053 - 0. 0+6±0.053 - 0. 144±0.071 - 0. 076±0.071	$\begin{array}{c} r_{33} \\ -0.03.1\pm0.025 \\ 0.03.1\pm0.047 \\ -0.03.1\pm0.049 \\ -0.03.1\pm0.049 \\ 0.05.3\pm0.047 \\ 0.05.3\pm0.051 \\ 0.05.3\pm0.051 \\ 0.07.0\pm0.045 \\ 0.07.0\pm0.045 \\ 0.07.0\pm0.045 \end{array}$	Re r_{3-1}^{5} 3 - 1 - 3 - 1 - 3 - 1 - 3 - 1 - 3 - 1 - 3 - 1 - 3 - 1 - 3 - 1 - 3 - 1 - 3 - 1 - 1	$\begin{array}{r} \text{Re} r\frac{5}{31} \\ 3.074\pm0.027 \\ 0.034\pm0.035 \\ 0.017\pm0.055 \\ -0.010\pm0.054 \\ -0.076\pm0.044 \\ -0.145\pm0.061 \\ -0.145\pm0.061 \\ -0.145\pm0.061 \\ \end{array}$	$Im r \frac{6}{31}$ $J = 0.053 \pm 0.025$ $J = 0.033 \pm 0.036$ $J = 0.033 \pm 0.034$ $J = 0.023 \pm 0.040$ $J = 0.023 \pm 0.043$ $J = 0.023 \pm 0.043$	$\begin{array}{c} Im & r\frac{6}{3-1} \\ \hline 0.033\pm0.022 \\ 3.037\pm0.031 \\ 0.041\pm0.038 \\ 0.059\pm0.039 \\ 0.043\pm0.041 \\ -0.022\pm0.039 \\ -0.035\pm0.047 \\ \end{array}$	0.3 - 0
1 m r ² 31 -J.U.(+(+3, 16)).J.(1+J.U.(8)).J.(1+J+J.U.(8)).J.(1+J+J.U.(8)).J.(2+J).1+25 -J.(2+J)	$\frac{1}{1} \frac{2}{3-1}$ $\frac{1}{3-1} \frac{2}{3-1}$ $\frac{1}{3-1} \frac{2}{3-1} \frac{2}$	r 5 r 11 - 0. 0.6±0.031 - 0. 0.6±0.031 - 0. 0.6±0.037 - 0. 0.7±0.036 - 0. 0.7±0.037 - 0. 0.75±0.031 - 0. 0.75±0.037 - 0. 0.75±0.077 - 0. 0.75±0.037	$\begin{array}{c} r_{33} \\ -0.03.1\pm0.025 \\ 3.03\pm0.047 \\ -0.039.1\pm0.047 \\ -0.053\pm0.049 \\ 0.053\pm0.049 \\ 0.053\pm0.049 \\ 0.053\pm0.045 \\ 0.03\pm0.012 \\ 0.0$	Re r_{3-1} -3.010 ± 0.023 0.122 ± 0.0323 0.123 ± 0.032 0.031 ± 0.042 0.025 ± 0.042 0.025 ± 0.043 0.025 ± 0.043 0.015 ± 0.058 0.013 ± 0.051	Re r_{31}^{5} 3.374 ± 0.327 0.034 ± 0.035 0.317 ± 0.355 0.010 ± 0.348 0.016 ± 0.341 -0.016 ± 0.341 -0.145 ± 0.361 -0.121 ± 3.51 -0.033 ± 0.068	$Im r \frac{6}{31}$ $(1, 3, 5, 3, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5,$	Im r_{3-1} 0.033±0.022 0.037±0.031 0.041±0.038 0.059±0.039 0.043±0.041 0.022±0.039 7.005±0.047 0.020±0.057 - C.024±0.063	0.3 - 0.5
Im r ² 31 -0.04(+0.360 3.05(±0.153) -0.155(±0.083) -0.155(±0.083) -0.155(±0.083) -0.155(±0.133) -0.155(±0.133) -0.155(±0.133) -0.153(±0.155(±0.133))	$\frac{1}{1000} \frac{1}{1000} \frac{1}{1000} \frac{1}{1000} \frac{1}{10000} \frac{1}{10000000000000000000000000000000000$	5 11 - 0. 0+6±0.013 - 0. 0+4±0.057 0. 014±0.057 0. 014±0.053 - 0. 04±0.073 - 0. 04±0.077 - 0. 045±0.077 - 0. 045±0.077 - 0. 045±0.077 - 0. 045±0.077 - 0. 045±0.077 - 0. 045±0.037 - 0. 045±0.037	r_{33} =0.03.1±0.125 3.27±0.147 =0.03.1±0.147 =0.03.1±0.149 =0.12.1±0.349 0.053±1.151 3.12.1±0.055 0.070±1.045 0.05±0.072 =0.31.1±0.151	Re r_{3-1} -3.019±0.023 0.122±0.042 0.11±0.042 0.03±1.039 0.03±0.042 0.025±0.040 -3.045±0.046 0.015±0.056 0.015±0.056 0.015±0.048	$\begin{array}{r} Re & r \frac{5}{31} \\ \hline 3.014 \pm 0.027 \\ 0.034 \pm 0.035 \\ 0.017 \pm 0.055 \\ 0.017 \pm 0.055 \\ -0.010 \pm 0.076 \pm 0.014 \\ -0.036 \pm 0.051 \\ -0.145 \pm 0.051 \\ -0.145 \pm 0.051 \\ -0.145 \pm 0.051 \\ -0.145 \pm 0.051 \\ -0.035 \pm 0.051 \\ -0.055 \\ -$	Im r_{31}^{6} $J = 0.053 \pm 0.025$ $J = 0.03 \pm 0.036$ $J = 0.033 \pm 0.036$ $J = 0.033 \pm 0.036$ $J = 0.023 \pm 0.040$ $J = 0.023 \pm 0.043$ $J = 0.023 \pm 0.043$ $J = 0.053 \pm 0.058$ $J = 0.055 \pm 0.058$	Im r_{3-1} 0.033±0.022 0.037±0.031 0.041±0.038 0.059±0.039 0.043±0.041 -0.022±0.039 -0.035±0.047 0.205±0.063 0.225±0.045	0.3 - 0.5
Im r ² 31 -0.04(+0.360).04(±0.464).04(±0.464).05(±0.477 0.05(±0.477 0.05(±0.497 -0.045(±0.497 -0.163(±0.497) -0.163(±0.476) -0.163(±0.466) -0.03(±0.466)	$\frac{1m}{3-1} \frac{r}{3-1}$ $\frac{1}{3-1} \frac{1}{3-1} \frac$	r5 r11 - J. C+6±J. J. J. - J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. - J. C. J. J. - J. G. J. J. J. - J. G. J. J. J. - J. G. J. J. J. J. - J. J. J. J. J. J. J. - J. G. J.	r 3 33 -0.03.1±0.125 3.23.±0.147 -0.03.1±0.349 -3.13.53±0.349 0.053±0.349 3.123±0.056 0.07.0±0.056 0.053±0.072 -0.21.4±0.051 -0.014±0.052	Re r_{3-1} -3.019±1.323 0.123±1.343 0.13±1.341 -1.33±1.341 -1.33±2.342 0.025±3.343 0.025±3.343 0.025±3.343 0.025±3.343 0.025±3.343 0.015±3.348 9.035±3.348	Re r_{31}^{5} 3.314 ± 0.327 0.034 ± 0.035 0.317 ± 0.355 0.010 ± 0.348 -0.010 ± 0.348 -0.010 ± 0.341 -0.145 ± 0.361 -0.145 ± 0.361 -0.145 ± 0.361 -0.018 ± 0.368 0.086 ± 0.357	$Im r \frac{6}{31}$ $(1, 3, 5, 3, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5,$	$\begin{array}{c} Im & r & 6 \\ 3 - 1 \\ \hline 0.033 \pm 0.022 \\ 3.037 \pm 0.031 \\ 0.041 \pm 0.034 \\ 0.059 \pm 0.039 \\ 3.043 \pm 0.034 \\ 0.043 \pm 0.034 \\ -0.022 \pm 0.039 \\ -3.035 \pm 0.047 \\ 0.020 \pm 0.057 \\ -0.024 \pm 0.063 \\ 0.028 \pm 0.045 \\ 0.013 \pm 0.032 \\ 0.024 \pm 0.054 \\ \end{array}$	0.3 - 0.5 0
Im r ² 31 -J. U. (+3. 36) 3. J. (+3	$\frac{1}{100} \frac{2}{3-1}$ $\frac{1}{3-1}$ $\frac{1}{3$	$\begin{array}{c} & & & & & \\ & & & & 1 \\ \hline & & & & 1 \\ - & & & & 0 \\ - & & & & 0 \\ - & & & & 0 \\ - &$	$\begin{array}{c} r_{33} \\ -0.03.1\pm0.025 \\ 0.03.1\pm0.025 \\ 0.03.1\pm0.049 \\ -0.03.1\pm0.049 \\ 0.05.3\pm0.049 \\ 0.05.3\pm0.045 \\ 0.05.3\pm0.045 \\ 0.03\pm0.045 \\ 0.03\pm0.045 \\ 0.03\pm0.045 \\ -0.01\pm0.055 \\ -0.01\pm0.055 \\ -0.04\pm0.055 \\ -0.05$	Re r_{3-1} -3.019±0.023 0.022±0.032 0.022±0.032 0.035±0.042 0.035±0.042 0.035±0.040 -3.045±0.040 -0.045±0.040 0.015±0.056 0.015±0.037 0.035±0.037 0.035±0.037 0.035±0.037 0.015±0.049	$\begin{array}{c} \text{Re} r \frac{5}{31} \\ 3.014 \pm 0.027 \\ 0.034 \pm 0.035 \\ 0.017 \pm 0.055 \\ 0.017 \pm 0.055 \\ 0.010 \pm 0.015 \\ -0.010 \pm 0.015 \\ -0.145 \pm 0.001 \\ -0.145 \pm 0.001 \\ 0.018 \pm 0.008 \\ 0.085 \pm 0.052 \\ 0.005 \pm 0.057 \\ 0.145 \pm 0.054 \\ 0.077 \pm 0.054 \end{array}$	$Im r \frac{6}{31}$ $J = \frac{6}{31}$ $J = \frac{5}{31}$ $J =$	$Im r \frac{6}{3-1}$ 0.033±0.022 0.034±0.031 0.041±0.031 0.041±0.038 0.059±0.039 0.043±0.041 0.022±0.039 -0.025±0.047 0.025±0.063 0.025±0.045 -0.013±0.032 0.024±0.032 0.024±0.054 0.044±0.060 0.044±0.060 0.044±0.060	0.3 - 0.5 0.5
$Im r_{31}^{2}$ $-0.04(0.160)$ $-0.04(0.164)$ $-0.164(0.164)$ $-0.163(0.087)$ $-0.056(0.177)$ $-0.155(0.177)$ $-0.155(0.177)$ $-0.153(0.166)$ $-0.03(0.166)$ $-0.03(0.166)$ $-0.03(0.166)$ $-0.03(0.166)$ $-0.03(0.166)$ $-0.03(0.166)$ $-0.15(0.177)$ $-0.15(0.077)$ $-0.15(0.077)$ $-0.15(0.077)$	$\frac{2}{1m} - \frac{2}{3-1}$ $\frac{3-1}{3-1}$ $\frac{3-1}{3-1}$ $\frac{3-1}{3-1}$ $\frac{3-1}{3-1}$ $\frac{3-1}{3-1}$ $\frac{3-1}{3-1}$ $\frac{3-1}{3-1}$ $\frac{1+3}{3-3-1}$ $\frac{3-1}{3-1}$ $\frac{1+3}{3-3-1}$ $\frac{3-1}{3-1}$ \frac	$r \frac{5}{11}$ = 0. 0+6±0.01) = 0. 0+6±0.01) = 0. 0+4±0.051 = 0. 0+4±0.051 = 0. 0+4±0.051 = 0. 0+6±0.051 = 0. 0+6±0.051 = 0. 075±0.075 = 0. 03±0.055 0. 0+5±0.055 0. 0+5±0.055 = 0. 0+1±0.073 = 0. 195±0.058 = 0. +1±0.073	r 3 3 -0. 03.1±0. 125 3. 23 ±0. 147 -0. 03.1±0. 147 -0. 03.1±0. 149 -0. 15.1±0. 049 0. 15.1±0. 049 3. 03.±0. 072 -0. 21.1±0. 051 -0. 104±0. 052 -0. 101±0. 052 -0. 04.±0. 052 -0. 054 -0. 054 -	Re r_{3-1} -3.019±0.023 0.122±0.032 0.123±0.042 0.03±0.042 0.03±0.042 0.035±0.042 0.025±0.042 0.025±0.042 0.035±0.058 0.015±0.037 -0.036±0.037 0.015±0.049 0.035±0.071	Re $r \frac{5}{31}$ 3.314 ± 0.327 0.034 ± 0.035 0.317 ± 0.355 -0.313 ± 0.355 -0.313 ± 0.354 -0.33 ± 0.341 -0.33 ± 0.361 -0.33 ± 0.361 0.065 ± 0.357 0.1750 - 0.361 -0.071 ± 0.361 -0.031 ± 0.361 -0.031 ± 0.361	$Im r \frac{6}{31}$ $(1, 3, 53 \pm 3, 35)$ $(3, 3, 53 \pm 3, 35)$ $(3, 3, 53 \pm 3, 53)$ $(3, 3, 53 \pm 3, 53)$ $(3, 53)$ $(3,$	Im r_{3-1} 0.033±0.022 0.037±0.031 0.041±0.038 0.059±0.039 0.043±0.039 0.043±0.039 0.022±0.039 0.025±0.047 0.025±0.047 0.025±0.047 0.025±0.045 0.026±0.056 0.044±0.056 0.051±0.058 0.014±0.068	0.3 - 0.5 0.5 -
Im r ² 31 -J. U. (+3. 36) 3. J. (+2 143 -J. (+2 08) -J. (+2	$\frac{2}{3-1}$ $\frac{1}{3-1}$ $\frac{2}{3-1}$ $\frac{1+3}{3-1}$ $\frac{1+3}{3-1}$ $\frac{1+3}{3-1}$ $\frac{2}{3-1}$	r_{11} = 0. 0+6± 0.013 = 0. 0+6± 0.013 = 0. 0+4± 0.057 0. 014± 0.057 = 0. 0+6± 0.053 = 0. 146± 0.011 = 0. 073± 0.077 = 0. 03± 0.037 = 0. 03± 0.036 = 0. 03± 0.055 0. 043± 0.055 0. 043± 0.055 0. 043± 0.055 0. 043± 0.055 0. 043± 0.055 0. 045± 0.035 = 0. 119± 0.058 = 0. 055± 0.01 = 0. 055± 0.01	$\begin{array}{c} r_{33} \\ -0.03.1\pm0.025 \\ 0.03.1\pm0.025 \\ 0.03.1\pm0.045 \\ 0.03.1\pm0.045 \\ 0.05.3\pm0.045 \\ 0.05.3\pm0.051 \\ 0.05.3\pm0.072 \\ 0.05.3\pm0.072 \\ 0.05.3\pm0.072 \\ -0.05.4\pm0.051 \\ 0.05.4\pm0.051 \\ -0.05.4\pm0.051 \\ -0.05.4\pm0.051 \\ -0.05.4\pm0.055 \\ 0.05.4\pm0.055 \\ 0.05.4\pm0.055 \\ 0.05.4\pm0.055 \\ 0.05.4\pm0.075 \\ 0.13.7\pm0.075 \\ 0.05.4\pm0.078 \\ -0.05.4\pm0.078 \\ \end{array}$	Re r_{3-1} -3.019±0.023 0.023±0.032 0.015±0.042 0.035±0.042 0.035±0.042 0.035±0.040 -3.045±0.040 -3.045±0.040 0.035±0.054 0.035±0.037 -0.036±0.051 0.015±0.049 0.033±0.059 0.035±0.059 -0.048±0.071 -0.034±0.071	Re $r\frac{5}{31}$ 3.314 ± 0.327 0.034 ± 0.035 0.317 ± 0.355 -0.515 ± 0.354 -0.015 ± 0.354 -0.145 ± 0.351 -0.145 ± 0.361 -0.121 ± 0.511 0.08 ± 0.080 0.08 ± 0.080 0.08 ± 0.080 0.065 ± 0.577 0.15 ± 0.361 -0.077 ± 0.554 -0.01 ± 0.554 -0.05 ± 0.067	Im r_{31}^{6} $J_{0} J_{3} J_{0} J_{3} J_{1} J_{1}$	$Im r \frac{6}{3-1}$ 0.033±0.022 0.033±0.022 0.041±0.031 0.041±0.038 0.059±0.039 0.043±0.041 0.022±0.039 -0.013±0.047 0.025±0.063 0.026±0.063 0.026±0.064 0.044±0.068 0.051±0.063 0.051±0.063 0.051±0.063 0.051±0.066 0.051±0.066 0.058±0.066 -0.094±0.055	0.3 - 0.5 0.5 - 0.
$\frac{1}{10000000000000000000000000000000000$	$\frac{2}{1 m r^{2} 3 - 1}$ $\frac{3 - 1}{3 - 1}$ $\frac{1 + 3 - 3 - 3}{3 - 1}$ $\frac{3 - 1}{3 - 1}$ $\frac{1 + 3 - 3 - 3}{3 - 1}$ $\frac{3 - 1}{3 - 1}$ $\frac{1 + 3 - 3 - 3}{3 - 1}$ $\frac{3 - 1}{3 - 1}$ $\frac{1 + 3 - 3 - 3}{3 - 1}$ $\frac{3 - 1}{3 - 1}$ $\frac{3 - 1}$	$\begin{array}{c} & 5 \\ & 11 \\ \hline & 0. \ (1+6\pm 0.01) \\ \hline & 0. \ (1+6\pm 0.01) \\ \hline & 0. \ (1+4\pm 0.05) \\ \hline & 0. \ (1+4\pm 0.05) \\ \hline & 0. \ (1+4\pm 0.05) \\ \hline & 0. \ (1+4\pm 0.01) \\ \hline \end{array}$	$\begin{array}{c} r_{3,3} \\ \hline \\ -0.03.1\pm0.026 \\ 0.03.1\pm0.026 \\$	Re r_{3-1} -J.: $1(9 \pm 1, 23)$ $0, 1(3 \pm 1, 24)$ $0, 1(3 \pm 1, 24)$ $0, 1(3 \pm 1, 34)$ $0, 1(3 \pm 1, 34)$ $0, 25 \pm 3, 343$ $0, 25 \pm 3, 343$ $0, 1(5 \pm 3, 343)$ $0, 3(5 \pm 3, 354)$ $0, 3(5 \pm $	Re $r \frac{5}{31}$ 3.314 ± 0.327 0.034 ± 0.35 0.317 ± 0.355 0.317 ± 0.355 0.317 ± 0.355 0.312 ± 0.341 -0.30 ± 0.341 -0.33 ± 0.361 0.080 ± 0.352 0.080 ± 0.357 0.145 ± 0.361 -0.071 ± 0.354 0.035 ± 0.361 -0.031 ± 0.541 -0.351 ± 0.0671 0.355 ± 0.0871 0.05 ± 0.354	$Im r_{31}^{6}$ $Jm r_{31}^{0}$ $J = \frac{1}{2} + \frac{1}{2} $	$\begin{array}{c} 1m & r & 6 \\ \hline 1m & r & 3-1 \\ \hline 0.033\pm0.022 \\ 3.057\pm0.034 \\ \hline 0.041\pm0.034 \\ 0.059\pm0.034 \\ \hline 0.043\pm0.041 \\ \hline 0.022\pm0.034 \\ \hline 0.022\pm0.034 \\ \hline 0.025\pm0.047 \\ \hline 0.025\pm0.057 \\ \hline 0.025\pm0.063 \\ \hline 0.024\pm0.063 \\ \hline 0.024\pm0.063 \\ \hline 0.024\pm0.054 \\ \hline 0.044\pm0.060 \\ \hline 0.044\pm0.060 \\ \hline 0.051\pm0.053 \\ \hline 0.014\pm0.053 \\ \hline 0.051\pm0.066 \\ \hline 0.084\pm0.066 \\ \hline 0.084\pm0.057 \\ \hline 0.081\pm0.077 \\ \hline 0.135\pm0.064 \\ \hline \end{array}$	0.3 - 0.5 0.5 - 0.8
Im r ² 31 -0.04(+0.36) 3.04(±0.103) -1.1(3±0.08) -0.123±0.09) -0.03(±0.19) -0.123±0.09) -0.03(±0.19) -0.123±0.19) -0.123±0.19 -0.123±0.19 -0.123±0.19 -0.123±0.19 -0.123±0.19 -0.123±0.19 -0.123±0.19 -0.138±0.19 -0.138±0.17 -0.125±0.17 -0.125±0.17 -0.125±0.17 -0.125±0.17 -0.125±0.17 -0.125±0.17 -0.125±0.17	$\frac{2}{3-1}$ $\frac{3-1}{3-1}$ $$	r_{11} = 0. C+6± 0.013 = 0. 0.46± 0.013 = 0. 0.44± 0.054 0. 014± 0.054 = 0. 014± 0.053 = 0. 014± 0.053 = 0. 014± 0.013 = 0. 013± 0.017 = 0. 003± 0.035 0. 003± 0.035 0. 003± 0.035 0. 013± 0.035 0. 014± 0.035 = 0. 015± 0.014 = 0. 015± 0.036 = 0.055	r_{33} -0. 03.1 ± 0.).25 3. 27 ± 0.).47 -0. 03.1 ± 0.).25 3. 07 ± 0.).49 -0. 13.1 ± 0. 049 0. 05.3 ± 0. 041 0. 05.3 ± 0. 051 0. 05.3 ± 0. 051 0. 05.4 ± 0. 055 -0. 01.4 ± 0. 055 -0. 01.4 ± 0. 055 -0. 01.4 ± 0. 055 -0. 01.5 ± 0. 055 -0. 01.5 ± 0. 055 -0. 01.5 ± 0. 075 -0. 01.5 ± 0. 078 -0. 02.5 ± 0. 100 -0. 02.0 ± 0. 071 -0. 22.0 ± 0. 071	Re r_{3-1} -3.019±0.023 0.12±0.042 0.12±0.042 0.13±1.039 0.035±0.042 0.025±0.040 -3.045±0.040 0.015±0.056 0.015±0.037 -0.036±0.051 0.015±0.049 0.035±0.051 0.015±0.049 0.035±0.051 0.015±0.049 0.033±0.059 -0.034±0.071 +0.033±0.059 -0.014±1.071 0.014±1.071 0.014±0.053 0.026±0.066	Re $r\frac{5}{31}$ 3.314 ± 0.327 0.317 ± 0.355 0.317 ± 0.355 -0.310 ± 0.354 -0.310 ± 0.354 -0.310 ± 0.354 -0.145 ± 0.361 -0.145 ± 0.361 -0.145 ± 0.361 -0.145 ± 0.361 -0.08 ± 0.036 0.065 ± 0.357 0.145 ± 0.361 -0.01 ± 0.354 -0.01 ± 0.354 -0.355 ± 0.087 0.055 ± 0.087 0.055 ± 0.358 0.095 ± 0.258	$Im r \frac{6}{31}$ $J = \frac{6}{31}$ $J = \frac{5}{31}$ $J =$	$Im r \frac{6}{3-1}$ 0.033±0.022 0.034±0.031 0.041±0.031 0.041±0.038 0.059±0.039 0.043±0.041 0.022±0.039 -0.013±0.047 0.025±0.047 0.025±0.045 0.024±0.053 0.024±0.054 0.044±0.066 0.051±0.056 0.051±0.056 0.051±0.056 0.051±0.056 0.051±0.056 0.051±0.056 0.051±0.056 0.051±0.056 0.051±0.056 0.051±0.056 0.051±0.056 0.051±0.056 0.051±0.056 0.051±0.056 0.044±0.055 0.011±0.055 0.011±0.055	0.3 - 0.5 0.5 - 0.8
$Im r_{31}^{2}$ $Im r_{31}^{-0.04+(.0.16)}$ $(-0.04+(.0.16))$ $(-0.04+(.0.16))$ $(-0.04+(.0.16))$ $(-0.04+(.0.16))$ $(-0.163+(.0.16))$ (-0.16) $(-0.160+(.0.16))$	$\frac{2}{1 m r^2} \frac{3-1}{3-1}$ $\frac{3-1}{3-1}$	$r = \frac{5}{11}$ = 0. 0.4 6± 0. 0.1 1 = 0. 0.4 6± 0. 0.1 1 = 0. 0.4 6± 0. 0.1 1 = 0. 0.4 6± 0. 0.5 7 = 0. 0.7 6± 0. 0.1 1 = 0. 0.7 6± 0. 0.1 1 = 0. 0.7 6± 0. 0.1 1 = 0. 0.7 5± 0. 0.7 1 = 0. 0.7 5± 0.0 1	$r_{3,3}$ =0. 03.3 ± 0. 3.25 2. 27 ± 0. 3.25 0. 03.4 ± 0. 3.25 0. 03.4 ± 0. 3.45 0. 35.4 ± 0. 45 0. 35.4 ± 0. 45 -0. 51.4 ± 0. 55 -0. 101 ± 0. 55 0. 104 ± 0. 35 0. 137 ± 0. 467 -0. 37 ± 0. 467 -0. 35 ± 0. 371 -0. 35 ± 0. 371 -0. 55 ± 0. 394 0. 505 ± 0. 371	Re r_{3-1} -J.: $1(9 \pm 1, 23)$ $0, 1(3 \pm 1, 24)$ $0, 1(3 \pm 1, 24)$ $0, 1(3 \pm 1, 34)$ $0, 25 \pm 0, 343$ $0, 25 \pm 0, 343$ $0, 25 \pm 0, 343$ $0, 1(5 \pm 0, 343)$ $0, 1(5 \pm 0, 354)$ $0, 1(5 \pm 0, 354)$ $0, 1(1 \pm 0, 103)$ $0, 1(1 \pm 0, 103)$	Re $r \frac{5}{31}$ 3	$Im r 31$ $0.053+9.025$ 0.03 ± 0.036 0.03 ± 0.036 0.03 ± 0.036 0.023 ± 0.040 0.023 ± 0.043 -0.023 ± 0.043 -0.023 ± 0.043 -0.023 ± 0.058 0.111 ± 0.055 -0.033 ± 0.051 0.033 ± 0.051 0.05 ± 0.051 0.02 ± 0.084 -0.03 ± 0.051 0.072 ± 0.084 -0.032 ± 0.047 -0.122 ± 0.065 $0.011+0.059$	Im r_{3-1} 0.03 \pm 0.022 0.03 \pm 0.022 0.041 \pm 0.034 0.041 \pm 0.034 0.041 \pm 0.034 0.041 \pm 0.034 0.043 \pm 0.044 0.022 \pm 0.034 0.022 \pm 0.034 0.023 \pm 0.047 0.023 \pm 0.047 0.023 \pm 0.047 0.023 \pm 0.045 0.013 \pm 0.032 0.024 \pm 0.045 0.024 \pm 0.045 0.024 \pm 0.054 0.044 \pm 0.068 0.058 \pm 0.060 0.034 \pm 0.058 0.014 \pm 0.058 0.014 \pm 0.058 0.014 \pm 0.058	0.3 - 0.5 0.5 - 0.8 0.
$\frac{1}{31}$ -0.04(+0.36) 3.04(+0.36) 3.04(+0.36) 3.05(+0.37) 3.05(+0.37) 3.05(+0.37) 3.05(+0.39) -0.123(-0.39) -0.123(-0.39) -0.123(-0.39) -0.123(-0.39) -0.123(-0.39) -0.123(-0.39) -0.123(-0.39) -0.123(-0.39) -0.123(-0.39) -0.123(-0.39) -0.123(-0.39) -0.123(-0.39) -0.123(-0.39) -0.123(-0.39) -0.123(-0.39) -0.123(-0.39) -0.123(-0.123) -0.123(-0.123) -0.14(-0.103) 0.14(-0.103) 0.14(-0.103) -0.20(-0.121) -0.20(-	$\frac{2}{3-1}$ $\frac{1}{3-1}$ $\frac{1}$	$r = \frac{11}{11}$ = 0. 0+6± 0.013 = 0. 0+6± 0.013 = 0. 0+4± 0.057 0. 014± 0.057 = 0. 0+6± 0.053 = 0. 0+6± 0.053 = 0. 0+6± 0.077 = 0. 0+6± 0.077 = 0. 0+5± 0.077 = 0. 0+5± 0.055 0. 0+5± 0.055 0. 0+5± 0.055 0. 0+5± 0.055 = 0. 0+5± 0.055 = 0.05± 0.055 =	r_{33} -0. 03.1 ± 0.).25 3. 03 ± 0.).25 3. 03 ± 0.).47 -0. 03 ± 0.).47 -0. 03 ± 0.).47 -0. 03 ± 0.).47 0. 05 3 ± 0.).47 0. 05 3 ± 0. 04 0. 05 3 ± 0. 071 -0. 01 ± 0. 05 2 -0. 01 ± 0. 07 8 -0. 02 ± 0. 100 -0. 05 ± 0. 071 -0. 05 ± 0. 071 -0. 05 ± 0. 122 -0. 05 ± 0. 05 ± 0. 122 -0. 05 ± 0	Re r_{3-1} -J. J $(9 \pm 3 + 3) = 3$ J. J $(3 \pm 3 +$	Re $r\frac{5}{31}$ 3.314 ± 0.327 0.317 ± 0.355 0.317 ± 0.355 -0.313 ± 0.355 -0.313 ± 0.351 -0.33 ± 0.361 -0.145 ± 0.361 -0.145 ± 0.361 -0.145 ± 0.361 -0.145 ± 0.361 -0.08 ± 0.257 0.065 ± 0.357 0.065 ± 0.357 0.065 ± 0.354 -0.03 ± 0.354 -0.05 ± 0.354 -0.05 ± 0.354 -0.055 ± 0.087 -0.555 ± 0.087 -0.95 ± 0.358 -0.99 ± 0.269 -0.32 ± 0.968 -0.39 ± 0.142	Im r_{31}^{6} J. 0.553+0.025 J. 003±0.036 0.33±0.036 0.33±0.036 0.323±0.040 0.023±0.043 0.323±0.043 0.323±0.043 0.323±0.058 0.130±0.058 0.111±0.055 -0.035±0.031 0.325±0.051 0.325±0.051 0.325±0.051 0.325±0.051 0.325±0.051 0.325±0.051 0.325±0.051 0.325±0.051 0.325±0.051 0.325±0.051 0.325±0.051 0.325±0.051 0.325±0.051 0.325±0.051 0.325±0.051 0.325±0.051 0.325±0.051 0.325±0.051 0.35±0.050 -0.35±0.050 -0.35±0.050 -0.31±0.059 0.112±0.059 0.110±0.155 0.110±0.071	$Im r \frac{6}{3-1}$ 0.033±0.022 0.033±0.022 0.041±0.031 0.041±0.038 0.059±0.039 0.059±0.039 -0.03±0.041 -0.022±0.039 -0.013±0.047 0.022±0.053 0.024±0.063 0.026±0.054 0.044±0.060 0.058±0.060 -0.014±0.058 0.051±0.055 0.014±0.058 0.051±0.055 0.014±0.060 -0.01355 0.014±0.060 -0.013±0.060 -0.014±0.066 -0.058±0.060 -0.094±0.055 0.081±0.077 -0.135±0.064 C.C11±0.055 0.027±0.092 0.205±0.090 0.210±0.106	0.3 - 0.5 0.5 - 0.8 0.8
$Im r_{31}^{2}$ $Im r_{31}^{-0.04+(.0.16)}$ $(-0.04+(.0.16))$ $(-0.05+(.0.16))$ $(-0.05+(.0.16))$ $(-0.16+(.0.16))$ $(-$	$\frac{2}{1 m r^2} \frac{3-1}{3-1}$ $\frac{3-1}{3-1}$	$\begin{array}{c} & 5 \\ & 11 \\ \hline & 0. \ (2+6\pm 0.01) \\ \hline & 0.09\pm 0.07 \\ \hline & 0.09\pm 0.07 \\ \hline & 0.01\pm 0.07$	$r_{3,3}$ =0. 03.1±0.).25 3. 27 ±0.).75 3. 27 ±0. 349 =0. 05.3±0. 349 =0. 05.3±0. 351 3. 12 1±0. 056 3. 07.3±0. 056 3. 05.±0. 072 =0. 01.2±0. 057 =0. 01.2±0. 055 =0. 101±0. 055 =0. 101±0. 055 =0. 101±0. 057 =0. 010±0. 075 0. 137±0. 077 =0. 010±0. 078 =0. 010±0. 071 =0. 020±0. 071 =0. 051±0. 071	Re r_{3-1} -J.: $1(9 \pm 1)23$ $0)23 \pm 1)41$ $0)13 \pm 1)41$ $0)13 \pm 1)42$ $0)13 \pm 1)39$ $1)14 \pm 0)42$ $0025 \pm 0)42$ $0025 \pm 0)43$ $0015 \pm 0)37$ $-036 \pm 1)37$ $-036 \pm 1)37$ 0015 ± 0049 $013 \pm 0)48$ 0015 ± 0049 $033 \pm 0)59$ $0014 \pm 1)71$ $0014 \pm 1)71$ $0014 \pm 1)71$ 0026 ± 0060 0026 ± 0060 0111 ± 0061 0026 ± 0069 0014 ± 1	Re $r \frac{5}{31}$ J.J 14±0.)27 U.0 24±0.035 O.J 17±0.055 O.J 17±0.055 O.J 12±0.041 D.J 0±0.014 O.J 0±0.041 D.J 0±0.041 O.J 02±0.041 D.J 02±0.040 U.0 05±0.056 U.0 05±0.057 O.1 45±0.061 O.J 014±0.054 O.J 014±0.054 O.J 014±0.054 O.J 014±0.054 O.J 014±0.054 O.J 014±0.054 O.J 014±0.054 O.J 014±0.054 O.J 014±0.058 O.0 09±0.069 D.0 42±0.083 O.0 09±0.108 O.J 04±0.108 O.J 04±0.108 O.J 04±0.108 O.J 04±0.083 O.0 09±0.108 O.J 04±0.108 O.J 04±0.008 O.J 04	Im r 31 $J = 53 + 5 + 5 + 5 + 5 + 5 + 5 + 5 + 5 + 5$	Im r 3-1 0.03120.022 3.03720.031 0.04120.031 0.04120.034 0.05920.034 0.02220.039 0.02220.039 0.02220.039 0.02220.041 0.02220.057 0.02220.057 0.02420.053 0.02420.054 0.04420.068 0.05120.053 0.01220.054 0.05120.053 0.0120.062 0.09420.055 0.08120.077 0.13520.064 C.C1120.055 0.02720.092 0.21020.106 0.04420.100 0.06220.152	0.3 - 0.5 0.5 - 0.8 0.8 -
$\frac{2}{1 \text{ m } r} \frac{31}{31}$ $-3.0 + (+3.46)$ $3.0 + (+3.46)$ $-3.0 + (+3$	$\begin{array}{c} 2\\ 1m & r \\ 3-1\\ 3-1\\ 3-12\\ 3$	$r = \frac{11}{2}$ = 0. 0 + 6± 0. 0 + 3 = 0. 0 + 3± 0. 0 + 1 = 0. 0 + 3± 0. 0 + 1 = 0. 0 + 1 + 3± 0. 0 + 3 = 0. 0 + 1 + 3± 0. 0 + 3 = 0. 0 + 1 + 3± 0. 0 + 3 = 0. 0 + 1 + 3± 0. 0 + 3 = 0. 0 + 1 + 3± 0. 0 + 3 = 0. 0 + 1 + 3± 0. 0 + 3 = 0. 0 + 1 + 3± 0. 0 + 3 = 0. 0 + 1 + 3± 0. 0 + 3 = 0. 0 + 1 + 3± 0. 0 + 3 = 0. 0 + 1 + 3± 0. 0 + 3 = 0. 0 + 3± 0. 0 + 3	r_{33} -0. 03.1±0.).25 3. 03.±0.).25 3. 03.±0.).47 -0. 03.0±0.).49 -0. 03.5±0.).47 0. 05.3±0. 040 0. 05.3±0. 041 0. 05.3±0. 042 -0. 01.±0. 052 -0. 01.±0. 052 -0. 01.±0. 052 -0. 01.±0. 054 0. 03.5±0. 075 -0. 11.±0. 054 0. 13.7±0. 067 -0. 01.5±0. 078 -0. 02.5±0. 071 -0. 02.0±0. 071 -0. 05.±0. 105 -0. 05.±0. 05.±0. 105 -0. 05.±0. 05.±0. 05.±0. 05.±0. 05.±0. 05.±0. 05. -0. 05.±0.00000000	Re r_{3-1} -J. J $(9 \pm 1) 23$ J. J $(3 \pm 1) 23$ J. J $(3 \pm 1) 39$ J. J $(3 \pm 1) 340$ J. J $(3 \pm 1) 34$	Re $r\frac{5}{31}$ 3.314 ± 0.327 0.317 ± 0.355 0.317 ± 0.355 -0.313 ± 0.355 -0.313 ± 0.351 -0.33 ± 0.361 -0.145 ± 0.361 -0.145 ± 0.361 -0.145 ± 0.361 -0.08 ± 0.257 0.065 ± 0.357 0.065 ± 0.357 0.065 ± 0.354 0.065 ± 0.354 -0.055 ± 0.087 0.055 ± 0.087 0.055 ± 0.087 0.055 ± 0.087 0.055 ± 0.087 0.055 ± 0.087 0.055 ± 0.087 0.055 ± 0.087 0.055 ± 0.087 0.055 ± 0.087 0.055 ± 0.087 0.055 ± 0.087 0.055 ± 0.087 0.055 ± 0.087 0.055 ± 0.087 0.055 ± 0.087 0.05 ± 0.058 0.099 ± 0.269 0.042 ± 0.083 0.185 ± 0.096 0.0247 ± 0.129 0.247 ± 0.116 0.052 ± 0.129	Im r_{31} J. 53+5.025 J. 03±3.036 J. 33±3.036 J. 33±3.036 J. 31±3.036 J. 31±3.036 J. 32±0.043 J. 32±0.043 J. 32±0.043 J. 35±0.058 J. 11±0.055 J. 35±0.051 J. 35±0.051 J. 35±0.051 J. 35±0.051 J. 35±0.051 J. 35±0.051 J. 35±0.051 J. 25±0.047 J. 34±0.050 J. 31±0.391 J. 072±0.084 D. 072±0.084 D. 072±0.084 D. 072±0.084 D. 072±0.084 D. 125±0.071 J. 125±0.125 J. 13±0.125 J. 32±0.045 J. 13±0.125 J. 32±0.045 J. 13±0.125 J. 32±0.045 J. 13±0.125 J. 32±0.125 J. 32±0.12	$Im r \frac{6}{3-1}$ 0.033±0.022 0.033±0.022 0.041±0.031 0.041±0.038 0.059±0.039 0.059±0.039 -0.022±0.039 -0.022±0.047 0.022±0.047 0.022±0.045 -0.013±0.032 0.026±0.045 -0.013±0.032 0.026±0.058 0.051±0.058 0.051±0.058 0.051±0.058 0.051±0.058 0.051±0.055 0.014±0.055 0.014±0.055 0.014±0.055 0.021±0.055 0.021±0.055 0.021±0.055 0.021±0.092 0.205±0.090 0.210±0.106 0.044±0.100 0.062±0.152 0.131±0.146	0.3 - 0.5 0.5 - 0.8 0.8 - 1.2

Isospinverhältnis $\pi^+ \Lambda^0 / \pi^- \Lambda^{++}$

٠.

- a) Zerfall in geladene Teilchen $\wedge^{\circ} \cdot p \pi^{-} : \Lambda^{++} \cdot p \pi^{+} = \sqrt{1/3} : 1$
- b) Erzeugung durch Ein-Teilchen-Austausch

Austa	usch	lsospin	Amplitudenverhältnis
im Kanal	mit Isospin	des Photons	$\gamma \mathbf{p} \rightarrow \frac{\pi + \alpha}{\pi + \alpha}$
t	1	1	$-\sqrt{1/3}$
		0	$+\sqrt{1/3}$
	2	1	$+ \sqrt{3}$
S	1 / 2	l oder O	$+\sqrt{173}$
	3 / 2	}	$-\sqrt{4/3}$
u	1/2	1	nur #20
	3/2]	$-\sqrt{1/27}$
		0	$+\sqrt{1/3}$

Tab. 7.1

Verzeichnis der Abbildungen

- 2.1 Experimenteller Aufbau
- 2.2 Fotografie eines ep-Streuereignisses in der Streamerkammer Zu erkennen sind u.a. die Streukammer (von einem Lichtblitz beleuchtet), der im δ-Fänger verlaufende Strahl, das gestreute Elektron e', drei weitere auslaufende Spuren, die durch die Kinematik identifiziert werden konnten, zwei im Target abgebremste Elektronen e_b, sowie Bezugsmarken und Film- und Bildnummer.
- 2.3 Verteilungen des THRESH-Residuums in μm für positive und negative Hadronspuren und Spuren gestreuter Elektronen.
- 2.4 Verteilung der fehlenden Energie für Ereignisse aus Lauf 5 mit einer akzeptierten Anpassung an die Hypothese $ep\pi^+ \pi^$ mit vier Freiheitsgraden.
- 2.5 Verteilung des Qudrats der fehlenden Masse für dieselbe Ereignisklasse

2.6 x² -Verteilung derselben Ereignisse

- 2.7a Verteilung der Pullgröße von 1/Impuls von positiven und negativen Hadronspuren, des gestreuten und des einlaufenden Elektrons für dieselbe Ereignisklasse, getrennt für die beiden Zählerarme, die das gestreute Elektron getroffen hat.
- 2.7b dito für ¢
- 2.7c dito für λ
- 2.8 Streudiagramme von allen Ereignissen aus Lauf 5
 - a y-Achse: Differenz von gemessener zu berechneter Pulshöhe
 im Schauerzähler, dividiert durch deren Fehler
 x-Achse: Energie des gestreuten Elektrons
 - b y-Achse: gemessene, dividiert durch berechnete Pulshöhe im Plexiglaszähler

x-Achse: Energie des gestreuten Elektrons

- 3.1 Polarisationsgrad e der transversalen virtuellen Photonen gegen Schwerpunktsenergie W
- 3.2 Flußdiagramm des Simulationsprogramms STYX
- 4.1 Geometrische Akzeptanz als Funktion von Q² und W

- 4.2 Streuwinkel ' und : der auslaufenden Hadronen aus der Reaktion ep → epπ + π (Lauf 5) links: in der Kammer gemessene Spuren rechts: ungesehene, kinematisch rekonstruierte Spuren : wird gegen die Richtung des einlaufenden Elektrons gemessen, der Azimut ⊕ ist 0 für senkrecht nach oben gestreute Teilchen.
 4.3 Wirkungsquerschnitt des Kanals γ p→ pπ + π als Funktion von W für drei Q²-Bereiche und für die Photoproduktion (ABBHHM)
 4.4 Wirkungsquerschnitt des Kanals γ_vp → pπ + π als Funktion von Q² für fünf W-Bereiche. Die Punkte bei Q² = 0 sind aus Ref. ABBHHM. Die gestrichelten Kurven sind dem totaler. Elektroproduktionswirkungsquerschnitt proportional.
- 5.1 5.5 Verteilungen der effektiven Massen von $(p\pi^+)$, $(\pi^+\pi^-)$ und $(p\pi^-)$ in drei Q²- und fünf W-Intervallen. Die eingezeichneten Kurven sind Ergebnisse der maximum-likelihood-Anpassung.
- 5.6 Dalitzdiagramm: Effektive Massen $M(p_{\pi}^{+})^2$ gegen $M(p_{\pi}^{-})^2$ für 1.3 < W < 1.5 GeV, 0.3 < Q^2 < 1.4 GeV².
- 5.7 Anteile der Reaktionen $\gamma_V p \neq \pi^- z^{++}$, $p_z^- 0$ bzw. $p_{\pi}^+ \pi^-$ (nicht-resonant) am Endzustand $p_{\pi}^+ \pi^-$ als Funktion von Q^2 für fünf W-Bereiche. Die Daten bei $Q^2 = 0$ stammen aus Ref. LÜK 72.
- 5.8 Wirkungsquerschnitt der Reaktion $\gamma_V p \rightarrow p \pi^+ \pi^-$ (nicht-resonant) als Funktion von Q² für die W-Bereiche von 2 bis 2.2 und 2.2 bis 2.8 GeV. Die gestrichelten Kurven sind proportional zum totalen Elektroproduktionswirkungsquerschnitt. Photoproduktionsdaten aus LÜK 72.

5.9 Wirkungsquerschnitt der Reaktion $\gamma_{\rm V} p \rightarrow p_{\pi}^{+} \pi^{-}$ (nicht-resonant) als Funktion von W für 0.3 < q^2 < 1.3 GeV².

5.10 Verteilung von $x = \frac{p_{\pi}^{\star}}{p_{\pi}^{\star}}$ (p^{*}= Longitudinalimpuls, p^{*}_{max} = maximal max möglicher Impuls im Schwerpunktsystem) für π^{+} und π^{-} aus dem

Endzustand $p\pi^{+}\pi^{-}$ (nicht-resonant) im Gebiet 2.0< W< 2.8 GeV, 0.3< Q^2 <1.4 GeV², sowie π^{+}/π^{-} -Verhältnis als Funktion von x.

- 5.11 Verteilung des Viererimpulsübertrages t_p auf das Proton, für den Endzustand $p\pi^+\pi^-$ (0) und $p\pi^+\pi^-$ (nicht-resonant) (&) im Gebiet 2.0 < W < 2.8 GeV, 0.3 < Q^2 < 1.4 GeV². Die Kurven stellen Anpassungen der Form e^{At} zwischen t_{min} (variabel) und 0.8 GeV² dar, mit A = (3.7[±] 0.2) GeV⁻² (0) bzw. A = (3.1[±] 0.3) GeV⁻² (&).
- 5.12 Verteilung des Quadrats des Transversalimpulses vom Proton der Ereignisklasse von Abb. 5.11. Die Linien stellen Anpassungen der Form exp $(-p_T^2 / < p_T^2 >)$ dar, mit $\sqrt{< p_T^2 >} =$ $(454^{\pm} 5)$ MeV (0) bzw. $(463^{\pm} 6)$ MeV (Δ).
- 5.13 wie 5.12, jedoch für π^+ , mit $\sqrt{p_T^2} = (385 \pm 5)$ MeV (0) bzw. (427 \pm 6) MeV (\triangle).
- 5.14 wie 5.12, jedoch für π^- , mit $\sqrt{< p_T^2 >} = (411^+ 5) \text{ MeV} (0)$ bzw. $(418^+ 6) \text{ MeV} (\Delta)$.
- 6.1 Bornterme des eichinvarianten Ein-Pion-Austausch-Modells (GIOPE)
- 6.2 Wirkungsquerschnitt der Reaktion $\gamma_V p \rightarrow \pi^- \Delta^{++}$ als Funktion von W für 0.3 < Q^2 < 1.4 GeV². Die Kurven sind Ergebnisse des GICPE-Modells ohne (-----) und mit (- - -) Absorption.
- 6.3 Dieselben Daten wie in 6.2, als Funktion der effektiven Photonenergie K = $(W^2 - m^2) / 2 m_p$. Die eingezeichnete Gerade ist proportional zu K^{-2P}.
- 6.4 6.8 Wirkungsquerschnitt der Reaktion $\gamma_V p \rightarrow \pi^- \Delta^{++}$ als Funktion von Q^2 für fünf W-Intervalle. Die Punkte bei $Q^2 = 0$ stammen aus Ref. LCK 72.
- 6.9 Differentieller Wirkungsquerschnitt $d\sigma / d\Omega$ der Reaktion $\gamma_v p \rightarrow \pi^- \Delta^{++}$ in sechs W-Intervallen für 0.3 < Q^2 < 1.4 GeV². Die Kurven sind Ergebnisse des GIOPE-Modells.
- 6.10 Differentieller Wirkungsquerschnitt d σ / dt der Reaktion $\gamma_{v}p \rightarrow \pi^{-} \Delta^{++}$ für die W-Bereiche von 1.7 – 2 und 2 – 2.8 GeV und 0.3 < Q² < 1.4 GeV². Die Kurven sind Ergebnisse des GIOPE-Modells.
- 6.11 Impulsvektoren der an der Reaktion $\gamma_{v}p \rightarrow \pi^{-} \Delta^{++}$ beteiligten Teilchen im Gottfried-Jackson-Koordinatensystem. " π^{+} " ist der Differenzvektor zwischen γ_{v} und π^{-} .

- 6.12 a+b Verteilung der Zerfallswinkel cos und : des/ ⁺⁺ im Jacksonsystem sowie des Polarisationswinkels ϕ für 0.3 < Q² < 1.4 GeV² und sechs W-Bereiche. Die Ereignisse sind mit der channel-likelihood-Wahrscheinlichkeit für die Reaktion $\gamma_v p \rightarrow \pi^- \Lambda^{++}$ bewichtet.
- 6.13 a,b,c Dichtematrixelemente des a⁺⁺ im Jacksonsystem als Funktion des Erzeugungswinkels cos ⊕ ^{*} für 0.3 < Q² < 1.4 GeV² und sechs W-Bereiche.

6.14a,b wie 6.13, jedoch unterteilt in drei Q²- und drei W-Bereiche.

6.15 Verlauf von c_{AW} (Q²)

- 6.16 Verlauf des Faktors der Bernterm-Extrapolation zum soft-pion-Grenzfall.
- 6.17 Axialvektor-Formfaktor des Nukleons als Funktion von Q^2 , aus Messungen dieses Experiments (•) und von Experimenten zur Einfach-Pion-Elektroproduktion (\odot ERA 73, \bigstar AMA 72, t DEL 75). Die durchgezogene Kurve ist eine Anpassung der Dipolform $(1 + Q^2/m_A^2)^{-2}$ an alle Elektroproduktions-Datenpunkte. Die gestrichelte Kurve zeigt den Dipol-Formfaktor aus der guasielastischen Neutrinostreuung (PER 75).

7.1 a Wirkungsquerschnitt der Reaktion $\gamma_v p \rightarrow \pi^+ \gamma^0$ als Funktion von W für 0.3 < Q^2 < 1.4 GeV².

7.1 b Verhältnisse der Wirkungsquerschnitte für $\pi^+ \wedge^0$ und $\pi^- \wedge^{++}$ als Funktion von W.

Der mit 'DESY-F32' markierte Punkt stammt aus Ref. DAM 72. Relative Phase φ und Interferenzgrad α zwischen Δ^0 und Δ^{++}

- 7.1.c,d Relative Pi
- für 0.3 < Q^2 < 1.4 GeV² (\clubsuit) und Photoproduktion (+ LÜK 72) 7.2 Wirkungsquerschnitt der Reaktion $\gamma_V p \rightarrow \pi^+ \chi^0$ und Verhältnis der Wirkungsquerschnitte für $\pi^+ \chi^0$ und $\pi^- \chi^{++}$ als Funktion von Q^2 für drei W-Bereiche.

Abb. 2.1

Abb. 2.3

Abb.2.7b

• . • .

•

• •

•. •

Abb. 3.2

Abb. 4.1

360.0

270.0

180.0

90.0

0.0

Abb. 4.2

Abb. 4.3

Abb. 4.4

166.0 Contrar a protection of protection of the second second second second second second second second second

• .

,

Oles and the REW

CLARK AND READ ON M

Abb. 5.3

 $2.0 \times n \times 2.000$

۰,

 $2.2 < \kappa < 2.1$ (i.)

· · · ·

Abb. 5.5

· · · ·

Abb. 5.6

Abb. 5.7

Abb. 5.8

Abb. 5.9

Abb. 5.10

Abb. 6.1

Abb. 6.3

Abb. 6.10

Abb. 6.11

Abb. 6.12a

Abb. 6.12b

Dichtematrixelemente des A^{++} in der Reaktion $\gamma_{v} p \Rightarrow \pi^{-} A^{++}$ im Jacksonsystem als Funktion von $\cos A^{+}$ für verschiedene W-Bereiche

АЬЬ. 6.13Ъ

Abb. 6.13c

Abb. 6.14a

Abb. 6.14b

Abb. 7.1

*,

٩,

Abb. 7.2

LEBENSLAUF

- 17. 5. 1946 geboren in Hamburg als Sohn des Kaufmanns Werner Wacker und seiner Frau Gertrud
- 1953 1957 Besuch der Volksschule in Hamburg
- 1957 1966 Besuch des Gymnasiums für Jungen St. Georg in Hamburg
- 24. 2. 1966 Abitur
- 1966 1967 Wehrdienst

Oktober 1967 Beginn des Studiums der Physik an der Universität Hamburg

- 29.4.1970 Diplomvorprüfung
- November 1971 Beginn der Diplomarbeit am II. Institut für Experimentalphysik zum Thema "Bestimmung von Doppelresonanz-Wirkungsquerschnitten und Suche nach exotischen Resonanzen in πp-Experimenten in Blasenkammern"
- 30. 5. 1973 Diplom in Physik
- April 1973 Beginn der Arbeit an der Dissertation

seit

1,1.1975 Wissenschaftlicher Angestellter am II. Institut für Experimentalphysik der Universität Hamburg

3

1