Interner Bericht DESY F41 HASYLAB 81/07 Juli 1981

Eigentum der Property of	DESY	Bibliothek library
Zugang: 9. Accessions:	SEP.	1981
Leihfrist: Loan period:	7	Tage days

Photoinduzierte Bildung von negativen Ionen

aus 0_2 , NO, CO und N_2

von

H. Oertel

DESY behält sich alle Rechte für den Fall der Schutzrechtserteilung und für die wirtschaftliche Verwertung der in diesem Bericht enthaltenen Informationen vor.

DESY reserves all rights for commercial use of information included in this report, especially in case of filing application for or grant of patents.

"Die Verantwortung für den Inhalt dieses Internen Berichtes liegt ausschließlich beim Verfasser" Photoinduzierte Bildung von negativen Ionen

aus 02, NO, CO und N2

Diese Arbeit ist teilweise veröffentlicht in Chemical Physics, Vol 46 (1980), 251-262

-2- .

Inaugural-Dissertation zur Erlangung der Doktorwürde der Freien Universität Berlin Fachbereich Physik

> vorgelegt von Heinrich Oertel aus Helmstedt

Gutachter: Prof.Dr. H. Baumgärtel
 Cutachter: Prof.Dr. I. Hertel
 Tag der letzten mündlichen Prüfung: 26. Juni 1981

1981

- 3 -

Inhaltsverzeichnis

1. Einfuhrung und Problemstellung	4	
 begative Ionen in der Gasphase: Bildungsweise und Stabilität 	6	
	°	
2.1. Atomare negative lonen	ъ	
2.2. Holekulare negative Jonen	16	
3. Experimenteller Teil	23	
3.1. Die Apparatur	28	
3.2 Die elektrischen Potentiale im		
Reaktionsraum	32	
3.3. Stoßprozesse im Weaktionsraum	40	
4. Meßergebnisse und ihre Diskussion	47	
4.1. 0 ₂	48	
4.2. NO	58	
4.3. CO	67	
4.4. N ₂	74	
5. Zusammen fassung	115	
6. Literaturverzeichnis	117	
7. Anhang	122	
7.1. Eigenschaften von N,N, N_2 und N_2	122	
7.2. Stoßprozesse	138	

1. Einleitung und Problemstellung

- 4

Die zweiatomigen atmosphärischen Gase 0₂, NO, CO und N₂ werden seit langem experimentell und theoretisch untersucht. Bis vor einigen Jahren waren Experimente mit kontinuierlichen Lichtquellen auf den Energiebereich bis maximal etwa 18 eV beschränkt. ¹¹it der Synchrotronstrahlung wurde eine Lichtquelle mit kontinuierlichem Spektrum verfügbar, die Experimente mit Anregungsenergien bis weit über 30 eV hinaus ermöglicht. Damit wurde die Untersuchung der Eigenschaften von Ionen zweiatomiger Moleküle bis zu dieser Anregungsenergie zugänglich.

Das vollständige Zerfallsmuster nach Photoanregung (AB + hv(hv > IP(AB)) umfaßt Ionisation (AB⁺), dissoziative Ionisation (A + B⁺/A⁺ + B), Ionenpaarbildung (A⁺ + B⁻/A⁻ + B⁺) und Fluoreszenz neutraler (A⁺ + B⁺/A⁺ + A + hv) oder geladener Fragmente (A + B⁺/B⁺ + B⁺ + hv). Besonders die Untersuchung der Ionenpaarbildung erfordert wegen des geringen Wirkungsquerschnittes hohe Anregungsintensitäten und ein leistungsfähiges Nachweissystem.

Diese Bedingungen konnten im HASYLAB mit der Synchrotronstrahlung des Speicherringes DORIS als Lichtquelle und einem Quadrupolmassenspektrometer als Detektor für positive und negative Ionen erfüllt werden.

Das Verständnis der Bildungsprozesse negativer Ionen in der Gasphase und die Rolle, die negative Ionen in den verschiedenen chemischen Reaktionen spielen, ist von grundsätzlicher Bedeutung für die Beschreibung der Natur von Strahlungsphänomenen, für die Bildungsprozesse von Ionen und Elektronen in der Ionosphäre, für - 5 -

die Produktion von Ionen in Flammen und Plasmen und für die Benutzung negativer Ionen bei der qualitativen und quantitativen Analyse von Substanzen mit Hilfe massenspektrometrischer Techniken (1).

Das Ziel dieser Arbeit war es deshalb, die Bildung negativer Ionen nach Photoanregung von 0_2 , H0, C0 und N_2 zu untersuchen und die Bildungsmechanismen aufzuklären. Negative Ionen in der Gasphase: Bildungsweise und Stabilität

- 6 -

Im folgenden Abschnitt werden die Bildungsmechanismen für negative Ionen von Atomen und zweiatomigen Molekülen zusammengefaßt. Für negative Ionen von mehratomigen Molekülen werden einige Beispiele gegeben.

Besondere Berücksichtigung findet die Diskussion der Lebensdauern von negativen Ionen.

2.1. Atomare negative Ionen

Ein stabiles atomares negatives Ion kann gebildet werden, venn das korrespondierende neutrale Atom eine positive Elektronenaffinität (EA) besitzt. Atome mit negativer EA können keine thermodynamisch stabilen Anionen bilden.

Ls gibt eine Vielzahl stabiler negativer atomarer fonen im Grundzustand. Viele Elemente dagegen bilden stabile oder metastabile negative Ionen nur in angeregten Zuständen. Die entsprechenden neutralen Atome im Grundzustand besitzen zwar eine negative EA, dagegen wird einem angeregten neutralen Zustand eine positive EA zugeordnet (2, S.573). Stabile negative Ionen im Grundzustand bilden alle Elemente der Hauptgruppen des Periodensystems mit Ausnahme der Edelgase, der Erdalkaliatome und Stickstoff. Die Nebengruppenelemente bilden bis auf wenige Ausnahmen (Nebengruppe IIa, Sc, Mn und Hf) stabile negative Ionen im Grundzustand. - 7 -

Für eine ausführliche Darstellung sei auf die Vielzahl von Standardwerken und Übersichtsartikel hingewiesen. Eine Auswahl wird im Literaturverzeichnis angegeben (1-7).

Für die Frage, ob ein zusätzliches Elektron tatsächlich an ein neutrales Atom gebunden werden kann, ist entscheidend, vie vollständig die Elektronenhülle die positive Ladung des Kerns nach außen hin abschirmt. Bei Atomen kann außerhalb des Bußersten besetzten Orbitals ein für ein zusätzliches Elektron anziehendes Kraftfeld bestehen, dessen Stärke exponentiell abnimmt. (Polarisationseffekte bewirken eine Abnahme proportional zur fünften Potenz von r) (3, S.3). Wenn man zusätzlich das Pauli-Prinzip in Betracht zieht, das die Besetzung eines Zustandes mit mehr als zwei Elektronen (mit entgegengesetztem Spin) verbietet, und die Tatsache, daß wegen der geringen Reichweite des Kraftfeldes ein zusätzliches Elektron nur in einer begrenzten Anzahl stationärer Zustände gebunden wird, kann man bereits abschätzen, ob durch Hinzufügen eines Elektrons zu einem Grundzustandsatom stabile negative Ionen gebildet werden.

So beobachtet man für die Elemente der ersten Hauptgruppe stabile negative Ionen, weil die äußere s-Schale nur ein Elektron enthält. Die Edelgase und die Elemente der zweiten Hauptgruppe ebenso wie die der Nebengruppe IIa bilden keine stabilen negativen Ionen, weil die äußere s-Schale vollkommen besetzt ist, und ein Elektron in der p-Schale bereits zu schwach gebunden ist.

Die Halogene besitzen große EA und bilden stabile negative Ionen, weil die äußerste Schale nahezu vollständig besetzt ist, und die äußeren Elektronen im neutralen Atom am wenigsten effektiv die Kernladung gegenüber dem zusätzlichen Elektron abschirmen.

Für die Elemente der 3. bis 6. Hauptgruppe werden ebenfalls noch stabile negative Ionen beobachtet. (Eine Ausnahme bildet Stickstoff (2)).

Die obigen Aussagen gelten ausschließlich für negative Jonen, bei denen ein Elektron gegenüber dem neutralen Grundzustandsatom gebunden ist. Darüber hinaus gibt es negative Jonen, die durch die Bindung eines Elektrons durch angeregte Atome entstehen. Diese negativen Ionen liegen energetisch teilweise mehrere eV oberhalb des neutralen Grundzustandes. Zu ihnen gehören N⁻ und die negativen Ionen der Edelgase und der Elemente der Hauptgruppe II und der Nebengruppe IIa. Wenn der Zerfall des negativen Ions in den neutralen Grundzustand unter Abgabe eines Elektrons spinverboten ist, bezeichnet man sie als metastabil. Die Lebensdauer dieser negativen Ionen ist lang genug (>10⁻⁶ sec), um sie mit Hilfe eines Massenspektrometers nachweisen zu können.

Für die Bildung negativer atomarer Ionen sind mehrere Prozesse möglich.

Ein Prozeß zur Bildung eines atomaren negativen Ions ist der Einfang eines freien Elektrons durch ein neutrales Atom. Nach dem Elektroneneinfang muß das atomare negative Ion sofort seine Überschußenergie abgeben, um einen stabilen Zustand zu bilden. Diese Überschußenergie, die sich aus der EA und der kinetischen Energie des Elektrons zusammensetzt, kann entweder durch Aussendung eines Photons abgestrahlt werden (<u>radiative attachment</u> <u>process</u>)

- 8 -

$$\Lambda + e^{-} + \Lambda^{-} + \Lambda^{-} + hv$$

- 9 -

oder durch Stoß mit einen dritten Teilchen (<u>third-body-collision</u>) abgegeben werden

$$A + e^{-} + A^{-} *$$

$$A^{-} + X + \Lambda^{-} + X + \text{Energie}$$

$$(X = \text{Elektron, Atom, Molekül, Ion}).$$

Bei der Abgabe der Überschußenergie durch Strahlung beobachtet man ein "radiative attachment continuum" (oder "affinity spectrum") mit einer langwelligen Grenzwellenlänge λ_{σ} = hv/EA. Bei kleinem Druck, wo die Stabilisation durch Stoß wenig wahrscheinlich ist, ist "radiative attachment" ein wichtiger Prozeß. Jedoch ist die Stabilisation durch Abstrahlung nur beim Einfang sehr langsamer Elektronen bedeutsam. Eine Abschätzung für ein Elektron mit einer kinetischen Energie von 10 eV zeigt, daß das Elektron nur 10^{-15} sec im Feld des Atoms verweilt, und die Wahrscheinlichkeit für "radiative stabilisation" (Lebensdauern gegenüber Strahlung liegen bei 10^{-9} bis 10^{-9} sec) ist mit $\simeq 10^{-7}$ pro Stoß sehr gering. Falls für den Elektroneneinfang Bedingungen erfüllt sind, unter denen sogenanntes "orbiting" der Elektronen möglich ist, treten auch wesentlich längere Wechselwirkungszeiten auf. Experimentell wird das "radiative attachment continuum" an Lichtbögen beobachtet.

Der Wirkungsquerschnitt für die Stabilisation eines atomaren negativen Ions durch "third body collision" ist i.A. klein. Um effektiv zu sein, sind für den dritten Stoßpartner Dichten von 10¹⁰ cm⁻³ (für Elektronen) bzw. 10¹⁶ cm⁻³ (für Atome und Moleküle) notwendig (3, S.264ff.).

- 10 -

Auch bei der Wechselwirkung von Elektronen mit Molekülen beobachtet man das Auftreten von atomaren negativen Ionen. in Molekülen kann die Elektronenanlagerung mittels eines vertikalen Überganges (Franck-Condon-Prinzip) zwischen einem neutralen und dem negativen Molekülzustand beschrieben werden. Die Form und die Lage der Potentialkurve des negativen Moleküls relativ zur Potentialkurve des neutralen Moleküls bestimmt den Prozeß, der der Elektronenanlagerung folgt.

Anhand verschiedener Potentialkurvenschemata werden im Folgenden <u>dissoziative Anlagerung</u>, <u>nicht-dissoziative Anlagerung</u> und <u>Ionenpaarbildung</u> (polare Dissoziation) besprochen.

Bei dissoziativer Anlagerung

$$AB + e^- \rightarrow A^+ + B^- + e^- oder A^- + B^+ + e^-$$

wird das stoßende Elektron (kinetische Energie 0 bis ca. 10 eV) eingefangen und das negative Molekülion dissoziiert über eine abstoßende Potentialkurve. In Abbildung 1 sind anhand der Potentialkurven von zweiatomigen Molekülen drei verschiedene Wege gezeigt, wie atomare negative Ionen nach Einfang eines Elektrons gebildet werden.

Abbildung 1: Potentialkurven AB und AB⁻ zur Deutung von dissoziativer und nicht-dissoziativer Elektroncnanlagerung (siehe Text)

Im Fall (a) wird ein Elektron von einem negativen Molekillzustand mit abstoßender Potentialkurve eingefangen. Wegen des FC-Prinzips muß die kinetische Energie des eingefangenen Elektrons mindestens E_1 sein, um die Potentialkurve des AB^- -Zustandes zu erreichen. Die Dissoziationsfragmente besitzen dann relative kinetische Energie vom Betrag $E_1 - X(A - B^-)$. Die Größe $X(A - B^-)$ setzt sich zusammen aus der Differenz der Standardbildungsenthalpien von AB und A + B⁻. Mit der Kenntnis der Dissoziationsenergie des neutralen Moleküls D(A - B), die um den Betrag der EA des Atoms B oberhalb von $D(A - B^-)$ liegt { $D(A - B) = X(A - B^-) + EA(B)$ }, kann man durch Bestimmen der kinetischen Energie der Fragmente A und B⁻ bei der Anregungsenergie E_1 die EA von B bestimmen

 $EA(B) = E_{kin} + D(A - B) - E_1$

Im Fall (b) wird das Elektron von einem negativen Molekülzustand, der eine Potentialkurve mit einem Minimum besitzt, eingefangen. Bei Anregungsenergien zwischen E_3 und E_1 wird der negative Zustand oberhalb der Dissoziationsasymptote angeregt, die Fragmente treten mit relativer kinetischer Energie zwischen 0 und E_5 auf. Bei Anregungsenergien zwischen E_2 und E_3 wird ein schwingungsangeregtes AB-Holekül gebildet. Dieses zerfällt jedoch über den inversen Prozeß (Autodetachment) in ein schwingungsangeregtes AB-Molekül und ein Elektron.

- 12 -

- 13 -

Im Fall (c) besitzt das Molekül AB eine positive EA; das Potentialkurvenminimum von AB⁻ liegt unter dem von AB. Diesen Fall bezeichnet man als <u>nicht-dissoziative Elektronenanlagerung</u>. Da das Elektron energetisch unterhalb der Dissoziation des AB⁻-Zustandes eingefangen wird, kann Autodetachment stattfinden oder nach Abgabe der Überschußenergie durch Stoß ein stabiles negatives Molekül gebildet werden.

Bei Abgabe der Energie durch Stoß kann man stabile negative Moleküle beobachten. Wenn τ die mittlere Lebensdauer gegenüber Abgabe der Überschußenergie durch Stoß ist, und θ die Lebensdauer gegenüber Autodetachment, so ist die Wahrscheinlichkeit, daß die AB⁻-Moleküle ihre Energie abgeben bevor Autodetachment stattfindet, gegeben durch

 $\rho = \Theta/(\Theta + \tau).$

Da typische Werte für θ im Bereich $10^{-12} - 10^{-15}$ sec liegen und τ nur für große Dichten (100 Torr und größer) Werte in der gleichen Größenordnung wie θ erreicht, liegt p für Drucke im Torr-Bereich in der Größenordnung von $10^{-6} - 10^{-9}$.

Bei der <u>Ionenpaarbildung</u> regt das stoßende Elektron (kinetische Energie 5 - 25 eV) das neutrale Molekül in einen nicht stabilen Zustand an, der in ein positives und ein negatives Ion dissoziiert.

$$/B + e^- + A^+ + B^- + e^-$$

Ionenpaarbildung wird auch beobachtet, wenn die Anregungsenergie nicht durch ein Elektron, sondern durch ein Photon zugeführt wird (z.B. 8,9).

$$AB + hv \rightarrow A^{+} + B^{-}$$

Abbildung 2 zeigt schematisch den Prozeß der Tonenpaarbildung. Verläuft die Potentialkurve des Ionenpaarzustandes wie in Fall (a), wird bei der Anregungsenergie E_1 das Ionenpaar $A^+ + B^$ beobachtet. Aus der Kenntnis der kinetischen Energie der Bruchstücke kann man die EA von B bestimmen.

Abbildung 2: Potentialkurven zur Deutung der Ionenpaarbildung (sjehe Text)

- 14 -

- 15 -

In vielen Fällen hat die Potentialkurve des Ionenpaarzustandes die in Fall (b) dargestellte Form.

Die Wahrscheinlichkeit für einen direkten Übergang aus dem AB-Grundzustand in ein Kontinuumsniveau (oberhalb der Dissoziationsenergie) des Ionenpaarzustandes ist im allgemeinen klein. Wahrscheinlicher sind direkte Übergänge in diskrete hochangeregte Neutralzustände von AB, die mit dem Ionenpaarkontinuum wechselwirken und zu Prädissoziation in $A^{+} + B^{-}$ führen. 2.2. Negative Molekülionen

Für negative Molekülionen liegt eine große Anzahl von Experimenten und theoretischen Daten vor.

Weil bei den meisten Molekülen im Grundzustand die Kernladung vollständiger von der Elektronenhülle abgeschirmt wird als es bei Atomen der Fall ist, besitzen die wenigsten Moleküle eine positive EA. Man beobachtet also bei nur sehr wenigen Molekülen stabile negative Ionen. Beispielsweise ist die EA von NO +24 (+10, -5) meV (10). Das Vibrationsniveau v = 0 des niedrigsten negativen Ionenzustandes NO⁻(X³E⁻) liegt unterhalb des Vibrationsniveaus des neutralen Zustandes und ist deshalb gegenüber Autodetachment stabil. Bei 0₂ mit einer EA von +0.440 ± 0.008 eV (11) liegen die ersten drei Vibrationsniveaus von 0₂⁻(X³E_g⁻) unterhalb des Schwingungsgrundzustandes von 0₂(X³E_g⁻) und sind gegen Autodetachment stabil.

Radikale und Moleküle in angeregten Zuständen können ebenfalls langlebige negative Molekülionen bilden. Die überwiegende Anzahl der beobachteten negativen Molekülzustände in der Gasphase ist kurzlebig, wobei die Lebensdauer zwischen 10^{-14} sec und einigen hundert µsec schwankt (6; 4, 5.502).

Die sehr kurzlebigen negativen Ionen werden gebildet durch die Wechselwirkung eines einfallenden Elektrons mit einem Molekül, bei der das Elektron für kurze Zeit in der Nähe des Moleküls gebunden ist. Dieser Komplex wird auch "compound state", "temporary negative ion" oder "resonance" genannt. Die Informationen über "compound states" stammen hauptsächlich aus Elektronen-Transmissionsexperimenten und Untersuchungen von elastischen und unelastischen Streuprozessen.

- 16 -

- 17 -

Die "compound states" werden charakterisiert durch den Neutral-Zustand des Moleküls, in dem das Elektron gebunden wird. Wird ein Elektron von einem Molekül im Grundzustand eingefangen, spricht man im weitesten Sinn von Shape Resonanzen. Diese Resonanzen liegen 0 - 4 eV oberhalb des neutralen Zustandes. Den Zustand des neutralen Moleküls bezeichnet man als "parent"-Zustand der Resonanz (Tabelle 1).

Bei Shape Resonanzen wirken Zentrifugal, Polarisations- und Austausch-Kräfte zusammen und bilden ein Potential mit einer durchdringbaren Barriere für das zusätzliche Elektron. Deshalb ist die Form (= Shape) des Potentials verantwortlich dafür, wie stark das zusätzliche Elektron gebunden wird. Die für Shape Resonanzen gefundenen Lebensdauern im 10⁻¹⁵ bis 10⁻¹⁰ sec Bereich hängen von der Form und der Höhe der Barriere ab.

Name		"parent"- Zustand	energetische Lage gegnüber dem "parent"- Zustand	charakteristische Merkmale	Beispiele
Single-particle-sh	ape-Resonance	Elektronischer Grundzustand	oberhalb (0-4 eV)	Schwingungsanregung, dissoziative Anlage= rung bei niedriger Elektronenenergie	N ₂ (2.3 eV) H ₂ (2-4 eV)
Core-excited-	Feshbach-R. (Typ I oder closed-channel)	meist Rydberg . angeregte Zu≡ stände	unterhalb (o.5 eV)	scharfe Strukturen viele Zerfallskanäle, Banden sind mit "grandparent"-Zustand korteliert	N ₂ (11,48 eV H ₂ (Banden . "a" bis "
Core-excited-	Shape-R. (Typ II oder open-channel)	Rydberg- oder Valenz-angeregte Zustände	oberhalb (O-2 eV)	dissoziative Anlagerung	N ₂ (9-11 eV) H ₂ (8-12 eV)
Doubly-core-excite	d-Feshbach-R.	doppelt angeregte Rydberg- und Valenz-Zustände	unterhalb	oberhalb des Ionisationspotentials, 2-Elektronen-Zerfall	He(57.16 eV
	1 - 9° - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 -		ohorhal h	:	N_(22 eV)

Tabelle

Bisher gemessene Lebensdauern von core-excited-Feshbach Resonanzen des N₂ liegen in der Größenordnung $10^{-12} - 10^{-11}$ sec, weil der Zerfall in den "parent"-Zustand energetisch nicht möglich ist. Der Zerfall findet in niedriger liegende neutrale Zustände statt, die für einen Übergang erlaubte Symmetrie und Spin besitzen. Es ist jedoch nicht auszuschließen, daß längerlebige core-excited-Feshbach Resonanzen existieren, wenn es unterhalb des "parent"-Zustandes keine für einen Zerfall geeigneten neutralen Zustände gibt.

Resonanzzustände bei höheren Energien wurden für N_2 im Energiebereich um 22 eV gefunden (13). Sie werden als doubly-core-excited-Resonanzen gedeutet. Eine kürzlich veröffentlichte Arbeit (14) ordnet Strukturen im Spektrum gestreuter Elektronen an N_2 bei 400 eV einem Resonanzzustand zu, dessen "Parent"-Zustand ein inner-shell-excited Zustand von N_2 ist.

bie wichtigen Bildungsprozesse für stabile oder langlebige negative Molekülionen sind die gleichen wie für atomare negative Ionen: "radiative attachment", dissoziative Anlagerung, nichtdissoziative Elektronenanlagerung mit nachfolgendem Stoß (three-body-attachment) und Stöße mit Ladungsaustausch zwischen einem Molekül und einem weiteren Molekül oder Atom, das angeregt ist oder sich im Grundzustand befindet (z.B. 15,16).

Bei Anlagerung eines freien Elektrons muß die Überschußenergie durch Strahlung oder durch einen weiteren Stoß abgegeben werden. Hochangeregte Atome oder Moleküle, in denen das Elektron nur sehr schwach (bis 100 meV) gebunden ist, dienen als Quelle gebundener Elektronen. Bei einem Stoß zwischen hochangeregten Atomen oder Molekülen mit Molekülen, die eine positive EA besitzen, wird der hochangeregte Stoßpartner ionisiert und der andere Stoßpartner fängt das "quasi"-gebundene Elektron ein.

$$A^{**} + B \rightarrow A^{\dagger} + B^{-}(B + e^{-})$$

Das negative Molekülion B⁻ liegt dann in einem stabilen, schwingungsangeregten Zustand vor. Bekannte Beispiele sind Stöße zwischen SF₆ und Edelgasatomen in nf-Rydbergzuständen mit hoher Hauptquántenzahl n (20 < n < 100) (16).

Bei Anlagerung langsamer e⁻ an NO beobachtet Loeb (17) die Erzeugung von NO⁻ über die Bildung eines NO-Dimers.

$$NO + NO \rightarrow (NO)_2$$
 $(NO)_2 + e^- \rightarrow NO^- + NO^-$

Bradbury und Mitarbeiter (18,19) weisen H_20^- bei Anlagerung von sehr langsamen e⁻ nach. Offensichtlich ist ein Drei-Körper-Stoß für die Bildung des langlebigen H_20^- verantwortlich. Bei einer größeren Anzahl von Nachfolgeexperimenten wurde H_20^- nicht nachgewiesen. Christophorou (4, S.471) nennt dieses Problem ungelöst.

Stabile N₂O⁻ werden gebildet über Ionen-Molekül-Reaktionen wie O⁻ + N₂O + N₂O⁻ + O (20) und Drei-Körper-Stöße wie z.B. N₂O + N₂O + e⁻ + N₂O⁻ + N₂O + E (21) und N₂O + N₂ + e⁻ + N₂O⁻ + N₂ + E (22). - 21 -

Weil von Sauerstoff stabile negative Molekülionen existieren, wurden zahlreiche Untersuchungen mit verschiedenen Stoßpartnern durchgeführt. Die Wirkungsquerschnitte für three-body-attachment hängt von der relativen Energie der stoßenden Teilchen und von der Natur des "dritten" Stoßpartners ab. Als Maß wird ein three-body-attachment-Koeffizient k angegeben mit der Dimension cm⁶/sec. Der Zusammenhang zwischen dem Koeffizient k und dem Wirkungsquerschnitt σ ist

 $\sigma = k \cdot N_{y}(cm^{-3})/v (cm/sec)$

wobei N_{χ} die Dichte des Stoßpartners X (in cm⁻³) und v die relative Geschwindigkeit (in cm/sec) der stoßenden Teilchen ist. Für Sauerstoff liegen typische Werte (für T = 300 K) zwischen =0.03 × 10⁻³⁰ cm⁶/sec (für He) (23) und =35 × 10⁻³⁰ cm⁶/sec (für (CH₃)₂CO) (24). Für N₂ wird k = 0.1 × 10⁻³⁰ cm⁶/sec angegeben (23).

Bei vielatomigen Molekülen (Anzahl der Atome größer als 6) führt die Anlagerung eines Elektrons in Ausnahmefällen zu einem unimolekularen Prozeß zu längerlebigen negativen Ionen.

Die Energie des angelagerten e" kann bei komplexen Molekülen von den zahlreichen Schwingungs- und Rotationsfreiheitsgraden aufgenommen werden. Dies führt zu Lebensdauern bis zu einigen hundert Mikrosekunden (Tabelle 2). Lebensdauern einiger negativer vielatomiger Molekülionen

(siehe Ref 4, 5.501, Table 6.8)

Lebensdauer in µsec

SF ₆	Schwefelhexafluorid	25
C ₆ F ₆	H exafluorbenzol	12
^C 5 ^F 8	Perfluorcyklopenten	50
C ₆ F ₁₀	Perfluorcyklohexen	113
C6 ^F 12	Perfluorcyklohexan	450
C ₇ F ₁₄	Perfluormethylcyklohexan	793
C, H, NO,	Nitrobenzol	40

Dieses Verhalten zeigen vor allem SF_6 , Fluor-Kohlenstoffverbindungen und größere aromatische Kohlenwasserstoffe. Aus der Literatur entnimmt man Werte für die Anlagerungsrate (bei T = 300 K) von Null - eV - e⁻ an SF_6 (4, S.501) von $=3 \times 10^{-7}$ cm³sec⁻¹.

Die Einfangsrate von SF₆ ist für Null – eV – e⁻ besonders hoch. Diese Substanz wurde deshalb erfolgreich zum Vermessen von Threshold PES in Gasen verwendet. Fhotoelektronen mit 0 eV kinetischer Energie werden von SF₆ angelagert und das langlebige SF₆⁻ wird in einem Massenspektrometer nachgewiesen (25,26.27,28). - 23 -

3. Experimenteller Teil

Die Synchrotronstrahlung des Speicherringes DORIS in Hamburg diente als Lichtquelle für die Untersuchung von Photoreaktionen an kleinen Molekülen. Die Strahlung hat ihren Ursprung in den radial beschleunigten, relativistischen Elektronen im Ringbeschleuniger. Ihre kontinuierliche Spektralverteilung, Energieabhängigkeit und weitere Strahlungscharakteristika wie Polarisation und Zeitstruktur wurden ausführlich beschrieben (29).

Abbildung 3 zeigt die schematische Darstellung der experimentellen Anordnung. Eine ausführliche Beschreibung von Monochromator und Toroidspiegel findet man bei Brodmann (30) und Hahn (31).

Abbildung 3: Schematische Darstellung der optischen komponenten bis zur Frobenkammer

Lurch Reflexion bei streifendem Einfall an einem Planspiegel gelangt die Synchrotronstrahlung in die Monochromatorkammer. im gesamten Strahlrohrsystem beträgt der Druck weniger als 1.3×10^{-7} Pa (1 × 10⁻⁹ Torr). Die spektrale Zerlegung des Lichtes erfolgt mit einem "normal incidence"-Honochromator in modifizierter Wadsworth-Montierung (32). Die Dispersionsebene des Konkavgitters steht senkrecht auf der Ebene der Elektronenumlaufbahn. Zur spektralen Zerlegung wurde ein Goldgitter der Firma Bausch & Lomb verwendet mit 1200 Strichen/mm und einem Blaze Maximum bei 600 $\stackrel{\circ}{A}$ (= 20.7 eV). Der Energiebereich mit großer Reflektivität liegt zwischen 10 eV und 30 eV. Der Beitrag von Strahlung zweiter Gitterordnung zwischen 15 eV und 20 eV beträgt 10%. Das Gitter fokussiert die Strahlung auf den Monochromatoraustrittsspalt. Die Spaltweite wurde so gewählt, daß sich eine Auflösung von etwa 1 % ergab. Die monochromatisierte Strahlung wird mit einem Toroidspiegel in die Probenkammer fokussiert. Der Einbau eines neuen Gitterantriebes (33) im Jahre 1979 verbesserte Auflösung und Reproduzierbarkeit.

Die Einstellung der Wellenlänge erfolgt durch Drehung des Gitters. Die Wellenlängeneichung des Monochromators wird durch die massensprektrometrische Messung bekannter Präionisa-Lionsstrukturen von N_2^+ und O_2^+ (34) vorgenommen. Die Genauigkeit der Eichung beträgt ±0.5 % (das entspricht einer Genauigkeit von ±10 meV bei einer Anregungsenergie von 16 eV und ±16 meV bei 20 eV).

- 24 -

- 25 -

Die relative Intensitätsverteilung der Strahlung hinter dem Toroidspiegel (das Primärspektrum) wurde nach Konversion der einfallenden Photonen durch eine Natriumsalizylatschicht (35) in sichtbares Licht mit einem Photomultiplier gemessen.

Die Verteilung im Primärspektrum wird bestimmt durch die spektrale Verteilung der Synchrotronstrahlung, die Reflektivität der Spiegel und des Gitters, die Nachweischarakteristik des Photomultipliers und die Konversionseigenschaft der Natriumsalizylatschicht (Abbildung 4).

Die absolute Intensitätsverteilung der Strahlung in der Reaktionszelle ist nicht gemessen worden. Mit bekannten Daten über Oberflächenverluste an Spiegeln und dem Gitter kann man jedoch eine Abschätzung über den Photonenfluß vornehmen. Ls gehen Werte für die grazing-incidence-Reflektivität von 70% für Spiegel aus Nickelcanigen und für eine normal-incidence-Reflektivität von 10% (36) für die Goldoberfläche des Gitters bei der Wellenlänge von 620 Å ein. Bei einem Strahlstrom von 50 mA erwarten wir im Wellenlängenintervall 620 Å bis 621 Å (E = 20 eV) einen Photonenfluß I₀ von I₀ = 3 × 10¹⁰ Photonen×sec⁻¹×Å⁻¹.

- 26 -

Dieser Photonenfluß in der Reaktionszelle entspricht dem im Maximum der Gitterausbeute (vgl. Abb 4).

Bei Messungen an Fluorkohlenwasserstoffen reagieren die Moleküle und Produkte der Photoreaktionen des Meßgases mit dem Natriumsalizylat und ändern die Konversionseigenschaften. Pro Tag wurde mindestens einmal das Primärspektrum vermessen, um die Eigenschaft der Natriumsalizylatschicht zu überprüfen. Bei Änderungen von mehr als 30% wurde die Schicht erneuert, um eine einwandfreie Normierung der Ionenausbeutekurven zu gewährleisten. Bei N₂O als Meßgas wurde die Konversionsfähigkeit innerhalb einiger Stunden zerstört, bei Stickstoff wurde keine Änderung beobachtet. Die Ordinaten der Abbildungen der Ausbeutekurven geben die Intensität in einem willkörlichen linearen Maßstab an.

Abbildung 5: Schematische Darstellung der Experimentierkammer mit Detektor(1), Ionenablenkeinheit (2), Stabsystem des Massenfilters (3), Ionenquelle (4) und Photomultiplier (5) zur Registrierung des Referenzspektrums 3.1. Die Apparatur

Abbildung 5 zeigt schematisch und maßstabsgetren die für die Photoionisationsmessungen verwendete Experimentierkammer. Es handelt sich um die Version der von Schenk (8) konzipierten und aufgebauten Apparatur.

Die Apparatur besteht aus Ultrahochvakuumbauteilen. Das Kernstück ist ein modifiziertes T-Stück der Nennweite NW 150 CF, das mit zwei zusätzlichen Flanschen versehen wurde. Der eine enthält die Druckstufe zwischen Probenkammer und Toroidspiegen (Druckdifferenz etwa 10⁻² Torr). Der andere ist mit einem Fenster versehen, hinter dem sich der Photomultiplier befindet, der das von dem Natriumsalizylatfenster ausgehende Fluoreszenz-Licht registriert.

Die Flansche außerhalb der Zeichenebene tragen die Turbomolekularpumpe und eine Druckmaßeinheit. Von oben ragt das Quadrupolmassenspektrometer (MG 511 der Firma Balzers (37) in die Probenkammer. Es wurde umgebaut, sodaß der Analysator und die Meßgaszuführung, die direkt in die Ionenquelle erfolgt, zu einer Einheit integriert sind. Das Massenspektrometer besteht aus vier Untereinheiten:

 einem Rohr, das den Detektor, ein Channel Electron Multiplier CEM (Dunkelzählrate bei -2.4 kV weniger als 1 sec⁻¹), gegen die Hochfrequenzzuführungen für das Stabsystem abschirmt;

- 28 -

- 29 -
- einem Zwischenring, der die Ionenablenkelektroden, die sogenannte "off axis" Anordnung, und den Permanentmagneten zur Unterdrückung von Elektronen bei der Messung negativer Ionen trägt;
- dem Massenfilter mit den Stäben, die einen Durchmesser von 16 mm haben und
- _ der Ionenquelle, die hier die "cross beam"-Ionenquelle der Firma Balzers ohne die Üblichen Peizfäden ist.

Die lonenquelle wird von einem Gehäuse umschlossen, das auf der einen Seite mit dem Fenster abgeschlossen ist, auf dem sich die Natriumsalizylatschicht befindet, und auf der anderen Seite mit einer Eintrittsöffnung (Durchmesser 3 mm) für die Strahlung. Das Gehäuse dient zur Aufrechterhaltung einer Druckdifferenz von etwa $6 \times 10^{+2}$ gegenüber der Probenkammer. Der Meßgasdruck in der Ionenquelle selbst kann nicht direkt gemessen werden.

Das Meßgas wird handelsüblichen Behältern entnommen, die Reinheit von N₂ war 99.999% (Druckdose Messerschmidt Griesheim). Das Meßgas gelangt in einen Vorratsbehälter, aus dem es durch ein Feindosierventil in das Ionenquellengehäuse strömt. Die Probenkammer wurde nicht ausgeheizt. Der Restgasdruck beträgt 5 \times 10⁻⁶ Fa (3.7 \times 10⁻⁶ Torr).

Die Abbildung 6 zeigt ein Blockschaltbild der elektrischen und elektronischen Anschlüsse der Photoionisationsapparatur. Eine Beschreibung der Meßelektronik findet man bei Zietz (38).

Die Spannungen für die Versorgung des Quadrupolanalysators werden dem Jonenpolarisitätssteuergerät QPS 101 der Firma Balzers entnommen. Es erlaubt für die Nessung positiver und

- 31 -

negativer Ionen den Wechsel der Polarität aller Spannungen durch einfaches Umschalten. Das Quadrupolsteuergerät liefert die Versorgung für die Hochfrequenzstufe (Massenbereich 1 - 127 mu) und steuert den Massendurchlauf. Der Photomultiplier registriert die transmittierten Photonen.

Die Signale des Photomultipliers und des CEM gelangen über Emitterfolger, Verstärker und Diskriminatoren zu den Zählern. Es wird eine Referenzphotonenzahl für den Energiebereich vorgewählt, in dem die Ausbeutekurve gemeusen werden soll. Nach Erreichen der Referenzphotonenzahl für einen Meßpunkt werden die Zähler gestoppt, der Wert für die Ionenausbeute in den einen, der Wert der Wellenlängenanzeige in den anderen Spektrenspeicher (256 Plätze) übermittelt. Die Zähler werden auf null zurückgesetzt, der Schrittmotor stellt das Gitter um die vorgewählte Schrittzahl weiter (i.a. Intervalle zwischen o. 7 Å und 3 Å). Der Zählvorgang beginnt von neuem.

Die Meßdauer für eine Ausbeutekurve mit etwa 150 Meßpunkten beträgt für positive Ionen 5 Minuten bis 320 Minuten, für negative Ionen im allgemeinen 240 Minuten. Während dieser Zeiten treten meßbare Druckschwankungen nicht auf. Jede Messung wird wiederholt.

Die Information in den Spektrenspeichern - die Energie der Photonen und die zugehörige Ionenausbeute - wird nach dem Ende einer Messung einem Rechner PDP 11 übermittelt, der als Satellitenrechner eine Verbindung zur Großrechenanlage IBM 370 des DESY hat. Die für die Meßergebnisse zur Verfügung stehenden Bearbeitungsmethoden sind in Handbüchern (39) beschrieben. 3.2. Elektrische Potentiale im Formationsraum

Die Reaktionszelle ist die Cross Beam Ionenquelle der Firma Balzers. Die Ionenquelle besteht aus dem Formationsraum mit wabenförmigen Querschnitt (L = 14.8 mm, H = 5.8 mm, B = 11.26 mm). Im Bodenblech befindet sich ein Loch mit 2.47 mm Durchmesser. Darunter liegt im Abstand von 1.94 mm die Extraktionslinse und darunter im Abstand von 1.34 mm die Bodenplatte des Quadrupols, deren öffnung mit 3.17 mm Durchmesser die Eintrittsblende darstellt (Abbildung 7). Fer Formationsraum umschließt ein Volumen von 0.914 cm³. Die Wände haben eine Fläche von 4.38 cm².

Der Formationsraum liegt auf -56.1 V, die Extraktionsblende auf +193.1 V, die Grundplatte ist geerdet. Innerhalb des Formationsraumes herrscht das Feld $E_{FR} = 0$, zwischen der Unterplatte des Formationsraumes und der Extraktionsblende $E_1 = +1285$ V/cm und zwischen Blende und Quadrupolgrundplatte $E_2 = -1441$ V/cm. Durch die in den Platten befindlichen Löcher werden jedoch die Felder stark verzerrt (40). Für eine Lochplatte mit dem Potential U_d und dem Lochradius r_o, wo unterhalb das elektrische Feld E_1 und oberhalb E_{FR} herrscht, ist die Verteilung des Potentials U_o entlang der z-Achse durch die Mitte des Loches gegeben durch (41).

$$U_{o}(z) = U_{d} + \frac{1}{\pi} (E_{1} - E_{FR}) r_{o} (\frac{|z|}{r_{o}} \arctan \frac{|z|}{r_{o}} + 1) - \frac{1}{2} (E_{1} + E_{FR}) z$$

In der Mitte des Loches sei z = 0,

- 32 -

Abbildung 7: Schematische Darstellung der (Cross beam)-Ionenqueile Der Photonenstrahl verläuft längs der r-Achse, die Feldachse des Stabsystems ist die z-Achse. a: Formationsraum, b: Extraktionslinse, c: Grundplatte des Quadrupols mit Öffnung ins Stabsystem. In dem hier betrachteten Fall wird das Potential auf der z-*i*:chse im Formationsraum (z > 0) gegeben durch

$$U_{o}(z > 0) = U_{d} + E_{1} \left(\frac{r_{o}}{\pi} + z \left(\frac{1}{\pi} \arctan \frac{z}{r_{o}} - \frac{1}{2}\right)\right),$$

zwischen Formationsraum und Extraktionsblende (z < 0) durch

$$U_{o}(z < 0) = U_{d} + E_{1} \left(\frac{r_{o}}{\pi} + z \left(\frac{1}{\pi} \arctan \frac{z}{r_{o}} + \frac{1}{2}\right)\right).$$

Das elektrische Feld wird gegeben durch

6

$$E(z > 0) = -E_{1}(\frac{1}{\pi} \arctan \frac{z}{r_{0}} - \frac{1}{2} + \frac{z \times r_{0}}{\pi (r_{0}^{2} + z^{2})})$$
$$E(z < 0) = -E_{1}[\frac{1}{\pi} \arctan \frac{z}{r_{0}} + \frac{1}{2} + z \times r_{0}/(\pi (r_{0}^{2} + z^{2}))].$$

Tabelle 3 enthält für $r_0 = 0.124$ cm, $U_d = -56.1$ V, $E_{FR} = 0$ V/cm und $E_1 = +1285$ V/cm die Werte des Potentials und des elektrischen Feldes entlang der z-Achse. Das elektrische Feld innerhalb des Formationsraumes zieht geladene Teilchen zum Nachweis in das Stabsystem des Quadrupolmassenspektrometers. Elektronen, die durch Ionisationsprozesse innerhalb der Ionenquelle gebildet werden, werden ebenfalls durch das elektrische Feld beschleunigt.

Im Folgenden soll das Verhalten der Elektronen unter dem Einfluß des Feldes genauer untersucht werden, weil Stoßprozesse zwischen den Molekülen und den durch Ionisation gebildeten Elektronen innerhalb des FR eine wichtige Rolle bei der Bildung der negativen Molekülionen spielen. - 35 -

Auf Elektronen, die z.B. aurch Autoionisation mit kinetischer Energie $E_{kin} = 0$ eV in der Mitte des Formationsraumes oberhalb des Loches ($z_0 = 0.29$ cm) gebildet werden, wirkt ein Feld von E = 17.41 V/cm. Die Geschwindigkeit, die die Elektronen durch das elektrische Feld erhalten, hängt nur von der durchlaufenen Potentialdifferenz ab.

Tabelle 3

Potential U₀(z) und elektrisches Feld E(z) innerhalb des Formations= raumes entlang der z-Achse (z,r=0) auf Grund des Durchgriffes des Feldes E₁ zwischen Unterplatte des FR und Extraktionsblende durch das Loch mit Radius r₀= 0.124 cm. E₁ = 1285 V/cm. $AU_E(z) = U_0(z) - U_d$, U_d = - 56.1 V. Die Mitte des FR hat die Koordinaten: z=0.29 cm, r = 0 cm.

z	∆U _g (z)	U _C (z)	B(z)
(cm)	(ขั)	(V)	(V/cm)
0.0	+50.719	-5.380	+642.5
0.1	+14.228	-41.871	+165.03
o.18	+6.3067	-49.793	+55.64
0.20	+5.3176	-50.782	+43.82
o.22	+4.5535	-51,566	+34.97
o.24	+3.9041	-52.195	+28.26
o.26	+3.3931	-52.706	+23.09
o.28	+2.9732	-53.126	+19.08
o,285	+2.8795	-53.220	+18.22
o . 29	+2.7910	-53.309	+17.41
o.30	+2.6243	-53.475	+15.92
o.32	+2.3316	-53,768	+13.40
o.34	+2.0845	-54.015	+11.38
o,36	+1.8742	-54.225	+9.736
o.58	+0.7512	-55.348	+2.527

.

$$v(z) = \sqrt{2e c^2/m_e(eV)} \times \sqrt{U(z_0) - U(z)} = 5.935 \times 10^7 / AU(V) (cm/sec)$$

Tabelle 4 enthält die Geschwindigkeit und kinetische Energie, die Elektronen nach Durchlaufen der Strecke dz von $z_0 = 0.29$ cm aus oder nach Durchlaufen der Potentialdifferenz $U_0(z_0) = U_0(z)$ besitzen.

Die Zeit, die Null-eV-Elektronen von ihrer Erzeugung bis zum Erreichen der von z abhängigen Geschwindigkeit v(z) benötigen, ist gegeben durch

$$t(z) = z_0^{\int \frac{z}{v(z^*)}}$$

Wenn man über der Laufstrecke $\Delta z = z_1 - z_2$ konstante Beschleunigung annimmt, erhält man

$$\Delta t(\Delta z) = \frac{2\Delta z}{v(z_1) + v(z_2)}$$

Die Geschwindigkeit hei z_0 sei Null: $v(z_0) = 0$ (Tabelle 5)

Tabelle 4

Geschwindigkeit v und kinetische Energie E_{kin} der Elektronen, die in der Mitte des Formationsraumes (r=0, z=0.29cm) als Null-eV-Elektronen gebildet wurden und die Strecke dz in Richtung auf das Loch in der unteren Platte des FR zurückgelegt haben. z = z₀ - dz (z₀=0.29cm). v(z) = {(2ec²/m_e)(U(z₀) - U(z)))^{-1/2} {cm/sec}

 $E_{k10}(z) = e(U(z_0) - U(z))\{eV\}$

d≇	Z	v(z)	E _{kin} (z)
(ca)	(св)	(cm/sec)	(eV)
0.005	o.285	1.77×10 ⁷	0.089
0.01	0.28	2.53×10 ⁷	o.183
0.03	o.26	4.60×10 ⁷	0.602
0.05	0.24	6,26×10 ⁷	1.112
0.07	0.22	7.83×10 ⁷	1.739
0.09	0.20	9.42×10 ⁷	2.52
o.11	o.18	1.11×10 ⁸	3.497
0.19	0.10	2.00×10 ⁸	11.355
0.29	0.0	4. lo×10 ⁸	47.72

Tabelle 5

Zeit Δt , die ein Elektron benötigt, das bei (r=0,z=0.29) mit v₀ = 0 cm/sec gebildet worden ist, um unter dem Einfluß des Feldes innerhalb des Formationsraumes die Strecke zwischen z_1 und z_2 längs der z-Achse zurückzulegen. $\Delta z = z_1 - z_2$.

z,	2 ₂	v ₁ (10 ⁷ ×	v ₂ (10 ⁷ ×	Δt
(cm)	(cm)	cm/sec)	- cm/sec)	(sec)
o.29	o.285	0.0	1.77	5.6×10 ⁻¹⁰
o.285	o.28	1.77	2.53	2.3×10 ⁻¹⁰
o.28	o.26	2.53	4.60	5.6×10 ⁻¹⁰
o.26	o.24	4.60	6.259	3.7×10 ⁻¹⁰
o.24	o.22	6.259	7.828	2.8×10 ⁻¹⁰
o.22	0.20	7.828	9.42	2.3×10 ⁻¹⁰
0.20	o.18	9.42	11.1	1.9×10 ⁻¹⁰
0.18	0.10	11.1	20.0	5 ×10 ⁻¹⁰
0.10	0.0	20.0	41.0	3.2×10 ⁻¹⁰
	² 1 (cm) 0.29 0.285 0.28 0.26 0.24 0.22 0.20 0.18 0.10	z1 z2 (cm) (cm) 0.29 0.285 0.285 0.28 0.28 0.26 0.26 0.24 0.22 0.22 0.22 0.20 0.18 0.10	z_1 z_2 $v_1 (10^7 \times (cm) cm/sec)$ 0.29 0.285 0.0 0.285 0.285 0.0 0.285 0.285 0.0 0.285 0.285 0.0 0.285 0.285 0.0 0.285 0.26 2.53 0.26 0.24 4.60 0.24 0.22 6.259 0.22 0.20 7.828 0.20 0.18 9.42 0.18 0.10 11.1 0.10 0.0 20.0	z_1 z_2 $v_1 (10^7 \times v_2 (10^7 \times (cm)^2 \times (cm)^$

Für die ersten 0.01 cm benötigt das Elektron wegen der Beschleunigung aus der Ruhe 8 × 10^{-10} sec, für die nächsten 0.02 cm eine Zeit von 5.6 × 10^{-10} sec. Ein bei (z = 0.29, r = 0) mit Null eV gebildetes Elektron benötigt etwa 3 nsec, um den Formationsraum zu verlassen.

Allgemein ist das Potential innerhalb des Formationsraumes in Abhängigkeit von z und r (41) gegeben durch

$$U_0(z,r) = U_d + E_1 \times z (1/\pi \{ \arctan \mu(z,r) + 1/ \mu(z,r) \} - 1/2 \}$$

mit

$$\mu(z,r) = 1/\sqrt{2} \cdot 1/r_0 \sqrt{z^2 + r^2 - r_0^2 + \sqrt{(z^2 + r^2 - r_0^2)^2 + 4z^2 r_0^2}}$$

Die Funktion ist in r symmetrisch zu r = 0. Abbildung 8 zeigt das Potentialfeld in der rechten Hälfte des Formationsraumes. Man erkennt, daß ein Elektron, das mit $E_{kin} = 0$ eV durch Autoionisation entlang der Mittelachse des Formationsraumes (z = 0.29 cm, r) gebildet wird, eine um so kleinere Beschleunigung durch das Feld erfährt, je größer r ist bzw. je weiter es vom Mittelpunkt (z = 0.29 cm, r = 0) des Formationsraumes entfernt ist.

Lin bei (z = 0.29 cm, r = 0.67 cm) auf der Potentiallinie -55.9 V gebildetes Elektron benötigt z.B. 22 nsec, um den Formationsraum zu verlassen, wobei es die erste Hälfte der Strecke - von U₀ = -55.9 V bis U₀ = -55.0 V - in etwa 20 nsec zurücklegt.

- 38 -

In diesem Abschnitt soll das Verhalten einzelner Moleküle innerhalb eines Gasvolumens dargelegt werden: Stoßrate der Teilchen untereinander, Stöße mit den Wänden des Formationsraumes, Bildungsrate angeregter Moleküle durch Photoanregung und Stoßrate der angeregten mit Grundzustandsmolekülen.

.....

a) Geschwindigkeitsverteilung

Teilchen in einem Gasvolumen besitzen eine Maxwell-Geschwindigkeitsverteilung P(c)

$$P(c) = \frac{1}{N_0} \times \frac{dN(c)}{dc} = 4\pi \times (\frac{m}{2kT})^{3/2} \times \{e \times p - (\frac{mc^2}{2kT})\} \times c^2$$

Die wahrscheinliche Geschwindigkeit c_p ist

$$c_{\rm p} = (\frac{2kT}{m})^{1/2}$$

Die mittlere Geschwindigkeit c ist

$$\vec{c} = \left(\frac{8kT}{\pi m}\right)^{1/2} = 1.128 \times c_p$$

und die root mean square Geschwindigkeit $(\bar{c}^{7})^{1/2}$ ist

$$(\overline{c^2})^{1/2} = (\frac{3kT}{m})^{1/2} = 1.225 \times c_p$$

für Stickstoff (m = 28) ergeben sich für T = 300 K die Zahlenwerte

- 41 -

 $c_{12} = 4.208 \times 10^4$ cm/sec

und für die kinetische Energie \overline{E} = 1/2 m $\overline{c^2}$

Die kinetische Energie der Teilchen mit der wahrscheinlichsten Geschwindigkeit c_p ist

$$E = \frac{1}{2} m c_p^2 = 25.67 meV.$$

b) Teilchendichte

Die Dichte der Teilchen in Abhängigkeit vom Druck und der Temperatur berechnet sich aus der idealen Gasgleichung nRT = PV.

n M	oleküle	Moleküle	P(atm)	P(Torr)
-(-	}	= N_{}	× = N_ ,	<
۷	Citri 3	fiol	T(K)•R{cm ³ atm/Mol K}	R•760•T

Nan erhält für T = 300 K

r

$$\frac{\text{Moleküle}}{\text{cm}^3} \times p(\text{Torr})$$

und für $p = 5 \times 10^{-2}$ Torr eine Konzentration von

$$n_0 = 1.6 \times 10^{15} \{\frac{Moleküle}{cm^3}\}.$$

c) Bimolekulare Stöße und mittlere freie Weglänge

Die Zahl, wie oft ein gegebenes Molekül innerhalb eines Gasvolumens mit einem anderen Molekül stößt, ist

 $Z_1 = \pi \cdot \sigma_1^2 \cdot \overline{c_1} \cdot n_1 \cdot /2$

 $\overline{c_1}$ ist die mittlere Geschwindigkeit, n₁ ist die Dichte und $n \cdot \sigma_1^2$ die Stoßfkäche des betrachteten Moleküls. Mit dem Ausdruck $n \cdot \sigma_1^2$ bezeichnet man im Allgemeinen den Wirkungsquerschnitt einer Reaktion. Um Verwechselungen auszuschließen, wird im Folgenden für den Wirkungsquerschnitt $\sigma(cm^2)$ verwendet.

Für den geometrischen Radius eines Teilchens wird σ_g (mit der Dimension cm) benutzt. σ_{ξ} ist der Bohrsche Radius des äußersten besetzten Molekülorbitals (MO). Die beiden Größen sind verknüpft durch

$$\sigma_1 \{em^2\} = \pi \cdot \sigma^2$$

Es muß sorgfältig zwischen geometrischen (oder hard-core-) Stoßquerschnitt und dem (effektiven) Stoßquerschnitt für eine bestimmte Reaktion unterschieden werden. Die Stoßquerschnitte für Reaktionen haben um Größenordnungen sowohl kleinere als auch größere Werte im Vergleich zum geometrischen Stoßquerschnitt.

Ist der relative Stoßquerschnitt sehr viel größer als der geometrische, betrachtet man die Wechselwirdungseigenschaften der Stoßpartner im Hinblick auf eine bestimmte Reaktion als sehr viel reichweitiger, als sie durch den Bohrschen Radius des äußersten MO gegeben ist. - 43 -

Ist der reaktive Stoßquerschnitt sehr viel kleiner als der geometrische, können die Stoßpartner sehr oft "geometrisch" stoßen, bevor eine bestimmte Reaktion (z.B. Energietransfer) eintritt. Im Folgenden ist mit Wirkungs- (oder Stoß-) querschnitt immer der reaktive Stoßquerschnitt gemeint.

Nimmt man für N₂ den geometrischen Radius $\sigma_{g1} = 3.75$ Å (42) (dieser Wert entspricht einem Wirkungsquerschnitt von $1.4 \times 10^{-1.5} \text{ cm}^2$), erhält man ($\overline{c_1} = 1.128 \times c_p$) bei dem Druck p (in Torr)

Die mittlere Zeit zwischen zwei Stößen ist $t_c = (Z_1)^{-1}$

$$t_{c} = 1.05 \times 10^{-7} \times \{P(Torr)\}^{-1}$$

flugzeit in Sekunden zwischen zwei Stößen.

Bei p = 5 × 10^{-2} Torr ist also die Zeit zwischen zwei Stößen 2.1 × 10^{-5} sec.

Die mittlere freie Weglänge λ ist dann gegeben durch $\lambda = \frac{\overline{c}}{\overline{Z}_1}$

$$\lambda = 4.97 \times 10^{-3} \frac{\text{cm}}{\text{p(Torr)}}$$

Bei p = 10^{-3} Torr ist λ = 5 cm, bei p = 5 × 10^{-2} Torr ist λ = 1 mm. Die Anzahl der Stöße aller Moleküle in einem Gasvolumen ist

$$Z_{11} = \frac{\pi}{72} g_{11}^{2} \overline{c_{1}} n_{1}^{2}$$

$$Z_{11} = 1.53 \times 10^{23} \times \{p(Torr)\}^{2} \frac{\text{Stöße}}{\text{cm}^{3} \cdot \text{sec}}$$

Enthält ein Gas zwei Molekülsorten mit verschiedenen Konzentrationen (n_1 , σ_{g1} , $\overline{c_1}$) und (n_2 , σ_{g2} , $\overline{c_2}$), gibt es drei verschiedene Arten von Stößen: 1-1, 2-2, 1-2.

Die Stoßarten sind dann

$$Z_{11} = (\pi/\sqrt{2}) \sigma_{g1}^{2} \cdot \overline{c_{1}} \cdot n_{1}^{2}$$

$$Z_{22} = (\pi/\sqrt{2}) \sigma_{g2}^{2} \quad \overline{c_{2}} \quad n_{2}^{2}$$

$$Z_{12} = \pi \cdot \sigma_{g12}^{2} \cdot \overline{c_{1}} \cdot n_{1} \cdot n_{2} \cdot \sqrt{1 + m_{1}/m_{2}}$$

In Z_{12} ist σ_{g12} der Mittelwert der Stroßdurchmesser $\sigma_{g12} = (1/2) \cdot (\sigma_{g1} + \sigma_{g2})$. Der Faktor $\sqrt{1 + m_1/m_2}$ berücksichtigt die Massen der Stoßpartner. Ist die Dichte n_1 bekannt und besitzen die Teilchenarten 1 und 2 die gleiche Masse ($m_1 = m_2$, $c_1 = c_2$, $\sigma_{g1} = \sigma_{g2}$), ergibt sich

$$Z_{11} = 1.53 \times 10^{23} \{P_1(Torr)\}^2 \{\frac{\text{Stöße}}{\text{cm}^3 \text{ sec}}\}; \sigma_{g1} = \sigma_{N_2} = 3.75 \text{ Å}$$

$$Z_{22} = 1.05 \times 10^5 \cdot \sigma_{g2}^2(\text{cm}^2) \times \{n_2(\text{Molek/cm}^3)\}^2 \{\frac{\text{Stöße}}{\text{cm}^3 \text{ sec}}\}$$

$$Z_{12} = 6.8 \times 10^{21} \times P_1(Torr) \times \sigma_{g12}^2 (\text{cm}^2) \times n_2(\text{Molek/cm}^3) \{\frac{\text{Stöße}}{\text{cm}^3 \text{ sec}}\}$$

Wandstöße

Die Wände des Formationsraumes (FR) haben eine Fläche von $F_{FR} = 4.749 \text{ cm}^2$. Durch das Loch im oberen Teil des FR und die offenen Seiten in Richtung des Photonenstrahles findet ein Gasaustausch zwischen dem FR und dem übrigen Teil der Gaszelle statt. Diese Fläche umfaßt $\overline{F}_{FR} = 1.47 \text{ cm}^2$. Die Anzahl der Wandstöße pro cm² hängt nur von der Teilchendichte und der mittleren Geschwindigkeit \overline{c} ab:

$$Z_{u}$$
 (cm⁻² sec⁻¹) = $\frac{1}{4}$ n c

Die Anzahl der Wandstöße pro Sekunde auf die Fläche F ist

$$Z_{i}(F)$$
 (sec⁻¹) = $\frac{1}{h}F$ n \overline{c}

Mit den Zahlenwerten erhält man (bei p = 5×10^{-2} Torr)

$$Z_{W} (5 \times 10^{-2} \text{ Torr}) = 9 \times 10^{19} \frac{\text{Wandstöße}}{\text{sec}}$$

Da mit dem umgebenden Gasvolumen außerhalb des FR ein ständiger Molekülaustausch stattfindet, ist der FR im Hinblick auf Wandstöße kein abgeschlossenes System. Man kann also die mittlere Wandstoßrate pro Molekül nicht berechnen.

Um die Strecke zwischen den Wänden von $\ddot{s}_w = 5.8$ mm zurückzulegen, benötigt ein Molekül die mittlere Zeit von t_w = s_w/c

$$t_w = 1.2 \times 10^{-5}$$
 sec.

Die angeregten Teilchen werden entlang der Mittelachse des FR gebildet und treffen frühestens nach 2.9 mm die Wand. Die mittlere Zeit ist

$$t_{w} = 6 \times 10^{-6} sec$$

Wenn angeregte Teilchen die Wand treffen, geben sie ihre Energie ab. Im Vergleich zu Autoionisationsprozessen – angeregte Teilchen besitzen gegenüber Autoionisation Lebensdauern in der Größenordnung 10^{-12} sec – und strahlendem Zerfall ist die Zeit, bis sie ihre Anregungsenergie bei einem Wandstoß abgeben, sehr lang. Wandstöße spielen demnach bei der Betrachtung von Stoßprozessen zwischen N₂(X) und angeregten Stickstoffmolekülen keine Rolle. - 47 -

4. Meßergebnisse und ihre Deutung

1

In den Abschnitten 4.1, 4.2 und 4.3 werden die Meßdaten für 0_2 , 40 und CO vorgestellt und diskutiert.

bie Peaks der Massen 16 und 12 im negativen Massenspektrum zeigten bei allen drei Substanzen eine lineare Druckabhängigkeit: Es sind also monomolekulare Prozesse für die Bildung von 0⁻ bzw. C⁻ verantwortlich.

Für CO und NO wurde die Bildung von Ionenpaaren nach Photoanregung zum ersten Mal beobachtet. Für O₂ wird die Ionenpaarbildung für eine Anregungsenergie größer als 18.5 eV zum ersten Mal nachgewiesen. Der Energiebereich von 17.2 eV bis 18.5 eV wurde von Dehmer und Chupka (43) mit sehr hoher Auflösung vermessen. Unsere Messungen decken einen Energiebereich bis 27 eV ab.

Ionenpaarbildung am Molekül AB wird nachgewiesen durch Beobachtung identischer Ausbeutekurven von A^+ und B^- , bzw. A^- und B^+ . Die Minimalenergie für die Bildung des Ionenpaares A^+/B^- ist die Energie des dissoziativen Ionisationsprozesses A^+/B abzüglich der Elektronenaffinität von B. Oberhalb der Minimalenergie der dissoziativen Ionisation setzt sich die A^+ -Ausbeute aus dem Betrag der dissoziativen Ionisation (A^+ + B) und dem Betrag der Ionenpaarbildung (A^+ + B^-) zusammen.

Da die dissoziative Ionisation sehr viel effektiver als die Ionenpaarbildung ist, kann man den Ionenpaarprozeß oberhalb der Minimalenergie der dissoziativen Ionisation nur noch in der Ausbeutekurve des negativen Atoms des Ionenpaares beobachten. Direkt angeregte Rydbergzustände, die mit den Ionenpaarzuständen wechselwirken, führen zu Peak-Strukturen in den A⁺ und B⁻-Ausbeutekurven. Es werden Hinweise auf bisher nicht beobachtete Rydbergzustände gefunden. 4.1. 02

Massenspektrometrische Untersuchungen zur Photodissoziation und Photoionisation von molekularem Sauerstoff sind von Gruppen (44,45) durchgeführt worden, die als Anregungsquelle hauptsächlich Resonanzlampen benutzt haben. Die letzten Messungen stammen von Dehmer und Chupka (43) mit einer Wellenlängenauflösung von 0.007 nm. Die relativen Photoionisationsausbeutekurven von 0_2^+ wurden bis zu einer Anregungsenergie von 21.3 eV und die von 0⁻ und 0⁺ bis 20.5 eV vermessen.

Ergebnisse

Die Abbildung 9 zeigt die 0^{-} Ausbeutekurve von 17 bis 27 eV und die 0^{+} -Kurve von 17 bis 29 eV.

In der 0⁻-Kurve lassen sich zwei Bereiche unterscheiden. Der steile Einsatz der ersten liegt bei 17.28 eV. Bis 18.4 eV zeigt die Ausbeutekurve eine große Anzahl von Strukturen. Diese wurden ausführlich von Dehmer und Chupka (43) untersucht und interpretiert. Dehmer und Chupka (43) beobachten oberhalb 18.4 eV wegen der geringen Intensität ihrer Lichtquelle in diesem Energiebereich keine Strukturen. Im Gegensatz dazu weisen wir zwischen 18.4 und 10.6 eV schwache, aber reproduzierbare Strukturen nach.

Der steile Einsatz des zweiten Bereiches (Abbildung 10) liegt bei 20.59 eV. Es folgt ein zweiter steiler Einsatz bei 21.28 eV. Die Intensität fällt oberhalb 21.5 eV ab. Auf der abfallenden Flanke der Ausbeutekurve werden mehrere Peaks beobachtet.

- 49 -

Das Verhältnis der O⁻-Ausbeute zwischen dem Maximum des ersten Bereiches bei 17.3 eV und dem Maximum des zweiten Bereiches bei 21.56 eV ist 2. Das Verhältnis der O⁻- zur O⁺-Ausbeute bei 21.5 eV ist 0.024. Diese Verhältnisse sind rein experimentelle Werte: Diskriminierungseffekte des Massenfilters gegenüber der kinetischen Energie der Ionen sind nicht berücksichtigt.

- 50 -

- 51 -

Tabelle 6 enthält die Strukturen der O⁻-Ausbeutekurve zusammen mit Daten von Elektronenstoßexperimenten und Absorptionsmessungen. Die Absorptionsbanden wurden von Codling und Madden (120) als Rydbergzustände klassifiziert, die zum untersten und zum ersten Schwingungsniveau des c ${}^{*}\Sigma_{u}^{-}$ -Ionenzustand konvergieren. Die Zuordnung der Zustände wurde von Lindholm (48) und Narayana und Price (49) übernommen.

Diskussion

0:

Zwischen 17 und 18.4 eV stimmt die Photoionisationsausbeutekurve mit der von Dehmer und Chupka (43) gemessenen gut überein. Im Gegensatz zu früheren Messungen wurden jedoch im Bereich von 18.4 bis 20.5 eV Strukturen beobachtet. Als neutrale Zustände, die in die Ionenpaarzustände dissoziieren, kommen Rydbergzustände in Frage, die zum $B^2\Sigma_g^-$ -Ionenzustand konvergieren. Die gleichen neutralen Zustände sind verantwortlich für Struktur in der 0⁺-Ausbeutekurve. Das Verzweigungsverhältnis dieser neutralen Zustände in 0⁺- zu 0⁻-Kanälen ist ungefähr 100:1

Wegen der geringen Intensität dieser Strukturen in der O⁻-Kurve wird auf eine weitergehende Interpretation verzichtet. Es scheint in diesem Energiebereich keine Kontinuumsbeiträge aus direkter Anregung in die Ionenpaarzustände zu geben.

Bei 20.59 eV können 0⁻ im ${}^{2}P^{0}$ -Grundzustand und 0⁺ im ersten angeregten ${}^{2}D^{0}$ -Zustand gebildet werden. Bei dieser Energie wird ein steiler Einsatz beobachtet. Die Kombination der Atom-Terme

Tabelle 6

Strukturen (energetische Lage in eV) in der O⁻-Ausbeutekurve nach Photonenanregung von 0₂.

	Photoionisa	tion	stoß (Ref 47)	Absorpti (Ref 46	on)
1 2 3 4 5	20.59±0.03 20.73 20.85 20.94 21.05	steep onset peak peak peak small peak	20.6	20.862 21.050	3sσ _g (0.0) 3sσ _g (1.0)
6 7 8 9 10 11	21.28 21.70 21.85 21.94 22.11 22.27 22.46	steep onset small peak small peak onset small peak small peak onset	21.3		7
13 14 15 16 17 18 19	22.83 22.92 23.04 23.13 23.22 23.34 23.39	small peak small peak small peak small peak shoulder peak small peak peak	22.5	22.863 23.050 23.262	3do _g (0.0) 3do _g (1.0) 4so _g (1.0)
20	23.79	small peak	23.55 23.9 25.2	23.825	4do _g (1.0)

- 52 -

²D[•] und ²P[•] ergibt gerade (g) und ungerade (u) Singulett- und Triplett Molekülzustände mit Σ^+ , Σ^- (2), II(3), Δ (2) und ϕ -Symmetrie. Von diesen Ionenpaarzuständen können durch einen optisch erlaubten Übergang aus dem $0_2({}^{3}\Sigma_g^-)$ -Grundzustand nur ${}^{3}\Sigma_u^-$ - und ${}^{3}\Pi_u^-$ Zustände direkt bevölkert werden. Der steile Einsatz bei 20.59 eV besitzt die gleiche Breite wie die Halbwertsbreite der anregenden Strahlung. Aus diesen Gründen beschreiben wir den steilen Einsatz als direkte Dissoziation nach Anregung eines Ionenpaarzustandes. Dieselbe Interpretation gilt für den Einsatz bei 21.28 eV.

Bei 22.28 eV können 0⁻ im ²P⁹-Grundzustand und 0⁺ im zweiten angeregten ²P⁹-Zustand gebildet werden. Die korrespondierenden Molekülzustände können aus dem 0₂-Grundzustand durch optischen Übergäng angeregt werden. Wir interpretieren den Einsatz bei 22.46 als direkte Dissoziation in 0⁻(²P⁹) und 0⁺(²P⁹). Locht et al (47), die Ionenpaarbildung nach Elektronenstoßanregung untersucht haben, erklären die Einsätze der 0⁻-Ausbeutekurve im Energiebereich um 22 eV ebenfalls als direkte Dissoziation.

Einsätze oberhalb 23.5 eV werden im Gegensatz zu Elektronenstoßmessungen in der Photoionisationsausbeutekurve nicht beobachtet. Die den Einsätzen zugeordneten Prozesse sollten deshalb optisch verboten sein.

Zusätzlich zu den Einsätzen werden Peak-Strukturen in der Ausbeutekurve beobachtet. Die Peaks stammen von predissoziierenden Rydbergzuständen, die zum c⁺Σ₁₁⁻-Ionenzustand konvergieren. Zwischen 21.5 eV und 22.4 eV sind in der O⁻-Ausbeutekurve zusätzliche Strukturen beobachtet worden: mehrere Paare von Peaks, deren Abstand ungefähr 180 meV beträgt. Dies ist die Energie zwischen dem v' = 0 und v' = 1 Schwingungsniveau des c⁺ Σ_{u}^{-} -Ionenzustandes. Die Strukturen werden als Mitglieder zweier Rydbergserien mit Quantendefekten von 0.83 und 0.65 gedeutet (Tabelle 6 A). Ein Teil dieser Strukturen wurde auch in Fluoreszenzspektren beobachtet (50).

Tabelle 6 A

Zustände von Rydbergserien, die zum c ${}^{4}\Sigma_{u}^{-}$ -lonenzustand konvergieren Energetische Lage in eV. In Klammern sind die Nr. wie in Tab. 6 angegeben.

Schwingungs- Übergang	n = 3	n = 4	Quanten-Defekt δ
(0,0)	21.70 (7)	23.20 (17)	
(1,0)	21.85 (8)	23.39 (19)	0.83
(0,0)	22.22 (10)	23.34 (18)	
(1,0)	22.27 (11)	23.53 (-)	0.65

0+

Die 0⁺-Ausbeutekurve spiegelt oberhalb 18 eV dissoziative Ionisatzion wieder. Die Übereinstimmung mit der von Chupka und Dehmer gemessenen Kurve ist gut. Zwischen 20.4 eV und 30 eV zeigt die 0⁺-Ausbeutekurve einen intensiven Kontinuumsbeitrag mit einem Maximum bei 23 eV. Der Anstieg bei 20.87 eV wird dem dissoziativen Ionisationsprozeß 0⁺(*S*) + 0⁺(¹D) zugeordnet. Rydbergzustände zum c* Σ_{u}^{-} -Ionenzustand sind für Peakstrukturen verantwortlich.

Abbildung 10a:

Potentialenergiekurven von 0_2^+ und dem Ionenpaarzustand $0^+({}^{S0})+0^-({}^{2}P^{\bullet})$ (aus Ref 50a). Die niedrigsten Rydbergzustände der a,A,b und B-Ionenzustände sind durch die gestrichelten Kurven angenähert.

Abbildungen 10a und 10b zeigen die ungefähre Lage der Potentialenergiekurven der 0⁺-0⁻-Ionenpaarzustände. Nach Rechnungen von Krauss und Neumann (50a) schneidet die 0⁺(*S*)+0⁻(*P*)-Ionenpaarkurve den Franck-Condon (FC)-Bereich oberhalb der Dissoziationsasymptote bei 17.28 eV. Der Beitrag von direkter Dissoziation ist klein. Die Ionenpaarkurven 0⁺(*D*)+0⁻(*P*) bzw. 0⁺(*P*)+0⁻(*P*) - die 0⁺-Ionen befinden sich im ersten bzw. zweiten angeregten Ionenzustand - schneiden

- 58 -

Ergebnisse

Abbildungen 11 und 12 zeigen die Ergebnisse für NO: Die relative Photoionisationsausbeutekurve für 0^- im Energiebereich von 19 bis 25 eV und die korrespondierende Kurve für N⁺ stellt die Abbildung 11 dar.

Die N⁺ Ausbeutekurve für den gesamten Energiebereich wird in Abbildung 12 gezeigt. Die Tabelle 7 enthält Strukturen, die in der O⁻-Ausbeutekurve beobachtet worden sind gemeinsam mit früheren Daten aus Elektronenstoßprozessen und Absorptionsmessungen.

Abbildung II: Photosonisations-Ausbeutekurven von O und N aus NO. Der Maßstab der N⁺-Kurve ist um den Faktor 7 reduziert. Die Kurven kreuzen sich bei 19.6 eV und bei 21.3 eV und 21.8 eV.

- 57 -

den FC-Bereich bei der Dissoziationsenergie 20.59 eV bzw. 22.28 eV. Der Beitrag direkter Anregung der Ionenpaarzustände ist bei dieser Energie groß.

bie in Abb.10b eingezeichnete Form dieser Potentialenergiekurven lehnt sich an die von Krauss und Neumann berechnete an.

18 eV bis 25 eV.

Strukturen (energetische Lage in eV) in der 0^- -Ausbeutekurve nach Photoneanregung von NO.

Photoionisation

Elektronenstoß Absorption

(Ref 47) (Ref 51) (Ref 49)

١,							
	o. 1	19.56±0.03	steep onset	19.6±0.2	19.3±0.3		
ł	2	20.10	shoulder				
I	ं 3	20.23	peak			20.242	3d 🖬
ļ	4	20.33	small peak				
ł	5	20.48	peak			20.486	4рт
ł	6	20.63	shoulder				
	7	20,69	shoulder				
	8	20.84	small peak			20.78	4đσ
Į	· 9	20.92	small peak			20.897	4 d π
	10	21.00	small peak			20.993	5рт
	11	21.13	small peak				
1	12	21.21	small peak			21.190	5d #
1	13	21.26	small peak			21.245	6р#
	14	21.31	small peak				
	15	21.37	small peak			.21.354	6d 1
	16	21.45	shoulder	Ы		21.450	7d #
	17	21.49	steep onset	21.4-			
	18	21.9±0.1	broad peak	a)			
	19	23.1±0.1	broad peak	23.1			
	20	24.5±0.1	broad peak	24.0			
	a) Ref 52 b) Schwellenwert						
	a) .						
1	U)	ert des Maxim	ums des "proad	реак			
	d) M	laximum des Pe	aks				

Die O⁻-Ausbeutekurve zeigt einen steilen Einsatz bei 19.56 eV. Darauf folgen zwei intensive Peaks und einige schwache Peaks und Schultern bis 21.5 eV. Nach einem steilen Anstieg bei 21.49 eV treten drei breite Banden mit Maxima bei 21.9, 23.1 und 24.5 eV auf. - 61 -

Die N⁺-Ausbeutekurve zeigt die gleichen Strukturen, die auch in der O⁻-Ausbeutekurve bis ungefähr 21 eV aufgetreten sind. Die N⁺-Ausbeutekurve nimmt von 21 eV langsam in zwei Schritten zu (Abbildung 11). Bei 21.74 eV, wie auch bei ca. 22.9 eV, zeigt die N⁺-Kurve einen sehr steilen Anstieg (Abbildung 12). Die meisten der Strukturen können mit bereits bekannten Daten verglichen werden. Die in den Spalten 3 und 4 der Tabelle 26 zusammengefaßten Werte wurden von Elektronenstoßexperimenten übernommen. Hierl et al (51) haben die N⁺-Ausbeutekurve nach Anregung mit 18 eV und 25 eV Elektronen gemessen. Sie beobachteten N⁺ unterhalb der Schwellenenergie für dissoziative Ionisation und interpretieren dies als Ionenpaarbildung. Locht et al (47) regen NO mit Elektronen im Energiebereich 18 bis 30 eV an und beobachten die O⁻ Ausbeute.

Die Prozesse, die zur Ionenpaarbildung beitragen, werden von ihnen hauptsächlich als direkte Dissoziationsprozesse interpretiert. Tabelle 7 enthält die bekannten Absorptionsbanden in Spalte 5 (49). Diese werden als Rydbergzustände klassifiziert, die zu einem Ionenzustand bei 21.72 eV konvergieren.

In Tabelle 7 kann man das Ausmaß der Übereinstimmung zwischen den Einsätzen, die in Elektronenstoßexperimenten beobachtet wurden, den Absorptionsbanden und den Strukturen, die in dieser Arbeit gefunden wurden, erkennen. Zusätzlich zu der bereits bekannten Struktur werden bisher unbeobachtete Strukturen nachgewiesen. Tabelle 8 enthält Einsätze in der N⁺-Ausbeutekurve im Bereich der dissoziativen Ionisation, ebenso die Minimalenergien für das Auftreten von Dissoziationsfragmenten. Tabelle 8

Energetische Lage von Einsätzen in der N^{*}-Ausbeutekurve und Schwellenenergien für dissoziative Ionisationsprozesse (Energiewerte in eV)

		Schwellen energie	Dissoziations produkte
i	21.00 ± 0.05	21.02	$N^{+}(^{3}P) + O(^{3}P)$
2	21.34 ± 0.05		
3	21.74 ± 0.03		
4	22.9 ± o.l	22.92	$N^{+}(^{1}D) + O(^{3}P)$
		22.98	$N^{+}(^{3}F) + O(^{1}D)$

Diskussion

0

Bei einer Anregungsenergie von 19.56 eV kann aus einem NO-Molekül im ${}^{2}\Pi$ -Grundzustand das Ionenpaar O⁻(${}^{2}P^{0}$) + N⁺(${}^{3}P$) gebildet werden. Diese Energie wird als Einsatzenergie sowohl der O⁻- als auch der N⁺-Ausbeutekurve gemessen. Das Ionenpaar wird durch direkte Anregung in den Ionenpaarzustand und nachfolgende Dissoziation gebildet.

- 63 -

Nach den optischen Auswahlregeln ist ein direkter Übergang in Doublett-Ionenpaarzustände erlaubt; in dem Energiebereich um 19.6 eV sind keine Rydbergzustände mit kleinen Hauptquantenzahlen bekannt; - große Übergangswahrscheinlickeiten in hochliegende Rydbergzustände werden nur für solche mit kleinen Haupquantenzahlen beobachtet. Die Form des Anstiegs weist darauf hin, daß es sich nicht um einen resonanten Prozeß handelt.

Die gleiche Interpretation gilt für den Einsatz bei 21.46 eV. Dies ist die Minimalenergie für die Bildung von 0^{-1} im $^{2}P^{0}$ -Grundzustand und N⁺ im ersten angeregten ¹D-Zustand.

Zwischen 20 eV und 22 eV treten zwei sehr intensive und einige weniger intensive Strukturen auf. Sie stammen von prädissoziierenden Rydbergzuständen. Diese in Absorption beobachteten Rydbergzustände (49,52) werden in nd π , np σ , np π und nd σ -Serien mit ²H-Symmetrie geordnet. Die Konvergenzgrenze ist der c³H (v¹ = 0)-Ionenzustand bei 21.72 eV (53). Diese Rydbergserien werden auch als Peakstrukturen in NO⁺- und O⁺-Photoionisationsausbeutekurven (54) und in Ausbeutekurven von Molekülfluoreszenz NO⁺* (A + X) und von N*-Fluoreszenz beobachtet (55).

In der 0⁻ und N⁺-Ausbeutekurve werden als intensive Peaks die 3dπ- und $\#p\pi/\sigma$ -Rydbergzustände beobachtet. Rydbergzustände mit größeren Hauptquantenzahlen sind wahrscheinlich für das Auftreten der kleineren Peaks und Schultern in der 0⁻-Kurve bis zur Anregungsenergie von 21.5 eV verantwortlich. Wir schlagen vor, das intensive Auftreten der 3dm- und 4pm/o-Rydbergzustände damit zu erklären, daß die Potentialenergiekurven dieser Rydbergzustände und die des dissoziierenden Ionenpaarzustandes sich innerhalb des Franck-Condon-Bereiches kreuzen.

Daneben gibt es Strukturen in der 0⁻-Ausbeutekurve, die nicht mit Rydbergzuständen zum c³II-NO⁺ gedeutet werden können. Es handelt sich um zwei Schultern, die sich auf der niedrigen als auch auf der hochenergetischen Seite des $4p\pi/\sigma$ -Rydberg-Peaks befinden, ebenso wird nur die letzte breite Bande bei 21.9 eV dazugerechnet. Wir interpretieren diese Strukturen als Rydbergzustände, die zum B⁺¹E⁺-NO⁺-Zustand konvergieren. Dieser Ionenzustand zeigt im Photoelektronenspektrum (53) dreizehn Schwingungsniveaus mit Maximum bei 23.31 eV und einer Halbwertsbreite von 400 meV.

Weil die Strukturen in der O⁻-Kurve die Bande mit Maximum bei 21.9 eV und die beiden Schultern des $4p\pi/\sigma$ -Rydberg-Peaks auch jeweils eine Halbwertsbreite von etwa 400 meV zeigen, deuten wir sie als Mitglieder einer Rydbergserie mit Quantendefekt δ = 0.86.

N^+

Oberhalb der Anregungsenergie 21.02 eV ist neben dem Ionenpaarprozeß dissoziative Ionisation in N^+ + 0, jeweils im Grundzustand, möglich.

Im Photoelektronenspektrum (53) findet man jedoch zwischen 20 eV und 21.7 eV keine Hinweise auf stabile NO^+ -Ionenzustände. Da die N^+ -Ausbeutekurve bei 21.02 eV einen Anstieg zeigt (Tabelle 8), muß die dissoziative Ionisation bei dieser Energie

- 64 -

- 65 -

über direkte Anregung in einen Ionenzustand mit sehr flachen Minimum oder durch Präionisation eines Rydbergzustandes in einen solchen Ionenzustand stattfinden. Der steile Anstieg bei 21.74 eV wird als Anregung in den c¹II-NO[†]-Ionenzustand gedeutet, gefolgt von Prädissoziation in einen Ionenzustand mit abstoßender Potentialkurve (56,57). Ein weiterer Anstieg wird bei etwa 23.0 eV beobachtet (Abbildung 12). Bei dieser Energie kreuzt die Potentialkurve des B¹¹ Σ [†]-Ionenzustandes den Franck-Condon-Bereich (56). Der zu dem neuen Einsatz führende Prozeß wird als direkte Anregung in den B¹-Ionenzustand mit nachfolgender Prädissoziation interpretiert.

Abbildung 12a zeigt das NO^+ -Potentialkurvenschema (56) mit den Potentialkurven der Ionenpaare $N^+({}^{3}P)+O^-({}^{2}P^{\bullet})$ und $N^+({}^{1}D)+O^-({}^{2}P^{\bullet})$. Die $N^+({}^{3}P)+O^-({}^{2}P^{\bullet})$ -Potentialkurve schneidet den FC-Bereich bei etwa 19.5 eV und die Potentialkurven der zum c ${}^{3}\Pi$ -Ionenzustand konvergierenden Rydbergzustände innerhalb des FC-Bereiches.

bie $N^{+}(^{1}D)+O^{-}(^{2}P^{\bullet})$ -Potentialkurve schneidet den FC-Bereich bei etwa 21.5 eV. Der Verlauf dieser Kurven erklärt, warum in der O⁻-Ausbeutekurve die steilen Einsätze bei 19.56 eV und 21.46 eV als direkte Ionenpaarbildung gedeutet werden können, und warum als intensive Peaks in der O⁻-Ausbeute nur die beiden Rydbergzustände 3dm und 4pm beobachtet werden.

Abbildung 12a: Potentialenergiekurven von NO⁺ (aus Ref. 56).

Die ungefähre Lage der Potentialenergiekurven der Ionenpaarzustände $O^{-}(^{2}P^{0})+N^{+}(^{3}P/^{1}D)$ ist eingezeichnet. 4.3. CO

- 67 -

Tabelle 9

Ergebuisse

Für Kohlenmonoxid wurden die Ionenpaarbildungsprozesse $0^- + c^+$ und $c^- + 0^+$ beobachtet.

Abbildung 13 zeigt die O⁻-Ausbeutekurve. Dem Einsatz bei 20.91 eV folgt eine große Anzahl von Peakstrukturen bis 22.5 eV. Bis 23.5 eV ist die O⁻-Kurve durch mehrere kleine Peaks und breite Banden gekennzeichnet. Danach wächst die Ionenausbeute wieder, bis 26 eV werden drei breite strukturlose Banden beobachtet.

Abbildung 13: Photoionisations-Ausbeutekurven von 0^- und C^+ aus CO. Der Maßstab der C^+ -Kurve ist um den Faktor 6 reduziert. Die Kurven kreuzen sich bei 21 eV und 22.5 eV.

Strukturen (energetische Lage in eV) in der O-Ausbeutekurve nach

Photoauregung von CO

	Photoionisation		lektronenstoß	Absorption
			Ref 47	Ref 58
1	20.94±0.02	shoulder	20.8810.02	20.936
2	21.07	shoulder		21.068
3	21.13±0.01	peak		21.126
4	21.27	peak		21.241
5	21.31	shoulder		21.313
6	21.42	small peak		21.416
7	21.52	peak	* 	21.475
8	21.61	peak		21.604
9	21.65	shoulder		21.653
10	21.74	small peak		21.743
11	21.82	peak		21.823
12	21.86	shoulder		
13	21.93	shoulder		
14	22.04	small peak	}	22.049
15	22.11	shoulder	1	22.098
16	22.13	peak		22.164
17	22.28	peak		22.254
18	22.40	shoulder		ļ
19	22.42	small peak	1	22.415
20	22.50	small peak		22.495
21	22.63	small peak	ľ	22.580
22	22.68	small peak	1	
23	22,80	small peak		1
24	22.93	small peak		22.915
25	23.22	small peak	1	ł
26	23.38	small peak		
27	23.7250.05	onset	22.65 ^a	1
28	24.2 20.08	onset	24.1 ^{a)}	1
29	24.9 20.08	onset	24.6 ^{a)}	
ľ			22.8 ^{a)}	l
			23.1 ^{a)}	1
			25.3 ^{a)}	1

a) Wert des "peak"-Maximums
- 69 -

Tabelle 9 enthält die energetische Lage der Strukturen der 0⁻-Kurve, zusammen mit Daten aus Elektronenstoß- (47) und Absorptionsmessungen (58).

Die C⁺-Ausbeutekurve (Abbildungen 13 und 14) zeigt bis etwa 22.4 eV die gleichen Strukturen wie die O⁻-Kurve. Die Peaks sind weniger ausgeprägt als die in der O⁻-Kurve, weil ein größerer Untergrund beim Nachweis positiver Ionen ein ungünstigeres Signal-Rausch-Verhältnis bewirkt und scharfe Strukturen "verschmiert" werden.

Abbildung 15 zeigt die C⁻-Ausbeutekurve. Der Wirkungsquerschnitt für den Ionenpaarprozeß C⁻ + 0⁺ ist sehr gering. Die korrespondierende 0⁺-Ausbeutekurve konnte nicht gemessen werden. Geringe Verunreinigungen des Meßgases durch sauerstoffenthaltende Substanzen führen zu geringen Ausbeuten von 0⁺. Diese überlagern den geringen 0⁺-Beitrag aus dem C⁻/0⁺-Paarbildungsprozeß.

- 70 -

0

Im gesamten untersuchten Energiebereich treten 0⁻ und C⁺ jeweils nur im Grundzustand auf. Die beobachteten Strukturen in der 0⁻-Ausbeutekurve stammen alle von der Prädissoziation von Rydbergzuständen in Jonenpaarzustände mit abstoßender Potentialkurve.

Die Rydbergzustände sind in Absorption beobachtet worden (50,58,61,62), ebenso wie in Messungen zur Tonenpaarbildung mit Elektronenstoßanregung (63,64) und in fluoreszenzmessungen (65). Sie konvergieren zu zweifach-angeregten CO⁺-Tonenzuständen (66). Zuordnungen der zahlreichen Absorptionsbanden stammen von Codling und Potts (58) und Åsbrink et al (59).

Die Zuordnung der Rydbergzustände ist erschwert durch die Tatsache, daß die Vibrationsniveaus der beiden Ionenzustände sich überlappen (Tabelle 10) und nicht sehr intensiv sind, und kann noch nicht als abgeschlossen gelten.

Tabelle 10

Ionisationspotentiale und Energiebereiche der Schwingungsprogressionen zweifach angeregter Ionenzustände in CO (eV) (Die Elektronenkonfiguration der Zustäude wird charakterisiert durch Angabe der Zahl der Elektronen in den einzelnen Molekülorbitalen: zB $(\sigma 2s)^2 (\sigma^* 2s)^2 (\pi^2 2p)^2 (\pi^* 2p)^\circ \equiv (22420)$ für den elektronischen Grundzustand von CO)

Ionisations Potential (vertikal)	Schwingingspro≠ progressionen im Energiebereich	berechnetes Ionisations≖ Potential (vertikal)	Elektronenkonfigu≖ ration und Symmetrie des Ionenzustands		
(Ref 59)	(Ref 59)	(Ref 60)			
22.73	22.04 - 23.23	20.33	22221	d ² H	
23.38	23.04 - 23.99	22,19	22311	$c^2 \epsilon^+$	
25.48	24.77 - 26.53	26.1t	22311	(E) ² 2 ⁺	
28.09	27.7 - 28.43	29.62	21321	(F) ² E ⁺	

In der C⁺-Ausbeutekurve wird bei 22.45 eV der Einsatz des dissoziativen Ionisationprozesses C⁺ + O beobachtet. Die Stufen in der C⁺-Kurve bei 23.8 eV werden als Vibrationsniveaus des $D^2 R - C0^+$ -Ionenzustandes gedeutet. Diese werden durch direkte Ionisation angeregt und prädissoziieren in C⁺(²P⁰) + O(³P). Der Einsatz bei 24.3 eV kann als Anregung des C²E⁺-Ionenzustandes gedeutet werden, der in C⁺(²P⁰) + O(³P) oder in C⁺(²P⁰) + O(¹D) prädissoziieren kann.

с-

 c^{+}

Die Minimalenergie zur Bildung des Ionenpaares C⁻(*S*) + O⁺(*S*) ist 23.45 eV, wobei die Werte D(CO) = 11.108 eV (67), IP(O) = 13.614 eV (£8) und EA(C) = 1.272 eV (2) benutzt wurden. Ein Wert von 23.4 eV wird für die Schwellenenergie in der C⁻-Ausbeutekurve gefunden in Übereinstimmum mit der Rechnung. Die C⁻-Ausbeutekurve zeigt keine ausgeprägte Resonanzstruktur. Die Ionenausbeute fällt bei 24.8 eV bis nahezu auf Null ab.

Als Anregungsprozeß schlagen wir direkten Übergang aus dem $CO^{-1}\Sigma^{+}$ -Grundzustand in einen ${}^{1}\Sigma^{+}$ -Ionenpaarzustand vor.

Abbildung 15a zeigt die Potentialkurven der CO^+ -Ionenzustände und des $O^-({}^2P^{o})+C^+({}^2P^{o})$ lonenpaarzustandes nach Locht und Momigny (47). Die zu den C- und D-Ionenzuständen konvergierenden Rydbergzustände liegen im Energiebereich 20.9 eV bis 22.5 eV und wurden der Übersicht halber weggelassen. Die Potentialkurve des $O^-({}^2P^{o})+C^+({}^2P^{o})$ Ionenpaarzustandes schneidet die Rydbergzustände innerhalb des FC-Bereiches. Dies erklärt ihre starke

- 72 -

Abbildung 15a: Potentialenergiekurven von CO⁺ und des Ionenpaarzustandes C⁺(²P⁰)+O⁻(²P⁰) (Ref. 47). Die ungefähre Lage der C- und D-CO⁺-Ionenzustände und des Ionenpaarzustandes C⁻(⁴S⁰)+O⁺(⁴S⁰) ist eingezeichnet.

Wechselwirkung mit der Ionenpaarpotentialkurve und die relativ intensiven Peaks in der O⁻-Ausbeutekurve im Energiebereich 20.9 eV bis 22.5 eV. Die Potentialkurve des C⁻(${}^{*}S^{0}$)+O⁺(${}^{*}S^{0}$) Ionenpaarzustandes sollte bei etwa 21.4 eV den FC-Bereich schneiden. 4.4. N₂

- 74 -

Ergebnisse und Diskussion

Das Anionenmassenspektrum bei integraler Photoanregung weist Peaks bei m/e = -14, -16, -19, -26 und -28 auf (Abbildung 16). Die Druckabhängigkeit der Peaks wurde im Bereich 1.1 - 5.9×10^{-5} Torr gemessen (Druck im Rezipienten; der Druck in der Reaktionszelle ist etwa 600mal höher). Ebenso wurde die Druckabhängigkeit des massenunabhängigen Untergrundes untersucht.

Abbildung 17 zeigt die Intensität in den Massenpeaks (m/e =-14,-26,-28) gegen den Druck in log-log-Auftragung. Die eingezeichneten Geraden haben die Steigungen 2.7(m/e=-14), 1.6 (-26) und 2.7 (-28). Wegen der Ungenauigkeiten bei den Bestimmung des Druckes und der Intensität hat die Angabe der Steigung einen Fehler von +10%/-20%.

Abbildung 16: Anionenmassenspektrum für verschiedene Drucke Peaks bei n/e =-14,-16,-19,-26,-28 - 75 -

Die Peaks m/e =-14 und -28 zeigen eine Druckabhängigkeit, die zwischen quadratisch und kubisch liegt. Bei der Bildung dieser Ionen sollten entweder Dreikörperstöße oder zwei aufeinanderfolgende Stoßprozesse eine Rolle spielen, an denen zwei durch Photoanregung erzeugte Teilchen beteiligt sind. Der Peak m/e = -26 zeigt eine Druckabhängigkeit, die zwischen linear und quadratisch liegt. Für die Bildung dieses Ions sollten teilweise Stoßprozesse beteiligt sein, an denen ein durch Photoanregung erzeugtes Teilchen beteiligt ist.

Bei einem Speicherringsstrom von 68 mA und undispergierter Anregung (dies entspricht einem Photonenfluß hinter dem Monochromatoraustrittsspalt von etwa 10^{13} Photonen/sec) einem Druck im Rezipienten von 6.7 × 10^{-5} Torr erreichte man für den Massenpeak m/e =-28 eine Zählrate von 2000 Ereignissen pro Sekunde.

Die Anregungsspektren für Masse 14 und 28 zeigen Abbildungen 18 und 19.

bie Spektren sind gekennzeichnet durch zahlreiche Peaks und einen Kontinuumsbeitrag, der bei 15.6 eV einsetzt. Die Untergrundzählrate unterhalb 15.6 eV war mit etwa 0.05 Ereignissen pro Sekunde sehr gering.

Die beiden Spektren sind im Hinblick auf die energetische Lage der Peaks identisch. Die relativen Intensitäten der verschiedenen Peaks zueinander oberhalb und unterhalb 15.6 eV sind ebenfalls identisch, ebenso der relative Beitrag des Kontinuums.

Vergleicht man die Spektren von m/e =-14 und m/e =-28 miteinander, so ergibt sich unter Berücksichtigung der unterschiedlichen Transmission des Quadrupols für die beiden Massen folgendes: Unterhalb 15.6 eV erhält man unter gleichen Bedingungen (Strom, Druck, Hochspannung) eine identische Zählrate für die beiden Massen. Oberhalb 15.6 eV werden unter gleichen Bedingungen dreimal mehr Ereignisse bei Masse 28 als bei 14 nachgewiesen.

- 76 -

Abb. 19a: Ausschnitt aus der N-Photoionenausbeute mit Ausbeutekurven aus den Zerfallskanälen Autoionisation und Fluoreszenz und der Absorptionskurve.

Abbildung 19: Anregungsspektrum der Anionen-Masse 28.

11

-79-

relative Intensität der Peaks	m/e = 14	m/e = 28
unterhalb 15.6 eV	1	1
oberhalb 15.6 eV	1	3

Der Intensitätsanteil unterhalb 15.6 eV zur Gesamtintensität ist sehr gering (ca. 1%), d.h. der Hauptanteil der Intensität stammt aus Prozessen mit Anregungsenergie größer als 15.6 eV. Die bei integraler Anregung gemessenen Druckabhängigkeit (I = $p^{2.7}$) gilt also für Prozesse oberhalb 15.6 eV. Ob Stoßprozesse für Anregungsenergien unterhalb dieser Energie eine Rolle spielen, kann nicht geklärt werden.

Interpretation der Massenpeaks m/e =-16, -19, -26 des Anionenspektrums Die Massen entsprechen 0⁻, F⁻ und CN⁻. Geringe Verunreinigungen von H_2^0 oder O_2 und von $C_2H_2F_2$ und C_2H_3F sind für das Auftreten von 0⁻ bzw. F⁻ verantwortlich.

Las Auftreten von CN^- ist wegen der großen Elektronenaffinität bei Messungen an Stickstoff schon bei geringen Spuren von kohlenstoffhaltigen Substanzen kaum zu vermeiden (69). Die gemessenen Druckabhängigkeit ($I \approx p^{1.6}$) weist auf Stoßprozesse hin. Angesichts des experimentellen Aufbaus und der Anregung durch Photonen fällt es schwer die Peaks im Anionenmassenspektrum bei m/e = -14 und -28 den negativen Ionen N⁻ und N₂⁻ zuzuordnen. Die experimentellen Daten lassen jedoch keine andere Schlußfolgerung zu: Die Anregungsspektren für m/e = -14 und -28 zeigen die gleichen Strukturen wie das Absorptions- und das Photoionisationsspektrum von N₂(Abb 19a). Bei den Anregungsenergien oberhalb des lonisationspotentials, bei denen angeregte Stickstoffmoleküle gebildet werden, beobachten wir auch Peakstrukturen in den Anregungsspektren von m/e = -14 und -28. Die Schlußfolgerung ist, daß angeregte Stickstoffmoleküle bei der Bildung der negativen Ionen mit den Massen 14 und 28 eine wichtige Rolle spielen. Ebenso wird einsetzend mit der Ionisationsenergie von N₂ (= 15.6 eV) ein Kontinuumsbeitrag in den Anregungsspektren von m/e = -14 und -28 beobachtet.

Daraus wird geschlossen, daß die Photoelektronen aus der Ionisation von N_2 für die Bildung der negativen Ionen wichtig sind.

Von der Massenzahl her könnten die negativen Ionen auch $CH_2^$ und CO^- sein. Aus der Tatsache, daß die Massenpeaks 14 und 28 eine Druckabhängigkeit (I = p^{2.7}) zeigen und die Anregungsspektren den Absorptionsquerschnitt von Stickstoff widerspiegeln, wird jedoch geschlossen, daß es sich bei den beobachteten negativen Ionen um N⁻ und N₂⁻ handelt. Die Bildung von CN⁻ (m/e = -26), die auf Verunreinigung des N₂-Gases durch geringe Mengen von kohlenstoffenthaltenden Gasen zurückgeführt wird, spricht nicht dagegen. Einerseits ist der Bildungsquerschnitt von CN⁻ sehr groß – auch wegen der großen Elektronenaffinität von CN⁻ ,

-80-

-81-

andererseits zeigt er eine Druckabhängigkeit zwischen linear und quadratisch. Eine gleiche Druckabhängigkeit würde man für die Peaks der Masse 14 und 28 erwarten, wenn es sich um die Ionen CH_2^{-} und CO^{-} handeln würde.

Die Beobachtung von metastabilen negativen Stickstoffionen ist bedeutsam wegen den wissenschaftlichen und technischen Interesses an Kenntnissen über negative Stickstoffionen.

Lei Altersbestimmungen nach der C¹⁴-Hethode wird das Verhältnis der negativen Ionen C¹² und C¹⁴ bestimmt. Negative Stickstoffionen mit Lebensdauern länger als 10^{-6} sec verfälschen die C¹⁴-Daten (70).

"Recombinations"- $(X + e^- + X^- + hv)$ und Bremsstrahlungs-(X + $e^- (E_{kin} = E_1) + X + hv + e^- (E_{kin} < E_1))$ Kontinua sind wichtige Erscheinungen in Plasmen von hoher Temperatur und hoher Dichte. Die Kontinua sind bedeutend bei Energietransferprozessen durch Strahlung in Sternatmosphären und Laborplasmen wie Lichtbögen und Stoßwellen in "shock tubes" (71). Weil die Erdatmosphäre hauptsächlich aus Stickstoff besteht, ist dessen Rekombinations- und Bremsstrahlungskontinuum verantwortlich für das Aufheizen von Raumflugkörpern beim Wiedereintritt in die Atmosphäre.

Bisher gibt es nur wenige Publikationen über die Beobachtung negativer Stickstoffionen. Experimentelle Hinweise auf N⁻ stammen von Messungen an Stickstoffplasmen (71,72,73,74) und von Beobachtungen der Masse 14 in "double-charge-exchange"-Experimenten (70,75). Hiraoka et al (76) beobachten N⁻ in einem Quadrupolmassenspektrometer nach Elektronenstoß auf ein Gemisch von NO + He und N₂ + 0₂. Die Lebensdauer dieses negativen atomaren Stickstoffions liegt also im Bereich 10⁻⁶ sec. Die gemessenen Auftrittspotentiale widersprechen nicht den theoretischen Werten.

Die Lebensdauer und die Energie des N⁻ im ³P-Grundzustand sind bekannt aus "dissociative attachment"-Experimenten an N₂ (77,78,79) und NO (77). Oberhalb der Dissoziationsenergie wird N₂⁻ gebildet und die Energie des von N⁻(³P) emittierten Elektrons analysiert

$$N_2(X^1\Sigma_g^+) + e^- + H_2^- + N(^*S^0) + N^-(^3P)$$

+
 $N^-(^3P) + N(^*S^0) + e^-$

Die Bindungsenergie ist negativ $E\{N^{(3P)}\} = -0.07 \pm 0.02 \text{ eV},$ die Lebensdauer $\tau = 4 \times 10^{-14} \text{ sec.}$

Die experimentelle Beobachtung eines negativen molekularen Stickstoffions (N_2^{-}) mit einer Lebensdauer größer als 10^{-6} sec beschränkt sich auf eine Messung von Hiraoka et al (76): "With a mixture of $N_2 + 0_2$, small negative-ion signals corresponding to N_2^{-} and 0_2^{-} appeared. The ${}^{+1}u$ state of N_2^{-} , analogous to a ${}^{+1}$ in isoelectronic NO, would be metastable if at least one vibrational level lay below the $A^{3}\Sigma_{u}^{+}$ lowest triplet state of N_2 ."

-82-

Bildungsprozesse für N und N

Die Bildung von N⁻ über einen Ionenpaarprozeß ist aus energetischen Gründen im untersuchten Energiebereich nicht möglich.

Die Bildung des Ionenpaares $N^{+}(^{1}D) + N^{-}(^{1}D)$ ist oberhalb einer Energie von 27.6 eV möglich. Die Zustände des Ionenpaares kombinieren zu Singulett-Molekülzuständen. Diese Ionenpaarzustände können mit hochliegenden Singulett-Neutralzuständen wechselwirken, die durch Photoanregung des ${}^{1}\Sigma_{g}^{+}-N_{2}^{-}$ Grundzustandes erreicht werden können.

Im Folgenden werden Prozesse unterhalb und oberhalb des Ionisationspotentials von N_2 diskutiert, die zu N^- und N_2^- führen können.

Innerhalb der Reaktionszelle stoßen die durch Photoabsorption angeregten N₂*-Holeküle mit N₂ im Grundzustand. Bei diesen Stößen werden längerlebige neutrale N₂-Holeküle gebildet, die durch den Quadrupol nach oben zu Channeltron diffundieren können. Tabelle 11 enthält Lebensdauern von Zuständen unterhalb 12.5 eV, die bis zu 16 sec "leben". Ferner ist die Energiedifferenz zwischen ${}^{1}\Pi_{u}$ bzw. ${}^{1}\Sigma_{u}^{+}$ -Zuständen und diesen langlebigen Zuständen eingetragen.

Treffen metastabile Moleküle aufgrund von Diffusion auf die Channeltronoberfläche, wird ein Elektron freigesetzt und ins Channeltron gezogen. Wegen der off-axis-Anordnung des Channeltrons gegenüber der Austrittsöffnung des Stabsystems gelangen nur sehr wenige metastabile neutrale Moleküle direkt ins Channeltron. Oberflächenionisation dieser Art wird z.B. gezielt eingesetzt, um metastabile Teilchen nachzuweisen (80). Dieser Prozeß ist unabhängig von der Masseneinstellung des Quadrupols. Auch bei Tabelle ||

Lebensdauern metastabiler N ₂ -Moleküle (<code>t>l×l0⁻⁶sec</code>) unterhalb 12.5 eV
und Energietransfer bei einem Stoß zwischen N ₂ im ¹ E ⁺ -Grundzustand
und im angeregter $\left\ \frac{1}{10} - \text{oder} \right\ _{2}^{2}$ -Zustand
$(zB: N_2(X \stackrel{l}{b} \stackrel{+}{g}) + N_2 \stackrel{*}{(\Pi_u} \stackrel{l}{f} \stackrel{+}{b} \stackrel{+}{\to} N_2(A^3 \stackrel{+}{b}) + N_2 + E \stackrel{(Energie}{transfer}; 6.331 \text{ eV}))$
(Ref 81). Energietransfer * $T_o(N_2(^{1}\Pi_u/^{1}E_u^{+})) - T_o(N_2(m))$

	Т _о (eV)	Lebena» dauer (sec)	T (e♥)	ь ¹ л _ц 12,50	b ⁺¹ Σ ⁺ 12,85	сз ¹ л 12.9∔	c ₄ ¹ Σ _u 12.93
A ³ Σ ⁺	6.169	1.9		6.331	6.681	6.74	6.76
W ³ ∆ v=0 bis v=7	7.362	16 bis 5.4(-3)		5.138	5.488	5.548	5.55
B ³ H v=0 g bis v=10	7.353	8.0(-6) bis 4.4(-6)		5.147	5.497	5.54	5.56
B' ³ E ⁻ v=0 bis v=8	8.164	2.5(-5) bis 5.2(-5)		4.336	4.68	4.74	4.76
a ⁺¹ Σ_u	8.398	o.5		4.10	4.45	4.51	4.53
ang	8.548	1.1(-4)		3.95	4.3	4.36	4.38
w ¹ ۵	8.889	5,(-4)		3.61	3.96	4.02	4.04
ε ³ ε ⁺ g	11.87	1.9(-4)		0.63	o.98	1.04	1.06
`a ^{+ 1} Σ ⁺ α	12.25	?		o.25	0.60	0.66	0.68

- 94 -

-85-

anderen Masseneinstellungen des Quadrupols als 14 oder 28 müßten deshalb die gleichen Strukturen beobachtet werden. Diese Messungen stehen noch aus.

Bei einem Experiment mit Elektronenstoßanregung - es wurde die in Referenz 15 beschriebene Anordnung bestehend aus Trochoidal-Elektronenanalysator und Quadrupolmassenspektrometer verwendet - auf ein N₂ - Target ($p_{N_2} = 10^{-3}$ Torr) wurde oberhalb 12.5 eV Anregungsenergie im negativen Massentspektrum eine hohe massenunabhängige Zählrate gemessen, jedoch keine Peaks bei m/e = -14 oder -28 (82). Es wurde ein Quadrupol verwendet, bei dem sich das Channeltron nicht in der off-axis -Anordnung befand. Es wird daraus geschlossen, daß oberhalb 12.5 eV nach Erzeugung angeregter Stickstoffmoleküle tatsächlich Stoßprozesse zu langlebigen metastabilen N₂-Holekülen führen.

In unserem Experiment diskriminiert die off-axis Anordnung des Detektors bis auf die geringe Zählrate von etwa 1 sec⁻¹ (unterhalb 15.6 eV) gegen die metastabilen N₂-Moleküle.

Eine mögliche Schlußfolgerung des Experimentes mit Elektronenanregung ist, daß Stoßprozesse im Energiebereich 12.5 eV bis 15.6 eV zwischen angeregten und Grundzustands- N_2 -Holekülen mit einem hohen Wirkungsquerschnitt stattfinden, die bisher noch nicht bekannt sind.

Nach dem oben Gesagten ist es naheliegend, die Peaks, die unterhalb des ersten Ionisationspotentials (= 15.6eV) bei m/e = -14 und -28 beobachtet werden, auf Stöße metastabiler neutraler Stickstoffmoleküle mit der Channeltronoberfläche zurückzuführen. Prozesse oberhalb des ersten Ionisationspotentials Ebenso wie unterhalb des Ionisationspotentials (IP) können oberhalb des IP durch Stoß metastabile Stickstoffmoleküle gebildet werden, die zum Channeltron diffundieren, und beim Stoß mit der Channeltronoberfläche zum Herauslösen eines

Ein Vergleich mit der Zählrate unterhalb des IP zeigt jedoch, daß oberhalb des IP ein weiterer sehr viel intensiverer Prozeß beitragen muß, um die gemessene Zählrate zu erklären.

Diese Prozesse sollen im Folgenden untersucht werden.

Die Absorption von Photonen mit Energien größer als 15.6 eV führt zu angeregten neutralen Stickstoffmolekülen oder über direkte Ionisation zu Stickstoffmolekülionen. Die der Absorption folgenden Primärprozesse werden einzeln diskutiert, um die Bildungsraten der verschiedenen Folgeprodukte abzuschätzen.

Die <u>direkte Ionisation</u> liefert Elektronen und N₂⁺-Ionen in verschiedenen Zuständen und Schwingungsniveaus. Die Elektronen werden in dem elektrischen Feld, das im Reaktionsraum herrscht, beschleunigt in Richtung auf das Austrittsloch zum Quadrupol. Die positiven Ionen bewegen sich unter dem Einfluß dieses Feldes auf die Wände des Reaktionsraumes zu und werden dort neutralisiert.

Der Wirkungsquerschnitt für direkte Ionisation macht sich im Photoionenspektrum als kontinuierlicher Beitrag bemerkbar. Es werden Stufen beobachtet, wenn neue Ionenzustände oder neue Schwingungszustände angeregt werden können.

-86-

Elektrons führen, das einen Zählpuls verursacht.

Bei N₂ ist der Wirkungsquerschnitt für direkte Ionisation im Energiebereich 15.5 eV - 16.5 eV sehr viel kleiner als der für Autoionisation aus angeregten Neutralzuständen. Oberhalb 16.5 eV steigt der Anteil um 20% bis auf 50% bei 18 eV.

Bei den angeregten N_2^* -Zuständen handelt es sich im untersuchten Energiebereich um Rydbergzustände, die zum $A^2 R_u$ - und zum $B^2 \Sigma_u^*$ -lonenzustand konvergieren. Daneben werden eine große Anzahl von Strukturen im Absorptionsspektrum beobachtet, die sich nicht als Rydbergzustände deuten lassen. Die Elektronenkonfiguration dieser hochliegenden Neutralzustände ist bis heute nicht gedeutet worden. Da diese Strukturen ebenfalls im Photoionenspektrum beobachtet werden, weiß man, daß diese Neutralzustände teilweise stark autoionisieren.

 $N_2 + hv + N_2 * / N_2^+ + e^-$

Deaktivierungsprozesse für die angeregten neutralen N_2 -Moleküle sind Autoionisation (a), Prädissoziation (b), Abgabe der Überschußenergie durch Strahlung (c) und Stöße mit N_2 -Stickstoffmolekülen im Grundzustand (d).

Bei Stößen mit der Wand des Reaktionsraumes werden die angeregten Moleküle ebenfalls deaktiviert.

$$N_{2}^{*} + e^{-} \qquad (a)$$

$$N_{2}^{*} + N^{*}/N^{*} + N^{*} \qquad (b)$$

$$N_{2}^{*} + hv/N_{2} + hv \qquad (c)$$

$$N_{2}^{*} + N_{2}(X) + (N_{2}^{*} + N_{2}) \qquad (d)$$

<u>Autoionisationsprozesse</u> führen zu Elektronen und N_2^+ -Ionen in den energetisch möglichen Zuständen. Die kinetische Energie der Elektronen kann Werte zwischen O eV und E(hv)-IP₁ annehmen (83).

Mit <u>Prädissoziation</u> bezeichnet man die Wechselwirkung der hochangeregten Neutralzustände mit Dissoziationkontinua tieferliegender Molekülzustände. Im untersuchten Energiebereich können bei 15.6 eV Anregungsenergie die Dissoziationsprodukte $N(^{S^{\circ}}) + N(^{S^{\circ}})/N(^{2}D^{\circ})/N(^{2}P^{\circ})$ und $N(^{2}D^{\circ}) + N(^{2}D^{\circ})$ auftreten, ab 15.74 eV zusätzlich $N(^{2}D^{\circ}) + N(^{2}P^{\circ})$ und ab 16.93 eV zusätzlich $N(^{2}P^{\circ}) + N(^{2}P^{\circ})(siehe Anhang 7.1).$

Die Bildungsraten von N im angeregten oder im Grundzustand liegen im 10⁷ - 10⁸ sec⁻¹ Bereich. Wegen der langen Lebensdauern gegenüber strahlendem Zerfall sind Stöße mit anderen Teilchen oder Wandstöße die häufigsten Deaktivierungs- oder Neutralisationsprozesse.

<u>Fluoreszenz</u> aus Neutralzuständen oberhalb des Ionisationspotentials konnte erst während der Drucklegung dieser Arbeit von uns nachgewiesen werden (83a). Nach monochromatischer Anregung mit Synchrotronstrahlung (15.6 eV - 18.8 eV) wurde die Fluoreszenz integral in einem Wellenlängenbereich nachgewiesen, der durch die LiF-Kante (1080Å = 11.5 eV) und die CsJ-Beschichtung eines Channelplates (~1800Å = 6.9 eV) begrenzt wurde (Abb.19a Seite 78). Ferner wurden die Lebensdauern mehrerer fluoreszierender Zustände bestimmt. Die Fluoreszenz aus den Zuständen der Ogawa-Progressionen und den Rydbergzuständen zum B²E⁺_u-Ionenzustand zeigte bei der Lebensdauermessung zwei Komponenten: eine schr kurze mit $\tau_{fl.1} \leq 3 \times 10^{-10}$ sec und eine sehr lange mit $\tau_{fl.2} > 1 \mu sec$;

-88-

-89-

über die letztere kann wegen der Zeitstruktur der anregenden Strahlung (Pulsabstand o.1µsec) keine weitere Angabe gemacht werden. Dieses Ergebnis wird wie folgt interpreteiert:

Nach Anregung eines Zustandes der Ogawa-Progression (zB Anregungsenergie 784.5 Å = 15.80 eV) findet mit der kurzen Zeitkomponente ein Zerfall in einen Zustand statt, der im Potentialkurvenschema zwischen 5.5 eV und 9.0 eV liegt. Dieser Zustand zerfällt mit der langen Zeitkomponente in den Grund= zustand. Da der direkt angeregte Zustand ${}^{1}\Sigma_{u}^{+}$ - oder ${}^{1}\mathbb{H}_{u}^{-}$ Symmetrie besitzt, kann der schnelle optisch erlaubte Zerfall nur in Zustände mit ${}^{1}\Sigma_{g}^{+}$ - und ${}^{1}\mathbb{H}_{g}^{-}$ (aus ${}^{1}\Sigma_{u}^{+}$) oder in ${}^{1}\Sigma_{g}^{+}$ -, ${}^{1}\mathbb{H}_{g}^{-}$ und ${}^{1}\Delta_{g}^{-}$ (aus ${}^{1}\mathbb{H}_{u}^{-}$)-Symmetrie stattfinden.

Der einzige Zustand, der die Symmetriebedingung erfüllt und für welchen die Fluoreszenz der beiden Zerfälle (Ogawa-Prog. + N₂(?)) und (N₂(?) + N₂(X)) mit der verwendeten experimentellen Anordnung beobachtet werden kann, ist der $a^{1}H_{g}$ -Zustand mit T_{oo} = 8.5458 eV (81).

Weitere optisch erlaubte strahlende %erfallsprozesse der Neutralzustände oberhalb des Ionisationspotentials sind in den a^{HI} Σ_g^+ - Zustand (T_{OO} = 12.25 eV) und in den ${}^{I}\Sigma_g^+$ -Grundzustand möglich. Fluoreszenz dieser Übergänge können jedoch mit der verwendeten Apparatur nicht beobachtet werden.

Die relativ intensive Fluoreszenz mit der langen Zerfalls zeit aus dem Übergang $a^{\dagger}\Pi_{g} \rightarrow X^{\dagger}\Sigma_{g}^{\dagger}$ läßt den Schluß zu, daß ein relativ großer Anteil der Neutralzustände oberhalb des lonisationspotentials strahlend in den $a^{\dagger}\Pi_{g}$ -Zustand zerfallen.

Außerdem kann angenommen werden, daß Autoionisation aus den Zuständen der Ogawa-Progressionen nicht sehr viel schneller als der Zerfall über Fluoreszenz stattfindet, weil sonst die Fluoreszenz sehr viel weniger intensiv beobachtet werden dürfte.

Angaben über die Lebensdauer gegenüber Autoionisation entnimmt man aus der Halbwertsbreite Γ der Peaks in Autoionisations- bzw. Absorptionsmessungen. Solche Messungen sind mit hoher Auflösung ($\Delta \lambda$ = 0.03 Å bzw. 0.035 Å) durchgeführt worden. Mißt man für einen Peak eine Halbwertsbreite, die gleich groß wie die Wellenlängenauflösung ist ($\Gamma = \Delta \lambda$), so kann man eine untere Grenze für die Lebensdauer angeben

$$\tau_a > \frac{h}{\delta \lambda}$$

Für die Neutralzustände (E > IP) ist die Halbwertsbreite der Peaks in den überwiegenden Fällen gleich groß wie die Auflösung. Für die Lebensdauer dieser Zustände gegenüber Autoionisation gilt deshalb $\tau_a > 9 \times 10^{-13}$ sec. Für die weitere Rechnung schätzen wir ab: $\tau_{fl} = 30 \times \tau_a$.

Die Anzahl der pro Sekunde produzierten Stickstoffmoleküle im $a^{1}\pi_{g}$ -Zustand soll jetzt abgeschätzt werden (Beispiel: Absorptionspeak bei 784.5 Å(=15.8 eV) mit σ_{abs} = 190 Mb). Bei dieser Anregungsenergie werden mit P=5x10⁻²Torr, Anzahl der Photonen pro Sekunde: $3x10^{10}$ Photonen/Åxsec und Absorptionslänge innerhalb des Reaktionsvolumens 1 = 3 cm werden 1.8 x 10¹⁰ angeregte Stickstoffmoleküle erzeugt. Diese Moleküle zerfallen über Autoionisation (τ_{a}), Prädissoziation (τ_{pd}) und strahlend (τ_{f1}) oder stoßen mit Grundzustandsmolekülen (θ)(τ_{pd} = 10x τ_{a} , τ_{f1} = $30x\tau_{a}$, $\theta > \tau_{a}$).

Die Anzahl der pro Sekunde strahlend zerfallenden Moleküle im Verhältnis zu Autoionisations-Zerfall bestimmt sich aus $\tau_a/(\tau_a + \tau_{fl})$, die Anzahl der prädissoziirenden Moleküle aus $\tau_a/(\tau_a + \tau_{pd})$.

-90-

-91-

Es zerfallen demnach von den 1.8 x 10¹⁰ angeregten N_2 -Molekülen pro Sekunde 1.6x10⁹ Teilchen über Prädissoziation und 5.7x10⁸ Teilchen durch Fluoreszenz, der Rest über Autoionisation. Nehmen wir an, daß die Hälfte der strahlenden Zerfälle zum a¹H_g-Zustand führen, erwarten wir innerhalb des Erzeugungsvolumens von etwa 1 cm³ eine Produktionsrate von etwa R(a¹H_g) = 3 x 10⁸ sec⁻¹. Dieser Wert ist unsicher, weil das Verhältnis der Lebensdauern gegnüber Autoionisation und Fluoreszenz nicht bekannt ist. Man würde eine größerer Produktionsrate erwarten, wenn τ_a größer als 9 x 10⁻¹³ sec wäre und $\tau_a/\tau_{fl} > 30$.

Wieviele Moleküle im $a^{1}\pi_{g}$ -Zustand permanent vorhanden sind, hängt von den Deaktivierungsmechanismen ab: Wandstoß (t_{w} = 1.2x10⁻⁵ sec) und strahlender Zerfall in den Grundzustand (τ_{f1X} = 1.1 x 10⁻⁴ sec (Tabelle 11)). Die Gleichgewichtskonzentration bestimmt sich aus der Formel

$$N(N_{2}(a^{1}f_{g})) = \frac{R(a^{1}f_{g})}{1/t_{w} + 1/\tau_{f}IX}$$
$$= 3.3 \times 10^{3} \text{ cm}^{-3}.$$

Dieser Wert stellt eine untere Grenze dar, weil sowohl die Bildungsrate größer sein kann als auch die Effektivität der Deaktivierung durch Wandstoß nicht bekannt ist und man mit einem größeren Wert für t. rechnen kann.

Autoionisation, Prädissoziation und Deaktivierung durch Strahlung konkurrieren untereinander und mit den Stoßprozessen. Die Lebensdauern gegenüber Autoionisation liegen im 10^{-12} -sec Bereich, die gegen Prädissoziation im 10^{-10} bis 10^{-9} sec-Bereich und die gegenüber strahlendem Zerfall von optisch angeregten Zuständen im 10⁻¹⁰- 10⁻⁹ sec-Bereich. Bei diesen Zahlen handelt es sich um Richtwerte, die Werte für bestimmte Zustände variiren davon bis zu zwei Größenordnungen. Die Lebensdauern gegenüber Stoß hängen von der Dichte der Moleküle, der Teilchengeschwindigkeit und dem Stoßquerschnitt ab.

Für Stöße zwischen N₂-Molekülen Im Grundzustand und in angeregten Zuständen oberhalb des ersten Ionisationspotentials sind keine Wirkungsquerschnitte bekannt. Aus der Literatur entnimmt man für ähnliche Prozesse Werte zwischen 10^{-16} cm² und 10^{-12} cm².

Am Beispiel einiger Absorptionsstrukturen soll abgeschätzt werden, wieviele Stoßprozesse von angeregten N₂^{*}-Molekülen mit Molekülen im Grundzustand stattfinden in Abhängigkeit von den konkurrierenden Zerfallsprozessen.

Oberhalb des Ionisationspotentials werden Absorptionsquerschnitte zwischen 20 und 200 Mb gemessen. Der Absorptionsquerschnitt bei 784.5 Å (=15.80 eV) ist 190 Mb. Bei den vorliegenden Verhältnissen ($p = 5 \times 10^{-2}$ Torr, $I_o = 3 \times 10^{10}$ Photonen/sec Å, Absorptionslänge innerhalb des Formationsraumes l = 1.5 cm) werden bei dieser Anregungsenergie 1×10^{10} angeregte Stickstoffmoleküle pro Sekunde erzeugt.

Die Wahrscheinlichkeit, daß ein angeregtes Molekül mit einem Grundzustandsmolekül stößt, bevor es autoionisiert, ist gegeben durch (84)

$$\rho = \int_{\theta}^{t} \exp(-\frac{t}{\tau_{a}}) \times \exp(-\frac{t}{\theta}) dt/0$$

-92-

-93-

Die Lebensdauer gegenüber Autoionisation ist τ_a , die Lebensdauer gegenüber Wandstoß t_w^* und die Lebensdauer gegenüber Stoß mit einem Grundzustandsmolekül ist $\theta = (n \ \overline{c} \ \sigma)^{-1}$, wobei σ der Wirkungsquerschnitt für den Stoß ist.

Die Wahrscheinlichkeit, daß ein Teilchen nach der Zeit noch nicht gestoßen hat, ist exp $(-t/\tau_a)$. Die Wahrscheinlichkeit für einen Stoß im Zeitintervall zwischen t und t + dt ist exp $(-t/\theta)$ dt/ θ . Die Integration wird nur bis zur Zeit T = t_W^* durchgeführt, weil danach das angeregte Molekül mit der Wand gestoßen hat und seine Anregungsenergie abgegeben hat. Man erhält nach Ausführung der Integration

$$\rho = \frac{\tau_a}{\tau_a + \theta} \quad (1 - \exp\left(-\frac{\tau_a^* \times (\tau_a + \theta)}{\tau_a \theta}\right))$$

Der Exponentialausdruck kann vernachlässigt werden, weil t[#] sehr viel größer als τ_a ist. Es ergibt sich für

$$\rho = \frac{\tau_a}{\tau_a + 6}$$

Tabelle 12 enthält die Anzahl der angeregten Teilchen, die mit Grundzustandsmolekülen stoßen für eine Reihe von Werten für den Wirkungsguerschnitt g. -94-

Tabelle 12

Anzahl stoßender angeregter Stickstoffmoleküle $N(N_2^{th})_{coll}$ in Abhängigkeit vom Stoßquerschnitt σ_{coll} . Zerfallskanal: Autoionisation ($\tau_a = 1 \times 10^{-12}$ sec) Beiapiel für Absorptionspeak bei 784.5 Å : $\sigma_{abs} = 190$ Mb, Bildungsrate angeregter N ^A-Moleküle: 1×10^{10} sec⁻¹ (4(-15) $\equiv 4 \times 10^{-15}$)

°coll	θ	ρ _a	N(N [*]) ₂ coll	
(cm ²)	(sec)		(sec ⁻¹)	
1(-16)	6.5(-4)	1.5(-9)	1.5(+1)	
1(~15)	6.5(-5)	1.5(-8)	1.5(+2)	
1(-14)	6.5(-6)	1.5(-7)	1.5(+3)	
1(-13)	6.5(-7)	1.5(-6)	1.5(+4)	
1(-12)	6.5(-8)	1.5(-5)	1.5(+5)	

Bei der Anregungsenergie von 784.5 Å werden durch Autoionisation pro Sekunde 1 × 10^{10} N₂⁺ Ionen gebildet und ebenso viele Elektronen mit kinetischer Energie zwischen 0 und 200 meV. Es finden 1.5 × 10^5 Stöße/sec zwischen den direkt angeregten und Grundzustandsmolekülen statt, wenn man einen Stoßquerschnitt von 10^{-12} cm² annimmt.

Vergleicht man das Absorptionsspektrum (85) oberhalb des ersten Ionisationspotentials und das Photoionenspektrum von N_2^+ (86), stellt man fest, daß eine große Anzahl von Absorptionsstrukturen, die neutralen Zuständen zugeordnet werden, im Photoionenspektrum nicht oder sehr viel schwächer als andere Strukturen auftreten. Markante Beispiele sind zum Beispiel Peaks bei 787.5 Å und 754 Å. -95-

Als Beispiel wird die Anregung bei 754.4 Å genommen. Der Absorptionsquerschnitt ist 65 Mb. Die Struktur wird in Photoionenspektren nicht beobachtet. Der Absorptionsquerschnitt entspricht einer Bildungsrate von 4×10^9 angeregten Stickstoffmolekülen pro Sekunde.

Daraus folgt, daß viele neutrale Zustände oberhalb des lonisationspotentials nicht hauptsächlich autoionisieren. Zerfallskanäle dieser Zustände können Prädissoziation oder strahlender Zerfall sein. Die Lebensdauer gegenüber Prädissoziation liegt in der Größenordnung 10⁻¹⁰ sec, die gegen strahlenden Zerfall im 10⁻⁶ bis 10⁻⁷ sec Bereich.

per Anteil der Stickstoffmoleküle in diesen Zuständen, die vor Prädissoziation oder Abgabe der Anregungsenergie durch Strahlung mit Grundzustandsmolekülen stoßen, ist größer als beim Zerfall durch Autoionisation. Tabelle 13 enthält für eine Reihe von Werten für den Stoßwirkungsquerschnitt o die Anzahl der stoßenden Teilchen pro Sekunde. Tabelle 13

Anzahl stoßender angeregter Stickstoffmoleküle $N(N_2^*)_{coll}$ in Abhängigkeit vom Stoßquerschnitt σ_{coll} Zerfallskanäle: 1) Prädissoziation ($\tau_{pd} = 1 \times 10^{-10} \text{sec}$) 2) strahlender Zerfall ($\tau_{st} = 5 \times 10^{-8} \text{sec}$) Beispiel für Absorptionspeak bei 754.4 Å: $\sigma_{abs} = 65 \text{ Mb}$

Bildungsrate angeregter N₂⁴-Moleküle : $4 \times 10^{9} \text{ sec}^{-1}$. (4(-12) = 4×10^{-12})

		Prädissozia	tion	Strahlender	Zerfall	
^o coll	θ	^р рđ	N(N2 [*])	ρ _{st}	N(N [*])	
(cm²)	(sec)		(sec ⁻¹)		(sec ⁻¹)	
1(-16)	6.5(-4)	1.5(-7)	6 (+2)	7.7(-5)	3 (+5)	
1(~15)	6.5(-5)	1.5(-6)	6 (+3)	7.7(-4)	3 (+6)	
1(-14)	6.5(~6)	1.5(-5)	6 (+4)	7.6(-3)	3 (+7)	
1(-13)	6.5(-7)	1.5(-4)	é (+5)	7.1(-2)	2.8(8)	
1(-12)	6,5(-8)	1.5(-3)	6 (+6)	4.3(-1)	1.7(9)	
+(-16) +(-15) +(-14) +(-13) +(-12)	6.5(-4) 6.5(-5) 6.5(-6) 6.5(-7) 6.5(-8)	1.5(-7) 1.5(-6) 1.5(-5) 1.5(-4) 1.5(-3)	6 (+2) 6 (+3) 6 (+4) 6 (+5) 6 (+6)	7.7(-5) 7.7(-4) 7.6(-3) 7.1(-2) 4.3(-1)	3 (+5) 3 (+6) 3 (+7) 2.8(8) 1.7(9)	

Auf Grund der Primärprozesse befinden sich innerhalb des Formationsraumes folgende Teilchen, die miteinander stoßen können:

- 1) Stickstoffmoleküle im Grundzustand mit einer Dichte von 1.6 × 10^{15} cm⁻³ bei einem Druck von 5 × 10^{-2} Torr.
- 2) Stickstoffionen im ${}^{2}\Sigma_{u}^{+}$ Grundzustand und in den angeregten Zuständen $A^{2}\Pi_{u}$ und $B^{2}\Sigma_{u}^{+}$. Sie werden entweder durch direkte Ionisation oder durch Autoionisation gebildet und bewegen sich unter dem Einfluß des Feldes im Formationsraum auf die Wände des FR zu, wo sie neutralisiert werden. Die maximale Bildungsrate liegt bei etwa 1 × 10¹⁰ sec⁻¹.
- 3) Elektronen, die durch direkte Ionisation oder durch Autoionisation gebildet werden. Sie bewegen sich unter dem Einfluß des Feldes auf das Austrittsloch zum Quadrupol zu . Sie besitzen innerhalb des Formationsraumes kinetische Energien zwischen OeV und 50 eV. Die Bildungsrate ist die gleiche wie bei den Stickstoffionen. Der maximale Wert ist 1 × 10¹⁰ sec⁻¹.
- 4) Angeregte neutrale Stickstoffmoleküle in ${}^{1}\Pi_{u}$ und ${}^{1}\Sigma_{u}^{+}$ Molekülzuständen. Die Lebensdauern sind kurz: sie werden entweder deaktiviert durch Autoionisation, Prädissoziation oder Abgabe der Energie durch Strahlung oder sie stoßen mit N₂-Molekülen im Grundzustand. Als Produkte dieser Deaktivierungsprozesse treten Ionen und Elektronen, Stickstoffatome in "S⁰, ²D⁰ oder ²P⁰-Zuständen, Moleküle in niedriger liegenden Singulett-Zuständen oder die Folgeprodukte der Stöße mit N₂(X) auf.

-96-

-97-

5) Angeregte neutrale Stickstoffmoleküle im a g^{-2} ustand. Dieser Zustand ist der Endzustand des strahlenden Zerfalls der Neutralzustände oberhalb des Ionisationspotentials. Eine untere Grenze für die Gleichgewichtskonzentration ist etwa 3.7 x 10³ cm⁻³

Die möglichen Wechselwirkungen bzw. Stöße dieser Teilchen untereinander sind schematisch in Tabelle 14 aufgeführt.

Tabelle 14: Stoßprozesse der Primärprodukte untereinander

$$N_{2}(X) N_{2}^{*} N_{2}^{*}({}^{1}\Pi_{u}/{}^{1}\Sigma_{u}^{+}) e^{-}$$

$$N_{2}(X) X1 A1 A2 A3$$

$$N_{2}^{*} X2 A4 A5$$

$$N_{2}^{*}({}^{1}\Pi_{u}/{}^{1}\Sigma_{u}^{+}) X3 A6$$

$$N_{2}^{*}(a{}^{1}\Pi_{g}) A7$$

X1: $N_{2}(X) + N_{2}(X)$

Stöße zwischen Grundzustandsmolekülen halten das thermische Gleichgewicht aufrecht. Die Bildung von Stickstoffmolekül-Dimeren ist bei T = 300 K nicht möglich. Die Bindungsenergie des van der Waals Moleküls $(N_2(X))_2$ ist mit 15.54 meV (87) geringer als die mittlere kinetische Energie von N₂-Molekülen bei T = 300 K. Diese Bindungsenergie wurde berechnet für eine Geometrie, in der die Moleküle in zwei Ebenen übereinanderliegen, deren Abstand 3.5 Å beträgt; die Molekülachsen bilden einen rechten Winkel. Den Hauptbeitrag zur Bindungsenergie liefert die Quadrupol-Quadrupol-Wechselwirkung. A1: $N_2(X) + N_2^+$

Stöße zwischen $N_2(X)$ und N_2^+ im Grundzustand können zu Ladungsaustausch mit den gleichen Endprodukten führen. Bei Stößen zwischen schwingungsangeregten Ionen oder Ionen in angeregten Zuständen mit $N_2(X)$ können schwingungsangeregte und/oder elektronisch angeregte neutrale N_2 gebildet werden. Bei Dreikörperstößen zwischen zwei $N_2(X)$ und N_2^+ kann N_4^+ gebildet werden. Die Ratenkonstante für diesen Prozeß wird mit K = 5 × 10⁻²⁹ cm⁶ sec⁻¹ angegeben(88). Die N_4^+ -Ionen werden ebenso wie N_2^+ unter dem Einfluß des Feldes zu den Wänden des Formationsraumes beschleunigt und dort neutralisiert.

A2: $N_2(X) + N_2^*(^1\Pi_1/^1\Sigma_1^+)$

Stöße zwischen direkt angeregten N_2^* -Molekülen und $N_2(X)$ finden in Konkurrenz zu den Anderen Deaktivierungsprozessen Autoionisation, Prädissoziation und Strahlungsabgabe statt. Die Stoßrate berechnet sich aus den Lebensdauern gegenüber anderen Deaktivierungsprozessen und dem Wirkungsquerschnitt für Stoß. Werte für Stoßquerschnitte für den Prozeß $N_2(X) + N_2^{*(1)} \Pi_u^{1} \Sigma_u^+$ sind meines Wissens nicht bekannt. Abschätzungen können jedoch aus Prozessen gewonnen werden, in denen einer der Stoßpartner ein Stickstoffmolekül ist (siehe Anhang 7.2.). In Tabelle 12 und 13 (siehe oben) sind für verschiedene Stoß-Wirkungsquerschnitte und für die drei Fälle der anderen Deaktivierungsprozesse Raten für Stöße zwischen N_2^* und $N_2(X)$ auf-Eeführt. Gehen wir von einem Wert von 10^{-12} cm² für den Stoßquerschnitt aus, so finden für ein N_2^* in einem hauptsächlich autoionisierenden Zustand 1.5 × 10^5 Stöße mit $N_2(X)$ statt (Tabelle 12). Findet hauptsächlich durch Strahlung abgegeben, stößt fast jedes zweite N_2^* mit $N_2(X)$: die Stoßrate ist 1.7 × 10^5 sec⁻¹. Als Endprodukte eines Stoßes $N_2(X) + N_2^* ({}^1\Pi_{\mu}/{}^1\Sigma_{\mu}^*)$ sind denkbar

$$N_{2}(X) + N_{2}^{+} + e^{-} \qquad A$$

$$N_{2}^{\pm}(m) + N_{2}(X,v)/N_{2}^{\pm} \qquad B$$

$$N_{2}(X) + N^{\pm} + N^{(\pm)} \qquad C$$

$$N_{3} + N/N^{\pm} \qquad D$$

$$(N_{2})_{2}^{\pm} \qquad E$$

 $\underline{\text{Fall A:}} \quad N_2(X) + N_2 + N_2(X) + N_2^{\dagger} + e^{-}$

Hiese Endprodukte sind zu erwarten, wenn sich N_2^{4} in einem hauptsächlich autoionisierenden Zustand befindet. Is handelt sich um Stoßionisation, wobei der Stoß mit $N_2(X)$ die Autoionisation von N_2 bewirkt. Wirkungsquerschnitte für Stoßionisation liegen im 10⁻¹² - 10⁻¹⁵ cm²-Bereich (siehe Anhang 7.2).

<u>Fall B:</u> $N_2(X) + N_2 = N_2(m) + N_2(X,v)/N_2$

Handelt es sich um N_2 -Moleküle in Zuständen, die nicht hauptsächlich autoionisieren, kann ein Stoß zur Umverteilung der Amregungsenergie von N_2 auf beide Stoßpartner führen. Das Grundzustandsmolekül kann Schwingungs- und/oder elektronische Amregungsenergie übernehmen. <u>**Fall B:</u></u> H_2(X) + N_2^* + N_2^*(m) + N_2(X,v)/N_2^*</u>**

Handelt es sich um N_2^* -Holeküle in Zuständen, die nicht hauptsächlich autoionisieren, kann ein Stoß zur Umverteilung der Amregungsenergie von N_2^* auf beide Stoßpartner führen. Das Grundzustandsmolekül kann Schwingungs- und/oder elektronische Anregungsenergie übernehmen.

Wirkungsquerschnitte liegen vor für Stöße zwischen angeregten Stickstoffmolekülen und anderen Molekülen oder Edelgasen, jedoch nicht für Stoßprozesse zwischen N₂(X) und angeregten N₂-Molekülen in ¹ Π_u - oder ¹ Σ_u ⁺-Zuständen mit Anregungsenergien größer als 15.(eV. Bei den veröffentlichten Werten handelt es sich um Stöße von N₂(X) und angeregten Molekülen oder Edelgasen (siehe Anhang 7.2). Lie Wirkungsquerschnitte haben Werte im 10⁻¹⁵ - 10⁻¹⁶ cm²-Pereich.

Fall C:
$$N_2(X) + N_2^* + N_2(X) + N^* + N^{(*)}$$

Diese Endprodukte werden erwartet, wenn das stoßende $N_2(X)$ die Prädissoziation von N_2^* auslöst. :iese N-Atome stehen mit den durch Prädissoziation gebildeten für weitere Stöße (z.R. mit $N_2(X)$) zur Verfügung.

Fall D:
$$N_2(X) + N_2^*({}^{l}\Pi_{u}/{}^{3}\Sigma_{u}^{+}) + N_3 + N/N^*$$

 N_3

Die Bildung von N₃ durch "high intensity photolysis" von IIN_3 wurde von Thrush (89) durch Beobachtung des $N_3(X^2 \Pi_g) - N_3({}^2 \Sigma^+) -$ Absorptionsspektrums nachgewiesen. Jouglas und Jones (90) bestimmten Molekülkonstanten des ${}^{2}\Pi_{g}$ -Grundzustandes und des ersten angeregten ${}^{2}\Sigma^{+}$ -Zustandes und schlossen auf eine symmetrische, lineare Geometrie des Grundzustandsmoleküls mit $r_{N-N} = 1.1815$ Å.

Tranklin et al (91) bestimmten als Standardbildungsenthalpie ΔM_{f} = 105 kcal/mole (= 4.55 eV/Mole) und Gray (92) bestimmt aus der Energetik des ersten erlaubten Zerfallsprozesses

$$\aleph_3({}^1\Pi_g) \rightarrow \aleph_2(X{}^1\Sigma_g^{-*}) + \aleph({}^2D^*)$$

als Dissoziationsenergie $D(N_2 - N) = 63$ kcal/mole (= 2.73 eV/Mole). H_3 im Grundzustand sollte deshalb stabil sein, insbesondere sollten Wandstöße nicht zur Dissoziation führen.

Thrush (89) beobachtete das N_3 -*i*bsorptionsspektrum bis 2 msec nach dem Ende des Anregungspulses. Das Verschwinden wurde wegen der quadratischen Druckabhängigkeit auf Stoßprozesse zurückgeführt. Sehr effektiv für den Zerfall von N_3 ist der Stoß zweier N_2 -Noleküle

$$2N_3 + 3N_2$$
.

Energetisch ist die Bildung von N₃ über einen assoziativen Prozeß bei Stoß zwischen N₂(X) und N₂^{*} möglich, wenn die elektronische Anregungsenergie von N₂^{*} größer als 11.8 eV ist.

$$N_2(X) + N_2^*(E_{Apr} > 11.8 \text{ eV}) + N_3(^2 H_g) + N(^2 D^4)$$

Der Prozeß

$$N_2(X) + H_2^* \rightarrow H_3(^{1}H_{p}) + N(^{2}P^{0})$$

ist möglich, wenn die Anregungsenergie von H_2^{\pm} größer als 13.0 eV ist.

Wenn die Bildung von N_3 in dem hier beschriebenen Experiment mit Prädissoziation von N_2^{\pm} konkurriert und als Wirkungsquerschnitt für die N_3 -Bildung 10^{-13} cm² angenommen wird (Tabelle 13); so können pro Sekunde 6×10^5 N₃-Moleküle entstehen. Die Konzentration innerhalb des Formationsraumes wird durch Abdiffusion von N₃ verringert. Die N₃-Moleküle diffundieren durch die Fintrittsöffnung für die Photonen aus dem Formationsraum.

Die innerhalb der Reaktionszelle in einem Volumen von etwa 1 cm³ gebildeten N₃ diffundieren in den Raum des Gehäuses, das die Reaktionszelle umgibt. Die Innenseiten des Gehäuses bilden eine Fläche von 60 cm², die Öffnung für die Photonen eine Fläche von 0.06 cm². Die Wahrscheinlichkeit, daß ein N₃-Molekül durch die Öffnung das Gehäuse verläßt ist 1 : 10³. Die Zeit, die ein N₃- Molekül zum Zurücklegen zwischen den Wänden des Gehäuses benötigt, oder die Zeit zwischen zwei Wandstößen, ist t_W = 2 × 10⁻⁴ sec. Die Zeit, in der ein N₃ das Gehäuse durch die Öffnung verläßt, ist t_W = 10³ × t_W = 0.2 sec.

Die Konzentration der N $_3$ -Moleküle innerhalb des Formationsraumes kann jetzt berechnet werden. Wird zur Zeit t $_0$ die die N₃-Erzeugung eingestellt, nimmt die Konzentration, die zur Zeit t_o vorhanden ist, exponentiell ab ($\tau = t_v$)

$$N(N_3) = N_0(N_3) \exp(-t/\tau)$$

Die Abnahme pro Zeitintervall ist

$$-\frac{\mathrm{dN}(N_3)}{\mathrm{dt}} = +\frac{N_0(N_3)}{\tau} \exp(-t/\tau)$$

Die Gleichgewichtskonzentration $N_0(N_3)$ berechnet sich, wenn die Verlustrate gleich der Erzeugungsrate ist

$$+ \frac{dN(N_3)}{dt} = 6 \times 10^5 \text{ cm}^{-3} \text{ sec}^{-1} = \frac{N_0(N_3)}{0.2 \text{ sec}} \text{ cxp(-0.2)}$$

Die Konzentration bestimmt sich danach zu 2 \times $10^{5}~\rm N_{\odot}~cm^{-3}$.

<u>Fall E:</u> $N_2(X) + N_2^{\pm}({}^1\Pi_u/{}^1\Sigma_u^{\pm}) + (\Pi_2)_2^{\pm}$

Die Bildung eines langlebigen N_{μ}^{*} -Komplexes ist mehrere Male für die Erklärung von Prozessen im "Hitrogen Pink Afterglow" (93) und für die Deutung von Stoßprozessen zweier $N_{2}(A)$ -Moleküle (94) vorgeschlagen worden. Die Bindungsenergie von N_{μ}^{*} ist wahrscheinlich gering. N_{μ}^{*} sollte deshalb sowohl beim Stoß mit $N_{2}(X)$ als auch durch Wandstoß zerfallen.

Le wird deshalb, venn überhaupt, nur eine geringe $H_{ij}^{*}-Fon-$ zontration erwartet.

A3: $N_2(X) + e^{-1}$

wie durch Autoionisation von N_2^{\pm} oder durch direkte Ionisation gebildeten Elektronen werden unter dem Einfluß des Feldes beschleunigt. Das Energiespektrum reicht von 0 bis etwa 50 eV. Durch Elektronenstoß können sowohl N_2^{\pm} in Eurzlebigen Compound-Zuständen als auch angeregte N_2^{\pm} -Moleküle in Singulett- oder Triplett-Zuständen gebildet werden.

$$N_2(X) + e^{-\frac{N_2}{N_2^{+}}}$$
 (A)

<u>Fall A:</u> $N_2(X) + e^- + N_2^-$

Die Bildung von $N_2^{-(^2 \Pi_g)}$ nach Bildung von Photoelektronen aus N_2 mit kinetischer Energie zwischen 1.8 eV únd 3 eV wurde von Streets et al (95) und von Woodruff und Marr (96) beobachtet.

Nimmt man an, daß die Elektronen im Mittel wöhrend des Durchlaufens einer Strecke von 0.4 mm von $E_{kin} = 1.8$ eV bis auf $E_{kin} = 3$ eV beschleunigt werden, berechnet sich die Anzahl der Elektronen $I_{coll}(e^{-})$, die in der kurzlebigen $H_2^{-}({}^{2}H_g)$ -Resonanz gebunden werden, aus

 $I_{coll}(e^-) = I_0(e^-) - I_{trans}(e^-) = I_0(e^-)(1 - \exp(-\sigma n 1)).$

Mit einem mittleren Wirkungsquerschnitt $\sigma_{e^{-}}(N_{g^{-}}(^{2}\Pi_{g^{-}}) = 1 \times 10^{-1.5} \text{ cm}^{2}$ (97), 1 = 0.04 cm, n = 1.6 × 10¹⁵ cm⁻³ (bei p = 5 × 10⁻² 'forr) und $f_{0}(e^{-}) = 1 \times 10^{10} \text{ sec}^{-1}$ ergibt sich $I_{coll}(e^{-}) = 6 \times 10^{0} \text{ sec}^{-1}$. Es werden also pro Sekunde 6 × 10[°] kurzlebige $N_2^{-(^2 \Pi_g)}$ -Moleküle gebildet. Da die Potentialkurve dieser N_2^{-} -Resonanz jedoch vollständig innerhalb der Potentialkurve des Grundzustandes des rentralen $N_2^{-holeküls}$ liegt, autoionisiert N_2^{-} sofort $(\tau = 6 \times 10^{-15} \text{ sec})$ entsprechend $N_2^{-(^2 \Pi_g)} \rightarrow N_2(X^{1}\Sigma_g^{+},v) + e^{-}$. Die Elektronen werden in verschiedene Richtungen emittiert und erhalten durch das Feld wieder eine Beschleunigung in Richtung auf das Austrittsloch des Formationsraumes.

Stoßen die Elektronen erst, wenn sie durch die Feldbeschleunigung größere kinetische Energie erhalten haben, können höherliegende N₂⁻-Eesonanzen in Doublett-Zuständen gebildet werden. Die längste bisher gemessene Lebensdauer wird mit $\tau \neq 1 \times 10^{-12}$ sec lür die "b"-Eesonanz (${}^{2}\Sigma_{g}^{*}$)(11.87 eV) (98) angegeben(siehe Anhang 7.2.).

Untersuchen wir die Möglichkeit, daß ein durch Elektronenstoß gebildetes N₂⁻-Nolekül mit einer Lebensdauer von $\tau = 1 \times 10^{-12}$ sec gegen Autoionisation durch Stoß (t_c = 2 × 10⁻⁵ sec) mit N₂(X) stabilisiert wird, dann werden bei einem Wirkungsquerschnitt von $\sigma = 1 \times 10^{-15}$ cm für den Elektroneinfang 6 × 10⁶ N₂⁻-Noleküle pro Sekunde gebildet. Von diesen können

$$N(N_2^{-}) \times \rho = 30 \text{ sec}^{-1} (\rho = \frac{\tau}{\tau + \tau_c} = 5 \times 10^{-9})$$

mit $N_2(X)$ stoßen und stabilisiert werden. Da jedoch keine längeren Lebensdauern als $\tau = 1 \times 10^{-12}$ sec von N_2^- in Doublett-Zuständen, die durch Elektronenstoß auf $N_2(X)$ gebildet werden, bekannt sind, können diese N_2^- nicht in einem Quadrupolmassenspektrometer nachgewiesen werden.

fall B:
$$N_2(X) + e^- \rightarrow N_2^* + e^-$$

Haben die Elektronen durch die Feldbeschleunigung höhere kinetische Energien erreicht, können angeregte \aleph_2 -loleküle gebildet werden. Die Maxima vieler Wirkungsquerschnitte liegen zwischen 10 eV und 20 eV. Experimentelle Werte sind z.B. (99)

$$\sigma_{\text{max}}(A^{3}\Sigma_{u}^{+}, E_{e}^{-} = 17 \text{ eV}) = 2.55 \times 10^{-1.7} \text{ cm}^{2}$$

 $\sigma_{\text{max}}(B^{3}\Pi_{g}, E_{e}^{-} = 12 \text{ eV}) = 3 \times 10^{-1.7} \text{ cm}^{2} \text{ und}$
 $\sigma_{\text{max}}(C^{3}\Pi_{u}, E_{e}^{-} = 14.5 \text{eV}) = 4 \times 10^{-1.7} \text{ cm}^{2}.$

Theoretische Werte für diese Querschnitte findet man bei Bacre und Medani (100).

Nimmt man an, daß die Elektronen im Mittel während des Durchlaufens einer Strecke von 0.2 cm von $E_{kin} = 7$ eV auf $E_{kin} = 45$ eV beschleunigt werden, berechnet sich die Anzahl der Elektronen, die durch Stoß N₂ im A³E₁₁⁺-Zustand bilden, aus

$$I(N_2(A^3\Sigma_u^*)) = I_0(e^-)(1 - exp(-n\sigma_A^1)).$$

Mit einem mittleren Wirkungsquerschnitt über den oben genannten Energiebereich von $\sigma(N_2(A^3\Sigma_u^+)) \approx 1 \times 10^{-17} \text{ cm}^2$, $I_0(e^-) = 1 \times 10^{10} \text{ sec}^{-1}$ und n = 1.6 × 10¹⁵ cm⁻³berechnet sich

$$T(N_{2}(A)) = 3 \times 10^{7} \text{ sec}^{-1}$$

-107-

In der gleichen Größenordnung liegen die Bildungsraten anderer angeregter Stickstoffzustände. Die angeregten Stickstoffmoleküle werden innerhalb eines kleinen Volumens oberhalb des Loches des Formationsraumes gebildet. Deaktivierungsprozesse für diese angeregten Zustände sind Prädissoziation, Fluoreszenz (z.B. C + B), Wandstöße und Stöße mit $N_p(X)$ oder Elektronen.

Fridissoziation findet für alle angeregten Zustände unterhalb 10 eV Anregungsenergie nicht statt. N_2^{\pm} in Singulett-Zuständen $(a^{+1}\Sigma_u^{-}, a^{1}R_g, w^{1}\Delta_u)$ zerfallen teilweise über Kaskaden in den $N_2^{-Grundzustand}$; Lebensdauern gegenüber solchen optisch verbotenen Zerfällen liegen im 10^{-*} - 1 sec-Bereich. N_2^{\pm} in Triplett-Zuständen $(A^{3}\Sigma_u^{+}, W^{3}\Delta_u, B^{3}R_g^{-}, B^{13}\Sigma_u^{-})$ zerfallen in den $A^{3}\Sigma_u^{+}$ -Zustand mit Lebensdauern im 10^{-*} - 10^{-*} sec-Bereich. Der Zustand $A^{3}\Sigma_u^{+}$ besitzt gegenüber dem optisch verbotenen Übergang in den ${}^{1}\Sigma_g^{+}$ -Grundzustand eine Lebensdauer von 2 sec (v = 0). N_2^{\pm} -Moleküle, die gegenüber strahlendem Zerfall lange Lebensdauern besitzen, verden entweder durch Stoß mit $N_2(X)$ oder Wandstoß deaktiviert.

lür Stöße mit $N_2(X)$ wird ein sehr kleiner Wirkungsquerschnitt angegeben (σ <10⁻²² cm²) (101), so daß der Hauptdeaktivierungsprozeß ein Wandstoß ist. Die Effektivität, daß $N_2(\Lambda)$ durch einen Wandstoß gequencht wird, ist fast Eins (102).

Die Wandstoßrate R_W ist der reziproke Wert der Zeit t_W , die ein Molekül im Nittel benötigt, um die Wand des Formationsraumes oder des umgebenden Gehäuses zu treffen.

Unter den gegebenen Bedingungen ist $t_W = 1.2 \times 10^{-5}$ sec und $R_W = 8 \times 10^{6}$ sec⁻¹. Die Konzentration von angeregten N_2^{\pm} -Molekülen, die durch Wandstoß neutralisiert werden, ergibt sich aus dem Quotienten der Bildungsrate pro cm³ und der Wandstoßrate. Innerhalb des Formationsraumes (V \approx 1 cm³) werden durch Elektronenstoß etwa 3 × 10⁷ N₂(A) pro Sekunde gebildet. Die Konzentration im Gleichgewichtszustand ist

$$N(N_2(A)) = \frac{3 \times 10^7 \text{ cm}^{-3} \text{ sec}^{-1}}{8 \times 10^4 \text{ sec}^{-1}} = 370 \text{ cm}^{-3}$$

Konzentrationen in der gleichen Größenordnung werden für angeregte N_0^{\pm} -Moleküle in anderen Zuständen erwartet.

Ein sehr effektiver Deaktivierungsprozeß für $H_2(A)$ ist der sogenannte "energy pooling"-Prozeß, der Stoß zwischen zwei N_2 -Holekülen im A-Zustand (103).

$$H_{2}(A) + N_{2}(A) + N_{2}(X) + N_{2}^{*}$$

Es werden N_2^{\pm} in Zuständen gebildet, die energetisch höher als der A-Zustand liegen. Dieser Prozeß ist jedoch für die hier erwartete geringe Konzentration von $N_2(A)$ nicht von Bedeutung.

$$X2: N_2^+ + N_2^+$$

Werden N_2^{+} -Ionen durch direkte Ionisation oder Autoionisation gebildet, bewegen sie sich unter dem Einfluß des Feldes im Formationsraum auf die Wandfläche zu. Diese Bewegung wird der thermischen überlagert. Zwei dicht nebeneinander gebildete Ionen bewegen sich auf dem Weg zur Wand voneinander weg. Zwei an der gleichen Stelle zu verschiedener Zeit gebildete Ionen bewegen sich hintereinander auf die Wand zu. Deshalb sind Stöße zwischen zwei N_2^{+} -Ionen trotz der hohen Bildungsrate sehr unwahrscheinlich. A4: $N_2^+ + N_2^+ (1 \pi_u / 1 \Sigma_u^+)$

Stöße zwischen N_2^{+} -lonen und den direkt angeregten N_2^{+} -Moleküllen können durch Austausch von Anregungsenergie zu angeregten neutralen N_2^{+} in anderen Zuständen führen (siehe A3, Fall B) oder zu N_4^{+*} -Komplexen. Diese bewegen sich unter dem Einfluß des Feldes auf die Wände des Formationsraumes zu und werden dort neutralisiert.

A5:
$$N_{2}^{+} + e^{-}$$

Der Einfang von langsamen Elektronen durch N_2^{+} kann zu Rekombination und zur Bildung neutraler angeregter Zustände führen (siehe A3, Tall B).

X5: $N_2^{*}(^1) N_1^{1} \Sigma_1^{+} + N_2^{*}(^1) N_1^{1} \Sigma_1^{+}$

Stöße zwischen zwei direkt angeregten N_2^{\pm} -Molekülen sind wegen der schnellen Zerfallsprozesse nicht zu erwarten. Wenn überhaupt, stoßen sie mit Grundzustandsmolekülen $N_2(X)$, die bei 5 × 10⁻² Torr mit einer Dichte von 1.5 × 10¹⁵ cm⁻³ vorhanden sind.

$$\Lambda 6: N_2^*(1 \Pi_1 / 1 \Sigma_1^+) + e^-$$

Die Möglichkeit eines Stoßes zwischen $N_2^{\pm}({}^{1}\Pi_{u}/{}^{1}\Sigma_{u}^{+})$ und einem Elektron, das durch Autoionisation eines solchen N_2^{\pm} gebildet wird, ist ehenfalls gering. Von einer konstanten Konzentration für N_2^{\pm} kann man weger der schnellen Deaktivierungsprozesse durch intramolekulare Mechanismen und durch Stoß mit $N_2(X)$ nicht sprechen. A7: $N_2(a^1 n_g) + e^-$

Nach Anregung von Neutralzuständen oberhalb des Ionisationspotentials (15.6 eV) werden durch strahlenden Zerfall sngeregte Stickstoffmoleküle im $a^{1}\Pi_{g}$ -Zustand gebildet. Als untere Grenze erwarten wir eine Gleichgewichtskonzentration von $N(N_2(a^1)) \approx 4 \times 10^3 \text{ cm}^{-3}$. Mit diesem Wert soll die Anzahl der pro Sekunde gebildeten $(N_2(a^{\dagger} \pi_{\rho})+e^{-})-Komplexe$ berechnet werden. Mit Anzahl der Elektronen ,die pro Sekunde gebildet werden, $I_{c} = 1.6 \times 10^{10} \text{ sec}^{-1}$, dem Wirkungsquerschnitt $a = 10^{-14} \text{ cm}^2$ (er wird um den Faktor 10 größer gewählt als der Wirkungsquerschnitt für den Prozess langsame Elektronen + Stickstoffmolekül im Grundzustand, weil die äußere Elektronen"bahn" im $a^{1}H_{g}$ -Zustand sehr wahrscheinlich einen größeren Radius als die im Grundzustand besitzt) und mit 1 = 0.1cm, der Strecke, auf der die Elektronen noch langsam genug sind, um in der Nähe des N_2 -Molekül länger zu verweilen, ergibt sich

$$N(N_2(a^1 R_p) + e^-) = 0.06 \text{ sec}^{-1}.$$

Dieser Prozess würde eine quadratische Druckabhängigkeit im Massenspektrum zeigen.

Der errechnete Wert sollte als eine untere Grenze betrachtet werden: Die Gleichgewichtskonzentration ebenso wie der Wirkungsquerschnitt könnten größer sein. Ob beim Stoß eines Elektrons mit einem $N_2(a^1 \pi_g)$ ein längerlebiges negatives Stickstoffmolekül gebildet werden kann, kann nicht ausgeschlossen werden.

Im Energiebereich dieser N_2 -Zustandes befinden sich zahlreiche Schwingungsniveaus anderer N_2 -Zustände.

Ein zusätzliches Elektron kann zu Korrelationseffekten der Elektronen untereinander bewirken und ein Molekülfeld erzeugen, das zu Potentialbarrieren führt. Auf diese Weise kann das zusätzliche Elektron am Molekül gebunden bleiben.

Theoretische Arbeiten in dieser Richtung liegen bisher nicht vor, jedoch ist das Konzept erfolgreich auf den Fall der "inner-shell"-Ionisation in N₂ angewandt worden (103a,103b). Die vorhergehende Diskussion zeigt, daß durch Stöße der Primärprodukte { $N_2(X)$, N_2^+ , $N_2^{*}({}^{1}\Pi_{u}/{}^{1}\Sigma_{u}^+)$,e⁻} als Sekundärprodukt mit größerer Konzentration nur N_3 gebildet werden kann, und zwar unter den angenommenen Wirkungsquerschnitten mit Dichten in der Größenordnung 10⁵ N_3 -Holeküle pro cm³. für metastabile $N_2^{*}(m)$ werden Konzentrationen im 10² cm⁻³-Bereich erwartet.

Stöße der Primärprodukte können – wie oben gezeigt – nicht zur Bildung metastabiler N_2^- oder N⁻ führen. Von den aus diesen Stößen hervorgehenden Sekundärprodukten liegt nur N_3 in höheren Konzentrationen vor. Als einzige Möglichkeit, die Bildung von metastabilen N_2^- und N⁻ zu deuten, bleiben Stöße zwischen dem Sekundärprodukt N_3 und den Primärprodukten $N_2(X), N_2^+, N_2^+$ und Elektronen. Die folgende Diskussion konzentriert sich auf die Wechselwirkung zwischen N_3 und Elektronen.

Die Bildung von N_2^- und N^- kann durch dissoziatives Attachment der durch Autoionisation gebildeten und im Feld beschleunigten Elektronen an N_2 stattfinden.

$$N_3 + e^{-\frac{\gamma N_2}{N_1} + N_2}$$

Bei einem Einfangsquerschnitt von $\sigma = 10^{-1.6}$ cm² berechnet sich die Anzahl der dissoziierenden {N₃ + e⁻}-Fomplexe aus

$$N\{N_3 + e^{-}\} = I_0(e^{-})\{1 - exp(-n(N_3) \times \sigma \times 1)\}.$$

 $I_0(e^-)$ ist die Anzahl der pro Sekunde gebildeten Elektronen, n(N₃) die Konzentration der N₃-Holeküle, σ der Einfangsquerschnitt und 1 die Strecke, die die Elektronen innerhalb des Formationsraumes zurücklegen. Mit $J_0(e^-) = 1 \times 10^{14} \text{ sec}^{-1}$, $n(N_3) = 2 \times 10^5 \text{ cm}^{-3}$, $\sigma = 1 \times 10^{-14} \text{ cm}^2$ und l = 0.8 cm ergibt sich für die Anzahl der dissoziierenden $\{N_3 + e^-\}$ -Komplexe

$$N(N_{3} + e^{-}) = 16 \ sec^{-1}$$
.

Dieser Wert liegt etwa in der gleichen Größenordnung wie die für N $^-$ und N $_2^-$ gemessene Zählrate.

Hehmen wir an, daß N_2^{-1} im " Π_u -Zustand gebildet wird - dieser Zustand wird als metastabil vorausgesagt

 $\Delta H_{f}(N_{2}^{-}({}^{4}H_{u})) = 129 \text{ kcal/mole } \ddagger 5.6 \text{ eV} (111) - \text{ so ist die}$ Bildung von $N_{2}^{-}({}^{4}H_{u}) + N({}^{4}S^{0})$ durch Elektronenstoß auf N_{3} oberhalb einer Elektronenenergie von 5.9 eV möglich, die mit $N({}^{2}D^{0})$ oberhalb 8.32 eV und die mit $N({}^{2}P^{0})$ oberhalb 9.5 eV. Diese Elektronenenergien werden under den gegebenen experimentellen Bedingungen leicht erreicht.

Symmetricbetrachtungen zeigen, daß ein lineares N₃-Molekül im ² N_g-Rustand durch Einfang eines Elektrons in einem σ- oder *-Kolekülorbital ein N₃⁻⁻ im ^{1,3} N- oder im ^{1,3} E⁺- und ^{1,3} R-Rustand bildet (104). Kombiniert man ein N₂⁻⁻(* N_u) mit einem Stickstoffatom zu einem linearen N₃⁻⁻, so ergeben sich folgende Molekülzustände

$$N_{2}^{-}({}^{4}\Pi_{u}) + N({}^{4}S^{4}) \qquad \overset{1 \rightarrow 3 \rightarrow 5 \rightarrow 7}{M}$$

$$N_{2}^{-}({}^{4}\Pi_{u}) + N({}^{2}D^{4}) \qquad \overset{3 \rightarrow 5}{\Sigma}^{+}, \Sigma^{-}, \Pi(2), \Delta, \phi$$

$$N_{2}^{-}({}^{4}\Pi_{u}) + N({}^{2}P^{6}) \qquad \overset{3 \rightarrow 5}{\Sigma}^{+}, \Sigma^{-}, \Pi, \Delta$$

Aus Symmetriegründen ist der Zerfall von N_3^- im ^{1,3} I bzw. ^{1,3} Σ^+ -Zustand im N_2^- (⁴ Π_u) + N(⁴ $\Sigma^0/^2 D^0/^2 P^0$) erlaubt. Kombiniert man ein neutrales N_2 im ${}^1\Sigma_g^+$ -Zustand mit N⁻ im metastabilen ¹D- und ¹S-Zustand zu einem linearen N_3^- , so ergeben sich die Molekülzustände.

$$N_2({}^{1}\Sigma_g^{+}) + N^{-}({}^{1}D) = {}^{1}\Sigma^{+}, \pi, \Delta$$

 $N_2({}^{1}\Sigma_g^{+}) + N^{-}({}^{1}S) = {}^{1}\Sigma^{+}.$

Aus Symmetriegründen ist demnach der Zerfall von N_3^- im 'Hbzw. ¹ Σ^+ -Zustand in $N_2({}^{1}\Sigma_g^+) + N^-({}^{1}D/{}^{1}S)$ erlaubt.

Energetisch ist dissoziatives Attachment an N₃ in N₂(${}^{1}\Sigma_{g}^{+}$) + N⁻(1 D) bzw. H⁻(1 S) oberhalb einer Elektronenenergie von 1.72 eV bzw. 2.45 eV erlaubt.

5. Zusammenfassung

1. Die Ionenpaarbildungsprozesse 0⁻ + 0⁺(0₂), 0⁻ + N⁺ (NO) und 0⁻ + C⁺ und C⁻ + 0⁺ (CO) nach Photoanregung wurden erstmals im Energiebereich 19 eV bis 27 eV vermessen. In den Ausbeutekurven wurden zahlreiche Strukturen beobachtet, die teilweise mit bekannten Rydbergzuständen oberhalb des Ionisationspotentials korreliert werden können. Zusätzlich wurden Hinweise auf bisher nicht beobachtete Rydbergzustände gefunden.

Messungen mit hoher Auflösung (besser als 1 Å) sind in hohem Maße wünschenswert. Sie werden voraussichtlich zum Nachweis bisher unbeobachteter Molekülzustände führen, die 19 eV oberhalb des Molekülgrundzustandes liegen.

2. Bei der Photoanregung von N₂ bei Gasdrucken von 1. bis 5. x 10^{-2} Torr wurden im Massenspektrum der negativen lonen Signale bei m/e = -14 (N⁻) und m/e = -28 (N₂⁻) beobachtet. Die Druckabhängigkeit dieser Signale bewegt sich zwischen quadratisch und kubisch. für die Bildung von N⁻ und N₂⁻ werden folgende Mechanismen vorgeschlagen, die nebeneinander ablaufen können.

(a)
$$N_2 \rightarrow E_{N_0}^* N_2^*$$
 15.6eV
 $N_2^* + N_2 + N_3 + N$
 $N_3 + e^- + N_3^- + N_2^- + N$
 $\downarrow \rightarrow N^- + N$
 N_2^* : Zustände der Ogawa-Progressionen und Rydberg-
zustände zum e +

zustände zum $B^2 \Sigma_{ij}^+$ -Ionenzustand

b)
$$N_2 \stackrel{+++}{E_{hv}} N_2$$

 $N_2 \stackrel{++++}{\tau_{f11}} N_2(a^1\pi_g) + hv$
 $l_{++++++} + r_{f12} + N_2(X^1E_g^+) + hv$
 $N_2(a^1\pi_g) + e^- + N_2^-$
 $l_{++} + N^- + N$

hv: 6.9eV bis 11.5 eV

Die weitere experimentelle Überprüfung des vorgeschlagenen Mechanismus zur photoinduzierten Bildung von N₂ und N ist wünschenswert. Sie setzt allerdings die Verfügbarkeit einer Synchrotronstrahlungsquelle mit höherer Leuchtdichte als die bei DORIS zur Verfügung stehende voraus.

Literaturverzeichnis

- 1) J.G.Dillard; Chem Reviews 75,589 (1973)
- 2) H.Hotop, W.C.Lineberger; J Phys Chem Ref Data 4,539 (1975)
- 3) H.S.K.Kassey; "Negative Ions", Cambridge University Press 3rd edition 1971
- L.G.Christophorou; "Atomic and Molecular Radiation Physics", Wiley and Sons 1971
- 5) G.J.Schulz; Rev Mod Phys 45,378 (1973)
- 6) G.J.Echulz; Rev Mod Phys 45,423 (1973)
- 7) J.L.Franklin, P.W.Karland; in "Annual Review of Phys Chem" 25,485 (1974) ed by H.Fyring
- 8) H.Schenk, H.Oertel, H.Caumgärtel; Ber Bunsenges Phys Chem 83,683 (1979)
- 9) H. Gertel, H. Schenk, H. Baumgärtel; Chem Phys 46,251 (1980)
- 10) M.W.Siegel, R.J.Celotta, J.L.L'all, J.Levine, R.A.Bennett; Phys Rev A 6,607 (1972)
- 11) R.J.Celotta, R.A. Bennett, J.L. Hall, M.W. Siegel, J.Levine; Phys Rev A 6,631 (1972)
- 12) J.Fazeau, R.I.Hall, G.Joyez, "Landau, J.Reinhardt; J Phys B 6,873 (1973)
- 13) Z.Pavlovic, M.J.W. Boness, A.Herzenberg, G.J.Schulz; Phys Rev A 6,676 (1972)
- 14) G.C.King, J.W.McConkey, F.H.Read, B.Dobson; J Phys B 13,4315 (1980)
- 15) B. Illenberger, H.U. Scheunemann, H. Baumgärtel; Ber Bunsenges Phys Chem <u>82</u>, 1154 (1978)
- 16) W.P.West, G.W.Foltz, F.B.Dunning, C.J.Latimer, R.F.Stebbings; Phys Rev Lett <u>36</u>,854 (1976)
- 17) L.B.Loeb; "Basic Processes of Gaseous Electronics", University of California Press (1955)
- 18) N.E.Bradbury; J Chem Phys 2,827 (1934)
- 19) N.E.Bradbury, H.E.Tatel; J Chem Phys 2,835 (1934)
- 20) J.F.Paulson; Adv Chem Ser 58,28 (1966)
- 21) A.V.Phelps, R.E. Voshall; J Chem Phys 49, 3246 (1968)
- 22) E.L.Chaney, L.G. Christophorou; J Chem Phys 51,883 (1969)
- 23) L.H.Chanin, A.V. Phelps, M.A. Biondi; Phys Rev 128, 219 (1962)
- 24) L.Bouby, K.Abgrall; Abstracts of the Vth ICPEAC, p.584 Leningrad 1967
- 25) J.M.Ajello, A.Chutjian; J Chem Phys 65,5524 (1976)
- 26) A.Chutjian, J.M.Ajello; J Chem Phys 66, 4544 (1977)
- 27) J.H.Ajello, A.Chutjian; J Chem Phys 71, 1079 (1979)
- 28) J.F.Ajello, A.Chutjian, F.Winchell; JESRP 19,197 (1980)
- 29) R.Haensel, C.Kunz; Z Angew Physik 23,276 (1967)
- 30) R Brodmann; Dissertation Universität Hamburg 1976

- 31) U.Nahn; Dissertation Universität Hamburg 1978
- 32) M.Skibowski, W.Steinmann; J Opt Soc Am 57, 112 (1967)
- 33) B.Jordan; Dissertation Universität Hamburg in Vorbereitung
- 34) G.R.Cook, P.H. Metzger; J Chem Phys 41, 321 (1963)
- 35) J.A.R.Samson; "Techniques of Vacuum Ultraviolet Spectroscopy", Wiley and Sons 1967
- 36) H.J.Hagemann, H.Gudat, C.Kunz; J Opt Sec Am 65, 742 (1975)
- 37) Fa.Balzers; Beschreibung und Betriebsanleitung für das Quadrupolmassenspektrometer-System QMG 511 (Nr. BK 800 025 BD), Liechtenstein 1976
- 38) R.Zietz; Unveröffentlicht
- 39) U.Rielsen; Interner Bericht DESY F41-74/3 (1974) O.Beimgraben, G.Sprüssel; unveröffentlicht
- 40) B.Paskowski; "Electron Optics" ,Iliffe Books Ltd.,London 1968
- 41) A.Glaser, W.Henneberg; Z Techn Physik 16,222 (1935)
- 42) J.O.Hirschfelder, C.F.Curtiss, F.B.Bird; "Molecular Theory of Gases and Liquids", Wiley and Sons 1964
- 43) P.M.Dehmer, H.A.Chupka; J Chem Phys 62,4525 (1975)
- 44) V.M.Dibeler, J.A.Walker; J Opt Soc Am 57, 1001 (1967)
- 45) F.A.Elder, D.Villarejo, M.G. Inghram; J Chem Phys 43, 758 (1966)
- 46) K.Codling, R.P. Eadden; J Chem Phys 42, 3935 (1965)
- 47) R.Locht, J.Momigny; IJMSIP 7,121 (1971) und Referenzen
- 48) E.Lindholm; Ark Fys 40,117 (1969)
- 49) B.Narayana, W.C.Price; J Phys B 5,1784 (1972)
- 50) L.C.Lee, R.W.Carlson, D.L.Judge, M.Ogawa; J Chem Phys 61, 3261 (1974)
- 50a) K.Morris, D.Neumann; J Chem Phys 63,5073 (1975)
- 51) P.M.Hierl, J.L.Franklin; J Chem Phys 47, 3154 (1967)
- 52) M.Sasanuma, Y.Horioka, E.Ishiguro, M.Nakamura; J Chem Phys 60, 327 (1974)
- 53) O.Edqvist, L.Asbrink, E.Lindholm; 7. Naturforsch 26a, 1407 (1971)
- 54) H.Hertz, H.W. Jochims, H. Schenk, W. Sroka; Chem Phys Lett 29, 572 (1974)
- 55) R.Zietz; Pissertation Universität Kaiserslautern 1978 Interner Bericht DESY F41-78/05 (1978)
- 56) D.L.Albritton, A.L.Schmeltekopf, R.E.Zare; J Chem Phys 71, 3271 (1979)
- 57) F.R.Cilmore; J Quant Spectrosc Radiat Transfer 5,369 (1965)
- 58) K.Codling, A.W.Potts; J Phys B 7, 163 (1974)
- 59) L. Asbrink, C. Fridh, E. Lindholm. K. Codling; Phys Scripta 10, 183 (1974)
- 60) M.Okuda, N. Jonathan; JESRP 3, 19 (1974)

- 61) M.Sasanuma, E.Ishiguro, Y.Morioka, H.Nakamura; Abstracts of the III th VUV Conference, Tokyo 1971
- 62) J.Fock; Diplomarbeit Universität Hamburg 1979 Interner Bericht DESY F41-79/05 (1979)
- 63) R.Locht, J.F. Dürer; Chem Phys Lett 34,508 (1975)
- 64) R.Locht; Chem Phys 22, 13 (1977)
- 65) L.C.Lee, R.W.Carlson, D.L.Judge, M.Ogawa; J Chem Phys 63, 3987 (1975)
- 66) A.W.Potts, T.A.Williams; JESRP 3,3 (1974)
- 67) G.Herzberg; "Spectra of Diatomic Molecules", Van Nostrand 1950, p. 521
- 68) C.E.Moore; "Ionisation Potentials and Ionisation Limits Derived from the Analysis of Optical Spectra", NSRDS-NBS 34 (1970)
- 69) R.N.Varney; Phys Rev 157,116 (1967)
- 70) B.Eird, S.P.Ali; Phys Rev Lett 41,540 (1978)
- 71) J.C.Morris, R.U.Krey, R.L.Garrison; Phys Rev 180, 167 (1969)
- 72) G.Eoldt; Z Physik 154,330 (1959)
- 73) G.E.Norman; Opt Spectrosc 17,94 (1964)
- 74) Yu.V.Moskvin; Opt Spectrosc 23,356 (1970)
- 75) Ya.M.Fogel', V.F.Kozlov, A.A.Kalmykov; Sov Phys JETP 9,963 (1959)
- 76) H.Hiraoka, R.K. Nesbet, L.W. Welsh; Phys Rev Lett 39,130 (1977)
- 77) J.Mazeau, F.Gresteau, R.I.Hall, A.Huetz; J Phys B 11, 1557 (1978)
- 78) A.Huetz, F.Gresteau, J.Mazeau; J Phys B 13, 3275 (1980)
- 79) D.Spence, P.D.Burrow; J Phys B 12, L179 (1979)
- 80) K.C.Smyth, J.A.Schiavone, RqS. Freund; J Chem Phys 59, 5225 (1973)
- 81) A.Lofthus, F.H.Krupenie; J Phys Chem Ref Data 6,113 (1977)
- 82) E.Illenberger; private Mitteilung
- 83) A.C.Parr, D.L.Ederer, B.E.Cole, J.B.West, R.Stockbauer, K.Codling, J.L.Dehmer; Phys Rev Lett <u>46</u>, 22 (1981)
- 83a) H.Oertel, M.Kratzat, J.Imschweiler, T.Noll; in Vorbereitung
- 84) F.Bloch, N.E. Bradbury; Phys Rev 48,689 (1935)
- P.Gürtler; Diplomarbeit Universität Hamburg 1976
 P.Gürtler, V.Saile, E.E.Koch; Chem Phys Lett 48,245 (1977)
- 86) P.Dehmer, W.A.Chupka; unveröffentlicht
- 87) R.M.Berns, A. van der Avoird; J Chem Phys 72,6107 (1980)
- 88) W.Lindinger, I.Dotan, D.L. Albritton, F.C. Fehsenfeld; J Chem Phys <u>68</u>,2607 (1978)
- 89) B.A.Trush; Proc Roy Soc Lond 235A, 143 (1956)
- 90) A.E.Douglas, W.J.Jones; Can J Phys 43,2216 (1965)

- -120-
- 91) J.L.Franklin, V.H.Dibeler, R.M. Reese, M. Krauss; J Am Chem Soc 80,298 (1958) 92) P.Gray; Quart Reviews 17,441 (1964) 93) A.B.Prag,K.C.Clark; J Chem Phys 39,799 (1963) 94) I.Nadler, D.W. Setser, S. Rosenwaks; Chem Phys Lett 72, 536 (1980) 95) D.G.Streets.A.W.Potts.W.C.Price; IJMSIP 10,123 (1972/73) 96) P.R. Hoodruff, G.V. Marr; Proc Roy Soc Lond 358A, 87 (1977) 97) D.E.Golden; Phys Rev Lett 17,847 (1966) 98) J.Comer, F.H.Read; J Phys B 4,1055 (1971) 99) D.C.Cartwright, S.Trajmar, A.Chutjian, W.Williams; Phys Rev A 3, 1041 (1977) 100) J.Bacri, A.Medani; Physica 101C, 410 (1980) 101) A.B.Callear, P.M.Wood; Trans Faraday Soc 67,272 (1971) 102) J.A.Meyer, D.H.Klosterboer, D.W.Setser; J Chem Phys 55, 2084 (1971) 103) W.G.Clark, D.W.Setser; J Phys Chem 84,2225 (1980) 103a) S.Krummacher, V.Schmidt, F.Wuilleumier; J Phys B 13,3993 (1980) 103b) J.Schirmer, L.S.Cederbaum, W.Doncke, W.von Niessen; Chem Phys 26, 149 (1977) 104) G.Herzberg; "Electronic Spectra of Polystomic Molecules", Van Nostrand 1966, S.283 105) C.E.Moore; "Atomic Energy Levels, Vol I", Circular of the NBS 467, 1949 106) W.L.Wiese, H.W. Smith, B.M. Glennon; "Atomic Transition Probabilities" . NSRDS-NBS 4, 1966 107) L.D. Thomas, R.K. Nesbet; Phys Rev A 12,2369 (1975) 108) A.Huetz, I.Cadez, F.Gresteau, R.I.Hall, D.Vichon, J.Hazeau; Phys Rev A 21,622 (1980) 109) L.Dubé, A.Herzenberg; Phys Rev A 20, 194 (1979) 110) M.Krauss, D.Neumann; J Research of the NBS 77A, 411 (1973) 111) E.W.Thulstrup, A.Andersen; J Phys B 8,965 (1975) 112) J.Mazeau, F.Gresteau, R.I.Hall, G.Joyez, J.Reinhardt; J Phys B 6,862 (1973) H3) A.Herzenberg; J Phys B 1,548 (1968) 114) D.T.Birtwistle, A.Herzenberg; J Phys B 4,53 (1971) 115) D.E.Golden, D.J.Burns, V.C. Sutcliffe; Phys Rev A 10, 2123 (1974) 116) H. Hotop, A. Niehaus; J Chem Phys 47, 2506 (1967) 117) H.Matsuzawa; JESRP 4,1 (1974) 118) W.A.Chupka; Referenz 19 in M.Matsuzawa (117) 119) F.G.Kellert, C.Higgs, K.A. Smith, G.F. Hildebrandt, F.B. Dunning, R.F.Stebbings; J Chem Phys 72,6312 (1980) 120) G.W.Foltz, C.J. Latimer, G.F. Hildebrandt, F.G. Kellert, K.A. Smith, W.P.West,F.B.Dunning,R.F.Stebbines; J Chem Phys 67,1352 (1977)

-122-

- 121) F.G.Kellert,K.A.Smith,R.D.Rundel,R.B.Dunning,R.F.Stebbings; J Chem Phys <u>72</u>, 3179 (1980)
- 122) A.Hitachi, T.A.King, S.Kubota, T. Doke; Phys Rev A 22,863 (1980)
- 123) T.Watanabe, K.Katsuura; J Chem Phys 47,800 (1967)
- 124) E.Bauer, E.R.Fisher, F.R.Gilmore; J Chem Phys 51,4173 (1969)
- 125) L.M.Humphrey, T.F.Gallagher, W.E.Cooke, S.A.Edelstein; Phys Rev A <u>18</u>, 1383 (1978)
- 126) W.R.Bennett, J.Flint; Phys Rev A 18, 2527 (1978)
- 127) E.R.Cutshall, E.E. Muschlitz; J Chem Phys 70, 3171 (1979)
- 128) G.W.Taylor, D.W.Setser; J Chem Phys 58,4840 (1973)
- 129) I.Deperasinska, J.A.Beswick, A.Tramer; J Chem Phys 71, 2477 (1979)
- 130) N. Sadeghi, D.W. Setser; Chem Phys Lett 77, 304 (1981)
- 131) R.H.Neynaber, S.Y.Tang; J Chem Phys 726176 (1980)

7. Anhang

7.1. Eigenschaften von N, N, N, N, und N,

<u>N:</u> Die Elektronenkonfiguration des Stickstoff-Atoms im Grundzustand ist

 $1s^{2} 2s^{2} 2p^{3}$.

Tabelle 15 enthält die Energien (105) und die Lebensdauern (106) gegenüber strahlendem Zerfall von angeregten Stickstoffatomen.

Es werden jeweils die Werte für die Zustände mit dem größtem Drehimpuls J angegeben.

Tabelle 15

Energien und Lebensdauern neutraler N-Atome

Elektronen	Zustand	t	Energie ^a		Lebensdauer	
konfiguration			(eV)	(cm ⁻¹)	(sec)	
2s ² 2p ³	4s°	3/2	0.0	0.0	stabil	
88	2 ₀ 0	5/2	2.3835	19224.46	J.4x10 ⁵	
10 ,	2°Po	3/2	3.5756	28839.31	.11.7	
2s ² 2p ² (³ P)3s	4 _P	5/2	10.336	83366.0		

a) Umrechnungsfaktor: | eV = 8065.4794 cm⁻¹

$$(1s\sigma_g)^2(1s\sigma_u)^2(2s\sigma_g)^2(2s\sigma_u)^2(1p\pi_u)^4(3p\sigma_g)^2$$
.

Die nächsten im Grundzustand unbesetzten Molekülorbitale sind

Die Dissoziationsenergie des N₂ beträgt 9.7836 eV (78714 cm⁻¹) (81). Tabelle 16 enthält die Energien für die Dissoziation von N₂ in N-Atome in verschiedenen Zuständen.

Tabelle 16

Dissoziationsprodukte und Dissoziationsenergien von N₂

Fragmente			Dissoziationsenergie			
			(eV)	(X)		
4so	+	⁴ s ^o (2p ³)	9.7836	1267.27		
"	+	2 _D o	12.1671	1019.02		
"	+	2 _p o	13.3592	928.09		
2 _D o	+	2 _Đ o	14.5506	852.09		
••	+	2 _P o	15.7427	787.57		
2 _P o	÷	2 _P o	16.9348	732.13		
⁴ s°	+	$^{4}P(2p^{2}3s)$	20,119	616.26		

N₂-Molekülzustände aus der Kombination von je zwei Stickstoff Atomen (Zeile A). Zeile B enthält bekannte und im Potentialkurvenschema eingeordnete Zustände. In Klammern gesetzt sind die Zustände, die wegen "avoided crossing" zu den angegebenen Dissoziationsprodukten führen.

Dissociations Atomzu-
energie stände
(eV)
9.78
$$4s^{\circ} + 4s^{\circ}$$

12.16 $4s^{\circ} + 2p^{\circ}$
12.16 $4s^{\circ} + 2p^{\circ}$
13.36 $4s^{\circ} + 2p^{\circ}$
14.55 $2p^{\circ} + 2p^{\circ}$
15.74 $2p^{\circ} + 2p^{\circ}$
15.74 $2p^{\circ} + 2p^{\circ}$
16.93 $2p^{\circ} + 2p^{\circ}$
16.93 $2p^{\circ} + 2p^{\circ}$
17.16 $4s^{\circ} + 2p^{\circ}$
18.10 $4s^{\circ} + 2p^{\circ}$
19.10 $4s^{\circ} + 2p^{\circ}$
10.10 $4s^{\circ} + 2p^{\circ}$
10.10 $4s^{\circ} + 2p^{\circ}$
10.10 $4s^{\circ} + 2p^{\circ}$
11.10 $4s^{\circ} + 2p^{\circ}$
11.10 $4s^{\circ} + 2p^{\circ}$
12.10 $4s^{\circ} + 2p^{\circ}$
13.10 $4s^{\circ} + 2p^{\circ}$
14.10 $4s^{\circ} + 2p^{\circ}$
15.74 $2p^{\circ} + 2p^{\circ}$
16.93 $2p^{\circ} + 2p^{\circ}$
17.10 $4s^{\circ} + 2p^{\circ}$
18.10 $4s^{\circ} + 2p^{\circ}$
19.10 $4s^{\circ} + 2p^{\circ}$
10.10 $4s^{\circ} + 2p^{\circ}$
10.10 $4s^{\circ} + 2p^{\circ}$
11.10 $4s^{\circ} + 2p^{\circ}$
12.10 $4s^{\circ} + 2p^{\circ}$
13.10 $4s^{\circ} + 2p^{\circ}$
14.10 $4s^{\circ} + 2p^{\circ}$
15.10 $4s^{\circ} + 2p^{\circ}$
15.10 $4s^{\circ} + 2p^{\circ}$
15.10 $4s^{\circ} + 2p^{\circ}$
16.10 $4s^{\circ} + 2p^{\circ}$
15.10 $4s^{\circ} + 2p^{\circ}$
16.10 $4s^{\circ} + 2p^{\circ}$
17.10 $4s^{\circ} + 2p^{\circ}$
18.10 $4s^{\circ} + 2p^{\circ}$
19.10 $4s^{\circ} + 2p^{\circ}$
19.10 $4s^{\circ} + 2p^{\circ}$
19.10 $4s^{\circ} + 2p^{\circ}$
110 $4s^{\circ} + 2p^{\circ} + 2p^{\circ}$
111 $4s^{\circ} + 2p^{\circ} + 2p^{\circ}$
111 $4s^{\circ} + 2p^{\circ} + 2p^{\circ}$
112 $4s^{\circ} + 2p^{\circ} + 2p^{\circ}$
112 $4s^{\circ} + 2p^{\circ} + 2p^{\circ} + 2p^{\circ} + 2p^{\circ}$
112 $4s^{\circ} + 2p^{\circ} + 2p^{\circ} + 2p^{\circ} + 2p^{\circ}$
112 $4s^{\circ} + 2p^{\circ} + 2p^{\circ} + 2p^{\circ} + 2p^{\circ}$
112 $4s^{\circ} + 2p^{\circ} + 2p^{\circ} + 2p^{\circ} + 2p^{\circ}$

-126-

Abbildung 13 zeigt das Potentialkurvenschema von N_2 und N_2^+ nach Lofthus und Krupenie (81). In Tabelle 17 sind die N_2^- Molekülzustände aufgeführt, die man durch Kombination von je zwei N-Atomen in verschiedenen Zuständen erhält. Bekannte Zustände sind mit den in der Literatur (81) verwendeten Symbolen getrennt aufgeführt.

<u>N⁻:</u> Durch ein viertes Elektron im 2p-Orbital erhält man ein negatives Stickstoffion im ${}^{3}P$ -, ${}^{1}D$ - oder ${}^{1}S$ -Zustand (Tabelle 10).

2

.

Tabelle 18

Energie und Elektronenaffinität neutraler Stickstoffatome und Energie und Lebensdauer negativer Stickstoffionen

negatives Stickstoffatom			negai	Lebens=	
Zustand	Energie (eV)	Elektronenaffinität (eV)	Zustand	Energie (eV)	dauer (sec)
		Ref 107 Ref 2		Ref 107 Ref 2	
4s°	0	-0.07 ^a	3 _P	+0.07 ª	4×10 ⁻¹⁴
2 ₀ 0	2.3835	≃+o.94 =+1.o8	י D	≈1.44 ≈1.3	> 10 ⁻⁶
2 _P o	3.5756	≃+o.69 ≃+o.97	s	≈2.88 ≈2.6	>10 ⁻⁶
a) Ref 7	7: EA(N(⁴	(S ⁰))= -0.07±.02 eV			

bie EA von N (*S*) ist positiv: EA(N(*S*)) = +0.07 ± 0.02 eV (77) Aus der natürlichen Halbwertsbreite von 16 ± 5 meV ergibt sich eine Lebensdauer gegen den Autoionisationsprozess von $\tau = 4 \times 10^{-14}$ sec. Die Energien des ¹D- und ¹S-Zustandes werden extrapoliert aus den Anregungsenergien der isoelektrischen Zustände $(N^{+} + 2e^{-})$ und $(N + e^{-})(108)$, Die EA der Zustände ²D⁰ und ²P⁰ erhält man aus den Energiedifferenzen N(²D⁰) - N⁻(¹D) und N(²P⁰) - N⁻(¹S).

Wegen der positiven EA von $N(^{2}D^{0}/^{2}P^{0})$ liegen die zugehörigen negativen Ionen $N^{-}(^{1}D/^{1}S)$ energetisch niedriger. Als Zerfallsprozesse sind nur die verbotenen Autoionisationprozesse

$$N^{-}(^{1}D) + N(^{4}S^{0}) + e^{-},$$

 $N^{-}(^{1}S) + N(^{2}D^{0}) + e^{-}$ und
 $N^{-}(^{1}S) + N(^{4}S^{0}) + e^{-}$

möglich. Die Lebensdauern von N⁻(¹D) und N⁻(¹S) sollten deshalb größer als 10^{-6} sec sein (2). Hotop und Lineberger (2) geben einen Überblick über die Arbeiten, in denen die Elektronenaffinität von N berechnet wurde.

<u>N₂:</u> Im unstabilen Grundzustand $X^2 \Pi_g$ des N₂ befindet sich das zusätzliche Elektron im 1p#g-Molekülorbital

$$KK(1p\pi_{1})^{4}(3p\sigma_{g})^{2}(1p\pi_{g})^{1}$$

Der erste angeregte Zustand des $N_2^{-}(A^2 \Pi_u)$ besitzt wahrscheinlich die Elektronenkofiguration (82)

Aus den Zuständen von N und N⁻ lassen sich wieder die N_2^- -Holekülzustände kombinieren. Zur Berechnung der Minimalenergie zur Bildung von N und N⁻ aus Elektronenstoßprozessen mit einem N₂-Molekül im Grundzustand werden für die Energien von N⁻(¹D) und N⁻(¹S) die Werte von Thomas und Nesbet (108) übernommen (Tabelle 19).

Tabelle 19

Minimalenergie zur Bildung von N(X) und N⁻(Y) relativ zum N₂-Molekül im Grundzustand und Molekülzustände von N₂⁻ aus der Kombination von N(X) und N⁻(Y)</sup></sup></sup>

Minimal= energie (eV)	Zustände von N und N	N ₂ -1 Anzahi I	Molekülzustände Multiplízität	(jeweils: Symmetrie:u,g)		
9,85	N(⁴ S ⁰)+N ⁻ (³ P)	12	2,4,6	ε <mark>*</mark> , π		
11.22		6	4	Σ, Ν, Δ		
12.67	" +N [−] (¹ S)	2	4	ε-		
12.23	N(² D ⁰)+N ⁻ (³ P)	36	2,4	E ⁺ (2), E [−] , II(3), Δ(2), ♦		
13.61	" +N [−] (¹ D)	30	2	$\Sigma^{+}(2), \Sigma^{-}(3), \Pi(4), \Delta(3),$		
				†(2), ۲		
15.05	"+N ⁻ (¹ S)	6	2	Σ, Π, Δ		
13.43	N(² p ⁰)+N ⁻ (³ p)	24	2,4	ε ⁺ , ε ⁻ (2), Π(2), Δ		
14.80	" +N ⁻ (¹ D)	18	2	$\Sigma^{+}(2), \Sigma^{-}, \Pi(3), \Delta(2), +$		
16.24	"+N ⁻ (¹ S)	4	2	Σ ⁺ , Π		

Es gibt eine Reihe von theoretischen Arbeiten über die Molekülzustände von N_2^- (108 - 111). Tabelle 20 enthält die Energie des Potentialkurvenminimums (T_e) und die Energie der Potentialkurve für große Kernabstände (D) der N_2^- -Fotentialenergiekurven relativ zum Schwingungsgrundzustand des neutralen N_2 -Moleküls. Der Wert D_e ist die Differenz von D - T_e , und gibt Auskunft über die Tiefe der Potentialkurve. Die Rechnungen ergeben außerdem die Zustände von N bzw. N⁻ an, in die die Moleküle dissoziieren.

Andererseits kann man aus der Elektronenkonfiguration die Molekülzustände bestimmen. Line (24210)-Konfiguration {= $(2s\sigma_u)^2(1p\pi_u)^4(3p\sigma_g)^2(1p\pi_g)^1(3p\sigma_u)^4$ } eines N₂⁻-Moleküls ergibt einen ²N_g-Zustand. Es handelt sich um ein neutrales Grundzustandsmolekül N₂(X¹E_g⁺) (Konfiguration: 24200) mit einem Elektron im untersten nicht besetzten Molekülorbital 1pm_g.

Line (23220)Konfiguration ergibt N_2^- in 2H_u , 2H_u , 2H_u , ${}^4H_u^-$ Zuständen. Die zugehörige Konfiguration (23210) des neutralen Moleküls ergibt ${}^{L}\Sigma_u^+$, ${}^{L}\Sigma_u^-$, ${}^{1}\Delta_u$, ${}^{3}\Sigma_{ii}^+$, ${}^{3}\Sigma_u^-$ und ${}^{3}\Lambda_u^-$ Zustände.

Vergleicht man die Energien der Potentialkurvenminima T_o von N_2 -Neutralzuständen mit gleicher Elektronenkonfiguration und die berechneten T_e -Werte der N_2 -Zustände, die man durch Hinzufügen z.B. eines $1p\pi_e$ -Elektrons zu den neutralen Zuständen erhält, kann man Aussagen darüber machen, ob es gegenüber den Neutralzuständen gebundene N_2 -Zustände gibt (Tabelle 21).

Tabelle 20

Energie des N₂-Potentialkurvenminimums(T_e) und Minimalenergie(D) zur Bildung von N(X) und N (Y), beide Werte relativ zu T_o von N₂(X¹ Σ_{g}^{+}); Dissoziationsenergie der N₂-Potentialkurve (D_e) (D_e = D - T_e)

Zustände von	Minimal=	N ₂ -	T	e ^(eV)		D_(eV)
N und N	energie (eV)	Zustand		Ref	Ref 110	-
N(⁴ S ⁰)+N ⁻ (³ P)	9.85	2 11 8	1.912 ^a			7.94
		⁴ л.		5.6	6.6	4.2
		2 _π	7.38 ^b	6.7		2.47
		⁴ ε ⁺ ₈		8.4		1.45
		4 II R		8.7		1.15
		²±+		8.8		1.05
		² ε [*] _g		9.0		0.85
N(⁴ s ^o)+N ⁻ (¹ D)	11.22	⁴ ε ⁻ ₈		7.2	8.7	4.0
N(² D ⁰)+N ⁻ (³ P)	12.23	²		8.6		3.6
		2 ₀		9.0		3.2
		² Σ ⁻ g		9.0		3.2
		2 •			8.5	3.7

a): Ref 109 ; b) Ref 108

-131-

Tabelle 21

Elektronenkonfiguration, Zustände, nergie des Potentialkurvenminimums (T_e) und Dissoziationsprodukte von N_2^- und Elektronenkonfiguration und T_0^- Werte der entsprechenden neutralen N_2^- Moleküle.

Ne	Neutrales Stickstoffmolekül Negatives Stickstoffmolekülion						
Zustand	T _O (eV) Ref 81	Elektronenkonfiguration Zustand	T _e (eV) Refill	Zustände von N und N			
x ¹ Σ ⁺ g	0.0	N ₂ ⁽²⁴ 200) +e [−] (1pπ _g) →					
		$\rightarrow N_2^{(24210)} X^2 II_2$	1.9128	N(⁴ S ^o)+N ⁻ (³ P)			
Α ³ ε ⁺	6.169		7.38 ⁶	N(⁴ S ⁰)+N ⁻ (³ P)			
₩ ³ Δ	7.362	$N_2(23210) + e^{-(1p\pi_p)} \rightarrow \frac{2\pi_p}{\pi_p}$	9.0	N(² D ⁰)+N ⁻ (³ P)			
^{β' 3} ε _u	8.164	+ N ₂ ⁻ (23220)		N(² D ^o)+N ⁻ (³ P)			
a' ¹ £	8.398	2 ₉	8.5 ^c	$N(^{2}D^{0}) + N^{-}(^{3}P)$			
w ¹ Au	8.889	4 _π	5.6	N(⁴ S ⁰)+N ⁻ (³ P)			
¹ Σ ⁺ u	?						
8 ³ 11 g	7.353 }	$N_2(24110) + e^{-(1p\pi_g)} + \left(\frac{2}{2}\epsilon^+\right)$	9.0	$N(^{4}s^{o}) + N^{-}(^{3}P)$			
a ¹ 1 g	8.548	$\rightarrow N_2^-(24120)$ $2E_g^-$	9.0	N(² D ⁰)+N ⁻ (³ P)			
			8.6	N(² D ⁰)+N ⁻ (³ P)			
		μ ⁴ Σ ⁻ g	8.7 ^c 7.2	N(⁴ S ^o)+N ⁻ (¹ D)			
E ³ E ⁺ g	(11.87)	N ₂ (24100 + 3sog)+e ⁻ (3sog) +					
		→ N ₂ [•] (24100 + (3sσ _g) ² "b	² ε ⁺ 8 Τ	o=11.48 eV 11.345 eV			

a); Ref 109; b): Ref 108; c): Ref 110; d): Ref 98

Fügt man dem $A^{3}\Sigma_{u}^{+}-N_{2}$ Molekül ein $1p\pi_{g}$ -Elektron hinzu, erhält man einen ${}^{2}\Pi_{u}$ und einen ${}^{4}\Pi_{u}-H_{2}^{-}$ -Zustand. Huetz et al (108) berechnen für die Energie des Potentialkurvenminimums T_{e} des ${}^{2}\Pi_{u}-N_{2}^{-}$ -Zustandes T_{e} = 7.36 eV. Die ${}^{2}\Pi_{u}-N_{2}^{-}$ -Potentialkurve liegt also innerhalb der Potentialkurve von $A^{3}\Sigma_{u}^{+}-N_{2}^{-}$. Dieser Resonanzzustand kann demnach autoionisieren über den Prozess

$$N_2^{-}(A^2 \Pi_u) \rightarrow N_2(A^3 \Sigma_u^{+}) + e^{-}$$

Dagegen wird für N_2^- im ${}^{*}\Pi_u^-$ Zustand (23220-Konfiguration) $T_e^- = 5.6 \text{ eV}$ (111) angegeben. Lin N_2^- im ${}^{*}\Pi_u^-$ Zustand sollte deshalb unterhalb 6.169 eV (= $T_o^-(A^3\Sigma_u^+N_2^-))$ metastabil sein, weil es nur über den Spin-verbotenen Übergang

 $N_2^{(*}H_u) \neq N_2(X^{1}\Sigma_g^{+}) + e^{-1}$

autoionisieren kann. Ist jedoch der von Krauss und Neumann (110) berechnete Wert für T_e (= 6.6 eV) von N₂^{-(*II}_u) richtig, ist der Zustand nicht stabil, weil er in den N₂(A³ Σ_{u}^{+})-Zustand autoionisieren kann.

Hiraoka et al (76) schlagen vor, die massenspektrometrische Beobachtung von N₂⁻ nach Elektronenstoß auf ein N₂-0'₂-Gemisch mit der Bildung von N₂⁻ (' Π_u) zu erklären.

Weil bei Elektronenstoß mit N_2 im Grundzustand nur Doublett N_2^- -Zustände erreicht werden können, ist N_2^- (" Π_u) durch Elektronenstoßprozesse <u>nicht</u> zugänglich.

-133-

Die gleiche Überlegung gilt für $N_2^{-(*\Sigma_g^{-})(24120-Konfi-$ Euration). Diesen Zustand erhält man durch Hinzufügen eines 1pmg-ilektrons zu $N_2(B^3 R_g)$ (24110-Konfiguration). Übernimmt man den von Thulstrup und Andersen (111) angegebenen T_e^{-Wert} (= 7.2 eV), ist dieser N_2^{-} -Zustand gegenüber dem neutralen schwach gebunden. Er kann autoionisieren entsprechend

$$N_2^{-}({}^{+}\Sigma_g^{-}) + N_2(X^{+}\Sigma_g^{+}) + e^{-}$$
 und
 $N_2^{-}({}^{+}\Sigma_g^{-}) + N_2(A^{3}\Sigma_u^{+}) + e^{-}.$

Der erste Prozess ist spin-verboten, beim zweiten müßte, bei Emission eines $1p\pi_g$ -Elektrons, zusätzlich ein Übergang von $1p\pi_u$ nach $3p\sigma_g$ stattfinden. Erreicht man diesen N₂⁻-Zustand oberhalb der Dissoziationsenergie, treten als Dissoziationsprodukte N(*S*) und das metastabile N⁻(*D) auf.

<u>N₂-Compound-Zustände</u>: Im Energiebereich 7 eV - 28 eV kennt man eine Vielzahl von kurzlebigen N₂-Zuständen. Information über N₂-Zustände erhält man aus Strukturen in den Anregungsfunktionen verschiedener Schwingungsniveaus angeregter neutraler N₂-Zustände. Neutrale N₂-Koleküle im Grundzustand werden mit Elektronen variabler Energie angeregt und die Energie der gestreuten Elektronen wird winkelabhängig analysiert.

Die Anregungsenergie des Schwingungsgrundzustandes $E^{3}\Sigma_{g}^{+}$, v' = 0 beträgt 11.87 eV. Elektronen mit 11.87 eV kinetischer Energie geben die gesamte Energie bei der Anregung dieses Zustandes ab und liegen nach dem Stoß als 0 eV Elektronen vor. -134-

Llektronen mit z.B. 12.8 eV kinetischer Energie geben hei der inelastischen Anregung $E^{3}\Sigma_{g}^{+}$, v' = 0 eine Energie von 11.87 eV ab und besitzen nach dem Stoß 0.93 eV kinetische Energie. Gibt es z.B. bei 12.8 eV einen N₂⁻-Zustand, der in den $E^{3}\Sigma_{g}^{+}$, v' = 0 autoionisiert, so mach sich dieser N₂⁻-Zustand bei entsprechendem Wirkungsquerschnitt als Peak bei 12.8 eV in der Anregungsfunktion von $E^{3}\Sigma_{g}^{+}$, v' = 0 bemerkbar. Die 12.8 eV-Llektronen werden kurzfristig im N₂⁻-Zustand gebunden, der in N₂($E^{3}\Sigma_{g}^{+}$, v' = 0) und ein Elektron mit 0.93 eV kinetischer Energie zerfällt. Furch winkelabhängige Messungen bei konstanter Anregungsenergie erhält man die Information, in welchem Molekülorbital das Flektron in dem N₂⁻-Zustand gebunden war.

Der 1973 erschienene Review Artikel "Resonance in Electron Impact on Diatomic Molecules" von Schulz (6) gibt einen Überblick über die N_2^{-7} ustände. Als einziger der vielen beobachteten Resonanzzustände ist die "L"-Resonanz hei 11.48 eV mit Schwingungsniveaus im Abstand $\Delta v = 270$ meV zugeordnet als $N_2^{-(^2\Sigma_g^+)-7}$ ustand mit der Elektronenkonfiguration $(1p\pi_u)^4(3p\sigma_g)^1(3s\sigma_g)^2$. Ls handelt sich um eine "core-excited Feshbach resonance", bei der kurzfristig zwei $(3s\sigma_g)$ -Pydbergelektronen im Feld des Jonengrundzustandes $N_2^{+}(X^2\Sigma_g^+)$ gebunden sind. die Lebensdauer dieser Resonanz wird mit $\tau = 10^{-12}$ sec, der T_e^- Wert mit 11.345 eV, angegeben (98). Den neutralen Zustand $N_2(C^3\Sigma_g^+)$ mit der Elektronenkonfiguration $(1p\pi_u)^4(3p\sigma_g)^1(3s\sigma_g)^1$ bezeichnet man als "parent"-state, den Ionenzustand $N_2^{+}(X^2\Sigma_g^+)$ mit der Elektronenkonfiguration $(1p\pi_u)^4(3p\sigma_g)^1(3s\sigma_g)^4$ als "grandparent"-state dieser Resonanz. Neuere Arbeiten zu N_2^{-} -Resonanzzuständen, die als Strukturen in den Anregungsfunktionen der Valenzzustände $A^3 \Sigma_u^{+}$ und $B^3 II_g$ und in den Anregungsfunktionen von Rydbergzuständen auftreten, liegen von der Arbeitsgruppe von Mazeau, Gresteau und Hall vor (12,112). Der $N_2(A^3 \Sigma_u^{+})$ -Zustand mit (2321)-Konfiguration ist der "parent"-state der "a"-Resonanz. Der Streuprozess wird dargestellt als

$$N_2(X^1\Sigma_g^+) + e^- \rightarrow N_2^-(^2\Pi_{u,\Sigma}) \rightarrow N_2(A^3\Sigma_u^+) + e^-.$$

Aus der gemessenen Winkelabhängigkeit der gestreuten Elektronen wird geschlossen, daß zwei Resonanzzustände angeregt werden, und zwar

$$(1p\pi_{u})^{3}(3p\sigma_{g})^{2}(1p\pi_{g})^{1}(3p\pi_{u})^{1-2}\Pi_{g}N_{2}^{-}$$
 und
 $(1p\pi_{u})^{3}(3p\sigma_{g})^{2}(1p\pi_{g})^{1}(3d\pi_{g})^{1-2}\Pi_{u}N_{2}^{-}.$

Die Auswertung nach dem "boomerang"-Modell von Birtwistle und Herzenberg (113,114) ergibt für die Potentialkurve des $N_2^{-(^2 II_g)}$ -Zustandes $R_o = 1.42$ Å, $E(R_o) = T_e = 7.4$ eV und $\Gamma = 0.1$ eV ($\tau = 6 \times 10^{-15}$ sec).

Dic "a" -Resonanz hat den $N_2(B^3\Pi_g)$ -Zustand mit $(1p\pi_u)^4(3p\sigma_g)^1(1p\pi_g)^1$ -Konfiguration als "parent"-state. Drei Resonanzzustände werden angeregt, und zwar:

$$\{ N_{2}(B^{3}\Pi_{g}) + e^{-}(3p\sigma_{u}) \}^{2}\Pi_{u},$$

$$\{ N_{2}(B^{3}\Pi_{g}) + e^{-}(3p\pi_{u}) \}^{2}\Sigma_{u}^{+} \text{ und }$$

$$\{ N_{2}(B^{3}\Pi_{g}) + e^{-}(3d\pi_{g}) \}.$$

Für die Potentialkurve von $N_2^{-(^2II_u)}$ wird $R_o = 1.40$ Å, E(R_o) = $T_e = 7.4$ eV und $\Gamma = 0.15$ eV ($\tau = 2.7 \times 10^{-14}$ sec) berechnet.

Nach Thulstrup und Andersen (111,113) unterstützen ihre Rechnungen diese Interpretation. Sie geben jedoch für einen ${}^{2}\Pi_{g}$ -Zustand T_e = 8.5 eV und R_o = 1.81 Å an und der ${}^{2}\Pi$ -Zustand, für den sie mit T_e = 7.1 eV und R_o = 1.54 Å ähnliche Werte wie Mazeau et al (112) angeben, ist ein ${}^{2}\Pi_{n}$ -Zustand.

Auf ähnliche Art werden die Resonanzen erklärt, die als Strukturen in den Anregungsfunktionen der Rydbergzustände $E^{3}\Sigma_{g}^{+}$, $a^{"1}\Sigma_{g}^{+}$, $a^{1}\Pi_{g}$, $C^{3}\Pi_{u}$, $D^{3}\Sigma_{u}^{+}$, $(F)^{3}\Pi_{u}$, $(G)^{3}\Pi_{u}$ und H(?)auftreten (12).

Theoretische Daten zu N_2^- im Energiebereich dieser Rydbergzustände liegen nicht vor. Strukturen in den v⁺ = 1,2,-Anregungsfunktionen des $N_2(E^3\Sigma_g^+)$ -Zustandes werden erklärt mit einem (relativ) langlebigen $N_2^-({}^2\Sigma_u^+)$ -Zustand mit $(1p\pi_u)^4(3p\sigma_g)^1(3s\sigma_g)^1(3s\sigma_u)^1$ -Konfiguration. Die Lebensdauer wird mit 1 × 10⁻¹³sec (Γ = 35 meV) angegeben. Die Potentialkurve dieses N_2^- -Zustandes liegt sehr nahe an der des $E^3\Sigma_g^+$ -Zustandes. Golden et al (115) beobachten die $C^{3}\Pi_{U} - B^{3}\Pi_{g}(0,0) -$ Emission nach Elektronenanregung und das Elektronen-Transmissions-Spektrum. Sie ordnen eine große Anzahl von Strukturen in Übereinstimmung mit der Interpretation von Mazeau und Mitarbeitern (12,112) N₂-Zuständen zu. -138-

7.2. Stoßprozesse

In diesem Abschnitt sollen Stoßprozesse beschrieben werden, in denen mindestens ein Stoßpartner ein Stickstoffmolekül im Grundzustand oder in einem angeregten Zustand ist. Wirkungsquerschnitte in der gleichen Größenordnung, wie für solche Stoßprozesse gemessen, werden bei den Rechnungen im Text oben verwendet für Stoßprozesse zwischen einem N₂ im Grundzustand und angeregten N₂ -Holekülen in 1 N₁- oder ${}^{1}\Sigma_{1}$ +-Zuständen.

1) $EG^{**}(n,1) + Mo + EG^{**}(n',1') + Mo / EG^{+} + (Mo + e^{-}) / EG + Mo^{+} + e^{-}$

Bei Stößen zwischen Edelgasatomen (EG**) in hochangeregten Rydbergzuständen und zwei- oder mehratomigen Molekülen (Mo) im Grundzustand finden Prozesse, die die Quantenzahl n und/oder 1 ändern, Penning-Ionisation und Stoßionisation statt. bie Ionisationsenergie liefern die neutralen Stoßpartner durch Abgabe von Rotationsenergie. Weniger effektiv ist assoziative Ionisation (EG \times Mo)⁺ + e⁻. Hotop und Niehaus (116) untersuchten die Stoßionisation von metastabilen Edelgasatomen in nf-Zuständen (20 < n < 100) durch mehratomige Moleküle im Grundzustand. Es wurde ein Strahl von metastabilen Edelgasatomen mit einem Molekülstrahl gekreuzt und die Edelgasionen mit einem Massenspektrometer nachgewiesen. Stickstoffmoleküle im Grundzustand sind wenig effektiv bei der Stoßionisation von EG. Jedoch werden für polare Moleküle große Wirkungsquerschnitte beobachtet. Bei dem Prozeß Ar^{**} + SF₆ + Ar⁺ + SF₆⁻ wurde SF₆⁻ massenspektrometrisch nachgewiesen. Die gemessenen Wirkungsquerschnitte

für Ar sind in Tabelle 22 aufgeführt, zusammen mit berechneten Werten von Matsuzawa (117) und experimentellen Daten von Chupka (118).

Tabelle 22

Absolute Wirkungsquerschnitte für Stoßionisation von hochangeregten Ar-Atomen Ar^{**}(n,f; 20<n<100) Dim($\sigma_{\text{Stoß-Ionis.}}$) = 10^{-12} cm².

		Ref.Nr
н ₂ о	1.2±.08	116
NH ₃	0.74t.07	116
so ₂	0.40±.09	116
с ₂ н ₅ он	0.80±.11	116
SF 6	1.5±.11	116
CH3NO2	1.5	118
Ar	_ 10 ⁻²	118
N ₂	. 10 ⁻³	811
N ₂	. 10 ⁻⁴	117

West et al (16) und Kellert et al (119) beobachten Stöße zwischen Xe in hochangeregten Rydbergzuständen und SF₆. Sie erzeugen metastabiles Xe in ${}^{3}P_{0,2}$ -Zuständen und regen diese mit einem tunable dye Laser in hochangeregte nf-Rydbergzustände (n = 25 - 33) an. Diese besitzen Lebensdauern im Mikrosekundenbereich. Die Xe^{**}(n,f)-Atome wechselwirken mit einem SF₆-Target mit einem Druck von $(1 - 2) \times 10^{-6}$ Torr. Für den Prozeß Xe^{##}(n,f) + SF₆ + Xe^{##}(n,1) + SF₆ werden Ratenkonstanten von (2 - 3) × 10^{-7} cm³/sec angegeben, für den Stoßionisationsprozeß Xe^{##} + SF₆ + Xe⁺ + SF₆⁻ Ratenkonstanten von (3.8 - 4.3) × 10^{-7} cm³/sec. Die Stoßionisation von Xe^{##}(n,f; 25 < n < 42) durch CCl₄ und CCl₃F ist von Foltz et al (120) untersucht worden. Es werden Ratenkonstanten von (2.6 - 4.5) × 10^{-7} cm³/sec für CCl₄ und von

 $(3.8 - 6.5) \times 10^{-7} \text{cm}^3/\text{sec}$ für CCl₃F angegeben. Die gleiche Arbeitsgruppe gibt für die Stoßionisation Xe^{**}(n,f; 22 < n < 41) durch NH₃ Ratenkonstanten von (0.2 - 4.6) × $10^{-7} \text{cm}^3/\text{sec}$ an und für das Gesamtquenching von X^{**}(n,f) durch NH₃ Ratenkonstanten von (7.7 - 20) × $10^{-7} \text{cm}^3/\text{sec}$ (121).

Hitachi et al (122) beobachten das Quenching von He in strahlenden Singulett- und Triplett-Zuständen (nS + 2P und nD + 2P, 3 < n < 9) durch He-H₂-Stöße (bei T = 300 K). Die angeregten He-Atome befinden sich in niedrig liegenden Rydbergzuständen (n < 10); Stoßionisation durch Übertrag von N₂-Kotationsenergie kann nicht stattfinden. Singulett-Zustände werden etwa 1.5mal effektiver von N₂ gequencht als Triplet-Zustände. Die Stöße bewirken eine Änderung der Quantenzahl n bei He und Schwingungsanregung bei N₂. Wirkungsquerschnitte zwischen 8.8 und 4.0 × 10⁻¹⁵ cm² werden angegeben. Für das Quenching des metastabilen 2³S-He-Zustandes durch N₂ ist Penning-Ionisation verantwortlich (σ = 7.9 (+1.2,-0.7) × 10⁻¹⁶ cm²).
-141-

Als Wirkungsquerschnitt für das Quenchen von He(3¹P) wird 88 (+13.3,-7.2) × 10^{-16} cm² gemessen. Nach Berechnungen trägt der n-changing Stoßprozeß (He($3^{1}P$) + N₂ + He + N₂*) mit 55×10^{-16} cm² bei, Penning Ionisation $(\text{He}(3^{1}\text{P}) + N_{2} \rightarrow \text{He} + N_{2}^{+} + \text{e}^{-}) \text{ mit } 33 \times 10^{-1.6} \text{cm}^{2} (123).$ Hitachi et al (122) legen ihren Berechnungen zu dem n-changing-Quenching Prozeß ein Modell von Bauer et al (124) Humphrey (125) zugrunde. Danach findet der Übergang des He*(n,1)/N₂(X,v=0)- Ausgangszustandes in den fle*(n',l')/N₂(X,v'>0)~Endzustand über einen ionischen $(\text{He}^+/\text{N}_2^-)$ - Zwischenzustand statt. Der Wirkungsquerschnitt wird mit $\sigma = \pi r_c^2$ angegeben, wobei r_c der Abstand zwischen He^{\dagger} und N_{2}^{-} bei der Euergie des Systems { $\text{He}^{\ddagger}(n,1)/N_{2}(X,v=0)$ } ist. Die Potentialenergiekurve von He⁺/N₂⁻ wird aus dem Ionisationspotential von He, der Elektronenaffinität von N₂ und aus Daten zur Polarisabilität von He und N_2 berechnet.

2) $Ar^{*}({}^{3}P_{2}) + N_{2}(X, v=0) + N_{2}(C^{3}\Pi_{1}, v', J') + Ar({}^{1}S_{2})$

Wegen seiner Bedeutung für den Ar-N₂-UV Laser untersuchten neben anderen Gruppen Bennett und Flint(126) Cutshall und Muschlitz (127) den Prozeß der Anregungsübertragung zwischen metastabilem Argon und Stickstoffmolekülen. Die Strahlung des zweiten positiven Systems von N₂ ($N_2(C^3 II_u) + N_2(B^3 II_g)$) wurde nachgewiesen. Für den Austauschprozeß wird ein Wirkungsquerschnitt von (9.4 ± 1) × 10⁻¹⁶ cm² (126) hei T = 664 K angegeben. In der Reaktionskammer herrschte ein Druck von 1.66 Torr Argon und ein Stickstoff-Gasdruck zwischen o.5 und 3 Torr(126). -142-

Cutshall et al (127) verwendeten zwei sich kreuzende " supersonic beams " mit einer Argondichte von 10^{1*} Atomen pro Steradian und Sekunde und variierten die relative kinetische Energie der Stoßpartner im Bereich o.o6 bis o.41 eV. Aus der Beobachtung der {C + B}-N₂-Emission schließen sie auf eine intensive Besetzung hochliegender Rotationsniveaus des C-Zustandes oberhalb einer Stoßenergie von o.2 eV. Aus den Daten folgern sie, daß die Bindungslänge des Stickstoffmoleküls beim Stoß größer als die im Grund- oder im C-Zustand ist. Es wird vorgeschlagen, diese Tatsache mit der kurzfristigen Bildung eines {Ar⁺/N₂⁻} - Komplexes zu deuten.

3)
$$\frac{N_2(A^3\Sigma_u^+) + CO(X^1\Sigma^+) + N_2(X^1\Sigma_u^+) + CO(a^3\Pi)}{1 + CO(a^3\Pi)}$$

Taylor und Setser(128) messen für den Quenchprozeß von N_2 im niedrigsten Triplett-Zustand durch CO-Moleküle im Grundzustand Ratenkonstanten von $(5.0 \pm 3) \times 10^{-12} \text{ cm}^3/\text{sec.}$ Die $N_2(A^3\Sigma_u^+) + N_2(X^1\Sigma_g^+)$ -Emission wurde nachgewiesen. Berechnungen mit einem "distorted-wave"-Modell (129) ergeben Ratenkonstanten, die um eine Zehnerpotenz kleiner sind.

4) $\frac{N_2(A^3\Sigma_1^+) + N_2(A^3\Sigma_1^+) + N_2(X) + N_2^*}{N_2(X) + N_2^*}$

Nadler etal (94) und Clark und Setser (103) beobachten den sogenannten "energy-pooling"-Stoßprozess zweier angeregter Stickstoffmoleküle im $A^{3}\Sigma_{u}^{+}$ -Zustand. Durch den Stoß werden angeregte N_{2}^{*} -Moleküle im $B^{3}\Pi_{g}$, $C^{3}\Pi_{u}$, $C^{13}\Pi_{u}$ und im oberen, bisher unbekannten, Zustand der Hermann-Infrarot-Banden gebildet. Wirkungsquerschnitte liegen im 10^{-14} bis 10^{-15} cm²-Bereich.

5) $\underline{N}_2(\underline{B^3\Pi}_{e}) + \underline{Ar/Ne} + \underline{N}_2(\underline{W^3\Delta}_{u}) + \underline{Ar/Ne}$

Sadeghi und Setser (130)erzeugen in einem Stickstoff-Edelgas(Ar/Ne)-Gemisch N₂(B)-Moleküle durch Laser-Anregung von N₂(A) und beobachten die B+ A Emission. Es wird ein Relaxationsprozess von Schwingungsniveaus des N₂(B) nachgewiesen und und durch Stoßkopplung zwischen dem B³II_g und dem W³A_u-Zustand erklärt. Die Schwingungsenergien dieser beiden Zustände liegen dicht beieinander und unterscheiden sich teilweise nur um wenige 100 cm⁻¹. Wirkungsquerschnitte für diesen Stoßprozess sollen in einer späteren Veröffentlichung angegebn werden.

Neynaber und Tang (131 und Referenzen) untersuchen Stoßprozesse zwischen metastabilem Ne⁴($3s^{3}P_{2,0}$) und Ar⁴($4s^{3}P_{2,0}$)-Atomen (Tabelle 23).

Tabelle 23 Energien von Ar^{*}/Ne^{*} und Ar^{*}/Ne^{*} (eV)

		X ⁺ (n−1)p ⁵		X [*] (n−l)p ⁵ ns		
	n	² ¥3/2	² P1/2	³ р ₂	3 _P	
Ar	3	15.7597	15.9373	11.55	11.72	
Ne	4	21.565	21.662	16.62	16.71	

Frühere Arbeiten dieser Autoren beschäftigen sich mit Stößen zwischen metastabilen He- und Ne-Atomen. Sie beobachten assoziative Ionisation (NeAr⁺ + e⁻) und Penning- bzw. Stoßionisation (Ne + Ar⁺ + e⁻ bzw. Ar + Ne⁺ + e⁻). Sie geben für den Penningionisationsprozeß bei einer relativen kinetischen Energie von W = 0.033 eV der beiden Stoßpartner einen Wirkungsquerschnitt von a(W=0.033 eV) = (36.6 ± 12.9) × 10^{-16} cm² an. Ein Wert in der gleichen Größenordnung wird für den Stoßionisations= prozeß gemessen.

-146-

<u>Lebenslauf</u>

Diese Arbeit entstand in der Zeit zwischen April 1977 und Oktober 1980 in der Synchrotronstrahlungs-Forschungsgruppe F 41 des Deutschen Elektronen Synchrotrons DESY . Herrn Prof.Dr.H.Baumgärtel möchte ich für die Überlassung des Themas und für die aufgeschlossene Betreuung und Förderung herzlich danken. ben Herren Dr.B.Schenk, Dipl.-Phys. M.Kratzat und Dr.R.Zietz danke ich für die gute Zusammenarbeit und für fruchtbare Diskussionen. für wertvolle Hinweise danke ich Herrn Prof.Dr.R.Locht (Université Liège), Herrn Dr.V.Saile (DESY Hamburg) und Herrn Dr.E.Illenberger (Freie Universität Berlin). Herrn Dr.P.Gürtler (Universität Hamburg) und Herrn Dr.E.E.Koch (DESY Hamburg) danke ich dafür, daß sie mir bisher unveröffentlichte Spektren von Photoionisationsmessungen an N_2 von P.Dehmer und W.A.Chupka zugänglich machten. Bei allen hier nicht namentlich genannten Mitgliedern der Gruppe F 41 bedanke ich mich für die fruchtbare und lehrreiche Kooperation und ihr Interesse und ihre Hilfe. für das Schreiben dieser Arbeit bedanke ich mich bei Frau B.Baasner.

Berlin, im Februar 1981

- geboren am 29. September 1948 in Helmstedt
- Volksschule in Braunschweig 1955-1959
- Wilhelm-Gymnasium in Braunschweig 1959- Mai 1967
- Wehrdienst Juli 1967 September 1968
- Studium der Physik

1968-1971 Technische Universität Braunschweig 1971-1977 Universität Hamburg Experimentelle Diplomarbeit am Institut für Angewandte Physik mit dem Thema "Dissoziative Anregung von Kohlenwasserstoffen (Alkane: Methan bis Heptan)" in der Arbeitsgruppe von Herrn Prof.Dr. W. Sroka (†)

als wissenschaftlicher Mitarbeiter beschäftigt

März - Mai 1977 Universität Freiburg/Breisgau

seit Mai 1977 Freie Universität Berlin in der

Arbeitsgruppe von Herrn Prof.Dr. E. Baumgärtel

• .

·