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Fhotoelectron energy distribulions (PEDs) are presented for benzene
molecules embedded in soiid Ar, Ke and Xe rare gas matrices cbimined
wiih monochromatized synchrotron radiation for selective exeTLation

in the range hv = & eV s

[y

5 eV, For photon energies in the trawe-

parent region of the matrices direct amtesion from the ocoupied ben—

sene initial sbtates in the band gap of the mairix is obeerved. Energy
)

transfer from the matrix eveiton states ic the bengerne guest moie-

cules takes place when the host exciton siates are exciied. The PEDs

show that ewergy of wireluced excitons 18 traisferred and ihat transfer

. . 2w . .

tc imitial states just at the tenizativn threshold is favoured.
R o

1. Introduction

The energetics and the dynamics of excited states of impurity states consist-
ing of atoms or molecules isolated in rare gas matrices have attracted con-
siderable interest []]. while optical aud luminescence spectroscopy has been
applied for some time to investigate these systems (2) photoemission, in par~
ticular photoelectron energy distribution (PED) measurements, have only re-

cently been successfully applied to atomic impurities in rare gas matrices [3].

In the present communication we report on PEN-measurements for Ar, Kr and Xe
matrices doped with benzene. When matrix excitons are excited energy transfer
to guest molecules is observed. The energy transfer manifests itself in an
increase of the photoemission yield although the matrix exciton states have
energies below the vacuum level of the pure solid and camnot contribute
directly to photvemission. The energy distribution of photoelectrons will
immediately show the amount of transferred energy, provided the distribution
of initial states of the benzene acceptor molecules is known. This method has
been applied Lo rare gas matrices doped with atoms and it has been demonstrated
that energy traunsfer takes place on a picosecond time scale from unrelaxed n=I
excitons [3). Depending on the matrix either emergy transler from unrelaxed
bhigher (n=2) exciton states or relaxation of higher excitons to the n=1 state

as well as partial relaxation prior to energy transfer have been observed [3].

The interpretation of energy transfer processes has been a controversial topic
even for the most thoroughly studied systems, namely doped orgamic crystals (a}.
Recent detailed experimental investigations based on the analysis of the time
dependence of the luminescence seem to have seltled the problem of the ana-

Jysis and interpretation of the results in this case (5).



In rare gas solids as a result of the strong lattice relaxatiom, the energies

of the lowest "free" excitons are larger by more than 1 eV than the energies

of the relaxed self trapped exciton states [2). For these systems cnergy
transfer has frequently been discussed by considering the amount of transferred
energy. Either diffusion of free excitons or a Firster-Dexter type dipole-dipole
interaction with relaxed electronically excited diatomics or a combination

of both have been invoked for a description of energy transfer processes, but

a detailed understanding of the mechanism is still missing. If the transferred
energy corresponds to the stokes shifted luminescence band of the matrix, the
Férster-Dexter mechanism is dominant, If the full energy of the free exciton

is transferred, diffusion of excitons has to be favoured {2].

Energy transfer in benzene doped rare gas matrices has been investigated until
now only by luminescence- (6,7} and photoemission yield spectroscopy [8,9).

In these experiments competition with surface quenching [6-9} and a transfer
rate increasing with exciton excitation energy (6) have been reported. From
PED-measurements one can hope to obtain information about the transferred
energy. Furthermore, PED curves allow to locate the initial states in the

band gap of the matrix, and to analyse the partial photoionization cross
section and the partial energy transfer cross section of the benzene initial

states.

1I. Experiment

Benzene and rare gases have been mixed in the gas phase with partial pressures
according to the desired concentration. Thin films of these mixtures have been
frozen onto a gold substrate cooled by a liquid Helium flow cryostat. The back—~
ground pressure was below 1079 Torr. Monochromatized synchrotron radiation of
the DESY synchrotron was used for selective excitation of the samples. The

energy distribution of electrons emitted within a cone of 5° normal to the

_[, -
sample surface has been analysed using a combination of retardation field and
static electron lenses. The total elcctron yield and the reflectance of the
samples have also been recorded. The thickness of the sample films has been
determined by measuring the interferences in the reflected light with in-
creasing film thickness during deposition, Details of the experimental arrange-

ment are given in Rel, 3.

I11. Results and Discussion

In ¥ig. | representative PEDs are shown for C6H6 in Ar, Kr and Xe matrices.
Similar PEDS have been observed for various thicknesses and concentrations
without significant changes. Intensity versus electron kinetic energy is

shown, where the zero of the energy scale corresponds to the vacuum level of

the sample, The spectra are shifted upwards with respect to each other pro-—
portional to the exciting photon energy. Thus structures due to a distinct
initial state will [ollow the diagonal lines shown in Fig. | provided that the
electrons get an energy equal to the photon emergy hv. Two processes, the
escape process and electron emission from the Au-substrate which might con-
tribute to the PEDs are neglected in the discussion. The influence of the
escape function is considered to be small and it is not expected to produce
additional structure because (i) at the kinetic energies of the photoelec~
trons considered here, energy loss in the matrix due to electronic excitations
is not essential ﬁd, (ii) due to the low concentrations used the density of
guest molecules is at least only 1/100 part of that of the matrix and {(iii)
energy loss processes due to electronic excitations of the guest molecules are
only poussible for electron energies above 3.5 - 5 eV ﬁ]} and (iv) the cross
sections for vibrational excitations are not expected to depend strongly on
electron kinetic emergy. We mote, however, that the excitation of intramole-
cular vibrations and phonons gives rise to the strong maximum of scattered

electrons in the PED's at kinetic energies below 0.5 eV, Electron emission from



the substrate should depend strongly on the thickness of the films and on the
benzene concentration which was not observed for the main features to be dig=

cussed below.
The spectra will be discussed in two parts (A) the transparent region of the
matrix where PEDs of electrons directly excited from CGHG are observed and (B)

the excitonic region of the matrix up to the band gap.

A. Transparent Region of the Matrix

The ionization energies EigHé for benzene in the different rare gas matrices
are obtained from the extrapolation of the diagonal lines marking the highest
kinetic energy of the photoelectrons for a given hv to Ekin = 0. They are given
in Table 1 together with other relevant energies. For the ionizatien energies
determined in this manner we find good agreement with our previous results

from photoemission yield experiments [12}. The transparent region of the matrix

extends from the ionization energy E;ﬁﬂﬁ in the particular rare gas matlrix to
the n=1 excitons of that matrix (%12.0 eV Lor Ar, %10 eV for Kr and 8.3 ev

for Xe). In order to identify the initial states of CS“G in the matrix, I'EDs

for pure solid benzene []3} are also shown in Fig., 1 together with the MO-
assignments. The density of the occupied benzene orbitals and the eleclronic

states of the different matrices are shown schematically in Fig. 2. The small
cnergy gap For Xe of 70.15 eV between EggHe and the n=1 excivon states does

not allow to draw any conclusion. In the case of C.il, in Kr a maximum which

is attributed te the uppermost Iclg states oi benzene is growing up to the limiting
photon encrgy of 10.05 eV. TFor Ar 2 maximum due to the ]clg orbital dominating

the spectrum at hv=10.31 oV and a shoulder ncar zero kinetic energy due to the

unresolved la2u and 3e,7g orbital at hu=11.3 eV are observed. 1t should be roted
that at hv=11.3 eV the rclative intensity of the lelg bard 1s strongly reduced.

This might be due to an enhancement of the partial ionization cress section ol

the la2u, 392g bands near threshold relative to the cross section of the ]e]

state.

B, Excitonic Region of the Matrix

The excitonic region of the matrix  is characterized by strong absorptiom by
the host matrix. Therefore primarily the host states are now excited by photons.
The major part of the photoelectrons is then produced by energy transfer to the

occupied benzene states in the band gap (see the iusert in Fig. 1).

The discussion below focuses on the following three questions: (i) does eneryy

. } ) . *
transter from relaxed matrix excitons (R2 centers) as observed in luminescence
occur or (ii) is cnergy transfer from the free exciton states observed and (iii)

which benzene states are populated by the energy transfer mechanism?

In Xe the n=1,? excitons and the spin orbit partner n'=] have been excited. The
maximum kinetic energy of the ejected electrons increases according to the in-
crease in the photon energy from n=1 to n=2 and to n'=l, This shows that for
these electrons the whole amount of excitalion energy is translerred. We con-
clude that a relaxation of n=2 and n'=l to n=1 and the relaxation ol the n=1
exciton to a Xc; sell trapped exciton state is slow relative to the energy trans-
fer rate. A contribution due to energy transfer from Xe: centers can be excluded.
This is evident by observing that the PED resulting from such a state would be

below the vacumm level as indicated by cutve L in Fig. [, the result of folding

the C6H6—IeIg band with the luminescence emission curve [6]-

In Kr the n=1,2,3 exciton states and the spin orbit partners n'=1,2 have been
excited., When the u=l exciton state is populated the sLructutes in the PEDs
are similar to PEDs due to the ie]g slate excited direcely as is evident by com-

parison with PEDs immediately below the Xr n=1 exciton and those from pure ben-
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