DESY. Riklicthek
PEUTSCHES ELEXKTRONEN-=-SYNGCHROTRONK

(DESY)
Hamburg-Gr. Flottbek 1, Flottbeker Drifi 56

Degy=Notiz A 2.81

K. G, Steffen Hamburg, den 14. August 1961
M8

A QUADRUPOLE MAGNET WITH NON-CIRCULAR APERTURE AND LINEARIZED
END FRINGING FIELD

Contentg: Page:

Abstract
Survey of different typea of quadrupoles
Figure of merit of a lens system

Acceptance of a strong focussing

channel of infinite length 5
Choice of quadrupole type 8
Choice of quadrupole radius 10
Choice of quadrupole length 11
Shaping of end fringe fields i2
End configuration for bending magnets 15
End configuration for quadrupole magnets 16

Acknowledgements 16



I)Esﬁwlﬁbﬁaﬂmk

Abstract

A new type of guadrupole magnet cross gsection is suggested

and compared to the standard circular aperture. It is shown
that a significant improvement of acceptance in phase space

is gained by this design. Formulae for the acceptance per

unit cost are given for the two guadrupole types. A general
investigation of the acceptance of a long periodic strong-
focussing channel is used as an approach to cptimizing standard

quadrupole parameters,

Special end field configurations are suggested for guadrupole
and for bending magnets. They eliminate to a large extent the
nonlinear aberrations which are generally caused by the fringe

fields.

Survey of different types of gquadrupoles

We have congidered several types of quadrupole cross sections,

which are shown in figure 1.

No. 1 is a conventional type quadrupole with circular
aperture, which has the advantage of a very low

power consumption1)o

Since in a strong focussing system the beam cross section within
lenses in general has a non-circular shape, one might expect
lenges with non-eircular aperture to be of economical advantage,
because in this case the useful field reglon can be matched to

the cross section of the beam.

1) B. Langeseth, G, Pluym and B. deRaad, CERN PS/In‘to
EA 60-5 (1960)



Such a lens is the Panofsky-type quadrupoleQ) No. 2, which has
a rectangular cross section and a very high power demand due to
its limitation in coil space and the unused field regions in its

four corners.

No. 3 is the Panofsky~type lens cut off along a straight
equipotential line3 , thus saving the unused corner
fields and half of the coil cross section. For the
same field gradient, this lens therefore néeds only

half the power of No. 2.

Continuing the line of this evolution, we suggested the lens

type No. 4. It is a quadrupole with hyperbolic pole faces, in which
the triangular shape of the coil exactly compensates for the dis-
tortion caused by cutting off the hyperbola tails. The power con-
sumption is the same as in lens No. %3, The increased aperture
allows transmission of the rectangular beam cross section in hori-

zontal and in vertical orientation (see figure 2.).

Lens No. 5 is a modification, developed by Dr. H. Hultschig4) out

of No. 4. It has a simpler coil cross section*) and needs only half
the power of No. 4, i. e, one gquarter of the power of the Panofsky-

type No. 2 for the same field gradient.

Among the lenses with non-circular cross sections, the types 4 and
5 have the advantage over types 2 and 3 of being hetter adapted 1o
the varying beam cross section within lens systems., We would prefer

type 5 as a standard lens because of its relatively low power and

technical simpliecity.

2) L. N, Hand and W. K. H. Panofsky, Bull.Am.Phys.Soc. 3/421 (1958)
3) M. H., Blewett and H. S. Snyder, private communication
4) H. Hultschig, private communication

*) A lens with circular aperture and rectangular coil cross section
has been designed for the BEL by Dr. M. H. Blewett, who kindly
made available to us a set of her drawings.
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In searching for an optimized standard lens design, we shall

therefore restrict ourselves to a comparison between the

cireular aperture, low power lens No. 1 and the

non-circular aperture, medium power lens No. 5.

In the following, we shall describe an attempt to quantita-
tively assess the relative merits of these lenses as a function
of their parasmeters. Only some basic considerationa will be given
rather than numerical results, which depend on local conditions
such as manufacturing and power cost, experimental floor facili-
ties, maximum crane load etc. and therefore do not have much

general meaning.

Figure of merit of a lens system

The figure of merit determining the economy of a lens system

is its acceptance &2, divided by its cost Ci
62
Figure of merits =

€2 is the transverse phase volume accepted by the system,
i. e. the maximum target cross section times the maximum

solid angle.

The acceptance g2 depends sirongly on the optics of the system
under consideration, Therefore, it cannot be used as a characte-
ristic number for a single lens unless it is referred to a
special system which serves as a representative system for a

number of applications.



Acceptance of a strong fooussing channel of infinite length

We feel that the periodic FODO stirong focussing channel of
infinite 1engﬁh5) shown in figure 2 might be such a repre-

gsentative system.

It has the advantage of being described by only three structure
parameters and it turns out that its acceptance can be expressed

as a simple function of these parameters. They are

2/ = length of lenses,

k = %§ ~~ field gradient of lenses, divided
by particle momentum,

2 £

CP s filling factor = ratio of lens

length to total length.

f =

Lens type 53

1

2 and f & 3=, the accep-

ah

With the restrictions that k - £ '%
tance 62 of this system for the lens type 5 may be expressed to
very good approximation by the following formulas

ega%a4°k2°£2°(1w—§—f) (1)

Here, a is the radius of the inscribed circle of the lens aperture.

This formula has been derived from

5) M. G. N. Hine, CERN PS-MGNH/Note 22 (1958)
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g ﬁ%xat} k o , where (}?s VI: £ (1a)

by expanding the trigonometric functions, including terms to QL6°
Introducing the beat factor m, defined as the ratio of beam width
to beam hieght in the centre of the horizontally focugsing lenses,

one has approximately

e =1 m = 1
S TR Rl

£ R

and therefore
2
m =1
€ mgal ekt (1b)
m o+ 1
= g a okofom§===-== for m = M,

M- o+ 1

where M is the aperture ratio (see fig. 2)o The function

is shown graphically in figure 50 We conclude that M = 4 would
be a reasonable choice for the aperture ratio, since a further
increase of M would not significantly increase the acceptance

any more,



Leng type 13

In order to simplify computations, we shall assume for the
lens type 1 from now gn a quadratic aperture inscribed in

the circle of radius a. Its scceptance is then given by

2 1 2 2 2
61 _,m-?o?aq’°k “-& (1“‘3'f) (2)
m
2
1 m- - 1
2 1
E‘t R §’a4 ok o f - W R (2a)
m m- + 1

The function

9 m2-=1
m2 m2 + 1
has a maximum at m = 1 + \/2' = 1.55,

This means that for maximum acceptance with given parameters
k and f the lens length 2 . ¢ should be chosen such as to

produce a beat factor m ~~ 1.5,

For constant £ and f;, on the other hand, the acceptance é:?

is proportional to

ENE -
o

which has a maximum for m = 2 + \/5 = 2,06,



- B -

In order to achieve maximum acceptance in this case, the field

gradient should be chosen according to a beat factor m R22.

Thirdly, for constant k and £ and a variable filling factor f,
one finds that the optimum value 0f the beat factor m depends
on k °.€2 and is for instance given by maz 1,24 for k o,£2 =
0,25 and by m az1.35 for k 0,82 = 0.5,

Comparisons

The acceptances of the two kinds of lenses with equal paramefers
a, k and f; M = 4 and optimum ,55 and ,51, respectively, compare

as follows:
2 2
6;5 ~ 5 ° €,

This factor of five may be regarded to represent the average

gain in acceptance due to increasing the lens aperture from the
quadratic to the rectangular shape with an aperture ratio M = 4,
One has to remember, that this factor would be somewhat smaller
for a circular useful lens aperture instead of the square aperture

assumed above for lens type No. 1.

Choice of quadrupole type

The cost per meter of the asystem may be written asg

C = a2 o f o (A + B gz) (3)

with g being the field gradient, where A i8 the manufacturing
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co8t per meter lens, normalized for a = 1, and B is the
normalized cost of the power supply and of the consumed
power, integrated over the life of the lens, A and B are
agsumed %o be constants for a given type of lens. For the
two lens types considered above, we have found approximately

the ratios

A B
E:?-NOOB ’Baii/;\\fla

which are based on current Cerman cost figures.
Writing
k = % e g with p in GeV/o and g in st.uss/cm9

the figure of merit for each lens type can now be written as

followss
2 2
M- =1 g
Zadelt o 2 (4
M~ o+ A, - o
5 5 * B o 8
2 2
6 m = 1 z
mlr,v,%azolu;lé_OQ . 5 (5)
C1 P m m- o+ 1 A1 + B1 o &

In order to compare the economical merit of the two lens types,
an assumption has to be made about the average gradient at which
the lenses will be operated. Denoting this average gradient by
€y the ratio of the figures of merit is given by
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A1+B1°g (6)

%

where m1¢3ﬁ105 and M = 4 has been assumed,

Inserting a g of 0.45 kGauss/om in equation (6), the lens type 5
appears to be economically slightly superior in our case, although

we have very high power costs.
There are some more arguments favoring lens type 53

1. It is easier to achieve a precise field distribution

over the entire aperture if M is increased.

2, The end fringing fields can be shaped more precisely

for larger M.

3s A larger aperture in one dimension allows a more
efficient use of bending magnets; since the dispersive
power of such & magnet increases linearly with beam

width.

Choice of quadrupole radius

The lens radius a should be chosen as large as possible for
maximum economy, as is apparent from equation (4). Since the
figure of merit is proportional %o the square of a, it pays to

increase the radius even into the region where the maximum

- 11 -



achievable gradient becomes inversely proportional to & due

to saturation in the iron, For M = 4, a radius of 14 cm allows
transmission of a beam cross section of 10 x 40 cm2 at a
maximum gradient of close to 1 kGauss/cm, and it may not seem
unreasonable to build even larger lens apertures at reduced

maximum gradients for special purposes.

Choice of quadrupole length

In order to chooge the iength Q,Z of the standard lens, one

might start from an average lens strength
28 £ = 8 = const

and minimize the cost for achieving this lens strength, Since

the cost is proportional to
£ - (& + Bg%)
the cost minimum is given at

5 2

g - (7

.
Vx B

An alternative apprcach consists in finding the optimum length

of a system with given optical properties.

When scaling all the lengths in the system proportionally, the

optical properties remain unchanged if all the products g °,62

are kept constant. The acceptance of the system then changes

proportional to m%;:g i. ©. proportional to g, Therefore, the
£

= 12 =
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figure of merit for such a system is proportional to

-2 z
& 8 _33/ 2

~ 5 for g « §° = const,
o £ (A + Bg“) A + Bg

where C now is the total c¢ost of the system.

In this case, the optimum is given at
2 A
g = 33 (8)

As compared to equation (7), this result recommends a larger
gradient and therefore, in general, a shqrter length of the
quadrupoles. However, standard lenses should always be chosen
long enough in order to keep fringe field distortions and power

losses in the coil ends within permissible limits.

Shaping of end fringe fields

Shaping or shimming of magnet pole ends is done in order to
avoid saturations) or to improve the optical properties of the
fringe fields19 7y 8, 9)0 For the latter purpose, one usually
demands that '

the "magnetic length! J{ﬁ BZ ds for a bending magnet and

the "gradient length® o B, for s quadrupole,
ds
o X

W. Hardt, DESY-Bericht A 1.5 (1959)

P. Crivet and A. Septier, CERN 58-25 (1958)

C. A. Ramm, Proceedings of the Berkeley Conference 1960
M. PFoss, private communication

O Q1 ON
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integrated through the fringe field, should be conatant over

the entire aperture.

It is possible, however, to design fringe fields according
to a more siringent but in principle more satisfactory require-

ment,; by demanding that throughout the fringe field region

1. for a bending magnet, the field component in
every plane parallel to the magnet face should

have a homogenfious distribution, i. e.

B, = const. £(s) ; (9a)

2. for a quadrupole, the field component in every
Plane paraliel %o the magnet face should have

a quadrupole distribution, i. e,

B, = const.* . z o h{s)
(10a)
B, = oconst.* - x o h{s)

with f(s) and h(s) being functions of s only.

It is obvious that such linear transverse fringe field configu-
rations auntomatically provide constant "magnetic length" and

"gradient length%, respectively.

It follows from Maxwells equations that the only fringe fields

compatible with the above requirements are
(9)

for the bending magnet, and

- 14 =



Bx = g% o 8 o 7

B, = g* o8 o x (10)
= * . o

BS g b4 Z

for the quadrupole.

The field given by equation {9) is a two-dimensional gquadrupole

field with its axis parallel to the magnet face.

The field given by equation (10) is a three-dimensional quadrupole

field with one of its six semi-axes coinciding with the axis of

the quadrupole.

In these fields, the equations of motion assume an especially
simple form since most of the nonlinear terms, which are usually
introduced by the fringe fields, vanish. This means that non-
linear aberrations caused by the fringe fields are to a large

extent eliminated.

For example, the equations of motion within an ideal quadrupole

are given by

EC.“I“VékX = 0
(11)

‘ 1 d 2 2
5 = FVk E€=(x - 2z°) = 0

where X, z = transverse deviations from quadrupole axis

at?
v = particle veloscity
k . £:5£
p
P = momenium

& = field gradient

- 15 -
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On the other hand, in the three-dimensional gquadrupole fringe

field (10) the equations of motion are

X+ v s k¥ s x = =B £

m 8
‘ (12)
S - % v k¥ s é% (x2 = 22) =0

As compared to equations (11), the constant k has been replaced
by (k¥s) here, and only one additional nonlinear term has
appeared, which is due to the longitudinal field component Bs

in the fringe field region.

End configuration for bending magnets

The end configuration suggested for shaping the fringe field of

a "window-frame" bending magnet is shown in figure 4. The pole
ends are rounded off along an equipotential surface z » s = consti,
The two-dimensional guadrupole fringe field (9) is terminated on
the outside by a magnetic mirror surface, located at s = O, and

on the inside by a break in the pole contour which leads from the
hyperbolic part to the parallel part inside the magnet. This break
as well as the central hole in the magnetic mirror plate, neceded
for passing the beam, causes some distortion of the ideal quadru-
pole end field configuration. However, preliminary analog measure-
ments4), using a stainless steel plate modelio), have shown that
the field rises essentially linearly between the mirror plate and
the pole break for a geometry as shown in figure 4. In this geo-
metry, the arrangement of coil ends aids in generating a fairly
undistorted quadrupole fringe field. Rounding the break in the

pole contour would give some further improvement.

The end configuration of figure 4 closely resembles a design
which has been developed by Dr. M. Foss using a more empirical

approach9)o

10) S. van der Meer, private communication - 16 -
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End configuration for guadrupole magnets

The end configuration suggested for shaping the end field of the
quadrupole type 5 is shown in figure 5. The pole faces are rounded
off along an equipotential surface x » % - s = const. The three-
dimensional quadrupole fringe field (10) is terminated on the
outside by a magnetic mirror surface, located at s ¥ 0; and on

the inside by a break in the pole contour which leads from the
rounded pole end to the inner part of the quadrupole. This break
in the pole as well as the central hole in the magnetic mirror
plate, which has a cross section equal to the quadrupole aperture,
again causes some distortion of the ideal three-dimensional
quadrupole end field configuration. Rounding the break in the

pole contour would give some improvement.

In the geometry of figure 5, the arrangement of coil ends aids
in generating a fairly undistorted three-dimensional quadrupole

fringe field.
Another advantage of this end configuration, applying to bending

magnets as well, consigts in a reduction of saturation effects

due to the rounded pole ends.
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