Interner Bericht DESY D3 - 97 April 2001

Ergebnisse von Strahlenschutzmessungen am Deutschen Elektronen-Synchrotron DESY - Hamburg im Jahre 2000

DESY Strahlenschutzgruppe

Eigentum der DESY Bibliothek Property of DESY library Zugang: 20. Mai 2001

Accessions:

Keine Ausleihe Not for loan DESY behält sich alle Rechte für den Fall der Schutzrechtserteilung und für die wirtschaftliche Verwertung der in diesem Bericht enthaltenen Informationen vor.

DESY reserves all rights for commercial use of information included in this report, especially in case of filing application for or grant of patents.

"Die Verantwortung für den Inhalt dieses Internen Berichtes liegt ausschließlich beim Verfasser" Interner Bericht DESY D3 - 97 April 2001

Ergebnisse von Strahlenschutzmessungen am Deutschen Elektronen-Synchrotron DESY - Hamburg im Jahre 2000

DESY Strahlenschutzgruppe

Inhaltsverzeichnis

1	Besc	hleunigerbetrieb	1
2	Pers	onendosen	1
3	Orts	dosen außerhalb von Beschleunigerräumen	4
	3.1	Passives Überwachungssystem	4
	3.2	Aktives Überwachungssystem	5
4	Akti	vierungen in Beschleunigerräumen	6
	4.1	Induzierte Radioaktivität	6
	4.2	Kontamination	8
5	Übe	rwachung von Luft und Wasser	8
	5.1	Luft	8
	5.2	Wasser	9
6	Stra	hlenbelastung von Beschleunigerkomponenten	12
6	Stra 6.1	hlenbelastung von Beschleunigerkomponenten PIA	12 12
6	Stra 6.1 6.2	hlenbelastung von Beschleunigerkomponenten PIA PETRA	12 12 13
6	Stra 6.1 6.2 6.3	hlenbelastung von Beschleunigerkomponenten PIA PETRA HERA	12 12 13 17
6	Stra 6.1 6.2 6.3 6.4	hlenbelastung von Beschleunigerkomponenten PIA PETRA HERA Belastung durch Neutronen	 12 13 17 21
6 7	Stra 6.1 6.2 6.3 6.4 Tabe	hlenbelastung von Beschleunigerkomponenten PIA PETRA HERA Belastung durch Neutronen ellen der Ortsdosen	 12 13 17 21 22
6 7	Stra 6.1 6.2 6.3 6.4 Tabo 7.1	hlenbelastung von Beschleunigerkomponenten PIA PETRA HERA Belastung durch Neutronen ellen der Ortsdosen Linac2 und Linac3	 12 13 17 21 22 23
6 7	Stra 6.1 6.2 6.3 6.4 Tabe 7.1 7.2	hlenbelastung von Beschleunigerkomponenten PIA PETRA HERA Belastung durch Neutronen ellen der Ortsdosen Linac2 und Linac3 DESY2/3	 12 13 17 21 22 23 24
6 7	Strai 6.1 6.2 6.3 6.4 Tab 7.1 7.2 7.3	hlenbelastung von Beschleunigerkomponenten PIA PETRA PETRA HERA Belastung durch Neutronen ellen der Ortsdosen Linac2 und Linac3 DESY2/3 PETRA, HASYLAB6	 12 13 17 21 22 23 24 26
7	Stra 6.1 6.2 6.3 6.4 7.1 7.2 7.3 7.4	hlenbelastung von Beschleunigerkomponenten PIA PETRA PETRA HERA Belastung durch Neutronen ellen der Ortsdosen Linac2 und Linac3 DESY2/3 PETRA, HASYLAB6 HERA	 12 12 13 17 21 22 23 24 26 29
7	Strai 6.1 6.2 6.3 6.4 Tab 7.1 7.2 7.3 7.4 7.5	hlenbelastung von Beschleunigerkomponenten PIA PETRA PETRA HERA Belastung durch Neutronen ellen der Ortsdosen Linac2 und Linac3 DESY2/3 PETRA, HASYLAB6 HERA DORIS, HASYLAB1-5	 12 12 13 17 21 22 23 24 26 29 32
7	Strai 6.1 6.2 6.3 6.4 Tab 7.1 7.2 7.3 7.4 7.5 7.6	hlenbelastung von Beschleunigerkomponenten PIA PETRA HERA Belastung durch Neutronen ellen der Ortsdosen Linac2 und Linac3 DESY2/3 PETRA, HASYLAB6 HERA DORIS, HASYLAB1-5 TESLA-TF	 12 13 17 21 23 24 26 29 32 35

1 Beschleunigerbetrieb

Die Beschleuniger liefen im Jahr 2000 von Anfang Januar bis Anfang Oktober (HERA bis Anfang September). Nach dieser Periode gab es aufgrund von Wartungs- und Installationsarbeiten im Jahr 2000 keinen Strahlbetrieb mehr.

Zur Beurteilung der gemessenen Dosiswerte sind in Tabelle 1 die ungefähren Betriebszeiten aufgeführt.

Man erkennt, dass sich die Betriebszeiten der Beschleuniger im Jahr 2000 um 20 bis 50 % im Vergleich zum Vorjahr verkürzt haben. Auch wenn sich einige der maximalen Ströme (bei PETRA-e und PETRA-p) erhöht haben, so folgen doch die akkumulierten Ladungen der Beschleuniger im Jahr 2000 dem oben beschriebenen Trend und fallen um bis zu 50 % kleiner als im Vorjahr aus. In den Betriebszeiten von HERA sind die Zeiten für Lumibetrieb, Maschinenstart und Maschinenstudien enthalten; die akkumulierten Ladungen ergeben sich aus den Lumizeiten um dittleren umlaufenden Strömen.

Der Testlinac TTF wurde in die Tabelle nicht aufgenommen, da es keinen kontinuierlichen Strahlbetrieb gab.

Beschleuniger	Betriebszeit		Max. Energie	Max. Stro	m oder
	in Stunden		in GeV	akkumuliert	e Ladung
DESY2 (e ⁺ /e ⁻)	3500	(-20 %)	4.4/7.0	1.5/2.3 mA	(=)
DORIS	5000	(-30 %)	4.4	498 Ah	(-35 %)
PETRA-e	720	(-55 %)	12	50 mA	(+25 %)
PETRA-e HASYLAB6	2100	(+15 %)	12	43 Ah	(=)
HERA-e	2900	(-55 %)	27.5	65 Ah	(-55 %)
DESY3	380	(-40 %)	7.5	200 mA	(=)
PETRA-p	440	(-40 %)	40	120 mA	(+35 %)
HERA-p	3500	(-50 %)	920	280 Ah	(-45 %)

Tabelle 1: Daten über den Beschleunigerbetrieb im Jahr 2000. In Klammern sind die Veränderungen gegenüber dem Vorjahr angegeben. (=) bedeutet: Veränderung ≤ 10 %

2 Personendosen

Die Messung von Personendosen für Mitarbeiter, die Kontrollbereiche betreten oder mit radioaktiven Stoffen umgehen, ist gesetzlich vorgeschrieben. Kontrollbereiche sind definiert als Bereiche, in denen eine Person bei einem Aufenthalt von 2000 Stunden pro Jahr eine Dosis von mehr als 15 mSv erhalten kann. Bei DESY werden Kontrollbereiche nur gelegentlich und zur Ausführung angeordneter Arbeiten betreten. Es gibt darin keine ständigen Arbeitsplätze (mit der Aufenthaltsdauer einer Person von etwa 40 Std. pro Woche). Kontrollbereiche entstehen bei DESY durch

- 1. Gammastrahlung,
 - die von radioaktiven Stoffen erzeugt wird. Solche Stoffe sind entweder Beschleunigerkomponenten, die beim Betrieb eines Beschleunigers aktiviert wurden, Module des Uran-Kalorimeters oder kommerzielle Strahlungsquellen.
 - die von Strahlverlusten beim Beschleunigerbetrieb herrührt. Davon sind im allgemeinen nur Räume oder Gebäude betroffen, die unmittelbar an einen Beschleuniger angrenzen.

Die Messung der Dosis erfolgt durch Glasdosimeter, die von der amtlichen Messstelle in Hamburg-Altona geliefert und ausgewertet werden.

2. Neutronen, die als Folge von Strahlverlusten während des Betriebs entstehen und in geringem Maße die Abschirmung durchdringen können.

Zur Messung werden Kernspurfilme verwendet, die vom CERN geliefert und ausgewertet werden.

Die Dauer einer Messperiode beträgt 2 Monate. Das Überwachungsjahr 2000 begann am 1. Januar und endete am 31. Dezember.

Im Mittel wurden im Jahr 2000 pro Messperiode 1094 DESY-Angehörige und langfristig bei DESY arbeitende Gäste regelmäßig überwacht (im Vorjahr: 1014). Davon waren 107 Personen (Vorjahr: 106) zusätzlich mit einem Neutronendosimeter ausgestattet. Die untere Nachweisgrenze der Dosimeter (Photonen sowie Neutronen) beträgt 0.2 mSv. Dosen unterhalb 0.2 mSv pro Messperiode werden als 'Null' bewertet.

In der gesamten Überwachungszeit 2000 wurde bei 13 Personen eine (amtliche) Photonendosis oberhalb oder gleich 0.2 mSv festgestellt (im Vorjahr: 0 Personen).

Die Anzahl der Mitarbeiter mit Jahresdosen oberhalb oder gleich 0.2 mSv betrug für Neutronendosen 23 Personen (im Vorjahr: 24).

Die Aufteilung der Mitarbeiter in verschiedene Dosisgruppen ist in Tabelle 2 aufgeführt.

Eine Person gilt als *beruflich strahlenexponiert*, wenn sie bei der Ausübung ihres Berufs mehr als 5 mSv Dosis pro Kalenderjahr erhält. Die maximal zulässige Jahresdosis für beruflich strahlenexponierte Personen der Kategorie A beträgt 50 mSv, die der Kategorie B 15 mSv. Im Jahr 2000 gehörten formal 17 Personen zur Kategorie A.

Die größte gemessene Personen-Jahresdosis 2000 betrug 1.2 mSv (1 Person). Von den Grenzwerten sind wir demnach weit entfernt; **keine** von DESY überwachte Person zählte in diesem Jahr zur Kategorie der *beruflich strahlenexponierten Personen*.

Die Gesamt-Gammadosis der Belegschaft (*Kollektivdosis*), definiert als Summe aller festgestellten Gammadosen größer oder gleich 0.2 mSv, betrug 4.0 mSv, die Gesamt-Neutronendosis 6.0 mSv. Die Gesamtdosis der Belegschaft (10.0 mSv) ist damit gegenüber dem Vorjahr (5.8 mSv) etwa doppelt so groß.

Die Entwicklung der Belegschaftsdosis in den letzten Jahren ist in Abbildung 1 dargestellt. Der Mittelwert der Gammadosis seit 1991 beträgt 15.7 mSv ($\pm 20\%$). Der Mittelwert der Neutronendosis liegt bei 8.7 mSv ($\pm 20\%$).

Außer den permanenten DESY-Mitarbeitern wurden für kürzere Zeit 303 Gäste (das sind Angehörige von anderen Instituten oder von Firmen) überwacht. In 7 Fällen waren diese Jahresdosen höher als 0.2 mSv; sie lagen alle unter 0.5 mSv.

	Gamma- Dosimeter	Neutronen- filme
Anzahl der über- wachten Personen	1094	107
Anzahl der Personen mit Jahresdosen: < 0.2 mSv ≥ 0.2 bis < 1 mSv ≥ 1 bis < 5 mSv ≥ 5 bis < 15 mSv ≥ 15 mSv	1081 12 1 0 0	84 23 0 0 0
Summe der Jahresdosen in mSv	4.0	6.0

Tabelle 2: Jahresdosen 2000 von DESY-Mitarbeitern

Kollektivdosis-Entwicklung

Abbildung 1: Entwicklung der Gesamtdosis der DESY-Belegschaft seit 1991. Anfang 1999 wurde ein neues Messverfahren für Gammadosen eingeführt. Die Werte der Gamma-Kollektivdosis für 1999 und spätere Jahre sind daher mit den Werten der Jahre vor 1999 nicht vergleichbar. Insgesamt 8 Mitarbeiter erhielten auf Wunsch Dosimeter in Form von Fingerringen, zur Messung der Handdosis. Bei 4 Mitarbeitern lagen die Jahresdosen unter 0.2 mSv, bei 4 Mitarbeitern zwischen 0.2 und 0.4 mSv. Die maximal zulässige Handdosis beträgt 500 mSv/a.

Alle Daten der Personendosimetrie werden gemäß den gesetzlichen Bestimmungen 30 Jahre lang bei D3 aufbewahrt.

3 Ortsdosen außerhalb von Beschleunigerräumen

3.1 Passives Überwachungssystem

Die Ortsdosis in zugänglichen Bereichen wird mit integrierenden Festkörperdosimetern gemessen. Die Gründe hierfür sind:

- 1. An Protonenbeschleunigern spielen die Neutronendosen eine dominierende Rolle. Dabei rührt ein großer Beitrag von Neutronen mit Energien oberhalb von 20 MeV her und liegt damit außerhalb des Messbereichs kommerzieller elektronischer Neutronenzähler.
- 2. Das Strahlungsfeld ist bei Protonenbeschleunigern besonders an den Stellen hohen Strahlverlustes (z. B. an Ejektions- und Injektionsstellen) in starkem Maße gepulst. So beträgt z. B. beim Einschuss von Protonen in PETRA die Dauer des Strahlungspulses 1 μs und der Pulsabstand 4 s. Damit ist eine quantitative Messung mit Ionisationskammern oder Zählrohren nicht möglich. Festkörperdosimeter dagegen sind von der Zeitstruktur des Feldes unabhängig.

Zur Messung der Ortsdosen werden Detektoren verwendet, die aus Thermolumineszenz-Dosimetern (⁶LiF/⁷LiF) in Polyethylen-Moderatoren bestehen sowie aus Spaltfragment-Dosimetern (Th-Folien in Verbindung mit Makrofol). Damit können **Neutronendosen** bei allen auftretenden Energien gemessen werden. Als Moderatoren werden Polyethylen-Zylinder (15 cm Durchmesser, 15 cm Höhe) oder Polyethylen-Kugeln (30 cm Durchmesser) verwendet. Die Kalibrierung der Detektoren erfolgte mit einem Neutronen-Spektrometer, das in der Lage ist, Spektren von thermischen Energien bis über 200 MeV zu messen. Solche Spektren wurden an einer Vielzahl von Stellen auf dem DESY-Gelände gemessen und so Kalibrationsfaktoren für typische Positionen, Moderatoren und Detektoren bestimmt.¹

Die Gammadosen werden aus den Messwerten der ⁷LiF-Dosimeter gewonnen.

Insgesamt 235 Stellen wurden mit solchen integrierenden Dosimetern auf dem DESY-Gelände, an der Geländegrenze und an einigen Stellen im Volkspark (oberhalb des HERA-Rings), überwacht. Die detaillierten Messergebnisse sind in den Tabellen 14 bis 27 aufgeführt. Als natürlicher Untergrund ist bei den angegebenen γ -Dosen 50 μ Sv pro Monat abgezogen worden. Der natürliche Untergrund an Neutronen ist klein, auf eine Korrektur wird verzichtet.

Die Tabellen zeigen, dass die Einrichtung der Kontrollbereiche gerechtfertigt ist. Zu beachten ist, dass in allen Gebieten Detektoren an den Stellen aufgestellt wurden, an denen die höchsten Dosen zu erwarten sind, auch wenn die Aufenthaltswahrscheinlichkeit von Personen dort klein ist. Die Jahresdosen an Arbeitsplätzen sind daher erheblich kleiner als die Tabellenwerte.

¹K. Tesch: Messungen der Neutronen-Ortsdosen mit Festkörperdosimetern ab 1995, Laborbericht DESY D3-88(1995)

An 15 (von insgesamt 16) Messstationen an der Geländegrenze und oberhalb des HERA-Tunnels im Volkspark konnten keine Dosen über 0.2 mSv für Photonen und Neutronen (das sind die Nachweisgrenzen der Dosimeter) festgestellt werden (siehe Tabelle 27). Die Messstelle nahe der PETRA-Halle Südost, an der Grenze zum Industriegebiet, ergab 0.25 mSv/a (maximal zulässiger Wert: 1.5 mSv/a).

Zum Vergleich wurden 3 Messstationen in Tornesch betrieben. Die mittlere Jahresdosis betrug dort für Gammastrahlung und Neutronenstrahlung jeweils weniger als 0.2 mSv.

In der Tabelle 3 sind die Daten der wichtigsten Bereiche zusammengefasst. Dabei wurden die Messergebnisse in den jeweiligen Gebieten gemittelt, um einen groben Überblick zu haben, auf welchem Dosisniveau man sich befindet. Ferner wurde in der Spalte 5 ein Vergleich zum Vorjahr hergestellt (Dosis(2000)/Dosis(1999)) um Änderungen zu erkennen.

Man sieht mit wenigen Ausnahmen eine Reduzierung der Jahresdosen der Speicherringe um ungefähr einen Faktor 0.7. Diese Reduzierung ist in erster Näherung konsistent mit den oben angegebenen kürzeren Betriebsdauern. Eine exakte Übereinstimmung kann nicht erwartet werden, da der Strahlverlust, der die Ortsdosen in erster Linie erzeugt, während des Füllvorgangs erfolgt und daher nicht direkt mit den Betriebszeiten zusammenhängen muß.

Die Ortsdosen gemessen am Testlinac TTF sind in der Tabelle 26 zusammengestellt. Ein Vergleich mit den Dosen des Vorjahrs ist wegen des unregelmäßigen Testbetriebs wenig sinnvoll.

3.2 Aktives Überwachungssystem

Der Nachteil von integrierenden Dosimetern ist, dass die Information erst nach einer gewissen Messzeit vorliegt. Deshalb kommt der ortsfesten Messanlage, die mit elektronischen Neutronenzählern und photonenempfindlichen, argongefüllten Ionisationskammern bestückt sind, besondere Bedeutung zu. Die Messgeräte dieser Anlage dienen als Monitore, um Änderungen in der Entwicklung des Strahlungspegels an 88 verschiedenen Messorten zu erkennen und um evtl. Maßnahmen treffen zu können. Ihre Ergebnisse werden werktäglich ausgedruckt und kontrolliert.

Die Monitore der Anlage sind außerdem in der Lage, aktiv in den Beschleunigerbetrieb einzugreifen und bei Überschreitung einer vorgewählten Schwelle der Dosisleistung, die Maschine abzuschalten. Auf diese Weise wird verhindert, dass bei Strahlverlusten zu hohe Dosisleistungen längere Zeit unbemerkt anstehen. Das Überschreiten der vorgewählten "Alarmschwelle" geschieht im allgemeinen nur bei ungünstigen Strahlbedingungen, z. B. während Maschinenstudien, bei Maschinenanlauf oder bei Ausfall bestimmter Komponenten.

Im Bereich Linac2/3, DESY2/3 und TTF werden dabei die Linacs ausgeschaltet. Bei DORIS und PETRA wird der Einschuss aus DESY2/3 unterbrochen. Bei HERA ist derzeit keine Maschinenbeeinflussung aktiv.

Von Mitte April 2000 bis Anfang November 2000 wurde der Bereich der EXPO-Halle mit aktiven Photonen- und Neutronenzählern überwacht. In Übereinstimmung mit den Auswertungen der passiven Dosimeter (siehe Tabelle 27) konnten hierbei keinerlei Messwerte oberhalb des natürlichen Strahlungsuntergrundes festgestellt werden.

		Anzahl	Dosis-	Dosis-	Verhältnis
Bereich		Mess-	Kompo-	mittel	zum
		pos.	nente	in mSv	Vorjahr
Linac2		9	γ	12.4	3.4
Linac3		6	n	5.2	0.5
		6	γ	0.9	0.6
DESY2/3	Lin1	3	n	1.5	1.2
		3	γ	0.2	0.3
	Synch	7	n	5.8	0.6
		7	γ	0.8	0.6
	Halle1	4	n	23	0.5
		4	γ	4.0	0.4
	Halle2	8	n	41	0.7
		8	γ	7.3	0.5
PETRA	Halle SO	6	n	5.9	0.7
		- 6	γ	0.9	0.7
	Werkstatt	4	n	9.3	0.7
	G11	4	γ	2.0	0.7
	Halle O	5	n	1.3	0.6
		5	γ	0.2	0.7
	NO, NW,	14	n	0.7	0.9
	N, W, SW	14	γ	0.2	1.0
DORIS		12	γ	1.2	1.0
HERA	Halle O	8	n	0.8	0.8
		8	γ	0.2	1.0
	Halle S	13	n	0.8	1.4
		13	γ	0.2	1.0
	Halle W	15	n	4.7	0.6
		15	γ	0.9	0.8
	Halle N	13	n	0.8	0.5
		15	γ	0.2	0.7

Tabelle 3: Zusammenfassung und Tendenz der Ortsdosen 2000.

4 Aktivierungen in Beschleunigerräumen

4.1 Induzierte Radioaktivität

Am Ende von Betriebsperioden, wenn die Beschleunigerräume geöffnet werden, wird die Dosisleistung von Beschleunigerkomponenten, herrührend von induzierter Radioaktivität, gemessen. Das war 2000 einmal der Fall. Dazu werden Messsonden in Verbindung mit Datenerfassungsgeräten benutzt und es wird entlang eines Beschleunigers, im Abstand von etwa 30 bis 40 cm (normaler Arbeitsabstand), gemessen.

Die Messungen werden im allgemeinen einige Stunden nach Betriebsende durchgeführt, damit kurzlebige Aktivitäten nicht erfasst werden. Die Ergebnisse hängen stark von der Zeit ab, die zwischen dem Abschalten des Beschleunigers und dem Beginn der Messung vergangen ist. Ein Vergleich der Werte verschiedener Messungen ist deshalb nicht immer einfach.

Eine Liste mit diesen so festgestellten Restaktivitäten wird zur Information der Mitarbeiter im

Beschleuniger	Anzahl Messstellen	Anzahl Messstellen im DL-Bereich:		DL-Bereich der 10 höchsten Messstellen		ch der 1sten ellen	Besondere Stellen	
		≤1	1 bis ≤10	>10				
			µSv∕	h		μSv,	/h	$\mu Sv/h$
Linac2, PIA Linac3 DESY2 DESY3 PETRA HERA	27 14 48 54 180 304	1 9 23 10 159 279	9 3 23 25 18 16	17 2 2 19 3 9	37 0.2 4.7 27 2.8 9.7	bis bis bis bis bis bis	12000 46 13 310 150 170	Konverter: 12000 Absorber: 150 Absorber: 170
1		1 '	1	1	1			

Tabelle 4: Radioaktivität nach dem Öffnen der Beschleuniger am 2.10.2000 (HERA am 4.9.2000). DL = gemessene Dosisleistung im Abstand von 30 bis 40 cm.

Beschleuniger-Kontrollraum veröffentlicht.

In der Tabelle 4 sind für jeden Beschleuniger die Gesamtzahl der Messstellen angegeben und die Anzahl der Messwerte, die in 3 verschiedenen Dosisleistungsbereichen liegen. Außerdem ist der Bereich der Dosisleistung angegeben, in dem die 10 Messstellen mit den höchsten Dosisleistungen liegen. Herausragende Stellen sind in der letzten Spalte aufgeführt.

Gegenüber dem Vorjahr sind keine nennenswerten Änderungen eingetreten.

Der Positronenkonverter im Linac2 ist die Stelle mit der höchsten Radioaktivität auf dem DESY-Gelände. Eine weitere Stelle, die Aufmerksamkeit erfordert ist das PIA Septum.

Im Beschleunigerraum Linac3 ist das Strahlungsniveau gering. Nur im Bereich des Kollimators im Übergang zu DESY3 wurde eine erhöhte Dosisleistung gemessen.

Im Bereich DESY2 und DESY3 hat sich im Laufe der Zeit an einigen Stellen Radioaktivität mit langen Halbwertszeiten aufgebaut. Der Strahlungspegel bleibt auch bei längerem Abschalten der Maschinen nahezu konstant. Herausragend sind alle Stellen, an denen Teilchen ejiziert werden.

In PETRA gibt es 2 Stellen mit erhöhter Restaktivität. Das ist einmal die Einschussstelle für Protonen und zum anderen der Protonenabsorber. Nur diese beiden Stellen des Beschleunigerraums sind als Kontrollbereiche ausgewiesen.

Im HERA-Tunnel findet man eine merkliche Restaktivität nur in der Nähe des Protonen-Absorbers und am Protonen-Einschuss. An fast allen übrigen Messstellen liegt die Dosisleistung unter $0.5 \,\mu$ Sv/h.

DORIS ist in der Tabelle 4 nicht enthalten. Dort ist im Arbeitsabstand eine messbare Dosisleistung nur in der Injektionszone vorhanden. Sie lag bei 2 μ Sv/h.

4.2 Kontamination

Zur Überwachung von staubförmigen Kontaminationen werden Wischproben genommen und ihre β -Aktivität in einer sehr empfindlichen Apparatur ausgemessen (die Nachweisgrenze der Apparatur beträgt 10 mBq/cm²). Dabei werden Orte überwacht, an denen mit Beschleuniger-komponenten umgegangen wird oder radioaktive Abfälle gelagert werden sowie in Beschleunigernigerräumen nach deren Öffnung.

In Werk- und Lagerstätten wurden 2000 an insgesamt 12 Stellen je viermal Wischproben genommen. Alle Messergebnisse lagen unterhalb der Nachweisgrenze der Messapparatur.

In Beschleunigerräumen wurden im September bzw. Oktober 2000 Messungen an den Stellen der höchsten Radioaktivität durchgeführt. In den Räumen von Linac2 und DESY2/3 wurde jeweils an 10 Stellen gemessen, in PETRA an 6 und in HERA an 3. Dabei wurden am Linac2 im Konverterbereich 38 mBq/cm² und bei DESY3 an den Ejektionsstellen 25 mBq/cm² (Protonen-Ejektion), 53 mBq/cm² (Elektronen-Ejektion) und 151 mBq/cm² (Teststrahl-Ejektion) gefunden. Im Absorberbereich von PETRA konnten 10 bzw. 16 mBq/cm² und im Bereich der PETRA Injektion 15 mBq/cm² nachgewiesen werden. Alle anderen Messergebnisse lagen unterhalb der Nachweisgrenze der Messapparatur.

Der Grenzwert für eine zulässige Kontamination von Arbeitsplätzen in Kontrollbereichen beträgt 50 Bq/cm² (= 50000 mBq/cm²), in betrieblichen Überwachungsbereichen 5 Bq/cm².

5 Überwachung von Luft und Wasser

5.1 Luft

Bei der Aktivierung von Luft werden eine Reihe von Isotopen gebildet, die nur eine kurze Halbwertszeit besitzen (siehe Tabelle 5). Alle diese Isotope sind (bis auf ⁴¹Ar das jedoch nur in geringem Maße produziert wird) β -Strahler. Deshalb wird zur Luftüberwachung nur die β -Aktivität gemessen und daraus die effektive Äquivalentdosis berechnet.²

Im Bereich der Synchrotrons **DESY2/3** wird die Luft im inneren Zugangsbereich kontinuierlich überwacht, da sich dort Personen aufhalten können. Die mittlere Konzentration im Zentrum der Synchrotrons betrug während des Betriebes 1.3 kBq/m³. Der Grenzwert an dieser Stelle beträgt für beruflich strahlenexponierte Personen der Kategorie B 30 kBq/m³. Aus der gemessenen Aktivitätskonzentration ergibt sich eine Haut-Dosisleistung von ca. 0.3 μ Sv/h. Dabei traten kurzzeitig höhere Tagesmittelwerte bis maximal 2.3 μ Sv/h auf.

Die Luft wird nur an Wartungstagen über 8 Ablüfter an die Umgebung abgegeben. Eine Emission von Radioaktivität ist damit nahezu ausgeschlossen.

Die Messung der Radioaktivität der abgeblasenen Luft des Linac2 ergab über das Kalenderjahr gemittelt 2.0 kBq/m³. Aus diesem Mittelwert und der Luftabgabe von 6.3·10⁶ m³ ergibt sich für 2000 eine Gesamtabgabe von etwa 13 GBq. Daraus kann man eine Submersionsdosis von deutlich weniger als 1 μ Sv/a an der Geländegrenze abschätzen. Der Grenzwert für radioaktive Ableitungen außerhalb der Betriebsgrenzen beträgt 300 μ Sv/a.

Bei HERA zirkuliert die Tunnelluft während des Beschleunigerbetriebs. Eine Abgabe an die Außenwelt erfolgt während des Beschleunigerbetriebes nicht. Dennoch wird der Abluftschacht hinsichtlich ausgeblasener Radioaktivität überwacht. Die Messungen ergaben Werte kleiner als 500 Bq/m³ (das ist die Nachweisgrenze der Anlage).

²B. Racky: Auswertung von Radioaktivität in Luft, Laborbericht DESY D3-91 (1996)

Nuklid	Halbwertszeit in Minuten
¹¹ C	20.4
¹³ N	9.96
¹⁵ O	2.03
⁴¹ Ar	110

Tabelle 5: Radioaktive Nuklide, die bei der Aktivierung von Luft gebildet werden.

5.2 Wasser

Das von den Kühltürmen zur Versickerung gelangende Wasser wird im Hauptpumpwerk kontinuierlich auf Radioaktivität untersucht. Erhöhte Aktivität kann hier festgestellt werden, wenn ein Leck im Wärmetauscher entsteht. Der Wärmetauscher trennt den Kreislauf des Wassers, das die Beschleunigerkomponenten unmittelbar durchfließt, vom Wasser, das zur Versickerung gelangt.

Die NaJ-Szintillationssonde hat 2000 ausschließlich Untergrund, etwa 130 Pulse pro Minute, gemessen. Dieser Wert ist relativ hoch und ist bedingt durch den tief im Erdreich liegenden Betonschacht. Durch den natürlichen Untergrund von Erde und Beton ist diese kontinuierliche Messung unempfindlich, denn dieser Untergrund entspricht einer Konzentration von $4.8 \text{ Bq}/\ell$. Den Messungen waren gelegentlich kleine Spitzen überlagert (maximal ca. 600 Pulse pro Minute; Dauer 0.5 bis 4 Stunden), die zeitlich mit Niederschlägen zusammenfielen und auf natürliche Radioaktivität im Regenwasser zurückzuführen sind.

Wesentlich empfindlicher sind die *diskontinuierlichen* Messungen der Konzentrationen der β -Strahler mittels des Eindampfverfahrens. Sie werden monatlich mit Wasserproben aus den **Kühltürmen** "DESY 1+2" durchgeführt. In 1 bis 2 Stunden nach der Entnahme ergaben sich Konzentrationswerte zwischen 0.14 und 0.30 Bq/ ℓ . Dabei handelt es sich um kurzlebige Nuklide aus den natürlichen Zerfallsreihen. Auch im Grundwasser kann man diese Konzentration messen, im Regenwasser sogar bis zum 1000-fachen dieses Wertes (verursacht durch Auswaschen von Radon). Nach einer Wartezeit von 24 Stunden sind alle diese Werte auf die Nachweisgrenze von ca. 0.1 Bq/ ℓ abgesunken.³

Daraus ergibt sich, dass 2000 durch das Ablaufwasser keine künstliche Aktivität in den Boden gelangt ist.

Eine sehr geringe Aktivitätsmenge wird an das Schmutzwassersiel abgegeben, wenn die Füllungen in den Ionenaustauschern der Kühlkreisläufe regeneriert werden. Nach der Regenerierung der Ionentauscher wird die Aktivitätskonzentration der β -Strahler im Regenerat bestimmt. Im Jahresmittel wurden 1.2 Bq/ ℓ gemessen. Anschließend wird das Regenerat in ein Sammelbecken eingeleitet und bei Bedarf ins Siel abgegeben. Die damit im Jahr 2000 abgegebene Aktivitätsmenge betrug etwa 14 kBq.

Um eine mögliche Aktivierung von Erdreich und Grundwasser durch den HERA-Betrieb zu erkennen, wurde vor der Aufnahme des Strahlbetriebs von HERA eine Bohrung ca. 0.5 m neben dem HERA-Tunnel nahe dem Protonenabsorber niedergebracht. Dieser Bohrung wurden

³K.-P. Klimek: Die Überwachung von Kühlwasser auf Radioaktivität bei DESY, Laborbericht DESY D3-79 (1993)

je 2 Proben von Grundwasser und Erde entnommen. Ein Probenpaar (Wasser und Erde) wird seitdem bei D3 aufbewahrt (Referenzproben) und das andere wurde wieder in dem Bohrloch deponiert. In Abständen von ca. 1 bis 2 Jahren werden die Proben aus dem Bohrloch hervorgeholt, ihre Aktivität bestimmt, und anschließend werden sie wieder deponiert. Die Referenzproben werden zum Vergleich immer mitgemessen. Die Abbildungen 2 und 3 zeigen die Ergebnisse dieser Aktivitätsbestimmungen seit 1991.

Die Messwerte der Referenzproben geben deren natürliche Radioaktivität wieder. Eine eventuelle Aktivierung der im Erdreich deponierten Proben muss sich durch eine Erhöhung der Messwerte gegenüber denen der Referenzproben bemerkbar machen.

Die jährlichen Schwankungen der Werte (sowohl relativ zueinander als auch absolut) sind ein Maß für die Genauigkeit der Messmethode. Die Fehler der angegebenen Werte resultieren aus apparativen Schwankungen und statistischen Fehlern. Die Fehler der Messsignale sind relativ groß, da von dem Wert der Messung der Untergrund abgezogen wird, der dem Messwert sehr nahe kommt.

Im Rahmen dieser Ungenauigkeiten konnte eine vom HERA-Betrieb herrührende Aktivierung bisher nicht gefunden werden.

Aktivität von HERA Erdproben

Abbildung 2: Untersuchung einer Erdprobe auf Radioaktivität. Die Probe wurde in der Nähe des HERA-Protonenabsorbers entnommen. Sie wird verglichen mit einer Referenzprobe, die 1991 an der gleichen Stelle entnommen wurde.

Aktivität von HERA Grundwasser-Proben

Abbildung 3: Untersuchung einer Wasserprobe auf Radioaktivität. Die Probe wurde in der Nähe des HERA-Protonenabsorbers entnommen. Sie wird verglichen mit einer Referenzprobe, die 1991 an der gleichen Stelle entnommen wurde.

6 Strahlenbelastung von Beschleunigerkomponenten

Seit einigen Jahren werden an den Speicherringen PIA, PETRA und HERA Energiedosen an Komponenten gemessen, die während einer Betriebsperiode aufgesammelt werden. Dazu werden Dosimeter an Spulen von Strahlführungsmagneten angebracht, die beim Betrieb des jeweiligen Beschleunigers besonders hohen Dosen ausgesetzt sind (an Stellen hoher Strahlverluste) oder die typisch sind für einen ganzen Bereich von Magneten (bei Einwirkung von Synchrotronstrahlung). Die Dosen der jeweiligen Messorte werden nach Auswertung der Dosimeter zu denen der Vorjahre addiert. Aus der akkumulierten Strahlenbelastung können Rückschlüsse auf die zu erwartende Lebensdauer der Komponenten gezogen werden.

Als Dosimeter werden mit Silber aktivierte Glasdosimeter (Radio-Photolumineszenz) verwendet, die an einer ¹³⁷Cs-Quelle kalibriert wurden. Die ermittelten Dosen stellen also Energiedosen in diesem Material dar (mittlere Atommasse = 24.8 g/mol; mittlere Ordnungszahl = 11.9; Dichte = 2.6 g/cm³). Die Dosen, die in den strahlungsempfindlichen Isoliermaterialien der Spulen absorbiert wurden sind deshalb im allgemeinen kleiner.

6.1 PIA

Am Speicherring PIA werden an insgesamt 10 Stellen Energiedosen gemessen. Die Verteilung der Messpositionen ist schematisch in der Abbildung 4 dargestellt. Die Messergebnisse von 2000 sind zusammen mit den Dosissummen von 1991 bis 2000 (beide Jahre inklusive) in der Tabelle 6 aufgeführt.

Abbildung 4: PIA, schematische Darstellung mit den Positionen der Dosimeter.

Меßр	osition	Dosen in Gy		
Nr.	Magnet	2000	Summe	
			1991-2000	
1	DZ1-L	8,0E+06	3,8E+07	
2	DZ1-R	1,2E+05	1,3E+06	
3	SF3	3,6E+04	4,4E+05	
4	DZ4	8,0E+04	2,8E+05	
5	DZ10	9,4E+04	2,0E+06	
6	SD12	3,6E+04	4,8E+05	
7	DZ15	1,2E+04	1,9E+05	
8	SF17	7,0E+03	9,9E+04	
9	DZ24	1,0E+04	3,1E+05	
10	SD26	5,8E+03	8,0E+05	

Tabelle 6: PIA, Energiedosen und Summe der Energiedosen an den 10 Positionen der Abbildung 4.

6.2 PETRA

Bei PETRA sind Dosimeter an den Spulen von Dipol- und Sextupolmagneten in der Gegend der jeweiligen Oktantenmitten angebracht. Die Messungen erfolgen bei Diplomagneten an den Spulenenden, immer an den oberen Spulen und an den unteren und immer innen und außen, vom Ringzentrum aus gesehen. Damit sind 8 Dosimeter an jedem überwachten Dipol. An einigen Magneten in der Nähe der Ein- und Ausschussstellen sind ebenfalls Dosimeter angebracht. Bei Sextupolmagneten sind sie an den ringaußen gelegenen Spulen angebracht, so dass sie dem Elektronenstrahl entgegensehen. Die Lage der Messorte ist in der Abbildung 5 zu sehen.

In der Auswertung wurde angenommen (was nicht immer stimmt), dass die entsprechenden Stellen der Spulen oben und unten ähnliche Messergebnisse zeigen. Diese Werte wurden deshalb gemittelt, so dass für jede Spule 4 Messwerte bleiben: Rechts außen, rechts innen (rechts ist die Richtung der ankommenden Protonen) und links außen und links innen (von dieser Seite kommen Elektronen oder Positronen und die damit verbundene Synchrotronstrahlung). Die Strahlenbelastung durch Synchrotronstrahlung sollte sich außen stärker bemerkbar machen als innen.

Die Messwerte streuen teilweise stark, auch wenn sie an vergleichbaren Positionen ermittelt wurden. Außerdem ändern sie sich von Jahr zu Jahr und nicht immer in der Weise, die man nach dem jeweiligen Betriebsablauf erwartet. Die gemessenen Dosen hängen sehr stark von der Qualität der Abschimung ab, die nicht überall gleich gut ist, aber auch von eingebauten Komponenten, die bezüglich der Synchrotronstrahlung "Schatten" werfen können. Außerdem hängen die Dosen von der verwendeten Strahloptik ab.

Die Messergebnisse von 2000 sind in der Tabelle 7 aufgeführt. In der Tabelle 8 sind die Summen der Dosen aufgelistet, die in den Jahren 1991 bis 2000 (beide Jahre inklusive) aufgelaufen sind.

Abbildung 5: PETRA, Messpositionen

20	00	Meßpositionen			
Oktant Kompo-		Entgegen p-Strahl		Entgegen e-Strahl	
	nente	rechts		links	
		innen	außen	innen	außen
NOR130	M13	1,8E+4	7,5E+2	3,1E+2	1,1E+3
NOR130	S13				1,3E+4
NR50	M5L	2,2E+6			
NR55	QH603	3,9E+5			
NR130	M10	3,2E+4	3,5E+2	6,1E+2	9,8E+3
NR130	S10				1,7E+4
NWR130	M13	4,1E+4	1,4E+4	5,6E+2	6,1E+3
NWR130	S13				2,8E+4
WR130	M10	6,1E+4	3,7E+4	3,3E+2	3,2E+3
WR130	S10				3,0E+4
WL53	Q9N	1,0E+5		3,6E+4	
WL61	Q0B	1,0E+4			
SWR130	M13	1,3E+5	1,2E+3	4,3E+2	1,7E+4
SWR130	S13				1,1E+4
SR130	M10	1,2E+5	3,0E+3	6,0E+3	8,0E+3
SR130	S10				2,4E+4
SOR40	M 1			7,9E+3	1,2E+3
SOR120	M12	6,1E+3	1,1E+3	4,7E+4	5,2E+3
SOR120	S12				1,8E+4
SOL40	M1	1,6E+3	1,5E+3		
OR65	M1	1,8E+4	2,6E+4	1,5E+4	4,5E+3
OR130	M10	5,5E+4	1,1E+3	6,9E+2	8,3E+2
OR130	S10				2,5E+4

Tabelle 7: PETRA, Energiedosen in Gy, akkumuliert im Jahr 2000, an den Positionen der Abbildung 5. *Rechts, links, innen, außen* sind jeweils vom Ringzentrum aus gesehen.

Summe bis 2000		Meßposition				
Oktant	Kompo-	Entgeger	n p-Strahl	Entgeger	n e-Strahl	
	nente	rechts		links		
		innen -	außen	innen	außen	
NOR130	M13	8,3E+5	6,8E+6	5,1E+5	5,2E+6	
NOR130	S13				5,2E+6	
NR50	M5L	1,3E+7				
NR55	QH603	8,7E+4				
NR130	M10	5,5E+4	6,3E+3	1,1E+4	2,4E+4	
NR130	S10				1,8E+7	
NWR130	M13	5,6E+4	2,3E+4	3,3E+3	2,1E+4	
NWR130	S13				2,1E+4	
WR130	M10	7,3E+5	5,5E+6	7,7E+5	6,4E+6	
WR130	S10				6,4E+6	
WL53	Q9N	8,8E+5		4,6E+5		
WL61	Q0B	8,8E+5				
SWR130	M13	1,4E+6	2,0E+6	4,6E+5	2,3E+6	
SWR130	S13				2,6E+6	
SR130	M10	6,1E+5	2,2E+6	5,3E+5	3,7E+6	
SR130	S10				4,4E+6	
SOR40	M1			2,7E+5	7,9E+5	
SOR120	M12	5,6E+5	1,8E+6	5,2E+5	4,3E+6	
SOR120	S12				3,5E+6	
SOL40	M1	5,7E+5	2,3E+6			
OR65	M1	3,9E+5	2,1E+6	2,6E+5	8,3E+5	
OR130	M10	5,7E+5	2,3E+6	8,3E+5	6,0E+6	
OR130	S10				5,2E+6	

Tabelle 8: PETRA, Summe der Energiedosen in Gy der Jahre 1991 bis 2000 (beide Jahre inklusiv) an den Positionen der Abbildung 5. *Rechts, links, innen, außen* sind jeweils vom Ringzentrum aus gesehen. Die Dipolspulen der Magneten NR130 und NWR130 wurden Anfang 1998 erneuert. Die Summe ihrer Dosen beginnt zu diesem Zeitpunkt bei "Null".

6.3 HERA

In HERA gibt es sehr wenige Stellen mit erhöhtem Strahlverlust. Die Messpositionen sind deshalb mehr oder weniger gleichmäßig um den Elektronenring verteilt. Die Dosimeter sind jeweils an den oberen Spulen von Quadrupolmagneten angebracht, außen und entgegen der Richtung des Elektronen- oder Positronenstrahls hin gelegen.

Die Messergebnisse von 2000 sind zusammen mit den Dosissummen von 1993 bis 2000 (beide Jahre inklusive) in den Tabellen 9 bis 12 aufgeführt.

Me	Bposition	Dosen in Gy		
Nr.	Quadrupol-	Summe	2000	
	position	1993 - 2000		
1	WR106	2,5E+5	9,5E+3	
2	WR228	7,4E+6	3,6E+5	
3	WR240	2,3E+6	3,8E+4	
4	WR287	1,1E+8	1,0E+8	
5	WR334	3,4E+5	7,5E+4	
6	WR451	1,0E+6	1,8E+5	
7	WR557	2,7E+6	2,2E+6	
8	WR663	4,9E+5	2,4E+5	
9	WR768	3,2E+5	1,2E+5	
10	NL710	2,6E+6	6,0E+4	
11	NL604	6,2E+6	1,6E+5	
12	NL498	3,5E+5	1,0E+5	
13	NL392	4,2E+5	2,8E+5	
14	NL298	1,8E+5	7,5E+4	
15	NL204	1,9E+5	8,0E+4	
16	NL115	4,8E+4	2,8E+3	

Tabelle 9: HERA, Energiedosen und Summe der Energiedosen (beide in Gy), gemessen an den Spulen von Quadrupolmagneten im Quadranten W-N.

Meßposition		Dosen in Gy		
Nr.	Quadrupol-	Summe	2000	
	position	1993 - 2000		
1	NR110	9,6E+4	4,0E+4	
2	NR204	9,1E+4	8,0E+3	
3	NR310	1,0E+6	2,4E+5	
4	NR416	2,6E+7	2,2E+6	
5	NR510	3,3E+5	6,5E+4	
6	NR616	5,7E+5	1,6E+5	
7	NR721	3,8E+5	5,5E+4	
8	OL757	5,6E+5	3,2E+5	
9	OL651	2,1E+5	4,0E+4	
10	OL545	4,5E+5	2,2E+5	
11	OL439	2,0E+5	8,0E+4	
12	OL334	4,0E+5	9,5E+4	
13	OL239	3,1E+5	6,0E+4	
14	OL204	5,9E+5	6,0E+4	
15	OL113	1,2E+5	1,6E+4	

Tabelle 10: HERA, Energiedosen und Summe der Energiedosen (beide in Gy), gemessen an den Spulen von Quadrupolmagneten im Quadranten N-O.

Me	Bposition	Dosen in Gy		
Nr.	Quadrupol-	Summe	2000	
	position	1993 - 2000		
1	OR113	4,7E+4	8,4E+0	
2	OR204	6,4E+6	6,0E+5	
3	OR310	7,3E+5	6,0E+4	
4	OR416	6,5E+6	2,4E+5	
5	OR510	8,6E+5	6,0E+4	
6	OR616	4,4E+5	1,8E+5	
7	OR721	1,4E+6	7,0E+4	
8	SL757	2,3E+5	8,5E+4	
9	SL651	2,1E+5	9,5E+4	
10	SL545	2,7E+5	1,0E+5	
11	SL439	1,6E+5	2,0E+3	
12	SL334	2,4E+5	6,0E+4	
13	SL239	2,6E+5	6,0E+4	
14	SL204	8,7E+5	1,8E+5	
15	SL113	9,5E+4	1,6E+4	

Tabelle 11: HERA, Energiedosen und Summe der Energiedosen (beide in Gy), gemessen an den Spulen von Quadrupolmagneten im Quadranten O-S.

Ме	Bposition	Dosen	in Gy
Nr.	Quadrupol-	Summe	2000
	position	1993 - 2000	<u></u>
1	SR113	4,9E+5	4,0E+4
2	SR204	4,0E+5	2,6E+3
3	SR310	6,7E+5	6,0E+4
4	SR416	4,6E+6	6,0E+5
5	SR510	1,3E+6	6,0E+4
6	SR604	8,3E+7	1,2E+5
7	SR710	1,3E+6	1,8E+5
8	WL768	3,0E+5	4,0E+4
9	WL663	3,8E+5	8,0E+4
10	WL557	3,4E+5	4,0E+4
11	WL451	2,1E+5	2,0E+3
12	WL357	3,0E+5	6,0E+4
13	WL251	4,6E+5	4,0E+4
14	WL204	3,0E+5	6,0E+4
15	WL147	2,1E+5	7,5E+4
16	WL125	1,6E+5	2,8E+4
17	WL112	8,5E+5	7,3E+0
18	<u>WL</u> 79	2,6E+4	5,2E+1

Tabelle 12: HERA, Energiedosen und Summe der Energiedosen (beide in Gy), gemessen an den Spulen von Quadrupolmagneten im Quadranten S-W.

6.4 Belastung durch Neutronen

In den Speicherringen PETRA und HERA und im Beschleunigerraum von DESY2/3 wurden an einigen ausgewählten Stellen jährlich Neutronenfluenzen (= Anzahl der Neutronen pro cm²) gemessen. Dazu benötigt man eine Messmethode, die unempfindlich ist gegenüber dem hohen Untergrund an Photonen. Als geeignet hat sich die Aktivierung von ⁵⁹Co erwiesen, das als Blech (3×3 cm²) im Zentrum eines Moderators (Polyethylenzylinder, Höhe 18 cm, Durchmesser 18 cm) angebracht ist. Das bei der Aktivierung resultierende ⁶⁰Co ist dann mit Hilfe der γ -Spektroskopie leicht nachweisbar. Neutronen, die mit dieser Methode nachweisbar sind, liegen in einem Energiebereich zwischen 100 keV und 100 MeV.⁴

HERA	1995	1996	1997	1998	1999	2000
WR 43	8.5·10 ⁹	1.0·10 ¹⁰	2.4 ·10 ⁹	3.6·10 ⁹	$3.3 \cdot 10^{9}$	$1.9 \cdot 10^{9}$
WR 109	1.2.1011	4.0·10 ⁸	4.8.10 ⁸	3.1·10 ⁷	4.8 ·10 ⁹	3.1·10 ⁹
SL 15	9.0·10 ⁹	1.0·10 ¹⁰	1.6·10 ⁹	1.4·10 ⁹	$1.5 \cdot 10^{9}$	$1.7 \cdot 10^{10}$
SR 23	1.0·10 ⁹	1.2 ·10 ⁹	8.7·10 ⁸	$5.2 \cdot 10^8$	4.0 ·10 ⁸	3.6·10 ⁸
SR 202	7.1.10 ⁸	5.9·10 ⁹	3.1.10 ⁹	1.3·10 ⁹	8.0·10 ⁸	6.6·10 ⁸
WL 775	1.1.10 ⁸	$5.8 \cdot 10^{7}$	$6.7 \cdot 10^7$	2.0-10 ⁸	2.5·10 ⁸	1.5·10 ⁸
WL147	2.7·10 ¹⁰	2.9·10 ¹⁰	$4.7 \cdot 10^{10}$	$1.0 \cdot 10^{11}$	1.5.1011	$1.3 \cdot 10^{11}$
WL 80	7 .2·10 ¹²	$1.1 \cdot 10^{13}$	1.1.10 ¹³	7.4·10 ¹²	$1.7 \cdot 10^{13}$	1.8·10 ¹³
OL 785	9.6·10 ⁷	$5.0 \cdot 10^{7}$	7.4·10 ⁷	1.4·10 ⁹	2.4·10 ⁸	3.9·10 ⁸
PETRA	1995	1996	1997	1998	1999	2000
PETRA SOL M1-QA	1995 3.0·10 ¹²	1996 4.3·10 ¹²	1997 3.9·10 ¹²	1998 2.1.10 ¹²	1999 1.7·10 ¹²	2000 $4.5 \cdot 10^{11}$
PETRA SOL M1-QA OL 160	1995 3.0·10 ¹² 1.8·10 ¹⁰	1996 4.3·10 ¹² 2.5·10 ¹⁰	1997 3.9·10 ¹² 1.9·10 ¹⁰	1998 2.1·10 ¹² 2.7·10 ¹⁰	1999 1.7·10 ¹² 1.5·10 ¹⁰	$2000 \\ 4.5 \cdot 10^{11} \\ 9.9 \cdot 10^9$
PETRA SOL M1-QA OL 160 WR 60	1995 3.0·10 ¹² 1.8·10 ¹⁰ 4.6·10 ⁸	$ 1996 4.3 \cdot 10^{12} 2.5 \cdot 10^{10} 1.1 \cdot 10^{9} $	19973.9.10121.9.10104.1.108	$ 1998 2.1 \cdot 10^{12} 2.7 \cdot 10^{10} 6.2 \cdot 10^8 $	$1999 \\ 1.7 \cdot 10^{12} \\ 1.5 \cdot 10^{10} \\ 1.4 \cdot 10^{9}$	$2000 \\ 4.5 \cdot 10^{11} \\ 9.9 \cdot 10^{9} \\ 4.4 \cdot 10^{8}$
PETRA SOL M1-QA OL 160 WR 60	1995 3.0·10 ¹² 1.8·10 ¹⁰ 4.6·10 ⁸	$ 1996 4.3 \cdot 10^{12} 2.5 \cdot 10^{10} 1.1 \cdot 10^{9} $	1997 3.9.10 ¹² 1.9.10 ¹⁰ 4.1.10 ⁸	1998 2.1.10 ¹² 2.7.10 ¹⁰ 6.2.10 ⁸	1999 1.7·10 ¹² 1.5·10 ¹⁰ 1.4·10 ⁹	$2000 \\ 4.5 \cdot 10^{11} \\ 9.9 \cdot 10^{9} \\ 4.4 \cdot 10^{8}$
PETRA SOL M1-QA OL 160 WR 60 DESY	$ 1995 3.0 \cdot 10^{12} 1.8 \cdot 10^{10} 4.6 \cdot 10^8 1995 $	$ 1996 4.3 \cdot 10^{12} 2.5 \cdot 10^{10} 1.1 \cdot 10^{9} 1996 $	1997 3.9.10 ¹² 1.9.10 ¹⁰ 4.1.10 ⁸ 1997	1998 2.1.10 ¹² 2.7.10 ¹⁰ 6.2.10 ⁸ 1998	$ 1999 1.7 \cdot 10^{12} 1.5 \cdot 10^{10} 1.4 \cdot 10^{9} 1999 $	$2000 \\ 4.5 \cdot 10^{11} \\ 9.9 \cdot 10^{9} \\ 4.4 \cdot 10^{8} \\ 2000$
PETRA SOL M1-QA OL 160 WR 60 DESY M12 - M13	$ 1995 3.0 \cdot 10^{12} 1.8 \cdot 10^{10} 4.6 \cdot 10^8 1995 5.3 \cdot 10^{12} $	$ 1996 4.3 \cdot 10^{12} 2.5 \cdot 10^{10} 1.1 \cdot 10^{9} 1996 4.9 \cdot 10^{12} $	1997 3.9.10 ¹² 1.9.10 ¹⁰ 4.1.10 ⁸ 1997 1.3.10 ¹⁰	$ 1998 2.1 \cdot 10^{12} 2.7 \cdot 10^{10} 6.2 \cdot 10^8 1998 4.9 \cdot 10^{12} $	$ 1999 1.7 \cdot 10^{12} 1.5 \cdot 10^{10} 1.4 \cdot 10^{9} 1999 5.8 \cdot 10^{12} $	$2000 \\ 4.5 \cdot 10^{11} \\ 9.9 \cdot 10^{9} \\ 4.4 \cdot 10^{8} \\ 2000 \\ 2.5 \cdot 10^{12}$
PETRA SOL M1-QA OL 160 WR 60 DESY M12 - M13 M1 - M2	$ 1995 3.0 \cdot 10^{12} 1.8 \cdot 10^{10} 4.6 \cdot 10^8 1995 5.3 \cdot 10^{12} 3.0 \cdot 10^{11} $	$ \begin{array}{r} 1996 \\ 4.3 \cdot 10^{12} \\ 2.5 \cdot 10^{10} \\ 1.1 \cdot 10^9 \\ 1996 \\ 4.9 \cdot 10^{12} \\ 2.5 \cdot 10^{10} \end{array} $	$ \begin{array}{r} 1997 \\ 3.9 \cdot 10^{12} \\ 1.9 \cdot 10^{10} \\ 4.1 \cdot 10^8 \\ 1997 \\ 1.3 \cdot 10^{10} \\ 5.3 \cdot 10^{12} \\ \end{array} $	$ 1998 2.1 \cdot 10^{12} 2.7 \cdot 10^{10} 6.2 \cdot 10^8 1998 4.9 \cdot 10^{12} 1.4 \cdot 10^{11} $	$ \begin{array}{r} 1999 \\ 1.7 \cdot 10^{12} \\ 1.5 \cdot 10^{10} \\ 1.4 \cdot 10^{9} \\ 1999 \\ 5.8 \cdot 10^{12} \\ 1.6 \cdot 10^{11} \end{array} $	2000 4.5.10 ¹¹ 9.9.10 ⁹ 4.4.10 ⁸ 2000 2.5.10 ¹² 1.1.10 ¹¹
PETRA SOL M1-QA OL 160 WR 60 DESY M12 - M13 M1 - M2 M24 - M25	$ 1995 3.0 \cdot 10^{12} 1.8 \cdot 10^{10} 4.6 \cdot 10^8 1995 5.3 \cdot 10^{12} 3.0 \cdot 10^{11} 2.8 \cdot 10^{12} $	$ 1996 4.3 \cdot 10^{12} 2.5 \cdot 10^{10} 1.1 \cdot 10^{9} 1996 4.9 \cdot 10^{12} 2.5 \cdot 10^{10} 6.9 \cdot 10^{10} $	$ \begin{array}{r} 1997 \\ 3.9 \cdot 10^{12} \\ 1.9 \cdot 10^{10} \\ 4.1 \cdot 10^8 \\ 1997 \\ 1.3 \cdot 10^{10} \\ 5.3 \cdot 10^{12} \\ 5.0 \cdot 10^{10} \end{array} $	$ 1998 2.1 \cdot 10^{12} 2.7 \cdot 10^{10} 6.2 \cdot 10^8 1998 4.9 \cdot 10^{12} 1.4 \cdot 10^{11} 2.1 \cdot 10^{10} $	$ \begin{array}{r} 1999 \\ 1.7 \cdot 10^{12} \\ 1.5 \cdot 10^{10} \\ 1.4 \cdot 10^{9} \\ 1999 \\ 5.8 \cdot 10^{12} \\ 1.6 \cdot 10^{11} \\ 5.3 \cdot 10^{12} \end{array} $	$2000 \\ 4.5 \cdot 10^{11} \\ 9.9 \cdot 10^{9} \\ 4.4 \cdot 10^{8} \\ 2000 \\ 2.5 \cdot 10^{12} \\ 1.1 \cdot 10^{11} \\ 2.8 \cdot 10^{12} \\ 10^{12$

Tabelle 13: Neutronenfluenzen pro Jahr in n/cm^2 , gemessen in den Speicherringen HERA, PETRA und an DESY.

⁴K.Tesch: Überwachung der Neutronenfluenz in einem Beschleunigerraum, Interner Bericht DESY D3-72 (1992)

7 Tabellen der Ortsdosen

In den folgenden Tabellen sind die Ergebnisse der Messungen der Ortsdosen außerhalb von Beschleunigerräumen zusammengestellt. Sie sind aufgeschlüsselt nach Gamma- und Neutronendosen. Wenn keine Neutronendosis eingetragen ist, war diese Stelle nicht mit einem Neutronendosimeter ausgestattet. Die Dosen sind Jahresdosen, aufsummiert aus monatlichen Einzelmessungen. Der Beitrag des natürlichen Gamma-Untergrunds ist jeweils abgezogen.

Verwendete Abkürzungen:

(K) = Kontrollbereich (Sp) = Sperrbereich (zSp) = zeitweilig Sperrbereich

Bei den Kreisbeschleunigern bedeuten die Bezeichnungen *links* oder *rechts* die Richtung vom Kreismittelpunkt aus gesehen.

Pos.Nr.	Standort		Dosis in Neutronen	mSv Gamma
	Linac2			
21	Modulatorhalle, nahe Klystron 12	(K)		0.58
22	Modulatorhalle, Wand zum Converter	(K)		3.8
23	Modulatorhalle, Wand zur Werkstatt	(K)		4.7
24	Modulatorhalle, Schrank, Gunteststand	(K)		3.8
120	Im Keller unter dem Teststand*)	(K)		35
121	Modulatorhalle, auf dem Teststand*)	(K)	19	18
122	HF-Einspeisung auf Teststand*)	(Sp)		31
123	Abschirmung Teststand, Gangseite*)	(K)		8.1
124	Abschirmung Teststand, Strahlachse*)	(K)		6.6
	Linac3			
107	Betriebsraum, nahe DESY	(K)	25	2.1
108	Betriebsraum, Kontrollraum	(K)	2.3	0.46
109	Interlocktür rechts, 45 m ¹⁾		1.7	0.33
112	Quellenraum, Wand zum Beschleuniger, links	(K)	0.65	1.8
113	Quellenraum, Wand neben Notschalter, hinten	(K)	0.74	0.24
114	Quellenraum, Rückwand, Strahlhöhe	(K)	0.83	0.31

Tabelle 14: Jahresdosen der Bereiche Linac2 und Linac3 ¹) = von der H⁻-Quelle an gerechnet. *) = Betrieb nicht kontinuierlich

.

Pos.Nr.	Standort		Dosis in mSv Neutronen Gamma	
	DESY2/3			
1	Ehemaliger HKR		1.0	< 0.2
2	Radialkanal 8, Interlocktür	(K)	1.7	1.0
3	SER, nahe Abschirmung zum Synchr.	(K)	34	3.2
11	Linac 1, Laborraum, am Labortisch	(K)	3.3	0.25
12	Linac 1, Pumpenraum	(K)	0.23	< 0.2
13	Linac 1, Kontrollraum	(K)	1.1	< 0.2
	Bunker 1 (Geb.22)			
50	Gittertür zum Tunnel		0.77	0.32
	Bunker 2 (Geb.22a)			
60	An der Abschirmung zum Synchrotron	(Sp)	1.4	0.22
61	Nahe zusätzlicher Abschirmmauer	(K)	0.63	< 0.2
62	Kondensatorgarten bei Geb. 30c	(K)	0.97	0.29

Tabelle 15: Jahresdosen des Bereichs DESY2/3

Pos.Nr.	Standort		Dosis in	mSv
			Neutronen	Gamma
	Halle 1			
101	Kranluke	(K)	10	1.3
102	Aussen, Ostseite, grüner Container	(K)	66	12
103	Innen, Kragdecke, Ostseite	(K)	16	2.2
104	Gebäude 20c, neben Aufenthaltsraum		1.4	< 0.2
	Halle 2			
151	Strahl 22, in der Messhütte		2.2	< 0.2
152	Strahl 24, in der Messhütte		2.0	0.53
153	Kranluke	(K)	37	4.5
154	Kragdecke Südseite	(K)	220	41
155	Südseite der Halle 2, außen		50	10
156	Teststrahl 21, rechts, 3m ¹⁾	(zSp)	4.6	0.90
157	Teststrahl 22, rechts, 4m	(zSp)	4.4	0.34
158	Teststrahl 24/1, rechts, 4m	(zSp)	6.3	0.54

Tabelle 16: Jahresdosen der Bereiche Halle1 und Halle2 ¹⁾ Von der Abschirmmauer des Ringes an gerechnet.

Pos.Nr.	Standort		Dosis in Neutronen	mSv Gamma
	PETRA Halle Süd-Ost			
800 801 802 803 805 806	Übergang, Brüstung Innen rechts, Interlocktür Innen links, im Elektronikschrank Innen links, Wand zum P-Weg Aussen links, an der Abschirmmauer Im Gashaus, rechts unten, Fußboden	(K) (K)	9.7 7.2 4.3 9.3 2.4 2.3	1.6 0.37 1.1 1.3 < 0.2 0.73
810 811 812 813	Werkstatt G11 auf dem PETRA-Tunnel Auf Abschirmung, Fußboden, rechts Auf Abschirmung, Fußbodens, links Innen rechts, 1.5 m vom Zaun, Drehbank Innen Mitte, 1.5 m vom Zaun, Richtbank	(K) (K)	26 5.6 4.2 1.5	6.1 0.81 0.56 0.41
820 830 831 832 833	PETRA Halle Öst Gästehaus 15 A, außen Übergang, Brüstung Innen Mitte, Zaun vor der Interlocktür Aussen Mitte, Tunnelwand Innen rechts, Tunnelwand		0.16 3.8 1.2 0.69 0.58	< 0.2 0.28 < 0.2 < 0.2 < 0.2 < 0.2

Tabelle 17: Jahresdosen des Bereichs PETRA(I)

Pos.Nr.	Standort	Dosis in mSv Neutronen Gamm	
	PETRA Halle Nord-Ost		
840 841 842 845	Übergang, Brüstung Innen Mitte, am Aufgang Aussen Mitte, Tunnelwand FEL-Halle, Strahlbohrung zu PETRA	0.67 0.38 0.29 <0.1	< 0.2 < 0.2 < 0.2 < 0.2 < 0.2
	PETRA Hallen Nord		
850 852	NL, Interlocktür PR-Weg NR, rechts am Gitter	0.22 0.19	< 0.2 < 0.2
	PETRA Halle Nord-West		
860 861 862	Übergang, Brüstung Innen links, Interlocktür Raum, innen, rechts, oben	0.35 0.48 0.16	< 0.2 < 0.2 < 0.2 < 0.2
 	PETRA Halle West		
870 871 872	Übergang, Brüstung Innen rechts, Interlocktür Aussen Mitte, Abschirmmauer	1.8 0.58 0.58	0.27 < 0.2 < 0.2
	PETRA Halle Süd-West		
880 881	Übergang, Brüstung Innen links, Interlocktür	1.3 2.1	< 0.2 < 0.2

Tabelle 18: Jahresdosen des Bereichs PETRA(II)

Standort	Dosis in Neutronen	mSv Gamma
Gebäude 11a (Warenwirtschaft) Im Keller, nahe Tunnel an der Wand	1.2	< 0.2
HASYLAB 6 Auf dem Schrank vor der Interlocktür Außen links, Hallenwand, neben dem Aufstieg Str 1/1, links, nahe Interlocktür an der Wand Str 1/1, links, 15m, Kontrollraum, Wand zum Strahl Str 1/2, links, 20m, Kontrollraum, Wand zum Strahl Hallenwand, außen rechts, zum PETRA Tunnel	0.16	< 0.2 0.28 0.22 < 0.2 < 0.2 0.33
	Standort Gebäude 11a (Warenwirtschaft) Im Keller, nahe Tunnel an der Wand HASYLAB 6 Auf dem Schrank vor der Interlocktür Außen links, Hallenwand, neben dem Aufstieg Str 1/1, links, nahe Interlocktür an der Wand Str 1/1, links, 15m, Kontrollraum, Wand zum Strahl Str 1/2, links, 20m, Kontrollraum, Wand zum Strahl Hallenwand, außen rechts, zum PETRA Tunnel	StandortDosis in NeutronenGebäude 11a (Warenwirtschaft)Im Keller, nahe Tunnel an der Wand1.2Im Keller, nahe Tunnel an der Wand1.2HASYLAB 60.16Auf dem Schrank vor der Interlocktür Außen links, Hallenwand, neben dem Aufstieg Str 1/1, links, nahe Interlocktür an der Wand Str 1/1, links, 15m, Kontrollraum, Wand zum Strahl Str 1/2, links, 20m, Kontrollraum, Wand zum Strahl Hallenwand, außen rechts, zum PETRA Tunnel

Tabelle 19: Jahresdosen des Bereichs PETRA(III)

Pos.Nr.	Standort Dosi		in mSv	
		Neutronen	Gamma	
	HERA Halle Nord			
926	Innen, Erdgeschoss , ExpHütte innen, rechts	0.93	< 0.2	
927	Innen, Erdgeschoss , ExpHütte innen, links	0.81	< 0.2	
929	Innen, Hüttendach, Geländermitte	0.65	< 0.2	
931	Innen, Myonenplattform, linke Galerieecke	1.0	< 0.2	
932	Innen, Myonenplattform, rechte Galerieecke	0.73	< 0.2	
935	Mitte, Detektorgalerie, unter schrägem Rohr	0.60	0.24	
936	Mitte, Detektorgalerie, beim Ventil	0.67	0.43	
938	Mitte, Elektronikplattform, Spalt im Eisen		< 0.2	
940	Außen, Myonenplattform, linke Galerieecke	0.95	< 0.2	
941	Außen, Myonenplattform, rechte Galerieecke	0.58	< 0.2	
943	Außen, 3. Galerie, an der Wand		0.28	
945	Außen, 1. Galerie, links an der Wand	0.69	< 0.2	
946	Außen, 1. Galerie, rechts an der Wand	0.71	< 0.2	
947	Außen, Erdgeschoss , Heliumplatte, Schrank	0.68	< 0.2	
949	Mitte, Erdgeschoss, Durchgang	0.72	< 0.2	
		1		

Tabelle 20: Jahresdosen des Bereichs HERA(I)

Pos.Nr.	Standort	Dosis in mSv	
		Neutronen	Gamma
	HERA Halle Ost		
950	Innen, 1. Galerie, rechts Interlocktür	1.4	< 0.2
951	Innen, 1. Galerie, links, Interlocktür	1.1	< 0.2
952	Außen, Mitte, untere Plattform	0.51	0.23
953	Außen, obere Plattform nahe Tunnel	0.76	0.38
954	Mitte, Durchgang	1.2	< 0.2
955	Außen, 1. Galerie, rechts auf der Kabelpritsche	0.55	< 0.2
956	Außen, 1. Galerie, links am Pfosten	0.72	< 0.2
957	Außen, Erdgeschoss links, HERMES-Raum	0.43	0.25
	HERA Halle Süd		
975	Innen, Erdgeschoss , rechts, Träger ZEUS-Joch	0.60	< 0.2
978	Innen, 1. Galerie links, Wand in der Hütte	0.91	< 0.2
980	Innen, Rucksack, mittlere Etage, unter der Decke	0.49	< 0.2
981	Innen, Rucksack, obere Etage, links	1.0	< 0.2
982	Innen, Rucksack, obere Etage, rechts	0.59	< 0.2
985	Innen, ZEUS-Balkon links	1.1	< 0.2
986	Innen, ZEUS-Balkon rechts	0.95	< 0.2
988	Mitte, Durchgang	1.2	0.20
990	Außen, Erdgeschoss , links am Geländer	0.91	< 0.2
991	Außen, Erdgeschoss , rechts am Geländer	0.43	< 0.2
992	Außen, 1. Galerie, rechtes Gitter	0.61	< 0.2
995	Außen, ZEUS-Balkon links	1.1	< 0.2
996	Außen, ZEUS-Balkon rechts	0.79	< 0.2

Tabelle 21: Jahresdosen des Bereichs HERA(II)

Pos.Nr.	Standort		Dosis in mSv	
			Neutronen	Gamma
	HERA Halle West			
906	Raum 601, auf dem Schrank		0.58	0.35
907	Raum 610, links auf dem Luftkanal		0.88	0.40
908	HF-Halle, 6.Stock, hinter den Klystrons		19	1.6
910	Innen, 1.Galerie, Mitte, Vermessungskonsole		7.7	0.39
911	Innen, 1.Galerie, links am Gitter		7.1	1.2
912	Innen, 1.Galerie, rechts neben Interlocktür		3.2	0.23
913	Elektronikwagen, 1. Stock, innen, Mitte		1.4	0.27
914	Elektronikwagen, 2. Stock, außen, links	(K)	7.6	0.98
915	Elektronikwagen, 3. Stock, innen, rechts	(K)	11	0.58
917	Kontrollraum Zi.201, hinten rechts		3.5	3.9
918	Eingangshalle 7. Stock, Gitter zur Luke		3.1	0.55
919	Kontrollraum 4. Stock		2.6	1.3
920	Kontrollraum 5. Stock		0.90	0.60
921	HF-Halle 6.Stock, am Rohr für Laserstrahl		0.54	< 0.2
922	Computerraum Zi.301, hinten rechts		1.2	0.58
	Oberhalb des HERA Tunnels			
923	Laborgebäude 1 D, Keller, Verbindungsgang		0.50	< 0.2
924	Anbau Halle 1 (IKR-Werkstatt)		0.57	0.36

.

Tabelle 22: Jahresdosen des Bereichs HERA(III)

7.5 DORIS, HASYLAB1-5

Pos.Nr.	Standort		Dosis in mSv Neutronen Gamma	
	DORIS			
301	MHF-Labor, an der Wand Richtung DORIS			0.34
302	Hallenmitte, Wand zur Versorgungshalle			< 0.2
303	An der Interlocktür Südseite			0.24
304	HF-Keller 3, neben der Interlocktür	(K)		0.51
305	HF-Keller 3, vor den Kabeldurchführungen	(K)		0.20
306	HF-Keller 4, vor den Kabeldurchführungen	(K)		< 0.2
307	HF-Keller 1, unter der 1. Deckenöffnung	(K)		2.4
308	HF-Keller 1, unter der 2. Deckenöffnung	(K)	2.2	0.42
309	HF-Keller 1, Kabeldurchführung	(K)	0.04	1.8
310	HF-Keller 2, unter der 1. Deckenöffnung	(K)	0.36	< 0.2
311	HF-Keller 2, unter der 2. Deckenöffnung	(K)		/.ð
312	HF-Keller 2, Kabeldurchführung	(K)		0.21
	HASYLAB1			
320	W2, links, Strahlhöhe, 0 m, an der Absch.wand ¹⁾		0.26	< 0.2
321	W2, rechts, Strahlhöhe, 0 m, an der Absch.wand		0.22	< 0.2
322	W2, rechts, Strahlhöhe, 15 m, an der Bleiabsch.		0.25	< 0.2
410	W2, links, Strahlhöhe, 3m, an der Bleiabsch.			< 0.2
411	W2, rechts, Strahlhöhe, 3m, an der Bleiabsch.			< 0.2
412	W2, links, 10m, an der Abschirmwand außen			< 0.2

Tabelle 23: Jahresdosen des Bereichs DORIS und HASYLAB11) Die Entfernungsangaben sind von der Abschirmmauer des Ringes an gerechnet.

Pos.Nr.	Standort	Dosis in mSv Neutronen Gamma	
	HASYLAB2 und 2A		
420 421 425	X, im Arbeitsraum, am Fenster X, links, Hüttenwand, in 1,6 m Höhe, am Fenster X2, Container, auf der DORIS-Abschirmung		0.23 0.21 < 0.2
	HASYLAB 3		
340 350 430 431 432 433 434 435 436 437 440 441 442 443 445 445 446 447	 W1, links, 7 m, Abschirmung¹⁾ B1, links, 10 m, am Strahlende W1, oben, 15 m, Abschirmung unter dem Strahlrohr W1, rechts, 15 m, an der Gebietsabschirmung C1, oben, 3 m, Bühne an der Hüttenwand C1, rechts, 18 m, am Strahlende D1, links, 1 m, an der Interlocktür D1, links, 12 m, am Geländer der Zwischenplattform D4, rechts, 6 m, an der Gebietsabschirmung D4, rechts, 4 m, außen, an der Tür E1, links, 9 m, am Drahtzaun E2, links, 16 m, am T-Träger der ob. Plattform F2, oben, 10 m, am 1. grünen Gestell G1, links, 7 m, an der Interlocktür I. rechts, 4 m, außen an der Messhütte 	1.0 0.15	$\begin{array}{c} 0.23 \\ < 0.2 \\ 0.25 \\ < 0.2 \\ 0.23 \\ < 0.2 \\ < 0.2 \\ < 0.2 \\ < 0.2 \\ < 0.2 \\ < 0.2 \\ < 0.2 \\ < 0.2 \\ < 0.2 \\ < 0.2 \\ < 0.2 \\ < 0.2 \\ < 0.2 \\ < 0.2 \\ < 0.2 \\ < 0.2 \\ < 0.2 \\ < 0.2 \\ 0.30 \\ 0.45 \\ 0.24 \end{array}$
447	I, rechts, 4 m, außen an der Messhütte I, rechts, 1 m, an der Spiegelkammer in 0,5 m Höhe		0.

Tabelle 24: Jahresdosen des Bereichs HASYLAB2 und 31) Die Entfernungsangaben sind von der Abschirmmauer des Ringes an gerechnet.

Pos.Nr.	Standort		Dosis in mSv Neutronen Gamma	
390 395 450 451 452 453 454 455	HASYLAB4 BW1, links, 6 m, neben der Interlocktür BW2, oben, 12 m, auf der Abschirmung BW1, links, 3 m, Abschirmmauer Strahlhöhe ¹⁾ BW1, links, 7 m, oben am Geländer BW1, rechts, 4 m, auf Hüttendach BW1, oben, 5 m, am Geländer, DORIS-Halle BW1, links, 5 m, neben der Interlocktür BW1, links, 12 m, am Elektronikschrank	(K) (K)	0.20 0.62	< 0.2 0.36 0.45 0.42 0.59 0.27 0.34 0.21
456 460 461 462	BW1, rechts, 15 m, am Geländer vor dem Fenster BW2, links, 15 m, an der Hüttenwand BW3, links, 10 m, an der Abschirmung BW4, links, 5 m, an der Interlocktür			0.33 < 0.2 < 0.2 0.33
	HASYLAB5			
470	BW4, links, 2,5 m, Ende Hütte			< 0.2
471	BW5, links, 10 m, neben der Interlocktur			0.32
472	BW6/NG1 links, 9 m, an der Hüttenwand			0.28
473	BW6, Mitte, 14 m, am Strahlende, Hüttentür			< 0.2
475	BW7, links, 20 m, am Strahlende, Hüttentür			0.26
480	K/NG1, links, 5 m, an der Interlocktür	(zSp)		2.4
481	K/NG1, links, 7 m, an der Abschirmung	(zSp)		3./
482	HG1-K, links, 6 m, an der Interlocktür			0.00
483	NG2-K, links, 7 m, an der Abschirmwand	(750)		0.68
484	NG3-K, rechts, 7 m, neben der Interlocktur	(23p)		0.24
485	I links 4 m an der Abschirmwand		1	0.23
491	L, links, 10 m, an der Abschirmwand			0.29
492	L, links, 12 m, am Strahlende			0.30
493	L, rechts, 8 m, an der Tür			0.28

Tabelle 25: Jahresdosen der Bereiche HASYLAB4 und 5 ¹⁾ Die Entfernungsangaben sind von der Abschirmmauer des Ringes an gerechnet.

.

Pos.Nr.	Standort	Dosis in mSv	
		Neutronen	Gamma
	TESLA-TF		
250	Gang zwischen Hallenwand und Tunnel (K)	< 0.1	< 0.2
251	ZZ - Tür		0.85
252	Tür zum Injektor		< 0.2
253	Horizontaler Teststand		< 0.2
254	Vertikaler Teststand		< 0.2
255	Kontrollraum		< 0.2
256	Absorber, Wasservorlauf		< 0.2
257	Absorber, Kathionentauscher		< 0.2
258	Bunch-Kompressor 2, Ostgang		1.2
259	ZZ-Tür zur Kryohalle		4.6
260	Ecke am Zugangslabyrinth (ZZ)	0.50	< 0.2
261	Ecke am Kryoanbau	0.11	< 0.2
262	Bunch-Kompressor 2, Hallenseite	0.70	0.27

Tabelle 26: Jahresdosen des Bereichs TESLA-TF

Pos.Nr.	Standort	Dosis in mSv	
		Neutronen	Gamma
	Geländegrenze		
511	Am Zaun nahe PETRA Halle SO	0.25	< 0.2
521	Eingang Notkestraße	< 0.11	< 0.2
522	Gästehaus 1	< 0.11	< 0.2
531	Bei der Halle Süd-West	< 0.1	< 0.2
551	Halle Nord-West, zur Tennishalle	< 0.1	< 0.2
552	Halle Nord-West, zum Blomkamp	< 0.1	< 0.2
562	Halle Nord, auf dem Wall	0.15	< 0.2
571	Halle Nord-Ost, am Zaun	< 0.1	< 0.2
580	2. Institut, an einem Verkehrsschild	0.16	< 0.2
581	Zwischen Zyklotron und 2. Institut	0.14	< 0.2
582	Eingang Luruper Chaussee	< 0.1	< 0.2
584	Expo-Halle, Schnorchel, in der Halle*)	< 0.1	< 0.2
585	Expo-Halle, rechte Seite der Terasse*)	< 0.11	< 0.2
	Außenpositionen		
591	Tornesch, Wismarring	< 0.12	< 0.2
592	Tornesch, Wismarring	< 0.11	< 0.2
593	Tornesch, Wismarring	< 0.12	< 0.2
595	HERA, Sylvesterallee, Zaun am Schwimmbad	< 0.13	< 0.2
596	HERA, Sylvesterallee, am Parkplatz	< 0.1	< 0.2
597	HERA, Hellgrundweg, Nordseite	< 0.1	< 0.2

Tabelle 27: Jahresdosen an den Betriebsgrenzen und an Außenstellen. *) = ab 27. April 2000 überwacht