D

I.

II.

DFES YnBinoﬁlek

eutsches Elektronen-Synchrotron (DESY)
Hamburg-Gr.Flotthek 1, Flottbeker Drift 56

DESY A 2.16

some Kinematics of Inelastic High-Energy Electron Scattering

Introduction

Bernstein (CEAm51) has assembled useful formulas for the elastic
scattering of high energy particles with zero rest energy. However,
many collisions of such particles will be inelastic with the pro-
duction of W-mesons, K-mesons and strange particles. This report
1s written to supplement that of Bernstein's. The assumption that
the rest mass of the incident particle (electron) is zero is used
here also; the error due to this approximation is negligible in the

GeV region. The formulas are exact for gamma rays.

Maximum Energies of Particles Produced in _Inelastic Collisions

Consgider a light particle of energy E2' striking a nucleon of energy
E1‘ = 1, (see Table A for the details of the notation used.). From
the c¢collision more than two particles may emerge; however, a given
particle produced in the collision will have & maximum energy only
if a minimuwm number of particles is produced in the reaction. In

the case of M-mesons production, this minimum number is two

(e + N—=> N +T ), as it is also for strange particle production
where no anti-particles are produced. Since an anti-particle can be
produced only together with a particle, for anti-particle production

the minimum number is three (example e + N-—sN + A + A ).
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Table A - Hotation

Total energy of a particle, including rest energy
Kinetic energy of a particle

Rest energy of particle

Momentum of particle

Primes denote quantities in Laboratory system;
unprimed quantities refer to center-of-momentum-systen
Sub-one denotes the target particle

Sub-two denotes the incident particle (electron or\( )
Sub-thpee denotes the particle of particular interest
emerging from the collision

Sub-four denotes the other particle(s) emerging from
the collision

Velocity of light, taken as unity so that E2 = p +m
E1 + E2 = total energy before collision in center-of-
momentum system

velocity of center-of-momentum system referred to the

laboratory system
(1 - 32)-1/2



It is easy to show that if three particles emerge from the collision,
the condition that one of them have a maximum energy is that the other
two particles move together. The proof follows. In the center-of-

momentum system, calling the particles “3", 4" and "5V, we have
E;3 = W - (Eq - Es) Conservation of energy (1)
P, ° Pu—Ps Conservation of momentum (2)

It is obvious, that, for the maximum energy E3’ all particles must

move along the same straight line, so that (2) can be taken as a

scalar equation. Using the relativistic expression B = p2 + m2,
(1) becomes
: J ' ' o 3
Ey = WARTF ) - WAl A o)
80 dE3 pl py - ( d ) (4)
- = + 3 ~ Py i Py - 4
dpy YPy + vy [lpy = P)* v\ dpy

And for a given partiole "3", when E, is afmaximum, p3 is also a

maximu, so setting By . g3 _ g in 4) and simplifying
Py clpy

2 z 2
REmg i (Pym)T T MR

or Py
Ps Mg

which implies that 84 = 65 and the particles move together. Hence for
the maximum energy calculation "4" and "5" may be considered as a single
particle having the total mass m, + m5. From now on, m4 will represent

4

thig total mass.



The equations for transforming to the center-of-momentum system are

identical with those in the elastic case and maey be written

E; -y (E1-BR), R - ¢ {(p - BE)
and (6)
[ i
E; v (B -p); P = ¢ (p v BEL)
where
b= vaiEz / g~ “ﬂlj'f / xJZ"V”f * iy * Zvan;

From these

] 2 ! {
E’1= mﬂ(md4522 }v Elo Mi C;/MQE?.} P'&.mT’L’\/_EZ___ (7)

where p is the common center-of-momentum momentum of "1 gnd"2¥
before collision. After collision, the momentum of 1 must equal that
of 2, but in the inelastic case, this momentum, p , need not be the

same a5 D.

Using (7), writing conservation of energy and momentum in the center-
of -momentum system, assuming equation (5) and solving for the maximum

energy of particle "3" gives

E. « W2t w? -k E, WE+ e < ms
5 LW ! 2 W
(8)
2 Z b 2
2 _ [ Wt wmi a~m§),mg G(LJ + g —hu)__h}
B ( 7 W 7 3 7 W 7 4

and transforming with (6) back to the laboratory system

L 2 2

) (9)

3

o Pyt B, ( WL mag-hnf 3 r% V/(»J‘+Vn§ -ng
w W g tEy 2W

For E,' , one need simply interchange the subscripts 3 and 4.
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The interastions of interest are those involving an electron or gamms
ray striking a nucleon N with the production of some other particles.
Because of the rule of associated production of hyperons with K-partic-
les, not all energetically possible reactions can occur. Table # lists
most of the reactions which are observed or which are believed possible.
Following the example of Bethe and De Hoffmann, the cascade particle

is written as §2 y rather than the more usual, but scarcely printable
—_

e

Threshold Production: When the incoming particle has just enough

energy to produce a certain reaction, the center-of-momentum momentum
after the collision is zero. This condition with equationa (8) and

(6) gives for the threshold of a reaction

z - (10)

It is interesting to note that in this case E3 = ma, E4 = mq,
= =0 that, f 6 Y. -
Py = Py , so that, from (6) E, K'E3
= ‘ & Lol
Ey By
50 that in the laboratory system the particles produced move straight

ahead with a kinetic energy

- . 11)

r‘ - (xm"/t) \’V\j ( ’
where ¥ is given in equations (6). Y is about 2 for 6 GeV electrons
on nucleons, so that even at threshold the produced particles will

have a kinetic energy about equal to their rest energy.

The calculated values of the threshold energies for the reactions are
also listed in Table B. The values of the masses of particles used

are given in Table C. Pable ¢ also listes the maximum kinetic energy
in the laboratory system at production for the various known particles,
using for each particle the most favorable (kinematical) reaction.

These values were computed from equation (9) for two separate energies,

-6 -



Reaction

e + N —»

20z M > =z

Table B
T
+ K
+ K
+ K+ K
+ 2K
+ N + W
+ At A
T N O S
PR
Pt S
PR Q

Threshold

GeV



Table ¢

Maximum Lnergy at Production

Particle Rest Mass Reaction Max.Kinetic max.Kinetic
GeV e + N—> Energy at 6 GeV Energy at 7,5 GeV

W 0,140 N + T 5,86 T,%6

K 0,494 A K 5,30 6,81
K N+t K+ K 4,86 6,37
A 1,12 N K 5,26 6575
A N + A+ A 2,70 44535
2 1,19 2t K 5,18 6,68
= N+ A+ 2T 2,54 4,23
G2 1,32 QR + 2K 4,60 6,16
EE N 4 KR+ §Z -- 3,52

N 0,938 N+N+ N 5,48 5,03



6 GeV and 7,5 GeV. The most important conclusion from this table, which
could be surmised from equation (11) is that the kinetic energies of
the particles at production will generally be very large. Even undery
conditions of production giving only a fraction of the maximum energy
to the particles, in most cases they will s%ill have énergies of

geveral hundreds MeV.

I11. Meson Energies as a Function of Angle

When the particles produced in the reaction do not travel along the
original line of the motion, as is usually the case, the particles

do not have their maximum energy and this energy is a function of the
angle made by the particle trajectory with that of the incoming par-
ticles. Herr Herrmann has verified that the following equations give
the energy of particle 3 as a funciion of the angle ?5‘in the labory-
tory system, between the trajectory of 2 and that of 3

L]

(12).

l s
Fle At bing VAol ol ety

(A -® cos* ')
where
A - e & Lim, %l+wf -y (13)
7—{}’1’\1 + El!)

and all other guantities are as previously defined; this has been

developed only for the case m, = 0, but negligible error results in

2
using the results for very fast electrons.

f
Figures 1 and 2 saow as a function of the laboratory angle ?? the

laboratory momentum

of the ¥ -mesons produced by y +N — N+%
and of the K-mesons produced by § *N-—> AtK

for initial energies of 6 GeV and 7,5 GeV. The momentum is given in
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terms of ¢ times the usual momentum and is expressed in the units
GeV. For extreme relativistic particles, this is also the total
energy of the particles. From the graphs, it is seen that the

T -meson may be considered extreme relativistic at all angles
(minimum cp' is about 3 times the rest mass) and the K-meson is
extreme relativistic for angles less than 60° (cp' about twice the

rest energy) and has high energies at all angles.

These figures enable one to predict the initial momentum of the -
and K-meson beams from a target placed in the election beam of the
synchrotron as a function of the angle between the electron beam

and the meson beam. The TW-meson beam will be complicated, however,
by multiple production processes (e + N 2N +n-T ) in which several
T -mesons (n = 2,3,.....etc.) may be produced in a single collisien.
For protons incident on the nucleon at 5 GeV energy, the multiple
production processes become more probable than the single production.
Although nothing is presently known about multiple production of

mesons by electirons, presumably a similar effect will occur.

Collisions with Moving Target

The target has so far been assumed to be at rest in the laboratory
system before collision. In two cases of interest, the target may

be moving fast enough to change the results appreciably. The first
case is that of a nucleon in a heavy nucleus where it may have a
kinetic energy up to about 25 MeV. Although this energy is very small
compared to the bombarding energy, it represents sufficient energy

in the center-of-momentum system to modify the problem. The second
case 1s that in which two beams of particles are directed at each
other. At present, this "colliding beam" experiment has only acadenmic
interest, for the cross-sections for interactions are so small that
the beams must interseit many times or intermingle for an appreciable
time in storage rings for a detectable number of interactions to occur.
Such storage rings have not yet been built nor are any under construc-

tion at the present time.



consider a target nucleon moving towards to incident electron with
25 MeV kinetic energy = T1'- For the threshold production of partic-
les it is convention to transform to a system in which the nucleon
is at rest and calculate the energy of the electron in this system.
Since 25 MeV is small compared to the nucleon rest energy, the

velocity of the system B' can be calculated from

, ' (14)

AT A and ¥ - &
Vn,g m'l

Then in the nucleon rest system, distinguished by double primes,

B -y (B R) =y (1 R) (15)

! i
the approximation following because Ez' = P, . Since g involves

82 only, this is sufficiently close to

E,' - E' (A+p) (16)

]
for small Bt. |5’2 - 71;:“ - Zq"%;s - 0,26,
A

independent of the incident particle energy and hence

(17)

4
B, = 46E;

This means that any reaction possible on a stationary nucleus at
energy EZ" will also occur at the 25 % lower energy E2‘ if nucleons
in a heavy nucleus are used as the target. Hence the only reaction

in Table B which is not possible with 6 GeV electrons on hydrogen,

e + Ny N+ &2 4 @ with a threshold of 6,36 eV is possible with

6 GeV electrons on a heavy nucleus target. The yield, of course,
would be very small, since not many of the nucleons would collide
with the electrons with their maximum momentum directed just opposite

to that of the electrons.

- 11 -
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For threshold reaction, E," = 1,26 E,' = 7,5 GeV for 6 GeV electrons.
Hence any reaction with a threshold less tlan 7,5 GeV can be produced
with a heavy nucleus target. For reactions above threshold and for
angular distributions, equation (17) does not give much information.
One would have to consider the collision in detail in the ( ") system
and then transform back to the laboratory system. It does not seem
particularly interesting to work out the problem in detail because
even in heavy nuclei the average nucleon momentum is zero and hence
the momentum distribution will not very much affect the angular distri-
bation of the energy of a produced particle; its primary effect will
be %0 spread out the distribution in energy of the particles pro-
duced at & given angle. For experiments using such particles pro-
duced by heavy target bombardment this spread in momentum will have

t0 be considered.

For the colliding beams experiment, the important parameter is the

center-of-momentum energy W in (6);

W = Ym2Z +omf? ¢ 2ma B (stationary target)

Hence for eleciron-electron collisions with a single beam of 6 GeV
on stationary electrons, W is 78 MeV, a surprisingly low value.

If two 6 (GeV electrons collide head-on, however, W is obviously

12 GeV, since the laboratory and the center-of- momentum sysiems

are the same. Phus the energy available for reactions is 154 times
as great as for the single beam collision on stationary target.

For a collision with a stationary electron to have W = 12 GeV would
require the single electron beam to have an energy of 1,41 x 105 GeV,
or (154)2 x 6 GeV. These examples show the enormous advantages to

be gained if one could employ a colliding-beams machine.

E. Zimmermann
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