Interner Bericht DESY F23-80/01 Januar 1980

Eigentum der Property of	DESY	Biblíoth ek library
Zugang: 4 Accessions: 4	. OKT. 🕫	30
Lei hfrist: Loan p eriod:	7 ^T	ag e Iay s

•

r.

~

1

ELEKTRON-KERN-STREUEXPERIMENTE IM GEV-BEREICH

von

Ulrich B. Glawe

"DIE VERANTWORTUNG FOR DEN INHALT DIESES INTERNEN BERICHTES LIEGT AUSSCHLIESSLICH BEIM VERFASSER." 1

Interner Bericht DESY F23-80/01 Januar 1980

÷

۲.

۰.

5

ELEKTRON-KERN-STREUEXPERIMENTE IM GEV-BEREICH

von

Ulrich B. Glawe

~ .

Elektron-Kern-Streuexperimente im GeV-Bereich

von

.

...

Ulrich B. Glawe

Die vorliegende Arbeit entstand als Dissertation im Rahmen eines Experimentes, das in Zusammenarbeit von Angehörigen der Universitäten Hamburg, Freiburg und Lund und des Deutschen Elektronen-Synchrotrons DESY ausgeführt wurde. An dem Experiment waren Frau G. Mecklenbrauck und die Herren J. Franz, P. Grosse-Wiesmann, G. Guzielski, G. Huber, B. Johnsson, G. G. Jonsson, W. Mecklenbrauck, R. Petersson, E. Rössle, H. Sindt und U. Strohbusch beteiligt.

~	aitso	erzeichnis	501t0	
1	Einleitung und Molivation dieser Arbeit			
2	Theoretische Grundlagen			
	21	Elektronenstreuung an freien Nukleonen	6	
	2 2	Streuung an in Kernen gebundenen Nukleonen	9	
		2.2.1 Modellannahmen	10	
		22.2 Die Strukturfunktionen von Kernen	12	
		2.2.2.1 Quasielastische Streuung	14	
		2.2.2.2 Inelastische Streuung	16	
	23	Impulsverteilungen der gebundenen Nukleonen im Kern	19	
	2 4	Skalenverhalten und Dualitätshypöthese	19	
3	Expe	rimentelle Daten		
	31	Experimenteller Messaufbau	28	
		311 Spektrometer I	28	
		31.2 Spektrometer I!	30	
	32	Dalenreduktion und Korrekturen	32	
4	Besc	hneibung und Diskussion der Engebnisse	38	
	41	Ergebnisse der numerischen Faltung der Struktur-	38	
		fuklionen		
	4.2	Vergleich zwischen den experimentellen Spektren und	43	
		den berechneten Wirkungsquerschnitten		
		4.2.1 Analyse der Messungen dieser Arbeit	47	
		9-2-2 Messungen anderer Autoren	51	
		4 2 S - Die Anpassungparameter	55	
		4 2 4 Zusammenfassung der Anpassungsergebnisse	59	
	43	Überprüfung der Dualitätshypothese für komplexe Kerne	60	

14

.

.

(Fortsetzung)

Einleitung und Motivation dieser Arbeit ----

Annang			Seite
A	Kinemat	ische Grössen und Koordinalensysteme	ŧĽ
в	Impulsu	enteilung der Nukleonen im Kern	64
C	Interpo	lation den Stuktunfunktionen der freien	70
	Nukleon		
Þ	Das Pro	grammsystem.	?7
	D.1	Quasielastische Kern-Strukturfuktionen	-7
	C 2	Inelastische Kenn-Struktunfuktionen	÷1
	D. 3	Berechnung der Wirkungsquerschnitte für	87
		inklusive Elektron-Kernstreuung	
	C.4	Strahlungskorrekturen	€9
	C.S	vergleich zwischen theoretischen und	35
		experimenteilen Wirkungsquerschnitter	
	D.6	Anwendungsbereich, Grenzen und Fehler	94
		des Programmsystems	
E	Tabelle	n der zweifach differentiellen Wirkungs-	97
	quersch	nitte	
Literatu	nverzeic	21nn	125
Verzeich	1 7 1		
Verzeich	nis der	Abbildungen	132
Danksagu	ing		1 <i>3€</i>

÷

.1

Die Streuung von elektromagnetisch wechselwirkenden Teilchen an komplexen Strukturen wird seit langem zur Untersuchung ihres inneren Aufbaus benutzt, HAN 63, DRE64, BJ066 . Besonders die Streuung von Elektronen hat sich als hervorrägendes Mittel erwiesen. Information über der inneren Aufbau hadronischer Strukturen zu gewinnen: Im weiten Energiebereich zwischen niederenergelischer Elektronenbeugung [einige eubl und eie Annihilation (einige Geublin Speicherningexperimenten hat sich gezeigt, dass den elektromagnetische Anteil den Elektron-Hadmon wechselwirkung durch die Aussagen der Quantenelektrödynamik mit größser Genauigkeit beschnieben wind Dadunch ist es bei der Untensuchung von Elextronstreuung an Hadronen möglich, die Eigenschaften des untersuchten hadronischen Objektes sauber von der elektromagnetischen Eigenschaften der gestreuten Elektronen zu trennen und gesondert zu untersuchen

Die Struktum von freien Protonen und von im Deuteron gebundenen Neutronen ist in den letzten Jahren auf diese Weise sehr intensiv untersucht worden. Diese Untersuchungen haben zu vielen neuen Vorstellungen über den Aufbau den Materie geführt. So führte z.B. die Grösse der Wirkungsquerschnitte für inklusive Elektronstreuung, bei der nur das gestreute Elektron nachgewiesen wird, im tiefinelastischen Beneich ($Q^2 > 1.0$ GeV² und W > 2.0 GeV) zu der Vorstellung, dass die Nukleonen aus strukturlosen Partonen bestehen und dass die tiefinelastische Streuung sich als quasifreie Streuung an diesen punktförmigen Konstituenten beschreiben lässt

Untersuchungen der inklusiven Elektron Nukleonstredung im kinematischen Beneich der elastischen Nukleonstreuung und der Annegung von Nukleonenresonanzen lieferten Information über die elektrische und magnetische Raum-Zeitstruktur der Nukleonen Diese linklusive Information wird in Form von zwei Struktunfunktionen zusammengefasst

Mil dem heute vorhandenen detaillierten Verstandnis der Nukleonenstruktur, kann der Frage nachgegangen werden, ob und in welchem Masse diese Struktur beeinflusst wird, wenn die Nukleonen in Kernen eingebaut sind. Ein solcher Einfluss auf den Streuprozess wurde aus theoretischer Sicht von verschiedenen Autoren | AHR72.DIL75, GRE76 | diskutiert. Ein unerwarteler experimenteller Befund für eine Beeinflussung der Nukleonenstruktur durch umgebende Kernmaterie wurde uon Titov et al. | TIT72 | und Heimlich et al. | HEI74 | geliefert, die bei der Analyse ihrer Elektronstreudaten an Lithium und Kohlenstoff eine erhebliche Unterdrückung für die Produktion der ersten Nukleonenresonanz im Vergleich zur freien Produktion fanden. Die 35 % für 2 Lund ca. 45 % für ⁴¹C). Für diese Unterdrückung gibt es im betrachteten kinematischen Beneich keine Theoretische Erklähung: Aufgrund der sehn kleinen Raum-Zeitstruktur der Wechselwirkung liegt die Vermutung nahe, dass bei der Elektronenstreuung an gebundenen Nukleonen nur kinemalische Effekte eine Rolie spielen, die hadronische Struktur des Nukleons hingegen unverändert bleibt. Eine Bestätigung dieser oben erwähnten Analyse ware eine wichtige Information über die Struktur von Nukleonen in Kernmaterie.

. - 2 -

Eine Klänung dieser Frage ist auch für die Analyse tiefinelastischen Elektron-Kennstreuung von grossem Interesse: Komplexe Kerne haben sich bei hohen Photonenergien als Wichtiges Hilfsmittel zur Untersuchung der Struktur von reellen und virtuellen Photonen erwiesen [KRAZE] Es interessiert dabei die Frage nach einer hadronischen Komponente des Photons, d.n. die Höglichkeit des Photons, an Vektormesonen zu koppeln. Der Wirkungsquerschnitt für die Absorption von Photonen durch komplexe Kerne ist für reelle Photonen geringer als die Summe der Wirkungsquerschnitte der einzelnen Nukleonen des Kerns, da die mittlere freie Weglänge eines Photons, das als Vektormeson propagient, in Kernmaterie von der Grossenordnung der Nukleonen im Kern ist, und sich deshalb die Kernnukleonen gegenseitig abschaften (shadowing). Die Frage, de eine solche Abschaftung auch für virtuelle Photonen auftritt, Hird durch tiefinelastische Elektron-Kernstreuung untersucht. Die Analyse solchen shadowing-Experimente ist sehr abhängig um der Korrekten Behandlung der Bremsstrahlungseffekte. Da der Strahlungsschwanz der resonanten Kernstreuung bis in den kinematischen Bereich der shadowing-Experimente reicht, ist seine absolute Grösse und somit die Frage nach einer Unterdrückung des Wirkungsquerschnittes für die Resonanzahregung durch Elektronen von fundamentaler Bedeutung für die Analuse dieser Experimente.

Aus diesen Gründen wird in dieser Arbeit ein Programmsystem entwickelt, das den Wirkungsquerschnitt für inkohärente Streuprozesse von Elektronen an gebundenen Nukleonen in Stossnäherung [d.h. bei Reaktion mit nur einem Nukleon] berechnet. Die Aussagekraft der Analyse von hochenengetischen Elektronstreuexperimenten hängt Wesentlich von der korrekten Behandlung der Einflüsse den FermibeHegung auf den Streuprozess ab Deshalb wird besonderer Hert auf relativistisch invariante Behandlung der kinematischen Grössen, die den Streuvorgang bestimmen, gelegt

Ausgehend vom Formalismus für die Streuung an freien Nukleonen (Kapitel 2.1) werden in Kapitel 2.2 die theoretischen Grundlagen für die Streuung an in Kennen gebundenen Nukleonen entwickelt, die auf der Methode von Atwood und West | ATW23 | [zur Extraktion von freien Neutronquerschnitten aus Deuteronstreudaten) basieren, und auf den Fall von leichten bis mittelschweren Kennen generalisiert werden. In Abschnitt 3 werden Messapparatur und Datenauswertung beschrieben. In Kapitel 4 schliesslich werder diese und andere experimentelle Daten mit den berechneten Wirkungsquerschnitten dieser Arbeit verglichen und die Ergebnisse diskutiert. Das gesamte Programmsystem zur Berechnung der Wirkungsquerschnitte an Komplexen Kernen (in Stossnäherung) ist im Anhang ausfuhrlich beschrieben.

a . - 3 -

Abb.2 1 Prinzipbild der inklusiven Elektron-Kernstredung

v = q·p / M_n = E₄- E₄ (für ruhendes Target)

14

Abb.2.2 Feynman-Graph für die inklusive Elektron-Nukleonstreuung. Gebräuchliche Lorentzinvarianten.

2. Theorelische Grundlagen

In diesen Arbeit werden Experimente untersucht, die man unter dem Begriff linklusive Elektronen-Streuexperimente zusammenfasst, o.h. Experimente, bei denen Elektronen einer festen Energie an einem Target gestreut und die Impulse der gestreuten Elektronen unter einem definierten Winkel analysiert werden (Abb.2.1). Der Zustand des Hadronensystems nach der Wechselwirkung wird nicht im einzelnen untersucht

In diesem Abschnitt werden die grundlegenden Beziehungen zwischen den Grössen, die die Wechselwirkung bestimmen, vorgestellt Die Wechselwirkung wird in einen elektromagnetischen und einen hadnomischen Anteil zerlegt. Die "inklusive" Information über das Hadnonensystem wird dabei durch Formfaktoren bzw. Struktunfunktionen beschrieben, die nur von relativistisch invarianten kinematischen Grössen abnängen

Die Reaktion (21) wind durch den Austausch eines vintuellen Photons (Abb.22) beschnieben, dessen Wellenlänge durch Primärenergie, Streuenergie und Streuwinkel des Elektrons festgelegt ist

Die Streuung von Elektronen an komplexen Kernen findet bei hohen Impulsubertragen aufgrund der kleinen Weilenlänge und des damit engen Wechselwirkungbereiches des Photons fast verbundenen ausschliesslich an den einzelnen Konstituenten des Kernes statt. Um die Unterschiede in der Beschneibung von Elektronen-Streuexperimenten ar freien und gebundenen Nukleonen darzulegen, wird zunächst die Streuung an freigh Nukleonen behandelt (Abschn 21), and die Erweiterung auf den Fall von gebundenen Nukleonen wird im Abschnitt 2 2 daroestellt Definition Die den verwendelen kinemalischen Grössen und Koondinatensysteme ist in Anhang A zusammengefasst

а.

21 Elektronenstreuung an freien Nukleonen

Benutzt man zur Beschneibung der Elektron-Streuung die Ein-Photon-Austauschnäherung, deren Gültigkeit durch efer-Vergleichsmessungen bestimmt wurde | HAR26 |, so lässt sich die Streuamplitude 5 für den betrachteten Prozess nach den Feynmannegeln konstruieren (Abb.2.2.):

$$S \sim \langle p_{i}|J^{4}|p_{i}\rangle = \frac{p_{i}}{Q^{2}} \langle p_{i}|J^{4}|p_{i}\rangle$$
 (2.2)

 $p_{\rm A}$ und $p_{\rm S}$ sind die Vierervektoren des ein- bzw. auslaufenden Elektrons, $p_{\rm Z}$ und $p_{\rm W}$ die des Hadnons. J^e beschneibt den Elektronenstrom, J^e den Hadronenstrom und $1/\Omega^2$ das ausgefauschte Photon (Photonenpropagator). J^e und $1/\Omega^2$ Henden durch die Quanteneiektrodynamik beschnieben. Zur Danstellung von J^e gibt es keine vergleichbare aligemeingültige Theorie. Ziel den Elektron-Hadron-Streuung ist es gerade, den Hadronen-Strom experimentell zu vermessen. An die Form von J^e können jedoch aligemeine Invarianzbedingungen gestellt Henden, die es ermöglichen. experimentelle Information geeignet auszudrücken.

Zun Beschneibung des Hadronenströmes führt man dementsprechend folgenden Tenson ein:

$$H_{\mu\nu} = 1/2 \sum_{P_{\nu}} < P_{1} | J_{\mu}^{R} | P_{\nu} > < P_{1} | J_{\nu}^{*} | P_{1} > \delta(P_{\nu} - P_{2} - q)$$
(2.3)

Dabei wird über die Anfangs-Spinzustände gemittelt und über die Endzustände summiert

Fordert man weiterhin Eichinvarianz, Stromerhaltung, Paritäts- und Zeitumkehrinvarianz, so kann man $W_{\mu\nu}$ auf folgende Form einschränken | DRE64. BJD66 |:

- 7 -

a .

$$H_{\mu\nu} = -H_{A}(Q^{2}, v) \left[g_{\mu\nu} - \frac{q_{\mu}q_{\nu}}{Q^{1}} \right] + \frac{H_{a}(Q^{2}, v)}{M^{2}} \left(P_{a} - \frac{P \cdot q}{Q^{1}} \right)_{\mu} \left(P_{a} - \frac{P \cdot q}{Q^{2}} \right)_{\nu} \quad (2.4)$$

Der Hadronenström kann damit durch zwei skalare Grössen ${\rm H}_{\rm A}$ und ${\rm H}_{\rm I}$ beschrieben werder, die lediglich von lorentzinvarianten kinematischen Grössen abhängen

Für den Leptonenstrom kann man bei Mittelung über die Anfängszustände und Summienung über die Endzustände aus der Quanteneiektrodynamik einen entsprechenden Tenson herleiten | RDY25 {:

$$L_{\mu\nu} = g_{\mu\nu} q^{2} + q_{\mu}q_{\nu} + (p_{\mu} + p_{3})_{\mu} (p_{\mu} + p_{3})_{\nu}$$
(2.5)

Der gesuchte zweifach differentielle Wirkungsquenschnitt hat damit folgende Form:

$$\frac{d^{2} \mathbf{r}}{d \boldsymbol{\Omega} d \mathbf{E}} = \frac{\alpha^{2} \mathbf{E}_{3}}{\alpha^{2} \mathbf{E}_{4}} \begin{bmatrix} \mu_{\mu\nu} & \mu_{\mu\nu} \\ \mathbf{e}_{\mu\nu} & \mathbf{e}_{\mu\nu} \end{bmatrix} \begin{bmatrix} \alpha^{2} \mathbf{E}_{3} \\ \mathbf{e}_{\mu} & (\mathbf{p}_{1}, \mathbf{p}_{3}) + \frac{\mathbf{H}_{2}}{\mathbf{H}^{2}} \begin{bmatrix} \alpha^{2} \mathbf{p}_{2} \cdot \mathbf{p}_{3} & (\mathbf{p}_{1}, \mathbf{p}_{3}) \end{bmatrix} \end{bmatrix}$$

$$(2.6)$$

Wahlt man die x-z-Ebene als Streuebene und kontrahiert Leptonen- und Hadronen-Tenson, so erhält man im Laborsystem mit $\vec{p}_1 = \vec{0}$ und $\vec{\Theta} = \vec{\chi} (\vec{p}_1, \vec{p}_2)$:

$$\frac{d^2 \varepsilon}{d\Omega dE} = \mathbf{f} \left(\mathbf{W}_2 + 2 \tan^2(\theta/2) \mathbf{W}_4 \right)$$

$$(2.7)$$

mıt.

$$\vec{\sigma} = \frac{\alpha^2 \cos^2(\theta/2)}{4 E_{\perp}^2 \sin^2(\theta/2)}$$
(2.8)

- 8 -

Diese Dansteilung betont die Ahnlichkeit zwischen elastischen Und inelastischen Streuung und lässt deutlich den guantenelektrodynamischen und den hadronischen Anteil am zweifach differentiellen Wirkungsguerschnitt erkennen 6_{heft} (1+2tg²:0/20) beschreibt die Streuung von Elektronen an einen Punktladung mit Spin 1/2, während die Struktunfunktionen W₄ und M₂ die gesamte Information über die elektrische und magnetische Raum-ZeitrStruktun des Hadrons enthalten.

Eine andere Darstellungsform des Wirkungsquerschnitts (HANES (betont die Analogie zur Photoproduktion:

$$\frac{c^{2}\mathcal{E}}{d\Omega dE_{r}} = \int_{\mathcal{E}} \left(\mathcal{E}_{r} + \mathcal{E} \mathcal{E}_{r} \right)$$
(2.5)

- 🗍 ist den Fluss der tränsvensal polarisienten Photonen
- E beschreibt den Grad der transversalen Polarisation der virtuellen Photons

 $\mathbf{G}_{\rm L}$ und $\mathbf{G}_{\rm L}$ sind die Totalen Wirkungsquerschnitte für die Absorption von transversal bzw. longitudinal polarisierten Photonen durch das Tänget

Der Zusammenhang zwischen den Darstellungsanten (2.7) und (2.9) ist gegeben durch die Beziehungen zwischen den Wirkungsquerschnitter und den Struktunfunktionen in der Formeln C.2 und C.3 in Anhang C

2.2 Streuung an in Kernen gebundenen Nukleonen

Aus Formel 2.7 für den Wirkungsquenschnitts für die Streuung von Elektronen an freien Nukleonen ist ersichtlich, dass die gesamte Information üben den Hadronenvertex in Abb.2.2 in den Struktunfunktionen E. und E. enthälten ist Findet die Streuung sondern nicht an freien an in Kernen gebundenen Nukleonen statt, so wird davon nun der Hadronenvertex beeinflusst Somit gilt Formel 2.7 auch für die Elektronstreuung an Kernen, wobei E. und E. nun die Struktunfunktionen des Kerns sind Betrachtet man nun Streuprozesse, bei denen die Elektronen an den im Hern gebundener einzelnon Nukleonen gestneut werden (din eine Streuung am Gesamtkern findet nicht statt), so sind die Struktunfunktionen des Kerns bestimmt durch die der einzelnen Nukleonen.

Den wesentliche unterschied zwischen den gebundenen und freien Nukleonen besteht darir, dass die in Kennen gebundenen Nukleonen dadurch, dass sie sich im Kennpolential befinden, eine foff-schell-Masse haben und einen Fermi-Impuls besitzen. Der Fermi-Impuls kann gegen den Impuls des vintuellen Photons nicht vernachlässigt wenden. Den Fehlen durch nichtnelativistische Behandlung den Nukleonen betragt für Nukleonen mit Impuls $\beta = 0.4$ GeU ca. 5-10 x | HCU62 | Die Verändente Kinematik wird relativistisch beschnieben, da die Impulse des Photons und den gebundenen Nukleonen dieselbe Grossenördnung haben.

Bei der Beschneibung der Streuung von Elektronen an gebundenen Nukleonen sind daher die folgender Einflüsse des Fermi-Impulses auf der Streuprozess zu berücksichtigen:

- -a- Die Nukleonen sind virtuell, d.h. Energie- und Impulssatz sind micht gleichzeitig enfüllt
- -b- Aufgrund des Fermi-Impulses der Nukleonen findet die Streuung an einem bewegten System statt

-

- ·· · · 1/) =
- -c- Der von den Nukleonen gesehene. Fluss von virtuellen Photonen ist von ihrem Венединдszustand abhängig (D. h. es tritt eine Ant nelativistischer Doppiereffekt auf.)
- -d- Bei einem festen Energieübertrag des Elektrons auf das Hadronensystem können, je nach der Bewegung des Nukleons, unterschiedliche invariante Massen produziert werden.

2 2 1 Modellannahmen

- Zun Beschneibung der Kernstruktunfunktionen werden folgende Minimalannahmen gemacht:
- ra- Die Ein-Photop-Austauson. Naherung gilt aust für die Elektron-Streuung an komplexen Kerner
- -b- Das vintuelle Photon neagiert nur mit einem den Nukleonen und die restlichen (Zuschauer) werder von den Wechselwinkung nicht berühnt. Diese Annahme heicot im folgenden Stossnäherung.
- Schälenmodell-Wellenfunktionen sind eine hinneichende Beschneibung den Impulsventerlung der gebundenen Nukleonen auch für den hien betrechteten nelativistischen Prozess
- rd- Die Struktunfunktionen sind identisch für freie und gebundene Nukleonen

Annahme -a- ist durch die Engebricke von eter-Vengleichsmessungen | HAR29 | genechtfentigt, die zeigten, dass den Ein-Photon-Austausch eine gute Nähenung ausr für mittelschwene Henns ist. Für Annahme -bschnicht, dass die Wellenlange der Photonen klein ist gegen den mittlehen Abstand den No-leonen in Kenn und dass die mittlehe

- 11 -

4

Abb 2 3 Feynman-Graph fur die Elektron-Kennstrebung im Stopphäherungung Enlautenung der Kinematischer Groppen Bindungsenergie der Nukleonen so klein ist, dass ein Einfluss der Nukleonen aufeinander vernachlässigt Herder kann. Die Annahmen -b- bis -d- werden durch Vergleich der Modellrechnung dieser Arbeit mit experimentellen Messdaten getestet

Auf den Basis diesen Annahæen wenden nun die Strukturfunktionen von komplexen Kernen aus denen der freien Nukleonen mit einer Methode hengeleitet, die sich an die Arbeit von Atwood und Hest (ATW23, HES72 | anlennt, aber für schwenere Kerne generalisiert wurde Die Annahmen der Stossnaherung lassen sich durch den Feynmangraphen in Abb 2.3 darstellen: Der Tangetkern spaltet sich vor der Reaktion auf in ein Stossnukleon mit einem bestimmten Fermi-Impuls und einen Zuschauer-Restkern mit dem kompkomentaken Fermi-Impuls Das vintuelle Photon koppelt nun an das Stossnukleon an Eine Endzustands-Wechselwinkung wird nicht berücksichtigt

2.2.2 Die Struktunfunktionen vom Kennen

Den Einfluss der Fermi-Bewegung beschrankt sich, wie oben erwähnt, auf den Hadronenvertex im Feynmangraphen von Abb 2.2. Der Leptonenvertex bleibt unberührt. Den natürliche Ausgangspunkt zur Beschneibung des Hadronenvertex den Kernstneuung ist der Struktuntenson $H_{\mu\nu}$ des Kerns. Die Aussage den Stossnäherung lässt sich so verstehen, dass sich die Beitnäge den einzelnen Kern-Konstituenten zur Hechselwirkung inkoharent. (d.h., ohne Interferenzmöglichkeit) überlagerich. Die Inkohärente Überlagerung den Struktunfunktionen den einzelnen Nukleonen liefert:

$$\mathbf{A}_{\mu} = \sum_{\mathbf{p}} \int d\mathbf{p} \left[\mathbf{q} \mathbf{r} \mathbf{\beta} \right] \mathbf{H}_{\mu} \left(\mathbf{p}, \mathbf{q} \right) \qquad (2.11)$$

|Φ[β]| ist die Impulsverteilung des Stossnukleons

im Kern

Hählt man bei der Kontraktion von Hadron-(Kern) und Leptontenson (siehe Abschnitt 2-1) zur Dansteilung das Laborsystem, also das Ruhesystem des Tangets, so engibt sich für die Struktunfunktionen W., und n_2 :

Nukleons bzw. vintuellen Photons abhängt

$$H_{1}^{\beta}(\mathbf{G}, \mathbf{v}) = \sum_{n=1}^{n} \left[d^{3} \vec{p} \right] \left[\left(\vec{\psi}, \vec{p} \right)^{2} \left\{ w_{1}^{\varphi} \left(\mathbf{G}^{\dagger}, \mathbf{v}, \vec{p} \right) + \frac{p_{1}^{2}}{H^{4}} w_{2}^{(n)} \left(\mathbf{G}^{\dagger}, \mathbf{v}, \vec{p} \right) \right\}$$
(2.12)

$$\begin{array}{l}
\mu_{2}^{P}(\alpha,\omega) = \overline{\mu} \left(\partial_{\mu}^{A} + \partial_{\mu}^{A} \right)^{A} \left(\partial_{\mu}^{A} \partial_{\mu}^{A} \right) & (2.13)
\end{array}$$

$$\pi_{11} = \frac{Q}{Q} \left(\frac{Q^{2}}{Q^{2}} \cup \beta \right) = \left(\frac{V'}{V} - \frac{P_{2} Q^{2}}{H \sqrt{|\vec{q}|}} \right)^{2} - \frac{P_{2}^{2}}{H^{2}} \frac{Q^{2}}{|\vec{q}|^{2}}$$
(2.14)

$$u = \frac{E_{\rm H}}{m} v - \frac{P_{\rm H}}{M}$$
(2.15)

Dadurch, dass die Stossnukleonen im Tanget nicht ruhen, tritt eine vom Transversalimpuls p, abhangige $h_2^{(n)}$ -Beimischung im H_1^A und eine impulsvektorabhangige Flusskorrektur $\frac{G}{0}$ in H_2^A auf. Auch hier bedeutet $\overline{\sum}$ eine geeignete Summation über alle Nukleonen

Die Struktunfunktionen H_A und H_2 könnten aus jedem beliebigen passenden Modell (für die näumliche Struktum der Nukleonen) genommen Henden, um dieses Modell im Rahmen der Stossnäherung zu testen. Die Intention dieser Arbeit aber Har es, die Stossnäherung für Hochenengetische Elektron-Kern-Streuung zu überprüfen. Deshalb Hunde zum Vermeidung Heiteren Modellannahmen eine phänomenologische Parametrisierung der Struktunfunktionen für die freien Nukleonen geHählt. In den nachfolgenden Abschnitten Hind diese Parametrisierung geschildent und diskutient.

31

2.2.2.1 Quasielastische Kernstreuung

Die Strukturfunktionen, die in das Faltungsintegral für die quasielastische Elektron-Kernstreuung eingehen, sind die der freien elastischen Nukleonenstreuung.

Die elastische Streuung ist dadurch ausgezeichnet, dass die Masse des Stossnukleon-Endzustandes festliegt ($p_{\pm}^2 = M^2$ in Abb.2.3.). Deswegen kann aus dem Nukleon-Strukturtensor $H_{\mu\nu}$ der Phasenraum des Endzustandes herausgezogen werden:

$$1/H^{2} H_{\mu\nu}(\mathbf{G}^{2},\nu) = \frac{d^{3}\vec{p}_{+}}{E_{+}} \vec{\delta}(\mathbf{p}_{+}+\mathbf{q}-\mathbf{p}_{+}) T_{\mu\nu}(\mathbf{G}^{3},|\mathbf{p}_{+}|) \qquad (2.16)$$

$$\iint \frac{d^{3}\vec{p}_{+}}{E_{+}} \frac{d^{3}\vec{p}_{+}}{E_{+}} \vec{\delta}(\mathbf{p}_{2}+\mathbf{q}-\mathbf{p}_{+}) = \frac{E_{3}}{2M(1+2E_{+}/r)} \sin^{2}(B/2) \qquad (2.17)$$

Ausführung des Phasennaumintegrals und Kontraktion mit dem Leptonentensor سرا (siehe Abschnitt 21) führen zu:

$$\frac{d\delta}{d\Omega} = \frac{\delta}{Mott} \frac{(T_2 + 2 \tan^2(\Theta/2) T_4)}{4 + \frac{2\xi_2}{M} \sin^2(\Theta/2)}$$
(2.18)

Der Vergleich mit der bekannten Rosenbluth-formel zeigt:

$$T(Q^{1},M) = 2M \frac{G_{g}^{i}(Q^{1}) + TG_{H}^{i}(Q^{1})}{1 + T}$$
(2.20)

mit
$$\tau = G^2 / 4M$$
 (2.21)

Die Struktunfunktionen für die elastische Nukleon-Streuung sind also:

a

$$H_{2}(Q^{2},H) = 2 H \frac{G_{1}^{L}(Q^{L}) + r G_{1}^{L}(Q^{L})}{1 + r} \delta(H^{L}-H^{L})$$
(2.23)

 $G_{\rm E}$ und $G_{\rm H}$ sind elektrischer und magnetischer Formfählter von Proton bzH. Neutron (d.h. sie beschreiben die räumliche Ausdehnung der Nukleonen). H ist die produzierte invariante Masse, die gleich der freien Nukleonmasse sein muss

$$\mu^2 = (p+q)^2$$
 (2.24)

Hie in Abschnitt 2.2.1 in Annahme -d- erwähnt, Hird davon ausgegangen, dass eine explizite Massenabhängigkeit der Strukturfunktionen vernachlassigt werden kann. Es werden deshalb für die Strukturfunktion des gebundenen Nukleons elektrischer und magnetischer Formfaktor des freien Nukleons verwendet und zur Energie- und Impulserhaltung gefordent, dass:

$$H^{2} = (p_{1} + q_{2})^{2} = M^{2}$$
 (2.25)

mit p_ = Viererimpuls des gebundenen Nukleons

Die G^z-Abhängigkeit der Formfaktorer kann durch Modelle nur qualitätiv erklärt werden. Die Experimente lassen sich aber mit einem empirischen Dipolfitansatz für die Formfaktorer gut beschreiben | ALBS7 |.

$$G_{t}^{\dagger}(Q^{1}) = G_{dy}(Q^{1}) = 1/(1+Q^{2}/0.71)^{2}$$
 (2.26)

Der Zusammenhang zwischen den Formfaktoren für Proton (p) und Neutron (n)ist durch das experimentell gefundene Skalenverhalten gegeben | JAN66 |

$$G_{E}^{\mu}(\Omega) = G_{\mu}^{\mu}(\Omega^{*}) / \mu_{\mu} = G_{\mu}^{\mu}(\Omega^{*}) / \mu_{\mu}$$
 (S.27)

Der elektrische Formfaktor des Neutrons kann durch folgenden Dipolfit beschrieben werden | GALZ1 |:

$$G_{E}^{2}(\mathbb{Q}^{k}) = \frac{-\mu_{h}\tau}{1 + 5.6\tau} G_{kp}(\mathbb{Q}^{k})$$
(2.28)

 $\mu_{\rm P}$ = 2.2828 und $\mu_{\rm R}$ = -1.9132 sind die anomalen magnetischen Momente von Proton bzw. Neutron in Einheiten des Kernmagnetons. In dieser Danstellung sind die Formfaktohen auf die äussenen Eigenschaften des Nukleons (G¹ = C) normient:

Setzt man die empirisch gefundenen Strukturfunktionen W. und W₂ für elastische Elektronstreuung in die Formeln 2.22 und 2.23 ein, so läcot sich das dreifache Integral $\int d^3 \vec{p}$ wegen der δ -Funktion und der Rotetionssymmetrie um die zrAchse auf eine einfache Integration reduzierer (siehe Anhang D-1)

2 2 2 2 Inelast;sche Kenn-Streuung

Für die gesamte inelastische Streuung, c.h. für resonante Hie Hadnon nicht-resonante "Produktion, gibt es keine mit der elastischer Beispiel vergleichbare Parametrisierung der Struktunfunktiohen der freien Nukleoner Da sich die verschiedenen Beiträge zur Resonanzproduktion in weiten Bereichen des Streuspektrums überlappen, sind die Formfaktoren bzw. Struktunfunktionen für die einzeinen Resonanzen nicht so eindeutig kinematisch getrennt wie im Fäll der elastischen Streuung Eine empirische Parametrisierung gibt eo num für der magnetischen übergangsformfaktoren durch einen Dipolfit beschreiben lasst i KD878 1:

$$G_{\mu}^{*}(Q^{2}) = \frac{\mu^{*}}{(1+Q^{2}/m^{2})}$$
(2.30)
$$\mu^{*} = 3.53 + 0.90$$

$$m^{2} = 0.50 + 0.05 \text{ GeV}^{2}$$

Lm von Modellen zur Elektroproduktion von Mesonen an Nukleonen unabhängig zu bleiben, wurder Strukturfunktionen H_λ und H_2 der Nukleonen benutzt, die aus experimenteller Wirkungsquerschnitten

.

- c) µ ⊨ 1.50 GeU
- (Δ) Daten von | AND72 |
- () Daten von | STEPS |
- (D)Daten von | BRA68 |

٠.

in der kinematischen Ebene.

- 19 -

24

.

extrahiert Hurden (siehe Anhang C). Dabei Hurden die einzelnen Anteile zum Hirkungsquerschnitt nicht separient Die Verlässlichkeit der so gekonnenen Strukturfunktionen Hurde durch Reproduktion von unabhängigen experimentellen Streuspektren, die den gesamten Anpassungsbereich überdecken, überprüft | AND72, BRA68, STE75 | Abb.2.4 and zeigt die gute Obereinstimmung und Abb.2.5 den kinematischen Bereich, den der Test überdeckt. Die Berechnung der Kern-Strukturfunktionen M_x und M_z für inelastische Elektronstreuung Hird im Anhang D.2 beschrieben

23 Impulsverteilung der gebundenen Nukleonen im Kern

Für die Durchführung der Faltung der Nukleon-Struktunfunktionen müssen einige Annahmen über die Fermibewegung der gebundenen Nukleonen im Kern gemacht werden (siehe Abschn 2.2.1.) Oblicherweise werden Kernwellenfunktionen, die die niederenergetische Streuung am Kern gut beschreiben, auch für Prozesse bei hoher Energien benutzt

Die Impulsventeilungen, die hier zur Ausführung der Faltungsintegrale benutzt werden, sind aus dem Ein-Teilchen-Schalenmodell mit Spin-Bann-Wechselwickung unter Annahme eines Wood-Saxon-Potentials errechnet

Eine detaillierte Beschreibung der verwendeten Impulsverteilungen für die verschiedenen Kerne findet sich in Anhang B.

2.4 Skalenverhalten und Dualitatshypothese

Aus tiefinelastischen Elektron-Streuexperimenten an Proton und Neutron ist bekannt, dass im Bjorken-Limes die zweidimensionalen Struktunfunktionen $W_{i}(\mathbb{Q}^{2}, v)$ und $W_{2}(\mathbb{Q}^{2}, v)$ nur noch von einer Variablen ω abhängen:

$\mathbb{Q}^{\tilde{i}} \to \infty$	7	
v → ∞	{	Bjorken-Limes
Zmu∕Q ¹ = w = endlich)	

$\lim_{m \to \infty} W_{1}(\mathbb{Q}^{2}, \psi) = F_{1}(\omega)$	(2.32)
$\lim_{d_1 \to \infty} v W_2(Q^2, v) \approx F_2(\omega)$	(233)

Der Zusammennang zwischen dem Winkungsquerschnitt im flefinelastischen (W > 2.0 GeV) und im Resonanzbereich (W < 2.0 GeV) wurde mit Hilfe verschiedenen Skalenfunktioner, die jeweils im Bjorkenlimes gleich sind, untersucht und diskutiert (BLOPO, KEN72, MOR72, KOB73 (Ziel diesen Untersuchungen wan ein Test der Dualitätshypothese, die, grob ausgedrückt, aussagt dass das resonante Verhalten bei niedrigen Energien im t-Kanal ($e^+ + p^- \Rightarrow e^+ p$) das Verhalten bei nohen Energien im s-kanal ($e^+ + e^- \Rightarrow e^+ p^-$) bestimmt und umgekehnt

Das Dualitätsprinzip wird quantitativ formuliert durch Summennegeln. sogenannte "finite energy sum rules" (FESR), DDL62 DDL68. RIT21 " Mit Hilfe dieser FESR wird das Skalenverhalten im tiefinelastischen Bereich mit der Elektroproduktion vor Resonanzen verknüpft. Die anschauliche Aussage ist, dass die Struktunfunktionen M M₄ und V H₂ im Resonanzgebiet von der Skalenfunktionen F₄(ω) bzW F₂(ω) gemittelt werden.

Uon wesentlichen Bedeutung für der Gültigkeitsbereich einer solchen Aussage ist die geeignete Wahl der Skalenvaniablen, der Skalenfunktion und auch der Summennegel.

- -a- Bjorken | BJ069 | hat mit der Skalenvariablen $\omega = 2\pi \nu/\alpha^2$ (2.34) die Skalenfunktion $f(\omega) = \sum_{n=1}^{5} a_n (1-1/\omega)^n$ (2.35) eingeführt Nachteil dieser Skalenfunktion ist. dass sie den Nukleonenpol nicht erfasst und die experimenteilen Daten nur im Bjorkenlimes beschneibt.
- -b- Wegen der erwähnten Unzulänglichkeit von -a
 - schlagen Bloom und Gilman BLOZD | die Skalenvariable

Tabelle 2.1. Zusammenfassung der verschiedenen Skalenfunktionen

Skaien- Variable	Parametrisierung der Skalenfunktion	Summennegel	Autor
ω = <u>2</u> ₩υ Ω²	$F(\omega) = \sum_{n=3}^{5} a_n (1 - \frac{1}{\omega})^n$	∫υμ ₂ - F (ω)αυ=C	BJOES
$u_{i}^{2} = \frac{2^{2} \omega + M^{2}}{Q^{2}}$	$F(\omega) = \sum_{n=3}^{5} a_n (1 - \frac{1}{\omega})^n$	∫v₩ - Ϝ (ω')dv=0	BLOZQ ₁
2HU+1,43 _R =	$F(\omega_{k}) = \sum_{n=3}^{7} a_{n}(1 - \frac{1}{\omega})^{n}$	∫ <u>W</u> .vH-F(w⊋dv=0 ∫ w _k	BL071

Tabelie 2.2 Anpassungsparameter der Skalenfunktionen aus Tab 2.1

		the second se			
Autor	a 3	د ب	a S	å 6	a 7
BJOE5	1.27 4	0 5989	-1 675	-	
BL070	0 6453	1.902	-2.3 1 3	—	—
RIT71	0 933	-1 494	9 021	-1 4 .5	6 1 53
BOD72	1 638	-3 584	15 61	-22 28	9192

.

Υ.

$\omega = (2M_{\rm P} + M_{\rm P} / \Omega^2)$ und die Skalenfunktion	2 ا
$f(\omega) = \sum_{n=1}^{\infty} a_n (1-x^2)^n \text{ vor }.$	2)
$x' = 1/\omega'$	(2
Anpassung an experimentelle Elektron-Proton-	
Streudaten ergibt die in Tabelle 2-2 aufgeführten	
Parameterwerte	

360

370

. 38)

(2.39)

Die Summenregel ___[ປຟຼີຝີ,ບງ-ໆເຜີ່ງເບ = D gilt zumindest für d² > 1.0 GeU¹auch schon für v im Resonanzgebiet in recht guter Näherung | KOB73 j Für Kleine d¹-Herte versagen ພ'und f_a (ພ່ງ.

The Rittenberg und Rubinstein | RIT² | führen deshale
die Vaniable
$$\omega_k = (2\pi v + a^2)/(a^2 + b^2)$$
 ein, die die (2.40)
Dualität bis zu $a^2 = 0$ ausweiten kann. Für $a^4 \Rightarrow 0$
ergibt sich die Schwierigkeit, dass $v \cdot W_2(a^2, v)$
kinematisch gegen Null geht. Um dieses Problem zu
umgehen, wird die Strukturfunktion $v \cdot W_1$ ourch $\frac{\omega}{w_k} v \cdot W_2$
substituient. $(\omega/\omega_k^2 \cdot v \cdot W_2)$ ist endlich für $a^2 = 0$
und $\omega_k \Rightarrow \omega$ im Bjorkenlimes
Die Panameter a^2 und b^2 wurden durch Anpassung
an tiefinelastische Streudaten bestimmt zu | BRA72 |
 $a^2 = 1.43 \cdot 0.06 \text{ GeV}^2$ und $b^4 = 0.42 \cdot 0.02 \text{ GeV}^3$ (2.41)
Die Skalenfunktion ist folgendermassen parametrisient:

$$f_{g}(\omega_{g}) = \sum_{m=3}^{2} \alpha_{n} (1-x^{2})^{m}$$
 (2.42)

Die Koeffizienten a_n sind in Tab 2.2 zusammengestellt.

Der Vergleich mit experimentellen Daten zeigt, dass $f_{\rm g}(\omega_{\rm g})$ für Photoproduktion wie für Elektroproduktion am freien Proton eine zufriedenstellende Skalenfunktion ist, und dass die Summenregel

 $\int \left[(\omega/\omega_i) v k_2 - f_2' \omega_R^2 \right] dv \approx 0$ (2.43) für die gesamte kinematische Ebene in guter Nähehung

- 23 -Auch für Elektroproduktion am gebundenen Neutron gilt die

wurde | KEN72.K0879 | Bodek | B0072 | parametrisient auch die Strukturfunktionen des Deuterons in der Form (2.92) und findet mit den Parametern aus Tab.2.2

Dualitatshypothese, when she won Rittenberg and Rubinstein formuliert

1

eine gute Übereinstimmung mit den experimentellen Daten im tiefinelastischen Bereich. Tabelle 2-1 zeigt einen Vargleich der verschiedenen Skalenvariablen, Skalenfunktionen und Summenregeln.

Um das Skalenverhalten auch für Komplexe Kerne zu überprüfen, müssen die Skalenfunktionen f (ω) mit der Fermibewegung der gebundenen Nukleonen gefaltet werden (siehe Abschnitt 4.3). Zu diesem Zweck werden die Struktunfunktionen für die elementaren Prozesse in den Gleichungen 2.12 bis 2.14 durch geeignete Skalenfunktionen ersetzt und mit diesen werten die Überlagerung der einzelnen Nukleonen zum Kern durchgeführt Zur quantitativen Überprüfung der Summenregeln wurde die Grösse:

$$g(\omega_{i}) = \frac{\int_{0}^{\omega_{i}} [(\omega/\omega_{k}) \omega_{i} - f(\omega_{k})] dv}{\int_{0}^{\omega_{i}} f(\omega_{k}) dv}$$
(2.44)

eingeführt, die die prozentuale Abweichung von der Summenregel beschreibt. Bei Gültigkeit der Dualitätshypothese sollte sie ab einer geeigneten Integrationsgrenze gegen den Wert O streben.

Tabelle 3.1 – Liste der analysierten Spektren, der Strablungs-

längen und der kinematischen Parameter

Kern	E1	8	Q ⁴ -Bereich der Anpassung	Strahlungs	1 (#1000) Minter	Autor
	(GeU)	(Grad)	(GeV)	dent Tar	`ge⊺	
٤L	2 5 2 7 2 7	12 13 B 15	0 185 - 0.270 0 278 - 0 120 0 330 - 0 175	3.104 3.104 3.104	3 967 9 072 9 149	HE173
	1 18 1 18 1 18 1 18 1 18	16 8 24 2 32 0 55 0	0 04\$ - 0.097 0 083 - 0.128 0 140 - 0.305 0 300 - 0.658	2 417 2.412 2 417 2 4 17	2 525 2 659 2 850 4 213	111251
³ Be	3 0 5 0	9 96 9 96	0 20 - 0.28 0 59 - 0 24	2 26 1 2 26 1	2 35	HUS76 ;
"C	2 05 3 08 3 36 3 08	12 13 12 15	0 11' - 0 183 0 349 - 0 470 0 336 - 0.479 0 413 - 0 619	364 364 364 364	4 08 4 09 4 08 4 11	B0C74 ·
чÇ	262 308 35 308 34	13 13 13 22 22	C 245 - 0 365 0 349 - 0 470 0 445 - 0 285 0 835 - 1 190 1.025 - 1 500	364 364 364 364 364 364	4 09 4 09 4 09 4 09 4 20 4 20	: HUB 75
1²C	2 D 2 5 2 7	15 15 15	0 160 - 0.27\$ 0 265 - 0 41\$ 0.315 - 0 485	6 63 6 63 6 63	7.2 7 2 7 2	ZEL73
1 ¹² C	1 0 1 0 1 0 1 0 1 1 1 12	20 20 20 20 20 20 20 20 20 20 20 20 20 2	0 025 - 0 125 0 045 - 0 185 0.065 - 0.22 0 080 - 0 365 0 155 - 0 475	11 1 11 1 11 1 11 1 11 1	11 1 11 1 11 1 11 1 11 1 11 1	, TI 72)
"°C	1055 2050 3100 400 400 400	8.5 8855 12 12 12 18 18	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	12 28 12 28	12 81 12 81 12 81 12 81 12 85 12 85 12 85 12 85 12 85 12 85 12 93	; ו־אדק <u> </u>
Ϋ́	3.96 5.42 9.2 5.80 3.97 5.74 7.03 3.96 4.02	6.53 653 653 653 8.98 8.98 8.98 11.01 11.01	0.156 - 0.205 0.453 - 0.519 0.703 - 0.579 1.082 - 1.192 0.286 - 0.376 0.668 - 0.763 0.952 - 1.124 0.426 - 0.548 0.676 - 0.828 1.045 - 1.212	9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9	23.94 23.94 23.94 23.94 23.97 23.97 23.97 23.97 23.97 24.01 24.01 24.01 24.01	AND72

²⁹ A1	268 308 35 268	9 9 18	0.12 - 0.175 0.167 - 0.225 0.225 - 0.303 0.435 - 0.655	3 3 3 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	392 392 392 400	HUB 75
	3 D 5 C	9.96 9.96	020 - 028 059 - 024	2 573 2 573	12 16 12 16	HUB26
	1 C	25	0 045 - C 185	-	-	11172,
"S1	3 D 2 C	9 96 9 96	0.20 - 0.28 0.59 - 0.24	2 553 2 553	12.141 12.141	H UB 26;

¥

11

3 Experimentalle Dater

Die in dieser Arbeit untersuchten Wirkungsquerschnitte an "Li $^{9}3e$,"C ^{27}Al $^{24}S_{1}$ im kinematischen Beneich C 1 < Q² < 1 S GeU² und K < 2 C Gev Hunden im Rahmer der Forschungsgruppe F23 beim DESY gewonnen | BOC75, HUB75, HUB76 | Sie Hunden mit zwei verschiedenen Spektrometern gemessen

Tabelle 3-1 enthält eine Liste der Messungen, der Tangeteigenschäften und den kinematischen Parameten. In Abb.3-1 ist die Lage diesen Spektren in der Kinematischer Ebene dangestellt. Im folgenden Werden kunz die Eigenschaften den Spektrometen und die Methose der Datenneduktion skizzient

3.1 Experimenteller Messaufbau

Alle Messungen wurden an externer Elektronenstrahler beim DEGY durchgeführt: Ein langsam ejizierten Elektronstrahl wurde auf das Tanget in einer Vakuumkammer fokussiert. Die Strahlintensität wurde mit Hilfe eines totalabsorbierenden Fanaday-Kafigs und eines Sekundar-Emissions-Monitors gemessen. Die Genauigkeit den Ladungsmessung war < 1x.

3-1-1 Spektrometer I

Spekthometer I (Abb 3.2) zum Nachweis der gestheuten Elektronen bestent aus einem Analysiermagneten mit homogenen Magnetfeld und vier Drahtfunkenkammern zur Bestimmung der Teilchentrajektorie, die durch eine Vienfachkoinzidenz aus drei Szintillationszahlenn und einem Schauerzählen getriggent werden (GAL69 | Der Schauerzählen besteht aus vien Strahlungslängen Blei als 'sandwich' mit drei Lagen von Szintillationszählern. Bei den Auslese des Schauensignals ist eine negativen Schwelle desetzt Teil den die einen anossen Millel zur Untergrund-Mesoner ausfiltent Als weiteres

. - 30 -

Teilchenidentifikation wurde das Signal des Schwellen-Čerenkovzählers mit in die Ereignisinformation aufgenommen.

Die wichtigsten Eigenschaften des Spektrometers I zeigt Tab 3.2 Der zum Experimentaufbau gehörige Prozessrechner speichert von jedem Ereionis folgende Information auf Magnetband:

- -a- Ort aller Funken in allen Funkenkammern
- -b- Signalhöhe aus Schauer- und Čerenkovzähler
- -c- Digitale Information von Schauer- und Čerenkovzähler

Aussenden wenden on-line die Bahnkrümmung, die Spektren der Zählen und das Energiespektrum der Streuelektronen berechnet, um den Experimentaufbau während der Messungen testen zu können

3.1.2 Spektrometer II

Spektrometer II war konzipiert zum koinzidenten Nachweis von gestreuten Elektronen und Hadronen (z B e+p->e'+N+ \mathcal{R}) Es besteht deshalb aus zwei nahezu identischen Spektrometerarmen (Abb.3.3), die sich nur durch den Čerenkovzähler unterscheiden Für inklusive Messungen wird nur der Elektronerm benutzt, der unter einem Winkel von 9.96° zur Primärelektronenbahn justiert ist.

Die Trajektorien der Elektronen, die in den Dffnungswinkel des Kollimators gestreut werden, werden durch vier Proportionalkammern bestimmt Zwischen der ersten und den drei folgenden Kammern befindet sich ein Analysiermagnet zur Impulsbestimmung der Nachweisteilchen Der Schauerzähler und der Schwellen-Čerenkouzähler dienen zur Teilchenidentifikation Durch einen Bleikollimator und drei Guadrupolmagneten, die die Teilchenbahn leicht krümmen, von dem eigentlichen Nachweisdetektor wird erreicht, dass der Ablenkmagnet

Tabelle 3.2 Die wichligsten Eigenschaften von Spektrometer I

...

Raumwinkelakzepianz	0.695	msierad
Genauigkeit der Winkelmessung	D.1	nrad
Impulsakzepianz	• 30	×
Impulsauflösung	+ D.6	x
Ansprechwahrscheinlichkeit für		
Elektronen	98	×
für Pionen	15 - 20	×
Maximaler messbarer impuls im		
Beneich konstanter Akzeptanz	3.2	GeU
Maximal mögliche Zahlnate	50 / s	ec

Tabelle 3.3 Die wichtigsten Eigenschaften von Spektrometer II

Raumwinkelakzeptanz	0.2307	nsterad
Genauigkeit der Winkelmessung	0.17	mrad
Impulsakzeptanz	+ 28	×
	- 14	×
Impulsauflösung	+ 0.7	x
Anspréchwährscheinlichkeit für		
Elektronen	98	x
Maximaler messbarer Impuls im		
Beneich konstanter Akzeptanz	4 .6	GeV
Maximal mögliche Zahlrate	50 / si	ec.

keine direkte Sicht zum Tanget hat Dadurch Hind die Untengrundzahlnäte enheblich verringent Eine Liste der Wesentlichen Spektrometeneigenschaften liefent Tab 3.3 Eine detailiente Beschneibung des Spektrometen II findet Sich in | CeNP22, KOL72, FESTS |

3.2 Datenreduktion und Korrekturen

Nach der eigentlichen Hessung Hunden die vom Prozessrechnen gespeichenten Eneignisdaten ausgewentet. Aus den Bahnknümmung Hunde den Impuls des gestneuten Teilchens benechnet Mit Hilfe den Imformation von Schauen- und Čenenkovzählen wurde die Venunneihigung des gestneuten Elektronenstrahles durch Pionenuntengrund auf Henigen als D.S.X reduzieht. Der Anteil von Dalitzpaaren am Elektronenstrahl Hunde durch Umpolung des Analysienmagneten und Messung der Positronenzählnaten kleinen als D.1.X gefünden.

Diese Beiträge und die Zählnate der leeren Streukammen wurden von der gemessenen Tangetzahlnäte abgezogen. Aussendem wurden die Spektren auf die Nachweiswahrscheinlichkeit der verschiedenen Zählen und die Impulsakzeptanz für jedes Impulsintervall konnigient Zuletzt wurde noch die gemessene Primärsthählintensität um die Totzeit des Spektrometens konnigient. Die Rate von zufälligen Koinzidenzen wurde zu wenigen als 3-X bestimmt Eine ausfühnliche Beschneibung von Datenneduktion und Konnekturen findet sich in der Dissentation von G. Hüber HUB75 j

.

.

Tabelle 3.4 – Wente zur Normierung den Zählnaten für die Jerschiedenen Kenne

Kern	4 (amu)	Ż	z	đ (crr)	9 (g∕cr)	Strahlungs lange (g/cm²)	ΔE (GeU)	Messung
9 Be	9 012	¥	5	C 15	1 848	65 19	В	HUB75
27 2	12 C	E	£	с 1	18	42 70	ö	B0C/24
12 C	12 0	6	ε	5 1	18	42 70	01	HUB75
27 Al	26.982	13	14	0 0351	EŻ	24 01	025	HUB75
27 Al	26 982	13	14	0 0345	27	24 01	ся	HUB76
28 A1	27 977	14	14	0 035	2 92	22 5	05	HUB76

~

Aus der korrigierten Zahlrate lässt sich der zweifach differentielle Wirkungsquerschnitt nach folgender Formel berechnen:

$$\frac{ds}{dE d\Omega} = \frac{N_3 A}{N_4 \Delta \Omega \Delta E d \frac{c}{S} L}$$
(3.1)

4. - Zahl der Primärelektronen

5. - korrigiente Anzahl

6. - Energieintervall

7. - Raumwinkel

6. - Dicke

6. - Dichte

7. - Atomgewicht

6. - Lohschmidt'sche Zahl

(3.1)

Die Herte der Normierungsparameter für die verschiedenen Targets sind in Tab 3.4 gelistet. Die Tabellen 3.5 bis 3.17 enthalten die so bestimmten zweifach differentiellen Hirkungsguerschnitte pro Nukleon.

(Anhang E)

÷

Abb.4.1 Dreidimensionale Darstellung der Strukturfunktionen pro Nokleon für quasielastische Elektronenstreuung an 6 Li in Abhängigkeit von ϱ^{2} und **v**.

Beschreibung und Diskussion der Ergebnisse

4 Deschreibung und Diskussion der Eigebnisse

Mit dem in dieser Arbeit entwickelten Programmsystem (siehe Anhang D) konnen Zweifach differentielle Wirkungsquenschnitte für Elektron-Kernstreuung im kinematischen Bereich D C < Q^2 < 1.5 GeV² und H < 1.8 GeV erzeugt werden Dabei ist es möglich, den quasielastischen bzw inelastischer Streuanteil schalenweise zu berechnen bis zu Kennen mit abgeschlossener d S/2. Schale Für den Vergleich mit experimentellen Wirkungsquenschnitten konnen Strahlungseffekte und apparatives Energieauflösungsvermöger entsprechend dem zugehöriger Messaufbau in der Berechnung den Wirkungsquenschnitte berucksichtigt werden

_ 74 _

Zunachst wenden die Engebnisse der numerischer Integration (siehe Annang D 1, D 2) gezeigt und diskutient. Im folgenden wenden die Rechnungen mit den experimentellen Daten diesen Arbeit und anderen Autoren verglicher (Abschnitt 4.2). In Abschnitt 4.3 wird die Enge den Gültigkeit der Dualitätshypothese für Elektronenstreuung an gebundenen Nukleonen erörtent

4.1 Ergebnisse der numerischen Faltung der Strukturfuktionen

Die Faltung oer <u>elastischen</u> Nukleon-Formfaktoren liefent Strukturfunktionen W_4^A und W_2^A in Abhängigkeit von Q^2 und v. Hie sie in Abb 4 1a.b. zum Beispiel für ⁴Li im kinematischen Bereich O C < Q^2 < 1 5 GeV² und O O < v < 1 5 Gev gezeigt sind Anstelle der diskreten Nukleon-Formfaktoren entlang der Geraden Q^2 = 2MV (für elastische Streuung) findet man einen Höhenzug, der mit Hachsendem Vierenimpulsubertrag Q^2 immen breiter und flachen Hind

Als Beispiel für das Engebnis der Faltung der <u>inelastischen</u> freien Struktunfunktionen zeigt Abb 4-2 and die entsprechenden kinematischen Ebenen im Beneich O.C.
s. $C^2 + C.S. = C^2 + C.S. = C$

Abt.4.3 Vergleich der dussielastischen Streuquerschnitte an 1^2 C für $Q^2 = 0.150$ und $Q^2 = 1.332$ GeV².

> Wirkungsquerschnitt in willkürlichen Einheiten. Aufgeträgen gegen die invariante Masse W.

- 39 -

24

Abb.4.0 Quasielastische Streuung bei Primärenergie $E_1 \approx 2.7$ GeV und Streuwinkel = 15° für ^bLi <u>und</u> 12° ----

ς.

Kern ⁴Li Auch hier ist die Strukturverschmierung der Resonanzen mit Hachsendem G^2 deutlich zu seher. Die Verschmierung reicht bis über die Pionenschwelle hinaus.

· · · - 4ĉ -

Nach der Formel (siehe Annang D 3)

wunden fühl die in Tab.3-1 aufgeführten Spektnen der theoretische quasielastische und inelastische Wirkungsquerschrift getrennt berechnet.

Fin. Veraleich der Rechnungen für $G^2 = 0.179$ und $G^2 = 1.332$ GeV² zeist in Abbildung 4.3, dass der guasielastische peak mit wachsender Vienerimpulsübentnag stark verbreitent wind und weit üben die Pichenschwelle (w=" OB GeV) hinausneicht. In Abbildung 4.4 ist die C¹-Abhändickeit der Halbwertsbreite des guasielastischen Deaks für den Kenn ⁴⁸C dangestellt. Das Anwachsen der Breite mit G² ist im wesentlichen verunsacht dunch das Anwachsen des Dreienimpulses ĉ des vintuellen Photons und damit durch das Anwächser des kinematisch möglichen Bereichs für elastische Streuung am bewegten Nukleon (siehe Anhang D 1). Die Verschiebung des gussielastischen Maximums begen die freie Nukleonenmasse ist in Abb 4.5 in Abhängigkeit von Q² aufgetragen. Die Rechnungen zeigen, dass bei Ω^2 = D das Maximum um die mittlere Separationgenergie der Nuklepren im Kenn verschoben ist und mit wachsendem Q¹ im betrachteten Bereich ein annähernd lineares Ansteigen zeigt. Dieses Anwachsen ist eine unmittelbare Auswirkung der Stossnäherung: mit wachsendem Q² muss aus Energieerhaltungsgründen immen mehn Energie des vintuellen Photons aufgebracht wenden um die Vintuellen Massen auf die Massenschale zu heben Ssiehe Anhang D.13. Ein veroleich zwischen den Kernen ⁴Li und ¹²C zeict dem Einfluss der Massenzahl auf die quasielastische Streuund (Abb 4.6) Die Unterschiedliche Breite der guasielastischen peaks ist eine Folge der verschiedenen Impulsverteilungen, der geningfügige Unterschied in den Lage der Maxima ist zusätzlich verunsacht durch die Ungleichen mittlenen Separationsenengien der Kenne Fün grosse Massenzahl A erneicht die Verbreiterung des guasielastischen peaks einen Sättigungswert, da der Schwerpunkt der Nukleonenimpulsverteilung nicht Heiter anwächst.

a

Die obigen Betrachtungen gelter auch für den Bereich der inelastischen Elektron-Kennstreuung. Da hier keine ausgepragten Strukturen vorhanden sind, zeigt sich der Wesentliche Einfluss der Fermibenegung im Verschwinden des Minimums zwischen erster und zweiter Nukleonenresonanz und im Schwellenverhalten der Pionproduktion

4.2 Vergleich zwischen experimentellen und berechneten Spektren

Für der vergleich mit der expenimentellen Spektnen Hunder bei der Benechnung den quasielastischen und den inelastischen Hinkungsquenschnitte zusätzlich Strahlungseffekte und das expenimentelle Energieauflösungsvermogen berücksichtigt (siehe Anhang D-6). In Tabelle 3-1 sind die kinematischen Parameter der untersuchten experimentellen Winkungsquenschnitte zusammengefasst. Die in Anhang D-5 beschniebene Parametrisierung des gesamten zweifach differentiellen Winkungsquenschnittes.

$$\sigma_{\text{qes}} = \left(\frac{\Delta_{\text{eff}}^{\text{aucl}}}{A}\right) \mathcal{C}_{\text{que:}} + \left(\frac{\Delta_{\text{eff}}^{\text{inel}}}{A}\right) \mathcal{C}_{\text{inel}}$$

wurde benutzt, um die theoretischen Beiträge zum Streuquerschnitt mit der Methode der kleinsten Fehlenquadrate an die experimentellen Daten anzupassen

Die Grössen (A_{ef}^{quel}/A) und (A_{ef}^{inel}/A) geben den Anteil der Nukleonen des Kernes an, die zum quasielastischen bzw. inelastischen Streuprozess beitragen. Im Rammen der Stossnäherung wird erwartet dass die Zahl den effektiven Nukleonen gleich der Anzahl der im Kern vorhandenen ist

- 43 -

<u>.</u>			
r			
÷ e	-		
	-		
5.55 H			
	-		
÷	3		
►	T.		
1.04 H	E 5 6 6 4 2 👾		
· · · · · · · · · · · · · · · · · · ·			
	· _		
	2		
	_		
	4		
¥-			
C.9 1.1 1.1	ê 1.		
	. ***	F -3 68	0-12.0
Hebitoung 4 8 Hinpassung des berechneten		2, - 2, 00	130
Spektren : MR75 L aufoetragen gegen die	ž	3.50	13.0
inuaciante Masse Li	с л	รักธิ	22 0
ouasialastisch		3.40	22.0
	C C		
nesamler Wirkungsquerschnift			
Berenzen um um dadden som inter			

.

٠

D

.

÷ 1

2.: "

- a

<u>7</u>-J

1.20

7

5

Apbildung 4 S Angassung des benechneter	a Al	E,≖2 68	0= 9.0
Wirkungsquerschnitts an die experimentellen	L	3 08	9.0
Spektner HUB75 { aufgetnager gegen die	c	35	9 C
invariante Masse W.	d	2.68	18.0
quasielastisch			
<pre></pre>			

------ gesamten wirkundsguenschnitt

4.2.1 Analyse der Messungen dieser Arbeit

11

Die Abbildungen 4.2, 1.8 Zeigen die Beschreibung den Elektronstreudaten an Kohlenstoff | BOC25, HUB25 | aus den Tabellen 3 5-3.13 Die Daten überdecken einen Q²-Bereich zwischen O 111 und 1 50 GeŲ^{*} Im gesamten Bereich wird der Verlauf der experimentellen Spektren van den Rechnungen wiedergegeben. Sowohl die mit \mathbb{Q}^{L} anwachsende Verbreilerung der peaks, als auch die Verschiebung der Maxima zu hoheren invarianten Massen stimmt mit den experimentellen wenten überein. Das durch die Fermibewegung bedingte Verschwinden ausgephägten. Strukturen in den Spektren ist deutlich zu erkennen

Im Bereich Q¹ < D 2 GeV¹ ist aufgrund des Pauli-Prinzips eine aussielastische Streuung an den Nukleonen nicht mehr mit jedem Fermiimpuls möglich Aussendem ist die Richtungsverteilung der Fermiimpulse der zun Streuung beitragenden Nukleonen nicht mehr isotrop Davon ist die Form des guasielastischen peaks beeinflusst

Die Aluminiumdaten | HUB25, HUB26 , die im Bereich von G² zwischen D 12 und 0.24 GeV² liegen, sind in den Abbildungen 4 9 und 4 10a,b mit den Rechnungen verglichen Bei den Rechnungen wurder Impulsverteilungen für die Schalen 1s1/2, 1p3/2 und 1p1/2 benutzt | JDN22 | Mit Hilfe diesen Impulsverteilungen kann auch die gegenüber Kohlenstoff etwas stärkere Verbreiterung den Strukturen beschrieben werden

Dies ist auch für die Elektronenstreuung an Silizium der Fall (Acb 4 10c.d) Die Breite des guasielastischen peaks ist annähernd gleich der des Aluminium. Der wesentliche Unterschied liegt in der Position der Maxima: Im. Vergleich zu Aluminium ist im Silizium die mittlere Separationsenengie um etwa 11 MeV grössen, da Silizium als gg-Kenn besonders stark gebunden ist

Auch für den kenn ⁴Be ist es im Rahmen den Stossnähenung möglich, die experimentellen Daten wiedenzugeben (Abb 4 1De,f)

	a / Ŧ	b	, <u>, , , , , , , , , , , , , , , , , , </u>	-
			Ŧ	-
	E.F. C.	 - = =	t t	-
1.0	×			
	C. 9	1.5 ⁻¹ c. .	C.9 :::	1.5 1.5
.:.:		: d		
е.с.н - - - - - 	₹ <u>₹</u>	- 1.8 / 		
- بر <u>ن</u> س			* 51 *	
2.: <u>-</u>	1.6 1 1.i	<u></u>	5.5 1.1	1.3 1.5
:5.C	e	-		
] - 2.2.	£ .	-		
5.5 E	* ****	• • -		
: د _ر ــــ		35		
	Abbildung 1.10 Anpassung Hirkungsquerschnitts en d Spektren HUB25 aufget inveriente Masse H — quasielastisch inelastisch gesater Hirku	des berechnelen ie experimenteller ragen gegen die nosquerschnitt	a ¹⁸ Be E,≖ c ¥rAl d e ²⁴⁸ Si	3 00 9=9 96 5.00 9.96 3.00 9.96 5.00 9.96 3.00 9.96 3.00 9.96

- 45 -

- 49 -

Abbildung ' Wirkungsque Spektren ¦ invariante	11 Anpassung des berechneten Frschnitts an die experimentellen HEI73 j aufgetragen gegen die Masse W. Guasielastisch	а 1) с	*∟i	E, #2 5 2.7 2 7	9=12 0 13.8 15 0	
	inelastisch					
	gesamler Wirkungsquerschritt					

÷

Abbildung 4 12 Anpassung des berechneten	5	°°C	E₁≈2 O	G≖15.0
wirkungsquerschnitts an die experimentellen	F		2.5	15.Q
Spektren ZEL73 aufgetnagen gegen die	с		27	15 0
irvaniante Masse W				
— - — - quacielastisch				
t t t t inelactisch				

gesatten Winkungsquenschnitt

- 51 -

9 2 2 Vergleich mit Messungen anderer Autoren

4

um die Gültigkeit des hier entwickelten Programmsystems in einem auch ghossen kinematischen Beneich Ζu testen, wunden Wirkungsquerschnitte Autoren angepasst Auch diese anderer experimentellen Daten lasser sich durch die Berechnungen gut wie die Abbildungen 4-11 für ⁶Li | Hei23 |, 4-12 beschneiben, | ZEL23 | und 4 13 | AND72 | für ⁴¹C zeigen. Die Disknepanzen zwischen Rechnung und Experiment sind hauptsächlich bedingt durch die unterschiedliche Ant der Datenbehandlung Zeller | ZEL73 | hat seine Kohlenstoffdaten mit einer Gaussverteilung geglättet, um seine Strahlungskonnekturen mit geningerem statistischem Fehler durchführen zu können und auch Andrews | AND72 | hat seine gemessenen Daten auf die Bremsstnamlungseffekte konnigient, was speziell für die Spektren mit kleinem G² eine sehr unsichere Methode ist: die Extrapolation der Wirkungsquerschnitte in Beneiche ohne experimentelle Stützdaten ist mit grossem systematischen Fehler behaftet. Das zeigt recht sehr anschaulich den vorteil der hier gewählten Methode [siehe Anhang D 4]. die Strahlungseffekte bei der Berechnung den Theonetischen Winkungsquerschnitte zu behücksichtigen

Die restlichen Daten aus Tat.3.1 | STA71, TIT72 | konnten wegen der mangelhaften Dokumentation nur zur qualitativen Analyse Verwendet werden. Sie werden aber im Wesentlichen durch die Rechnungen richtig reproduzient Ein Vergleich der Peakwerte der ersten Nukleonenresonanz liefert für die Testgrasse ($A_{e\mu}^{indl}$ /A) für ⁶Li | TIT72 | der mittleren Wert 0.98 ± 0.05 und für ¹²C STA71, TIT72 | 1.13 ± 0.12. Die Daten von Andreks (AND22 | ergeber einer Mittelwert von 1.05 ± 0.03.

Die ⁴Li-Daten von Heimlich haben von allen analysierten Daten die geringste Halbwentsbreite des quasielastischen peaks. Auch diese Tatsache wird von der Rechnung gut wiedergegeben.

.

.

- 53 -

Abb 4 14 (A<mark>qu</mark> /A) für alle analysierten ⁴⁶C-Spektren in Abhängigkeit von G³ für die guasielastische Streuung - - - - ist die Berechnung der Pauli-Unterdruckung | BER72 |-

Abhangiokeit Jon G¹ für die inelastische Streuung

4 2 3 Die Ampassungsparameter

0

Aus dem vorhergehenden Vergleich zwischen den Rechnungen und den verschiedenen Experimenten ergibt sich, dass das hier diskutierte Programmsystem zur Berechnung der Elektronenstreuung an gebundenen die Form der experimentellen in Stossnäherung Nukleonen Winkungsguerschnitte gut wiedergibt. Der Knitische Test für die Gültigkeit der Stossnäherung ist, ob auch die absoluten winkungsquerschnitte übereinstimmen. Diese Überprüfung ist für die quasielastische und die inelastische Streuung getrennt durchgeführt and wird wird durch die Zahlenwerte von (A_{eu}^{uvel}/A) und (A_{eu}^{ivel}/A) quantitativ ausgedrückt wenn auch die absoluten Wirkungsguerschnitte übereinstimmen, so sind diese Werte gleich 1. Da für die elementaren Prozesse experimentelle Wirkungsguerschnitte zugrundegelegt wurder. sind die berechneten Absolutwerte mit Unsicherheiten behaftet, die sich aus den systematischen Fehlern der benutzten experimentellen Den systematische Fehler der berechneten Daten engeben. Wirkungsquerschnitte ist ca. 11 % (siehe Anhang D B). Dieser relativ grosse Fehler beruht nauptsächlich auf den Unsicherheiten der Neutronendaten

In den Abbildungen 4.14 und 4.15 sind die für Kohlenstoff ermittelten Wente von (A_{ep}^{qual}/A) und (A_{ep}^{inel}/A) dangestellt. Es ist deutlich zu erkennen, dass für einer Teil der untersuchten Hessungen erhebliche Abweichungen vom erwarteten Went eins auftreten Diese Abweichungen treten besonders stark bei den Daten von Zeller (ZELZ2) auf und zwan gleichermassen für beide Testgrössen Der Grund für diese Abweichung ist die grosse Unsicherheit der Absolutnormierung dieser Daten Zeller gibt für seine ¹²C-Dater eine systematische Unsicherheit von über 10 X an, da die effektive Dicke des Tangets nicht genau bekannt war und das Tanget zuder noch unter einem Winkel vor ca. 45° zur Elektronenstrahl stand (ZELZ8), um das Abstoppen von gestreuten Nukleonen im Tanget zu

normiert in Abhangigkeit von G² - für Kohlenstoff (51) | ANCZ2 |

- C 50 1 ZEL73 |
- (T) (BCC75)
- (Δ) | HUB?5 |

Abb 9 17 (A^{m4} /A) auf den guasielastischen Wirkungs-

querschnitt normiert in Abhangigk#it von Q

- für "L1 (~)
- fun Be (4)
- fun ²⁷S1 (C)

verningenn (Bei den Messungen von Zellen wurden die Nukleonen Rolfizigent nachgewiesen D

Fun die anderen experimenteller Spektren ist der systematische Fehlen in der Absolutionmienung von der Grössenordnung 5-10 %. Dieser Fehlen ist in Abbn 4-14-4-19 als Fehlerbalken eingeträgen

Für die in dieser Arbeit analysierten Streudaten an Kohlenstoff engibt sich den Mittelwent von (A_{eq}^{net}/A) zu 1 07±0 17 und von (A_{eq}^{net}/A) zu 1 07±0 17 und von (A_{eq}^{net}/A) zu 1 15±0 14 was bedeutet dass auch die absoluter Wirkungsouenschnitte durch die Rechnungen nichtig wiedergegeben werden.

Für die quasielastische Streuung ist in Beneich von $\mathbb{Q}^3 + \mathbb{O} \subseteq \mathbb{O} \otimes^3$ die Stossnäherung als adäquate Beschneibung des Streupnozesses etabliert im Beneich $\mathbb{Q}^3 \times \mathbb{O} \subseteq \mathbb{O} \otimes^3$ werden Abweichungen von den Stossnäherung erwantet die durch das Ausschliesbungsprinzip von Pauli begründet sind Diesen Einfluss wurde von Bernabeu (BER72 (im Rahmen des Schalenmodelis für ¹³C benechnet und diskutiert im Abbildung 4-14 ist diese Vonhersage miteingezeichnot

Un die Güte den Stossnähenung füh die inelastische Streuung unabhängig voh den Unsichenheiten in der Absoluthonmienung der experimentellen Hinkungsquenschnitte zu überprüfen, werden die experimentellen Daten auf den benechneten Winkungsquenschnitt der quasielastischen Streuung honmient Durch dieses verfahren ist den Fehlen für die enmittelte Testgrösse (A_{ijj}^{mel}/A) nur noch durch die Unsichenheit der berechneten Absolutwerte gegeben, din die systematischen Fehlen der Experimente werden eliminient Aufgrund des Pauliprinzipes kann dieses Verfahren nur für Q¹ > 0 2 GeV² benutzt werden.

In Abbildung 9.16 sind die so normienten Hente für (A_{eff}/A) in Abhängigkeit von G² dangestellt. Die Abbildung zeigt, dass auch im

querschnitt normiert in Abhangigkeit von Gr fur ^{li}Al

Abb.9 19 Der Mittelwent pro Kenn von (A 💭 /A) aus der

- Abbildungen 4-18 - 4-18 ir Abhängigkeit von

Massenzahl A

inelastischen Bereich die Stossnäherung die adäquate Beschreibung der Streuprozesse an gebundenen Nukleonen ist. Dies zeigt auch der Mittelwert aller ($A_{eff}^{(nd)}$ /A)-Werte für Kohlenstoff, der mit einem Zahlenwert von 1.03±0.09 den bei Gultigkeit der Stossnäherung erwarteten Wert von eins bestätigt. Wegen der grossen Unsicherheiten in der Absolutnonmierung der experimentellen Spektren ist für den Test der Stossnäherung num der auf die quasielastische Streuung normierte Wert von ($A_{eff}^{(nd)}$ /A) von Bedeutung Im folgenden werden deshalb num die so normierter Werte von ($A_{eff}^{(nd)}$ /A) gezeigt.

Die oben gezeigte Übereinstimmung zwischen den berechneten und den gemessehen Wirkungsquerschnitten engab sich auch für die Kenne $\epsilon_{\rm el}$ (Abb.4.12a), ${}^{\rm q}$ Be (Abb.4.12b), ${}^{\rm 21}$ Al (Abb.4.18) und ${}^{\rm 147}$ Si (Abb.4.12c). Die Mittelwerte von (A ${}^{\rm int}_{e_{\rm e}}$ /A) für die einzelnen Kenne sind in Abbildung 4.19 in Abhängigkeit von der Massenzahl A dangestellt. Diese Abbildung veranschaulicht, dass alle hien untersuchten Kenne in gleichen Güte durch die Stossnäherung beschnieben werden

4.2.4 Zusammenfassung der Anpassungsengebnisse

Das im Rahmen dieser Arbeit entwickelte Programmsystem zur Beschneibung der Elektronenstreuung an in Kernen gebundenen Nukleonen in Stossnäherung gibt die kinematischen Einflüsse auf die Form und die Lage der einzelnen Beiträge zum Hinkungsquerschnitt sehr gut Hieder Diese Übereinstimmung ergab sich für alle untersuchten Kerne in einem grosser kinematischen Bereich mit gleicher Güte Für den inelastischen Prozess Hunde die Stossnäherung als adaquate Beschneibungsmöglichkeit ermittelt Ferner konnte gezeigt Herder, dass

- 59 -

13

fun inklusive Elektronstneuexperimente an gebundenen Nukleonen Impulsventeilungen aus dem Schalenmodel) die beobachteten Einflüsse der Fermibewegung auf den Streupnozess hinneichend genau beschneiben Die mittlenen Anpassungspanameten ($A_{\rm eff}^{\rm ref}$ /A) sind für ⁴_1 | HEI73 | 0.92 ±0.01 und für ¹²C | ZEL73 | 1.01 ±0.01. Die in den Einleitung erwähnte Unterdrückung der Produktion der ensten Nukleonennesonanz in Kennmatenie die en diesen Daten frühen festgestellt wurde | HEI74 $_{\rm H}$, konnte also nicht verifiziert Herden

4 3 - Übenprüfung der Dualitätshypothese be; komplexen kennen

Als ein mögliches Anwendungsbeispiel des Programmsustems dieser Arbeit wird hien die Übenprufung den Dualitätsrypothese dangestellt im Rahmen dieser Untersuchung wurder als Eingabewente für die elementaren Prozesse (siehe Abang D-2) Skeienfunktionen statt Struktunfunktionen benutzt: Für die Elektronenstneuung an freier Nukleonen wurde ermittelt dass in einem grossen kinematischen Bereich die Struktunfunktionen statt von G² und u nur von einer geeignet gewählten kinematischer Grösse abhängen : BLOPC BJDES, RITZ1 BRAZ2 | Für Hente von G³ grössen als da 30 GeU² verschwindet dieses sogenannte Skalenverhalten | FDX74, BENZS ATHZS I Es konnte fehnen im kinematischen Bereich der Daten dieser Arbeit gezeigt werden, dass die Skalenfunktionen den mittlehen Verlauf der Winkungsquerschnitte im Bereich der Nukleonenresonanzen wiedergeben Diese Verknüpfung zweien unterschiedlicher kinematischen Bereiche heisst Dualitätshypothese (siehe Abschnitt 2-6)

Fun Kohlenstoff wunden die finite energy sum rules von Bloom und Gilman | BL020 | und von Rittenberg und Rubinstein | RIT21 : für die Struktunfunktion $H_2(Q^4, v)$ überprüft. Die Untersuchungen enfolgten mit den von Bloom und Gilman bzw. Rittenberg und Rubinstein ermittelten Parametrisierungen der Skalenfunktion (siehe Tab 2-1,2-2). Wie bei der Elektronenstreuung an freien Nukleonen ergab sich auch im Fall von in

obenen	Integr	rationsgrenze ພື
	- mit	f() von BLOZC

٩.

- a 0 = 0.5 GeV
- b Cr≈1.0 GeU¹
- o Q = SGeU
- - - - -

. .

Kohlenstoff gebundenen Nukleonen, dass die Summennegel von Rittenberg und Rubinstein die Experimente im grösseren Finematischen Bereich beschreibt. In Abbildung 4.20 ist dieses Verhalten veränschauflicht Dangestellt ist die Grosse g(ω) aus Abschn.2.4 im Abhängigkeit von der obenen Integrationsgrenze Es ist deutlich zu seier dass mit kleinen werdendem G² die Skalenfunktion von Bloom und Stiman immen schlechter mit den Daten im Bereich H < 1.8 Gest übereinstimmt. Die übeneinstimmung der berechneten Fehn-Strukturfunktionen mit der Summennegel von Pittenberg und Rubinstein im Gegen ist für alle betrachteten Q²-Werte gleich gut Aussender Fohnte Hielim Fall den freien. Nukleonen eine lokale Dualitat [B.Ch.

S Zusammenfassung

....

.

im Wahmen der Forschungsgrunge F23 beim DESY wurden wege experimentelle Daten für die Flektron-Streuung an den Sornen 410 und ²⁴Al ([EUS75], , siene Anhang F) und ⁹Be, ²⁴Al und ²⁸Si ((HUB76), vorläufige Laten) gewonnen und zur Annoyse herangezogen.

Im Rahmen diesen Anbeit wunde ein Rechen-Prognammsystem erflikelt dass die inklusive Elektronenstreuung an gebundenen. Nukleuren in Stopphäherung beschneibt. Der zugrundeliegende Formalismur wirde in den Veröffentlichung von Atwood und West ; ATW72 für Skiten;Ur entwickelt die Enweitenung auf Komplexe Kenne wind in Accomplit 2 ausführlich diskutiert. Es konnte gezeigt wenden, dies die Strukturfunktionen für die quasifreie Streuund sich als inn härente Ubenlagenung der Sthukturfunktionen der freien Prozesse su feller lassen. Die Strukturfunktionen für die freier Prozesse worder aus experimenteller Wirkundszuerborritter ermittelt. Der Vergl/um der Rechnungen mit der Elektromenstreuexperitenten an der Kenner 1., ⁹Be 12 C, $^{-23}\!Al$, and $^{23}\!$; in Finematischen Beneich O O - Q 2 < 1 C GeV^2 and wik f E Georienceb, Hecci coword, die Struktum eis euch der Brodute winkungsguenschnift den experimentellen Spekthen dur. Jiese Benechnung out beschnieben werden kann. Beobactiele Abweitnender vor den Engebridden der Stoppmähenund für die guspielaptisch- inelung Rommer auf der Ekstivis der Paulisnizist zurückgeführt Herden ihr die inelastischen Streuphozetse wunde keine Abweichung wur der Stopshäherung befunden im Rahmer dieses Modelis wurden fernig wur ein Anwendunssberddie) (Aren Frannamsystems die finite () Sur nules' sen Block one trimen szw. Jon Rittenberg und Rutio für für quasifneir Streaury ar KoleAnstoff Lbenprüft Huch Mienbei Kolo nich dass die clasifieire fil processe gunde die freien Prozeire - fimmt sind und date of this clied, zwischer finelsnozessen a . en and dependiant in service dent dependent Nukleonen nur kinesal. Notion 5152

und bei nühendem Tarcet Die Gepartenengie aus Photon und gestreuter Nukleon ist invariant und mit M = freie Nu+leonermasse

Aussender wenden in Annang D folgende Zubammenhange benufzt

 $W^2 = (p \cdot q)^2 = M^2 \cdot 2M_0 - q^2$

es gilt (freies Nukleon)

E_ = Separationsenengie des Stasshukleons

M. = M. - (M-E.) mit M₊ = Targelmasse

M_e = Restkennmasse

ι = E,-E,

Fur das virtuelle Photor gilt $\square^2 = -q^2 = 4E_1E_1 \sin^2(\square/\square)$

E., E. sind die Energie des eins bzw. auslaufenden Elektrons, O int

den Streuwinkel zwischen eine und auslaufenden Elektron

に = (いってい - Cyntuelies Photor

p, = (E, p,) Restkern (Spektator)

p_ = (E_, Ê_) _ Tanget (kern)

p_ = (E_ p_) gebundened Nukleur

p = (E,p, freies Nuklear

Vienervextoren ist wie folst.

prinzipiell die Macce des Elektrons vernachlassist su dass die Zahlenwente von Energie und Impuls des Elektrons cleich stid Die Indizierung der im Feynmanghaphen (Att. 2.3) vorkommensen

Ed wind ein Mass-sustem Verwendet in der * = s = 1 gebetzt ist. Die Metnik ist so gewanit, dass $p^2 = (p_1 \vec{p})^2 = p_1^2 + p_2^2 + Aussender wind$

- (- -

Annang A – Kinematische Grösber und Koordinatensusteme

- + N -

Strukturfunktioner wenden folgendermassen bezeichnet

μ^P μ^P μ^A ≈ Cirukturfunktion von Proton (p),Neutron (r). lz⊾ kenn (A) bzw inelastische (inel) Elektron-Kennstreuung

(n) = 2 w + N w mit 2 = Protonemanzahl fi≞t 20 N = heuldarenarzabl

Indizierung der Koprdinatensväleme

- S = Laborsystem: Alle richt besonders indizienter Grössen betwehen sich auf dieser Sustem Lonenzinvahiante Grösser tragen im allgemeinen auch keine Indizienung
- S^{*} = Schwerpunktsuster von virtueller Photon und Tancet bzu Schwendunkiskolen der audiaufenden Hadnonen Transformation von S 🔸 S^e mit

β = ₫<<<u>₩_+</u>,1 (A 1)

 $\mathbf{y} = (\mathbf{M}_{+} \mathbf{v}_{-} \mathbf{M}_{+})$ (A 2)

5 = Ruhecyctem des Stassnukleons

•

Transformation Von 2 -+ 0' mit

β = p/ε. (A 3)

y = € .1". [A 4]

Die zrRichtung aller Susteme ist die gleiche und zeigt in die Richtung von 🖞 oll in die Richtung des vintuellen Photons

- 66 -

.

Anhang B Impuisverteilung der Nukleaner im Kern

.

Die Impulsverteilungen, die in Anhang D zur Ausführung der Integrationen D 14, D 15, D 32 und D 33 benutzt werden, wurden aus dem Ein-Teilbhen-Schalenmodell mit Spin-Bahn-Wechselwinkung unter Annahme eines Wood-Saxon-Potentials errechnet

Die Schrödingergleichung, die die Bewegung der Nukleonen im mittleher Kennpotential beschmeibt, lässt sich neduziehen auf die eindimensionale Form:

$$\frac{2}{r} = \frac{1(1+1)}{r} - U(r) + U(r) = 0$$

mit $\frac{\pi^2 k^2}{2\mu} = E$ = Separationsenergie des Nukleons in der Schale

Wind ist das Hood-Saxon-Potential mit Spin-Bann-Tenm

$$U(n) = U(n) \cdot f(n) + U(n) + \overline{1 \cdot s} = \frac{V_c - U_c}{a} \cdot \frac{df(n)}{dn}$$

$$dabei \ beschneibt - f(n) = \left[1 \cdot exp\left(\frac{n - R}{a}\right) \right]^{-1} den \ Venlauf \ des \ Potentials$$

- U_ = die Tiefe des Potentialtopfes
- R = die Breite des Potentialtopfes
- a 🛛 🛎 ein Parameter, der die Randunschänfe ausdruckt

$$c_{1} = \left| \begin{array}{c} A \uparrow c \\ (A-1) 2 M c^{2} \end{array} \right|^{2}$$

v = eine Konstante, die die 1-s-Kopplung beschreibt

V(r) = des Coulomb-Potential Coul

Die Tiefe des Potentialtopfes für Protonen und Neutronen wurde als gleich angenommen Diese Vernächlassigung des Coulomb-Effekts hat bei leichten und mittelschweren Kennen minimalen Einflust auf die Impulsventeilung den Nukleonen | JON77 : Die Losung den Schrödingengleichung liefent die Ontswellenfunktion, deren - 67 -

Tabelle B 1 Parameter für die Berechnung der Impulsverteilungen und Separationsenengien der in den Verschiedenen Kernen gebundenen Nukleonen

(Erklärung der Parameter in Anhäng C)

Kern Z N	Niceau		e [fm]]	R [fm]	ں (MeV)	E B (MeV)
6 13	s 1/2	56	65	2 43	_	2' 3
	p 3⁄2	51	65	2 48	_	45
9 Be 4 S	s 1/2	59	60	2 85	_	26 3
	p 3/2	58	БQ	2 85	50	17.5
	p 1/2	47	60	285	so	• 7
12 C E E	s 1.⁄2	60	55	2 02 2		30 O
	: 3/2	22	55	3 025	24 82	17 0
27 Al 13 14	s 1.⁄2	79	55	472	—	33 D
	ç 3∕2	<u>Б</u> 1	55	4 12	63 2	21 6
	p 1/2	61	. 55	4.12	63 2	17.5
	c 5/2	55	55	÷ 12	366	11 3
28 	s 1/2	80	55	4 17		5 9 5
	p 3/2	EЗ	55	4 12	69 41	36 D
	p 1/2	63	55	4 12	69 4 1	28 0
	d 5⁄2	SB	. 55	4 12	18.8S	17 0

Fourier-Transformierte quadriert die gesuchte Impulsverteilung ergibt.

Die Parameter für die Berechnung der Impulsverteilungen, die aus Anpassung an die Elektronenstreuung bei niedrigen Energien ermittelt wurden, sind in Tabelle B-1 zusammengestellt. In Abbildung B-1 sind für den Kern ⁴ als Beispiel die Impulsverteilungen der einzelnen auftretender Schalen dargestellt. Die Impulsverteilungen der Nukleonen sind nur vom Impulsbetrag $|\vec{p}_g|$ abhängig, de aus Symmetriegründen die Richtungen der Ferminmpulse isotrop verteilt sind (Im Labor system)

aes Zugrundelegen van Wellenfunktionen aus dem Dunch Ein-Teilchen-Schalenmodell wird die relativistische Invarianz der Elektronenstreuung an gebundenen Nukleonen Behandlung de-Bei einer konsequenten relativistisch invarianten durchbrochen. Behandlung müsste man auf die Zugrundelegung von Potentialen verzichten, de diese nicht invariant gegen Lorentz-Transformationen sind Um die nicht relativistisch bestimmten Impulsverteilungen invariant zu machen, schlägt West (WES72) in seiner Arbeit einen Konnektunfaktor H_{s}^{2}/Ξ_{s}^{2} vor und diskutient, ob $|\Phi(\vec{p}_{s})|^{2}$ oder $M_c/E_c[\Phi(\vec{p}_c)]^2$ mit der nicht relativistischen Impulswellenfunktion identifizient werden soll. Da sich ein Einfluss dieser Korrektur erst bei sehn großsen Impulsübertragen bemerkbar macht, konnte in dieser Arbeit die Frage nach der Richtigkeit eines solchen Korrekturterms nicht entschieden werden

1

- 68 -

Anhang C Interpolation der freien Nukleon-Struktunfunktionen

.

Die Struktunfunktionen W_4 und W_2 der freier Nukleonen Hunden aus experimentellen Hirkungsquerschnitten bestimmt | KOB24, ARM22 | Jon Anmstrong et al. | ARM22 | Hunden die Hirkungsquerschnitte für Proton und Neutron bei $Q^2 = 0$ (Photoproduktion) übernommen. Die Autoren von KOB24 geben Hirkungsquerschnitte für Deuteronen, freie Protonen und gebundens Neutronen an. Zur Bestimmung des Hirkungsquerschnitts für die Elektronenstreuung an freien Neutronen Hunde folgender Ansatz gemacht:

. - 70 -

$$G_{n} = \left(G_{k} - G_{p}^{4}\right) \frac{G_{p}}{G_{p}^{4}} \qquad \text{(C.1)}$$

 ${\cal G}_p$ and ${\cal C}_d$ sind die Wirkungsquerschnitte der Protoner respektive der Deuteronen, ${\cal G}_p^{\rm f}$ ist der mit der Impulsverteilung des Protons im Deuteron gefaltete freie Protonquerschnitt

Diesem Ansatz liegt die Annahme zugrunde, dass die Impulsverteilungen für Proton und Neutron im Deuteriumkern gleich sind. Diese Annahme ist sicherlich genechtfertigt, da beim Deuteron keine Coulomb-Effekte auftreten.

Um aus den Winkungsquerschnitten die Struktunfunktionen H $_4$ und H $_2$ zu bestimmen, wird für das Verhältnis R von longitudinalem zu transverselem Winkungsquerschnitt folgende Beziehung benutzt:

 $R(Q^{1}) = C 18 \quad \text{fur } Q^{1} > C 2 \text{ GeV}^{1}$ $R(Q^{1}) = C 9 \cdot Q^{1} \quad \text{fur } Q^{1} < O 2 \text{ GeV}^{1}$

Den Hert R = D 18:010 Hunde sowohl für Protonen als auch für Neutronen in einem Heiten Beneich den (\mathbb{Q}^3 ,v)-Ebene aus experimentellen Streudaten enmittelt (MIL22 ALD22, BAR21 BAT22 (Da R(\mathbb{Q}^4 =0) = D sein muss Hunde für $\mathbb{Q}^2 < 0.2$ Hilikumlich ein linearen Abfall uch R zu Null angenommen Diese Annahme ist durchaus dem Experiment entsprechend Hie den Vengleich zwischen genechnetem und experimentellem (BAR21 - iongitudinalen Winkungsquenschnitt in

Acb.C.1 Vergleich zwischen experimentellem [BART] und berechnetem longitudinalem Wirkungsquerschnitt für W = 1.22 GeV. Aus den verknüpfung zwischen longitudinalem bzw. transversalem Wirkungsquerschnitt und der Struktunfunktionen (siehe Gin 2.7 und 2.9)

$$h_{1}(G^{2}, v) = \frac{k}{2\pi^{2}} - \frac{k}{2\pi^{2}} (G^{2}, v) \qquad (C2)$$

(03)

$$H_{t} = \sigma_{exp} \left[\frac{\sigma_{exp} \left[2\tan^{2}(G/2) + \frac{G^{2}}{q^{2}}(1+R) \right]^{-1}}{Mott} \right] (C.5)$$

$$H_{z} = \sigma_{exp} \left[\frac{\sigma_{exp} \left[1 + \frac{2\tan^{2}(G/2)}{(1+R)} - \frac{G^{2}}{q^{2}} \right]^{-1}}{(1+R)} \right] (C.6)$$

$$\sigma_{exp} \equiv \left[\frac{d^{2}\sigma}{dkdE} \right]$$

Für die Photoproduktion ist $\mathbf{6}_{L}^{\prime} = \mathbf{0}_{1}^{\prime}$ d.h. $\mathbf{6}_{tot}^{\prime} = \mathbf{6}_{T}^{\prime}$ = totalen Absorptionsquenschnitt für neelle Photonen Danaus engibt sich:

$$W_{t}(0,v) = \frac{v}{2\pi^{2} \kappa} \delta_{tot}(v) \qquad (C.2)$$

Die experimentelle Struktunfunktion $W_{\mu}(Q^2, v)$ lässt sich entlang Linien konstanten invarianter Masse H durch den empirisch gefundenen Polynomansatz

$$H_{1}(\mathbf{Q}^{2},\mathbf{W}) = \left[\sum_{m=0}^{3} \mathbf{a}_{n}(\mathbf{W}) \cdot (\mathbf{Q}^{2})^{n}\right] \exp(-\mathbf{a}_{1}(\mathbf{W}) \cdot \mathbf{Q}^{2}) \qquad (C.9)$$

beschreiben. Die Parameter $a_n(H)$ wurden in Schritten von $\Delta W = 0.005 \text{ GeV}$ an die experimentellen Proton- bzw. Neutron-Strukturfunktioner angepasst.

,

Mit diesem Polynomansatz lässt sich W_{4} für beliebige Q^{2} - und onkente im Bereich 0.0 < Q^{2} < 1.5 GeV² und W < 1.5 GeV berechnen W_{2} ist aus W_{4} durch die Relation 0.4 gegeben. Die so interpolienten Struktunfunktionen $W_{4,2}$ für inelastische Elektronenstreuung an Proton bzw. Neutron sind in den Abbildungen 0.2 and im kinematischen Bereich 0.0 < Q^{2} < 1.5 GeV² gezeigt.

· · · ·

Anhang D Das Programmsystem

Im folgenden soll die Anwendung der in Abschnitt 2 vorgestellten Grundlagen zur Berechnung der Kern-Strukturfunktionen W^A_A und W^A_2 enläutent werden wie in Abschnitt 2.2.3 wird dabei wegen der verschledenen kinematischen Bedingungen zwischen der quasielastischen Elektron-Streuung und der Produktion von Mesonen unterschleden

Ferner wird die Methode der Berechnung von theoretischen Streuspektren und des Vergleichs mit experimentellen Daten vorgestellt Ein Blockdiagnamm des gesamten Rechenprogramms zeigt Figur D.1.

C 1 Quasielastische Kern-Strukturfüktionen

Die Struktunfunktionen der elastischen Nukleon-Streuung lassen sich, wie in 2.2.3.1 Gin. 2.22 und 2.23 erwähnt, faktorisieren im:

$$W_{1}(\alpha^{2}, \upsilon) = G_{1}(\alpha^{2}) \delta(W(\upsilon)^{2} - M^{2})$$
(D1)

$$G_r(G^1) = 2 M \tau G_R^7(G^1)$$
 (D3)

$$G_{1}(G^{2}) = 2 M \frac{G_{1}^{2}(G^{1}) + \tau G_{M}^{1}(G^{1})}{4 + \tau}$$
 (D4)

Damit werder die Faltungsintegrale Gln. 2.12 und 2.13 für die quasielastische Streuung:

$$w_{4}^{quel}(G_{1}, \upsilon_{3}) = \int d^{3} \frac{\sigma}{\rho} \left[\hat{\Phi}(\hat{\rho}) \right]^{2} \left\{ G_{1}(2^{3}) \int \left[w_{N}^{4} - H^{3} \right] + \frac{\rho_{x}^{2}}{h^{2}} G_{2}(C^{3}) \delta(w_{N}^{2} - H^{2}) \right\} \quad (D S)$$

$$w_{2}^{qual}(\alpha, \nu) = \int d^{3}\beta \left| \left(\ddot{q} \right) \right\rangle \cdot \left\{ \left(\ddot{q}, \nu, \beta \right) + G_{2} \left(\dot{q}^{*}, \delta \right) \right\} = \left\{ \nu, \nu, \nu \right\}$$

$$w_{N}^{2} = (p_{N}^{+} q)^{2}$$
 (D7)

Das Dreifachintegral $\int d^3 \vec{p}$ lässt sich wegen der impliziten p-Abhängigkeit der δ -Funktion analytisch reduzieren Zur Ausführung der Integration der δ -Funktion geht man vernümftigerweise über in das System S* (siehe Anhang A) Für die Transformation des Differentials über den Nukleon-Impuls gilt:

$$d^3\vec{p}_{ij} = E_i / E_i^* d \vec{p}_j^*$$
 (DB)

Den Übergang in spharische Koordinaten, die für das notationssymmetrische Problem der elastischen Streuung angebracht ist, vollzieht man:

$$d^{3}\vec{p}_{1} = \vec{e}_{1} / \vec{e}_{1}^{*} d^{3}\vec{p}_{2}^{*} = \vec{e}_{1} / \vec{e}_{1}^{*} d^{4} \vec{e}_{2} / \vec{e}_{2$$

De der Integrand nicht von φ^{π} abhängt, kann die Integration über d φ^{π} sofort ausgeführt werden und liefert einen konstanter Faktor 2 m

Die Deltafunktion in Gin. D.S. D.6 wird für die Integration über d $|\vec{p}_{31}^{*}|$ benutzt. Dazu braucht man eine Beziehung zwischen W_{μ} , der invarianten Masse des gestossenen Nukleons und \vec{p}_{3}^{*} , dem Impuls des Spektators bzw. Stossnukleons:

Die invariante Masse des Tangetsystems kann beschnieben werden (Indizierung siehe Abb 2.3 und Anhang A).

$$\begin{aligned} H_{\tau}^{2} &= (p_{\tau} + q)^{4} = (p_{s} + p_{H} + q)^{2} \\ &= p_{s}^{2} + (p_{H} + q)^{2} + 2p_{s}(p_{\tau} - p_{H} + q) \end{aligned} \tag{D 10} \\ &= H_{u}^{2} - H_{s}^{4} + 2p_{s}(p_{\tau} + q) \\ &= a \quad p_{\tau} = (H_{\tau}, \vec{D}) \end{aligned}$$

Speziell engibt sich in S[#]:

$$w_{\tau}^{2} = W_{h}^{2} - M_{c}^{2} + 2E_{g}^{*}W_{\tau}$$
 (D 11)

Danaus folgt für das Angument der Deltafunktion in D-5 und D.6:

Nech dem Variablehtmansformation für die Deltafunktionlengibt sich | MES72 ::

$$\hat{b}(m_{s}^{1} + m^{2}) = -\frac{E_{s}^{2}}{2m_{s}(F_{s}^{2})_{s}}\hat{b}(|\vec{F}_{s}^{2}| + |\vec{F}_{s}^{2}|_{s})$$
(D.13)

- 79 -

**

Die Deltafunktion filtert fixt ein gegebenes Paar der invarianten kinematischen Grössen G¹ und vim S²-System genau einen Impulsbetrag $|\hat{p}_{s}^{*}|_{e}$ heraus, der den kinematischen Bedingungen der quasielastischen Streuung genügt. Dieser Impuls $|\hat{p}_{s}^{*}|_{e}$ entspricht im Laborsystem eine Schar von $|\hat{p}_{4}^{*}|_{e}$ -Herten, die sich für jeweils einen Hinkel \hat{V} (zwischen Photon und Stossnukleon) und damit für einen bestimmten Parallelanteil von \hat{p}_{s}^{*} zu \hat{q} (der als einziger die Transformation bestimmt) in $|\hat{p}_{s}^{*}|_{e}^{*}$ transformieren Anders ausgedrückt: Die Grösse des Nukleon-Impulses im Laborsystem bestimmt den Hinkel \hat{V}^{*} des auslaufenden Nukleons zur Richtung des einlaufengen Photons. Die Gewichtung der Nukleon-Impulse gent durch die Integration über doos \hat{V}^{*} ein (\hat{V}^{*} = $\hat{V}^{*}_{i}(\hat{p}_{i}, \hat{p}_{i})$)

Damit engibt sich für die quasielastischen Kenn-Struktunfunktionen aus Gln D S und D 6:

Dabei steht \sum_{n} für die schalenweise Summienung der Nukleonen: Da Sindungsenengie und Impulsventeilung die Kinematischen Grössen in der Integration stank beeinflussen, wind die Integration für die Nukleonen in jeden Schale getrennt ausgeführt und dann über die Schalen summient

Fun die Ausführung der Integration üben doos ϑ^* müssen noch die Beziehungen zwischen den Nukleon-Impulsen im S^{*}-System und den Kinemalischen Größsen im Laborsvolen hergeleitet werden Aus relativistischen Thensformationer erhalt man (GL 2011)

$$\Xi_{5}^{*} = \frac{1}{\Omega_{n_{+}}} \left(\mu_{\gamma}^{2} + M_{5}^{2} - \mu_{\gamma}^{2} \right)$$
 (D 16)

$$\vec{F}_{S1}^{*} = (E_{S}^{*2} - m_{S}^{*2})^{2}$$
 (D.17)

Abb D 2 Flussdiagramm des Faltungsprogramms zur Berechnung

. .

der quasielastischen Struktunfunktionen k (\mathbb{Q}^1, υ)

$$\Rightarrow : \vec{p}_{s}^{*} = \frac{1}{2H_{T}} \left\{ H_{T}^{*} - 2n_{T}^{2}(M_{s}^{2} - M^{2}) + (M_{s}^{*} + M^{2})^{2} \right\}^{\frac{4}{2}}$$
(D 1B)

Die Anwendung relativistischer Transformationen auf transversale (L) und longitudinale (N) Komponente des Impulses und die azimutale Symmetrie liefern (da die Transversalkomponente von der Transformation nicht berühnt wird):

$$p_{\mu}^{1} = p_{\mu}^{1} = 1/2 \ \vec{p}_{\perp}^{2} = 1/2 \ \vec{p}_{\perp}^{*2}$$
$$= 1/2 \ p_{5}^{*} (1 - \cos \vartheta^{*})^{2} \qquad (D.19)$$

$$p_{\mathbf{x}} = \vec{p}_{\mathbf{n}} = \mathbf{y} \vec{p}_{\mathbf{n}}^{\dagger} + \mathbf{y} \vec{p} \mathbf{z}_{\mathbf{s}}^{\dagger}$$

$$\vec{p}_{\mathbf{n}}^{\dagger} = |\vec{p}_{\mathbf{s}}^{\dagger}| \cos \vartheta^{\dagger}$$
(02.01)

Mit Gin A 1 und A 2 folgt daraus

$$p_{2} = \frac{(M_{T} + U)}{M_{T}} \|\vec{p}_{s}^{*}\| \cos \vartheta^{*} \cdot \frac{\|\vec{q}\|}{M_{T}} E_{s}^{*} \qquad (D 21)$$

Aussendem muss aus dem Flussterm $\frac{7}{5}$ in GL.214 noch v'eliminiert werden:

 $M_{1}T = \frac{P_{\sigma}}{M} v - \frac{P_{z}}{M} |\vec{q}| \quad (Gin A 3, A 4)$

engibt sich:

$$\mathcal{T} = \frac{1}{M^2} \left\{ (P_p - \frac{P_x^{\vee}}{|\vec{q}|})^2 - p_x^2 \cdot \frac{Q^2}{\vec{q}^2} \right\}$$
(D 22)

~

Den schematischen Ablauf der numerischen Berechnung der Integrale Gin D 14 und D 15 für die quasielastischen Struktunfunktionen zeigt das Flussdiagramm in Abb D.2

D.2 Inelastische Kenn-Strukturfunktionen

.

Im kinematischen Bereich der Pion-Produktion $W > M + m_{eff}$ ($m_{eff} = 0$ ionruhemasse) an Nukleonen gibt es für inklusive Elektron-Streuung keine kinematische Einschränkung des Streuprozesses, Wie sie im elastischen Streufalle auftritt. Es werden alle kinematisch möglichen Massen produzient, Hobei die Resonanzmässen bevorzugt werden. Eine analytische Vereinfachung der Faltungsintegrale für die inelastische Streuung (inel) ist deshalb nicht möglich.

Zur Berechnung von $H_{4}^{mel}(G^{1}, v)$ und $H_{2}^{(nel}(G^{2}, v))$ (der Index 'inel' meint im folgenden immer die Strukturfunktionen des Kerns) wird folgendermassen vorgagangen:

Der Übergeng zu sphärischen Koondinaten und die Integration über dig (wegen der azimuthalen Symmetrie sofort durchführbar) liefern:

$$\int d^3 \vec{p} = \int d\phi \int d\cos b \int |\vec{p}|^2 d|\vec{p}| = 2\pi \int d\cos b \int |\vec{p}|^2 d|\vec{p}| \qquad (5.23)$$

Da die in die Gin 2-12 und 2-13 eingehenden Struktunfunktioner der Nukleonen von o statt von $\cos \frac{1}{2}$ abhangen, ist es angebracht, die Integration über doos $\frac{1}{2}$ durch die äquivalente Integration über doos $\frac{1}{2}$ durch die äquivalente Integration über doos $\frac{1}{2}$ ersetzen. Aus dem relativistisch invarianten Vierervektor-Produkt aus q (virtuelles Photon) und p_u(Stossnukleon) folgt wegen $\frac{1}{2}$ = 0

$$M v' = p_{1} q = E_{0} v - p_{1} q$$
 (D 24)

und deraus:

$$v' = \frac{E_{N}}{H}v - \frac{I\vec{p}[I\vec{q}]\cos\vartheta}{H}$$
(D 25)

Danaus engibt sich

$$dv' = - \frac{|\vec{p}_{k}||q|d\cos \vartheta}{\sqrt{M}}$$

$$\int_{d\cos \vartheta} \frac{M}{(2\pi - \sqrt{M})} \frac{M}{|\vec{p}_{k}||\vec{q}|} dv = \int_{\sqrt{M}} \frac{M}{|\vec{p}_{k}||\vec{q}|} dv' \qquad (D.26)$$

Die Integrationsgrenzen sind (siehe Anhang A) mit $E_{\rm e}$ = $M_{\rm e} r E_{\rm s}$:

$$v_{H,0} = \frac{M_{T} - E_{s}}{H} v_{T} + \frac{|\vec{P}_{1}||\vec{q}_{1}}{M}$$
 (D.27)

Die Gollstandige Vanjablentnansformation ist:

$$d^{3}\vec{p} = 2\pi M \iint \frac{|\vec{p}_{1}|}{|\vec{q}_{1}|} d|\vec{p}_{1}| dv'$$
 (BS3)

Dabei Hunde die Energie des gebundenen Nukleons $E_{\mu} = M_{\mu}^{-}E_{\mu}^{-}$ gesetzt mit $E_{\mu}^{-} = \sqrt{M_{\mu}^{2} + p_{\mu}^{-1}}$, oh es Hind angenommen, dass der Restkenn Hährend den gesamten. Reaktion reeli ist. Aus Energieerhaltungsgründen folgt, dass das Stossnukleon virtueli ist.

Die Struktunfunktionen der Nukleonen sind num für reelle Nukleonen bekannt, also für Nukleonen, die auf inner Massenschale liegen. Da die Massenabhängigkeit der Struktunfunktionen aber bei Heitem von der D¹-Abhängigkeit dominient Hind | BOD73 ... Hind die Annahme gemacht Esiehe Abschn 2.2.1.), dass die Struktunfunktionen für on-shell und off-shell-Nukleonen identisch sind, Henn die gleiche invariante Masse produzient Hind:

Es werden deshalb bei der Integration die Nukleon-Struktunfunktionen fun dasjenige of abgefragt, das bei festgehaltenem G² (das ja invariant ist) am freien ruhenden Nukleon ($p_{\mu}^{i} = (M, \vec{D})$) die gleiche invariante Hasse W = $|p_{\mu}^{i+c_{1}}|$ (mit $q^{i} = (u^{i}, q^{i})$) produzient wie das o im Laborsystem am gebundenen fermibewegten Nukleon ($p_{\mu}^{i} \in E_{\mu}(\vec{p}_{\mu})$) also m = |p+q| mit $q=(v, \vec{q})$ Danaus folgt fur v':

Für das 'àquivalente' v' engibt sich camit:

$$v^{*} = v + \frac{E_{n}^{*} - \overline{p}_{n}^{*} - M^{*}}{2M} = v^{*} - \frac{E^{2} - E_{n}^{2}}{2M}$$
(D.31)

dabei ist E_N die Energie des gebundenen Nukleons mit dem inpuls \vec{p}_i uns E = $\left[\vec{P^*} \cdot \vec{p}_i \right]$ die des freien. Es gilt: $E > E_{\rm N}$ de E_ wegen der Beziehung M₂= E₆+E₄ (im Laborsystem) mit steigendem $\vec{p}_{\rm N}$, also steigendem E₅ kleiner wird und für $\vec{p}_{\rm N} \approx \vec{0}$. E₈= M-E₈ gilt.

E, ist die Separationsehengie des Nukleons

Je grössen den Impulsübertrag \vec{q} und den Nukleon-Impuls \vec{p}_{μ} werden, desto grössen wind den Integnationsbereich in uⁱund desto stärken wind damit die Verschmienung den Struktunfunktionen Der Faktor $\frac{M_{1T}^2 - E_2}{M} \leq 1$ in GL.D.27 und die Subtraktion von $\frac{E^2 - E_{\mu}^2}{2M} > 0$ in GL.D.31 bewirken eine Verschiebung des Integnationsschwerpunktes zu höheren Streuenengien

Für die Benechnung der Struktunfunktion zur Produktion einen bestimmten invarianten Masse (am Kenn) werden also im Mittel Nukleon-werte herängezogen, die zu kleinenen invarianten Massen (am freien Nukleon) gehören. Das bewirkt eine Verschiebung der Resonanzmaxima für Produktion am Kern zu höheren V-Herten, da enst dort die Maxima für freie Produktion benutzt Herder.

Die Integrale 2.12 und 2.13 nehmen für die inelastische Elektron-Kernstreuung folgende Form an:

$$\begin{split} H_{1}^{\text{inel}} & (\Omega^{2}, \upsilon) = \frac{2\pi N}{|q|} \iint |\vec{P}| \left| \hat{\Phi}(\vec{p}) \right|^{2} \begin{cases} W_{1}^{(n)}(\vec{a}, \vec{v}) + \frac{P_{1}^{2}}{H^{2}} W_{2}^{(n)}(\vec{a}, \vec{v}) \right|^{2} dv' d|\vec{p}| \quad (D.32) \\ H_{2}^{\text{inel}} & (\Omega^{2}, \upsilon) = \frac{2\pi N}{|q|} \iint (\vec{p}) \left| \hat{\Phi}(\vec{p}) \right|^{2} \quad \widetilde{f}(\vec{a}^{2} \upsilon \vec{p}) + W_{2}(\vec{a}, \vec{v}) \right|^{2} dv' d|\vec{p}| \quad (D.33) \\ \text{mit} \quad \widetilde{f}(\Omega^{2}, \upsilon, \vec{p}) = \left(\frac{V}{V} - \frac{\rho_{2} \Omega^{2}}{H^{2} \upsilon \vec{q}}\right)^{2} - \frac{\rho_{2}^{2} \Omega^{2}}{H^{2} \upsilon \vec{q}} \qquad (D.33) \end{split}$$

Dabei ist \sum_{i} wie in Abschn D t in GL D 14 eine geeignete Summierung über die Nukleonen.

Die Integration wird numerisch als gewichtete Summation über Stützstellen der p-Verteilung ausgeführt.

Summation über Stützstellen heisst, dass die Punkte, an denen der Integrand berechnet wird, so gewählt werden, dass Bereiche, die einem grobber Nahrscheinlichkeitsbeitrag liefern, häufiger in die Summation eingenen. Dazu wird die Integration über $4\pi \vec{p}^2 | (\vec{k}, \vec{r})|^2$ ausgeführt. Die Wahrscheinlichkeitsverteilung der Nukleon-Impulse wird dann durch

Abb D 4 Flussdiagnamm des Faltungsprognamms zum Benechnung

der inelastischen Struktunfunktionen W (D¹.0)

Stützstellen repräsentiert, die jeweils Gebieten mit gleicher integrierter Wahrscheinlichkeit der Impulse entsprechen. Abb.D.3 zeigt schalenweise die integrierte Hahrscheinlichkeit für die Nukleon-Impulse in ⁶LL.

.

.

In Abb D 4 ist schematisch die Durchführung der Integration GL.D.32 und D 33 alt Flussdiagnamm dar gestellt

D-3 Berechnung der Wirkungsquerschnitte für Elektron-Kernstreuung

Nachdem die Struktunfunktionen H_{12}^{quil} und H_{21}^{net} für die Kernstneuung berechnet und Tabelliert worden sind, können daraus die interessienenden Wirkungsquerschnitte für inklusive Elektron-kernstreuung berechnet werden Für eingegebene Herte von Streuwinkel 0 und Einschussenergie E4 Herden Spektren nach den Formeln

$$\begin{split} & \mathcal{G}_{quel}(E_{+},E_{5},\Theta) = \mathcal{G}_{H_{2}u}(E_{+},\Theta) \begin{cases} \frac{quel}{H_{2}}(G^{2},\cup) + 2tg^{2}(G/2)H_{4}(G^{1},\cup) \end{cases} \\ & \text{unc} \\ & (D 34) \\ & \mathcal{G}_{uel}(E_{+},E_{5},\Theta) = -\mathcal{G}(E_{+},\Theta) \begin{cases} \frac{quel}{H_{2}}(G^{2},\cup) + 2tg^{2}(G/2)H_{4}(G^{2},\cup) \end{cases} \\ & \frac{quel}{H_{2}}(G^{2},\cup) + 2tg^{2}(G/2)H_{4}(G^{2},\cup) \end{cases} \\ & \mathcal{G}_{uel}(G^{2},U) \end{cases} \end{split}$$

berechnet. Für der vergleich mit experimentellen Spektren werden diese Zwei Wirkungsquerschnitte getrennt. Wie in Anhang D-4 beschrieben. "zerstnahlt" Aussendem wird die Energieunschänfe des experimentellen Aufbaus durch Verschmierung von \mathcal{O}_{q-e_k} und \mathcal{O}_{inel} mit einer dem Energieauflosungsvermögen entsprechenden Gaussverteilung simuliert.

Abb D S zeigt die Auswirkung der Zenstnahlung und Verschmierung auf Theoretische Spektner

- 87-

Abb.P.5 Einfluß der Bremsstrahlungseffekte auf die Form der berechneten Spektren am Beispiel 12 C E₁ = 2.68 GeV θ = 13° Strahlungslängen siehe Tab.3.1 [HUBT5]

> ----- mit Strahlungseffekte ohne

D 4 – Strænlungskannekturen

Bei Elektron-Streuprozessen geben die Elektronen einen Teilihren Energie in Form von g-Duanten ab. die sogenannte Bremsstrahlung. Dadurch werden Primänn und Streuenergie des Streuprozesses verfälscht. Man kann dabei zwischen zwei Anten von Bremsstrahlungsprozessen unterscheiden:

-a- externe Bremsstrahlung (straggling)

Bei der externen Bremsstrahlung wird das Elektron im Coulomb-Feld eines Kernes gestreut, der an dem eigentlichen Streuprozess keinen Anteil hat. Dazu tragen Prozesse, wie sie die Feynmangraphen in Fig D 6 a,b. zeigen, bei

-b- interne Bremsstrahlung

Wähnend deb eigentlichen Streuprozesses kommt es vor oder nach der Ankopplung des virtuellen Photons an das Tanget zur Abstrahlung reeller Photonen (Fig.D.6 a-d). Die Prozesse in Fig.D.6 c,d, Vertexkorrektur (c) und Vakuumpolarisation (d) werden benötigt, um Divergenzen bei kleinen Abständen zu beseitigen.

Da sich der Wirkungsquerschnitt bei Einphoton-Austausch als Produkt aus Lepton- und Hadrontensor zusammensetzt (vergl. GL2.6), hat die Anderung des Leptontensors keinen direkten Einfluss auf den Hadrontensor. D.h. Bremsstrahlungskorrekturen können am berechneten Wirkungsquerschnitt angebracht werden (müssen also nicht in die Faltungsinteorale in Abschnitt 2 2 einbezogen werden).

Bei den Berechnung der Wirkungsquerschnitte in Stossnäherung sind diese Effekte nicht berücksichtigt Ein Vergleich zwischen Experiment und Rechnung ist aber nur möglich, wenn entweder (a) die gemessenen Daten "strahlungskorrigiert" wurden (d.h. Bremsstrahlungseffekte "rückgangis gemacht wurden) oder (b) die theoretischen Spektren 'zenstrahlt' Hurden (d.h. Strahlungsprozesse rechnerisch simuliert Hurden). Mit der hier beschriebenen Faltungsmethode stehen Theoretische Wirkungsquerschnitte für alle Einschussenergien und StreuHinkel im gesamten kinematischen Bereich, der für die Strahlungskorrekturen benötigt Hird, zur Verfügung Diese Fülle von Information ist für experimentelle Wirkungsquerschnitte nur mit senr viel Aufwand zu erreichen. Desheib Hurden die Theoretischen Hirkungsquerschnitte zenstrahlt (Methode b)

Die Berechnung der Strahlungseffekte wird in 'peaking approximation' durchgefuhnt. In dieser Naherung wird angehommen, dass die Photonen nur in Richtung des ein- bzw. auslaufenden Elektrons werden emittient? Unter dieser Voraussetzung lassen sich die Einflüsse den externen und der internen Strahlungsprozesse zusammenfassen und man erhält | HOT69]:

$$\begin{aligned} \boldsymbol{\sigma}_{\boldsymbol{e}\boldsymbol{e}\boldsymbol{p}}\left(\boldsymbol{E}_{A_{1}}\boldsymbol{E}_{S_{1}}\boldsymbol{\Theta}\right) &= -\boldsymbol{E}_{\boldsymbol{H}}\left(\boldsymbol{E}_{A_{1}}\boldsymbol{E}_{S_{2}},\boldsymbol{\Theta}\right) - \boldsymbol{e}^{-\boldsymbol{\Phi}} \\ &+ \left(\frac{\Delta}{E_{3}}\right)^{X_{4}} \cdot \int_{\boldsymbol{E}_{A_{max}}\left(\boldsymbol{E}_{S}\right)}^{\boldsymbol{E}_{A}+\boldsymbol{\Phi}} - \frac{\boldsymbol{d}\cdot\boldsymbol{E}_{A}^{-1}}{\boldsymbol{E}_{A}-\boldsymbol{E}_{A}^{-1}} \cdot \boldsymbol{\Im}_{A} \cdot \boldsymbol{E}_{\boldsymbol{H}}\left(\boldsymbol{E}_{A}^{+}\boldsymbol{E}_{S}\boldsymbol{\Theta}\right) \\ &+ \left(\frac{\Delta}{E_{A}}\right)^{X_{3}} \int_{\boldsymbol{E}_{S}+\boldsymbol{\Phi}}^{\boldsymbol{E}_{S}+\boldsymbol{\Phi}} - \boldsymbol{E}_{S}^{-1} - \boldsymbol{E}_{S}^{-1} \cdot \boldsymbol{\Im}_{S} \cdot \boldsymbol{E}_{\boldsymbol{H}}\left(\boldsymbol{E}_{A}^{+}\boldsymbol{E}_{S}^{-\boldsymbol{\Phi}}\right) \end{aligned}$$
(D.35)

Die Faktoren δ , x_4 , x_5 , I_4 , I_5 setzen sich aus kinematischen Grössen und den Strahlungslängen von (1) und nach (3) dem Tanget zusanmen Details siehe Formel IV 1 in Ref. [MUT59]. Der enste Term drückt aus, dass der berechnete Winkungsquerschnitt $\mathcal{G}_{\rm IL}$ (\mathcal{E}_4 , \mathcal{E}_5 , \mathcal{O}) durch Abstrahlung von Bremsquanten reduzient wird. Mit dem zweiten und dritten Term werden Streuereignisse berücksichtigt, die durch

•

Аы D.6 Feynman-Graphen, Strahlungskorrekturen

Abstrahlung von Bremsquanten vor bzw nach dem Streuprozess fälschlicherweise den Werten El bzw. El zugeordnet werden

In Tabelle 3.1 sind die Parameter zur Berechnung der Strahlungsprozesse für die untersuchten experimentellen Spektren angegeben

D.S. Vergleich zwischen theoretischen und experimentellen Spektren Zum Vergleich der berechneten Wirkungsquerschnitte mit den experimentellen wird der gesamte Wirkungsquerschnitt panametrisient in der Form:

$$6_{ges} = C \left\{ \left(\frac{A_{el'}}{A} \right) C_{quel} + \left(\frac{A_{el'}}{A} \right) 6_{inel} \right\}$$
 (D 36)

Dabel sind C und $\left(A_{eg}^{(ed)}/A\right)$ freie Parameter, die den theoretischen Wirkungsguerschnitt an Experimentdaten anpassen sollen. Für den kinematischer Bereich G > C 2 GeU tritt keine Unterdrückung durch das Pauliprinzip auf | BER22 | (d.h. alle Endzustände, kie das Nukleon enrechen kann können auch wirklich beuölkert werder) und es gibt keinen Hinweis darauf, dass die guasielastische Streuung nicht durch die Stossnäherung beschrieben wird. Deshalb wird den Parameter ($A_{eff}^{(edt)}/A$) gleich 1 gesetzt. Diese Festsetzung wird odaurch ünterstutzt, dass das Integral über den gefalteten guasielastischen wirkungsguerschnitt für alle berechneten Spektren in guter Näherung gleich dem entsprechenden Rosenbluth-Querschnitt für freie Nukleonen ist

Der Skalierungsparameter C berücksichtigt die Unterschiede und Unsicherheiten in der Absolutnonmierung von experimentellen Spektren Einige der analysierten Spektren sind mit erheblichen systematischen Fehlern behaftet j ZELZ8 | Da die theoretischen Kern-Struktunfunktionen nicht aus einheitlichen experimentellen Daten berechnet wurden (siehe Anhang D-1, D.2), ist es möglich, dass der quasielastische und der inelastische Spektrenanteil unterschiedliche U-Skalen haben Unsicherheiten

- -a- in der Bindungsenergie und damit in der Masse
 - des Restkennes, vor der die Lage der Maxima abhangt
- -b- in der Primärenergie und
- -c- im Streuwinkel der zugnundeliegenden Proton- bzw Deutenonspektren

•

können eine merkbare Verschlebung der v-Skala bewirken. Deshalb wurde bei der Anpassung GLC 36 an die experimentellen Spektren eine relative. Verschiebung der Theoretischen Anteile $\epsilon_{\eta \cdot \alpha}$ und ϵ_{inex} zueinander zugelassen.

Wegen der Unsicherheit in Primärenergie und Streuwinkel, und Zuordnung den E₃-Intervalle bei den analysierten Spektren, die im Bereich von $\sim 1~x$ liegen kann, wurde auch eine Verschlebung der theoretischen Summe gegen das experimentelle Spektrum zugelassen

Die Anpassung wurde durchgeführt mit Hilfe der üblichen Methode der kleinsten Fehlenquadrate

D 6 Anwendungsbereich, Grenzen und Fehler des Programmsustems

Des gesamte Programmsystem besteht erstens aus der reinen Faltungsprögramm (Anhang D 1. D 2) und aus Service-Programmen, die die benötigten Eingabedaten aufbereiten, die Datenspeicherung erledigen und die experimentellen Wirkungsquerschnitte berechnen. Durch diese Aufspaltung ist das Programmsystem sehr flexibel und es können ohne Schwierigkeiten Pinderungen der Eingabedaten für die elementaren Prozesse eingebracht werden. Diese Flexibilität ermöglicht ein breiter Spektrum von Anwendungen

Eine dieser Anwendungsmöglichkeiten benutzten Atwood und Hest | ATM73 |. um aus experimentellen Elektronstreuquerschnitten an Hesserstoff und Deutenium durch Iteration den Wirkungsquerschnitt für die Elektronstreuung am freien Neutron zu bestimmen

Ein Heiteres Anwendungsgebiet liegt in der Analyse tiefinelastischen Elektronenstreuprozesse. Da der Stahlungsschwanz der quasielastischen Streuung, der gewöhnlich der dominante Untergrund für inelastische Elektronenstreuung an Kernen ist, bis in den Bereich sehr grossen invarianten Massen reicht, ist seine konnekte Berechnung und damit die genaue Kenntnis der quasielastischen Hinkungsquerschnitte von fundamentalen Bedeutung für die Beschreibung tiefinelastischen Streuvorgänge. Mit diesem Programmsystem lassen sich die Hinkungsquerschnitte für den Kinematischen Bereich Q² < 1 S GeV² und H < 1 B GeV berechnen.

Die Grenzen der Anwendbarkeit lieger im Bereich kleiner Q^2 , wo kohärente Effekte wie z.B. Unterdruckung durch das Pauliprinzip oder kennelastische Streuung die Gültigkeit der Stossnäherung einschränken und im Bereich großsen invarianter Masser W > 1.8 GeV. In diesem Bereich greift die Integration in kinematische Bereiche, in denen die Nukleonen-Struktunfunktioner bluht durch experimentelle werte gestützt sind (Siehe Abb.C.2). Die letztgenannte Begrenzung lässt sich aber durch Verwendung von Skalenfunktionen für den Bereich wir 1.8 GeV.

Tabeile D.1 Systematischer Fehler der Analyse

.

		Proton	freies Neut
Fehler in der	inlegrierten Ladung	2.0 X	2.8 X
	[Faradey-Käfig]		
	Tanget-dicke und -dichte	2.0 ×	28×
	Primärenergie	1.Q X	1.4 x
	Raumwinkelakzeptanz	1.0 <i>X</i>	10×
	Tolzeilkorreklur	1.0 %	1 D x
	Fallung der Protonen mit		5 - 8 ×
	den Fermibewegung		
Fehler durch	Koprekluren und	4 - 6 X	4 - 6 <i>X</i>
	Statistik		
	numerische Integration,		
	Interpolation und Stahlungs-	ca	3 x
	konnekturen		

quasielastisch ca. 7 X inelastisch ca 11 X

Anhang E - Tabellen der experimentellen zweifach

differentieller Wirkungsquerschnitte

- E, ≈ Primarenergie
- B = Streuwinkel
- E: = Streuenergie
- W = invariante Masse des produzierten Hadronzustandes
- G² ≈ Oiererimpulsübertragsquadrat
- SIG = zweifach differentieller Wirkungsquerschnitt in ubarn/(sr-GeV) pro Nukleon
- SIGF = statistischer Fehler von SIG (im Prozent von SIG)

aufheben

Die Berechnung der Kennstruktunfunktionen ist Wegen der Unsicherheiten in den zugrundeliegenden experimentellen Dater und der Verwendeten Rechenmetnoden mit Fehler behaftet. Der Fehlen wird beim guasielastischen Wirkungsguerschnitt zu etwa 7 %, beim inelastischen zu etwa 11 % bestimmt (siehe Tab D 1)

ſ	E 3 GeV)	H 1⊓ (GeV)	Z Q (GeV)	SIG (µ⊳∕sr GeV)	51GF (<i>X</i>)
	2X2622293332333533338991123315542449035333555555289865283656666889712237772772	$\begin{array}{c} 1 & S13 \\ 1 & S07 \\ 1 & S07 \\ 1 & 487 \\ 1 & 487 \\ 1 & 487 \\ 1 & 487 \\ 1 & 487 \\ 1 & 447 \\ 1 & 467 \\ 1 & 447 \\ 1 & 373 \\ 1 & 363 \\$	$\begin{array}{c} 0.111\\ 0.112\\ 0.113\\ 0.116\\ 0.116\\ 0.116\\ 0.116\\ 0.1120\\ 0.1224\\ 0.1224\\ 0.1224\\ 0.1225\\ 0.1225\\ 0.1225\\ 0.1225\\ 0.1225\\ 0.1225\\ 0.1225\\ 0.1225\\ 0.1225\\ 0.1225\\ 0.1225\\ 0.1225\\ 0.1225\\ 0.1225\\ 0.1225\\ 0.1225\\ 0.1255\\ 0.155\\ 0.$	* 950 2 C36 * 579 2 135 2 233 2 335 2 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	- 1119988877777268766666666666666666666666666

· .

	E	нŢ	с С	51G	SIGF
ε	GeV) I	(GeV) (GeV)	(µb∕sr GeV)	(*)
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	80 81 82 82 83 84 85 86 85 86 86 86 86 87 87 87 87 87 87 87 87 87 87 87 87 87	1.090 1.091 1.072 1.053 1.053 1.053 1.053 1.053 1.053 1.053 1.053 1.053 1.044 1.035 1.015 1.005 0.995 0.985 0.	$\begin{array}{c} 0 \ 161\\ 0 \ 162\\ 0 \ 163\\ 0 \ 164\\ 0 \ 165\\ 0 \ 166\\ 0 \ 166\\ 0 \ 166\\ 0 \ 166\\ 0 \ 166\\ 0 \ 166\\ 0 \ 167\\ 0 \ 177$ 0 \ 177 0 \ 1	$\begin{array}{c} 3.816\\ 3.909\\ 4.146\\ 4.312\\ 5.539\\ \epsilon 2554\\ 5.539\\ \epsilon 2554\\ 5.539\\ \epsilon 2554\\ 7.715\\ 8.6337\\ 9.999\\ 10.653\\ 10.471\\ 10.653\\ 10.471\\ 10.653\\ 10.471\\ 10.653\\ 5.241\\ 1.265\\ 5.241\\ 3.136\\ 1.265\\ 3.221\\ 1.245\\ \end{array}$	5.0.5.5.5.4.4.4.8.8.8.8.8.8.8.8.8.8.4.4.4.5.6.7.6. 2.0.7.5.2.8.4.8.8.7.6.4.8.2.0.0.6.1.5.7.9.5.0.6.

Tabelle 3.5 42 C E₄ = 3.08 (GeV) Θ = 13 Θ^*

E 3 (GeV)	µ in (GeV)	2 Q (GeV)	SIG (µb∕sr GeV)	SIGF (X)	
8835265656890112315567898252828288888888888888888888888888888	1.597 1.598 1.598 1.5588 1.5588 1.5588 1.5588 1.5588 1.5588 1.5588 1.5588 1	990.3202 3325 3327 3327 3333 3339 3333 3339 3341 31447 900 3355 355 355 355 355 355 355 355 355	$\begin{array}{c} 0 & 878 \\ 0 & 921 \\ 0 & 916 \\ 0 & 902 \\ 0 & 902 \\ 0 & 902 \\ 0 & 902 \\ 0 & 917 \\$	ਲ਼ਫ਼ਫ਼ਲ਼ਫ਼ਫ਼ਫ਼ਲ਼ਫ਼ਫ਼ਲ਼ਫ਼ਫ਼ਲ਼ਲ਼ਫ਼ਫ਼ਫ਼ਫ਼ਫ਼ਫ਼ਫ਼ਲ਼ਫ਼ਫ਼ਫ਼ਫ਼ਫ਼ਫ਼ਫ਼ਫ਼ਫ਼ਫ਼ਫ਼ਫ਼ਫ਼ਫ਼ਫ਼	

. .

[Fortsetzung]

E 3	₩ in	с С	SIG	SIGF
[GeV]	(GeV)	(GeV)	(µb∕sr GeV)	(X)
2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	$\begin{array}{c} 1.188\\ 1.129\\ 1.121\\ 1.162\\ 1.153\\ 1.144\\ 1.135\\ 1.126\\ 1.126\\ 1.260\\ 1.099\\ 1.$	0.900 0.9129 0.9129 0.91129 0.	1.155 1.094 1.108 1.094 1.08 1.08 1.08 1.08 1.07 1.107 1.107 1.107 1.107 1.118 1.175 1.216 1.273 1.326 1.326 1.326 1.574 1.520 1.574 1.520 1.574 1.550 1.643 1.550 1.643 1.555 1.456 1.556 1.432 1.344 1.568 1.555 1.456 1.555 1.456 1.555 1.555 1.247	6556656565555555555555555544556666778903348 56823910427667577796534199951038267411480

E	н	2 Q	SIG	SIGF	
s (GeV)	In (GeV)	[GeV]	(µb∕sr GeV)	(×)	
2305323353567389901123914567899255323555655892666289827722277555729928662885 23237323353588273892011239145678992553235556558926662836277222772277555729928662855 23237323556628927122272227222222222	$\begin{array}{c} 1, 597\\ 1, 597\\ 1, 598\\ 1, 585\\ 1, 585\\ 1, 585\\ 1, 585\\ 1, 585\\ 1, 585\\ 1, 586\\ 1, 589\\ 1, 586\\ 1, 589\\ 1, 586\\ 1, 589\\ 1, 586\\ 1, 589\\ 1, 586\\ 1, 586\\ 1, 586\\ 1, 586\\ 1, 586\\ 1, 586\\ 1, 586\\ 1, 586\\ 1, 586\\ 1, 586\\ 1, 586\\ 1, 586\\ 1, 586\\ 1, 586\\ 1, 586\\ 1, 489\\ 1, 486\\$	$ \begin{array}{c} 0 & 336 \\ 0 & 338 \\ 0 & 338 \\ 0 & 331 $	1 036 1 020 1 039 1 063 1 065 1 055 1 355 1	4 \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$	·

(Fortsetzung)

· .

E B	W in	2 2 2	SIG	SIGF	
E (GeV) 2 85 2 85 2 86 2 87 2 88 2 89 2 99 2 99 2 99 2 99 2 99 2 99	W in (GeU) 1 191 1 183 1 124 1 185 1 157 1 148 1 130 1 130 1 121 1 121 1 103 1 094 1 025	2 (GeU) 0.429 0.420 0.421 0.423 0.424 0.423 0.424 0.425 0.426 0.422 0.426 0.422 0.428 0.435 0.435 0.435 0.435 0.435 0.435 0.435	SIG (µb/sr GeV) 1.311 1.351 1.320 1.275 1.303 1.338 1.338 1.340 1.347 1.384 1.347 1.384 1.451 1.555	SIGF (X) 43 46 41 40 4.7 4.7 4.7 4.3 4.7 4.3 4.2 4.5 4.2 5 E 5 E	
29990012235550000000000000000000000000000000	1.025 1.055 1.055 1.045 1.032 1.032 1.032 1.032 0.937 0.937 0.937 0.937 0.937 0.955 0.934 0.934 0.934 0.934 0.934 0.934 0.934 0.934 0.934 0.934 0.934 0.934 0.934 0.933 0.934 0.933 0.934 0.933 0.934 0.933 0.934 0.933 0.934 0.935 0.934 0.935 0.934 0.935 0.934 0.935 0.	C 438 C.439 C.441 C.442 C 445 C 445 C 446 C 446 C 446 C 446 C 446 C 446 C 446 C 446 C 446 C 457 C 458 C 446 C 445 C C 446 C 465 C C 465 C C 465 C C 465 C C 465 C C 465 C C 455 C C C 455 C C C C C C C C C C C C C C C C C C C	1.525 1.669 1.204 1.204 1.205 1.825 1.825 1.942 1.953 1.942 1.953 1.942 1.906 1.921 1.829 1.633 1.633	4 ល +	
3 13 3 15 3 15 3 16 3 16 3 16 3 16 3 16 3 16 3 16 3 16	0 912 0 901 0 890 0 828 0 867 0 855 0 843 0 819 0 806 0 294 0 281 0 281 0 281	0. 461 0. 463 0. 463 0. 468 0. 468 0. 468 0. 468 0. 468 0. 468 0. 470 0. 471 0. 473 0. 474 0. 472 0. 479	1, 381 1, 409 1, 302 1, 162 1, 162 1, 000 6, 875 0, 214 0, 584 0, 284 0, 285 0, 250 0, 210 0, 210 0, 219 0, 299	r, 69 9, 04 8, 50 8, 50 8, 50 101 14, 18 119 19 19 19	

Tabelle 3.8 ⁴¹C E₄ ≈ 3.08 (GeU) D ≈ 15.0°

E	۳.	2 C	SIG	SIGF
	(GeV)	(GeU)	(µb∕sr Ge V)	(*)
1.1.2.2.2.2.2.2.2.2.2.2.2.2.2.2.2.2.2.2	$\begin{array}{c} 1 & 597 \\ 1 & 590 \\ 1 & 594 \\ 1 & 5577 \\ 1 & 5564 \\ 1 & 5578 \\ 1 & 5564 \\ 1 & 5578 \\ 1 & 5564 \\ 1 & 5664 \\ 1 & 566$	5 118 0 14 20 20 10 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	581 585 555 555 555 555 555 555 555 555	\$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$

· •

(Fortsetzung)

· ·

F		°2	510	5105
5	in .	40	516	210
(GeV)	(GeV)	(GeV)	(µb∕sr GeV)	[*]
2,53 2,54 2,55 2,55	1 175 1 166 1 157 1 148	0.531 0.533 0.535 0.532	0 581 0 567 0 S6S 0 SS9 0 SS9	4.3 4.5 5.0 4.7
2:3/ 2:58 2:59 2:60 2:61	1,130 1,130 1,121 1,111 1,102	0 542 0 544 0 546 0 546	0 562 0 549 0 559 0 559 0 565	4 5 4 4 4 6 4.7
2 62 2 63 2 65 2 65	1 / 293 1 / 283 1 / 273 1 / 264 1 / 254	0.550	0.583 0.592 0.597 0.609	50 450 440
2 68 2 67 2 68 2 69 2 70	1.044 1.034 1.024 1.013	0.560 0.563 0.565 0.565 0.567	0.659 0.661 0.671 0.680	4.2
2.21 2.72 2.73 2.73	1.003 0.992 0.982 0.982 0.921 0.960	0.569 0.571 0.573 0.575	0.692 0.693 0.706 0.694	4.4 4.5 4.4 4.2
2.75 2.76 2.77 2.78 2.78	0 950 0 938 0 922 0 916	0.529 0.581 0.584 0.585	0.673 0.639 0.612 0.572	3.9 4.2 4.4 4.4
2.80 2.81 2.82 2.83	0 904 0 893 0 881 0 869 0 852	0.588 0.590 0.592 0.594	0.534 0.506 0.459 0.412	4.5 4.8 4.9 5.2
2 84 2 85 2 86 2 87 2 88	0 845 0 832 0 820 0 807 0 807 0 294	0.598 0.600 0.602 0.605	0.369 0.316 0.269 0.220 0.1 81	595 6.9 7.6
2.89 2.90 2.91 2.92 2.93	8, 781 8, 767 8, 753 8, 735	0.607 0.609 0.611 0.613 0.613	0.155 0.119 0.089 0.075 0.057	9.0 10.3 9.5 11.6 1 1 .3
2.94	0.211	0.617 0.619	0.041 0.035	17.0 16.9

Tabelle 3 9 ⁴²C E₁ = 2.68 (Ge∪) ⊕ = 13.0°

E	ы 1 п	z Q	\$1G	SIGF	
(GeV)	(GeV)	(GeV)	(µb∕sr GeV	נא) (א	
0980 1002 11.057 11.11 11.12 1	1 986 1 974 1 974 1 948 1 975 1 948 1	0 1347 0 1341 0 1448 0 1555 0 1655 0 1655 0 1655 0 1655 0 17259 2 0 0 1899 0 0 1993 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	9 9 9 10 301 11 328 11 11 12 28 29 11 11 12 28 29 12 12 28 20 12 12 28 20 12 12 28 20 12 12 28 20 12 12 28 20 12 12 28 20 12 12 28 20 12 12 12 12 28 20 12 12 12 12 12 12 12 12 12 12 12 12 12	аатталалалататата висттинии и и и и и и и и и и и и и и и и и	

(Fortsetzung)

· .

5 3 [Gev]	ы in (GeV)	2 Q (GeV)	SIG (µb∕sr GeV)	SIGF (X)
2.38 2.40 2.43 2.24 2.25 2.25 2.25 2.25 2.25 2.25 2.25	1.061 1037 1013 0988 0962 0935 0935 0938 0880 0.851 0821 0821 0821	0.326 0.330 0.337 0.337 0.340 0.343 0.347 0.350 0.357 0.351	37.661 43.008 45.254 40.973 36.062 27.677 17.822 10.243 4.SS0 1.SS5 0.250	4 2 9 9 9 3 2 4 4 5 3 5 7 5 7 11 9 42 9

Tabelle 3.10 42 C E₄ \approx 3.08 (GeV) B = 13.0°

E 3 (GeV)	H in (GeV)	2 0 (GeV)	SIG (µb∕sr Ge V)	SIGF (x)
00000011111111122222222222222222222222	$\begin{array}{c} 2 \\ 2 \\ 2 \\ 2 \\ 2 \\ 2 \\ 2 \\ 2 \\ 2 \\ 2 $	$\begin{array}{c} c & 134 \\ c & 138 \\ c & 138 \\ c & 138 \\ c & 154 \\ c & 155 \\$	2 144 2 157 6 511 6 737 6 511 6 737 6 511 6 737 6 511 6 737 6 511 6 737 6 511 6 737 6 515 6 737 6 516 6 737 6 516 6 598 6 598 7 7 223 7 7 259 7 7 259 7 7 2690 7 8 5090 7 8 509 8 563 8 10 10 5628 11 00 10 5628 11 502 11 502	DB900000108019048222222001010108211111212828999999999788 82289900000108019048222222222222222222222222222222222222

•

(Fortsetzung)

• •

E 3	ы Ц	с Q	SIG	SIGF
 (GeV)	[GeV]	(GeV)	(µb∕sr GeV)	(*)
22222222222222222222222222222222222222	$ \begin{array}{c} 1 & 443 \\ 1 & 425 \\ 1 & 407 \\ 1 & 389 \\ 1 & 352 \\ 1 & 352 \\ 1 & 333 \\ 1 & 275$	$\begin{array}{c} 355\\ 0&355\\ 0&357\\ 0&357\\ 0&375\\ 0&37$	11 831 11 605 12 424 12 455 12 455 13 268 13 268 13 268 13 887 14 484 14 512 14 912 14 912 14 1819 14 165 14 520 14 819 14 165 14 520 14 819 14 165 14 520 14 819 12 374 12 374 12 972 20 650 22 973 19 707 20 650 23 98 2 984 2 974 0 871 0 304	22222222222222222222222222222222222222

(Fortsetzung)

· ·

Tabelle 3.11	°°C	E, = 3.50 (GeV)	⊖ ≠ 13.0°

E 3 (GeV)	W in (GeU)	2 Q (GeV)	SIG (µb∕sr GeV)	SIGF
0.88 0.990 0.995 0.998 1.002 1.005 1.010 1.13 1.15 1.205 1.002 1.15 1.205 1.002 1.25 1.002 1.15 1.205 1.002 1.25 1.205 1.207 1.25 1.207 1.25 2.20 1.25 2.25 2	2.377 2.366 2.355 2.355 2.355 2.355 2.229 2.220 2.200 2.	$\begin{array}{c} 0.157\\ 0.157\\ 0.157\\ 0.161\\ 0.170\\ 0.175\\ 0.170\\ 0.175\\ 0.175\\ 0.175\\ 0.206\\ 0.215\\ 0.224\\ 0.223\\ 0.224\\ 0.223\\ 0.224\\ 0.223\\ 0.224\\ 0.223\\ 0.224\\ 0.223\\ 0.225\\ 0.224\\ 0.223\\ 0.225\\ 0.255\\ 0.$	$\begin{array}{c} 5.039\\ 5.039\\ 5.270\\ 4.950\\ 4.950\\ 4.950\\ 4.950\\ 4.952\\ 4.952\\ 4.952\\ 4.952\\ 4.952\\ 4.952\\ 4.952\\ 4.502\\ 4.502\\ 4.502\\ 4.502\\ 4.502\\ 4.502\\ 4.502\\ 4.502\\ 4.502\\ 4.502\\ 4.502\\ 4.502\\ 4.502\\ 4.502\\ 4.502\\ 4.502\\ 4.502\\ 4.502\\ 5.023\\ 4.502\\ 5.023\\ 4.502\\ 5.023\\ 5.023\\ 5.031\\ 4.978\\ 5.031\\ 4.978\\ 5.031\\ 4.978\\ 5.031\\ 4.978\\ 5.031\\ 5.521\\ 4.502\\ 4.502\\ 5.$	N 1 9 N 1 N 1 N N N 1 1 0 1 1 N 1 N 1 N 1 N 1

Е З	ы 1	2 Q	SIG	SIGF
 (GeV)	(GeV)	[Ge∪]	(µb/sr GeV)	(X)
ਸ਼ਲ਼ਲ਼ਲ਼ਲ਼ਲ਼ੑੑਸ਼ਸ਼ਸ਼ਸ਼ਸ਼ ਸ਼ਸ਼ਸ਼ਸ਼ਸ਼ਸ਼ਸ਼ਸ਼	$\begin{array}{c} 1.685\\ 1.649\\ 1.633\\ 1.618\\ 1.586\\ 1.586\\ 1.586\\ 1.586\\ 1.586\\ 1.586\\ 1.586\\ 1.586\\ 1.586\\ 1.586\\ 1.586\\ 1.586\\ 1.586\\ 1.586\\ 1.468\\ 1.498\\ 1.498\\ 1.498\\ 1.498\\ 1.498\\ 1.498\\ 1.498\\ 1.498\\ 1.359\\ 1.359\\ 1.3201\\ 1.281\\ 1.280\\ 1.328\\ 1$	0.408 0.412 0.417 0.4226 0.4419 0.4419 0.4449 0.4488 0.4489 0.5511600 0.5555 0.5555 0.5555 0.5555 0.5555 0.05555 0.05555 0.05555 0.05555 0.05555 0.05555 0.05555 0.055555 0.05555 0.05555 0.055555 0.055555 0.055555 0.055555 0.055555 0.055555 0.055555 0.055555 0.055555 0.055555 0.055555 0.055555 0.055555 0.055555 0.055555 0.055555 0.055555 0.055555 0.0555555 0.055555 0.0555555 0.0555555 0.0555555 0.0555555 0.0555555 0.05555555 0.055555555	7.538 7.2289 8.2840 7.2887 8.8502 8.3210 8.4403 8.4403 8.4403 8.4403 8.4403 8.4403 8.4403 8.4403 8.4403 8.4403 8.4403 8.4403 8.4403 8.4403 8.4403 8.4403 8.4403 8.4530 9.4498 9.9.9.917 11.1985 9.9.9174 11.1985 9.9267 11.1985 9.2574 11.1985 9.2574 11.1985 9.2574 11.1985 9.2574 11.1985 9.2574 11.1985 9.2574 11.2559 1.25574 1.2559 1.25574 1.2559 1.25574 1.2559 1.25574 1.2559 1.25574 1.2559 2.5574 1.25574 1.25574 1.2559 2.5574 1.255744 1.25574 1.25574 1.25574 1.25574 1.2557444 1.25574444444 1.255744444444444444444444444444444444444	33333333333333333333333333333333333333

Tabelle 3.12 "C E. = 3.08 (GeV) 6 = 22.0"

E 3 (Geu	H 1n] (GeV)	2 Q (GeV)	SIG (µb∕sr GeV)	SIGF (X)	
C 858 0 993 0 995 0 0 995 0 1 0 05 1 1 05 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	2.164 2.151 2.1324 2.1324 2.23068 2.2684 2.2684 2.2684 2.2684 1.9982 1.9982 1.9972 1.9	0.381 0.392 0.415 0.426 0.415 0.426 0.415 0.426 0.427 0.426 0.449 0.447 0.447 0.447 0.447 0.447 0.447 0.447 0.447 0.55 0.557 0.5	1.063 1.063 1.053 1.023 1.121 1.075 1.082 1.112 1.030 1.112 1.030 1.128 1.036 1.036 1.063 1.063 1.068 1.057 1.068 1.057 1.066 1.057 1.068 1.057 1.059 1.057 1.059 1.057 1.059 1.057 1.059 1.057 1.059 1.057 1.059 1.057 1.059 1.057 1.059 1.057 1.059 1.057 1.059 1.057 1.059 1.057 1.059 1.057 1.059 1.057 1.059 1.057 1.059 1.057 1.059 1.057 1.059 1.059 1.057 1.059 1.057 1.059 1.057 1.059 1.059 1.057 1.059 1.057 1.059 1.057 1.059 1.057 1.059 1.057 1.059 1.057 1.057 1.059 1.057 1.	4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 4 4 5 4	

· •

(Fortsetzung)

• •

E (G	3 eV] (H in Gevi (*	2 GeV) (µ	SIG ib∕sr GeU)	510F (X)
ณณณณณณณณณณณณณณณณณณณณณณณณณณณณณณณณณณณณณณ	222 0 1 1 2 2 2 3 2 2 3 3 2 2 1 1 1 1 2 3 2 2 3 3 2 2 3 1 1 1 1	. 195 . 171 . 146 . 146 . 146 . 120 . 094 . 095 . 031 . 095 . 039 . 031 . 095 . 039 . 036 . 0664 . 556 . 5	1.009 1.020 1.020 1.030 1.055 1.055 1.055 1.055 1.055 1.055 1.055 1.055 1.055 1.055 1.055 1.105 1.121 1.133 1.144 1.133 1.144 1.155 1.155 1.155 1.155 1.221 1.221 1.221 1.231	0.639 0.530 0.550 0.534 0.534 0.534 0.531 0.556 0.520 0.556 0.522 0.322 0.153 0.153 0.153 0.153 0.153 0.153 0.153 0.153 0.153 0.225 0.022 0.025 0.022 0.025 0.00500000000	5.5803962227327013081305 9111122253456605

Tabelle 3.13 **C E, ± 3.40 (GeV) 8 = 22.0°

Ę	M.	2 D	SIG	SIGF
(GeV)	(GeV)	(GeV)	(µ⊳∕sr GeV)	(*)
0.000000000000000000000000000000000000	$\begin{array}{c} 264\\ 2258\\ 2228\\ 2224\\ 1184\\ 1157\\ 2204\\ 1257\\ 2206\\ 220$	0 446 0 450 0 483 0 483 0 550 0 555 0 555	$\begin{array}{c} 0.293\\ 0.226\\ 0.873\\ 0.873\\ 0.873\\ 0.873\\ 0.873\\ 0.899\\ 0.774\\ 0.863\\ 0.274\\ 0.863\\ 0.873\\ 0.863\\ 0.863\\ 0.863\\ 0.863\\ 0.863\\ 0.863\\ 0.852\\ 0.863\\ 0.852\\ 0.863\\ 0.852\\ 0.863\\ 0.852\\ 0.863\\ 0.852\\ 0.863\\ 0.863\\ 0.852\\ 0.863\\ 0.852\\ 0.863\\ 0.863\\ 0.852\\ 0.863\\ 0.852\\ 0.863\\ 0.852\\ 0.863\\ 0.852\\ 0.863\\ 0.852\\ 0.863\\ 0.865\\ 0.852\\ 0.865\\ 0.756\\ 0.756\\ 0.756\\ 0.756\\ 0.668\\ 0.666\\ 0.666\\ 0.666\\ 0.559\\ 0.756\\ 0.756\\ 0.756\\ 0.756\\ 0.668\\ 0.666\\ 0.666\\ 0.599\\ 0.756\\ 0.756\\ 0.756\\ 0.756\\ 0.599\\ 0.756\\ 0.599\\ 0.756\\ 0.599\\ 0.756\\ 0.599\\ 0.756\\ 0.599\\ 0.756\\ 0.$	ͶͶϫͺϿͺϫͺϿϣͺϫͺϿͺϫͺϿϫͺϿϿͶͶͶͶͶͶͶͶͶͶͶͶͶͶϿϿϿϿϿϿϿϿϿͶͶͶͶͶͶͶͶ

۰.

E 3 (GeV)	W in (GeV)	2 0 (GeV)	SIG (µb∕sr GeV)	SIGF (x)
2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	1 344 1 322 1 299 1 276 1 252 1 204 1 279 1 229 1 229 1 229 1 229 1 229 1 229 1 204 1 282 1 204 1 154 1 074 1 074 1 074 1 074 1 074 1 074 1 074 1 074 0 988 0 957 0 853 0 853 0 853 0 855 0 824 0 787 0 787 0 514 0 453 0 514 0 453 0 382	1 139 1 151 1 164 1 176 1 176 1 201 1 213 1 225 1 238 1 253 1 263 1 265 1 325 1 362 1 411 1 465 1	0 473 0 482 0 482 0 413 0 413 0 413 0 371 0 362 0 377 0 274 0 277 0 277	4 4 4 4 5 5 4 4 5 4 5 5 4 6 7 6 6 7 6 0 1 1 6 8 7 5 5 4 6 7 6 7 8 0 8 5 8 3 1 C 7 1 8 0

Tabelle 3 14 ²⁷Al E₄ = 2.68 (Ge∪) 0 = 9.0°

£	W in	2 Q	SIG	SIGF
 (GeV)	[GeV]	(GeU)	(µb∕sr GeV)	(X)
0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1	$\begin{array}{c} 2.554\\ 2.22222222222222222222222222222222222$	$\begin{array}{c} 0.554\\ 0.0558\\ 0.059\\ 0.059\\ 0.0663\\ 0.0663\\ 0.0669\\ 0.0669\\ 0.073\\ 0.074\\ 0.078\\ 0.0689\\ 0.0688\\ 0.0689\\ 0.0688\\ 0.068$	$\begin{array}{l} 132 \\ 132 \\ 132 \\ 123 \\$	๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛

· •

.

(Fortsetzung)

۰.

E 3	ы iл	2 Q	SIG	SIGF
 {GeV]	[GeV]	(GeV)	[µb∕sr GeV]	(X)
22222022222222222222222222222222222222	1.250 1.240 1.240 1.201 1.180 1.160 1.160 1.160 1.073 1.073 1.073 1.075 1.075 1.075 0.955 0.955 0.955 0.957 0.956 0.957 0.957 0.957 0.956 0.957 0.957 0.957 0.956 0.956 0.957 0.957 0.956 0.957 0.957 0.956 0.956 0.957 0.957 0.957 0.956 0.957 0.957 0.957 0.957 0.956 0.9575 0.9575 0.957 0.957 0.957 0.957 0.957 0.957 0.957 0.957	0 142 0 148 0 1523 0 1552 0 1552 0 0 1572 0 0 1572 0 0 1572 0 0 1572 0 0 1175 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	258.165 287130 282868 281518 286098 286098 286098 286097 27887 332673 332673 332673 400.989 511299 519.997 633866 568.906 46227 2889 568.906 46227 289 568.906 4675 4.967 5.9675 5.9675 5.9755 5.9755 5.9755 5.97555 5.975555555555	3 3 3 3 3 3 3 3 3 3 3 3 3 3

Tabelle 3.15 ²²Al E₄ = 3.08 (Ge∪) 0 = 9.0°

E 3	ы In	c Q	SIG	SIGF
(GeV)	(GeV)	(GeU)	(µb∕sr GeV)	(X)
102252013151203252553333390195749325555835577282558893559802552013151203528283838 022520131512035225383339019544935555835558355772825588935598025520131512035228283838 022520131512035228283890195449355558355583557728255889355980255201315112032828283838	$\begin{array}{c} 2 \ 178 \\ 2 \ 178 \\ 2 \ 158 \\ 2 \ 158 \\ 2 \ 164 \ 164 \\ 2 \ 164 \ 164 \\ 2 \ 164 \ 164 \ 164 \ 164 \ 164 \ 164 \ 164 \ 164 \ 164 \ 164 \ 164 \ 164 \ 164 \ 164 \ 164 \ 164 \ 164 \ 1$	$\begin{array}{c} 0.076\\ 0.082\\ 0.082\\ 0.082\\ 0.082\\ 0.093\\ 0.093\\ 0.093\\ 0.093\\ 0.097\\ 0.093\\ 0.097\\ 0.102\\ 0.$	64,655,642,222,231,225,232,255,655,11,21,125,222,222,225,257,233,44,655,655,272,272,286,233,11,255,242,234,255,255,257,257,257,257,257,257,257,257	21025545455554758448001009001108245900001200000000000000000000000000000000

(Fortsetzung)

· · · · ·

E B (Geul)	H IN (GeU)	2 Q (GeU)	SIG (ub/sr GeU)	SIGF
2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	1 405 1 388 1 370 1 370 1 374 1 334 1 278 1 278 1 278 1 278 1 279 1 278 1 279 1	0 182 0 184 0 186 0 189 0 191 0 193 0 195 0 195 0 195 0 203 0 203 0 205 0 205 0 205 0 205 0 205 0 210 0 212 0 205 0 212 0 212 0 214 0 218 0 220 0 214 0 218 0 220 0 212 0 222 0 223 0 225 0 225	117.306 117.306 127.859 128.029 128.029 128.029 128.029 128.029 128.57 164.857 164.857 180.360 181.721 180.360 181.721 182.645 187.645 189.482 191.883 205.645 189.482 191.883 211.229 494.915 369.289 363.121 284.916 113.805 366.728 294.916 113.805 366.728 294.916 113.805 366.728 294.916 113.805 366.728 294.916 113.805 366.728 20.080 0.160	33777542110098000875333473409700005 247200005 247200005

Tabelle 3.16 23 Al E, = 3.5 (GeV) θ = 9.0°

E 3	ы in	2	SIG	SIGF
(GeV)	[GeV]	(GeV)	(µb∕sr GeV)	(<i>X</i>)
00000000000000111111111111111111111111	22222222222222222222222222222222222222	0 058 0 052 0 052 0 055 0 012 0 112 0 112 0 112 0 112 0 112 0 112 0 112 0 1155 0 11	240 4255 426 426 427 427 427 427 427 427 427 427 427 427	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

•

(Fortsetzung)

i .

E 3	ы in	Ż Q	516	SIGF
 (GeV)	(GeV)	(GeV)	[µb∕sr GeV]	(X)
៱៱៱៱៱៱៱៱៱៱៱៱៱៱៱៱៱៱៱៱៱៱៱៱៱៱៱៱៱៱៱៱៱៱៱៱៱៱	1 832 1 832 1 832 1 832 1 832 1 832 1 832 1 832 1 275 1 275 2	0.178 m 38 k 0 92 f 36 80 0 20 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	18:63563825555225723755820758217277517837775193520933182955918758161282532821718555532211015511282555532	122222222224444444448898907755634201008019019786660107722531878 187788797879442232248448898907755634201008019019786600107722531878 186606

E	ы	2 0	SIG	SIGF
(GeV)	1⊓ (GeU)	(GeV)	(µb∕sr GeV)	(x)
11111111111111111111111111111111111111	198622 1882243 18823439 18823439 12825438 12825438 12825438 12825438 12825438 12825438 12825438 12825438 12825438 12825438 12825438 12825438 12825438 12825438 12825438 12825438 12825438 1282543 128254 128555 128555 128555 1285555 12855555 128555555 1285555555 1285555555	C 282952855188418457482749073066394539652885788578851784075558518449485296 282952853333341845748274907306694474459679575555555555555555555555555	2,548 2,548	араалалалалалалалалалаларынын аларылалалалалалалалалалалалалалалалалал

• •

AHR72	H Ahrenhaevel, H J Weber
	Springer Tracts in Modern Physics 65 (1972)
	1 Albracht
1200	Phile Paul Latt 18 1014 (1002)
	inguineo metti ing, iorritimuk y
ALD72	J C Alder, F W Brasse, E. Chazelas, W Fehrenbach,
	W Flauger, K. H. Frank. E. Ganssauge, J. Gayler,
	W Krechlok, V Korbel, J. May, M Merkwitz,
	P D. Zimmermann
	Nucl. Phys. B 48, 487 (1972)
ARM72	T. A. Anmstrong, W. R. Hogg, G. M. Lewis, A. R. Robertson,
	G. R. Brookes, A. S. Clough, J. H. Freeland, W. Galbraith,
	A. F. King, W. R. Rawlinson, N. R. S. Tait, J. C. Thompson,
	D. W. L. Tolfree
	Phys Rev. Lett B 34, 535 (1921)
	Phys. Rev. D 5, 1640 (1872)
	Nucl Phys B 41, 445 (1972)
AND72	D E Andrews
	Thesis, Carnell University 1972
ATH25	W B Atwood, G B West
	Phys Rev. D 7. 773 (1973)
AT) 75	L B Otward
FIN/J	
	mesis, standro university (1975)
BAR58	W Bartel et al.
	Phus weit 26.6 148(1968)

- BAR21 H. Bantel, F. H. Büssen, H. R. Dix, R. Felst, D. Hanms, H. Krehbiehl, P. E. Kuhlmann, J. HcElroy, J. Meyer, G. Weber Phys. Lett. 35 B. 181 (1921)
- BAT72 K Bätzner, U. Beck, K H Becks, C. Benger, J Drees,
 G Knop, M. Leenen, K Moser, C. Nietzel, E Schlösser,
 H. E. Stien
 Phys. Lett. 39 B, 575 (1972)
- BENZS A. Benvenuti, D. Chine, W. T. Ford, R. Imlay, T. Y. Ling, A. K. Hann, F. Hessing, D. D. Reeder, C. Rubbia, R. Stefanski, L. Sulak Phys. Rev. Lett. 34, 592 (1925)
- BER72 J Bernabeu Nucl Phys B 49, 186 (1972)
- BJD65 J. D. Bjorken, J. D. Halecka Ann of Phys. 38, 35 (1966)
- BJ069 J. D. Bjorken Phys. Rev. 179, 1547 (1969).
- BL020 E. D. Bloom, F. J. Gilman Phys. Rev. Lett. 25, 1140 (1920)
- BLO71 E. D. Bloom, F. J. Gilman Phys. Rev. D 4, 2931 (1971)
- BLO24 E.D.Bloom

Proceedings of the Sixth International Symposium on Electron and Photon Interactions at High Energies, p. 227 (North-Holland Publ. Comp., Amsterdam 1974.)

· •

- BOC75 E Böckling Staatsexamensarbeit, Freiburg (1975)
- BOD72 A Bodek Thesis, MIT 1972
- BOD73 A Bodek, M. Breidenbach, D. L. Dubin, J. E. Elias, J. I. Friedman, H. H. Kendall, J. S. Poucher, E. M. Riordan, M. R. Sogard, D. H. Coward Phys. Rev. Lett. 30, 2901 (1973).

A Bodek Phys Rev. D 8, 2331 (1973).

- BRA6B F. W. Brasse, J. Engler, E. Ganssauge, M. Schweitzer, Nouvo Cim. X, 55 A, 679 (1968 DESY-Report DESY 67/34 (1967)
- BRAZZ F H Brasse, E Chazelas, H Fenrenbach, K H Frank, E Ganssauge, J Gayler, V Korbel, J May, M MerkHitz, V Rittenberg, H R Rubinstein Nucl. Phys. B 39, 421 (1972)
- CAN72 T Canzler Diplomarbeit, Hamburg 1972
- DILZS M Dillig, M. G Huber 'Mesonic Effects in Nuclear Structure', ed K Bleuler et al., B.I. Wissenschaftsverlag (1975)
- DOL57 R Dolen, D. Hann, C. Schmid Phys. Rev. Lett. 19, 402 (1967)
- DOL68 R Dolen, D. Horn, C Schmid Phys. Rev. 166, 1268 (1968)
- DRE64 S D Drell, J. D. Halecka Ann. Phys. 28, 18 (1964)

• ۱

- ELTEZ L R. B Elton, A. Swift Nucl. Phys. A 94, 52 (1967)
- FEL73 R Feist DESY-Report DESY 73/56 (1973)
- FESZS K. Fesefeldt Diplomarbeit, Hamburg 19ZS
- FDX24 D J Fox, C Chang, K H Dhen, A Kotlewski, P F Kunz L. N. Hand, S Herb, S C Loken, A Russell, Y Watanabe W. Vernon, M Strovink Phys Rev Lett. 33, 1504 (1924)
- FRIZZ J. I. Friedman Acta Phys. Pol. B B, 685 (1927)
- GAL69 S. Gaister, G. Hartwig, H. Klein, J. Moritz, K. H. Schmidt, W. Schmidt-Parzefal, H. Schopper, D. Wegener Nucl. Instr. Meth. 26, 337 (1969).
- GAL71 S. Galster, H. Klein, J. Moritz, K. H. Schmidt,D. Wegener, J. Bleckwenn Nucl. Phys. B 32, 221 (1921)
- GAL72 S. Galster, G. Harthig, H. Klein, J. Moritz, K. H. Schmidt, W. Schmidt-Parzefal, D. Hegener, J. Bleckwenn Phys. Rev. D 5, 519 (1972)
- GRE26 A. M. Green Rep. Progress Phys. 39, 1109 (1926)
- GR078 P. Grosse-Wiesmann Diplomarbeit, Freiburg (1978)
- HANG3 L. N Hand Phys. Rev 129, 1834 (1963)

- 127 -

- HAR2E S. Hartwig, F. H. Heimlich, G. Huber, E. Rössle, J. Bleckwenn, M. Köbberling, J. Monitz, K. H. Schmidt, D. Wegener, D.Zeller, P. David, H. Mommsen Lett. Nouvo Cim. 12, 30 (1925) Nouvo Cim. 15, 429 (1926)
- HAR29 S. Hartwig, F. H. Heimlich, G. Huber, E. Rössle, J. Bleckwenn, M. Köbberling, J. Moritz, K. H. Schmidt, D. Wegener, D.Zeiler Phys. lett. B2 B, 297 (1579)
- HEI73 F H Heimlich Dissertation, Freiburg (1973) DESY Interner Bericht F23-73/1

•

~

- HEI79 F H Heimlich, M Köbberling, J Monitz, K H. Schmidt,
 D Wegener, D Zeller, J K. Bienlein, J Bleckwenn,
 H Dinter
 Nucl Phys 4 231 509 (1974)
- HUB25 G. Huben Dissentation, Freiburg (1925)
- HUB75 G Huber et al DESY Propasal 141 (1976)
- JAN66 T Janssen Phys Rev 142, 922 (1966).
- JON77 Fun die Berechnung und Überprufung der verwendeten Impulsverteilungen danke ich G. G. Jonsson, Universität Lund (Schweden)

KEN22 H & Kendali Proceedings of the International Symposium on Elektron and Photon Interactions at High Energies, 1971 [Cornell University Press, Ithaca, New York, 1972] K0873 M Köbberling Dissertation, Karlsruhe (1923) DESY Interner Bericht F23-73/3 M Köbberling, J Moritz, K. H. Schmidt, D. Wegener, K0824 D Zeller, J Bleckwenn, F. H. Heimlich Nucl. Phys. B 82, 201 (1924) Kernforschungszenirum Karlsruhe KFK 1822 (1973) KOL72 W. D. Kollmann Diplomarbeit, Hamburg 1972 KRAZB G. Kramer, J. D. Sullivan in Electromagnetic Interactions of Hadrons', Vol. II, New York (1978) MEUS2 K W McUou, L van Houe Phus Rev 125, 1034 (1962) MES72 A. Messiah, Quantum Mechanics, [North-Holland Publ. Comp., Amsterdam 1972] MIL21 G Miller Thesis, Stanford 1971, SLAC No. 129 MIL22 G. Miller, E. D. Bloom, G. Buschhorn, D. H. Coward, H. DeStaebler, J. Drees. C. L. Jordan, E. W. Mo. R. E. Taylon, J. I. Friedman, G. C. Hantmann, H. W. Kendall, R. Verdier Phys. Rev D 5, 528 (1972.)

· .

MONES E. J. Moniz Phys Rev 184, 1154 (1969) MON71 E J Moniz, I Sick, R R. Whitney, J. R. Ficenec, R D Kephart, W. P Trouer Phys Rev Lett 26, 445 (1921) HOR22 J. Moritz, K. H. Schmidt, D. Hegener, J. Bleckwenn, E. Engels Jr Nucl Phys B 41, 336 (1972) MOT69 L W Mo, Y S Tsa: Rev Mod Phys 41, 205 (1969) RITZ1 U Rittenberg, H. R. Rubinstein Phys. Lett. 35 8, 50 (1971) ROYZS P Rov Theory of Lepton-Hadron Processes at High Energies (Clarendon Press, Oxford 1975) STAP1 K. C. Stanfield, C. R. Canizares, W. L. Faissler, F. M. Pipkin Phys Rev C 3, 1448 (1921) STEZS - S Stein, W B. Atwood, E. D. Bloom, R. L. A. Cottrell, H. DeStaebler, C. L. Jordan, H. G. Piel, C. Y. Prescott, R Siemann, R. E Taylor Phys Rev D 12, 1884 (1975) TIB63 G. Tibell, O. Sundberg, P. U. Renberg Ank Fys 25, 433 (1963)

¢ .

TIT72 Yu. I. Titov, E. V. Stepula, N. G. Afanasev, R. V. Akhmerov, S. A. Byvalin, A. M. Pilipenko, N. F. Severin, E. M. Smelov, L. D. Yaroshevskii Sov. Jour. Nucl. Phys. 11, 145 (1920)

Sov. Jour Nucl. Phys. 13, 660 (1921) Sov. Jour Nucl. Phys. 15, 361 (1922)

HES72 JB Hest

Ann Phys 24, 464 (1922)

ZEL23 D. Zeiler

Dissentation, Karlsruhe 1973

ZEL28 D Zeller

private Mitteilung, Marz 1978

• •

Uerzeic/	onis der Tabel	len		Se
Tap 2 1	Zusammenstell	ung verschiedener S	Skalenverieblen,	2
	Skalenfunktio	nen und Summennegel	.n	
Tab 2.2	Zusammenfassu	ing der Anpassungspa	irameter für die	2
	Panametrisier	ungen in Tab 2.1		
Тар 3 1	Liste der ana	lysierten Spektren,	der Targeleigen-	2
	schaften und	der kinematischen F	arameler	
Teb 3.2	Die wichtigst	en Eigenschaften vo	on Spektrometer I	1
Tap 3 3	Die wichtigst	er Eigenschaften vo	on Spektrometer II	ļ
Tab.3.4	Werte zur hor	mierung der Streusp	ektren an den	:
	verschiedenen	.Kernen (siehe Form	ael 3.10	
Tab 3.5	- 3 17 Tabelle	n der experimentell	en zweifach	
	differentiell	er Wirkungsquerschr	litte	
Tabelle	Kenn	Primänenengie [GeV]	Streuwinkel (Grad)	
Tab 3 5 Tab 3 6	c	2 05	12	9
Tap 3.7		3 36	12	
Tab.3.8 Tab.3.9		3 08	15	
Tab.3.10	I	3 08	13	
Tab 3 11 Tab 3 12		3 50	13	
Teb 3 13	1	3 40	22	
Tab 3 19 Tab 3 19	Al	268	9	1
Tab 3 16		3.50	ě	
Tab 3 12	_	2.68	18	
_a⊢ ⊟ 1	Peremeter for	die Berechnung der	Impulsuosteilungen	

Tab D 1 Systematischer Fehler der Analyse

95

Seile

4

4

11

17

27

35

34

39

40

- Abb.2.2 Feynman-Graph für die inklusive Elektron-Nukleonstreuung. Gebräuchliche Lorentzinvarianten
- Abb 2-3 Feynman-Graph für die Elektron-Kernstreuung in Stossnaherung und Erlauterung der kinematischen Grössen
- Abb 2.4 Vergleich der Wirkungsquerschnitte für Elektron-Protonstreuung aus Experimenten und aus der Interpolation der Strukturfunktionen in Anhang C
- Abb 2 5 Lage der Testspektren aus Abb 2 9 in der Kinema- 18 tischen Ebene
- Abb 3-1 Lage der analysierten Spektren in der kinematischen 26. Ebene
- Abb.3-2 Experimenteller Aufbau des Spektrometer I
- Abb.3.3 Experimenteller Aufbau des Spektrometer II 29
- Abb 4-1 Dreidimensionale Darstellung der Strukturfunktionen für quasielastische Elektron - Kernstreuung an ⁴Li in Abhängigkeit von G² und v
- Abb 4.2 Dreidimensionale Darstellung der Strukturfunktionen für inelastische Elektron-Kernstreuung an ⁴Li in Abhängigkeit von Q² und v
- Abb 4.3 Vergleich der quasielastischen Streuquerschnitte an 41 C für Q²= 0.179 GeV und Q³= 1.332 GeV²
- Abb.4.4 Q²-Abhängigkeit der Halbwertsbreite des quasielastischen peaks für ⁴²C

.

-

Abt 9 5	G ¹ -Abhan	gigke:	it der Ver	schiebung d	tes quasi-		40
	elastisc	heri Ha	ахітить ос	or der freie	n Nukleonen	-	
	masse fü	r ¹² C					
Abb 4.6	Quasiela	stiscf	he Streuur	ng bei Prima	irenergie		41
	E, = 2 7	Geບ≀	und Streur	unkel 0 ± ′	IS" für		
	'Li und	15					
Abbildun	gen 47 -	4 13	Vergleid	h der exper	nmentellen S	Spektren	
	mit den	berech	nneter Wir	kungsquersk	chnitten dies	ser	
	Arbe:1						
1 .7			E, (GeV)	G (Grad)	Q ² quei (GeV ⁴)		44
	0	a	205	12	C 179	B0C74 ;	
		0 0	3 36	12	0 458		
48		-					45
	C	a b	2 68	13	0 342 0 448	HUB75	
		đ	308 340	22	1.115		
45		c	0 10				46
	Al	a b	268 308	0 0	0.121 0.223	HUB75	
		υU	350 268	9 18	0.289 0.617		
4 10)						48
	Be	a	3.0	9.96	0.259	HU876	
	Al		3.0	9.96	0.259	E HUB75	
		Þ	50	9.96	0 697	1 1	
	51	a b	3.C 5 0	9.96 9.96	0.259 0.692	HUB26	
4 11							49
	∟1	 8	2 .5	12	0.258	HE173	
		с С	2.7	13.8 15	0.389 0.453		

•

.
61

+	۲				
		-	135	-	

Seite			Seite
50 19-73 (Abb. B. 1	Impulsverfeilung der Nukleonen in den einzelnen Schalen für ⁶ Li	68
52 1072	ADD.C 1	Vergleich z∺ischen experimentellem BAR71 und berechnetem longitudinalem Wirkungsquerschnitt für W = 1.22 GeV	71
	Abb.C.2	Interpolierte Strukturfunktionen für freie Nukleonen in Abhängigkeit von G ^e und v	74
	А ББ. D. 1	Blockdiagramm des gesamten Rechenprogramms von Annang D	76
54	Арр. Д. 2	Flussdiagramm des Faltungsprogramms zur Berechnung der guasielastischen Strukturfunktionen	80
54	ADD.3	Stützstellen und integrierte Wahrscheinlichkeit der	85
56	Abb. D. 4	Flussdiagramm des Faltungsprogramms zur Berechnung der inelastischen Strukturfunktionen	<u>8</u> £
56	Abb.D.S	Einfluss der Bremsstrahlungseffekte auf die Form der berechneten Spektren	88
58	ADD.D.S	Feynman-Graphen zur Strählungskorrektur	91
58			

4.12			E. (GeV)	B (Grad)	Q _{quel} (GeY ²)		
	С	a b c	2.0 2.5 2.7	15 15 15	0,255 0,390 0,453	281.73	
4.13							
	С	a bodef ghik	3 96 3 97 6 97 3 96 3 96 5 74 7 97 4 92 7 03 9 85 6 02	6.53 8.98 6.53 11.01 8.98 6.53 11.01 8.98 6.53 11.01	0.198 0.367 0.512 0.536 0.751 0.781 0.813 1.110 1.181 1.193	AND72	
Abb.4.14	(A <mark>¶i</mark> ∕A) Abhängigk	für a ceit v	lle analy: on G ² für	sierten ¹² die guasi	C-Spektren elastische	in Streuung.	
Abb.4.15	(A <mark>sų</mark> ∕A) Abbānoiok	fùr a reit u	ile analy: on Q ² für	sierten ⁴² die inela	C-Spektren stische Str	in retung	
Abb.4.15	CA eq. /A3	auf d	en quasie rmiert in	lastischen Abhängigk	Wirkungs- eit von Q ²		
АББ.4.17	für Kohlenstoff xb.4.12 (A <mark>w</mark> /A) auf den quasielastischen Hirkungs- querschnitt normiert in Abhängigkeit von G ² für ⁴ Li, ⁹ Be und ²⁸ Si						
Abb.4.18	(A ^{ind} /A) querschni für ²¹ Al	auf d itt no	len quasie nomiert in	lastischen Abhängigk	Wirkungs- eit von G ^r		
Abb.4.19	Der Mitte Abbildung der Masse	elwert gen 4. Enzahl	: pro Kern 16 - 4.18 A	ine Von (A e in Abhäng	∕A) aus de igkeit von	n	
Abt. 4.20	g(w _n) (Fo	ormel ntegra	4 1) in A ilionsgren	bhängigkei ze ద _ო	t van der		

Danksagung

Die vorliegende Arbeit entstand im Rahmen der Forschungsgruppe F23 am Deutschen Elektronensynchrotron unter der Obhut von Prof. U. Ströhbusch, dem ich für die Ermöglichung und die wohlwollende Unterstützung und Förderung dieser Arbeit sehr danken möchte.

Bei den Mitgliedern der Gruppe, nämlich J. Franz, G. Guzielski, W. Mecklenbrauck, G. Mecklenbrauck, E. Rössle und H. Sindt möchte ich mich für die gute Zusammenarbeit, die Unterstützung und die freundliche Arbeitsatmosphäre bedanken.

Hesentliche Teile des Programmsystems entstanden in Zusammenarbeit mit P. Grosse-Wiesmann, dem dafür mein herzlicher Dank gehört.

Mein ganz besonderer Dank aber gilt G. Huber, dessen unermüdlicher Einsatz, stete Diskussionsbereitschaft und auch tatkräftige Hilfe Wesentlich zum Gelingen dieser Arbeit beigetragen haben.

Diese Arbeit wurde mit Mitteln des Bundesministeriums für Forschung und Technologie unterstützt.

۲

.

\$

¢