Interner Bericht DESY D4-76/01 Marz 1976

DESY Biociotherk 29. April 1976

HERE Seleopper

JAHRESBERICHT 1975

der Gruppen im F-, M- und Z-Bereich am Deutschen Elektronen-Synchrotron DESY, Hamburg

• , , . : . . .

Interner Bericht DESY D4-76/01 März 1976

JAHRESBERICHT 1975

der Gruppen im F-, M- und Z-Bereich am Deutschen Elektronen-Synchrotron DESY, Hamburg

Inhalt

BEREICH FORSCHUNG	
Theoretische Physik	Seite 6
Elementarteilchen Physik	14
Synchrotronstrahlungsphysik	128
Experimentiermethoden und Servicegruppen	153

BEREICH MASCHINE	
Synchrotron	184
Speicherring DORIS	192
Speicherring PETRA	201
Aufbau der Experimente	230
Energieversorgung	237
Strahlenschutz	241

BEREICH ZENTRALE DATENVERARBEITUNG,	
ENTWICKLUNG UND BETRIEB	
Datenverarbeitung	244
Neue Technologien	256
Werkstätten und Service	262
Sicherheit	264

1

BEREICH FORSCHUNG

<u>Theoretische Physik</u> - T -	S. 6	
Elementarteilchenphysik		
- F1 -	1	4
- F11 -	3	4
- F12 -	4	2
- F21 -	4	5
- F22 -	5	4
- F23 -	6	0
- F31 -	7	2
- F32 -	7	4
- F33/F39/F1 -	8	3
- F34 -	8	9
- F35 -	9	8
DASP	10	5
- F36 -	11	8

Supebrotronstrablungenbygik	
Synchrotronstrantungsphysik	

	F41	-	128
-	F41	-	128

Experimentiermethoden und Servicegruppen

- F51 -	153
- F52 -	163
- F54 -	164
- F56 -	166
- F58/UKE -	173
- F58 -	178
- L -	179

Die theoretische Deutung von e⁺e⁻-Speicherringexperimenten bildete 1975 einen der Schwerpunkte der Arbeit der Gruppe Theorie. Im Mittelpunkt stand natürlich die Frage nach der Natur der gegen Ende 1974 und im Laufe von 1975 entdeckten "Neuen Teilchen". In mehreren Arbeiten wurden Abschätzungen über Verzweigungsverhältnisse für spezielle hadronische und elektromagnetische Zerfälle gegeben ^(28,29,32). Diese können Aufschlüsse für die Zuordnung in Symmetriegruppen der Vektormesonen J/ ψ (3.1), ψ' (3.7) und der bei DESY entdeckten Teilchen P_c und X liefern. Ausser den bekannten "Charm" und "Color"-Interpretationen wurden auch die Gruppen SU(5) ⁽¹²⁾ und die symplektische Gruppe ⁽³⁶⁾ zur Deutung des Spektrums der neuen Resonanzen vorgeschlagen. Die Grösse der leptonischen Zerfallsbreiten der Vektormesonen wurde zur Abschätzung einer D-Wellen-Beimischung im Rahmen des Quarkmodells benutzt ⁽²²⁾. Schliesslich diente das Konzept der "schweren Vektordominanz" dazu, Voraussagen für Strahlungszerfälle und Photoproduktionsquerschnitte von J/ ψ und ψ' unabhängig von speziellen Zuordnungen zu gewinnen ⁽¹¹⁾.

Die Kinematik der bei SPEAR gefundenen fallsprodukte von schweren Leptonen, die bei der e⁺e⁻-Vernichtung entstehen) wurde in Abhängigkeit von der Natur des schwachen Stroms und von der Leptonmasse erörtert ⁽³¹⁾.

Über die Grösse und den Verlauf des totalen Wirkungsquerschnitts für e⁺e⁻ - Hadronen stehen immer noch mehrere Bilder zur Auswahl. Während die Arbeit ⁽³⁵⁾ den Zusammenhang zwischen den vielen Vektormesonen im Quarkmodell mit starker Bindung und dem Skalenverhalten des Partonmodells (Dualität) untersuchte, wurde in ⁽¹⁶⁾ der Versuch unternommen, die Grösse des Wirkungsquerschnitts in asymptotisch nicht freien Theorien herzuleiten. Spezielle hadronische Endzustände, d.h. hadronische Formfaktoren im Zeitartigen, wurden in einem Mehrkanal-Bethe-Salpeter Modell berechnet ^(14,26).

Auf dem Gebiet der Photo- und Elektroproduktion am Nukleon fanden vor allem die experimentellen Daten über die Elektroanregung von Nukleonresonanzen ihren Niederschlag in einer ausführlichen Multipolanalyse mit geeignet parametrisierten Formfaktoren ⁽¹⁸⁾. Die Interpretation dieser Resultate ⁽³⁰⁾ im Rahmen des dualen Strom-Modells erwies sich als sehr übersichtlich. Die Beschreibung der N*-Formfaktoren im relativistischen Quark-Modell wurde durch die Hinzunahme von Spineffekten verbessert ⁽¹⁹⁾. Das duale Strom-Modell und das Quarkmodell liefern auch für die Elektroanregung der Nukleonresonanzen ziemlich ähnliche Resultate ⁽³⁴⁾.

Vorhersagen für inclusive Reaktionen wurden gemacht für die Pionproduktion an polarisierten Nukleonen im Mueller-Regge-Modell mit Schnittbeiträgen ⁽²⁵⁾, während der Zusammenhang der Transversalimpulsverteilung bei Jets in der e^+e^- -Vernichtung und in der Leptoproduktion in ⁽²⁴⁾ untersucht wurden. Die aus der e^+e^- -Vernichtung gewonnenen Vorhersagen des Verallgemeinerten Vektordominanzmodells mit nichtdiagonalen Kopplungen wurden mit der Energie- und q²-Abhängigkeit des Wirkungsquerschnittes der ep-Streuung verglichen ⁽²¹⁾. Die Schwierigkeiten des Vektordominanzmodells bei der Photoproduktion von π^{\bullet} in Kernen wurden durch die Einführung von Phasendifferenzen zwischen *S*- und *S*-Amplituden erklärt ⁽³³⁾.

- 7 -

Zum Abschluss der phänomenologischen Arbeiten ist eine Untersuchung über Korrekturen zum Glauber Modell für p d - Streuung bei grossen Impulsüberträgen zu nennen ^(#5).

Wie lassen sich spontan gebrochene Symmetrien in der allgemeinen Quantenfeldtheorie beschreiben? Für ein einfaches Modell konnten als erste Schritte die mathematischen Eigenschaften der "Ladung" und der S-Matrix mit masselosen Teilchen angegeben werden ⁽²⁷⁾.

Im Zusammenhang mit der derzeitigen Suche nach einer grösseren Klasse von renormierbaren Theorien wurden die Renormierungsprobleme in einer masselosen ϕ^4 -Theorie in 4 + ϵ Dimensionen studiert ⁽¹⁷⁾.

Die Forschungsarbeit der Gruppe Theorie wurde sehr gefördert aus dem Besucherprogramm. Das Gilt sowohl für die Besucher von deutschen Hochschulen als auch für die von internationalen Forschungsstätten.

Rubrik: a a a		Literatur Jahresbericht 1975
Autoren:	Titel:	Zitat:
1) H. Fraas, B. Read, D. Schildknecht	Off-Diagonal Generalized Vector Dominance	Nucl. Phys. <u>B86</u> (1975) 346
	and Inelastic ep-Scattering	
2) H. Fraas, B. Read, D. Schildknecht	On the Differential Cross Section and the Slope	Nucl. Phys. <u>B88</u> (1975) 301
	of Vector Meson Electroproduction	
3) J. Bender, D. Gromes, J.G. Körner	General Approach to Weinberg's Model with	Nucl. Phys. <u>B88</u> (1975) 525
	Three Triplet Quarks	
4) M. Böhm, M. Krammer	Predictions of the Relativistic Quark Model for	Acta Physica Austriaca <u>41</u>
	e^+e^- Annihilation into $\omega \pi^{o}$	(1975) 401
5) N.S. Craigie, T.F. Walsh	Lessons on e e Annihilation from Simple Chain	Ann. Phys. (N.Y.) 92
	Emission Models	(1975) 92
6) S. Kitakado, S. Orito, T.F. Walsh	The Width of ψ (3105)	Lett. Nuovo Cim. <u>12</u> (1975)
		436
7) M. Krammer, D. Schildknecht,	J(3.1), ψ' (3.7) - How about Color?	Physical Review <u>D12</u> (1975)
F.Steiner		139
8) S. Kitakado, T.F. Walsh	Color versus Charm	Lett. Nuovo Cim. 12 (1975)
		547
9) D. Schildknecht, F. Steiner	New Hadronic Degree of Freedom, e e Annihilation	Phys. Letters <u>56B</u> (1975)
	and Deep Inelastic Scattering	36

- 9 -

10) S. Kitakado, S. Orito, T.F. Walsh	Remarks on New Meson States	Phys. Letters <u>56B</u> (1975) 88
11) T.F. Walsh	Heavy Vector Meson Dominance	Lett. Nuovo Cim. <u>14</u> (1975) 290
12) Y. Achiman, K. Koller, T.F. Walsh	Five Quarks, New Particles and V+A Current	Phys. Letters <u>59B</u> (1975) 261 und DESY 75/27
13) J.G. Körner	$\Delta I = 1/2$ -Rule and Fierz-, SU(3)- and Colour SU(3)-	Fortschritte der Physik 23,
	Crossing Eigenvectors of the Current-Current Quark	(1975) 689
	Interaction	
14) F. Gutbrod, U. Weiss	Field Theoretic Model for the Pion Form Factor	Nucl. Phys. <u>B90</u> (1975), 52
15) Z. Rek	Large Momentum Transfer Corrections to the Glauber	Acta Physica Polonica <u>B6</u> ,
	Model in Nonrelativistic Eikonal Expansion	689 (1975) und DESY 75/3
16) F. Gutbrod, W. Kerler	Scaling of G (e ⁺ e ⁻ → Hadrons) in Asymptotic Nonfree	Nucl. Phys. <u>B96</u> (1975) 485
	Theories	und DESY 75/6
17) K. Symanzik	Renormalization Problem in Nonrenormalizable	Comm. math. Phys. <u>45</u> (1975)
	Massless ϕ^4 Theory	79 und DESY 75/12
18) R.C.E. Devenish, D.H. Lyth	Electromagnetic Form Factors of N * Resonances	Nucl. Phys. <u>B93</u> (1975) 109
	and their Determination from Pion Electroproduction	und DESY 75/4

- 10 -

-

<u>bbb</u>

19) T.S. Eisenschitz	The Bethe Salpeter Equation and the Relativistic	DESY 75/8
	Quark Model	
20) D. Schildknecht	Color and the New Particles. A Brief Review	DESY 75/13
21) R.C.E. Devenish, D. Schildknecht	Off-Diagonal Generalized Vector Dominance -	DESY 75/18
	A Comparison with Recent ep Deep Inelastic Data	
22) M. Krammer, H. Krasemann	Are the $oldsymbol{\psi}$'s Really Pure S Wave States ?	DESY 75/19
23) K. Symanzik	Renormalization Problem in a Class of Non-	DESY 75/24
	renormalizable Theories (Talk)	
24) M. Gronau, W.S. Lam, T.F. Walsh,	Jets in Inclusive e e and Leptoproduction	DESY 75/35
Y. Zarmi		
25) K. Ahmed, N.S. Craigie, J.G. Körner,	Target Asymmetry in Inclusive Photoproduction	DESY 75/39
G. Kramer	of Pions	
26) F. Gutbrod, U. Weiss	A Model for the Process e e ? E	DESY 75/43
27) H. Joos, E. Weimar	On the C ovariant Description of Spontanously	CERN TH 2040
	Broken Symmetry in General Field Theory	
28) J. Daboul, H. Krasemann	Identification of a Possible χ (3.55)	DESY 75/46
29) T. Kobayashi	Does a X(2.8 GeV) Favour Charm or Color 2	DESY 75/47

_

30)	R.C.E. Devenish, T.S. Eisenschitz,	Electromagnetic N-N 🏾 Transition Form Factors	DESY 75/48
	J.G. Körner		
31)	K. Fujikawa, N. Kawamoto	Collinearity Angle Distribution in 🛯 - Events	DESY 75/52
32)	K. Koller, T.F. Walsh	Multihadron Decays of New Mesons	DESY 75/55
33)	C. Avilez V., G. Cocho G.	Photon-Nucleus Collisions and the Relative	DESY 75/56
		Phase Between the $\gamma \cdot p \rightarrow \pi \cdot p$ and	
		9.+ <i>P</i> → <i>π</i> • + <i>P</i> Amplitudes	
34)	J.G. Körner, I. Bender, A. Actor	Helicity Content of the Electro-Excitation of	DESY 75/57
		Leading Baryon Resonances from Duality and t-channel	
		Constraints	
35)	M. Krammer, P. Leal Ferreira	Bound State Models and Duality in e e Annihilation	IFT 213/75
			São Paulo

•

•

- 12

С	С	С
-	_	_

36) C. Avilez-Valdez	Symplectic Symmetry as an alternative approach	Internal Report
	to Charm and Color	DESY T-75/4
<u>d</u> <u>d</u>		
37) H. Krasemann	Massenberechnung in einem relativistischen	Diplomarbeit
	Quarkmodell für Mesonen	Hamburg Oktober 1975
<u>e e e</u>		
38) H. Joos	Dynamics of the Meson Spectrum	Workshop on "Quarks and
		Hadronic Structure"
		Erice Oktober 1975
39) H. Joos	Review on Quark Confinement	International Summer
		Institute in Theoretical
		Particle Physics, Hamburg

_

September 1975

- 13 -

Die Aktivitäten der Gruppe Fl lagen im Berichtsjahr bei den Untersuchungen der e⁺e⁻-Vernichtung im Speicherring DORIS, der inelastischen Elektron-Proton-Streuung, der Proton (Antiproton)-Proton-Streuung und bei der Entwicklung von flüssig Argon-Zählern.

1. e e - Vernichtung im Speicherring DORIS

Die Gruppe F1 ist an zwei Kollaborationen beteiligt, am Doppelarmspektrometer DASP (F1,F22,F34,F35,MPI,U.Tokyo) und am supraleitenden Detektor PLUTO (F1, F33, F39, GH Siegen). Die Tätigkeiten dieser beiden Kollaborationen werden an anderer Stelle beschrieben.

2. Inelastische Elektron-Proton-Streuung

Die Gruppe F1 hat in einem umfangreichen Programm mit Hilfe von Streamerkammern die inelastischen Endzustände bei der Elektron-Proton-Streuung untersucht. Die Teilchenerzeugung bei der inelastischen Elektronstreuung erfolgt durch ein vom Elektron emittiertes virtuelles Photon γ_V , das im Gegensatz zum Photon der Photoerzeugung einen longitudinalen Polarisationsanteil besitzt. Zur Energie tritt beim γ_V als neuer Parameter Q², das Quadrat des Viererimpulsübertrags, was dem Quadrat einer Masse des Photons entspricht, und ε , das Verhältnis von longitudinalem zu transversalem polarisierten Photonenfluß. Großes ε bedeutet großer longitudinaler Anteil, kleines ε , geringer longitudinaler Anteil, d.h. mit $\varepsilon \rightarrow 0$ geht man in Bezug auf die Polarisation zu reellen Photonen über.

2.1 <u>Elektroerzeugung bei großen ∈</u> (F1, U. Hamburg, U. Glasgow)

Dieses Experiment wird in der DESY-Streamerkammer durchgeführt und hat die Analyse der hadronischen Endzustände bei Elektron-Proton-Stößen zum Ziel. Der erfaßte Q^2 , W-Bereich liegt bei $0.3 < Q^2 < 1.5 \text{ GeV}^2$, m $\leq W < 3$ GeV. Die Akzeptanz ist so gewählt, daß gerade der Übergangsbereich zwischen Photoerzeugung und tiefinelastischer Streuung untersucht werden kann. Die Datennahme wurde 1973 beendet. Das Durchmustern der Filme und Vermessen der Ereignisse wurde im Sommer 1975 abgeschlossen. Insgesamt wurden 46 700 inelastische Ereignisse analysiert. Das Experiment besitzt damit die größte Anzahl inelastischer Ereignisse die bisher in einem Spurerkennungsexperiment ausgewertet worden ist.

Die Auswertung der Meßdaten konzentriert sich auf folgende Punkte: globale Eigenschaften der hadronischen Endzustände (Multiplizitäten, topologische Wirkungsquerschnitte, Impulsverteilungen); Δ^{++} -Erzeugung ($\gamma_{\rm W} p \rightarrow \pi^{-} \Delta^{++}$), insbesondere an der Schwelle und Bestimmung des Axialvektor-Übergangsformfaktors $G_{N\Delta A}$; Verhalten der Vektormesonerzeugung. Das Ergebnis der Bestimmung des Axialvektor-Übergangsformfaktors $G_{N\Delta A}$ liefert eine Dipolmasse $m_A = 1.1 \pm 0.1$ GeV in Übereinstimmung mit anderen Messungen über die inelastische Elektronstreuung, aber nicht mit det Bestimmung aus der Neutrino-Streuung.

Die Untersuchung der Rhoerzeugung, $\gamma_V p \rightarrow \rho^O p$, ist inzwischen abgeschlossen. Diese Reaktion bietet die einmalige Möglichkeit, das Verhalten eines quasielastischen Streuprozesses bei gleichzeitiger Veränderung der Masse eines der Reaktionspartner (des Photons) zu untersuchen.

Abb. 1 zeigt das ρ° -Signal im $\pi^{+}\pi^{-}$ -System der Reaktion $\gamma_{\mathbf{v}}\mathbf{p} \rightarrow \mathbf{p}\pi^{+}\pi^{-}$ für einen bestimmten Q²-W-Bereich. Folgende Eigenschaften wurden für die Rhoerzeugung beobachtet:

- 1. Wie in der Photoproduktion ist die Rhomassenverteilung zu kleineren Rhomassen hin verschoben. Diese Unsymmetrie scheint für longitudinal polarisierte Rhos stärker zu sein als für transversal polarisierte.
- 2. Wie die Erzeugungswinkelverteilung zeigt, tragen in der Nähe der Schwelle zwei verschiedene Prozesse zur Rhoerzeugung bei, ein peripherer und ein nichtperipherer (Abb. 2). Der nichtperiphere Anteil hängt nur schwach von Q² ab, verschwindet aber rasch mit steigender Energie. Die isotrope Erzeugungswinkelverteilung deutet auf einen L = 0, $J^P = 1/2^-$ oder $3/2^-$ Zustand des $\rho^o p$ -Systems hin. Der periphere Beitrag zeigt das umgekehrte Verhalten: er ist beinahe energieunabhängig und fällt mit Q² schnell ab.
- 3. Für höhere Energien (W > 2 GeV) stimmt der Q²-Verlauf von σ_{ρ} gut mit der Vorhersage des Vektordominanzmodells (VDM) überein, d.h. er wird im wesentlichen durch den ρ -Propagator bestimmt. Daraus folgt, daß im Rahmen von VDM das Produkt aus γ - ρ -Kopplung und ρ N elastischer Streuamplitude unabhängig von Q² ist. Dieses Ergebnis legt nahe, daß eine der wesentlichen Annahmen von VDM richtig ist, daß nämlich die γ - ρ -Kopplung selber unabhängig von Q² ist.
- 4. Der differentielle Wirkungsquerschnitt do/dt ist von der Form do/dt ~ e^{At} . Die Werte für A sind A = 6.5 ± 0.5 GeV⁻² für $\langle q^2 \rangle$ = 0.4 GeV² und A = 5.7 ± 0.7 GeV⁻² für $\langle q^2 \rangle$ = 0.8 GeV². Sie stimmen innerhalb der Fehlergrenzen mit dem Wert bei q^2 = 0. (A = 6.5 ± 0.4 GeV⁻²) überein (Abb. 3).
- 5. Die Rho-Zerfalls-Winkelverteilung im Helizitätssystem (Θ, ψ) zeigt, daß im Schwellenbereich longitudinale (L) Rhos dominieren. (W(cos Θ) hat einen führenden cos² Θ -Term). Bei höheren Energien überwiegen transversal polarisierte Rhos. Außerdem tragen für W > 2 GeV hauptsächlich transversale Photonen zur Rho-Erzeugung bei "wie die Anisotropie der ψ -Verteilung zeigt (Abb. 4a).

- 6. Eine Analyse der Rho-Dichtematrix zeigt (Abb.4b), daß die transversalen (T) Rhos hauptsächlich durch natürlichen Paritätsaustausch im t Kanal erzeugt werden: $\sigma_T^N (\gamma_V p \neq \rho^o p) \geq (89 \pm 8 \%) \quad \sigma_T (\gamma_V p \neq \rho^o p)$. Der Erzeugungsprozess erhält näherungsweise die Helizität am $\gamma \rho$ -Vertex im s-Kanal (SCHC). Setzt man SCHC voraus, so kann das Verhältnis R der Wirkungsquerschnitte σ_L, σ_T für Rhoerzeugung durch longitudinale und transversale Photonen direkt aus der Dichtematrix abgelesen werden. Die Größe R = σ_L / σ_T steigt im untersuchten Q² Bereich linear mit Q² an und kann durch die Beziehung R = $\xi^2 Q^2 / m_\rho^2$ mit $\xi^2 \approx 0.4$ parametrisiert werden. Daraus folgt für Q² ≈ 1.4 GeV²: $\sigma_L \approx \sigma_T$.
- 7. Für W > 2.2 GeV zeigt die Dichtematrix eine Interferenz zwischen Rho-Erzeugung durch longitudinale und transversale Photonen. Die Stärke der Interferenz nimmt mit wachsender Energie zu: der Phasenunterschied zwischen den beiden wird immer kleiner.

Die Ergebnisse können auf folgende Weise zusammengefaßt werden: Im Gebiet W > 2 GeV, $Q^2 < 1.4$ GeV² bzw. für Werte der Skalenvariablen $\omega \ge 5$ sind alle für Elektrorhoerzeugung beobachteten Eigenschaften mit einem diffraktiven Erzeugungsmechanismus verträglich.

2.2 <u>Elektroproduktion bei kleinem ε und großem W</u> (F1, F52, Uni Hamburg)

Die Datennahme wurde im Januar 1975 begonnen. Dabei wurde 1/4 der angestrebten Statistik erreicht. Der Brand in Halle 1 am 6.5.75 hat das Experiment so stark beschädigt, daß es bei dem erreichten Stand abgebrochen werden mußte. Ein Wiederaufbau ist nicht geplant. Die aufgenommenen 111 000 Bilder lieferten 13 400 Ereignisse, bei denen mindestens ein negativ geladenes Teilchen die Triggerzähler trifft (Abb. 5). Diese Ereignisse wurden auf der vollautomatischen Meßmaschine HPD1 vermessen. Die Messung war bei 81 % der Ereignisse fehlerfrei. 1100 Ereignisse wurden auf den Meßmaschinen Vanguard nachgemessen.

Bei den meisten Ereignissen hat statt des gewünschten Elektrons ein π^- die Streamerkammer ausgelöst. Diese Ereignisse konnten durch Verknüpfung der Pulshöhen in den Bleiglas-Triggerzählern mit den gemessenen Impulsen von den gesuchten Ereignissen abgetrennt werden (Abb. 6). Das Resultat sind 2800 Ereignisse vom Typ ep \rightarrow e' + X mit einem Untergrund der Reaktionen ep $\rightarrow \pi^-$ + X von 20 %. Der kinematische Bereich ist 2.0 < W < 3.6 GeV und 0.05 < Q² < 3.0 GeV² (Abb.7). Das mittlere ε (Polarisationsparameter) ist < ε > \simeq 0.35 (Abb.8). Die Verteilung der Massenverteilung im $\pi^+\pi^-$ mit dem ρ^- Signal ist in Abb. 9 dargestellt. Die Untersuchung der Endzustände wird 1976 durchgeführt.

2.3 <u>Elektroproduktion bei großem ε und großem W</u> (F1, U. Hamburg, Cornell U.)

Dieses Experiment ist die Ausdehnung des Experimentes 2.1 zu höheren Elektronenenergien, wie sie am 12 GeV Elektronensynchrotron der Cornell U. zur Verfügung stehen. Es ist eng mit dem Experiment 2.2 verbunden, da es dessen Q^2 , W-Bereich miterfaßt, bei diesem Experiment ε aber groß ist, so daß durch Kombination beider Experimente eine Trennung der longitudinalen und transversalen Anteile möglich wird.

Das Experiment wird mit der bei DESY gebauten Streamerkammer durchgeführt, die Triggerelektronik dagegen von der Cornell U. gestellt. Im Berichtsjahr wurde die Streamerkammer aufgestellt, die Triggerelektronik getestet und bereits einige Tausend Bilder aufgenommen. 1976 werden etwa 1/2 Millionen Bilder aufgenommen werden, die am HPD bei DESY ausgewertet werden.

3. Proton-Proton- und Antiproton-Proton-Streuung

Die Gruppe Fl wertet in Zusammenarbeit mit anderen Instituten bei CERN aufgenommene Blasenkammerfilme aus.

3.1 <u>Proton-Proton-Streuung</u> (F1, U. Hamburg, U. Bonn, MPI München)

Ziel der Untersuchungen ist es, in einem Experiment bei zwei Energien (Strahlimpuls 12 und 24 GeV/c) mit sehr großer Ereigniszahl und kleinen systematischen Fehlern sowohl inklusive Reaktionen als auch Details der Endzustände zu untersuchen, um dadurch die komplizierten Zusammenhänge bei hadronischen Vielteilchenzuständen aufklären zu helfen. – Im Berichtsjahr wurde die Vermessung nahezu abgeschlossen, wobei in Hamburg bei 12 GeV/c 90 000 von 285 000 Ereignissen und bei 24 GeV/c 408 000 von 587 000 Ereignissen vermessen wurden. Nach der Entdeckung der $J(\psi)$ -Teilchen bei 3.1 und 3.7 GeV wurden umfangreiche Untersuchungen zur Suche nach Resonanzen mit "Charm" durchgeführt. Dazu wurden u.a. die Massenspektren für inklusiv erzeugte Systeme in der Reaktion

$pp \rightarrow Y + X$

analysiert, wobei das System Y mindestens einen sichtbaren Zerfall des seltsamen Teilchens ($K_s^0, K^{\pm}, \Lambda, \overline{\Lambda}, \Sigma^{\pm}, ...$) enthält. In den analysierten mehreren hundert Massenspektren wurde <u>kein</u> signifikanter Hinweis auf neue Resonanzen gefunden. Es gelang jedoch die $\phi(1020)$ -Erzeugung in der inklusiven Reaktion

$$pp \rightarrow \Phi(1020) + X$$

zu beobachten. Mit einem Wirkungsquerschnitt von (158 \pm 35) µb ist diese Reaktion

gegenüber der Erzeugung von ρ und ω stark unterdrückt. Dieses Ergebnis wurde im Zusammenhang mit der Zweig-Regel diskutiert.

3.2 Antiproton-Proton-Streuung (F1, U. Hamburg)

Parallel zum pp-Experiment wurde die pp-Wechselwirkung bei einem einfallenden Impuls von 12 GeV/c untersucht. Ziel dieser Untersuchungen ist es, inklusive Reaktionen mit Protonen und Antiprotonen bei gleicher Strahlenergie zu vergleichen, was die genaue Abtrennung der Annihilationskomponente ermöglicht. Die Messung und Auswertung der Ereignisse ist abgeschlossen, insbesondere die π^{\pm}, π° , p und \bar{p} sowie ρ und ω . Die weitere physikalische Analyse der 28 000 Ereignisse konzentriert sich auf den Vergleich mit der e⁺e⁻-Annihilation.

4. Flüssig-Argon-Zähler

Die Messung der von geladenen Teilchen in flüssigem Argon erzeugten Ionisation hat gegenüber Methoden, wie Szintillationszählern, Proportional- und Funkenkammern, den Vorteil, daß wegen der größeren Anzahl von erzeugten Elektron-Ion-Paaren die Statistik verbessert bzw. der Aufbau großflächiger Anordnungen erleichtert wird.

1975 wurden zwei Flüssig-Argon-Kammern erfolgreich getestet. Ein 32-gap-Schauerzähler wurde im Teststrahl 26 mit Elektronen zwischen 300 MeV und 5.5 GeV geprüft. Die Energieauflösung dieses Aufbaus ergab sich zu $\sigma = 14 \ \% \cdot \sqrt{E(GeV)}$ über den gesamten Energiebereich. Bei 2 GeV konnte ein Triggersignal mit einer Zeitauflösung von $\sigma = 5.5$ ns abgeleitet werden.

Eine Doppelgap-Ionisationskammer zur Teilchenidentifikation wurde in einem π^+/p Strahl am CERN getestet (Abb. 10) π -p Trennung bis zu 1.1 GeV/c ist damit möglich.

In Zusammenarbeit mit F56 und der GHS Siegen wurden preisgünstige ladungsempfindliche Vorverstärker entwickelt. Außerdem wurde am HMI Berlin für unsere Zwecke die Steigerung der Elektronenmobilität durch Zusätze zum Argon untersucht.

5. Weitere Arbeiten

Für die Reaktion $\gamma N \rightarrow \pi N$ wurde mit den zur Zeit der Stanford Konferenz bekannten Daten eine Multipol-Analyse durchgeführt.

Die Kompilation der Photoproduktionsdaten wurde fortgesetzt, insbesondere wurde die gesamte Literatur der experimentellen Photoproduktionsarbeiten zusammengestellt. Es wurde für die Reaktion $\gamma p \rightarrow \eta p$ mit linear polarisierten Photonen in der 82" HBC am SLAC der totale WQ, (Abb. 11) der differentielle WQ und die Asymmetrie im Bereich der n-Schwelle bestimmt.

In einer theoretischen Untersuchung der inelastischen Pion-Nukleon-Streuphasen wurde gezeigt, daß mittels Photoproduktion deren absolute Phase bestimmt werden kann; dabei wurde gefunden, daß diese in Übereinstimmung mit den Vorhersagen aus dem relativistischen Quarkmodell und der Melosh-Transformation sind.

Zur Unterstützung der physikalischen Auswertung der Experimente wurde das Programmsystem PSA entwickelt. Dieses System besteht aus einem nichtinteraktiven Teil, in dem von großen Datenmengen Histogramme, Streudiagramme, Mittelwerte usw. gebildet werden können, und einem interaktiven Teil. Im interaktiven Teil können die Daten auf einem Datensichtgerät und Hardcopygerät (IPS-Terminal) graphisch dargestellt werden. Das seit Anfang 1975 im Betrieb befindliche System wird von einer wachsenden Anzahl von Gruppen benutzt. In einer im Testbetrieb laufenden Version können zusätzlich interaktiv Anpassungsrechnungen mit über die Tastatur eingegebenen Funktionen durchgeführt werden.

(24 459)

Abb. 4b

Abb. 5: Streamerkammerbild mit der Reaktion ep $\rightarrow e'p\pi^+\pi^-$ (33 3334)

Abb. 6: Pulshöhenverteilung im Bleiglas-Schauerzähler für Teilchen mit Impuls p > 0.8 GeV

- a) Pionenspektrum
- b) Ereignisspektrum mit Pionen und Elektronen

Abb. 9: Verteilung der invarianten $\pi^+\pi^-$ -Masse der Reaktion ep $\rightarrow e'p\pi^+\pi^-$

Literatur Jahresbericht 1975

- 26 -

	Ru'	br	i	k	:	aaa
--	-----	----	---	---	---	-----

Titel:	Zitat:
Study of Correlation Effects in High- Multiplicity Proton-Proton Reactions at 12 and 24 GeV/c	Nucl.Phys. <u>B88</u> , (1975) 18-40
Study of the Low Mass Diffractive System Produced in pp Collisions at 12 and 24 GeV/c	MPL-PAE/Exp.E1. 46, February 1975 and Nucl. Phys. <u>B92</u> (1975)221-240
Partial Wave Analysis of the Low Mass ($\pi \pi p$) System Produced in the Reaction pp + p($\pi^+\pi^-p$) at 12 and 24 GeV/c	MPI-PAE/Exp.El. 49, June 1975 und Nucl. Phys. B97 (1975) 201-218
A generalized isobar model formalism	Phys. Rev. <u>D11</u> (1975), 3165
,A partial wave analysis of πN → ππN at center-of-mass energies below 200 MeV ,	Phys. Letters <u>55B</u> (1975), 486
A partial wave analysis of the reaction $\pi N \rightarrow \pi \pi N$ in the c.m.s. energy range 1300 - 2000 MeV	Phys. Rev. <u>D11</u> (1975), 3183
Comment of the phases of inelastic partial waves and their comparison with the quark model, the current to constituent quark transformation, $SU(6)_W$, and vector dominance	Phys. Rev. D, 1. Dez. 1975
Kapitel 4.1 Elementarteilchen	in: Hermann Ebert, Physikalisches Ta- schenbuch, Vieweg Braunschweig 1975
A Study of the $\pi\pi$ Phase-Shift Solutions in the Mass Region 1.0 to 1.8 GeV from $\pi^- p \rightarrow \pi^- \pi^+ n$ at 17.2 GeV	Nucl.Phys. <u>B100</u> (1975) 205-224
	Titel: Study of Correlation Effects in High- Multiplicity Proton-Proton Reactions at 12 and 24 GeV/c Study of the Low Mass Diffractive System Produced in pp Collisions at 12 and 24 GeV/c Partial Wave Analysis of the Low Mass (π π p) System Produced in the Reaction pp + p($\pi^+\pi^-p$) at 12 and 24 GeV/c A generalized isobar model formalism A partial wave analysis of $\pi N \rightarrow \pi\pi N$ at center-of-mass energies below 200 MeV A partial wave analysis of the reaction $\pi N \rightarrow \pi\pi N$ in the c.m.s. energy range 1300 - 2000 MeV Comment of the phases of inelastic partial waves and their comparison with the quark model, the current to constituent quark transformation, SU(6) _W , and vector domi- nance Kapitel 4.1 Elementarteilchen A Study of the $\pi\pi$ Phase-Shift Solutions in the Mass Region 1.0 to 1.8 GeV from $\pi^- p \rightarrow \pi^-\pi^+ n$ at 17.2 GeV

Rubrik: bbb

Literatur Jahresbericht 1975

- 27 -

K. Böckmann, C. Geich-Gimbel, H.G. Heilmann, U. Idschok, E. Propach, V. Blobel, H. Fessfeldt, H. Funz, W. SchrankelInvestigation of Diffraction Dissociation in Single Pion Production Reactions in Nucleon-Nucleon Collisions at 12 GeV/cBonn-HE-75-1, Januar 1975V. Blobel, A. Eskreys, H. Fesefeldt, H. Franz, U. Idschok, A. Kotanski, D. Lüers, B. Schröder, N. Schmitz, V. Blobel, H. Fesefeldt, P. Freund, D. Gall, K. von Holt, U. Idschok, A. Hofmann, Ch. Jetter, H. Neumann, B. Schröder, P. SödingPartial Wave Analysis of the Low Mass (m m p) System Produced in the Reaction p + p(m*Tmp) at 12 and 24 GeV/cNPI-PAE/Exp.El. 46, February 1975 and Nucl. Phys. B92 (1975)221-240V. Blobel, A. Eskreys, H. Fesefeldt, H. Franz, U. Idschok, A. Kotanski, D. Gall, K. von Holt, U. Idschok, A. Hofmann, Ch. Jetter, H. Neumann, B. Schröder, P. SödingPartial Wave Analysis of the Low Mass (m m p) System Produced in the Reaction p + p(m*Tmp) at 12 and 24 GeV/cNPI-PAE/Exp.El. 49, June 1975 und Nucl. Phys. B92 (1975) 201-218W. Blobel, H. Fesefeldt, P. Freund, D. Gall, K. von Holt, U. Idschok, A. Hofmann, Ch. Jetter, H. Neumann, B. Schröder, P. SödingTest of the Zweig Selection Rule in 4 Pro- duction by pp CollisionsNPI-PAE/Exp.El. 51, October 1975, and Phys. Lett. <u>B59</u> (1975) 88W. Struczinski, P. Dittmann, V. Eckardt, F. Joos, A. Ladage, H. Meyer, D. Notz, G. Hentschel, J. Knobloch, E. Rabe, H. MeinkeStudy of Photoproduction on Hydrogen in a to GeV < E. < 6.3 GeV - Topological and to GeV < E. < 6.3 GeV - Topological and to GeV < E. < 6.3 GeV - Topological and to GeV < E. < 6.3 GeV - Topological and to GeV < E. < 6.3 GeV - Topological and to GeV < E. < 6.3 GeV - Topological and tatesDESY 75/40, October 1975	Autoren:	Titel:	Zitat:
 V. Blobel, A. Eskreys, H. Fesefeldt, H. Franz, K. von Holt, U. Idschok, J. V. Lamsa, R. Rödel, N. Schmitz, W. Treffeisen V. Blobel, A. Eskreys, H. Fesefeldt, H. Franz, U. Idschok, A. Kotanski, D. Lüers, B. Schröder, N. Schmitz, F. Wagner V. Blobel, H. Fesefeldt, P. Freund, D. Lüers, W. Schrankel, B.M. Schwarz- schild V. Blobel, H. Fesefeldt, H. Franz, A. Hofmann, Ch. Jetter, H. Neumann, S. Schröder, P. Söding W. Struczinski, P. Dittmann, V. Eckardt, B. Taureg, M. Grimm, I. Derado, P. Schacht G. Wolf Study of the Low Mass Diffractive System Produced in pp Collisions at 12 and 24 GeV/c MPI-PAE/Exp.El. 49, June 1975 und Nucl. Phys. B97 (1975) 201-218 MPI-PAE/Exp.El. 51, October 1975, submitted to Nucl. Phys. DESY 75/31, August 1975 and Phys. Lett. <u>B59</u> (1975) 88 DESY 75/36, September 1975 GeV < E_x < 6.3 GeV - Topological and traueg M. Grimm, I. Derado, P. Schacht Review of Electroproduction of Final States 	K. Böckmann, C. Geich-Gimbel, H.G. Heil- mann, U. Idschok, E. Propach, V. Blobel, H. Fesefeldt, H. Neumann, D.Schulze- Hagenest, H. Franz, W. Schrankel	Investigation of Diffraction Dissociation in Single Pion Production Reactions in Nucleon-Nucleon Collisions at 12 GeV/c	Bonn-HE-75-1, Januar 1975
V. Blobel, A. Eskreys, H. Fesefeldt, H. Franz, U. Idschok, A. Kotanski, D. Lüers, B. Schröder, N. Schmitz, F. WagnerPartial Wave Analysis of the Low Mass ($\pi \pi$ p) System Produced in the Reaction pp + $p(\pi^+\pi^-p)$ at 12 and 24 GeV/cMPI-PAE/Exp.El. 49, June 1975 und Nucl. Phys. B97 (1975) 201-218V. Blobel, H. Fesefeldt, P. Freund, D. Lüers, W. Schrankel, B.M. Schwarz- schildHigher Moments of the Pion Multiplicity Distribution in Proton-Proton Interactions at 12 and 24 GeV/cMPI-PAE/Exp.El. 49, June 1975 und Nucl. Phys. B97 (1975) 201-218V. Blobel, H. Fesefeldt, P. Freund, D. Lüers, W. Schrankel, B.M. Schwarz- schildHigher Moments of the Pion Multiplicity Distribution in Proton-Proton Interactions at 12 and 24 GeV/cMPI-PAE/Exp.El. 51, October 1975, subnitted to Nucl. Phys.V. Blobel, H. Fesefeldt, H. Franz, A. Hofmann, Ch. Jetter, H. Neumann, B. Schröder, P. SödingTest of the Zweig Selection Rule in Φ Pro- duction by pp CollisionsDESY 75/31, August 1975 and Phys. Lett. <u>B59</u> (1975) 88W. Struczinski, P. Dittmann, V. Eckardt, G. Hentschel, J. Knobloch, E. Rabe, H. Taureg, M. Grimm, I. Derado, P. Schacht Reaction Cross Sections - Review of Electroproduction of Final StatesDESY 75/40, October 1975G. WolfReview of Electroproduction of Final StatesDESY 75/40, October 1975	V. Blobel, A. Eskreys, H. Fesefeldt, H. Franz, K. von Holt, U. Idschok, J.W. Lamsa, R. Rödel, N. Schmitz, W. Treffeisen	Study of the Low Mass Diffractive System Produced in pp Collisions at 12 and 24 GeV/c	MPI-PAE/Exp.El. 46, February 1975 and Nucl. Phys. <u>B92</u> (1975)221-240
 V. Blobel, H. Fesefeldt, P. Freund, D. Gall, K. von Holt, U. Idschok, D. Lüers, W. Schrankel, B.M. Schwarz- schild V. Blobel, H. Fesefeldt, H. Franz, A. Hofmann, Ch. Jetter, H. Neumann, B. Schröder, P. Söding W. Struczinski, P. Dittmann, V. Eckardt, F. Joos, A. Ladage, H. Meyer, D. Notz, G. Hentschel, J. Knobloch, E. Rabe, H. Taureg, M. Grimm, I. Derado, P. Schacht G. Wolf Higher Moments of the Pion Multiplicity Distribution in Proton-Proton Interactions at 12 and 24 GeV/c Bistribution in Proton-Proton Interactions at 12 and 24 GeV/c DESY 75/31, August 1975 and Phys. Lett. <u>B59</u> (1975) 88 DESY 75/36, September 1975 DESY 75/36, September 1975 Beview of Electroproduction of Final States DESY 75/40, October 1975 	V. Blobel, A. Eskreys, H. Fesefeldt, H. Franz, U. Idschok, A. Kotanski, D. Lüers, B. Schröder, N. Schmitz, F. Wagner	Partial Wave Analysis of the Low Mass ($\pi \pi$ p) System Produced in the Reaction pp \Rightarrow p($\pi^+\pi^-$ p) at 12 and 24 GeV/c	MPI-PAE/Exp.E1. 49, June 1975 und Nucl. Phys. B97 (1975) 201-218
 V. Blobel, H. Fesefeldt, H. Franz, A. Hofmann, Ch. Jetter, H. Neumann, B. Schröder, P. Söding W. Struczinski, P. Dittmann, V. Eckardt, G. Hentschel, J. Knobloch, E. Rabe, H. Taureg, M. Grimm, I. Derado, P.Schacht R. Meinke G. Wolf Test of the Zweig Selection Rule in Pro- duction by pp Collisions Test of the Zweig Selection Rule in Pro- duction by pp Collisions DESY 75/31, August 1975 and Phys. Lett. <u>B59</u> (1975) 88 DESY 75/36, September 1975 	V. Blobel, H. Fesefeldt, P. Freund, D. Gall, K. von Holt, U. Idschok, D. Lüers, W. Schrankel, B.M. Schwarz- schild	Higher Moments of the Pion Multiplicity Distribution in Proton-Proton Interactions at 12 and 24 GeV/c	MPI-PAE/Exp.El. 51, October 1975, submitted to Nucl. Phys.
 W. Struczinski, P. Dittmann, V. Eckardt, P. Joos, A. Ladage, H. Meyer, D. Notz, G. Hentschel, J. Knobloch, E. Rabe, H. Taureg, M. Grimm, I. Derado, P.Schacht, R. Meinke G. Wolf Review of Electroproduction of Final States DESY 75/36, September 1975 DESY 75/40, October 1975 	V. Blobel, H. Fesefeldt, H. Franz, A. Hofmann, Ch. Jetter, H. Neumann, B. Schröder, P. Söding	Test of the Zweig Selection Rule in Φ Pro- duction by pp Collisions	DESY 75/31, August 1975 and Phys. Lett. <u>B59</u> (1975) 88
G. Wolf Review of Electroproduction of Final DESY 75/40, October 1975 States	W. Struczinski, P. Dittmann, V. Eckardt, P. Joos, A. Ladage, H. Meyer, D. Notz, G. Hentschel, J. Knobloch, E. Rabe, H. Taureg, M. Grimm, I. Derado, P.Schacht R. Meinke	Study of Photoproduction on Hydrogen in a Streamer Chamber with Tagged Photons for 1.6 GeV < E_{γ} < 6.3 GeV - Topological and , Reaction Cross Sections -	DESY 75/36, September 1975
	G. Wolf	Review of Electroproduction of Final States	DESY 75/40, October 1975

_

Rubrik: ccc

Literatur Jahresbericht 1975

- 28 -

٠

Autoren:	Titel:	Zitat:
V. Blobel	PSA/IPSA - Programm zur statistischen Analyse und graphischen Darstellung physikalischer Daten	Interner Bericht DESY F1-75/02, April 1975
P. Joos	Literature on Photoproduction Experiments	Internal Report DESY F1-75/04, October 1975
H. Randow	Suche nach exotischer Resonanzerzeugung in pp-Wechselwirkungen bei Strahlimpulsen von 12 und 24 GeV/c	Internal Report DESY F1-75/1, März 1975 (Diplomarbeit)
C. Sander	Einsatz von Proportionaldrahtkammern zur Impulsanalyse bei einer Streamerkammer	Internal Report DESY F1-75/03, Juni 1975 (Diplomarbeit)
	1	1

Rubrik: ddd	Literatur Jahresbericht 1975
Autoren:	Titel: Zitat:
H. Randow	Suche nach exotischer Resonanzerzeugung Internal Report DESY F1-75/1, in pp-Wechselwirkungen bei Strahlimpulsen März 1975 (Diplomarbeit) von 12 und 24 GeV/c
C. Sander	Einsatz von Proportionaldrahtkammern zur Internal Report DESY F1-75/03, Impulsanalyse bei einer Streamerkammer Juni 1975 (Diplomarbeit)
H. Neumann	pp-Wechselwirkungen bei 12 und 24 GeV/c (Dissertation) Strahlimpuls: Inklusive Rho-Erzeugung und Untersuchung von Austauschprozessen
P. Winkler	Testmessungen und Vorüberlegungen zu einem (Diplomarbeit) Elektroproduktionsexperiment bei kleinem ε mit der Streamerkammer

Rubrik: eee

Literatur Jahresbericht 1975

Autoren: P. Joos, A. Ladage, H. Meyer, P. Stein, G. Wolf, S. Yellin, C.K. Chen, J.Knowles, D. Martin, J.M. Scarr, I.O. Skillicorn, K. Smith, C. Benz, G. Drews, D. Hoffmann, J. Knobloch, W. Kraus, H. Nagel, E. Rabe, C. Sander, WD. Schlatter, H. Spitzer, K. Wacker	Titel: Rho Production by Virtual Photons	Zitat: Contribution to the 1975 Int.Symposium on Lepton and Photon Interactions at High Energies, Stanford, USA, August 21-27, 1975	
P. Joos, A. Ladage, H. Meyer, P. Stein, G. Wolf, S. Yellin, C.K. Chen, J.Knowles, D. Martin, J.M. Scarr, I.O. Skillicorn, K. Smith, C. Benz, G. Drews, D. Hoffmann, J. Knobloch, W. Kraus, H. Nagel, E. Rabe, C. Sander, WD. Schlatter, H. Spitzer, K. Wacker.	Charged Hadron Multiplicity and Inclusive Distributions in Inelastic ep-Scattering	Contribution to the 1975 Int. Symposium on Lepton and Photon Interactions at High Energies, Stanford, USA, August 21-27, 1975	
P. Joos, A. Ladage, H. Meyer, P. Stein, G. Wolf, S. Yellin, C.K. Chen, J.Knowles, D. Martin, J.M. Scarr, I.O. Skillicorn, K.M. Smith, C. Benz, G. Drews, D.Hoffmann J.Knobloch, W. Kraus, H. Nagel, E. Rabe, C. Sander, WD. Schlatter, H. Spitzer, K. Wacker	w-Meson Production by Virtual Photons	Contribution to the 1975 Int. Symposium on Lepton and Photon Interactions at High Energies, Stanford, USA, August 21-27, 1975	- 30 -
 P. Joos, A. Ladage, H. Meyer, P.Söding, G. Stein, G. Wolf, S. Yellin, C.K. Chen, J. Knowles, D. Martin, J.M. Scarr, I.O. Skillicorn, K. Smith, C. Benz, G. Drews, D. Hoffmann, J. Knobloch, W. Kraus, H. Nagel, E. Rabe, C.Sander, WD. Schlatter, H. Spitzer, K. Wacker 	Determination of the Nucleon Axial Vector Form Factor from π∆ Electroproduction near threshold	Contribution to the 1975 Int. Symposium on Lepton and Photon Interactions at High Energies, Stanford, USA, August 21-27, 1975	
D. Gall, M. Penna, G. Wetjen, V. Blobel	Particle and Resonance Production in pp Interactions at 12 GeV/c	Proceedings of the Int. Symposium on pp-Interactions, Loma-Koli (1975) 414	
K.C. Moffeit	Experimental Results from DORIS	Proceedings of the Fifth Int. Conference on Neutrino Science, Balatonfüred, Hungary, editors A. Frenkel and G.Marx June 1975	

Rubrik	:	eee

- --

Autoren:	Titel:	Zitat:
E. Rabe	Pionmultiplizität und transversale-longit dinale Interferenz im Photonfragmentation bereich in Abhängigkeit von Q ²	n- Vortrag auf der Frühjahrstagung der 5- DPG in München, März 1975
K. Wacker	Resonante und nicht-resonante Beiträge zur Reaktion ep → epπ π	Vortrag auf der Frühjahrstagung der DPG in Münchenm März 1975
WD. Schlatter	Erzeugungscharakteristik von longitudina- len ρ -Mesonen in der Reaktion $\gamma_V p \rightarrow \rho p$ bei 0.3 < Q ² < 1.5 GeV ²	Vortrag auf der Frühjahrstagung der DPG in München, März 1975
D. Gall, V. Blobel, M. Penna, G. Wetjen	Inklusive Teilchen- und Resonanzerzeugung in pp-Wechselwirkungen bei 12 GeV/c	Vortrag auf der Frühjahrstagung der DPG in München, März 1975
G. Knies	The_use of liquid argon detectors at e e storage ring experiments	Detector Meeting at DESY, Outober 2/3, 1975
G. Wolf	Review of Electroproduction of Final States	Invited talk given at the 1975 Int. Symposium on Lepton and Photon Interactions at High Energies, Aug. 21-27, 1975, Stanford University

- 31 -

Rubrik: fff		Literatur Jahresbericht 1975
Autoren:	Titel:	Zitat:
G. Wolf	Electroproduction of Exclusive Final States	Vortrag in Rutherford Laboratory, Daresbury, Durham University, Jan. 1975
G. Wolf	Results from DORIS on the New Resonances	Vortrag in Rutherford Laboratory, Daresbury, Durham University, Jan. 1975
G. Wolf	Results on the New Particles from DORIS	Vortrag bei American Physical Society Meeting, Anaheim, Eermi National Accele- rator Laboratory, Febr. 1975; MIT
G. Wolf	Photon Hadron Wechselwirkungen	Plenarvortrag auf der Tagung der DPG, München, März 1975
G. Wolf	Results from DORIS	Vortrag in Saclay, Juni 1975
G. Wolf	Results on the Newly Discovered C = + States	Vortrag bei Cornell University, Fermi National Accelerator Laboratory, Brookhaven National Laboratory, MIT
G. Wolf	Review of e ^t e ⁻ Experimental Physics,	Theoretical Summer Institute Hamburg, September 1975
G. Wolf	e [†] e ⁻ Physik	Herbstschule in Maria-Laach, Okt. 1975
G. Wolf	Neue Ergebnisse von DASP	Schweizer Institut für Nuklearforschung (SIN). November 1975
P. Söding	The hadronic final states in photoproduc- tion and electroproduction	Vorlesung auf dem III.Winter-Meeting on Fundamental Physics, Sierra Nevada (Spanien), Feb. 1975, S. 61
P. Söding	Review of electromagnetic interactions of hadrons	Vorlesung auf der 1975 Cargèse Summer Institute on Weak and Electromagnetic Interactions at High Energies (wird veröffentlicht von Academic Press)
H. Meyer	Review of final states in deep inelastic scattering	Theoretical Summer Institute Hamburg, September 1975
K.C. Moffeit	Recent Results from the DESY Storage Ring	Tafts University, Physics Department October 3, 1975
G. Knies	Flüssig-Argon Ionisationskammern zur Teil- chenidentifikation	GHS Siegen, Jan. 1975
G. Knies	Present status of experiments at DORIS	Vortrag an der Universität Helsinki, Dez. 1975

Rubrik: fff

Autoren:

G. Knies

P. Söding

P. Benz

Literatur Jahresbericht 1975

Zitat: Vortrag an der Universität Helsinki, Dez. 1975

> Lecture Series in the 1975-1976 Academic Training Programme at CERN

Vortrag an der Universität Mainz, Juni 1975

Titel:

PETRA: The project and the experimental possibilities

Electroproduction

Isobarenzustände im Deuteron

ယ ယ t

- Fll - Speicherring-Experimente

Der experimentelle Aufbau der Gruppe M11, der schon im DABX-Jahresbericht 1974 beschrieben wurde, ist in Abb. 1 dargestellt.

Die Wechselwirkungszone ist von einem zylindrischen Innendetektor umgeben, welcher einen Raumwinkel von $22/4\pi = 0.50$ überdeckt. Er besteht aus drei zylindrischen Driftkammern und zwei Zählerhodoskopen zum Nachweis geladener opuren. Vor der dritten Kammer ist ein Quecksilberkonverter von zwei Strählungslängen Dicke eingebaut, der mit Hilfe einer Fernsteuerung gefüllt und geleert werden kann. Die Richtung von Photonen, die im Quecksilber konvertieren, kann aus den Signalen in der dahinter liegenden Mammer rekonstruiert werden. Der Bereich kleiner Streuwinkel zwischen 45° und 30° wird durch ein weiteres Hodoskop überdeckt. Auf diese Weise wird der Raumwinkel, in welchem geladene Weilchen beobachtet werden können auf $\Omega/4\pi = 0.96$ erweitert.

Der zentrale Detektor ist von einer Anordnung von NaI- und Bleiglaszählern umgeben, die eine Energiemessung von Elektronen und Thotonen in einem Daumwinkel von $\Omega/4\pi$ =0.6 gestattet. Diese Zähler werden auch zur Messung des Energieverlustes von Hadronen und μ -Desonen benutzt. Zur Identifizierung von Guonen dienen ebene Driftkammern hinter einer -00 cm dicken Disenabschirmung. Die Apparatur zeichnet sich durch gute Energieauflösung auch für niedrige Photonenener jien aus.

Titte Februar 1975 wurde in der südlichen Techselwirkungszone bei DORIS der magnetische Detektor Pluto gegen die Apparatur der DESZ-Heidelberg-Fruppe ausgewechselt. Hach einer kurzen Frprobungsphase von etwa vier Mochen wurden Daten zum e⁺e⁻- Vernichtung im Bereich der beiden Resonanzen J(3.1) und $\psi(3.7)$ und bei 4.15 GeV Schwerpunktsenergie aufgenomien. Die Daten wurden während der Meßperioden bis
zum Herbstshutdown und im Bovember/Dezember akkumuliert.

Der elektronische Prigger für das Experiment enthält sowohl eine Information über die Zahl der geladenen Spuren als auch über die Energie, welche in der NaI-Bleiglas-Zähleranordnung nachgewiesen wird. Mit Hilfe eines on line - Computers (PDP 9) wurden solche Preignisse selektiert, die Spuren aus dem Vechselwirkungspunkt enthalten oder bei denen mehr als die Hälfte der Schwerpunktsenergie registriert wurde. Mach der Selektion bebrug die Datenrate etwa 1Hz.

Die Wirksamkeit dieses Verfahrens der Datennahme wird in der Abb. 2 demonstriert. Innerhalb weniger Stunden kann die Resonanzkurve bei 3.1 GeV durch Verändern der Speicherringenergie durchfahren werden, da die in der Abbildung gezeigten Zählraten schon während der Datennahme zur Verfügung stehen.

Der Schwerpunkt der Auswertung lag bei der Untersuchung neutraler Zerfälle der neuen Resonanzen. Unter den Zerfällen des Teilchens $\Psi'(3.7)$ wurden solche untersucht, bei denen man zwei Leptonen und zwei Photonen im Endzustand beobachtet.

Diese weaktion ist kinematisch durch die Richtungen der vier Teilchen im Endzustand festgelegt. Durch die Messung zusätzlicher Parameter z.B. die Bestimmung der Energie eines oder mehrerer Teilchen erhält man überbestimmte Gleichungssysteme, die eine Ausgleichsrechnung gestatten. Beschränkt man sich bei der Auswertung auf Ereignisse, bei denen die beiden Leptonen eine invariante Masse von 3.1 GeV bilden, so beobachtet man zwei Gammalinien von 260 maV und 400 maV, die in der Abbildung 3 dargestellt sind. Diese Einien kann man durch einen Kaskadenzerfall über einen neuen Zwischenzustand P_c mit einer Masse von 3.55 GaV

$$\begin{array}{cccc} \mathcal{H}'(37) & \rightarrow & \mathcal{Y} + P_c \\ & & \mathcal{Y} + \mathcal{J}(3.1) \\ & & \mathcal{H} & \mathcal{H} \\ & & \mathcal{H} & \mathcal{H} \end{array}$$

Dieser Zustand P wurde zuerst im DASP-Experiment beobachtet und auch von der Gruppe F 11 gesehen.

Die Strahlungszerfälle der beiden Resonanzen in einen Drei-Gamma-Endzustand sind ebenfalls durch die Messung der Richtungsvektoren der Photonen kinematisch bestimmt.

> $4'(3.7) \rightarrow 38$ $3(3.1) \rightarrow 38$

Bei der Beobachtung von Gammastrahlung in der F11-Apparatur begegnet man einer prinzipiellen Schwierigkeit. Photonen, die im Quecksilberkonverter materialisiert werden, erleiden dort einen Energieverlust, welcher eine genaue Energiemessung im NaI oder Bleiglas nicht gestattet. Auf der anderen Seite sind die Zählerblöcke zu groß, um eine ausreichend gute Richtungsbestimmung für nicht konvertierte Photonen zuzulassen. Aus diesem Grunde haben wir uns in der biskerigen Auswertung bei der Untersuchung der Drei-Gamma-Endzustände auf eine Richtungsmessung konvertierter Photonen beschränkt. Strukturen in einem Drei-Teilchen -Endzustand erkennt man am besten in einer Darstellung der Meßwerte als Dalitzdiagramm. In den Abbildungen 4 und 5 sind die Dalitzdiagramme bei 3.7 GeV und 3.1 GeV Schwerpunktsenergie dargestellt. Hier wird das Quadrat der höchsten invarianten Masse, die je zwei Photonen miteinander bilden, gegen das Quadrat der niedrigsten Masse aufgertagen.

Der Dalitzplot bei 3.7GeV ist in Segmente unterteilt. Für jedes Segment ist angegeben, wie groß die Zahl der zu erwartenden QED-Ereignisse ist. Aus einem Vergleich dieser Zahlenangaben mit den Meßpunkten schließt man, daß alle beobachteten Ereignisse durch QED-Prozesse zu erklären sind.

In dem Dalitzdiagramm der Abbildung 5 bei 3.1 GeV Schwerpunktsenergie sind Meßpunkte der DASP-Gruppe mit unseren Messungen zusammengefaßt, um die statistische Signifikanz der Daten zu erhöhen.

Man erkennt eine dichte Besetzung des γ -Bandes, bervorgerufen

durch die Reaktion:

Die Projektion des γ -Bandes auf die Achse der hohen Masse ist in der Abbildung 6a dargestellt. Die gleichmäßige Belegung erwartet man für ein Spin O Teilchen im Endzustand. Drei Kandidaten für den Zerfall

findet ran im η' -Band unterhalb eines Schnittes in der hohen Masse von 2.6 GeV.

Eine signifikante Anhäufung von Breignissen findet man zwischen dem γ - und η' -Band bei hohen Massen. Die Projektion des Dalitzplots auf die Abszizze ohne γ -Zerfälle ist in der Abbildung 6b dargestellt. Man findet hier einen Hinweis darauf, daß-einen neuen Zustand X bei einer Masse von 2.75 GeV geben kann. Um die Existenz des X-Teilchens zu etablieren sind noch weitere Untersuchungen nötig.

Im Jahr 1976 ist geplant, die Untersuchungen der Resonanzen mit einer leicht modifizierten Apparatur fortzusetzen.

(24 453)

Abb. 5 Dalitzplot für 3-8-Pndzustände bei 3.1GeV

•

Abb. 6 Projektion des Dalitzplots bei 3.1 GeV auf die Achse der hohen Passe.

- 6a Projektion des γ -Bandes
- 6b Projektion of ne das γ -Band

```
Veröffentlichungen und Vorträge.
J. Heintze
e'e into Hadrons: Results from the DESY-Heidelberg-
Collaboration.
Beitrag zur: 1975 International Symposium on Lepton and
             Photon Interactions at High Energies, Stanford
   und : - DESY 75/34
W. Bartel
Experimental Facilities at DORIS
Physics Seminar UC Berkeley
W.Bartel
Mögliche Experimente am PETRA-Speicherring.
Sommerschule Maria Laach
W. Bartel
Experimentelle Ergebnisse der DESY-Heidelberg-Gruppe am
DORIS Speicherring
Hochenergie-Seminar TH Aachen
J. Heintze
Die neuen Teilchen in der Hochenergiephysik
Colloquium Th Darmstadt
J. Heintze
Die neuen Teilchen in der Hochenergiephysik
Colloquium Uni Dortmund
R.D. Heuer
Das Experiment der DESY-Heidelberg-Gruppe am DORIS-Speicherrin
Gruppenbericht, Sommerschule Maria Laach
P. Steffen
Neutral Decay Modes of the New Resonances.
High Energy Physics Seminar , EREN
P. Steffen
Bestimmung der Z-Lebensdauer
DESY-Seminar
```

- F12 - Speicherring-Experimente (Bonn)

Der Detektor Bonanda wurde von Physikern des Phys. Inst. der Universität Bonn, des Inst. für Kernphysik Mainz und von DESY für Experimente zur Untersuchung der Vernichtungsreaktionen $e^+e^- - \bar{n}X, \bar{p}X$ und $e^+e^- - \bar{n}n, \bar{p}p$ konzipiert, im Hinblick auf die Bestimmung der elastischen und inelastischen Formfaktoren des Neutrons und Protons bzw. deren Antiteilchen.

Die Anordnung der Apparatur zeigt Fig. 1 im Querschnitt senkrecht zur Elektron-Positron-Strahlachse und Fig. 2 in der Perspektive. Die Wechselwirkungszone ist umgeben von dem rotationssymmetriechen Proportionalkammersystem MADKA, das aus 5 Zylinderkammern besteht, mit denen geladene Teilchen aus dem Wechselwirkungsbereich nachgewiesen werden. Die Kammern erlauben eine azimutale Auflösung von 3⁰ und in Strahlrichtung eine Ortsauflösung von + 3 cm. Eine spezielle Logik erlaubt es innerhalb von ca. 30 - 40 µsec festzustellen, ob ein geladenes Teilchen innerhalb eines 3⁰-Sektors von der Strahlachse kommt. Zum Nachweis der Antiteilchen und der Neutronen dient ein Ring aus 36 Neutronenzählern, der innen und außen von je einem Ring aus Szintillationszählern, genannt Vetozähler, umgeben ist.Zum Nachweis eines Antinukleons wird verlangt, daß 80 MeV in drei benachbarten Neutronenzählern deponiert wurde und daß mindestens drei umgebende Vetozähler angesprochen haben. Um diese Nachweiswahrscheinlichkeit für die bei der Vernichtung eines Antineutrons oder Antiprotons entstehenden geladenen Teilchen wesentlich zu vergrößern, wurden die Seitenflächen der Apparatur durch zusätzliche Szintillationszählerm abgedeckt.

Die wichtigsten Daten des Detektors sind:

Proportionalkammersystem MADKA bestehend aus

5 Zylinderkammern mit 1038 Auslesekanälen

Länge	160 cm
Durchmesser der inneren Kammer	42 cm
Durchmesser der äußeren Kammer	80 cm
36 Neutronenzähler aus Plastikszintillator	$100 \times 20 \times 20 \text{ cm}^3$
diese überdecken einen Raumwinkel von	47% von 4 11
Ansprechwahrscheinlichkeit für Antinukleonen	16%
Nachweiswahrscheinlichkeit für Neutronen	15%
68 Vetozähler aus Szintillationsmaterial	170 x 25 x 2 cm ³
diese decken die Neutronenzähler zu 80% ab.	

Um die Untergrundzählrate in den Neutronenzählern so gering wie möglich zu halten,wird der Detektor gegen den Speicherringtunnel durch eine 40 cm dicke Blei- und Schwerbetonmauer abgeschirmt. Weiterhin ist das in Auftrag gegebene Stráhlrohr, außer im Wechselwirkungsbereich, rundum mit einem 8 cm dicken Bleimantel umgeben (siehe Fig. 2). Zur Erkennung des Untergrundes, der im wesentlichen durch die Höhenstrahlung gegeben ist, wurden alle Szintillationszähler beidseitig mit je einem Photomultiplier bestückt. Mittels eines CAMAC-Systems werden die Energieabgabeund die Laufzeitinformation der angesprochenen Szintillationszähler und die gesetzten Kanäle des Proportionalkammersystems MADKA in einen Interdata-Rechner M85 eingelesen, wo in einer On-line Analyse die Separierung von Höhenstrahlungsereignissen von echten Ereignissen aus dem Wechselwirkungspunkt vorgenommen wird.

Die Teilchennachweis-Detektoren wurden in einem zweiteiligen Gestell eingebaut, welches für den Experimentier-Einsatz beidseitig auf den Plutoschienen an die Wechselwirkungszone herangefahren wird. Die Apparatur ist inzwischen soweit zusammengebaut, daß in den demnächst beginnenden Testmessungen mit der Höhenstrahlung die Funktionsfähigkeit der gesamten Experimentieranordnung nachgewiesen werden kann. Danach können die Experimente in der Wechselwirkungszone begonnen werden.

(23 050)

(24 456)

- F21 - Inelastische Elektronenstreuung

Elektroproduktion von π° , π^{\dagger} und η Mesonen

Die Auswertung eines Experiments von π° , π^{+} und η Mesonen im Resonanzbereich wurde abgeschlossen.

Die Untersuchung der Mesonerzeugung bei Streuung von Elektronen an Protonen erlaubt es, Aussagen über die Quantenzahlen der bei der Streuung angeregten Baryonzustände zu machen. Bei der Streuung wirkt auf das Proton ein vom Elektron her abgestrahltes virtuelles Photon mit Polarisationsgrad ε . Aus der Winkelverteilung der erzeugten Mesonen kann auf den Absoprtionsquerschnitt für unpolarisierte und longitudinal polarisierte Photonen $\sigma_{\rm U} + \varepsilon \sigma_{\rm L}$, den Querschnitt $\sigma_{\rm p}$ für transversal polarisierte Photonen und einen Interferenzterm $\sigma_{\rm I}$ longitudinal und transversal polarisierter Photonen geschlossen werden. Diese Größen sind in Abb. 1 und 2 als Funktion der Gesamtenergie der erzeugten Hadronen W bei verschiedenen Schwerpunktswinkeln θ^* dargestellt. Im sogenannten 2. bzw. 3. Resonanzgebiet um W \approx 1.5 GeV bzw. W \approx 1.68 GeV ist vor allem in den Größen $\sigma_{\rm U}$ + $\varepsilon \sigma_{\rm L}$ deutlich Resonanzstruktur zu erkennen; bei π^+ -Produktion auch in $\sigma_{\rm p}$.

Der Nachweis von n Mesonen erlaubt es, die Resonanz S₁₁(1535) unabhängig von der Resonanz D₁₃(1525) zu untersuchen. Der große beobachtete Querschnitt für die Erzeugung dieser Resonanz regte zu einem weiteren Experiment an, bei dem der Polarisationsgrad ε des virtuellen Photons variiert wurde, um $\sigma_{\rm U}$ und $\sigma_{\rm L}$ unabhängig zu bestimmen. Die Messungen zu diesem Experiment werden Anfang 1976 abgeschlossen werden.

Für weitere Experimente zur Elektroproduktion wurde 1975 ein Cerenkovzähler weitgehend fertiggestellt, der 1976 zur Unterscheidung von π^+ -Mesonen und Protonen zum Einsatz kommen soll (Abb. 3).

In Zusammenarbeit mit der Gruppe F35 wurde die Auswertung eines Experiments zur π° Produktion bei Energien oberhalb des Resonanzgebietes abgeschlossen.

<u>µ-Nukleon Streuung am SPS von CERN</u>

Der Vorschlag für Experimente zur μ -Nukleon Streuung im Bereich einiger hundert GeV am SPS von CERN, der im Jahr 1974 zusammen mit anderen Hochenergielabors gemacht wurde, wurde bezüglich seiner ersten Phase von CERN und den beteiligten Instituten genehmigt. Diese erste Phase hat zum Ziel, die tiefinelastische Streuung der Muonen an Nukleonen bis zu sehr hohen Impulsüberträgen von über 200 GeV², d.h. bis zu sehr kleinen Abständen zwischen streuenden und gestreuten Teilchen zu messen. Die Bestimmung des gestreuten Muons allein liefert wichtige Aussagen über das Skalenverhalten der tiefinelastischen Streuung bzw. über das Eintreten neuer Phänomene. In dieser ersten Phase sollen aber auch die in Vorwärtsrichtung erzeugten Hadronen bzw. zusätzlich erzeugte Leptonen nachgewiesen werden, die wichtigen Aufschluß geben können über den Reaktionsmechanismus bzw. über evtl. erzeugte neue Teilchen.

In der Berichtszeit wurde die Auslegung des Vorwärtsspektrometers mit der dazu gehörigen Logik und einem System von Rechnern detailliert ausgearbeitet. Das Spektrometer soll als wesentliches Instrument für die Registrierung von Teilchenspuren Driftkammern enthalten. Die DESY-Gruppe der Kollaboration hat den Bau von Driftkammern mit einer empfindlichen Fläche von 250x510 cm² bei einer Driftraumlänge von 2 cm übernommen. Hierzu wurden Versuche an einer kleinen Kammer gemacht, um notwendige Gaszusammensetzung, Geometrie des Driftraumes und Feldverteilung beherrschen zu lernen. Trotz des relativ großen Driftraums von 2 cm wurde gefunden, daß man mit konstantem Potential an der Kathodenfläche arbeiten kann. Es wurde eine Auflösung von 0.3 mm voller Breite in halber Höhe bei einer Ansprechwahrscheinlichkeit von 99,3 % für den ganzen Driftraum gemessen.

Um Probleme der großen Driftkammer studieren zu können, wurde ein Prototyp in Originalgröße fertiggestellt, an dem zur Zeit Messungen im Teststrahl gemacht werden.

DESY hat ferner den Bau eines Target-STAC (eines Sandwich Total Absorption Counters, der gleichzeitig als Target dient), sowie die Bereitstellung eines von vier PDP 11/70 Rechnern übernommen. Für beide Projekte wurden erhebliche Vorarbeiten geleistet.

(23 639)

<u>Abbildung I:</u> Die Querschnitte $\sigma_U + \epsilon \sigma_L$, σ_P und σ_I als Funktion von W bei verschiedenen Schwerpunktswinkeln für π^+ -Produktion.

(23 740)

<u>Abbildung 2:</u> Die Querschnitte $\sigma_U + \varepsilon \sigma_L$, σ_P und σ_I als Funktion von W bei verschiedenen Schwerpunktswinkeln für π^{O} -Produktion.

Rubrik : aaa)					Literatur J	ahresbericht 19	975	
Autoren :		Titel :			- Zitat	:		
1. JC. Alder, F.W. Brasse, W. Fehr	enbach,	Electroproductio	n of η Meso	ons in the	Nucl. Pl	hysics B91 (197	5) 386-398	
J. Gayler, R. Haidan, G. Glöe, S.	P. Coel,	Region of the Re	sonance S ₁₁	(1535)			. .	
V. Korbel, W. Krechlok, J. May, M	Merk-					1. P.		
witz, R. Schmitz, W. Wagner								
2. JC. Alder, H. Behrens, F.W. Bra	sse,	Electroproduction	oproduction of π^+ Mesons in the Re-		Nucl. Phy	Nucl. Phys. B99 (1975) 1-12		
W. Fehrenbach, J. Gayler, S.P. Go	el,	sonance Region		•				
R. Haidan, V. Korbel, J. May,								
M. Merkwitz	~ ~					:		
3. F.W. Brasse, W. Fehrenbach, W. Fl	auger,	Electroproductio	n of Neutral	l Pions at	Physics I	etters Vol. 58	B, 467,70 (1975)	
J. Gayler, S.P. Goel, R. Haidan,	U. Kötz,	Energies above t	he Resonance	e Region		t t	•	
V. Korbel, D. Kreinick, J. Ludwig	•					•		
J. May, M. Merkwitz, KH. Mess,								
P. Schmüser, B.H. Wiik								
	•			•		· .		
	· · ·					- 		
				•			•.	
						· .	• .	
		•		· ·		· ·		
ŝ L						· · ·		
		:	. *			· ·		
	÷ .							
		. •		•	ļ			
				•	Į			

Rubrik : bbb)	L	iteratur Jahresbericht.1975
Autoren : 1. F.W. Brasse, W. Fehrenbach, W. Flauger, J. Gayler, S.P. Goel, R. Haidan,	Titel : Electroproduction of Neutral Pions at Energies above Resonance Region	- Zitat : DESY 75/23
J. Ludwig, J. May, M. Merkwitz, KH. Mess, P. Schmüser, B.H. Wiik 2. JC. Alder, H. Behrens, F.W. Brasse,	Electroproduction of π^+ Mesons in the	DESY 75/29
W. Fehrenbach, J. Gayler, S.P. Goel, R. Haidan, V. Korbel, J. May, M. Merkwitz	Resonance Region	
 JC. Alder, F.W. Brasse, W. Fehrenbach J. Gayler, S.P. Goel, R. Haidan, V. Korbel, J. May, M. Merkwitz, 	,Electroproduction of Neutral Pions in the Resonance Region	DESY 75/41
A. Nurimba		

۰ 51 -

Rubrik : eee) .

Autoren :

- J.-C. Alder, F.W. Brasse, W. Fehrenbach, J. Gayler, S.P. Goel, R. Haidan, V. Korbel, J. May, M. Merkwitz
- J.-C. Alder, H. Behrens, F.W. Brasse,
 W. Fehrenbach, J. Gayler, S.P. Goel,
 R. Haidan, V. Korbel, J. May,
 M. Merkwitz
- F.W.Brasse, W. Fehrenbach, W. Flauger, J. Gayler, S.P. Goel, R. Haidan,
 U. Kötz, V. Korbel, D. Kreinick,
 J. Ludwig, J. May, M. Merkwitz,
 - K.-H. Mess, P. Schmüser, B.H. Wiik

4. J. Gayler

Titel :

Electroproduction of Neutral Pions in the Resonance Region

Electroproduction of π^+ Mesons in the Resonance Region

Electroproduction of Neutral Pions at Energies above the ResonanceRegion

Electroproduction in the Resonance

Region

Literatur Jahresbericht 1975

Zitat :

Contr. to the 1975 Int. Symposium on Lepton and Photon Interactions at High Energies, Stanford, Aug. 1975

wie vorstehend

wie vorstehend

Proceedings of the 8th All Soviet Union High Energy Physics School, Erevan 22 1

Rubrik : fff) .		Literatur Jahresberi
Autoren :	Titel :	- Zitat :
1. F.W. Brasse	Myon-Experiment at the CERN-SPS	FNAL, Jan. 1975
2. F.W. Brasse	Experiments at the DESY-Storage Ring	
	DORIS	FU Berlin, Jan. 1
3. J. Gayler	Elektroproduktion von π^0 , π^+ und η	Cornell, Sept., 7
	Mesonen •	

~

cht 1975

1975

5 und Bonn, Okt. 75

- F22 - Formfaktoren

Im Jahre 1975 wurden sowohl die Untersuchungen von e^+e^- – Prozessen am Speicherring DORIS als auch die Experimente am Synchrotron zur Elektroproduktion von π - und K-Mesonen sowie zur Photoproduktion scharfer Resonanzen fortgesetzt. Außerdem wurde mit ersten Vorbereitungen für Experimente am großen Speicherring Petra begonnen.

<u>Studium von e'e' - Prozessen:</u> Zusammen mit den Gruppen Fl, F34, F35 von den Universitäten Aachen, Hamburg, Tokyo, dem MPI München und DESY haben wir 1975 die Zerfälle der Ende 1974 entdeckten scharfen Resonanzen $J/\psi(3100)$ und $\psi'(3700)$ mit Hilfe des Doppelarmspektrometers untersucht. Neben den inklusiven Spektren

 $e^+e^- \rightarrow J/\psi(3100), \psi'(3700) \rightarrow (\pi^\pm, \kappa^\pm, \overline{p}) + X$

wurden folgende Zerfälle beobachtet:

 $J/\psi(3100), \psi^{\dagger}(3700) \rightarrow e^{+}e^{-}, \mu^{+} + \mu^{-}$ $\psi(3700) \qquad \qquad + (\pi^{+} + \pi^{-}, \eta, \gamma + \gamma) + J/\psi(3100)$ $J/\psi(3100) \qquad \qquad + p+\overline{p}, \Lambda + \overline{\Lambda}$ $J/\psi(3100) \qquad \qquad + n+\gamma, 3 \gamma$

Von besonderem Interesse war dabei die Entdeckung von Zwischenzuständen P_ im Zerfall

 $\psi'(3700) \xrightarrow{Y} P \xrightarrow{Y} J/\psi(3100)$ sowie die Evidenz für einen Zustand X im Zerfall $J/\psi(3100) + \gamma + X(2800)$. Die Entdeckung dieser Zustände ist für ein $\downarrow_{\gamma}\gamma\gamma$ tieferes Verständnis der neuen Teilchen sehr wichtig. Die Ergebnisse findet man in den Veröffentlichungen 1) - 5).

Als Beitrag unserer Gruppe zur Weiterentwicklung der Apparatur wurde ein IBM-Online-Programmsystem entwickelt, das eine erste sofortige Auswertung der Meßdaten ermöglicht. Dieses System hat sich als sehr nützlich für ein ständiges Überprüfen der Apparatur erwiesen. Außerdem berechnet dieses Programm laufend den multihadronischen Wirkungsquerschnitt und liefert damit bei Untersuchungen an den Resonanzen J/ψ , ψ ' eine schnelle Energieeichung des Speicherringes.

Resonanzsuche in der Photoproduktion von e'e - Paaren:

Angeregt durch die Entdeckung der neuen Teilchen $J/\psi(3100)$, $\psi'(3700)$ sowie der Tatsache, daß $3.7^2 - 3.1^2 \approx 3.1^2 - 2.4^2$, haben wir im Dezember 1974/ Januar 1975 nach scharfen e^+e^- - Resonanzen in der Reaktion γ + Be $\Rightarrow e^+e^-$ + X im Massenbereich 1.8 $< M_{e^+e^-} < 2.6$ GeV gesucht. Für diese Suche wurde das im Jahresbericht 1974 beschriebene Zweiarmspektrometer unserer Gruppe verwendet. Darin werden Elektronen und Positronen jeweils mit Hilfe eines Schwellen-Čerenkov-Zählers und eines Schauerzählers von den sehr viel häufiger produzierten $\pi^+\pi^-$ -Paaren getrennt. Wir haben $21 \pm 2 e^+e^-$ -Kandidaten gefunden, von denen wir 3 durch rein quantenelektrodynamische Bethe-Heitler-Prozesse erklären können und 8 \pm 3 Kandidaten durch π^+ Elektroproduktionsprozesse, bei denen das π^+ als Positron mißidentifiziert wurde. Abb.1 zeigt die Massenverteilung dieser Kandidaten. Es ist keine Resonanzstruktur zu erkennen. Um eine obere Grenze für den Produktionsquerschnitt zu erhalten, nehmen wir an, daß die Resonanz an den einzelnen Targetnukleonen diffraktiv erzeugt wird

$$\frac{d\sigma}{dt} = \frac{d\sigma}{dt} + e^{bt}$$
(1)

wobei t der Impulsübertrag auf das Targetnukleon sei. Unseren Daten entnehmen wir, daß für eine Resonanz mit einer Breite < 40 MeV $\sigma \cdot B_{e^+e^-} < 2.5 + 10^{-35} \text{cm}^2$ (90% confidence). $B_{e^+e^-}$ gibt die Zerfallswahrscheinlichkeit der Resonanz in e^+e^- - Paare an. Die Kurven in Abb.1 zeigen die erwartete Anzahl von e^+e^- - Paaren, wenn eine schmale Resonanz mit $\frac{d\sigma}{dt}\Big|_{t=0}$ $B_{e^+e^-} = 2.5 \pm 10^{-34} \text{cm}^2/\text{GeV}^2$ und $b = 3 \text{ GeV}^{-2}$ bzw. 6 GeV⁻² erzeugt wird. Die Ergebnisse dieser Resonanzsuche sind in ref. 6) dargelegt.

Elektroproduktion von m- und K-Mesonen:

Die Experimente zur Elektroproduktion von π - und K-Mesonen wurden 1975 fortgeführt. Die Reaktion $e + p \rightarrow e' + n + \pi^+$ wurde für Schwerpunktsenergien $W = \sqrt{s} \approx 2.2 \text{ GeV}$ (s = $p_n + p_{\pi} +)^2$) für Photonmassen $q^2 = (p_e - p_e)^2$ und Werte des Polarisationsparameters ϵ von (q^2 , ϵ) = (-0.06 GeV², 0.45), (-0.3, 0.77), (-0.7, 0.86), (-1.3, 0.80) im Bereich $t_{min} \le t \le 1.0 \text{ GeV}^{-2}$ t = $(p_e - p_e, - p_{\pi})^2$ untersucht. Ein hervorstechendes Ergebnis einer vorläufigen Auswertung dieser Daten ist die Tatsache, daß der Wirkungsquerschnitt $\frac{d\sigma}{dt}$ für t < -0.2 GeV² im Bereich -0.7 > q² > -4.0 GeV² nur schwach q²-abhängig zu sein scheint, wie die in Abb.2 zusammengestellten Daten zeigen.

Ferner wurden die Prozesse e + d \rightarrow e' + $p + \pi^{-} + (p)$ (-0.7 GeV², 0.86) untersucht. Insbesondere wurde das Verhältnis R = $\frac{\sigma_{\pi^{-}}}{\sigma_{\pi^{+}}}$ bestimmt, um daraus den π^{-} -Wirkungsquerschnitt gemäß

$$\frac{d\sigma^{\pi}(n)}{dt} = R \cdot \frac{d\sigma^{\pi}(H_2)}{dt} \quad zu \text{ ermitteln.}$$

Abb.3 zeigt die gemessenen R-Werte als Funktion von t zusammen mit den Daten der Photoproduktion. An einer vollständigen Analyse dieser Daten wird zur Zeit gearbeitet. Vorläufige Ergebnisse wurden zum "International Symposium on Lepton and Photon Interactions" (Stanford, California, August 21 - 27, 1975) mitgeteilt. An der Auswertung der Messungen zur K-Elektroproduktion wird zur Zeit ebenfalls noch gearbeitet.

Vorbereitungen für Experimente an PETRA: Wir begannen 1975 mit ersten Überlegungen zu Experimenten am großen Speicherring PETRA. Mit dem Bau eines Prototyps einer Driftkammer, bei der beide Koordinaten simultan ausgelesen werden (die Hochspannungsseite ist als Laufzeitkette ausgebildet), wurde begonnen.

Abb.! Massenverteilung der 21 nachgewiesenen e^+e^- - Paare. Die Kurven zeigen die erwartete Anzahl von Paaren, wenn eine schmale Resonanz gemäß $B_{e^+e^-} \cdot \frac{d\sigma}{dt} = 2.5 * 10^{-35} \text{cm}^2/\text{GeV}^2 \cdot e^{bt}$ erzeugt wird und in e^+e^- - Paare zerfällt.

Veröffentlichungen

1) A Measurement of Collinear and Nearly Collinear Photon Pairs produced by e^+e^- - Annihilation at the 3100 MeV Resonance DASP - Collaboration W. Braunschweig, C.L. Jordan, U. Martyn, H.G. Sander, D. Schmitz, W. Sturm and W. Wallraff, I. Physikalisches Institut der RWTH Aachen K. Berkelman, D. Cords, R. Felst, E. Gadermann, G. Grindhammer, H. Hultschig, P. Joos, W. Koch, U. Kötz, H. Krehbiel, D. Kreinick, J. Ludwig, K.-H. Mess, K.C. Moffeit, D. Notz, G. Poelz, K. Sauerberg, P. Schmüser, G. Vogel, B.H. Wiik and G. Wolf, Deutsches Elektronen-Synchrotron DESY und II. Institut für Experimentalphysik der Universität Hamburg G. Buschhorn, R. Kotthaus, U.E. Kruse, H. Lierl, H. Oberlack, S. Orito, K. Pretzl and M. Schliwa, Max-Planck-Institut für Physik und Astrophysik, München T. Suda, Y. Totsuka and S. Yamada, University of Tokyo, Tokyo, Japan Phys. Lett. 53B (1975) 491 2) Muon Pair Production by e^+e^- - Annihilation at the 3100 MeV Resonance

DASP - Collaboration

dieselben Autoren wie unter !)

Phys. Lett. 56B (1975) 491

3) Two-Body Hadronic Decays of the 3.1 GeV Resonance DASP - Collaboration dieselben Autoren wie unter 1)

Phys. Lett. 57B (1975) 297

4) Observation of the Two Photon Cascade 3.7 → 3.1 + γγ via an Intermediate State P C
 DASP - Collaboration

dieselben Autoren wie unter 1)

Phys. Lett. 57B (1975) 407

- 5) DASP Collaboration, B.H. Wiik: "Recent Results from DORIS", (Invited talk presented at the International Symposium on Lepton and Photon Interactions, Stanford University, Stanford, California, August 21 - 27, 1975)
- 6) Search for Narrow Resonances in the Reaction
 γ + Be → e⁺e⁻ + X at 1.8 ≤ MeV_e+_{e⁻} ≤ 2.6 GeV
 P. Brauel, Th. Canzler, D. Cords, R. Felst, G. Grindhammer, W.-D. Kollmann,
 H. Krehbiel and M. Schädlich, Deutsches Elektronen-Synchrotron DESY,
 Hamburg and II. Institut für Experimentalphysik der Universität Hamburg
 DESY 75/42, Oktober 75 and Phys. Lett. to be published
- 7) Untersuchungen zur Identifikation von K-Mesonen in einem Elektroproduktionsexperiment

Diplomarbeit Michael Helm, Universität Hamburg, 1975

 Messungen des Wirkungs-Querschnitts der elastischen e-p-Streuung mit einem nichtabbildenden Spektrometer zum Testen der Apparatur und der Auswerteprogramme

Diplomarbeit Klaus Fesefeldt, Universität Hamburg, 1975

9) Untersuchungen zum Impulsauflösungsvermögen bei einem Elektroproduktions-Experiment

Diplomarbeit Hartwig Grote, Universität Hamburg, 1975

- F23 - Elektron-Nukleon-Streuung mit Drahtfunkenkammern

Das Hauptinteresse der Bonn/Freiburg/Lund-Gruppe gilt den Problemen, bei denen die Struktur der Kerne und typische Hochenergieeffekte ineinandergreifen.

Das Elektronenspektrometer der Gruppe F 23 ermöglicht bei guter Winkelauflösung (\pm 0.1 mrad) den Nachweis gestreuter Elektronen in einem großen Energiebereich (Akzeptanz \pm 20%). Dadurch können mit 3 - 4 Einstellungen des Ablenkmagneten Elektronen mit Streuenergien zwischen 3.5 GeV und 1 GeV lückenlos gemessen werden. Dies bedeutet, daß man als Primärteilchen virtuelle Photonen in einem großen Energiebereich zur Verfügung hat. Für Streuung an den Nukleonen eines Kerns ist dabei von Bedeutung, daß die Wellenlänge dieser virtuellen Photonen so klein ist, daß die Wechselwirkung auf ein Nukleon beschränkt bleibt. Für weitergehende Untersuchungen wird ein Teilchenarm geplant, in dem in Koinzidenz mit dem Elektron entstandene Protonen und geladene Pionen nach Richtung und Energie analysiert werden können.

Überprüfung des Einphotonenaustausches

Allen Beschreibungen von Elektronenstreuexperimenten liegt als Annahme die Gültigkeit des Einphotonenaustausches zugrunde. Diese Annahme wurde experimentell überprüft. Hierzu wurden die Wirkungsquerschnitte für Elektronenstreuung mit denjenigen der Positronenstreuung verglichen, die bei Gültigkeit des Einphotonenaustausches übereinstimmen sollten. Die Abbildungen 1 und 2 zeigen einen Teil der Ergebnisse der Messungen an Wasserstoff, Kohlenstoff und Aluminium. Die Resultate dieser Untersuchungen im Energiebereich O.1 $(\text{GeV/c})^2 < -q^2 < 0.7 (\text{GeV/c})^2$ und $v \leq 5.5$ GeV sind mit der Gültigkeit des Einphotonenaustausches vereinbar. Ein Teil dieser Resultate wurde publiziert.

Struktur des Photons (Schatteneffekt virtueller Photonen)

Wesentliche Informationen über die Struktur des Photons lassen sich aus der inelastischen Elektronenstreuung an Kernen ableiten. Wenn das Photon einen hadronischen Anteil hat, sollte der Wirkungsquerschnitt der Elektronenstreuung an Kernen kleiner sein als die Summe der Wirkungsquerschnitte der im Kern enthaltenen N…kleonen. Messungen hierzu wurden an Kohlenstoff und Aluminium durchgeführt. Der Viererimpulsübertrag lag im Bereich 0.075 $(GeV/c)^2 \leq -q^2 \leq 1.0 (GeV/c)^2$, der Energieübertrag war $v \leq 6.2$ GeV. Die Meßdaten zeigen für Werte der Skalenvariablen $x = \frac{1}{\omega} < 0.1$ eine Abschattung (Bild 3 und 4). Der Einfluß von Strahlungskorrekturen auf die beobachtete Abschattung wurde untersucht. Dabei konnte gezeigt werden, daß zur genauen Bestimmung der Stärke der Abschattung der Unterschied zwischen den Formfaktoren des freien und des gebundenen Nukleon berücksichtigt werden muß.

Feinstruktur der A33-Resonanz in Kernen

Bei Untersuchungen der A₃₃-Resonanz in leichten Kernen wurde gefunden, daß die effektive Nukleonenzahl für die Anregung kleiner als die Massenzahl ist. Außerdem kann die Form und Lage der A₃₃-Resonanz durch die Wechselwirkung der Nukleonen beeinflußt werden und möglicherweise eine Feinstruktur aufweisen. Zur Untersuchung dieses Effektes wurden Einarmmessungen an ¹²C und ²⁷Al mit guter Statistik durchgeführt. Für die Auswertung wurden verschiedene statistische Verfahren untersucht und getestet.

Erzeugung von negativen Pionen an Wasserstoff, Deuterium und Kohlenstoff durch hochenergetische Elektronen

Mit dem Elektronenspektrometer wurden Impulsspektren von negativen Pionen zwischen 0.7 GeV/c und 3 GeV/c aufgenommen, die durch hochenergetische Elektronen (2.68 GeV < E < 6 GeV) an Wasserstoff, Deuterium und Kohlenstoff unter 13° erzeugt wurden. Die Impulsspektren sind vergleichbar mit den entsprechenden der Photoproduktion. Der Produktionsquerschnitt wächst für alle Kerne näherungsweise linear mit der Elektronenenergie. Die Produktionsraten relativ zu Wasserstoff sind in Abb. 5 dargestellt. Die Ergebnisse werden mit zwei Modellen³⁾ verglichen. Dabei zeigt sich, daß die Beschreibung der Absorption der im Kerninneren erzeugten Pionen durch ein optisches Modell brauchbare Ergebnisse liefert.

Struktur der Nukleonen

Ein weiterer Teil der Untersuchungen galt der Struktur der Nukleonen. Hierzu wurde das Verhältnis der Wirkungsquerschnitte von Deuterium zu Wasserstoff im kinematischen Bereich 0.15 $(\text{GeV/c})^2 \leq -q^2 \leq 1.1$ $(\text{GeV/c})^2$ und 2 GeV < W < 3.1 GeV bestimmt. Das Verhältnis zeigt Skalenverhalten bis zu den kleinsten Viererimpulsüberträgen. Für x \rightarrow 0 ist das Verhältnis in Übereinstimmung mit 2 und fällt linear ab mit wachsender Bjorken Skalenvariablen x. (Bild 6).

Für Protonen und Neutronen gibt es Summenregeln, die die Strukturfunktionen im Resonanzbereich mit denen in tiefinelastischen Bereich verknüpfen. Die Analyse der Kohlenstoffwirkungsquerschnitte im Resonanzbereich zeigt, daß dieser Zusammenhang auch gültig bleibt, wenn die Nukleonen in einem Kern gebunden sind.

Planung und Vorbereitung weiterer Experimente

Für zukünftige Experimente steht für die Datenaufnahme eine PDP 11/45 zur Verfügung. Dafür wurde ein Datenaufnahmesystem entwickelt und der Rechner mit einem CAMAC-Anschluß ausgerüstet. Es ist geplant die Untersuchungen der Struktur der Δ_{33} -Resonanz in Kernen mit Koinzidenzexperimenten weiterzuführen. Dazu wurde ein Hadronenarm mit Proportionalkammern zur Winkelanalyse und einem Reichweitzeleskop zur Energiebestimmung entworfen und die kinematischen Verhältnisse untersucht.

(Nur Strahlungsschwanz der elastischen Elektron-Kern Streuung berücksichtigt)

Fig. 6. Verhältnis der Wirkungsquerschnitte von Deuterium und Wasserstoff.

Rubrik : aa)

.

_

Literatur Jahresbericht 1975

-

٦.

Autoren :	Titel :	Zitat :
 S. Stein, W.B. Atwood, E.D. Bloom, R.L.A. Cottrell, H. De Staebler C.L. Jordan, H.G. Piel, C.Y. Presco, R.E. Tauler 		Phys. Rev. D12, 1884 (1975)
R.E. TAYLOF	•	·
2) D. Schildknecht		Nucl. Phys. B 66, 398 (1973)
 3) S.D. Drell H.G. De Carvalho, J.B. Martins, O.A.P. Tavares, R.A.M.S. Nazareth, 		Phys. Rev. Letters 5, 278 (1960) Lett. Nuovo Cimento 2, 1139 (1971) u.Lett. Nuovo Cimento 29, 1278 (1972)
V. Di Napoli		Υ
	•	
r.		

Bubrik : aaa

Zitat : Titel : Autoren : M. Köbberling, J. Moritz, K.H.Schmidt. Relations between the Electroexcitation Nucl. Phys. B 85 (1975) 365 D. Wegener, D. Zeller, J. Bleckwenn, of Nucleon Resonances and the Deep F.H. Heimlich Inelastic Continuum for Proton and Deuteron Targets S. Hartwig, F.H. Heimlich. G. Huber, Elastic Scattering of Electrons and Lett. Nuovo Cimento 12 (1973) 30 E. Rössle, M. Köbberling, J. Moritz, Positrons from Protons K.H. Schmidt, D. Wegener, D. Zeller. J. Bleckwenn F.H. Heimlich, E. Rössle, M. Köbber-High Energy Electron Scattering as a Interaction Studies in Nuclei, Eds. Probe of Short Range Correlations, 6ling, J. Moritz, K.H. Schmidt, D. 🤊 H. Jochim and B. Ziegler, 1975, Wegener, D. Zeller, J.K. Bienlein, Clusters and Baryon Resonances in Li North-Holland Publishing Company, J. Bleckwenn, H. Dinter and 12C S. 439 ۰.

- 89

- - - -

2

Literatur Jahresbericht 1975

-+

- 69 -

Autoren :	Titel :	Zitat :		
G. Huber	Untersuchungen der Elektron- Streuung an Kohlenstoff und Aluminium im Be- reich 0.075 $(\text{GeV/c})^2 \leq -q^2 \leq 1.0$ $(\text{GeV/c})^2$ und $\gamma \leq 6.2$ GeV	Dissertation - Freiburg (1975)		
E. Böckling	Analyse von Elektronenstreudaten an 12 _C	Staatsexamensarbeit - Freiburg (1975)		
•				
· · .		. 4		
• .		۸		
÷		•		
		•		

Rubrik : eee

Literatur Jahresbericht 1975

Autoren :

J. Bleckwenn, M. Köbberling, J. Moritz, K.H. Schmidt, D. Wegener, D. Zeller, G. Huber, F.H. Heimlich

J. Bleckwenn, M. Köbberling, J.Moritz. K.H. Schmidt, D. Wegener, D. Zeller, G. Huber, F.H. Heimlich

S. Hartwig, F.H. Heimlich. G. Huber, E. Rössle, M. Köbberling, J. Moritz, K.H. Schmidt, D. Wegener, D. Zeller, J. Bleckwenn

Titel :

Inelastic Electron Scattering on Protons and Deuterons in the Regge Region

Neutron to Proton Ratios for Inelastic Electron Scattering in the Continuum Region

Validity of the One Photon Exchange Approximation in Inelastic Scattering of Electrons and Positrons on Protons Zitat :

١.

International Conference on High Energy Physics, Palermo, 23-28 June, 1975

1975 International Symposium on Lepton and Photon Interactions at High Energie: Stanford, 21-27 August, 1975

International Conference on High Energy Physics, Palermo, 23-28 June, 1975
Rubrik : fff

Literatur Jahresbericht 1975

- 1

Autoren :

F.H. Heimlich

F.H. Heimlich

•

•

.

. .

•

Titel :

->

Streuung hochenergetischer Elektronen an Kernen

High-energy Electron Scattering from Nuclei

•

•

· · ·

Zitat :

Seminarvortrag, Bochum, Februar (1975)

Seminarvortrag, Lund, Oktober (1975)

.

: . .

X

.

.

- F31 - Symmetrische Paarerzeugung

Ziel der Arbeit von -F31- war auch 1975 die Messung des Elektron-Paarspektrums in der Photoerzeugung am Wasserstoffkern mit Paarmassen im Bereich oberhalb von 1 GeV/c². Solche Paare werden vorwiegend elektromagnetisch erzeugt(Bethe-Heitler-Prozeß). Ihnen überlagern sich e⁺e⁻ Paare aus leptonischen Zerfällen von kurzlebigen Resonanzteilchen(Vektormesonen**ç,** ω , φ , φ , p', p'' etc.), die über diese Zerfälle unter-(und ge-)sucht werden sollen.

Die Meßapparatur für Elektronpaare besteht aus zwei spiegelsymmetrisch zum Photonstrahl angeordneten Spektrometern, die auf den beiden Abb. (23068, Nr.11 u.37) zu erkennen sind, teilweise durch Betonabschirmung verdeckt. Sie sind aus Ablenkmagneten, Proportionalkammern, Hodoskopen, Cherenkov- und Schauerzählern auf zwei schwenkbaren Lafetten aufgebaut; die Targetzelle für flüssigen Wasserstoff hat eine Länge von 1 m. Die Apparatur war Ende 1974 fertiggestellt worden. Bei den im Januar durchgeführten Testmessungen stellte sich heraus, daß das optische System der vorderen Cherenkovzähler, deren Radiatoren teilweise in den Magneten liegen, noch verbessert werden mußte. Danach wurden erste Daten im Massenbereich 1.9-2.3 GeV/c² genommen. Aktueller Anlaß war die Vermutung von "charmed"(D-)Mesonen in diesem Bergi eich nach der Entdeckung der J- und Ψ -Resonanzen im Herbst 1974. Im Verlauf dieser Messungen konnten ca. 150 Ereignisse registriert werden, die wegen des Bethe-Heitler-Untergrunds aber keine eindeutige Aussage erlauben.

Durch einen Kabelbrand unter der Experimentierhalle wurde der Betrieb für längere Zeit unterbrochen. Die Apparatur wurde durch die dabei entstandenen Salzsäurenebel so stark angegriffen, daß alle Geräte einschließlich der Magnete und der Elektronik im Meßstand demontiert, gründlich gereinigt bzw. repariert und getestet werden mußten. Diese Arbeiten und die Wiederaufstellung des Spektrometers dauerten bis Mitte Oktober. Seither wurden Meßdaten bei Spektrometerwinkeln von 2x16^o genommen mit einem Schwerpunkt der Massenakzeptanz bei etwa 1.8 GeV/c². Diese Messungen und ihre Auswertung dauern gegenwärtig an.

Abb. 23068/11

АЪЪ. 23068/37

- F32 - Elektroerzeugung von Mesonen

Die experimentellen Vorhaben der Gruppe F32 haben zum Ziel, das Verständnis der Elektroproduktion von Hadronen oberhalb des Resonanzgebietes zu vertiefen. Vor allem soll der Beitrag longitudinaler virtueller Photonen zur Erzeugung spezieller hadronischer Endzustände ermittelt werden. Zur Durchführung dieses Forschungsprogramms wird die in Abb. 1 dargestellte Apparatur verwendet. Sie gestattet es, neben dem gestreuten Elektron eines der erzeugten Hadronen in Koinzidenz nachzuweisen und zu identifizieren. Nachweis und Identifikation werden im Falle geladener Hadronen (π^+ , K⁺ und p) mit Hilfe von optischen Funkenkammern, einem Cerenkovzähler und einer Flugzeitmeßapparatur durchgeführt, im Falle des π^0 -Mesons mit Hilfe eines Bleiglaszählers, der an die Stelle zweier Funkenkammern gesetzt werden kann.

Im Berichtsjahr lagen die Schwerpunkte der Arbeit bei der Untersuchung folgender Reaktionen (die nachgewiesenen Teilchen sind unterstrichen):

ер	+	<u>e p</u> X	(1)
	→	$\underline{e} \underline{K}^{\dagger} X$	(2)
	→	<u>e</u> π ^o X ⁺	(3)
	→	e π ⁺ n	(4)

Die große Menge der in den vergangenen Jahren aufgenommenen Daten (mehr als 100 000 Ereignisse) erlaubte es, die Reaktionen (1) und (2) sehr detailliert und mit großer statistischer Genauigkeit zu untersuchen. Gegenüber der ersten vorläufigen Auswertung (Ref. 1) wurde der kinematische Bereich erheblich ausgeweitet. Die Daten der Reaktion (1) zeigen, daß bei allen untersuchten Schwerpunktsenergien 2.0 < W(GeV) < 2.7 es viel unwahrscheinlicher ist, ein Proton im Schwerpunktssystem mit einem großen Impuls in Richtung des virtuellen Photons zu finden als mit einem kleinen Impuls. In Abb. 2 ist der mit dem totalen Wirkungsquerschnitt normierte inklusive Wirkungsquerschnitt für W = 2.62 GeV, $q^2 = -.23 \text{ GeV}^2$ und kleine Transversalimpulse $p_1^2 = 0.04 \text{ GeV}^2$ in Abhängigkeit von $x = p_{11}^{\mathbb{H}}/p_{\text{max}}^{\mathbb{H}}$ aufgetragen. Ein Vergleich mit Protonspektren bei $q^2 = 0$ und $q^2 = -1.16 \text{ GeV}^2$ zeigt, daß sich der Wirkungsquerschnitt hier beim Übergang von der Photoproduktion bis in den Bjorken Skaling Bereich genauso in q^2 verhält wie der totale Wirkungsquerschnitt. Die Untersuchung der Abhängigkeit von der Energie W des Schwerpunktssystems ergab, daß der normierte invariante Wirkungsquerschnitt bei x-Werten in der Nähe von Eins, d. h. bei kleinen Massen des unbeobachteten Systems, steiler abfällt als bei x-Werten um Null (siehe Abb. 3). Dies ist im Rahmen der für hadronische Prozesse bei etwas höheren Energien gut brauchbaren Mueller-Regge-Theorien nicht durch den Austausch einer einzelnen prominenten Regge-Trajektorie zu erklären, es weist auf einen bei verschiedenen x-Werten unterschiedlichen Erzeugungsmechanismus hin.

Die starke W-Abhängigkeit von $E/\sigma_{tot} d\sigma/d^3p$ und zugleich eine Unabhängigkeit in q² zeigt weiter, daß das von Drell und Yan (Ref. 2) vorausgesagte Scaling für inklusive Elektroproduktionswirkungsquerschnitte in dem untersuchten kinematischen Bereich nicht erfüllt ist.

Der zweite Schwerpunkt betraf die Untersuchung der Elektroproduktion von π^{0} -Mesonen (Reaktion (3)). Dies geschah in Zusammenarbeit mit der Gruppe F34. Nach etwa einem Drittel der für dieses Projekt geplanten Meßzeit wurde durch den Kabelbrand in Halle I die Datennahme beendet. Bis zu diesem Zeitpunkt waren 100 000 Funkenkammerbilder aufgenommen worden. Sie konnten, nachdem der ebenfalls von den Brandfolgen betroffene Prozeßrechner wieder inganggesetzt worden war, digitalisiert und der weiteren Analyse zugeführt werden.

Der Wiederaufbau der Apparatur nach dem Brand im Mai erforderte über Monate den vollen Einsatz der Gruppe, so daß leider alle anderen Aktivitäten vorübergehend in den Hintergrund rücken mußten. Daher war Ende des Jahres der größte Teil der Apparatur wieder einsatzbereit. Mit Test- und Eichmessungen an einigen Komponenten konnte begonnen werden.

Das zentrale Anliegen der Gruppe F32 ist wie oben erwähnt die Untersuchung der Rolle der longitudinalen virtuellen Photonen in der Elektroproduktion. Im Jahresbericht 1974 wurde bereits ausgeführt, daß man vor allem bei der Reaktion (4) einen großen Beitrag der longitudinalen Photonen zum Wirkungsquerschnitt erwartet. Die im Vorjahr zur Untersuchung der Reaktion (4) aufgenommenen Daten wurden ausgewertet, die Ergebnisse sind jedoch noch als vorläufige zu betrachten, denn sowohl absolute Höhe als auch relativer Verlauf der Wirkungsquerschnitte verändern sich durch die Berücksichtigung der richtungsabhängigen Ansprechwahrscheinlichkeit des Elektron-Cerenkovzählers. Da diese nicht ausreichend bekannt war, sollte Ende Mai eine detaillierte Messung der Ansprechwahrscheinlichkeit durchgeführt werden. Wegen des Brandes mußte diese Messung bis auf Anfang 1976 verschoben werden. Die Ermittlung des Beitrages longitudinaler Photonen zu anderen Reaktionen macht es notwendig, sehr kleine Wirkungsquerschnitte zu messen. Damit dies in vernünftiger Meßzeit möglich wird, muß man höhere Primärintensitäten als bisher verwenden. Dies erfordert aber Ortsdetektoren, die bei gleicher Ortsauflösung eine erheblich kürzere Gedächtniszeit als die derzeit verwendeten optischen Funkenkammern aufweisen. Diese geforderten Eigenschaften besitzen Driftkammern. Zur Vorbereitung der Umrüstung von optischen Funkenkammern auf Driftkammern wurde zu Testzwecken ein Driftkammer-Prototyp gebaut.

Abb. l

Abb. 3

(24 449)

Rubrik :aa. aaa)

Literatur Jahresbericht 1975

- 78

Autoren:	Titel:	Zitat:
Ref. 1 H. Ackermann, T. Azemoon, I. Dammann, C. Driver, E. Ganßauge, K. Heinloth, F. Janata, D. Lüke, D. Schmidt, G. Specht	Inclusive p and K ⁺ Distributions in Electroproduktion on Protons	Beitrag zum Internat.Symposium on Electron and Photon Interactions at High Energies, Bonn (1973)
Ref. 2 E.W. Colgalzier, F. Rowndal	Drell-Yan Scaling in Semi-Inclusive Electroproduction	Phys. Rev. D7 (1973) 1537
Ref. 3 H. Burfeindt et al.	Measurements of inclusive Photoproduction at 3.2 GeV and Comparison with Elektro- production	Physics Letters 43B (1973) 345
Ref. 4 J.C. Alder et al.	Measurments of Inclusive Hadron Momentum Distributions in Deep Inelastic Electro- production	Nuclear Physics B46 (1972) 415

.

Rubrik : bb. aaa)

Literatur Jahresbericht 1975

- 79 -

Autoren :	Titel :	Zitat :
T. Azemoon, I. Dammann, C. Driver, D. Lüke, G. Specht, K. Heinloth, H. Ackermann, E. Ganßauge, F. Janata, D. Schmidt	Production of Hyperons by Virtual Photons	Nucl. Phys. B95 (1975) 77 - 97
	•	
•		

Rubrik: bb. ccc)

Literatur Jahresbericht 1975

a a sea s

1

-80 -

Autoren:	Titel:	Zitat:
D. Schmidt	Endzustände in der inelastischen Elektronstreuung	Interner Bericht DESY F32-75/1
		•
un en		

Rubrik: bb. ddd)

- - - -

Literatur Jahresbericht 1975

:

Autoren:	Titel:	Zitat:
R. Fries	Ein großflächiger Schauerzähler zur Unterscheidung zwischen Elektronen und π-Mesonen bei niedrigen Impulsen	Diplomarbeit Hamburg
HJ. Lau	Aufbau und Test eines rechnergesteuerten Systems zur Überwachung von Photomulti- pliern	Diplomarbeit Hamburg
R. Voß	Elektroproduktion der Vektormesonen ρ^{O} und ω in Rückwärtsrichtung	Diplomarbeit Hamburg

Rubrik: bb. fff)

.

Literatur Jahresbericht 1975

·

Autoren:	Titel:	Zitat:
G. Specht	Elektroproduktion von π ⁰ und (ρ ⁰ ,ω) in Rückwärtsrichtung	Seminarvortrag an der Gesamthochschule Wuppertal
	•	
		۱ 82
1		

•

- F33, F39, F1 - PLUTO

Mit dem 4π -Spektrometer PLUTO konnten im Januar des Berichtsjahres am Speicherring DORIS erste Daten an den Resonanzen J(3100) und ψ (3700) genommen werden. Der Detektor besteht aus einem Block zylindrischer Proportionalkammern um das Strahlrohr zum Nachweis geladener Teilchen. Während dieser Periode waren aber noch nicht alle Kammern eingebaut. Photonen werden in den Kammerwänden und in einen 2 mm starken Bleizylinder konvertiert und nachgewiesen. Diesen Teil des Detektors zeigt <u>Abb. 1.</u> Die Kammern sind in einer supraleitenden Spule eingebettet, die ein homogenes Magnetfeld bis zu 2 Teslar erzeugen kann. Zwei kleinere supraleitende Außenspulen kompensieren das Achsenfeld, um den Betrieb des Speicherrings zu ermöglichen. Das Eisenjoch wird von beiden Seiten herangefahren und umschließt den Innenteil des Detektors vollständig. Zum Nachweis von Myonen aus der Wechselwirkungszone sind in Schlitzen des Jochs und auf seiner Oberfläche etwa 50 m² flacher Proportionalrohr-Kammern angebracht. Myonen durchdringen das 30 bis 50 cm dicke Eisen im Gegensatz zu anderen geladenen Teilchen. Ihr Nachweis ist bis zu einem Polarwinkel von $|cos0| \leq 0.85$ möglich.

<u>Abb. 2</u> zeigt die Energieverteilung der beobachteten μ -Paare an der Resonanz $e^+ + e^- \rightarrow J(3100) \rightarrow \pi^+ + \pi^-$. Der Peak liegt bei 2E = 3089.4 MeV (:E = Strahlenergie) in Übereinstimmung mit der aus der Vielprong-Verteilung ermittelten Resonanzenergie (DESY 74/60). An die Meßpunkte wurde eine Gaußfunktion mit konstantem Untergrund (QED) angepaßt (ausgezogene Kurve). Nach Anbringen von Korrekturen für Raumwinkel, Strahlungsverlusten und Kammerwirkungsgraden erhält man als Integral unter der Kurve

(1)
$$\int \sigma_{\mu\mu} (E') dE' = 770 \pm 180 \text{ nb MeV}, E' = 2E,$$

was man auch durch die Zerfallsbreiten ausdrücken kann

(2)
$$\frac{M^2}{2(2J+1) h^2 \pi^2} \int \sigma_{\mu\mu} (E^*) dE^* = \frac{\Gamma_{ee} \Gamma_{\mu\mu}}{\Gamma} = 0.32 \pm 0.08 \text{ keV}$$

Ferner wurde im Winkelbereich $0.6 \le (\cos \theta) \le 0.85$ die Asymmetrie der Vorwärts-Rückwärtserzeugung von Myonen gemessen, mit dem Ergebnis:

(3)
$$\frac{F-B}{F+B} = 0.06 \pm 0.07$$

(

Die gefundene Symmetrie läßt darauf schließen, daß der Zerfall J(3100) $\rightarrow \mu^+\mu^$ keinen signifikanten (V[±]A)-Anteil enthält. Um den Zerfall $J(3100) \rightarrow p\bar{p}$ zu analysieren wurde das Impulsspektrum kollinearer Paare in dem Raumwinkelbereich, $|\cos\Theta| \leq 0.34$, untersucht, wo im ganzen Azimutbereich die Unterscheidung zwischen Myonen und anderen geladenen Teilchen möglich ist. <u>Abb. 3a</u> zeigt die Verteilung der Myonen gegen 1/p (p = Impuls). Sie hat eine Häufung bei p = 1.545 GeV/c, entsprechend der Resonanzenergie der J(3100), der Untergrund stammt aus der kosmischen Strahlung. Die Nicht-Myonenverteilung zeigt <u>Abb. 3b</u>. Sie enthält e⁺e⁻-Paare aus dem Zerfall der J(3100) und eine Häufung um p = 0.815 GeV/c, dem Impuls von Protonen aus dem Zerfall J(3100) \rightarrow p + \bar{p} . Um die Hadron-Separierung zu verbessern, wurden mindestens 10 Funken pro Event verlangt. Das Sample enthält noch einen Untergrund durch Bremsstahlverluste im Strahl. Eine Abtrennung gelingt aber durch Entfernung von Paaren mit großen Differenzen in den Transversalimpulsen: $|p_+ - p_-| > 0.15$ GeV/c. Wenn man die verbleibenden Paare als Proton-Antéproton deutet, erhält man im Verhältnis zu den gemeinsamen μ -Paaren das Verzweigungsverhältnis

(4)
$$\Gamma_{p\bar{p}}/\Gamma_{\mu\mu} = 0.051 \pm 0.02$$

Unter Benutzung des SPEAR-Ergebnisses $\Gamma_{\mu\mu}/\Gamma = \Gamma_{ee}/\Gamma = 0.069$ (A.M. Boyarski et al., Phys. Rev. Letters 34, 1357 (1975)) erhält man den pp-Zerfall im Verhältnis zur totalen Breite zu:

(5)
$$\Gamma_{pp} / \Gamma = 0.0036 \pm 0.0015.$$

Die Auswertung der Daten, insbesondere von der Resonanz $\psi(3700)$ ist noch nicht abgeschlossen. Einige typische Ereignisse zeigen <u>Abb. 4, 5 und 6.</u> Sie betreffen die Zerfälle J(3100) $\rightarrow \Lambda + \overline{\Lambda}$, J(3100) $\rightarrow \gamma + X(2750) \rightarrow \gamma + p + \overline{p}$, und $\psi(3700) \rightarrow \pi^+ + \pi^- + J(3100) \rightarrow \pi^+ + \pi^- + \mu^+ + \mu^-$.

In der Meßpause bis Jahresende wurde der innere Detektor durch den Bau von 7 neuen Zylinderkammern vervollständigt. Der Nachweis von Myonen im äußeren Detektor wurde durch eine Neuverteilung der Proportionalkammern auf der Oberfläche des Eisens und durch Ausfüllen der Jochschlitze mit Eisenplatten verbessert. Der Raumwinkel erhöht sich damit auf $0.5 \times 4\pi$ und die π/μ Unterdrückung erniedrigt sich auf z5 %. Schließlich wurde durch Einbau eines 9 mm dicken Bleizylinders vor den äußeren beiden Zylinderkammern die Photon- und Elektronidentifizierung auf z80 % erhöht.

(22 369) Abb. 1 PLUTO, Zylinder-Detektor

PLUTO

(2.8) Š 0

(24 081)

Abb. 5 Zerfall J(3100) $\rightarrow \gamma + X(2750)$ $\rightarrow \gamma + p + \overline{p}$

M(p+p-) = 3.12 GW

Literatur

- L. Criegee, H.C. Dehne, J. Fox, G. Franke, G. Horlitz, G. Knies, E. Lohrmann, R. Schmitz, T.N. Ranga Swamy, U. Timm, P. Waloschek, G.G. Winter, S. Wolff, W. Zimmermann. Results on Two-Body Decays of the (3100)-Resonance. DESY 75/32
- L. Criegee, K. Derikum, G. Franke, W. Krechlock, G. Knies, E. Lohrmann,
 H. Mehrgardt, R. Schmitz, T.N. Ranga Swamy, U. Timm, P. Waloschek, G.G. Winter,
 W. Zimmermann.
 PLUTO-Detector with cylindrical proportional chambers.
 Vortrag U. Timm
 Proceedings, International Meeting on Proportional and Drift Chambers,
 Seite 76, DUBNA 1975.
- U. Timm Erste Meßergebnisse des 4π-Spektrometers PLUTO. Seminarvortrag, Universität Wuppertal, Juni 1975
- 4) A. Giese Comptonstreuung an Protonen bei 6 GeV unter sehr kleinen Winkeln Interner Bericht, DESY F33-75/1
- 5) K. Derikum Die Hochspannungs-Auslese einer zylindrischen Proportionalkammer Interner Bericht, DESY F33-75/2
- Th. Kahl
 Comptonstreuung an komplexen Kernen
 Vortrag, Frühjahrstagung DPG, München, März 1975
- 7) L. Criegee, G. Franke, A. Giese, Th. Kahl, G. Poelz, U. Timm, W. Zimmermann Small-Angle Compton Scattering on Complex Nuclei International Conference on High Energy Physics, Palermo, June 1975.

- F34 - Photoproduktion von π^0 - und η -Mesonen

Die Gruppe F 34 setzte sich im Berichtsjahr aus Angehörigen der Physikalischen Institute der RWTH Aachen und des Deutschen Elektronen-Synchrotrons zusammen.

1. Experimentelle Vorhabem am Speicherring DORIS, Hamburg

1. Im Berichtsjahr beteiligten sich Mitarbeiter des I. Physikalischen Institutes der RWTH Aachen weiterhin an der DASP-Kollaboration. Die Kollaboration führte Untersuchungen der e⁺e⁻ Annihilationsreaktionen im Bereich der Resonanzen J/ ψ (3.1 GeV) und ψ ' (3.7 GeV) durch, gleichzeitig wurde der Aufbau des Detektors abgeschlossen. Die aktuellsten Ergebnisse dieses Experimentes sind die Entdeckung der X- und P_c-Resonanzen^{1),2)}. Außerdem konnten bestimmte Zerfallskanäle der $J\psi$ und ψ '-Resonanzen untersucht und die partiellen Breiten bestimmt werden.

Die von den Aachener Mitarbeitern gebauten Detektorkomponenten haben sich gut bewährt:

- a) Mit Hilfe des Reichweitedetektors wurde μ -Paar Produktion an der Stelle der J/ ψ -Resonanzen untersucht³⁾. Für J/ ψ (3.1 GeV) ergab sich $\Gamma_{\mu\mu} \cdot \Gamma_{ee}/\Gamma_{tot} = 0.51 \pm 0.09$ KeV in guter Übereinstimmung mit Messungen $\Gamma_{ee}^2/\Gamma_{tot}$ durch den Stanford LBL Detektor und DASP. Eine Vorwärts-Rückwärtsasymmetrie wurde nicht gefunden.
- b) Das Flugzeitzählersystem zur Teilchenidentifikation arbeitete über die Betriebsdauer von einem Jahr zuverlässig mit einer Genauigkeit in der Zeitauflösung von 0.6 ns (FWHM) für die Summe der Zeitverteilungen aus 2 x 31 Zählern, die eine Fläche von 2 x $(1.72 \times 6.2m^2)$ überdecken⁴⁾. Da die Zähler zum Teil nicht verstandene Zeitdriften zeigen, konnte diese Genauigkeit nur erreicht werden durch ständige Kontrollen der Eichung und Verbesserungen der Kontrollmethoden. Die erzielte Zeitauflösung erlaubte eine π/K und K/p Trennung bis zu ca. 1.5 GeV bzw. 3 GeV. Neben der Bestimmung der partiellen Breiten $e^+e^- + J/\psi + \pi^+\pi^-$, K^+K^- , pp^{-5} konnten dadurch die inklusiven Verteilungen für die Kanäle $e^+e^- + \pi^{\pm}X$, $K^{\pm}X$ und \overline{p} X auch im Bereich hoher Teilchenenergien bestimmt werden²⁾.

c) Der Bau einer computergesteuerten Hochspannungsversorgung und eines LED-Systems für 500 Zähler wurde abgeschlossen. Die Kontrollprogramme sind erstellt und werden laufend erweitert und verbessert.

Neben der Betreuung und Verbesserung der genannten Detektorkomponenten und der Durchführung der Experimente wurde bei der Auswertung mitgearbeitet. Insbesondere wurden Auswerteprogramme zur Bestimmung der inklusiven Wirkungsquerschnitte erstellt.

II. Experimentelle Vorhaben am 7.5 GeV Elektronen-Synchrotron DESY, Hamburg

1. Elektroproduktion von Mesonen.

Zu Beginn des Berichtsjahres wurden die Messungen für das Experiment "Elektroproduktion von π^{0} -Mesonen", das in Zusammenarbeit mit Physikern von DESY, der GHS Wuppertal und der Universität Marburg ausgeführt wird, begonnen.

Die Datennahme wurde durch den Brand der Halle I in DESY unterbrochen. Bis zu diesem Zeitpunkt wurden 35% der beantragten Meßzeit zugewiesen. Die Meßapparatur wurde durch den Brand stark in Mitleidenschaft gezogen und mußte zerlegt, gereinigt und wieder aufgebaut werden. Eine dadurch notwendige Neueichung der Bleiglaszähler erfolgte Ende 75 im Strahl 8a. Parallel zu diesen Arbeiten erfolgte die Datenauswertung. Eine zusammenfassende Analyse der bisherigen Daten ist nahezu abgeschlossen. Erste Auswertungen zeigen ein sehr klares π° -Signal. Die Trennung der quasielastischen Reaktion ep $+ e p \pi^{\circ}$ von der inklusiven Reaktion ep $+ e \pi^{\circ} X$ ist nicht unproblematisch, da ein sehr starker Anstieg der Raten mit wachsendem m_x beobachtet wird.

2. Photoproduktion von Mesonen.

Untersuchungen zur Photoproduktion geladener Pionen an polarisierten Nukleonen wurden im Berichtsjahr zusammen mit Mitarbeitern des Deutschen Elektronen-Synchrotrons, DESY und der Universität Hamburg durchgeführt.

2.1 Photoproduktion von π Mesonen am Neutron eines polarisierten Deuterontargets.

Die Reaktion $\gamma n \uparrow \rightarrow \pi^- p$ wurde an polarisierten Deuteronen eines $d_{10}^{-Butanol}$ targets untersucht. Der Polarisationsgrad der Neutronen betrug ca. 15%.

Die Messungen wurden bei zwei Photonenergien 3.4 und 5 GeV in einem Impulsübertragungsbereich 0.1 $\leq -t \leq 1.0$ GeV² vorgenommen. Im größten Teil des erfaßten kinematischen Bereiches wurden die π -Mesonen (Nachweis in einem magnetischen Spektrometer) und die Protonen (Nachweis in einer Szintillationszählermatrix) in Koinzidenz gemessen.

Die Ergebnisse zeigen, (Abb.<u>1</u>), daß der Betrag der Targetasymmetrie klein ist und das Vorzeichen negativ wie in der π -Photoerzeugung am Proton. Damit stellen die Ergebnisse eine Stütze für einen dominierenden A_2 -Austausch in dem untersuchten Reaktionskanal dar.

- 2.2 Inklusive Pion-Photonproduktion an einem polarisierten Protonentarget. Im Berichtszeitraum konnte ein Experiment zur Bestimmung der Targetasymmetrie der inklusiven Pion-Photoproduktion im Photonfragmentationsbereich begonnen werden. Die Reaktion wurde an den Protonen eines dynamisch polarisierten Butanoltargets untersucht; zum Nachweis der geladenen Pionen stand ein fokussierendes magnetisches Spektrometer zur Verfügung. Die Messungen zeigen, daß die Nachweisapparatur genügend stabil arbeitet, um die im größten Teil des Meßgebietes erwarteten kleinen Asymmetrien zu bestimmen.
- 2.3 He^3 He^4 Target.

Nach Abschluß der Konstruktion eines zweistufigen $\text{He}^3 - \text{He}^4$ - Verdampfer Kryostaten zur dynamischen Polarisation von Protonen und Deuteronen und seinem Aufbau in der Experimentierhalle im vergangenen Jahr konnte das polarisierte Target 1975 in längeren Experimentierperioden am γ -Strahl erprobt werden.

Über mehr als 1000 Betriebsstunden traten keine schwerwiegenden Mängel auf. Eine Temperatureichung zeigte, daß der Arbeitspunkt bei 0,5 K liegt und Protonpolarisationsgrade von ca. 60% erreicht werden. Zum Nachweis der Polarisation von dynamisch polarisierten Deuteronen wurde eine Kernresonanzapparatur weiter entwickelt, die es gestattet, durch Vergleich mit dem Signal im thermischen Gleichgewicht den Polarisationsgrad (15 - 20%) zu bestimmen.

III. Vorhaben am Speicherring PETRA, Hamburg

Mitglieder des I. Physikalischen Institutes der RWTH Aachen beteiligen sich bei Planung und Bau des Speicherringes PETRA.

- 91 -

- Es wurden Arbeiten zur Untersuchung der optischen Eigenschaften des Speicherringes durchgeführt, die sich insbesondere mit den Einflüssen von Magnetfehlern und Toleranzgrenzen befaßten.
- 2. Technische Vorhaben am Speicherring PETRA.
- 2.1 Der Bau der Prototypen von integrierten Pumpen für die Vakuumkammern des Speicherrings PETRA erfolgte in den Werkstätten des I. Physikalischen Institutes der RWTH Aachen.
- 2.2 Es wurde eine Schweißmaschine konstruiert, um die Vakuumkammern des Speicherringes PETRA vor Ort zu verschweißen.
- 3. Arbeiten an einem Detektorentwurf für den Speicherring PETRA. Zusammen mit den Physikern von MPG München, DESY, Hamburg und der Universität Hamburg wurde ein Detektor für den Speicherring PETRA entworfen. Dieser Entwurf soll im Jahre 76 fertiggestellt werden.

Abb. 1 Asymmetrie der π -Photoproduktion an polarisierten Neutronen

Literaturverzeichnis

- I. Verzeichnis der zitierten Literatur
 - DASP-Kollaboration
 Aachen DESY Hamburg München Tokyo
 "Observation of the Two Photon Cascade 3.7 → 3.1 + γγ via
 an Intermediate State P ".
 P.L. 57B, 407 (75) and DESY 75/20
 - 2. B. Wiik "Recent Results from DORIS". Proceedings of the "International Symposium on Lepton and Photon Interactions", Stanford 1975 and DESY 75/37
 - 3. DASP Kollaboration Aachen - DESY - Hamburg - München - Tokyo "Myon Pair Production by e⁺e⁻ Annihilation at the 3100 MeV Resonance". P.L. <u>56B</u>, 491 (75) and DESY 75/07
 - 4. W. Braunschweig, E. Königs, W. Sturm, W. Wallraff
 "A large Area Time of Flight System with a Resolution of 0.5 ns FHWM".
 Nucl. Instr. and Methods (wird veröffentlicht).
 Aachen HEP 75/11
 - 5. DASP Kollaboration Aachen - DESY - Hamburg - München - Tokyo "Two Body Hadronic Decays of the 3.1 GeV Resonance". P.L. <u>57B</u>, 297 (75) and DESY 75/14
 - 6. H. Genzel, J. Knütel, L. Paul, M.J. Schachter, A. Schultzv. Dratzig,
 B. Sonne
 "Photoproduction of π⁻-Mesons on Neutrons of a Polarized Deuterontarget".
 Konferenzbeitrag zu "International Symposium on Lepton and Photon Interactions", Stanford 75.

- II. Verzeichnis der im Berichtsjahr 1975 veröffentlichten wissenschaftlichen Arbeiten
 - 1. Veröffentlichungen in Fachzeitschriften
 - 1.1 DASP Kollaboration Aachen - DESY - Hamburg - München - Tokyo "Observation of the Two Photon Cascade $3.7 \rightarrow 3.1 + \gamma\gamma$ via an Intermediate State P_c ". P.L. 57B, 407 (75)
 - 1.2 B. Wiik "Recent Results from DORIS". Proceedings of the "International Symposium on Lepton and Photon Interactions", Stanford 1975
 - 1.3 DASP Kollaboration Aachen - DESY - Hamburg - München - Tokyo "Myon Pair Production by e⁺e⁻ Annihilation at the 3100 MeV Resonance". P.L. <u>56B</u>, 491 (75)
 - 1.4 W. Braunschweig, E. Königs, W. Sturm, W. Wallraff "A large Area Time of Flight System with a Resolution of 0.5 ns FHWM". Nucl. Instr. and Methods (wird veröffentlicht)
 - 1.5 DASP Kollaboration
 Aachen DESY Hamburg München Tokyo
 "Two Body Hadronic Decays of the 3.1 GeV Resonance".
 P.L. <u>57B</u>, 297 (75)
 - H. Genzel, P. Heide, J. Knütel, H. Lierl, K.H. Meß, M.J.Schachter,
 P. Schmüser, B. Sonne, G. Vogel
 "Photoproduction of π⁺-Mesons on Polarized Protons".
 Nucl. Phys. B92, 196 (75)
 - 1.7 Ch. Berger, R. Bühring, G. Dick, W. Erlewein, R. Grigull, N. Mistry, D. Trines "Multi-Element Lead Glass Cherenkov Detector". Nucl. Instr. and Methods 130, 507 (1975)

- 2. Rote DESY Berichte
- 2.1 DASP-Kollaboration

Aachen - DESY - Hamburg - München - Tokyo "Observation of the Two Photon Cascade $3.7 \Rightarrow 3.1 \pm \gamma\gamma$ via an Intermediate State P_c". DESY 75/20

2.2 B. Wiik

"Recent Results from DORIS".

Proceedings of the "International Symposium on Lepton and Photon Interactions", DESY 75/37

2.3 DASP-Kollaboration

Aachen - DESY - Hamburg - München - Tokyo "Myon Pair Production by e⁺e⁻ Annihilation at the 3100 MeV Resonance". DESY 75/07

- 2.4 DASP-Kollaboration
 Aachen DESY Hamburg München Tokyo
 "Two Body Hadronic Decays of the 3.1 GeV Resonance".
 DESY 75/14
- 2.5 H. Genzel, P. Heide, J. Knütel, H. Lierl, K.H. Meß, M.J. Schachter, P. Schmüser, B. Sonne, G. Vogel "Photoproduction of π⁺-Mesons on Polarized Protons". DESY 75/01
- 3. Interne DESY Berichte

3.1 D. Trines "Vergleich von drei verschiedenen Definitionen der benötigten Apertur". PETRA-Kurzmitteilung Nr. 48

3.2 D. Trines "Einige Überlegungen zum variablen TUNE". PETRA-Kurzmitteilung Nr. 53

3.3 D. Trines "Toleranzen für Aufstellungsfehler bei PETRA: 1. Dipolmagnet" PETRA-Kurzmitteilung Nr. 67 3.4 D. Trines

"Toleranzen für Aufstellungsfehler bei PETRA: 2. Lineare Aufstellungsfehler der Zellenquadrupole". PETRA-Kurzmitteilung Nr. 68

- 3.5 R. Kose, D. Trines "Feldgenauigkeiten in den Petramagneten". PETRA-Kurzmitteilung Nr. 69
- 3.6 S. Kheistes, D. Trines "Effekt von Streuungen der Gradienten in den Quadrupolen". PETRA-Kurzmitteilung Nr. 70
- 3.7 D. Trines "Effekte von vertikalen 'closed orbit' Abweichungen in den Sextupolen". PETRA-Kurzmitteilung Nr. 73
- 3.8 D. Trines "Längentoleranzen für die Fertigung der Magnete". PETRA-Kurzmitteilung Nr. 75
- 4. Diplomarbeiten
- 4.1 W. Wagner

"Computergesteuerte Verstärkungskontrollen von Photomultipliern". Aachen HEP 75/04

- 5. Vorträge
- 5.1 W. Wallraff

"Experimental Studies of the New Particles J/ψ (3100), ψ (3700) at the DESY e⁺e⁻ - Storage Ring DORIS". Michigan State University, East Lansing, USA, Januar 1975

5.2 W. Wallraff

"Experimental Studies of the New Particles J/ψ (3100), ψ ' (3700) at the DESY e⁺e⁻ - Storage Ring DORIS". New York State University at Stony Brook, USA, Januar 1975 5.3 W. Wallraff

"Leptonische und hadronische Zerfälle der neuen engen Resonanzen J/ ψ (3100), ψ ' (3700). Messungen der DASP Kollaboration am DESY Speicherring DORIS".

DPG Tagung, München, März 1975

5.4 B. Sonne

"Asymmetrie der Photoproduktionswirkungsquerschnitte von π⁻-Mesonen an polarisierten Neutronen". DPG Tagung, München, März 1975

5.5 J. Knütel

"Messungen des Polarisationsgrades von polarisierten Protonen und Deuteronentargets".

DPG Tagung, München, März 1975

- 5.6 L. Paul "Messungen der Polarisationseigenschaften von Pentanoltargets bei 1,0 K und 5 Tesla". DPG Tagung, München, März 1975
- 5.7 W. Braunschweig

"Die neuen Resonanzen bei der Elektron-Positron-Vernichtung". Kolloquiumsvortrag, RWTH Aachen, Juni 1975

5.8 W. Braunschweig

"New Particle Production at DESY".

1975 Gordon Conference on "High Energy Hadronic Interactions", Kimball Union Academy, Meridem New Hampshire, USA, August 1975

5.9 W. Wallraff

"Découverte et Etude des Propriétés des Particules Nouvelles auprès des Anneaux de Stockage e⁺e⁻". Université de Lausanne, Dezember 1975 Im Jahr 1975 hat die Gruppe F 35 intensiv an den Experimenten mit dem Doppelarmspektrometer mitgearbeitet (vgl. den Jahresbericht der DASP-Kollaboration). Gemeinsam mit der Gruppe F 21 wurde ein Experiment zur π° -Elektroproduktion abgeschlossen und endgültig ausgewertet. Ferner bestand eine Mitarbeit an einem Photoproduktionsexperiment mit polarisiertem Target (vgl. Jahresbericht der Gruppe F 34).

Elektroproduktion von π^0 -Mesonen oberhalb des Resonanzgebiets Ziel des Experimentes war es, die π^{o} -Elektroproduktion für Energien oberhalb der Nukleon-Resonanzen zu messen und die q²-Abhängigkeit des differentiellen Wirkungsquerschnitts zu bestimmen. Alle drei Endzustandsteilchen wurden in Koinzidenz nachgewiesen: das gestreute Elektron in einem Quadrupolspektrometer, das mit Cerenkovzählern und Szintillatorhodoskopen ausgerüstet war; das Proton in einem vertikal ablenkenden Magneten grosser Apertur, wobei Proportionalkammern und Szintillatorhodoskope zur Impuls-, Flugzeit- und dE/dx-Messung benutzt wurden; beide Zerfallsquanten des π^{0} in einer Anordnung von 52 Bleiglaszählern mit ADC-Auslese für jeden Kanal. Infolge der Dreifachkoinzidenz war der Untergrund durch zufällige Koinzidenzen und durch inelastische Kanäle (z.B. e p \rightarrow e p π° + weitere Pionen) vernachlässigbar klein. Die korrekte Funktionsweise der Apparatur wird mit den Abb. 1 - 3 demonstriert. Abb. 1 zeigt das γγ-Massenspektrum, das aus den zwei im Bleiglaszählerhodoskop gemessenen Photonen berechnet wurde; man erkennt ein sehr klares π^{0} -Signal mit wenig Untergrund. Aus den Energien und Winkeln der γ-Quanten kann man weiterhin den Auftreffort des π° -Mesons am Bleiglaszähler bestimmen. Andererseits lässt sich die Flugrichtung des π^{O} und damit der Auftreffort am Bleiglaszähler aber auch aus der Kinematik der Reaktion e p \rightarrow e p π° unter Benutzung der gemessenen Elektronund Protonimpulse berechnen. Die Differenz dieser zwei Auftrefforte ist in Abb. 2 aufgetragen; man erkennt ein sehr ausgeprägtes Maximum an der erwarteten Stelle, wobei die Ausdehnung des Maximums ein Maß für die π^{0} -Ortsauflösung ist (diese ist fast so gut wie der Grösse eines Bleiglaszählerelements von 7 x 7 cm² entspricht). Aus Abb. 2 erkennt man weiterhin, dass die meisten Ereignisse aus der gewünschten Reaktion e p \rightarrow e p π^0 stammen. Dies wird noch deutlicher, wenn man die Dreifach-Koinzidenz-Ereignisse gegen die aus dem gestreuten Elektron und dem Proton berechnete fehlende Masse aufträgt (Abb. 3); man beobachtet ein Maximum bei der π° -Masse und fast keine Ereignisse bei höheren Massen. Der Untergrund

ist schwarz eingezeichnet. Das entsprechende Spektrum sieht ganz anders aus, wenn man die Daten so auswertet, dass nur die Koinzidenz von Elektron und Proton, aber kein π^0 im Bleiglaszähler verlangt wird. In diesem Fall findet man eine viel grössere Zahl von Ereignissen, die ein breit verteiltes M_x-Massenspektrum haben (gemäss der Reaktion e p + e p X), wobei sich das π^0 -Signal nur wenig von einem steil ansteigenden Untergrund abhebt.

Das Experiment wurde bei Azimutwinkeln ϕ nahe 90[°] durchgeführt. Man misst daher vorwiegend den Wirkungsquerschnitt $d\sigma_{\perp}/dt$. In Abb. 4 ist der differentielle Wirkungsquerschnitt für π° -Produktion mit virtuellen Photonen aufgetragen und zum Vergleich auch der Photoproduktionswirkungsquerschnitt. Bei der Reaktion $\gamma p \neq \pi^{\circ} p$ mit reellen Photonen ($q^2 = 0$) zeigt der differentielle Wirkungsquerschnitt ein ausgeprägtes Minimum ("dip") bei |t| = 0.5 (GeV/c)², gefolgt von einem sekundären Maximum bei |t| = 1 - 1.2 (GeV/c)².

Nach einer Idee von Harari sollte die π° -Produktion mit virtuellen Photonen ($q^2 \neq 0$) entscheiden können, ob dieses Minimum eine Art Beugungsminimum ist oder durch die Nullstelle einer Regge-Trajektorie hervorgerufen wird. Da der Radius des virtuellen Photons mit wachsendem q^2 abnehmen sollte, erwartet man im Diffraktionsbild ein Wandern des Minimums zu grösseren Werten von |t|, wenn q^2 wächst, während in einem reinen Regge-Modell das Minimum an derselben Stelle bleiben sollte. Das Experiment brachte das überraschende Ergebnis, dass keine der beiden Interpretationen richtig ist; bereits bei dem kleinsten untersuchten q^2 -Wert von 0.22 (GeV/c)² ist das sekundäre Maximum von d σ /dt praktisch völlig verschwunden, so dass gar kein "dip" mehr festgestellt werden kann. Ein genaueres theoretisches Verständnis dieser Daten steht noch aus.

- 99 -

Abb. 2 Differenz zwischen dem berechneten und dem gemessenen Auftreffort des π° -Mesons am Bleiglaszähler-Hodoskop

Abb. 3 Anzahl der epπ⁰-Ereignisse als Funktion der aus gestreutem Elektron und Rückstossproton berechneten fehlenden Masse. Der inelastische Untergrund ist schwarz eingezeichnet.

Abb. 4 Wirkungsquerschnitt für π^{0} -Produktion mit virtuellen Photonen als Funktion von t für verschiedene Werte von q².Der Wirkungsquerschnittsverlauf d σ_{I} /dt für π^{0} -Photoproduktion (q² = 0) ist als durchgezogene Kurve gezeigt.

Veröffentlichungen

- "Elektroproduktion neutraler Pionen oberhalb des Resonanzgebietes" Karl Hubert Meß Dissertation (1975) - DESY 75/1
- 2) "Elektroproduction of Neutral Pions at Energies above the Resonance Region" F.W.Brasse, W.Fehrenbach, W.Flauger, J.Gayler, S.P.Goel, R.Haidan, U.Kötz, V.Korbel, D.Kreinick, J.Ludwig, J.May, M.Merkwitz, K.-H.Meß, P.Schmüser, B.H.Wiik Physics Letters 58B, 467 (1975)
- 3) "Photoproduction of π⁺ Mesons on Polarized Protons"
 H.Genzel, P.Heide, J.Knütel, H.Lierl, K.-H.Meß, M.-J.Schachter, P.Schmüser,
 B.Sonne, G.Vogel
 Nuclear Physics B92, 196-206 (1975)

Konferenzbeiträge und Vorträge

K.Berkelman Measurement on the 3.1 and 3.7 GeV Resonances produced in e^+e^- Colliding Beams at DORIS and observed in the DASP Nonmagnetic Detector International Conference on High Energy Physics - Palermo - Juni 1975 U.Kötz π° Electroproduction above the Resonance Region International Conference on High Energy Physics - Palermo - Juni 1975

D.Kreinick Messungen von e⁺e⁻ → e⁺e⁻, γγ mit dem DASP-Innendetektor Beitrag zur DPG-Frühjahrstagung - München März 1975

Messungen von $e^+e^- \rightarrow e^+e^-$, $\gamma\gamma$ mit dem DASP-Innendetektor Seminarvortrag - RWTH Aachen - April 1975

K.H.Meß #⁰-Elektroproduktion Beitrag zur DPG-Frühjahrstagung - München - März 1975

P.Schmüser Recent Results on the 3.1 and 3.7 GeV Resonances from the DESY Storage Ring Neutrino-Konferenz - Paris - März 1975

Seminarvortrag über die DASP-Experimente Gesamthochschule Wuppertal - März 1975

Experimentelle Ergebnisse über die neuen Teilchen DPG-Tagung – München – September 1975

Seminarvortrag über die DASP-Experimente Universität Karlsruhe - Dezember 1975

B.H.Wiik Recent Results on Electron-Positron Collisions at DORIS Kolloquiumsvortrag CERN - Genf - Januar 1975

B.H.Wiik Neue Ergebnisse von DORIS Kolloquiumsvortrag - SIN, Villingen - Schweiz The experimental program at DORIS and a first look at the new resonances Vortrag bei der Dixième Recontre de Moriond - Meribel-les-Allues - März 1975 Information on the New Particles 1975 JINR-CERN-School of Physics Evidence for a new resonance P and other recent results obtained at DORIS using DASP International School of Subnuclear Physics - Erice - Juni 1975 -Recent Results from DORIS. Invited Paper at the 1975 International Symposium on Lepton and Photon Interactions, Stanford - Calif. - August 1975 Physics with large e-p colliding rings Kolloquiumsvortrag - Universität Bergen - Norwegen - Oktober 1975 Recent results from DORIS Kolloquiumsvortrag - Universität Oxford - Oktober 1975 New Particles and recent results at DORIS PETRA Invited papers given at the INS Symposium on Electron and Photon Interactions in Resonance Region and Related Topics - Tokio - November 1975 DORIS results Invited paper at the Conference on Quarks and the New Particles University of California - Irvine - Dezember 1975

Experimente mit dem Doppelarmspektrometer DASP

RWTH Aachen, DESY, Universität Hamburg, MPI München, Universität Tokio

Im Jahr 1975 wurde ein ausführliches Messprogramm zur Untersuchung der neuen Teilchen J/ ψ (3.1) und ψ '(3.7) durchgeführt.

Zweikörperzerfälle von J/ ψ und ψ '

Messungen zum e⁺e⁻-Zerfall von J/ ψ (3.1), sowie eine Suche nach dem Zerfall J/ $\psi \rightarrow \gamma\gamma$ wurden unmittelbar nach der Entdeckung des Teilchens mit dem nichtmagnetischen Innendetektor von DASP durchgeführt. Diese Daten sowie eine ausführliche Beschreibung des Detektors sind im Jahresbericht 1974 enthalten. Mit Hilfe der beiden Magnetarme wurde der $\mu^+\mu^-$ -Zerfall der Resonanzen gemessen. Die Winkelabhängigkeit des differentiellen Wirkungsquerschnitts ist verträglich mit einem (1+cos² Θ)-Verlauf, den man für ein Spin 1-Teilchen erwartet. Es gibt keine Vorwärts-, Rückwärtsasymmetrie in dem J/ ψ -Zerfall, so dass man ausschliessen kann, dass das 3.1 GeV Teilchen ein Boson der schwachen Wechselwirkung mit V-A Kopplung ist.

Die gute Teilchentrennung in den magnetischen Armen wurde ausgenutzt, um hadronische Zweikörperzerfälle $J/\psi(3.1)$ oder $\psi^*(3.7) \rightarrow \pi^+\pi^-$, K^+K^- , pp von den sehr viel häufigeren $\mu^+\mu^-$ -Zerfällen zu trennen. Bei 3.1 GeV wurde nur ein $\pi^+\pi^-$ -Paar und kein K^+K^- -Paar gefunden. Das eine $\pi^+\pi^-$ -Ereignis lässt sich so deuten, dass J/ψ nicht direkt, sondern über ein virtuelles γ -Quant in $\pi^+\pi^-$ zerfällt. Die Abwesenheit des direkten $\pi^+\pi^-$ -Zerfalls weist darauf hin, dass das J/ψ -Teilchen den Isospin 0 hat. Keine Zerfälle in K^+K^- wurden gefunden. Falls $J/\psi(3.1)$ in ein SU(3)-Singulett gehört, wäre dieser Zerfall ebenfalls verboten. Es gibt aber mehr als 80 Ereignisse, die den Zerfall $J/\psi \rightarrow \bar{p}p$ zeigen. In Abb. 1 wird das Antiproton-Proton Massenspektrum für Ereignisse des Typs $e^+e^- \rightarrow \bar{p}p$ X gezeigt. Man erkennt ein scharfes Maximum bei $M_- = 3.09$ GeV, das auf den direkten Zerfall $J/\psi + \bar{p}p$ zurückzuführen ist. Daneben findet man viele Ereignisse mit $M_- < 3.09$ GeV, die man zum Teil durch Zerfälle der Art $J/\psi \rightarrow \bar{\Lambda}$ A

erklären kann. Aus dem $\overline{p}p$ -Zerfall folgt, dass der Isospin von J/ ψ den Wert O oder 1 haben kann; aus dem $\overline{\Lambda}$ A-Zerfall ergibt sich I = O.

Setzt man eine Zerfallswinkelverteilung von der Form (1+cos² θ) voraus, so folgt, dass J/ ψ mit einer Wahrscheinlichkeit von (0.23 ± 0.06)% in ein pp-Paar zerfällt.

Kaskadenzerfall $\psi' \rightarrow J/\psi + X$

Eine faszinierende Eigenschaft des Teilchens $\psi'(3.7)$ ist, dass es sehr häufig nicht direkt in Hadronen oder Leptonen zerfällt, sondern einen Kaskadenzerfall über das J/ $\psi(3.1)$ -Teilchen durchläuft. Bei DASP wurde dieser spezielle Zerfallskanal durch Beobachtung von $\mu^+\mu^-$ -Paaren mit einer effektiven Masse von 3.1 GeV identifiziert. Abb. 2 zeigt das bei einer Gesamtenergie von 3.7 GeV gemessene $\mu^+\mu^-$ -Massenspektrum. Das Spektrum zeigt ein Maximum bei M_{µµ} = 3.7 GeV, das durch den direkten Zerfall $\psi'(3.7) + \mu^+\mu^-$ sowie durch die QED-Reaktion $e^+e^- + \mu^+\mu^$ erklärt werden kann, sowie ein weiteres, sehr ausgeprägtes Maximum bei 3.1 GeV. Dieses stammt vom Zerfall $J/\psi + \mu^+\mu^-$ und ist ein direkter experimenteller Beweis für den Kaskadenzerfall $\psi'(3.7) + J/\psi(3.1) + X$

Berücksichtigt man die Erhaltungssätze von Energie, Ladung und C-Parität, so sind für das Restsystem X folgende Teilchen oder Teilchensysteme zugelassen:

$$X = \pi^{\circ}, (\pi^{+}\pi^{-}), (\pi^{\circ}\pi^{\circ}), (\pi^{+}\pi^{-}\pi^{\circ}), (3\pi^{\circ}), \eta, (2\pi^{+}, 2\pi^{-}), (4\pi^{\circ}), (\gamma\gamma).$$

Mit dem Innendetektor wurde das System X genauer untersucht. Es wurden keine Ereignisse gefunden, die ein einzelnes π° oder 3 oder 4 π -Mesonen enthalten. Beobachtet wurden $\pi^{+}\pi^{-}$, $\pi^{+}\pi^{+}$, η und $\gamma\gamma$. Der relative Anteil am Kaskadenzerfall ist in der folgenden Tabelle aufgeführt.

$$\psi'(3.7) \rightarrow J/\psi + X$$

$$\int_{\mu} \psi^{+} \mu^{-}$$

$$X \qquad \text{Anteil}$$

$$\pi^{+}\pi^{-} \qquad 63 \pm 10\%$$

$$\pi^{0}\pi^{0} \qquad 32 \pm 10\%$$

$$\eta \qquad 6.5 \pm 2.6\%$$

$$Y \quad Y \qquad \text{einige } \%$$

Das Verzweigungsverhältnis

$$\frac{\Gamma(\psi' \to J/\psi + \eta)}{\Gamma_{tot}(\psi')} = (3.7 \pm 1.5)\%$$
ist überraschend gross, wenn man bedenkt, dass nur sehr wenig Phasenraum zur Verfügung steht. Die Existenz dieses Zerfalls zeigt, dass $\psi'(3.7)$ gleiche Werte für Isospin and G-Parität (0) wie J/ $\psi(3.1)$ hat.

Das Verhältnis $\Gamma(\psi' \rightarrow J/\psi + \pi^{\circ}\pi^{\circ})/\Gamma(\psi' \rightarrow J/\psi + \pi^{+}\pi^{-})$ ist verträglich mit 0.5, wie man für einen $\Delta I = 0$ Übergang erwartet. Bei $\Delta I = 1$ oder 2 müsste dies Verhältnis den Wert O oder 2 haben, und das ist durch die Daten ausgeschlossen.

Strahlungszerfälle und Existenz eines neuen Teilchens P

Im Charmonium-Modell werden die neuen Teilchen als gebundene Zustände eines c- und eines c-Quarks dargestellt. $J/\psi(3.1)$ wird mit dem $1^{3}S_{1}$ -Zustand identifiziert, $\psi'(3.7)$ mit dem $2^{3}S_{1}$ -Zustand. Zwischen 3.1 und 3.7 GeV erwartet man die P-Zustände $2^{1}P_{1}$, $2^{3}P_{2}$, $2^{3}P_{1}$, $2^{3}P_{0}$ sowie einen $2^{1}S_{0}$ -Zustand. Es sollte γ -Übergänge von $2^{3}S_{1}$ zu den $2^{3}P$ Zuständen sowie zu dem $2^{1}S_{0}$ Zustand und von dort zum $1^{3}S_{1}$ -Zustand geben. Von besonderem Interesse sind daher die Kaskadenübergänge mit Emission von zwei γ -Quanten. Die Übergänge $\psi' \rightarrow J/\psi + \gamma\gamma$ wurden mit zwei nahezu unabhängigen Methoden nachgewiesen. Bei der ersten Methode wurde die Kaskade durch die Messung des e^+e^- -Zerfalls von $J/\psi(3.1)$ identifiziert. Alle vier Teilchen $e^+e^-\gamma\gamma$ wurden im Innendetektor registriert.

Parallel zu dieser Messung wurde der Zerfall $\psi' \rightarrow \mu^+ \mu^- \gamma \gamma$ mit Nachweis der $\mu^+ -, \mu^-$ -Teilchen im magnetischen Aussendetektor untersucht. In Abb. 3 wird ein Ereignis dieses Typs mit einer effektiven $\mu^+ \mu^-$ -Masse 3.1 GeV gezeigt. Aus den gemessenen Impulsen der μ^\pm -Teilchen und den Richtungen der beiden γ -Quanten kann man deren Energie bestimmen. Es wurden 9 Ereignisse gefunden, deren Photonen-Energien in Abb. 4 aufgetragen sind. Man erkennt eine klare Häufung von 6 Ereignissen bei $E_{\gamma 1} = (169 \pm 7)$ MeV, $E_{\gamma 2} = (398 \pm 7)$ MeV. Die Statistik ist zu gering, um zu entscheiden, ob noch weitere Häufungen vorliegen. Diese 6 Ereignisse zeigen die Existenz einer Resonanz P_c mit geringer Breite. Da man nicht entscheiden kann, welches der beiden Photonen zuerst emittiert wurde, ergibt sich eine Zweideutigkeit für die Masse des Teilchens P_c . Identifiziert man die P_c -Resonanz mit der später bei SPEAR beobachteten Resonanz bei 3.53 \pm 0.02 GeV, so ergibt sich als Masse

$$M_{\rm p} = (3.507 \pm 0.007) \, \text{GeV}.$$

Mit Hilfe des Aussendetektors wurde nach Zerfällen des P_c-Teilchens in $\pi^+\pi^-$ oder K⁺K⁻ gesucht (diese Zerfallskanäle sind verboten für ein pseudoskalares Teilchen). Es wurde nur jeweils ein mögliches Ereignis dafür gefunden.

Zwei-Photon-Endzustände

Mit den Innendetektor-Abschnitten oberhalb und unterhalb des Strahlrohrs wurde der Wirkungsquerschnitt für e⁺e⁻-Vernichtung in zwei Photonen gemessen. Die QED-Reaktion e⁺e⁻ $\rightarrow \gamma\gamma$ ergibt zwei kollineare Photonen gleicher Energie. Der Wirkungsquerschnitt fällt mit $1/E^2$ ab. Bei der Energie der J/ψ - und ψ '-Resonanzen könnte man Maxima erwarten, die durch folgende Prozesse verursacht sein könnten:

1) Direkter Zerfall von J/ ψ oder ψ ' in $\gamma\gamma$. Dieser Zerfall ist allerdings verboten für ein Teilchen mit Spin 1 und C-Parität -1.

2) J/ ψ (ψ ') $\rightarrow \pi^{0}\gamma$, wobei von den zwei Zerfallsquanten des π^{0} nur eines nachgewiesen wird.

3) J/ψ (ψ ') \rightarrow X γ , X \rightarrow $\gamma\gamma$

Wenn es eine Resonanz X gibt, die in $\gamma\gamma$ zerfällt und deren Masse zwischen 3.0 und 3.1 oder 3.6 und 3.7 liegt, so wären deren Zerfallsquanten nahezu kollinear. Unterhalb 100 MeV sinkt die Ansprechwahrscheinlichkeit des Detektors für γ -Quanten rasch ab, so dass das erste γ -Quant nicht registriert werden könnte.

Die Energieabhängigkeit des $\gamma\gamma$ -Wirkungsquerschnitts, integriert über den Winkelbereich 40° < θ < 140°, wird in den Abb. 5 und 6 gezeigt. Für kollineare Paare ist der Wirkungsquerschnitt in guter Übereinstimmung mit der QED. Auch die Winkelverteilungen, die in Abb. 7 gezeigt werden, stimmen gut mit der QED-Vorhersage überein. Weder bei 3.1 noch bei 3.7 GeV ist ein statistisch signifikantes Resonanzmaximum zu entdecken. Man kann daraus schliessen, dass der direkte $\gamma\gamma$ -Zerfall der Resonanzen wahrscheinlich nicht existiert. Genauer gesagt kann man natürlich nur obere Grenzen für die Zerfälle 1) - 3) angeben, indem man an die Daten eine Überlagerung von nicht resonantem Untergrund und Resonanz-Maximum anpasst. Diese oberen Grenzen (90% confidence level) sind in der folgenden Tabelle angegeben

$$J/\psi (3.1) \qquad \psi (3.7)$$

$$\Gamma_{\gamma\gamma}/\Gamma \qquad < 0.3\% \qquad < 0.8\%$$

$$\Gamma_{\pi}\circ_{\gamma}/\Gamma \qquad < 1\% \qquad < 1\%$$

$$(\Gamma_{X\gamma}/\Gamma)(\Gamma_{X \rightarrow \gamma\gamma}/\Gamma_{X \rightarrow alle}) \qquad (2.99 \le M_x \le 3.09 \text{ GeV}) \qquad (3.58 \le M_x \le 3.68 \text{ GeV})$$

Drei-Photon-Endzustand

Unter Benutzung des gesamten Innendetektors wurde die e^+e^- -Vernichtung in 3γ -Quanten bei 3.09 und 3.68 GeV untersucht. Die beobachteten Ereignisse können durch folgende Prozesse verursacht werden:

- 1) Zweiteilchenzerfälle der Resonanzen $J/\psi (\psi') \rightarrow \pi^{0}\gamma$, n γ , n' γ , X γ , wobei das jeweilige Hadron in zwei γ -Quanten zerfällt.
- 2) Direkter Zerfall von J/ ψ oder ψ ' in drei γ -Quanten. Nach einer Abschätzung von Pelaquier und Renard ist dieser Zerfall zu selten, um die beobachtete 3γ -Rate zu erklären, und ausserdem erwartet man kein Resonanzmaximum in effektiven Massenspektrum irgend zweier der drei γ -Quanten.
- 3) $e^+e^- \rightarrow 3\gamma$ über QED-Diagramme (im wesentlichen Strahlungskorrekturen der Zwei-Photon-Annihilation).

Der Drei-Photon-Endzustand enthält sehr wenig Untergrund von Strahl- Gas-Wechselwirkungen, Höhenstrahlen oder Multi-Hadron-Ereignissen. Das kann man aus der Koplanaritätsverteilung in Abb. 8 erkennen. $\Delta \theta$ ist im wesentlichen der Winkel, den das γ -Quant Nr. 3 gegen die durch γ -Quant 1 und 2 definierte Ebene hat. Man sieht, dass innerhalb der experimentellen Winkelungenauigkeit von etwa 5[°] die Mehrzahl der Ereignisse in einer Ebene liegen, wie man es für ein echtes $\gamma\gamma\gamma$ -Ereignis erwartet.

Wenn man nach einem Prozess der Art J/ψ (ψ ') \rightarrow Yy mit Y \rightarrow yy sucht, so ergibt sich die Schwierigkeit, dass man a priori nicht entscheiden kann, welches der drei γ -Quanten das primäre ist, und welches die beiden Zerfallsquanten des fraglichen Teilchens Y sind. Für jedes 3 γ Ereignis kann man drei $\gamma\gamma$ -Massen bilden. Bei der ψ '-Resonanz wurden bei einer integrierten Luminosität von 367 nb⁻¹ 15 3 γ -Ereignisse gefunden. Das Spektrum der niedrigen und der hohen $\gamma\gamma$ -Massenkombination ist in Abb. 9 dargestellt. In keiner der beiden Verteilungen ist eine signifikante Häufung zu erkennen. Man kann alle diese Ereignisse durch den QED-Wirkungsquerschnitt erklären. Bei $J/\psi(3.1)$ wurden 30 Ereignisse gefunden, obwohl die integrierte Luminosität nur 211 nb⁻¹ betrug. Das zeigt schon, dass ausser dem QED-Diagramm noch andere Beiträge eine Rolle spielen. Die niedrige Massenkombination (Abb. 10) zeigt ein deutliches Signal bei der η -Masse (549 MeV). Damit ist die Existenz des Zerfalls

 $J/\psi \rightarrow \eta \gamma$ gesichert. Die Zerfallsbreite ist $\Gamma_{\eta\gamma} = (95 \pm 29) \text{ eV}.$

Entfernt man die ny-Ereignisse, so zeigt die hohe Massenkombination nicht eine annähernd flache Verteilung wie bei 3.7 GeV, sondern eine Häufung von Ereignissen mit yy-Massen um 2.8 GeV. Beobachtet werden 10 Ereignisse in einem Massenintervall von 200 MeV, während man aufgrund der QED-Rechnungen 3.4 Ereignisse erwartet und von einem Vergleich mit den 3.7 GeV-Messungen 3 Ereignisse. Die überzähligen Ereignisse könnten also vom 2γ -Zerfall eines neuen Teilchens X mit einer Masse von etwa 2.8 GeV stammen.

Inklusive Messungen

Für die Messung inklusiver Spektren wurde nur ein einzelnes geladenes Teilchen in einem der Magnetarme verlangt. Die Ansprechwahrscheinlichkeit ist daher unabhängig vom Endzustand und gleich gross für Pionen, Kaonen und Protonen. Hadronen werden von Elektronen und Myonen durch Schauer- und Reichweitezähler unterschieden. Die Flugzeitauflösung von 0.5 nsec (FWHM) reicht aus, um Pionen, Kaonen und Protonen voneinander zu trennen. In Abb. 11 wird die Grösse

 $1/\beta^2 - 1 = M^2/p^2$ gegen $1/p^2$ aufgetragen; dabei ist $1/\beta^2$ aus der Flugzeit berechnet,

1/p² aus der Ablenkung im Magneten. Die gemessenen Ereignisse folgen den der Pion-, Kaon- oder Protonmasse entsprechenden Geraden. Man erhält eine einwandfreie Teilchentrennung bis zu den höchsten untersuchten Impulsen.

In Abb. 12 ist der invariante Wirkungsquerschnitt für inklusive Hadronproduktion bei 3.1 GeV als Funktion der Hadronenergie aufgetragen. Bei Pionen und Kaonen wird über beide Ladungsvorzeichen summiert. Da die Protonenrate bei kleinen Impulsen einen erheblichen Untergrund von Strahl-Gas-Wechselwirkungen hat, wird der doppelte Antiprotonwirkungsquerschnitt aufgetragen. Für Pionen lässt sich die Energieabhängigkeit in der Form exp(-6E) (E in GeV) schreiben. Es ist bemerkenswert, dass bei hohen Energien alle drei Teilchensorten innerhalb eines Faktors 3 vergleichbare Wirkungsquerschnitte haben. Die 3.7-GeV-Daten zeigen ein ähnliches Verhalten (Abb. 13). Bei niedrigen Energien erhält man einen Überschuss von π^{\pm} -Mesonen, den man durch den Zerfall $\psi^{\dagger} \rightarrow J/\psi + \pi^{+} + \pi^{-}$ erklären kann.

Die relativen Anteile von Pionen, Kaonen und Antiprotonen bei 3.1 und 3.7 GeV werden in Abb. 14 gezeigt. Mit wachsendem Impuls steigt die relative Ausbeute von Kaonen und Antiprotonen an; bei 1 GeV/c beträgt der Anteil der K[±]-Mesonen 20%, der zweifache \bar{p} -Anteil 10%. Es ist häufig vermutet worden, dass oberhalb von 4 GeV die relative Kaon-Ausbeute wegen der Produktion von Teilchen mit Charm anwachsen sollte. Von der DASP-Gruppe wurden Messungen bei 4.15 GeV durchgeführt.

Die in der folgenden Tabelle aufgeführten relativen Pion-, Kaon- und Antiproton-Anteile zeigen, dass diese Vermutung nicht vom Experiment bestätigt wird.

^{2e} cm	π^{\pm} -Anteil	K ⁺ -Anteil	zweifacher p-Anteil
3.1 GeV	78 <u>+</u> 0.8%	14 <u>+</u> 0.8%	6.2 <u>+</u> 0.6%
3.7 GeV	82 <u>+</u> 2%	11.4 ± 1.3%	6.5 <u>+</u> 0.9%
4.14 GeV	84 <u>+</u> 9%	10 <u>+</u> 5%	-

Die Restmassenspektren für die Zerfallskanäle $J/\psi \rightarrow \pi^{\pm}X$, $K^{\pm}X$, $\bar{p}X$ sind in Abb. 15 aufgetragen. Es sind keine signifikanten Resonanzstrukturen zu erkennen, mit Ausnahme eines Maximums bei der $K^{\ddagger}(890)$ -Resonanz im K^{\pm} -X-Restmassenspektrum. Auch bei 3.7 GeV sind keine Quasi-Zweiteilchen-Kanäle zu erkennen. Der Zerfall $\psi' \rightarrow \pi^{\pm}X$ ist besonders interessant, weil im "Colour"-Modell der neuen Teilchen die Resonanz ψ' (3.7) unter Emission eines Pions in ein Meson ρ_{colour} mit einer Masse von etwa 3.1 GeV zerfallen sollte. Das Restmassenspektrum (Abb. 16) enthält keine Andeutung eines Maximums bei 3.1 GeV. Unter der Annahme, dass die Breite des ρ_c kleiner als 50 MeV ist, kann man folgende obere Grenze für den Zerfall $\psi' \rightarrow \pi \rho_c$ angeben

 $\Gamma(\psi' \to \pi^{\pm} \rho_c^{\pm}) / \Gamma_{tot}(\psi') < 5 \cdot 10^{-2}.$

Die Ergebnisse der DASP-Kollaboration erweckten grosses Interesse und wurden auf vielen Tagungen im In- und Ausland vorgetragen. Diese Vorträge sind unter den einzelnen Gruppen aufgeführt.

Abb. 5 Wirkungsquerschnitt für (24 537) e e → γγ bei der J/ψ-Resonanz

Abb. 6 $e^+e^- \rightarrow \gamma\gamma$ bei der ψ' -Re-(24 542) sonanz

Abb. 7 Winkelverteilung für (23 549) e e → γγ bei 3.1 und 3.7 GeV. Die Daten sind in Einklang mit der QED-Vorhersage

Abb. 8 Koplanaritätsverteilung für den Zerfall $J/\psi \rightarrow \gamma \gamma \gamma$

liches Signal bei dem n-Meson

Abb. 11 Teilchentrennung aufgrund von Flugzeit und Impuls

Abb. 12 Inklusive Hadron-Pro-(24 539) duktion bei 3.1 GeV

Abb. 13 Inklusive Hadron-Pro-(24 535) duktion bei 3.7 GeV

A measurement of collinear and nearly collinear photon pairs produced by e^+e^- annihilation at the 3100 MeV Resonance

DASP-Kollaboration Phys.Letters 53 B, 491 (1975)

Muon pair production by e^+e^- annihilation at the 3100 MeV resonance DASP-Kollaboration Phys.Letters 56 B, 491 (1975)

Two-body Hadronic decays of the 3.1 GeV resonance DASP-Kollaboration Physics Letters 57B, 297 (1975

Observation of the two-photon cascade $3.7 \rightarrow 3.1 + \gamma\gamma$ via an intermediate state P C DASP-Kollaboration Phys.Letters 57B, 407 (1975)

DASP-Kollaboration:

W.Braunschweig, H.-U.Martyn, H.G.Sander, D.Schmitz, W.Sturm, W.Wallraff I.Physikalisches Institut der RWTH, Aachen,

K.Berkelman, D.Cords, R.Felst, E.Gadermann, G.Grindhammer, H.Hultschig, P.Joos, W.Koch, U.Kötz, H.Krehbiel, D.Kreinick, J.Ludwig, K.H.Mess, K.C.Moffeit, A.Petersen, G.Poelz, J.Ringel, K.Sauerberg, P.Schmüser, G.Vogel, B.H.Wiik, G.Wolf Deutsches Elektronen-Synchrotron DESY und II. Institut für Experimentalphysik der Universität Hamburg, Hamburg,

G.Buschhorn, R.Kotthaus, E.E.Kruse, H.Lier, H.Oberlack, K.Pretzl, M.Schliwa, Max-Planck-Institut für Physik und Astrophysik, München,

S.Orito, T.Suda, Y.Totsuka, S.Yamada High Energy Physics Laboratory and Dept. of Physics, Universität Tokio.

- F36 - KK- und pp-Paarerzeugung

Die Zusammenarbeit von DESY mit dem Institut für experimentelle Kernphysik zum Zwecke des Studiums der Photoproduktion von hadronischen Paaren (K^+K^- , pp) wurde fortgesetzt. Die bisher aufgebaute und verwendete Apparatur ist in Abb. 1 schematisch dargestellt. Der aus dem Synchrotron ejizierte Elektronenstrahl trifft auf den Radiator, in dem durch Bremsstrahlung γ -Quanten erzeugt werden, deren Energien im 'Tagging-System' gemessen werden. Die γ -Quanten können im Wasserstofftarget eine Reaktion hervorrufen, bei der kurzlebige Elementarteilchen erzeugt werden. Der Rest der γ -Quanten wird im Strahlabsorber gestoppt. Die im Target erzeugten Teilchen verlassen das Target wegen der Vorwärtsbewegung des Schwerpunkts im allgemeinen in Vorwärtsrichtung. Sie durchlaufen mehrere Szintillationszähler (Triggerzähler) sowie Proportionalkammern und Funkenkammern. Die Kammern dienen der Messung der Teilchenspuren vor und hinter dem Magneten. Durch die Ablenkung der Bahn geladener Teilchen im Magnetfeld kann auf diese Weise der Impuls der Teilchen bestimmt werden.

Der Cerenkovzähler dient zur Abtrennung von π -Mesonen, da nur diese genügend Geschwindigkeit besitzen, um Cerenkovlicht zu erzeugen.

Im Berichtsjahr wurden die Experimente zur Photoerzeugung von ϕ -Mesonen zwischen 3 GeV und 6.8 GeV analysiert. Die Ergebnisse wurden auf der Stanford-Konferenz 1975 mitgeteilt¹⁾. Es konnten folgende Resultate gewonnen werden (Reaktion $\gamma+p+\phi +p \rightarrow K^{+}K^{-}+p$):

1.) Die differentielle Winkelverteilung do/dt wurde zwischen t = 0 und

 $t = 0.4 (GeV/c)^2$ für 7 Energieschritte ausgemessen (Abbildung 2). Da die Photoproduktion von ϕ -Mesonen schon bei kleinen Energien durch Pomeron-Austausch beschrieben wird, kann man hier aus der Energieabhängigkeit der Steigung in do/dt auf die Steigung der Regge-Trajektorie des Pomeron schließen. Unsere Ergebnisse haben wesentlich zur Genauigkeit dieses Wertes beigetragen. Wenn man die Welt-Daten dieser Reaktion analysiert, erhält man für die Steigung der Pomeron-Trajektorie $\alpha' = 0.22 \pm 0.27$, ähnlich wie bei der Analyse der pp-Streuung bei höheren Energien.

Ein interessanter Aspekt könnte sein, daß in der Gegend t = 0.4 GeV² ein Knick in der Steigung des differentiellen Wirkungsquerschnitts auftritt. Allerdings gibt es bisher kein Experiment, das die Steigung zwischen t = 0 und t = 1 GeV² mit guter Genauigkeit untersucht hat. Man ist daher auf Vergleich der Daten von verschiedenen Experimenten angewiesen. In einer neuen Apparatur mit vergrößertem Raumwinkel soll dieses Phänomen näher untersucht werden.

2.) Die Winkelverteilung der Zerfallsteilchen des ø- Mesons K⁺ und K⁻ konnte erstmalig bestimmt werden.

Die Koeffizienten der einzelnen Terme der Winkelverteilung sind Produkte der Reaktionsamplituden, sodaß man hier Aufschluß über den Reaktionsmechanismus erhält. Eine wichtige Fragestellung ist z.B.: Wird die Helizität des einfallenden Strahls im S-Kanal oder im t-Kanal erhalten? Bei Experimenten zur ρ -Photoproduktion hat man gefunden, daß die Helizität im S-Kanal (SCHC) erhalten bleibt. Dazu untersucht man die Koeffizienten der Winkelverteilung, auch Dichtematrixelemente genannt, im Helizitätssystem und im Gottfried-Jackson-System als Funktion des Impulsübertrags. Das Ergebnis zeigt Abb. 3. Der wichtigste Term ist hier ρ_{00} , das im H.-System mit null verträglich ist, dagegen im G.-J.-System deutlich von null abweicht. Damit ist auch hier die SCHC bestätigt. Eine strenge Erhaltung würde allerdings auch die beiden übrigen Elemente ρ_{10} und ρ_{1-1} auf null bringen. Bei ρ_{10} scheint eine leichte systematische Abweichung vorzuliegen, die z.B. aus einer Interferenz der ϕ -Produktionsamplitude mit dem Untergrund herrühren könnte.

Auf der apparativen Seite wurde seit Beginn des Jahres an der Vorbereitung einer neuen Apparatur gearbeitet. Hier sollen größere Funkenkammern eingesetzt werden. Das Target wird sich im ersten Drittel des Analsysiermagneten befinden, sodaß der Raumwinkel gegenüber der früheren Apparatur stark vergrößert sein wird. Ein zusätzliches Laufzeitsystem soll Proton-Antiprotonpaare identifizieren. Die Apparatur wird im Jahre 1976 einsatzbereit sein. Der Brand in Halle I hat den Zeitplan erheblich verzögert.

Abbildung 2:Die differentielle Winkelverteilungen $d\sigma/dt$ für das(23 628)Experiment $\gamma p \rightarrow \phi p$ für verschiedene Energiebereiche.

Die Dichtematrixelemente

(24 406)

und a) im Helizitätssystem

b) im Gottfried-Jackson-System.

Die eingezeichneten Kurven stellen Anpassungen der Helizitätsamplituden an die Dichtematrixelemente dar.

Rubrik: aa)

		71
Autoren ; 1 D.C. Frieg P. Heine H. Hirschmann	Photoproduction of A-Mesons between	Beitrag zur Stanford-Konferenz Aug 75
A Markow E Soitz VEV Karlanda	and 6.7 CoV at amplifit	bereing zur scanford Konfefenz, Aug. /J
A. Markou, E. Seitz, Krk Karlsrune,	J and 6.7 Gev at small t	
HJ. Behrend, W.P. Hesse,		
W.A. McNeely and T. Miyachi, DESY		
1		
· ·		

.

- 122

Т

Rubrik: aaa)

- - - - - - -

Autoren 1. HJ.Behrend, J. Bodenkamp, W.P. Hesse, DESY, D.C. Fries, P. Heine, H. Hirschmann, W.A. McNeely jr., A. Markou, E. Seitz, KFK Karlsruhe	Titel Photoproduction of ¢-Mesons at small t-values	Zitat Physics Letters 56B, 408 (1975)

Autoren	Titel	Zitat
HJ.Behrend, J. Bodenkamp, W.P. Hesse,	Photoproduction of ϕ -Mesons at small	DESY 75/05, März 1975
DESY, D.C. Fries, P. Heine, H. Hirsch-	t-values	
mann, W.A. McNeely jr., A. Markou,		
E. Seitz		
	·	

Rubrik: bbb) Rubrik ddd)

Autoren	Titel	Zitat
Klaus le Vrang	Aufbau und Inbetriebnahme eines Hodoskops	Diplomarbeit, Universität Hamburg
	zur Erfassung der Rückstoßprotonen in der Reaktion vn + .nd	
	Reaction (p / p)	Discortation Universität Karlsruhe
H. Hirschmann	Impulsübertrag	Disservation, oniversitat nariorene
W. Ziekursch	Spurensuche in digitalisierten Funken- kammern	Diplomarbeit, Universität Karlsruhe

Rubrik: eee)			
Autoren	Titel	Zitat	
HJ. Behrend, D.C. Fries, P. Heine, W.P. Hesse, H. Hirschmann, A. Markou, W.A. McNeely, Jr., E. Seitz		DPG Tagung über Elementarteilchenphysik München, 1975	

- 126 -

Rubrik : fff)

Autoren :

-

.

•

D.C. Fries

,

.

Literatur Jahresbericht 1975

	Titel : Pomeron-Austausch und ø-Photopro- duktion	Zitat : Kolloquiumsværtrag, Institut für Hoch- energiephysik der Akademie der Öster- reichischen Wissenschaften,	
~			
		1	- 127 -

- F41 - Experimente mit der Synchrotronstrahlung

Die Synchrotronstrahlung, die als Nebenprodukt bei der Beschleunigung von Elektronen im Synchrotron DESY und bei der Speicherung von Elektronen und Positronen in den Speicherringen DORIS entsteht, wird von mehr als zehn Arbeitsgruppen für spektroskopische Untersuchungen genutzt. Den Schwerpunkt bildete nach wie vor die Spektroskopie im Vakuum-Ultraviolett und weichen Röntgengebiet an Atomen, Molekülen und Festkörpern, wobei in zunehmendem Maße die Tendenz zur Aufnahme schwierigerer Problemstellungen, insbesondere die Untersuchung von Sekundärprozessen im Vordergrund stand. Außerdem wird daran gearbeitet, die gut kollimierte, intensive Röntgenstrahlung von DESY immer mehr für Experimente auszunutzen. Die Tabelle gibt einen Überblick über die an den Experimenten beteiligten Institute und die Hauptarbeitsrichtungen. Die am Anfang der Tabelle angeführten Institute sind mit umfangreicheren Untersuchungsprogrammen vertreten. Am Ende der Tabelle sind Kurzexperimente erwähnt, die eine begrenzte Fragestellung mit vorhandenen Apparaturen meist in Kollaboration mit einer größeren Arbeitsgruppe in ein bis drei Wochen bearbeiten. Guter wissenschaftlicher Kontakt besteht mit der Außenstelle des European Molecular Biology Laboratory (EMBL), die in eigenen Labors an DESY und DORIS die Struktur biologisch interessanter Objekte untersucht.

Gruppe

Arbeitsgebiet

a) München I (Universität) Absorption emission

Absorption, Reflexion, winkelabhängige Photoemission, hochauflösende Spektroskopie, Atome, Moleküle, feste Edelgase, Alkalihalogenide, Inbetriebnahme eines hochauflösenden Monochromators (HONORMI) (z.T. in Kollaboration mit DESY)

b) Hamburg I
 (II. Inst.f.Exp.Phys.)

Lumineszenz, atomare, flüssige und feste Edelgase, dotierte feste Edelgase (Kollaboration mit Kiel) .

с) На (І	mburg II I. Inst.f.Exp.Phys.)	Molekulare und feste Phosphine und Silane (Kollaboration mit Kiel) Dämpfe von Alkalihalogeniden und Metallen
d) Ki	el	Kollaboration mit Hamburg I und II, Testexperimente im Röntgengebiet
e) Fr Ch	reiburg (Physikalische nemie)	Photoionisation, Photodissoziation, organische Moleküle
f) Ka	uiserslautern	Lumineszenz, Photoionisation, kleine Moleküle
g) Mii	inchen II (Universität)	Fluoreszenz im weichen Röntgengebiet, K-Emission von Sauerstoffverbindungen
h) Do	ortmund	Röntgeninterferometrie, Untersuchung von Röntgenmonochromatoren, anomale Dispersion von Nickel
i) Gö	öttingen	Test und Entwicklung holographischer Gitter (in Kollaboration mit DESY), abbildende Systeme mit holographisch hergestellten Zonenplatten
j) He (I	eidelberg Landessternwarte)	Eichung sekundärer Standards für astrophysikalische Zwecke
k) Be	erlin (PTB)	Eichung sekundärer Standards für Plasmaphysi- kalische Zwecke etc.
1) DE	ESY	Photoemission an Metallen und Alkalihalogeniden, diverse Kollaborationen (s.o.)
Kurze	experimente	-
m) Os	snabrück	Störstellen in Alkalihalogeniden (Kollaboration mit Hamburg I)
n) Gi	ießen	Reflexion an Wolframaten und Molybdaten mit polarisiertem Licht (Kollaboration mit Hamburg I)
o) Ka	arlsruhe	Reflexion eindimensionaler Kristalle
		(Kollaboration mit München I und DESY)
p) St It Fo	tuttgart (Max-Planck- nstitut für estkörperforschung)	Photoemission an ternären Halbleitern (Kollaboration mit DESY) Optische Konstanten von Schichtkristallen (Kollaboration mit DESY und München I)

q) Helsinki	Röntgentopographie
r) Aarhus	Lokalisierung von Störatomen durch stehende Röntgenwellen in Einkristallen
s) Yorktown Heights (IBM)	Röntgenlithographie, Zonenplatten und Kieselalgen

Außerdem waren Gastwissenschaftler aus den USA, Japan und der Sowjetunion an den Untersuchungen beteiligt.

Die technischen Arbeiten an den Experimentiereinrichtungen konzentrierten sich auf den weiteren Ausbau des Labors am Speicherring (Bild !). Die justierbaren Ablenkspiegel wurden eingebaut, das Ausheizsystem installiert und das Vakuum-Interlocksystem, welches die Apparaturen gegeneinander und den Speicherring vor Gaseinbrüchen schützen soll, wurde in Betrieb genommen. Außerdem konnten die beiden Monochromatoren im Photonenenergiebereich 5 - 40 eV HIGITI und HONORMI, die num von mehreren Experimentiergruppen benutzt werden, erfolgreich in Betrieb genommen werden. HIGITI ist ein lichtstarker Monochromator mit einer Auflösung von ca. 1 Å, während HONORMI ein 3m Monochromator mit hoher Auflösung (0,03 Å) ist. Im Aufbau befindet sich ein Monochromator mit festem Austrittsspalt für den Bereich 20 - 350 eV (FLIPPER) und ein hochauflösender Rowland-Monochromator für Photonenenergien bis 500 eV.

Atom- und Molekülphysik

Hochaufgelöste Atom- und Molekülspektroskopie (a, 1)

Bereits innerhalb der ersten Meßperiode am HONORMI konnte eine große Zahl von hochaufgelösten Absorptionsspektren gewonnen werden. Einige Untersuchungen konnten bereits abgeschlossen werden. An den atomaren Gasen Ar, Kr und Xe im Bereich der Resonanz- und Autoionisationslinien (8 eV bis 16 eV) konnten hoch angeregte Rydbergzustände mit Hauptquantenzahlen bis n = 50 nachgewiesen werden. Es wurden Anomalien im Serienverhalten und Aufspaltungen gefunden und im Rahmen der Fano-Lu Theorie diskutiert. Die hohe Auflösung bei großer Intensität und niedrigem Gasdruck erlaubt die Anregung von Rydbergzuständen (Bild 2) mit so großen Radien (~500 Å), daß schon kleine elektrische Felder genügen, die Ionisationsgrenzen zu verschieben und die Absorptionsquerschnitte drastisch zu ändern (Starkeffekt). Diese Abhängigkeit wurde quantitativ untersucht.

Absorptionsmessungen an einfachen Molekülen, wie z.B. N_2 , zeigen Rydberg-, Vibrations- und Rotationsanregungen, aus denen Kraftkonstanten und Abstandsparameter angeregter Molekülzustände berechnet werden können. Bei H_2O und D_2O wurde der Isotopieeffekt zur Erleichterung der Interpretation ausgenutzt. Die Absorptionsspektren weiterer Moleküle, wie CO_2 bzw. systematische Reihen, wie C_6H_6 , C_6H_5F , C_6F_6 ; C_2H_3Br , C_2H_4 ; und CF_2Cl_2 , $CFCl_3$, wurden untersucht. Die Auswertung dieser Daten ist noch nicht abgeschlossen.

Photoionisation und Lumineszenz kleiner Moleküle (f)

Die Untersuchung der Zerfallskanäle hoch angeregter kleiner Moleküle ist deshalb reizvoll, weil bei diesen Molekülen eine theoretische Behandlung am ehesten möglich zu sein scheint. Im Rahmen dieser Messungen wurden am Synchrotron die Arbeiten über dissoziative Ionisation von HBr und O₂ abgeschlossen und Anfang 1975 erste Experimente zur dissoziativen Anregung von H₂O und NH₃ begonnen. Sie wurden im Dezember am Speicherring wieder aufgenommen, nachdem hierfür ein großer UHV-Rezipient fertiggestellt war. Er enthält eine Gaszelle mit einem zweifachen differentiellen Pumpsystem und neben verschiedenen Nachweissystemen für Fluoreszenzstrahlung und Ionen ist noch ein besonders lichtstarker Vakuum-UV Monochromator zur Zerlegung des Fluoreszenzlichtes angeregter Fragmente im Aufbau. Folgende Prozesse wurden am Speicherring untersucht:

 $h\nu + H_2O \rightarrow OH(A^2\Sigma^+) + H(1s)$ und $h\nu + H_2O \rightarrow H(2p^2P) + OH(X^2I)$. Die Messung zeigt, daß neben dem Zerfall des dissoziativen Zustands $H_2O\tilde{B}^{-1}A_1$ (9,1 eV bis 10 eV) die Praedissoziation höherenergetischer gebundener Zustände des H_2O -Moleküls zur Bildung des OH $(A^2\Sigma^+)$ führt.

Im Rahmen dieser Untersuchungen wurde außerdem der relative Verlauf des partiellen 5s-Ionisierungsquerschnitts des Xenon im Energiebereich unterhalb 30 eV mit einem neuen Verfahren bestimmt. Es wurde die Fluoreszenz des angeregten Ionenzustands 5s $5p^{6-2}S$ in Abhängigkeit von der eingestrahlten Energie gemessen. Dabei wurden zahlreiche resonanzartige Strukturen entdeckt, die auf Konfigurationswechselwirkung doppelt angeregter Atomzustände mit dem Kontinuum 5s $5p^{6}$ ϵp zurückzuführen sind.

Absorption und Ionisation gemischter Fluorkohlenwasserstoffe (e)

Es wurden die Absorptions-, Photoionen- und Resonanzphotoelektronenspektren der gemischten Fluorochloromethane $\rm CF_3Cl$, $\rm CF_2Cl_2$ und $\rm CFCl_3$ im Energiebereich von 9 - 25 eV gemessen. Solche Untersuchungen sind im Hinblick auf die in jüngster Zeit entstandene Diskussion über einen Abbau der Ozonschicht durch die verbreitete Emission von Halogenkohlenwasserstoffen (Frigene) von besonderem Interesse. Für die Absorptionsspektren konnten absolute Wirkungsquerschnitte angegeben werden. Durch massenspektrometrischen Nachweis konnte gezeigt werden, daß die (überaus geringe) Stabilität der Molekülionen von der Symmetrie der untersuchten Moleküle abhängig ist. Neue, bisher nicht bekannte höhere Ionisierungspotentiale konnten mit Hilfe der Resonanzphotoelektronenspektroskopie bestimmt werden. Die Bildung der bei der Photoionisation entstehenden Fluorid- bzw. Chloridionen ist im wesentlichen auf den Elektroneneinfang freier Halogenradikale zurückzuführen. Außerdem wurden intramolekulare Austauschreaktionen des Acetaldehydmolekülions durch massenspektrometrische Untersuchungen an den gezielt deuterierten Spezies CH₃CDO und CD₃CHO durchgeführt.

Absorptionsmessungen an Moleküldämpfen im Bereich der Rumpfelektronenanregung (c, teilweise mit d) Am Beispiel der Cs⁺ 4d Absorption von molekularem CsF, CsC1 und CsBr wurde der Einfluß des Halogenpartners untersucht. Die Interpretation im Rahmen des Ionenmodells wird durch die weitgehende Ähnlichkeit der Spektren untermauert. Innerionische Coulomb- und Austauschwechselwirkungen bestimmen auch die Cs⁺ 5p Spektren dieser Moleküle.

Molekulares SiH₄, SiF₄ und PH₃ zeigen am Einsatz der Si bzw. P 2p-Absorption ein starkes und strukturiertes Absorptionsmaximum, dem zu höheren Energien eine Reihe scharfer Absorptionslinien folgt. Durch Messung der entsprechenden Spektren der festen Substanzen gelang es, Aussagen über die räumliche Ausdehnung und somit den Charakter der Endzustände zu gewinnen. Beim Übergang vom Gas zum Festkörper bleibt die Absorptionsbande am Einsatz erhalten, während die höherenergetischen Linien verschwinden. Dieses Ergebnis erhärtet die Zuordnung der Linien zu Rydbergübergängen. Der starke Einfluß der Nachbarmoleküle im Kristall erklärt sich aus der hohen Aufenthaltswahrscheinlichkeit der Rydbergorbitale außerhalb des von den H bzw. F Atomen des Moleküls begrenzten Bereichs. Das Absorptionsband am Einsatz ist Übergängen in Endzustände mit starkem Valenzcharakter zuzuordnen, die hauptsächlich innerhalb des Moleküls lokalisiert sind.

- 133 -

Sauerstoff K-Fluoreszenz an Sauerstoffverbindungen (g)

Bei vielen Salzen von Sauerstoffsäuren ist die Elektronenstruktur der Anionen auf der Basis der Molekül Orbital-Theorie für die freien Ionen berechnet worden. Experimentell kann sie mit Hilfe der Röntgenemissionsspektren der Zentralatome und des Sauerstoffs ermittelt werden. Gemessen wurde die O K-Emissionsbande (bei 526 eV \approx 23,6 Å) von Sauerstoffsäureresten der Typen X0 $_4^{n-}$, X0 $_3^{n-}$ und X0 $_2^{-}$ mit einer Auflösung von ca. 0,8 eV. Die Spektren zeigen auch für Anionen des gleichen Typs ausgeprägte Strukturunterschiede, während das Kation auf Struktur und Lage der Spektren ohne merkbaren Einfluß ist. Aus dem O K-Emissionsspektrum lassen sich die Lagen einiger Molekülorbitale zueinander bestimmen und ihre O 2p Anteile abschätzen. Auf diese Werte können die Molekül-Orbital-Berechnungen überprüft werden. Außerdem können in XPS-Spektren, wenn die energetische Lage des O ls Niveaus bekannt ist, die Maxima ermittelt werden, die aus Valenzbandorbitalen mit O 2p Anteilen stammen. Bei einigen Anionen lagen außer dem O K-Spektrum alle Röntgenemissionsspektren sowie das Photoemissionsspektrum (XPS) und Berechnungen der Orbitale vor. In diesen Fällen ergibt sich nun ein detailliertes Bild aller besetzten Valenzorbitale.

Lumineszenz- und Anregungsspektren von Edelgasen (b, d)

Lumineszenz- und Anregungsspektren gasförmiger Edelgase: In einem Druckbereich 10^{-1} Torr bis 10^3 Torr wurde die optisch angeregte Emission von Xe, Kr und Ar (Anregungsenergien \lesssim 12 eV) untersucht. Die neue Apparatur am Speicherring (Bild 3) ermöglicht es, Daten mit guter statistischer Genauigkeit bei gleichzeitiger spektraler Zerlegung des Primär- und Sekundärlichtes zu erhalten. Es wurden neue Emissionen, die nur bei Anregung mit Photonen auftreten, nachgewiesen. Die Lumineszenzausbeute der einzelnen Emissionsbanden wurde sowohl in Abhängigkeit von der Anregungsenergie als auch vom Druck untersucht. Solche Messungen geben Aufschlüsse über die Besetzung laseraktiver Niveaus in VUV-Edelgaslasern.

Festkörperphysik

Exzitonenwanderung und Energietransfer in reinen und dotierten festen Edelgasen (b, d) Exzitonenwanderung kann dadurch untersucht werden, daß gezielt Senken für freie Exzitonen in die Probe eingebracht werden, die die intrinsische Lumineszenz tilgen. Im einfachsten Fall genügt eine Deckschicht von Fremdatomen an der Oberfläche. Die Stärke der Tilgung hängt dann von der Eindringtiefe des anregenden Lichtes ab und manifestiert sich in den Anregungsspektren. Die Wanderung der Exzitonen erweist sich als inkohärent. Die Ergebnisse stehen in Einklang mit analogen Photoemissionsexperimenten.

Die Untersuchungen zum Mechanismus des Energieübertrags an Benzol-dotierten festen Edelgasen wurden zu einem vorläufigen Abschluß gebracht. In festem Xenon und Krypton findet der Energieübertrag zu den Benzol-Gastmolekülen hauptsächlich von gebundenen Exzitonen aus statt; die oberen Grenzen für die Diffusionslängen, die man aus der Tilgung der Lumineszenz in Abhängigkeit von der Konzentration entnimmt, sind kleiner als die an reinen Substanzen. Erste Messungen am ternären System (C_6H_6 :Xe) in Argon, wurden zur Bestimmung des kritischen Radius für den Übertrag von isolierten Xenon-Atomen aus durchgeführt.

Winkelabhängige Photoemission an Alkalihalogeniden (a)

Einkristalle aus NaCl und KCl wurden im UHV gespalten und mit monochromatischem Licht im Energiebereich 10 - 35 eV bestrahlt. Es gelang, die durch Photoemission entstehende Aufladung zu kompensieren und durch Energieanalyse Photoelektronen aus dem Valenzband und dem obersten Rumpfniveau nachzuweisen. Dabei wurde eine starke Winkelabhängigkeit der Emissionsintensität relativ zu den Kristallachsen gefunden (Bild 4). Sie variiert außerdem mit der Photonenenergie. Es konnte gezeigt werden, daß sie ausschließlich vom Endzustand der Photoelektronen in den Leitungsbändern abhängt, solange die Photonenenergie unterhalb der Schwelle für Elektron-Elektron Streuung bleibt. Der Grund hierfür sind Streuprozesse des Elektrons mit Phononen im Kristall, bei denen das Elektron seinen Impuls ändert und im Bereich hoher Leitungsbandzustandsdichte gestreut wird. Auf diese Weise ist es möglich, kritische Punkte der Leitungsbänder experimentell festzulegen.

Oberflächenexzitonen (a, 1)

Bei Absorptions- und Reflexionsmessungen an extrem dünnen Edelgasfilmen $(\sim 5 - 50 \text{ Å})$ wurden erstmals Oberflächenexzitonen in Ar, Kr und Xe gefunden. Bild 5 stellt einen klaren experimentellen Beweis für diese Oberflächenexzitonen dar. Reines festes Xenon zeigt eine Anregung bei 8,2 eV. Bedeckt man die Probe mit einer monoatomaren, transparenten Argonschicht, so verschwindet das Oberflächenexziton. Nach Sublimation der Ar-Deckschicht wird die Oberflächenanregung wieder im Spektrum sichtbar. Auch für die Volumenexzitonen konnten durch Bestimmung der Linienform neue Aussagen über die Exziton-Phonon-Wechselwirkung gewonnen werden.

Struktur der Absorptionseinsätze in festen und flüssigen Metallen und NaCl (1) Die Untersuchung der Absorptionskanten einfacher Metalle, wie Li und Na gibt ein Bild der Elektronenstrukturen dieser Metalle. Es geht dabei um die Frage, ob das Ein-Elektronen-Modell bereits eine hinreichend gute Beschreibung vermittelt. Die erstaunlich große Breite der Li K Kante war bisher Ansatzpunkt für die Hinzunahme kollektiver Effekte bei der Interpretation. Überraschenderweise konnte jedoch gezeigt werden, daß der Anstieg an der Kante sich aus zwei Teilen zusammensetzt, der wahren Kante und einem steilen Anstieg in der Zustandsdichte. Bild 6 gibt das Originalspektrum bei 77° K wieder, das diese beiden Komponenten zum ersten Mal zeigt. Damit ist demonstriert worden, daß die Ein-Elektronen-Theorie wesentlich allgemeiner gültig ist als angenommen wurde. Auch Spektren von Cs-Metall konnten auf diese Weise interpretiert werden. Das scharfe Maximum direkt am Einsatz der Na 2p Übergänge isthingegen nicht durch Ein-Elektronen-Effekte zu beschreiben. Die Tatsache, daß es auch im flüssigen Na auftritt, spricht stark für ein Mehrelektronen-Phänomen.

Die scharfen Maxima am Einsatz der Na 2p Übergänge in NaCl wurden systematisch in Photoemission als Funktion der Temperatur untersucht. Es konnte gezeigt werden, daß ein großer Bereich in diesen Spektren durch exzitonische Effekte bestimmt ist.

Physik im Röntgengebiet

Interferometrie mit der Röntgenstrahlung (h)

Die interferometrische Messung der anomalen Dispersion in der Nähe von Absorptionskanten wurden für die K-Kante von Nickel zum Abschluß gebracht. Mit dem LLL-Interferometer mit Monochromator-Nutenkristall konnte der Verlauf des Realteils des Atomformfaktors f' (Brechungsindex) im Bereich $0.96 \leq \lambda/\lambda_{\rm K} \leq 1.08$ mit einer Auflösung von $\Delta\lambda/\lambda \leq 2 \ge 10^{-4}$ praktisch kontinuierlich gemessen werden. Auf der kurzwelligen Seite der Absorptionskante konnte eine Anzahl von Maxima und Minima beobachtet werden, die gut mit entsprechenden Extrema im Imaginärteil des Atomformfaktors f" (Absorptionsverlauf) nach Couchois und Manescu übereinstimmen (Bild 7). Die Aufbauarbeiten für die Fortsetzung und Ausdehnung der Dispersionsmessungen am Speicherring wurden fortgesetzt.

Weitere Röntgenexperimente

Es wurden eine größere Zahl von verschiedenen Kristallen mit topographischen Methoden (q) untersucht. Dabei ging es zum Beispiel um die Frage, ob die Oxidschicht auf Si das Gitter verzerrt. Zum ersten Mal konnten Reflexionstopogramme aufgenommen werden.

Eine Gastgruppe aus Aarhus (r) nahm ein 3-Kristallspektrometer erfolgreich in Betrieb und konnte zeigen, daß durch kontrolliertes Verschieben des stehenden Feldes der Braggwellen im Innern eines Si Einkristalls und Messung der Fluoreszenz die Lage der As Dotierungsatome bestimmt werden kann. Die Synchrotronstrahlung bietet gegenüber klassischen Quellen erhebliche Vorteile (erhöhte Intensität, erhebliche Reduzierung des Untergrundes durch Ausnutzen der Polarisation).

Eine Gruppe aus USA (s) gelang es, mit Synchrotronstrahlung bei ca. 40 Å feinste Strukturen unterhalb 0,1 µm Größe in eine Photoresist-Schicht zu kopieren. Neben der Möglichkeit technologischer Anwendung in der Bauelemente-Industrie konnte auch demonstriert werden, daß die innere Skelett-Struktur von Kieselalgen mit dieser Röntgen-Lithographie genannten Methode sichtbar gemacht werden kann (Bild 8).

Optik

In einem Testprogramm wurde die Ausbeute holographischer Gitter im Spektralbereich 20 - 280 eV Photonenenergie bestimmt (i, 1). Die Ergebnisse wurden mit Ausbeuten von geritzten Gittern verglichen, wobei sich zeigte, daß holographisch hergestellte Gitter eine vergleichbare Ausbeute bei weniger Streulicht haben. Die Messungen dienten auch zur Optimierung des Herstellungsprozesses. Außerdem wurden zum ersten Mal Mehrschichtinterferenzspiegel mit hoher Reflektivität im Gebiet um 100 Å hergestellt.

Die Apparatur zur Untersuchung abbildender Zonenplatten (i) ("Röntgenmikroskop") wurde Ende des Jahres fertiggestellt.

- 138 -

Die Eichung sekundärer Standards (j, k) gab wichtige Aufschlüsse über die zeitliche Stabilität der an die Synchrotronstrahlung angeschlossenen Lampen. Eine der geeichten Lampen wurde bereits in einer Forschungsrakete, die bis auf 300 km geschossen wurde, eingesetzt (j).

Bild 1: Blick in des kürzlich in Betrieb genommene Labor am Speicherring (23 068/41) für Experimente mit der Synchrotronstrahlung. Rechts oben der hochauflösende Monochromator HONORMI, weiterhin die Experimente HIGITI (links), FLEUR (Mitte).

Bild 2: Hochaufgelöste Rydbergserien in Krypton. Die Serien überlappen (24 444) und wechselwirken miteinander und mit dem Untergrund. Die Wechselwirkung kann mit Hilfe der Fano-Lu-Theorie analysiert werden.

Bild 3: Lumineszenzanregung an Edelgasen. Synchrotronstrahlung wird in
(24 179) einem Primärmonochromator W monochromatisiert, das monochromatische Licht auf eine Gaszelle G abgebildet, durch drei LiF-Fenster F tritt das Licht E ein, das nicht-absorbierte Licht T und das Lumineszenzlicht L können wieder austreten. Zur Zerlegung des Lumineszenzlichtes L dient ein Sekundärmonochromator SN.

- 141 -

 Bild 4: Winkelverteilung der Photoelektronen, die mit Synchrotronstrahlung
 (23 772) aus einem Kaliumchlorid-Kristall ausgelöst wurden. Je nach der Energie der herausgeschlagenen Elektronen El und E2 ergeben sich verschiedene bezüglich der Kristallachsen symmetrische Rosetten der Intensitätsverteilung.

Bild 6: Die Lithium Is Absorptionskante (durchgezogene Kurve) zeigt einen (24 443) Knick, der sich durch den Verlauf der vom Modell freier Elektronen stark abweichenden Zustandsdichte erklären läßt.

: Interferometrische Messung des Atomformfaktors ober- und unterhalb der Röntgen K-Kante von Nickel. Die Oszillationen bei Wellenlängen unterhalb der Kante fallen mit der Lage von EXAFS-Strukturen

Probe. Durch Aufbringen eines dünnen Metallfilms kann dieses Abbild im Scanning-Elektronenmikroskop vergrößert sichtbar gemacht werden.

Bild 8b: (24 112)

 3b: Die innere Struktur einer Kieselalge wird durch die Röntgenmikro (2) skopie sichtbar. Die Belichtungszeit mit Synchrotronstrahlung von DESY betrug 4 Minuten. Literaturverzeichnis 1975, Experimente mit Synchrotronstrahlung

N. Schwentner, FJ. Himpsel, V. Saile, M. Skibowski, W. Steinmann und E.E. Koch	Photoemission from Rare Gas Solids: Electron Energy Distribution from the Valence Bands	Phys.Rev.Letters <u>34</u> , 528 (1975) (DESY SR-74/17)
R. Kräßig, D. Reinke und H. Baumgärtel	Photoreaktionen kleiner organischer Moleküle. III. Vergleich der VUV- Absorptionsspektren, Photoelektronen- spektren und differentiellen Photo- ionenspektren von Propylen, Cyclopropan und Äthylenoxyd	Ber. Bunsenges. physik. Chemie 79, 116 (1975)
H.J. Hagemann, W. Gudat und C. Kunz	Optical Constants from the Far Infrared to the X-Ray Region: Mg, Al, Cu, Ag, Au, Bi, C, and Al ₂ O ₃	J.Opt.Soc.Am. <u>65</u> , 742 (1975) (gekürzte Version von DESY SR-74/7)
E.E. Koch, V. Saile und N. Schwentner	Fine Structure in the VUV Absorption Spectrum of Neopentane at 16 eV	Chem.Phys.Letters <u>33</u> , 222 (1975) (DESY SR-75/01)
H. Petersen, K. Radler, B. Sonntag und R. Haensel	Photoabsorption of Atomic Cs in the VUV	J.Phys. B 8, 31 (1975) (DESY SR-74/14)
Z. Ophir, B. Raz, J. Jortner, V. Saile, N. Schwentner, E.E. Koch, M. Skibowski und W. Steinmann	Photoemission from Doped Solid Rare Gases	J.Chem.Phys. <u>62</u> , 650 (1975) (DESY SR-74/12)
R. Grasser, E. Pitt, A. Scharmann und G. Zimmerer	Optical Properties of CaWO ₄ and CaMoO ₄ Crystals in the 4 to 25 eV ⁴ Region	phys.stat.sol. (b) <u>69</u> , 359 (1975) (DESY SR-75/02)
W. Zierau und M. Skibowski	Excitation and Continuum Transistions of Rubidium Halides in the 10 - 25 eV Photon Energy Range at Low Temperatures	J.Phys. C: Solid State Phys. <u>8</u> , 1671 (1975) (DESY SR-75/03)
H. Petersen und C. Kunz	L _{2.3} Transitions in Liquid Na and Al: Edge Singularity and EXAFS Structures	Phys.Rev.Letters <u>35</u> , 863 (1975) (DESY SR-75/04
A.B. Kunz, D.J. Mickish, S.K.V. Mirmira, T. Shima, FJ. Himpsel, V. Saile, N. Schwentner und E.E. Koch	A Comparison of Experimental and Theore- tical Photoelectron Energy Distribution Curves for Solid Argon and Krypton	Solid State Commun. <u>17</u> , 761 (1975) (DESY SR-75/05)

- 144 -

FJ. Himpsel, N. Schwentner und E.E. Koch	Ultraviolet Photoemission Spectroscopy of Solid Nitrogen and Oxygen	phys.stat.sol. (b) <u>71</u> , 615 (1975) (DESY SR-75/06)
U. Nielsen und W.H.E. Schwarz	VUV-Spectra of the Xenon Fluorides	Chem.Phys. (im Druck) (DESY SR-75/07)
H. Petersen	Observation of the Real Li K Absorption Edge	Phys.Rev. Letters <u>35</u> , 1363 (1975) (DESY SR-75/08)
H. Petersen	N ₄₅ Excitations in Metallic Cesium: Single Electron Behavior and Collective Effects	phys.stat.sol. (b) <u>72</u> , 591 (1975) (DESY SR-75/09)
FJ. Himpsel und W. Steinmann	Angle and Energy Dependence of Photo- emission from NaCl and KCl Single Crystals	Phys.Rev. Letters <u>35</u> , 1025 (1975) (DESY SR-75/10)
Ch. Ackermann, R. Brodmann, R. Haensel, U. Hahn, G. Tolkiehn und G. Zimmerer	Photoluminescence and Excitation Spec- troscopy of Rare Gases	Proc. Int. Conf. Luminescence, Tokyo (1975) (im Druck) (DESY SR-75/11)
D. Pudewill, FJ. Himpsel, V. Saile, N. Schwentner, M. Skibowski und E.E. Koch	Excitons in Pure and Doped Solid Neon	phys.stat.sol. (b) (im Druck) (DESY SR-75/12)
Ch. Ackermann, R. Brodmann, U. Hahn, A. Suzuki und G. Zimmerer	Photoluminescence Excitation Spectra of Solid Krypton	phys.stat.sol. (b) <u>74</u> (im Druck) (DESY SR-75/13)
U. Bonse, G. Materlik, W. Schröder	Perfect Crystal Monochromators for Synchrotron X-Radiation	(DESY SR-75/14)
HJ. Hagemann, W. Gudat und C. Kunz	Photoabsorption Coefficient of Alloys of Al with Transition Metals V, Fe, Ni and with Cu and Pr from 30 eV to 150 eV Photon Energy	phys.stat.sol. (im Druck) (DESY SR-75/15)
K. Radler, B. Sonntag, T.C. Chang und W.H.E. Schwarz	Experimental and Theoretical Investi- gation of the Li Is Spectra of Molecular Lithium Halides	Chem.Phys. (im Druck) (DESY SR-75/16)

D. Pudewill, FJ. Himpsel, V. Saile, N. Schwentner, M. Skibowski, E.E. Koch und J. Jortner	Exciton Dynamics in Solid Neon	J.Chem.PHys. (im Druck) (DESY SR-75/17)
H.W. Jochims, W. Lohr und H. Baumgärtel	Photoreactions of Small Organic Mole- cules V. Absorption-, Photoion- and Resonance- photoelectron-Spectra of CF ₃ C1, CF ₂ C1 ₂ , CFCl ₃ in the Energy Range 10-25 eV ²	Ber. Bunsenges. physik. Chemie <u>80</u> (1976) (im Druck) (DESY SR-75/18)
R. Brodmann, G. Tolkiehn und G. Zimmerer	Luminescence Originating from Free and Self Trapped Exciton in Solid Xenon	phys.stat.sol. (b) <u>73</u> (1976) (im Druck) (DESY SR-75/19)
K. Radler und B. Sonntag	Close Correspondence between the Cs 4d Spectra of Molecular and Crystalline CsCl	Chem.Phys. Lett. (im Druck) (DESY SR-75/20)
W. Lohr, H.W. Jochims und H. Baumgärtel	Photoreaktionen kleiner organischer Moleküle IV. Absorptionsspektren, Photoionen- und Resonanzphotoelektronenspektren von Vinylbromid	Ber. Bunsenges. physik. Chemie <u>79</u> (1975) (im Druck) 1 46 1
R. Haensel	Synchrotron Radiation in Solid State Physics	in: <u>Festkörperprobleme</u> (Advances in Solid State Physics); Vol. XV, p. 203, H.J. Queisser (ed.), Pergamon/Vieweg, Braunschweig 1975
C. Kunz	Soft X-Ray Excitation of Core Electrons in Metals and Alloys	in: Optical Properties of Solids - <u>New Developments</u> , ed. by B.O. Seraphin, North-Holland Publishing Company, Amsterdam 1976 (Interner Bericht DESY F41-75/3)
E.E. Koch	Experimental Aspects of VUV Spectroscopy with Synchrotron Radiation	Proc. of the 8 th All Union School of High Energy Particle Physics Yerevan, April 1975 (im Druck) (Interner Bericht DESY F41-75/4)

H.W. Jochims	Bau einer Reaktionskammer und Unter- suchung von Ionisations- und Anregungs- prozessen mit der Synchrotronstrahlung	Diplomarbeit Universität Hamburg 1974, Interner Bericht DESY F41-75/01
R. Zietz	Fluoreszenzuntersuchungen der Dissozia- tion und Ionisation von Molekülen mit der Synchrotronstrahlung im Vakuum- UV am Beispiel der CO ₂ und N ₂ O	Diplomarbeit Universität Hamburg 1974, Interner Bericht DESY F41-75/02
N. Schwentner	Photoelektronenemission vom Valenzband fester Edelgase und ihrer Mischungen	Dissertation Universität München 1974, Interner Bericht DESY F41-75/04
A. Harmsen	Interferometrische Bestimmung der opti- schen Konstanten für festes Argon im Bereich der Valenzbandexzitonen und Messung von absoluten Reflektivitäten	Diplomarbeit Universität Hamburg 1975, Interner Bericht DESY F41-75/06
W. Lenth	Messung des Photonenflusses monochroma- tisierter Synchrotronstrahlung im Spek- tralbereich 20 eV bis 160 eV und Be- stimmung der absoluten photoelektrischen Ausbeute von Edelgasatomen und Au, Al ₂ 0 ₃ , LiF und CsJ Aufdampfschichten	Diplomarbeit Universität Hamburg 1975, Interner Bericht DESY F41-75/07
R. Bruhn	Untersuchung des optischen Absorptions- spektrums von atomarem Aluminiumdampf im Energiebereich von 60 eV bis 130 eV mit Hilfe eines hierfür konstruierten Hochtemperatur-Absorptionsofens	Diplomarbeit Universität Hamburg 1975
G. Materlik	Interferometrische Messung des Realteils der kohärenten Vorwärtsstreuamplitude im Bereich der Nickel K-Absorptionskante mit Synchrotronröntgenstrahlen	Dissertation Universität Dortmund 1975

- 147 -

.

FJ. Himpsel, J. Jortner, E.E. Koch, Z. Ophir, D. Pudewill, B. Raz, V. Saile, N. Schwentner und M. Skibowski	Exciton Dynamics in Simple Molecular Crystals	7 th Molecular Crystal Symposium Nikko, Japan, 8.9.1975
E.E. Koch	Molekülspektroskopie mit Synchrotron- strahlung	Hauptvortrag Frühjahrstagung der DPG, Atom- und Molekülphysik, Köln 27.2.1975
N. Böse, J. Harms, H. Hertz, H. Oertel, H. Schenk, W. Sroka, R. Zietz	Dissociative Excitation of Water and Ammonia by Electrons and Photons	Ninth Int.Conf. on the Physics of Electronic and Atomic Collisions, Seattle 1975, Abstracts of Papers S. 123
R. Brodmann, Ch. Eitenmüller, U. Hahn, G. Tolkiehn und G. Zimmerer	Photolumineszenz von festem, flüssigem und gasförmigem Xenon	Verhandl. DPG (VI) <u>10</u> , 341 (1975)
Ch. Eitenmüller	Energietransferuntersuchungen an C ₆ H ₆ - dotiertem festem Xenon	Verhandl. DPG (VI) <u>10</u> , 341 (1975)
R. Bruhn, K. Radler, B. Sonntag und H.W. Wolff	L-Absorptionsspektrum von atomarem Aluminium	Verhandl. DPG (VI) <u>10</u> , 39 (1975) 4 6 6
K. Radler, B. Sonntag, G. Sprüssel und H.W. Wolff	Cs ⁺ 5p Absorption in molekularem CsCl	Verhandl. DPG (VI) <u>10</u> , 107 (1975)
U. Hahn, R. Brodmann und G.Zimmerer	KBr- und KJ-Lumineszenz-Anregungsspek- tren zwischen 10 und 25 eV	Verhandl. DPG (VI) 10, 419 (1975)
H. Hertz, H.W. Jochims, H. Schenk, W. Sroka, R. Zietz	Photoreaktionen in Bromwasserstoff	Verhandl. DPG (VI) <u>10</u> , 9 (1975)
FJ. Himpsel, E.E. Koch, D. Pudewill, V. Saile, N. Schwentner und M. Skibowski	Exzitonen in reinem und edelgasdotiertem festem Neon: Anregungsspektren und dynamisches Verhalten	Verhandl. DPG (VI) <u>10</u> , 342 (1975)
FJ. Himpsel, E.E. Koch, V. Saile, N. Schwentner, M. Skibowski und W. Steinmann	Inelastische Streuung von Photoelek- tronen in festen Edelgasen	Verhandl. DPG (VI) <u>10</u> , 342 (1975)

FJ. Himpsel, E.E. Koch, U. Rössler, V. Saile, M. Skibowski, N. Schwentner und W. Steinmann	Bestimmung der Bandstruktur fester Edelgase aus Photoemissionsmessungen	Verhandl. DPG (VI) <u>10</u> , 343 (1975)
FJ. Himpsel, N. Schwentner und E.E. Koch	Photoelektronenspektren von festem N ₂ und O ₂ gemessen mit Synchrotron- strahlung	Verhandl. DPG (VI) <u>10</u> , 103 (1975)
J. Huber, A. Otto und E.E. Koch	Davydov-Aufspaltung des 1. Singlett- Exzitons in Anthrazen	Verhandl. DPG (VI) <u>10</u> , 375 (1975)
N. Kosuch, E. Tegeler, G. Wiech und A. Faessler	Die K-Röntgenemssionsbande des Sauer- stoffs in einigen Oxiden und anderen Sauerstoffverbindungen	Verhandl. DPG (VI) <u>10</u> , 386 (1975)
H. Petersen und C. Kunz	Photoemissionsexperimente an flüssigem und festem Li und Na bei Anregung mit Photonen im Energiebereich 40 eV bis 180 eV	Verhandl. DPG (VI) <u>10</u> , 525 (1975)
Ch. Ackermann	Energietransferuntersuchungen an Benzol-dotiertem festen Xenon	Seminarvortrag Universität Ulm, 8.12.1975
H. Baumgärtel	Die Photoionenspektren kleiner orga- nischer Moleküle	Freie Universität Berlin, 20.11.1975
E.E. Koch	Status of the Scientific Research at DESY using Synchrotron Radiation	Users Meeting Stoughton Synchrtron Radiation Center, 20.10.75 Stanford Synchrotron Radiation Project Annual Users Meeting, 24.10.75
E.E. Koch	New Results from Optical and Photo- emission Experiments on Insulators	IBM Research Center, Yorktown Heights, 16.10.1975 Iowa State University Ames, Solid State Seminar, 17.10.1975

.

E.E. Koch	Competition between Energy Transfer and Relaxation in Rare Gas Matrices Studied by Photoemission Spectroscopy	National Bureau of Standards, Washington 15.10.1975
E.E. Koch	On the Electronic Structure of Rare Gas Atoms, Molecules and Solids	Stanford University, Solid State Seminar, 23.10.1975
E.E. Koch	Neue Experimente an Molekülen und Mole- külkristallen mit Synchrotronstrahlung	Physikalisches Kolloquium, Universität Kiel, 18.11.1975 Physikalisches Kolloquium, Universität Bonn, 24.11.1975
C. Kunz	Ideas about Future Development and Appli- cations of Synchrotron Radiation	Nordic Conference on Synchrotron Radiation Göteborg, 9.6.1975
C. Kunz	Neue Experimente mit der Synchrotron- strahlung	KfA-Kolloquium, Jülich 5.12.1975
C. Kunz	Synchrotron Radiation and its Applica- tions to Surface Physics	Hauptvortrag, Workshop on "Electronic Properties of Metal Surfaces" Liège, 15.~18. 9. 1975
C. Kunz	Synchrotron Radiation Experiments at DESY	Colloque LURE, Orsay, 1.9.1975
C. Kunz und H. Petersen	Core Electron Transitions in Liquid Li, Na and Al - Experiments using Synchro- tron Radiation	Conference in Physics, Göteborg, 10.6.1975
V. Saile	Oberflächenexzitonen in festen Edelgasen	Oberseminar der Sektion Physik, Univer- sität München, 11.11.1975 Universität Regensburg 17.11.1975
M. Skibowski	News about Electronic Processes in Solid Rare Gases	University of California, Irvine, 2.6.1975

M. Skibowski	Electronic Structure of Solid Rare Gases	Xerox Palo Alto Research Center, Palo Alto, Calif., 23.7.1975
M. Skibowski	New Experiments with Synchrotron Radiation at DESY	Michelson Laboratory, China Lake, Calif. 26.9.1975
M. Skibowski	Optical Excitation and Photoemission of Solid Rare Gases	University of Illinois, Urbana, Illinois 5.9.1975
G. Zimmerer	Synchrotronstrahlung und ihre Anwendung in der Festkörperspektroskopie	Kolloquiumsvortrag Universität Osnabrück 12.12.1975
G. Zimmerer	Recent Developments in the Synchrotron Radiation Laboratories at DESY and DORIS	Seminarvortrag am INS, Tokyo, 6.9.1975
R. Haensel	Festkörperphysik Spektroskopie und Strukturuntersuchungen mit der Synchrotronstrahlung	Kolloquiumsvortrag MPI für Festkörper- forschung Stuttgart 24.2.1975
R. Haensel	Photoabsorption Spectroscopie of Solids in the Extreme UV spectral Region	Nato advanced study institute, Carry-Le-Rouet (Frankreich) 31.815.9.75
N. Schwentner	Photoelektronen-Emission vom Valenband fester Edelgase	Instituts-Kolloquium und Seminar für Spektroskopie und Plasmaphysik der Universität Kiel, 13.6.1975
N. Schwentner	Untersuchung der Bandstruktur fester Edelgase mit Hilfe der Photoelektronen- spektroskopie	Oberseminar der Sektion Physik, Univer- sität München, 5.2.1975
P. Rabe	Recent Developments at the Synchrotron Radiation Project at DESY	Seminarvortrag am Institute of Nuclear Physics, Tokyo 15.2.1975

P. Rabe

P. Rabe

H. Petersen

B. Sonntag

Photoabsorption of Ba and Ba Halides

The Synchrotron Radiation Project at DESY

The Li K-Edge Problem

VUV-Absorption atomarer Metalle

Seminarvortrag am Institute of Physics in Sendai (Japan) 18.2.1975

Seminarvortrag am Institute of Physics in Kyoto (Japan) 22.2.1975

Nato advanced study institute, Carry-Le-Rouet (Frankreich) 31.8-15.9.1975

Seminarvortrag Universität Kiel Juni 1975 - F51 - Funkenkammerdigitalisierung

TEIL A Experiment 108 (Universität Kiel - DESY F 51)

Bestimmung der Spektren und der Ladungsverhältnisse von Myonen der kosmischen Strahlung und Untersuchung ihrer elektromagnetischen Wechselwirkungen.

Das Experiment wurde Ende 1974 abgeschlossen und 1975 ausgewertet. Die Beschreibung der Apparatur und vorläufige Ergebnisse sind in den Jahresberichten '72 - '74 enthalten.

Die experimentellen Ziele sind:

- a) Bestimmung der Wirkungsquerschnitte ϕ für Myonenstreuung am Eisentarget bei Energieübertragungen von 0.1 - 5 GeV
- b) Messung des Myonenspektrums als Funktion der Ladung und der Einfallsrichtung zur Bestimmung folgender astrophysikalisch wichtigen Parameter der primären kosmischen Nukleonen-Strahlung im Energiebereich 0.5 - 10 TeV :

```
b1) Spektrumsexponent \chi
```

- b2) Neutronen zu Nukleonen-Verhältnis n/N
- b3) Anisotropie δ (Suche nach Punktquellen)

Die Ergebnisse zu a) sind in Bild 1 dargestellt. Es zeigt sich, daß beim knock-on-Prozeß (der den Wirkungsquerschnitt bei Myonenenergien 1 - 20 GeV und übertragene Energien < 1 GeV dominiert) die Abweichung von der Bhabba-Formel kleiner als 3 % sind. Bei höheren Myonenenergien wird die Paarbildung bedeutender, der Bremsstrahlungsprozeß bleibt im betrachteten Bereich der übertragenen Energien immer unter einem 5 %-Anteil. Die Theorie zur Paarbildung (unter Berücksichtigung des Abschirmeffekts der Hüllenelektronen nach Petrukhin und Kokoulin) ist hier innerhalb von 20 % bestätigt. Eine in anderen Experimenten der kosmischen Strahlung gefundene Ladungsasymmetrie der Myonenwechselwirkungen von \geq 20 % ist bei einer Genauigkeit von 2 % nicht beobachtet worden.

- 153 -

Bild 2 zeigt das gemessene Myonenspektrum ($\theta = 75^{\circ}$) im Vergleich zu den Spektren anderer Autoren bei unterschiedlichen Zenitwinkeln \bigcirc (die verschiedenen Spektren sind jeweils durch einen Faktor $\sqrt{10}$ gegeneinander verschoben).

Die durchgezogenen Linien geben unsere Modellrechnungen wieder. Das Modell geht von einem Potenz-Spektrum für Pionen und Kaonen (den Elternteilchen der Myonen) aus, wobei mit einem K/\overline{u} -Verhältnis von 0.1 entsprechend den Beschleuniger-Daten gerechnet wird.

Der Spektrumsexponent γ ergibt sich aus dem Modell-Fit an unseren Daten. Es ist zu erkennen, daß dieses Modell auch die anderen Messungen gut beschreibt. Bei $\theta = 0^{\circ}$ sind zwar im Absolutwert Abweichungen vorhanden, die Form der Spektren, also der Wert γ , entspricht aber dem des Modells. Das Ergebnis für K- und π -Spektren ist also : $\gamma = 2.56 \pm 0.02$ für $E_{W,K} \geq 50$ GeV. Aus der Annahme des Feynman-Scalings für Pionen- und Kaonen-Erzeugung folgt somit für den Exponenten des primären Nukleonenspektrums der gleiche Wert im Bereich 0.5 - 10 TeV.

Das Neutron-Nukleon-Verhältnis n/N des Primärspektrums ergibt sich aus dem Ladungsverhältnis der Myonen ebenfalls unter Berücksichtigung des Skalenverhaltens der starken Wechselwirkung mit Hilfe der Beschleunigerdaten vom ISR - CERN. Abb. 3 zeigt unser gemessenes Ladungsverhältnis R im Vergleich mit den zusammengefaßten Messungen aller anderen Spektrometer und mit den Utah-Werten, die in 1,5 km Tiefe gemessen wurden sowie mit einer theoretischen Kurve, bei der n/N = 13,6 % angenommen ist. Unsere Messungen bestätigen diesen Wert mit der Ausnahme im Energiebereich 50 - 100 GeV. Das Minimum dort weist auf ein n/N = (18 - 2) % für Primärenergien 0.5 - 1 TeV hin.

Die Suche nach Punktquellen der kosmischen Strahlung (Pulsare) ergab nur einen Kandidaten mit einer 45-Anisotropie von $\int = 30$ % bei einer Primärenergie von 0.3 TeV. Die Richtung aus der diese Strahlung scheinbar kommt, ist der Himmelsäquator bei 5 Uhr 45 min siderischer Zeit (im Orion; die tatsächliche Position einer möglichen Quelle ist aber auf Grund der Teilchenablenkung in den interplanetaren und galaktischen Magnetfeldern damit nicht angegeben). Diese Messung bestätigt japanische Untersuchungen aus den fünfziger Jahren zur gleichen Energie bei geringen Abweichungen (30 min) der Position.

Alle zum Punkt b) angegebenen Messungen können im Prinzip auch mit Satelliten-Apparaturen direkt in der Primärstrahlung durchgeführt werden. In dem betrachteten Energiebereich sind die Meßgeräte aber zu aufwendig und verhältnismäßig teuer. Bis jetzt gibt es daher überhaupt erst eine Messung und nur zum Punkt b1 (mit den russischen Proton-Satelliten). Somit sind dieser Meßbereich und die damit zusammenhängenden astrophysikalischen Fragestellungen weiterhin nur mit Myonenspektrometern erforschbar.

(24 528)

Bild 1 Gemessene differentielle Wechselwirkungswahrscheinlichkeiten von Myonen in Eisen summiert über die 3 Prozesse: Knock-on. Paarbildung, Bremsstrahlung im Vergleich zu den theoretischen Kurven für 7 Intervalle der Energieübertragung.

Bild 2 Myonenspektren verschiedener Autoren. Differentielle₃Intensität (multipliziert mit p) als Funktion des Myonimpulses p für verschiedene Zenitwinkel Θ . Zur besseren Lesbarkeit sind die Spektren zu verschiedenen Θ um 10 verschoben.

Tell B: Laboraktivitäten

Für die instrumentelle Ausrüstung von Experimentegruppen wurden folgende Entwicklungsarbeiten durchgeführt:

 Nachdem im Vorjahr gezeigt vorden war, daß die beiden Orts-Koordinaten eines Teilchendurchgangs durch eine flächenhafte Preportionalkammer mit der Methode der Ladungsverteilung in wirtschaftlicher Weise zu ermitteln sind, wurde mit einer Reihe von technischen Verbesserungen und dem Bau eines Prototyp-Moduls für 8 Drähte die Serienreife der Geräte erreicht. Es wurden veiter die für die Übergabe der Informationen an bestehende Datensammeleinrichtungen nötigen Interfaces gebaut. Einen Eindruck von der erzielbaren Meßgenauigkeit (in Längsrichtung des Drahtes < 1 %) gibt Bild 5. Schließlich ist der zeitbestimmende Triggerkanal durch Schaltungsänderungen für den Anschluß von Driftkammer-Elektronik vorbereitet worden.

2. An dem System zum Auslesen von Funkenkammern mittels Nickeldraht wurden eine Reihe von Verbesserungen und Ergänzungen vorgenommen, insbesondere auch im Hinblick auf die Verarbeitbarkeit von gleichzeitig mehr als 64 Kanälen, die durch den Ausbau des DASP-Experiments nötig wurde.

3. Für ein in Vorbereitung befindliches Experiment wurde ein Gerät zur sehr schmellen Erkennung von Teilchenbahntypen entwickelt, mit welchem dem Funkenkammeraufbau stark vorselektierte Triggerimpulse zugeführt werden können. Die den Trigger bestimmenden Konfigurationen können während des Runs vom Rechner her geändert werden.

4. Dem in wachsendem Maße auftretenden Bedarf nach einer visuellen Ausgabemöglichkeit für Zähler, ADC's, TDC's usw. ohne die Hilfe eines Rechners (PDP8/PDP11) wurde entsprochen durch den Bau eines Ansteuergerätes für Fernsehschirme, auf dem sich einige Dutzend Zählerstände in übersichtlicher Weise mit erläuternden Bezeichnungen darstellen lassen. Durch die Verwendung von wiederprogrammierbaren Speicherbausteinen lassen sich Format und Erläuterungen leicht neuen Forderungen anpassen. Des weiteren ermöglicht das Gerät die Darstellung in Histogrammform mit einer Auflösung von 1 in 256 in x- und y-Richtung. Dieser Betrieb ist möglich unter Verwendung eines Test-Controllers, der so ausgelegt wurde, daß er für die Dialog-Funktion die Rolle des Rahmensteuergerätes und Rechner mit einer Reihe von vielseitigen Aufrufprogrammen übernizmt. 5. Im Rahmen von Ingenieurarbeiten wurde die Frage nach dem wirtschaftlichen Einsatz von Mikroprozessoren in DESY-Experimenten untersucht. Die sich abzeichnenden Möglichkeiten scheinen sowohl preislich als auch im betrieblichen Ablauf sehr günstig zu sein.

6. Des weiteren sind Interface-Schaltungen für verschiedene Gruppen entworfen und gebaut worden. Schlißlich wurde in einer Reihe von Fällen Software-Unterstützung gegeben, soweit das zu schreibende oder zu ändernde Programm der Daten liefernden Hardware zugewandt war.

Bild 5 Versuchsaufbau für bidirektionale Auslese von Proportionalkammern

Literatur	Jahresbericht	1975	Teil A
-----------	---------------	------	--------

Rubrik: did

Autoren:

A. Bäcker

M. Stamm

H.-J. Meyer

K. Carstensen

Titel:

Datenanalvse eines Experiments zur elektromagnetischen Wechselwirkung von Muonen

Experiment zur Untersuchung elektromagnetischer Wechselwirkungen von Muonen der kosmischen Strahlung

Text eines automatischen Funkenkammersystems für ein Muonenspektrometer

Impulsspektrum und Ladungsverhältnis von kosmischen Muonen bis 1 eV Zita1:

Dissertation Kiel 1975 r- Diplomarbeit Kiel 1976

Dissertation Kiel 1976

Diplomarbeit Kiel 1975

Literatur Jahresbericht 1975 Teil A

Rubrik: eee

-- --

Autoren:

W. Stamm, A. Bäcker, C. Grupen, H. Jokisch, W.D. Dau, O.C. Allkofer

W.D. Dau, K. Carstensen, H. Jokisch

K. Carstensen, H. Jokisch, H.-J. Meyer, W.D. Dau, C. Grupen, O.C. Allkofer, W. Stamm

H. Jokisch, K. Carstensen

Titel:

Electromagnetic Interactions of Cosmic Ray Muons

Production Spectra of Cosmic Ray Muons

The Sea Level Muon Spectrum and Charge Ratio at 75°

Search for Anisotropy of Muons

Zitat:

14th International Conference on Cosmic Rays München 1975, 5, 1926 - 1930

14th International Conference on Cosmic Rays München 1975, 5, 1931 - 1936

14th International Conference on Cosmic Rays München 1975, 5, 2082 - 2087

14th International Conference on Cosmic Rays München 1975, 1, 578 - 580 Rubrik: eee

Autoren:

F. Hübler, A. Krolzig

Titel:

Alphanumeric and Histogram Direct Display Literatur Jahresbericht 1975 Teil B

Zitat:

Proceedings of the 2nd International Symposium on CAMAC in Computer Applications Rubrik: fff

.

Literatur Jahresbericht 1975 Teil B

Autoren:

Titel:

,

A. Krolzig, R. Ölschläger, R. Pforte

Experimente-Überwachungsgerät mit dem Mikroprozessorbaustein INTEL 8008

.

Zitat:

Tagung der Studiengruppe "Nukleare Elektronik" bei der GSI Darmstadt, September 1975

.

- F52 - Streamerkammer

Die Arbeiten der Gruppe F52 erstreckten sich im Berichtsjahr auf die Fertigstellung des Neubaus einer Streamerkammer, die für die tiefinelastische Elektronenstreuung am 12 GeV Elektronen-Synchrotron der Cornell-Universität eingesetzt wird. Die Kammer konnte im 1. Halbjahr 75 in Cornell aufgebaut und in Betrieb gesetzt werden. Erste Testmessungen am Strahl fanden im Sommer 75 statt und eine erste experimentelle Datennahme fand im Herbst 75 statt, bei der ca. 50 000 Bilder genommen wurden. Eine Beschreibung dieser Kammer wurde bereits im Jahresbericht 1974 geliefert. Für das Jahr 1976 ist die Aufnahme von ca. 1 Mill. Bilder vorgesehen.

Neben dem Aufbau der Streamerkammer in Cornell wurden Messungen mit der DESY-Streamerkammer zur tiefinelastischen Elektroproduktion bei kleiner Polarisation (kleines ε , Exp. Nr. 130) zusammen mit der Gruppe Fl durchgeführt. Etwa 100 000 Bilder konnten Anfang 1975 genommen werden. Durch das Großfeuer bei DESY wurde das Experiment vorzeitig beendet. Die Streamerkammer selbst konnte jedoch repariert werden und wird für Testmessungen zur Weiterentwicklung der Streamerkammer verwendet. - F54 - Elektronik-Service

Die Gruppe - F 54 - Elektronik-Service mußte im Jahre 1975 ihre Vielseitigkeit unter Beweis stellen. Für das Berichtsjahr sind besonders die vielen zusätzlichen Arbeiten, die über den Routinebetrieb hinausgehen, hervorzuheben.

Ab 6. Mai bis zum September 1975 stand die Brandschadensbeseitigung an elektronischen Meßgeräten, die durch Säure- und Rußeinwirkungen in starke Mitleidenschaft gezogen weren, im Vordergrund der Aktivitäten. Mehr als 1000 Geröte wurden von der ^Gruppe – F 54 – chemisch behandelt und gereinigt. In ca. 500 Fällen wurden Reparaturon an brandgeschädigten Geräten ausgeführt. Der hohe Arbeitseinsutz wurde dadurch gelohnt, daß alle Geröte durch die grof-angelogte Reinigungs- und Restaurierungsaktion gerettet werden konnten.

Zum Tage der "Offenen Tür" im Oktober improvisierte die Gruppe - F 5⁴ eine Demonstrationsschau von elektronischen Geräten im Meßeinsatz. Besonders bei dem jüngeren Besucherkreis fanden die vorbereiteten Laborversuche, die vom Publikum selbst bedient werden durften, ein großes Interesse.

Eine weitere erwähnenswerte Sonderaufgabe war der Ausbau und die Betreuung der elektroakustischen Übertragungsanlage für Hörsaal und Kantine. In regelmähigen Abständen ist die Anles un varien, bei großen und offiziellen Veranstaltungen wird die Bedienung von der Gruppe übernommen. Infolge dieser unvorhersehbaren Sondereinsätte gab os bei dem Reparaturbetrieb zwangsläufig Verzögerungen, die erst im Jahre 1976 abgebaut werden können. Ohne Berücksichtigung der Brandschüden war dennoch das Reparaturaufkommen mit ca. 1000 Geräten unverändert zum Vorjahr. Nur durch den Einsatz aller verfügbaren Kräfte, konnte das anstehende Pensum bewältigt werden.

Vorübergehend zurückgestellt werden mußten dafür die anderen Aufgaben der Gerätewirtschaft wie Prüffeld, Dokumentation und Geräteliste.

Wegen der knapper werdenden Mittel, wird in der nächsten Zeit die Instandhaltung und die optimale Ausnutzung des vorhandenen Geräteparks noch wichtiger. Die Gruppe - F 54 - wird besonders mit dem Reparatürdienst und dem Gerätevorleih die Gerätewirtschaft auf diese Belange ausrichten.

- F56 - Spezielle Zählerelektronik

Während des ersten Halbjahres ergänzten wir das 1974 an die Gruppen F31/F35 ausgelieferte CATO-/PERSEUS-System, das die gesamte Analog- und Ausleseelektronik der dort verwendeten Proportionalkammern beinhaltet, durch einige neue Testgeräte, die das komplette System in der Testphase des Experiments kontrollieren. Durch den Kabelbrand unter der Experimentierhalle wurden wir veranlaßt, einige Hundert dieser CATO-/PERSEUS-Karten zu überprüfen und neu abzugleichen, eine Arbeit, die viele Wochen in Anspruch nahm.

Daneben entwickelte F56 für die Gruppen F12, F35 und F36 einige neuartige Nanosekundengeräte, wie z.B. Fast Fanout, schnelle Vielfachkoinzidenzen mit zusätzlichen ODER-Entscheidungen sowie sehr kompakte Zählgeräte. Diese Module wurden in Stückzahlen von jeweils 10 bis 30 von F56 gebaut und ausgeliefert.

Im August 1975 erhielten wir den Auftrag zur Entwicklung eines Verstärkersystems zum Anschluß an Ionisationskammern. Da die Linearitätsanforderung hoch ist (Nichtlinearität $< 10^{-3}$), muß der Verstärker eine hohe Leerlaufverstärkung (10^3 bis 10^4 fach) haben. Da der in der Kammer auftretende Strom nicht der Energie proportional ist, sondern nur die entstandene Ladung, muß innerhalb des Verstärkersystems der Strom über die Zeit integriert werden. Dies kann z.B. in einem ladungsempfindlichen Verstärker, der wie ein Integrator geschaltet ist, geschehen. Wegen der geringen Primärionisation (die Primärladung beträgt nur einige 10^{-15} Coulomb) muß der Verstärker besonders rauscharm sein. Dies erreicht man über besonders ausgesuchte Feldeffekt-Transistoren in der Eingangsschaltung sowie durch sorgfältige Wahl und Behandlung der Bauelemente beim Aufbau.

Die Entwicklung zeigt, daß mit relativ einfachen Mitteln eine Eingangsrauschladung von etwa 4 \cdot 10⁻¹⁷ Coulomb bei 0 pF Detektorkapazität erreichbar ist, die bei 100 pF auf etwa 2 \cdot 10⁻¹⁶ Coulomb ansteigt. Genauere Messungen werden noch durchgeführt. Innerhalb unserer Gruppe wurde im Berichtsjahr eine Diplomarbeit [1] über ein "Schnelles Hardware-System zur Spurenerkennung in Teleskopsystemen der Hochenergiephysik" beendet. Dieses Hardware-System kann als Trigger verwendet werden, der in kurzer Zeit alle Bereiche angibt, in denen sich entsprechend vorgegebener Genauigkeit Spuren befinden können. Die mittlere Eventrate liegt bei 2·10⁴/s. So kann ein gutes Event durch Anzahl und Art der Spuren bestimmt werden. Es ist aber auch möglich, vollständige Spurenrekonstruktion mit Berechnung von Ausgleichsgeraden durchzuführen, dann liegt die mittlere Eventrate bei 10⁴/s.

Das System arbeitet in zwei Schritten, zuerst werden durch eine (x,y,ϕ) -Zuordnung die räumlichen Punktepaare (x,y) erzeugt, dann aus diesen durch die assoziative Spurenrekonstruktion räumliche Spuren errechnet. Die x-, y- und ϕ -Werte sind Adressen der vom Teilchen durchstoßenen Flächendetektoren, wobei die ϕ -Detektorebene, die sowohl gegen die x- als auch gegen die y-Ebene geneigt ist, zur Vermeidung von Mehrdeutigkeiten benutzt wird.

Die Arbeit erläutert, wie man je nach Aufwand ein geeignetes Spurenerkennungssystem aufbaut.

Autoren: Stuckenberg, HJ.	Titel: CAMAC for Newcomers	Zitat: Supplement A to CAMAC Bulletin No.13 CEC, Luxembourg, Sept. 1975, 40 p.	
Stuckenberg, HJ.	CAMAC Bibliography	Supplement B to CAMAC Bulletin No.13 CEC, Luxembourg, Sept. 1975, 36 p.	
Stuckenberg, HJ.	Microprocessors	CAMAC Bulletin No.14, Dec. 1975, pp. 5-7.	
			- 16
			1

Rubrik: bbb)

T

169 -

Autoren: Stuckenberg, HJ.	Titel: CAMAC - Eine Einführung in ein System standardisierter Datenwege zwischen Rechnern und ihrer Peripherie	Zitat: BMFT Forschungsbericht DV 75-05 Datenverarbeitung Okt. 1975, 90 p.

Rubrik: ddd)	Literatur Jahresbericht 1975		
Autoren: Bösch, HD.	Titel: Ein schnelles Hardware-System zur Spurenerkennung in Teleskopsystemen der Hochenergiephysik	Zitat: (1) Diplomarbeit Hamburg 1975 (Sept.) 75 p.	
_			

Т

170 -

Rubrik: eee)

Literatur Jahresbericht 1975

- 171 -

Autoren:	Titel:	Zitat:
Stuckenberg, HJ.	CAMAC-Hardware	vorgetragen als Invited Paper auf
		dem 2nd International Symposium on
		CAMAC in Computer Applications
		$\frac{1}{1000} = \frac{1}{1000} = 1$
		Drusser, occ. 14 10, 1975.

Т

- 172 -

Ŧ

Autoren: Stuckenberg, HJ.	Titel: Energie- und Zeitmessungen mit rausch- armen, ladungsempfindlichen Ionisations- kammerverstärkern	Zitat: vorgetragen in der Gesamthochschule Siegen als Kolloquiumsvortrag am 18.12.75.

Die Zusammenarbeit mit dem Universitätskrankenhaus Hamburg-Eppendorf wurde fortgesetzt.

Die Projekte ISAAC (Nuklearmedizin) und LABMAT (klinisch-chemisches Labor) wurden abgeschlossen. Auf ihnen bauen neue Projekte auf. Bei der nuklearmedizinischen Anwendung wurde die Entwicklung der Dialogsprache zur Auswertung von Szintigrammen weitergeführt, im klinisch-chemischen Labor konzentrierte sich die Arbeit auf Untersuchungen zur Verbesserung der Qualitätskontrolle.

Aufbauend auf ISAAC und LABMAT wurde eine vorläufige Version eines sternförmigen Rechnernetzwerkes in Betrieb genommen. Für seinen weiteren Ausbau wurde ein Datenfernübertragungssystem für Rechner-Rechner-Verbindungen entwickelt. Dabei wurde eine Anwendbarkeit für Rechner möglichst vieler Typen angestrebt. Es zeichnet sich deshalb dadurch aus, daß es sowohl eine Kommunikation über Standard-Schnittstellen (bis 40.8 Kbaud), als auch über eine schnelle nur für DEC-Rechner geeignete Schnittstelle (bis 1 Mbaud) ermöglicht.

Im Hinblick auf den weiteren Ausbau des Rechnernetzes wurde damit begonnen, kommerziell erhältliche Datenbanken zu testen.

Einen breiten Raum nahmen die Vorbereitungen für ein neues Projekt zur quantitativen Auswertung von Röntgenbildern ein. Das Projekt geht von der Tatsache aus, daß die in Röntgenbildern enthaltene morphologische Information durch den Arzt weitgehend ausgeschöpft werden kann, während funktionelle Abläufe nur schwer beurteilt werden können. Die von uns entworfene Apparatur (Abb. 1) soll es ermöglichen, aus Angiogrammen (Gefäßdarstellungen durch Kontrastmittel) quantitative Aussagen über den Kontrastmittelfluß zu erhalten. Unsere Erfahrung zeigt, daß ein solches System nur praktikabel ist, wenn es am Arbeitsplatz des Arztes in Echtzeit arbeiten kann. Diese Forderung führt wegen der zu bearbeitenden Datenraten (10 Mbytes/s) an die Grenze der technologischen Durchführbarkeit. Als medizinische Fragestellung soll die Durchblutung der Niere untersucht werden, die bei der Diagnostik der weitverbreiteten Krankheit des Bluthochdrucks eine wesentliche Rolle spielt. (23 410) Abb. AUFGABEN: -Speicherung von Programmen -Kurzzeitspeicherung (#1Tag) der Daten MIKROPROGRAMMIERTES SCHALTWERK für die **DIGITALISIERUNG des** FS-KAMERA BILDES. Wählbar sind : (für Aufnahmen in -Ortsauflösung (bis 256 Punkte/Zeile)/ Echtzeit bis 50 Bilder/s) PLATTEN SPEICHER -Zeitauflösung (bis 50 Bilder/s) -Bereich (rechteckig) Ċ PLATTEN-/SPEICHER MAGNETBAND-EINHEIT HAUPT-KONTROLL-AUFGABEN: RECHNER RECHNER 40,8kb/960kb AUFNAHME-STEUERUNG Baten-Verwaltung 2 x IBM / 370-168 32k 450ns MOS (langfristig > 1Tag) füber Rechner-48 k 900 ns KERN - Ausführung von rechenintensiven netz} FILM-SCANNER Q D Auswertungs-programmen d. (für Aufnahmen > 50 Bilder/s) - 19 Bar **INTERFACE für** WIEDERGABE **AUFGABEN:** SPEZIALPROZESSOREN STEUERUNG - Steverung der Bildaufnahme **VIDEO RECORDER** -Steuerung der interaktiven Bildbearbeitung (für Aufnahmen bis 50 Bilder/s) Ausführung einfacher **MIKROPROGRAMMIERTES** Auswertungsprogramme SCHALTWERK für die WIEDERGABE KOMMANDOS -des Bildes (auch farbcodiert) ħ -von Kurven (z.B. Zeitabhängigkeit) -von Text (Pat.daten,Kommandos) NAME. TERMINAL - 151 / 14 FARBFERNSER: MONITOR - 5.75 Ineuf DESY AUSWERTUNG von RÖNTGEN-VIDEDBILDERIN

Autoren:

K.H. Höhne

Titel:

Das Dezentralisierte Rechnersystem im Universitätskrankenhaus Hamburg -Eppendorf Zitat:

Münch. Med. Wschr. 117 (1975) 1769 - 1774

- 175 -

- 176 -

Autoren:Titel:Zitat:K.H. HöhneEin Modell für die integrierte Verarbeitung
von Informationen aus verschiedenartigen
Bereichen eines UniversitätskrankenhausesDESY-Bericht DV 75/1

- ...

Rubrik: bb. eee)

Literatur Jahresbericht 1975

Autoren:

G. Pfeiffer, K.H. Höhne

K. Harm, K.H. Höhne, K.D. Voigt, K. Dahlmann, W.R. Dix

W. Ebenritter, K.H. Höhne, G. Pfeiffer

Titel:

A Dialog Language for the Interactive Processing of Scintigraphic Data

Evaluation et Contrôle de Qualité des Resultats biologiques au Moyen d'un Ordinateur on-line

A Cathode Ray Tube Display System for the Presentation and Interactive Analysis of Scintigraphic Data

Zitat:

International Conference on Information Processing in Scintigraphy, Orsay, 1975

Biologie prospective, 3^{me} Colloque de Pont-a-Mousson, Oct. 1975

13th International Annual Meeting of the Society of Nuclear Medicine, Copenhagen 1975

.

•'

Der Beitrag der Gruppe - F58 - lag bei Druckbeginn noch nicht vor.

.
- L - Bibliothek und Dokumentation *******************************

Bibliothek

Die Bibliothek wurde um 105 m² auf 350 m² erweitert. Im neuen Untergeschoß sind die Bücher (Monographien) aufgestellt, während das Obergeschoß den wissenschaftlichen Einzelarbeiten - in Zeitschriften, Konferenzberichten, Reports und Preprints - vorbehalten ist.

Die beiden nachfolgenden Tabellen zeigen die zahlenmäßige Entwicklung der Bibliothek:

Bi	blioth	eksbestan	<u>d</u>	
	Zug 1974	ang 1975	Bes Ende 1974	tand Ende 1975
Monographien	552	605	8003	8608
gebundene Zeitschriftenbände	457	594	6800	7394
laufend gehaltene Zeitschriften	24	13	311	324
Berichte und Preprints	4109	4538	ca. 18000	ca. 18000 ⁺⁾

+) der Bestand an Berichten und Preprints ist nicht gewachsen, weil veröffentlichte Preprints aussortiert wurden (s. letzter Absatz).

Bibliotheksbenutzung

	1974	1975
Leserzahl	ca. 900	ca. 900
Entleihvorgänge	ca. 450/Woche	ca. 450/Woche
Entleihvorgänge im auswärtigen Leihverkehr	305	241

Dokumentation

11038 (im Vorjahr: 10554) Arbeiten aller Art (Preprints, Zeitschriftenartikel, Konferenzbeiträge u.a.) aus den Gebieten Elementarteilchen- bzw. Hochenergiephysik, Quantenfeldtheorie und Beschleunigertechnologie wurden dokumentarisch erfaßt, klassifiziert und mit Schlagwörtern versehen. Die so aufbereiteten Daten wurden auf Magnetbänder aufgenommen und fortlaufend kumuliert.

	experimentel1	instrumentell	theoretisch	gesamt
Reports und Preprints	755	794	2989	4538 (41%)
andere Veröffentlichungen (in Zeitschriften und Konferenzen: Bücher)	1321	781	6309	6500 (50%)
		/01	4390	6500 (59%)
Gesamt	2076 (19%)	1575 (14%)	7387 (67%)) 11038

Von der Dokumentation 1975 erfaßte Veröffentlichungen

Die Tabelle zeigt, daß zwei Drittel aller aufgenommenen Veröffentlichungen theoretische Arbeiten sind. - Die besondere Bedeutung der Preprints für die Hochenergiephysik ist abzulesen an ihrem Anteil von mehr als 40 Prozent; das entspricht übrigens einem durchschnittlichen Zugang von 90 Preprints pro Woche in der Bibliothek. Der durchschnittliche zeitliche Abstand zwischen der Aufnahme der gleichen Arbeit als Preprint und als Zeitschriftenartikel beträgt in unserer Dokumentation 8 Monate; da Preprints jeweils sofort, d.h. mit Verzugszeiten von etwa einer Woche, Zeitschriftenartikel mit einer Verzugszeit von etwa 6 Wochen aufgenommen werden, informiert unsere Dokumentation den Benutzer über neue Literatur überschlägig ein halbes Jahr früher als Dienste, die keine Preprints aufnehmen. Dabei ist nicht in Betracht gezogen, daß die anderen Dienste viel längere Verzugszeiten haben.

Der maschinenlesbare Datenbestand wurde in vier Formen dem Benutzer angeboten:

- a) als vierzehntägig erscheinende Zeitschrift HIGH ENERGY PHYSICS INDEX mit jährlich kumulierten Indices (Verleger: ZAED, Karlsruhe).
- b) als vierzehntägig herausgegebener <u>SDI-Dienst</u> (SDI = Selective Dissemination of Information). Die 241 Teilnehmer (davon 52% aus der Bundesrepublik und 48% aus dem Ausland) erhalten regelmäßig Maschinenausdrucke relevanter nach Schlagwortkombinationen ausgesuchter, neu eingegangener Titel.
- c) als <u>Retrieval-Ausdruck</u> (Retrieval = <u>einmalige</u> retrospektive Literatursuche). Dafür steht eine Datenbank mit einem Bestand von 55 000 Publikationen zur Verfügung. - Insgesamt wurden im Berichtsjahr etwa 350 Retrievalanfragen beantwortet.
- d) als Magnetbanddienst. Im Jahre 1975 wurden die folgenden Institute regelmäßig mit den Datenbändern des HIGH ENERGY PHYSICS INDEX beliefert bzw. mit der Belieferung begonnen:

CERN, Genf SLAC/LBL, Stanford/Berkeley KEK, Tsukuba (Japan) Rutherford Lab., Chilton (bezieht unsere Bänder über SLAC) Ecole Polytechnique, Paris

Die genannten Institute benutzen die DESY-Datenbänder in ihren eigenen Informationssystemen für Retrieval oder SDI.

Eine kumulierte Anti-Preprintliste liegt seit Anfang 1975 in der Bibliothek aus. Sie enthält die Quellenangabe der in Zeitschriften usw. veröffentlichten Preprints, die dann aus der Bibliothek entfernt werden. An die Stelle des Preprints wird außerdem ein Blatt mit dem Hinweis auf die Veröffentlichung eingeordnet. SLAC, CERN und das Physikalische Institut der Universität Bonn haben Interesse an diesem Verfahren gezeigt.

(24 418/31)

Die Fensterfront der jetzt auf zwei Stockwerke ausgedehnten DESY-Bibliothek.

BEREICH MASCHINE

•

Synchrotron	
- S1 -	S.184
Speicherring DORIS	
- H -	192
Speicherring PETRA	201
Aufbau der Experimente	
- S2 -	230
Energieversorgung	
- К -	237
Strahlenschutz	
- D3 -	241

- S1 - Synchrotron

Obwohl die Montagezeit vom 18. Aug. bis zum 26. Sept. 1975 mit 6 Arbeitswochen doppelt so lang war wie die entsprechende Montagezeit im Vorjahr, lag die für die im wesentlichen für die Hochenergiephysik erhaltene Hauptbenutzerzeit mit 5771 h nur wenig niedriger als im Rekordjahr 1974 (5906 h). Die Ausfallrate betrug bezogen auf die vorgesehene Hauptbenutzerzeit 8 %, bezogen auf die Gesamtbetriebszeit 7 % und ist damit fast gleich mit den Werten des Vorjahres (8,7 % bzw. 7,6 %).

Die trotz längerer Montagezeit kaum verminderte Hauptbenutzerzeit erklärt sich aus herabgedrücktem Eigenbedarf der Synchrotrongruppe für Wartungs- und Studienschichten, vgl. hierzu die nachfolgende Tabelle:

	Gesamt- betriebsze	für 	Exp.	geplant	für	Ехр.	erh.	Masch: studie	inen- en	Wartu schic	ngs- hten
1964	-		1009	h .		767	h	821	h	-	
1965	5075 h		3464	h		2592	h	1208	h	400	h
1966	5855 h		4228	h		3460	h	1119	h	508	h
1967	6816 h		4833	h		4367	h	1105	h	878	h
1968	6968 h		5745	h		5137	h	527	h	696	h
1969	7160 h		5848	h		5574	h	552	h	760	h
1970	6456 h		5037	h		4854	h	766	h	653	h
1971	6384 h		5026	h		4431	h	696	h	662	h
1972	6876 h		5574	h		4978	h	571	h	731	h
1973	7792 h		6326	h		5641	h	558	h	908	h
1974	7760 h		6468	h		5906	h	456	h	836	h
1975	7400 h		6266	h		5771	h	336	h	798	h

Von den 6266 vorgesehenen Hauptbenutzerstunden beanspruchte DORIS nur noch 880 h (im DORIS-Anlaufjahr 1974 waren es 2070 h aus 6468 h). Parallel zu anderen Hauptbenutzern konnten für DORIS einschl. Experimenten in den DORIS-Wechselwirkungszonen 5304 h eingeplant werden.

Betriebsergebnis: wiederum nahe dem bisherigen Höchstwert Für das Entwicklungsprogramm der Synchrotrongruppe waren 1975 drei Schwerpunkte gesetzt:

- technische Verbesserungen der bestehenden Anlagen
- Weiterführung des Vorhabens 'Protonenbeschleunigung' bis zum ersten Strahlbetrieb
- Teilnahme einer wachsenden Anzahl von Mitarbeitern an den Vorarbeiten für PETRA

Zu den technischen Verbesserungen:

Der Linac I konnte Ende 1975 mit 51 MeV statt 40 MeV betrieben Linac I werden. Dieses wurde möglich durch die Installation von Ionengetterpumpen hoher Saugleistung an den 5 Beschleunigerabschnitten des Linacs sowie durch Ersatz des magnetischen Inflektors im ger. Stück 1 des Synchrotrons durch einen Kicker gleichen Typs wie bei der Linac II-Injektion bzw. Ejektion DESY/DORIS. Durch weiteres "Aushärten" der Beschleunigerabschnitte sowie Ersatz der Glas-HF-Fenster zwischen Hohlleitern und Beschleunigerabschnitten durch Keramikfenster darf man bis zu 60 MeV erwarten. Sinn der Energieerhöhung ist die Erleichterung des Einschusses in das Synchrotron.

Abgesehen von den Dipolkorrekturen, die etwa linear mit wachsendem Feld unempfindlich werden, gewinnt man besonders bei den Quadrupolkorrekturen, da hier der Resonanzeinfluß viel stärker als linear mit wachsendem Feld abnimmt. Für die Einzelbuncherzeugung im 500 MHz-Raster (Erfordernis von DORIS) wurde ein Zusatzpulser für das Gitter der Triodenkanone eingebaut. Dieser arbeitet zusammen mit der schon länger vorhandenen Möglichkeit, über ein Plattenpaar im Injektionsteil des Linacs die sog. Bunchbesetzungszahl 4 zu erzeugen (d.h. nur jeden 4. bunch im 500 MHz-Raster durchzulassen). Die vorgenannten Anordnungen können nur vorläufig sein. Der Linac I wird seit Inbetriebnahme von DORIS wie früher bereits beschrieben, von Puls zu Puls im 20 msec-Raster alternierend mit normalem Puls

Entwicklungsprogramm

(für Halle I/II) oder mit modifiziertem Puls (für DORIS) betrieben. Für BBZ 4 oder verkürzte Ringfüllung ist dieses bei nicht zu hohem Strom für den "Normalpuls" gerade noch möglich auch dann, wenn die Modifikation für die DORIS-Pulse im Injektionsteil vorgenommen werden. Für Einzelbunche ist der aus dem 'beam loading' im Linac resultierende Energieunterschied gegenüber dem Normalpuls zu groß. Als Dauerlösung für die verschiedenen Puls-Modifikationen für DORIS ist deshalb ein 'Post-Linac-Chopper' vorgesehen. Die Optik für den Transport Linac I/Synchrotron wurde bereits dafür umgebaut, eine Versuchsanordnung für den Chopper war am Ende des Berichtsjahres fertig. Dieser Post-Linac-Chopper wird in einer weiteren Ausbaustufe auch für den PETRA-Betrieb benötigt; es sei hier auf das PETRA-Kapitel dieses Berichts verwiesen. Schließlich wurde im Linac-Beschleunigerraum das sog. 45⁰-Spektrometer wieder aufgebaut, welches u.a. eine Versuchsanordnung für ein Experiment der Universität Hamburg enthält (Aktivierungen).

Der Linearbeschleuniger II war 1975 5337 Stunden mit Strahl in Betrieb, davon über 5000 h als Positronenquelle für DESY/DORIS. Die Fokussierung des auf den e⁻/e⁺-Konverter einfallenden Elektronenstrahls wurde durch eine gepulste Spule verbessert, die Energie des einfallenden Elektronenstrahls erhöht um 7/5 durch Versatz des Konverters um 2 Beschleunigerabschnitte. Alle 14 Abschnitte (statt früher 12) wurden betriebsbereit gemacht, so daß für den Positronenteil des Linacs nicht weniger Abschnitte zur Verfügung stehen als früher. 1 mA Positronenstrom statt früher 0,5 mA Positronenstrom im Routinebetrieb war am Ende des Berichtsjahres das Ergebnis dieser Maßnahmen. Das Injektionssystem für den Linac II wurde erneuert. Die Verluste des Strahls auf dem Wege von der Kanone bis in den Linac wurden dadurch stark verringert, bzw. der in den Linac eingeschossene Strom um den Faktor 5 erhöht. Wegen des 'beam loading' im Elektronenteil des Linacs kann hieraus im wesentlichen nur Nutzen für Kurzpuls- bzw. Einzelbunchbetrieb gezogen werden. Außerdem wird eine Verbesserung der 3 GHz-Vorbündelung erforderlich.

Linac II

Die in das Injektionssystem ebenfalls neu eingebauten Anordnungen für Bunchbesetzungszahlveränderung bzw. Einzelbunchbetrieb wird im PETRA-Teil (Injektion) dieses Berichts beschrieben; BBZ 4, Einzelbunchbetrieb und Kurzpulsbetrieb werden jedoch auch für DORIS benötigt.

Die Erhöhung der Transfer-Energie DESY-DORIS war bereits 1974 beschlossen; die Planung und Komponentenbeschaffung ebenfalls abgeschlossen (s. Jahresbericht 1974, S. 96). Der Umbau konnte konnte wegen der Maschinenzeitplanung erst im Aug./Sept. 1975 in der Montagezeit durchgeführt werden. Die Inbetriebnahme für Energien bis zu 4,3 GeV erfolgte ohne Schwierigkeit; für 5 GeV müßte die Stromversorgung verstärkt werden.

Schwerpunkt war der verstärkte Einsatz der Prozeßrechner ARGUS 500 und PDP 15, um im Rahmen des Verbundbetriebes Linac I, Linac II, DESY, DORIS die für Einstellarbeiten und Fehlersuche verbrauchte Verlustzeit weiter herabzudrücken. Der Linac II wird inzwischen vom Synchrotron-HKR aus fernbedient, die beiden Rechner sind verbunden. Die ARGUS 500 liefert mehr Information u.a. über die Optik der Strahlführung, die PDP 15 wurde in Hardware und Software erweitert (Kernspeicher, 2.Display, Unichannel, Wechselplatte, CAMAC-Anschlußmöglichkeit). Die neue Systemkonfiguration war Ende 1975 im wesentlichen einsatzbereit, so daß weitere Anlagen an die Rechner angeschlossen werden können (z.B. Auswertung von Strahllagemessungen).

Die Personensicherheit gegen Strahlungsunfälle wurde mit Inbetriebnahme der sog. 2. Kette des technischen Interlocks (Melde- und Wirkkreise) stark erhöht. Zahlreiche Maßnahmen (Löscheinrichtungen, Feuermelder, Rauchabschottung, Einsatzorganisation) zur Erhöhung der Feuersicherheit wurden durchgeführt aufgrund der Erfahrungen nach dem Kabelbrand unter Halle I im Sommer 1975. Erhöhung der Transferenergie DESY-DORIS

Kontrolleinrichtungen

Sicherheitseinrichtungen Für den Verbundbetrieb von Linacs, Synchrotron und DORIS wurden die Anlagenteile für die Frequenzaufbereitung erweitert. Für die Positronenzyklen (anderes beam-loading als in den Elektronenzyklen) wurde die Möglichkeit geschaffen, ein spezielles Amplitudenprogramm einzublenden (Programmgenerator, gleichspannungsgekoppelter Modulator mit Regelung für Gleichspannungsverstärkung um den Faktor 500000). Die bei DESY und DORIS verwendeten Klystrons wurden hinsichtlich ihres Generatorverhaltens bei fehlangepaßter Last untersucht, vor allem zur Gewinnung von Informationen für die Auslegung der

Das Arbeitspensum der Vakuumbetriebsgruppe im Herbstshutdown konnte trotz Verstärkung durch Fachfirmen und Praktikanten nur durch Zuhilfenahme von Überstunden bewältigt werden. Die weiter oben beschriebenen Aktivitäten im Bereich L I, L II, Synchrotron, Strahlführungssysteme mußten von nur etwa einem Drittel der Gruppe geschafft werden, da die anderen zwei Drittel durch anderweitig beschriebene Arbeiten für DORIS gebunden waren.

PETRA-Klystrons.

Im Herbst 1975 wurde der Protonenbandgenerator von der Hersteller- Protonenquelle firma in Einzelteilen geliefert und mit DESY-Mitarbeitern in der Inneren Experimentierfläche des Synchrotrons aufgebaut. Anfang November erfolgte der Abnahmetest. Es zeigte sich, daß der Protonenstrahl alle geforderten Eigenschaften besitzt: Insbesondere wurde mit dem im Injektionsweg befindlichen Spektrometer gezeigt, daß die kinetische Energie von 4 MeV leicht zu erreichen war. Die Pulslänge des Strahls konnte bei einer Wiederholungsrate von 1 Hz zwischen 15 und 70 µsec leicht variiert werden, die Energieunschärfe war im Bereich des flachen Pulsdaches (60 µsec) kleiner als 1 keV. Der analysierte Strahl hatte eine Stromstärke von mehr als 10 mA. Mit einem von der Gruppe S 2 im Geradeausweg des Injektionsweges eingebauten Streifenmonitor wurden die Emittanzen des Strahls in horizontaler und vertikaler Richtung zu 2-4 mrad mm gemessen.

Es ist geplant, Anfang 1976 den Anschluß des Injektionsweges zum Synchrotron hin einzurichten, Protonen einzuschießen und in DESY zu beschleunigen. Hochfrequenz

Vakuumbetriebs-

gruppe HSV

Im I. Quartal wurden die Einzeltests der verschiedenen Verstärker- Protonen-HF stufen, Programmgeneratoren, Netzgeräte (einschl. dazugehöriger Regelungen), Stellglieder (für die Vormagnetisierung) und Regelschleifen beendet.

Im Anschluß daran wurden das Frequenzprogramm, die Vormagnetisierungs-Regelschleife sowie die Amplitudenregelung zunächst für das Drift-Tube-System und dann für das Cavity-System in Betrieb genommen. Nachdem auch die Probleme des Übergangsbereichs gelöst waren, konnten die Labortests im Dezember 1975 abgeschlossen werden.

Parallel dazu liefen die Vorbereitungen für den Einbau des gesamten HF-Systems in das Synchrotron während der Wartungsperiode im Januar 1976.

Messungen mit dem Protonenstrahl werden zeigen, ob evtl. noch weitere Regelschleifen (beam control) notwendig sind.

Eine wachsende Mitarbeiterzahl der Synchrotrongruppe beteiligte sich 1975 an den Vorbereitungen für PETRA, wobei in der 2. Jahreskälfte zut reinen Studien auch in größerem Umfang Ingenieurarbeiten hinzukamen (Injektion, Hochfrequenz, Sicherheitseinrichtungen). Mitarbeit an PETRA

DESKISIK

(24 606)

Bild 1: Strahlverlauf zwischen Linac II, Synchrotron und Speicherring sowie die Strahlen in den Experimentierhallen

(24 286/37) Bild 2: Protonen-Beschleunigungseinheit (aus dem Princeton-Beschleuniger) im ger. Stück 4 des Synchrotrons

(24 631/7) Bild 3: Neues Injektionssystem für den Linearbeschleuniger II

Rubrik :

.

Literatur Jahresbericht 1975

_

Autòren :	Titel :	Zitat :
G. Hemmie	Zur Messung von Feldfehlern in den Führungsmagneten	Int. Bericht DESY S1-75/01 April 1975
۹ <u>م</u>		
J.Peters, H. Musfeldt, D. Büttner F. Kaiser	Messungen am Klystrons VKP 8259 S/N OOl zur Ermittlung von Stabilitäts- bereich und Rieke-Diagramm	Int. Bericht DESY S1-75/03 Sept. 1975
J. Peters, M. Nagl	Überlegungen zu einem Hohlleiter-	Int. Bericht DESY S1-75/04 Nov. 1975
· · ·	nicht phasendrehend angenommenen, impedanztransformierenden Blende	
W. Kriens, J. Peters	Frequenzerzeugung und Zeitsteuerung für die PETRA-Injektion	Techn. Notiz DESY PET 75/7 Sept. 1975
х.		
•		
	х	

- H - Speicherring (ohne PETRA-Aktivitäten)

A) Betriebsstatistik

Im Jahr 1975 war der Speicherring DORIS ca. 6000 Stunden in Betrieb. 75Z dieser Zeit stand er für Hochenergieexperimente zur Verfügung, der Rest wurde für die Vorbereitung dieser Schichten, für Tests und für Maschinenstudien genutzt. Die benutzte Energie war überwiegend 3,1 GeV_{CM} (in 60Z) und 3,7 GeV_{CM} (in 40Z der Zeit).

Die Ströme lagen nach einer neuen Füllung bei ca. 2 x 250 mA und die erzielte spezifische Luminosität bei $1,2 \cdot 10^{31} \text{ cm}^{-2} \text{sec}^{-1} \text{A}^{-2}$ je Wechselwirkungszone. Abb.l zeigt als Beispiel die Luminosität während der Woche vom 25.7.-31.7.75. Die Luminosität fiel mit einer Lebensdauer von ca. 8^h ab. Eine neue Füllung bis zur Übergabe an die Experimente dauerte im Mittel etwa 30 min.

Durch eine Änderung der optischen Einstellung des Speicherringes konnte im November und Dezember die spezifische Luminosität auf 2,5 · 10³¹ cm⁻² sec⁻¹A⁻² gesteigertwerden.

An einem Wechselwirkungspunkt wurde zur Analyse der Teilchenreaktionen ein longitudinales 20 kF starkes Magnetfeld eingesetzt. Seine Wirkung auf die gespeicherten Strahlen konnte so kompensiert werden, daß Injektion, Lebensdauer und Luminosität nicht beeinträchtigt wurden.

Außerplanmäßige Ausfälle der Maschine waren vor allem auf Defekte an Hochfrequenzkomponenten zurückzuführen. Insbesondere die hochbelasteten Dämpfungsantennen in den Cavities wurden durch Überhitzung leck oder zerstörten in zwei Fällen durch Materialabdampfung die HF-Einkoppelfenster. Da in diesen Fällen das Vakuum zur Reparatur geöffnet und hinterher ausgeheizt werden muß, gehen jedesmal mehrere Schichten Betriebszeit verloren.

Auffällig bei den Ausfällen ist ihre Häufung nach einer Wartungsperiode bzw. nach einem shut down.

B) Technischer Ausbau

Die wichtigste Erweiterung von DORIS und gleichzeitig wesentliche Vorbereitung auf einen Betrieb bei höheren Energien war 1975 der Einbau eines 1)2) neuen Injektionssystems. Im Gegensatz zur alten Injektion, die Teilchen bis 2,2 GeV handhaben konnte, reicht das neue System bis 5 GeV. Auch die Magnete in den Strahltransportwegen zwischen Synchrotron und Speicherring und die Stromversorgung für alle Speicherringmagnete wurden für 5 GeV-Betrieb

ausgebaut.

Alle diese neuen Systeme sind im Herbst erfolgreich in den Routinebetrieb übernommen worden.

Zur Verbesserung des Vakuums in den beiden Wechselwirkungszonen wurden neue Reinigungstechniken erprobt. Dabei wird nach dem Waschen mit Reinigungsflüssigkeiten eine Glimmentladung in der Vakuumkammer gezündet. Ein in der Kammerachse gespannter Draht dient hierbei als Gegenelektrode. Das verwendete Gasgemisch besteht aus Argon mit 10% Sauerstoff. Gleichzeitig wird geheizt. Abschließend erfolgt ein homogenes Heizen mit Kontrolle der Temperaturverteilung über 36 Stunden. Durch diese Maßnahmen konnte der Vakuumdruck in den Wechselwirkungszonen um den Faktor 2 reduziert werden.

Im Speicherring wurde ebenfalls die Technik des Glimmens eingesetzt, wobei die Absaugelektroden benutzt wurden. Mit dieser Maßnahme konnten

1) H2 75/7 2) H3 75/29 die Kohlenwasserstoffanteile im Vakuum unter die Nachweisgrenze gedrückt werden.

Zur Bedämpfung parasitärer Cavity-Schwingungen waren 1974 Ferritstücke 1) beidseitig neben jedes Cavity in die Vakuumkammern gelegt worden. Bei den danach erreichbaren höheren Strahlströmen zeigte sich ab 350 mA eine starke Erhitzung der Ferrite verbunden mit einer Verschlechterung des Vakuumdruckes um mehrere Zehnerpotenzen.

Im shut down 1975 wurde nun eine Kühlung für die insgesamt 96 Ferrite eingeführt, die bis dahin lose auf der Vakuumkammerwand gelegen hatten. Eine Erwärmung und Abgasung ist seitdem nicht mehr beobachtet worden. Die Einstellung der Kreuzung der beiden Strahlen erfolgte in den meisten Fällen mit Hilfe des Raumladungseffektes²⁾. Bei dieser Methode wird einer der beiden Strahlen auf der vertikalen Betatronfrequenz des zweiten Strahls angeregt. Gleichzeitig werden die induzierten Schwingungen im zweiten Strahl beobachtet und ihr Maximum als Funktion der Strahllage gesucht. Die Methode eignet sich besonders zum Auffinden der Kreuzung nach einer Änderung der Optik oder der Energie, da der Raumladungseffekt eine größere Reichweite hat und ein einfaches Ja-Nein-Signal liefert.

Zur schnellen Feinoptimierung der Luminosität in den beiden Wechselwirkungszonen wurden die sog. 0° - γ -Monitore, die die Einzelbremsstrahlungsprozesse $e^+e^- \rightarrow e^+e^- \gamma$ registrieren, in Betrieb genommen. Zählrateneffekte von ca. 1 kHz je 10^{29} cm⁻² sec⁻¹ werden digital und analog angezeigt und gestatten die Optimierung der Kreuzung in longitudinaler und transversaler Richtung, ohne daß die Experimente dadurch gestört werden. Die Bunchabmessungen lassen sich bei dieser Optimierung automatisch mitermitteln. Durch die simultane Beobachtung von Zählern in beiden Wechselwirkungszonen kann die wechselseitige Beeinflussung der Wechselwirkungen untersucht werden. 1) H 75/1

2) DESY H2-75/03

Die Ermittlung des Gasbrems-Untergrundes erfolgt durch Messung mit separierten Strahlen. Dadurch können auch Absolutaussagen über die Luminositäten mit z.Zt. ca. 25% Genauigkeit gemacht werden.

Die Rechnersteuerung des Speicherringes wurde weiterentwickelt mit dem Ziel, die Zuverlässigkeit zu steigern und eine bessere Anpassung an die Betriebserfordernisse zu erreichen.

Die Wartung der Rechenanlage wurde im Laufe des Jahres in eigene Regie übernommen und funktionierte reibungslos.

DORIS wurde 1975 dafür vorbereitet, auch im bisher noch nicht erprobten Energiebereich zwischen 6 und 8,6 GeV routinemäßig zu laufen. Dafür diente nicht CM nur der Ausbau der Injektion, sondern auch Änderungen im Bereich der Strahloptik:

Durch Änderung der Fokussierung wurde die Emittanz halbiert und damit die Strahlquerschnitte verkleinert. Innerhalb der durch Vakuumkammer und nichtlineare Felder gegebenen Apertur hat der Strahl damit mehr Platz für Aufweitungen etwa bei höherer Energie oder durch optische Resonanzen oder durch den beam-beam effect. Es ist ein weiterer Vorteil der kleineren Emittanz, daß die spezifische Luminosität durch diese Maßnahme verdoppelt und damit die Untergrundzählrate in den Experimenten verkleinert wurde. Ein Nachteil dieser Optik ist, daß bei 3,1 GeV_{CM} die Raumladungsgrenze bei ca. 200 mA pro Strahl erreicht wird. Dadurch ließ sich die absolute Luminosität gegenüber früheren Werten nicht steigern. Die Chromatizität der Maschine konnte bisher nur für Energien kleiner als 5 GeV $_{
m CM}$ kompensiert werden. Durch Änderung der Sextupolwindungen in den Quadrupolen wurde das Sextupolfeld verdreifacht, allerdings unter Inkaufnahme von zusätzlichen Dipolstörfeldern. Die dadurch hervorgerufene closed orbit-Verbiegung kann durch geeignete Erregung der Korrekturmagnete kleiner als 3,5 mm gehalten werden.

C) Maschinenphysik am Speicherring

In den Schichten für Maschinenstudien konnte das Verständnis für das Verhalten des Speicherringes wesentlich vertieft werden.

Die Einzelstrahlinstabilitäten sind auch nach Einbau von Dämpfungsantennen und Ferriten trotz Anwendung von Entkopplungsmaßnahmen nicht völlig beseitigt. Als Hauptursache hierfür wurde der TMO22 - Cavitymode gefunden, der noch nicht ausreichend bedämpft werden konnte.

Bei höheren Spitzenströmen kommt ein zweiter Effekt hinzu: Der Hauptdämpfungsmechanismus, die Landau-Dämpfung, geht verloren.¹⁾ Bei kleinen Strömen ist sie etwa 10 x wirkungsvoller als die immer vorhandene Strahlungsdämpfung. Verursacht wird dieser Einzelbuncheffekt durch Sprungstellen und Stoßstellen, in der Innenwand der Vakuumkammer. Parallel dazu konnte auch eine erhebliche Bunchverlängerung bei Strömen oberhalb von 1mA/bunch gemessen werden.²⁾ Das Verständnis dieser Zusammenhänge führte erstmalig zur Erklärung des Strahlverhaltens bei hohen Spitzenströmen und ermöglichte bei 2 GeV 20 mA in einem einzelnen Bunch zu speichern ohne jede Instabilitätsschwingungen.

Die Raumladungsgrenze, die wie erwähnt z.Zt. bei 3,1 GeV_{CM} die Luminosität begrenzt, wurde mit Einzelbunchen untersucht. Dabei zeigte sich:

- die Wirkung der Raumladungskräfte ist am größten, wenn sich die Bunche ideal durchdringen.
- ihre Wirkung hängt empfindlich vom Arbeitspunkt der Maschine ab.
- ihre Wirkung ist bei 2 Wechselwirkungszonen größer als bei einer.
- mit Einzelbunchen konnten erheblich höhere Spitzenströme zur Wechselwirkung gebracht werden als mit vielen Bunchen.

Dieser letzte Punkt ist unverstanden und bedarf weiterer Untersuchungen, da mehr Strom bei vielen Bunchen der Erhöhung der Luminosität zugute käme.

1) DESY 75/26

2) DESY H2 75/01

Bei der Planung von Elektronen-Speicherringen hoher Energie spielen Verluste in den zahlreichen Hochfrequenz-Resonatoren eine große Rolle. Hierzu wurden Messungen in DORIS durchgeführt, bei denen sich zeigte, daß diese Verluste geringer sind, als es in den ersten 1973 angestellten Überlegungen befürchtet wurde.³⁾

3) DESY H3 75/02

Rubrik : bbb)

Literatur Jahresbericht 1975

- 198 -

Autôren :	Titel :	Zitat :
R.D. Kohaupt	Longitudinal instabilities of a single bunch and the observation of reduced Landau damping in DORIS	DESY 75/26
	•	
÷.		
•		
•		
•		
		•

Rubrik : ccc)

Literatur Jahresbericht 1975

Autôren :	Titel :	Zitat :
H. Wiedemann	Einführung in die Physik der Elektron Positron Speicherringe	DESY H-75/01
E. Keil	The amplitude distirbution in lengthened bunches	DESY H-75/02
R. Fischer, R. Rossmanith	Zusammenfassung der bisherigen Ergebnisse der longitudinalen Bunchstrukturmessung in DORIS	DESY H2-75/01 -
H.G. Hereward (CERN)	Damping of Bunch-Shape Oscillations by Synchrotron Radiation	DESY H2-75/02
A. Piwinski .	Einstellung der Kreuzung der beiden Strahlen mit Hilfe des Raumladungseffekte	DESY H2-75/03
J. Kouptsidis, M. Schwartz	Vorschläge zur Vakuumverbesserung in den Wechselwirkungszonen von DORIS	DESY H3-75/01
H. Gerke, J. Kouptsidis, H.P. Scholz, A. Zolfaghari	Calorimetric Measurements of Parasitic Mode Losses in Different RF-Structure in DORIS	DESY H3-75/02
•		
	-	
· · ·		
•		

- 199 -

Rubrik : fff)	Literatur Jahresbericht 1975			
Autôren :	Titel :	Zitat :		
R. Rossmanith	Der optische Kerreffekt	Übersichtsvortrag auf der Frühjahrs- tagung der Deutschen Phys. Ges., Düsseldorf, Härz 75		
H. Hartwig, J. Kouptsidis, K. Reinecken	Elektronenstrahlschweißen von 500 MHz- Beschleunigungsresonatoren •	KFA/DVS Kolloquium, 1./2. Dezember 75, Jülich Entwicklungsstand und Anwendungsmöglichkeiten neuzeitlicher Schweiß-, Löt- und Prüf- verfahren		
H. Hartwig, J. Kouptsidis	Verbindungen zwischen Aluminium-Legierun und anderen Metallen für das Vakuumsyste von Hochenergiebeschleunigern.	en _ '' _ '		
N.		<u>.</u>		
		200 -		

P E T R A

Die Planungsarbeiten für den neuen 19 GeV Elektron-Positron Speicherring PETRA wurden 1975 intensiv fortgesetzt, undzur größten Freude aller Beteiligten – wurde das Projekt im Oktober genehmigt. Die im PETRA-Proposal Ende 1974 vorgelegte Gesamtplanung wurde bei DESY und im Gespräch mit den in – und ausländischen Fachkollegen weiterhin kritisch durchleuchtet, im einzelnen verbessert, detailliert und fortgeführt. Grundlegende Änderungen im Konzept ergaben sich dabei nicht, aber in der Gestaltung vieler Einzelheiten wurden wesentliche Fortschritte und Vereinfachungen erzielt, die sich zum Teil auf neue Technologien gründen.

Das Schwergewicht der Arbeit verlegte sich bald auf die techn. Gestaltung und Fertigung der Komponenten. Mitarbeiter aus den verschiedensten DESY-Gruppen fanden sich für die Bauzeit von PETRA zu Arbeitsgruppen zusammen, die die Aufgabe übernommen haben, jeweils eine PETRA-Komponente insgesamt zu erstellen. Alle technischen Entscheidungen werden in vorher angekündigten Sachbesprechungen vorbereitet, und einmal wöchentlich werden in einer allgemeinen PETRA-Besprechung die wichtigsten Informationen und Ideen ausgetauscht.

Theorie, Optik, Magnetaufstellung

Der gespeicherte Elektronenstrahl kann durch elektromagnetische Wechselwirkung mit seiner Umgebung instabil werden. Um diese bei DORIS beobachteten und experimentell und theoretisch untersuchten Effekte zu vermeiden, muß die PETRA-Vakuumkammer in Bezug auf ihr Hochfrequenzverhalten sorgfältig gestaltet werden. Die Theorie sagt aus, welche Sprünge im Querschnitt und elektrischen Leitvermögen an den Kammerübergängen zulässig sind und welche Schwingungsmodes in den HF-Beschleunigungseinheiten durch Antennensysteme bedämpft werden müssen. Eine Kopplung von Betatron- und Synchrotronschwingungen führt zu sog. Satellitenresonanzen, die den stabilen Arbeitsbereich eines Speicherringes einengen und den Betrieb sehr erschweren können. Eine theoretische Untersuchung zur Anregung dieser Resonanzen durch eine Dispersion in den Hf-Beschleunigungseinheiten ^{2,2a} gab den Anstoß zu einer gegenüber dem Proposal veränderten PETRA-Optik. Durch eine andere Aufteilung der Quadrupolmagnete auf die verschiedenen Stromkreise wurde die Dispersion für alle Speicherringenergien so angepaßt, daß sie in den 8 geraden Stücken null ist.³⁾

Mit dieser Stromkreisaufteilung wurde eine Anzahl von optischen Einstellungen mit veränderten Fokussierungsstärken und Arbeitspunkten (variable tune), mit veränderter Länge der Experimentierzone und mit veränderter Strahlbreite am Wechselwirkungspunkt entworfen und angepaßt. Alle diese Einstellungen gehen davon aus, daß die 4 Experimentierstücke und die 4 langen geraden Stücke jeweils optisch untereinander gleich sind und daß der Einbau von Strahltaillen in die langen geraden Stücke Ost und West erst erfolgt, nachdem die vierersymmetrische Maschine erfolgreich in Betrieb genommen ist.

Das optische Verhalten eines Speicherringes dieser Größe ist empfindlich abhängig von der - im Strahl immer vorhandenen -Energieabweichung. Die Variation des Arbeitspunktes und der Amplitudenfunktion mit der Energie und die dadurch gegebene Anregung von Satellitenresonanzen wurde untersucht; ebenso die Variation des Dämpfungsverhaltens und die Veränderung des closed orbit infolge der auf nur eine oder zwei Stellen im Hing konzentrierten Hf-Energiezufuhr bei starker gleichmäßig verteilter Abstrahlung.^{4,5}

Die Abhängigkeit des Arbeitspunktes von der Energie kann durch zwei (oder mehr) auf den Ring verteilte Gruppen von Sextupolmagneten in erster (oder höherer) Ordnung kompensiert werden. Eine solche Kompensation ist erforderlich, kann aber zu einer Einschränkung der nutzbaren Strahlapertur (Akzeptanz) führen. Durch ein Rechenprogramm, das Teilchenbahnen über viele Umläufe verfolgt, wurde die Akzeptanz einiger mit Sextupolen kompensierter Optiken ermittelt. Die Ergebnisse sind ermutigend; weitere intensive Arbeit wird aber nötig sein, um die besten Anordnungen zu finden.

Die Toleranzen für Stärke und Ausrichtung der Magnete und die durch verschobene Strahllage in den Sextupolen verursachte Kopplung wurden berechnet. $^{6,7)}$ Um den Synchrotronstrahlunguntergrund in den Experimentierzonen zu verringern, wurden an den Enden der Bögen schwache Ablenkmagnete in den Ring eingefügt. Ein Wiggler-Magnet, der einen PETRA-Magneten ersetzen kann und die Dämpfungs- und Polarisationszeit verringert, wurde vorgeschlagen. $^{8,9)}$ Vorüberlegungen zur Herstellung einer longitudinalen Strahlpolarisation durch vertikale Ablenkung in der Umgebung des Wechselwirkungspunktes wurden durchgeführt.

Referenzen:

1) R.D.Kohaupt: Parametric excitation of longitudinal quadrupole instabilities for short particle bunches. DESY Int. Bericht H2-76/1

1a)R.D.Kohaupt in DORIS Jahresbericht 1975

2) A.Piwinski und A.Wrulich: Excitation of betatron-synchrotron resonances by a dispersion in the cavities DESY 76/07

2a)A.Piwinski, A.Wrulich: ^Betatron-Synchrotron Resonances in PETRA PET-76/17

- 3) K.Steffen Entwurf Optik 1A, 23 GeV und 8 GeV DESY PETRA-Notiz Nr. 63 (Apr.75)
- 4) G.A.Voss: Equilibrium orbit in the presence of radiation losses DESY PETRA -Interner ^pericht PET 75/1

5) K.Steffen: Equilibrium orbit for nonuniformly distributed rf in PETRA. DESY Techn. Notiz PET 76/13

6) D.Trines, S.Kheifets: Toleranzen für Aufstellungsfehler und Feldgenauigkeit. DESY PETRA-Notizen 67 bis 72, 75

7) D.Trines: Effekte von vertikalen closed orbit -Abweichungen in den Sextupolen. DETY PETRA-Notiz Nr. 73

8) R.Kose, G.A.Voss:

Wiggler für PETRA DESY Techn. Notiz PET 75/8 (Aug. 75)

<u>Magnete</u>:Nach der bereits im Vorjahr begonnenen grundsätzlichen Planung der verschiedenen Magnettypen im Ring wurden 1975 konkrete Konstruktionsentwürfe erstellt, Verhandlungen mit der Industrie geführt und Modelle in Auftrag gegeben. Hinzu kam die Planung der Magnete für den Strahltransfer von DESY nach PETRA.

Der Stand der Arbeiten war Ende 1975 wie folgt: Für die Ausführung des in 224 Exemplaren zu bauenden Ablenkmagneten wurden eine Reihe von Alternativentwürfen durchkonstruiert und mit der Industrie und verschiedenen Expertengruppen in und außerhalb von DESY in Bezug auf Fertigungsmöglichkeit, Zweckmäßigkeit und Kostenoptimierung diskutiert. Die Entscheidung fiel auf einen Magneten mit C-Schnitt, dessen Spulen aus Aluminiumleitern aufgebaut sind. Das Eisenjoch ist aus gestanzten Blechlamellen zusammengesetzt, die in Längsrichtung durch angeschweißte Winkel zu einer Einheit verbunden werden.

Umfangreiche numerische Rechnungen führten zur optimalen Auslegung des Polprofils.

Ein Eisenjoch wurde bei der Industrie als 1 : 1 Modell in Auftrag gegeben und im Dezember 1975 geliefert (Abb.1). Zwei komplette Spulensätze mit unterschiedlichem Isolierverfahren werden bei verschiedenen Firmen gefertigt und Anfang 1976 erwartet. Parallel zur industriellen Fertigung wurde ein zweites Konzept mit dem Ziel der Eigenherstellung von Magnetjochmodellen und evtl. auch der gesamten Serie bei DESY verfolgt. Die hierzu benötigten Vorrichtungen wie Stanzwerkzeug und Stapelvorrichtung wurden bei der Industrie in Auftrag gegeben. Der größte Teil der gestanzten Lamellen war Ende des Jahres geliefert. Der Bestellung der Bleche gingen Verhandlungen mit verschiedenen Herstellern sowie Studien der magnetischen und mechanischen Eisenqualitäten, Liefermöglichkeiten und Preise voraus. Es sind Lamellen aus drei verschiedenen Blechsorten gestanzt worden und die Resultate werden als Grundlage für die Blechauswahl dienen.

Auch für die <u>Quadrupolmagnete</u> wurden Alternativentwürfe untersucht mit dem Ziel, eine nach technologischen, magnetischen und wirtschaftlichen Gesichtspunkten optimale Lösung zu finden. Es werden zwei Grundtypen von unterschiedlicher Aperturgröße benötigt: Typ A mit 100 mm, Typ B mit 160 mm Polabstand.Je ein Prototyp A von 0,66 bzw. 1 m Länge wurde bei der Industrie in Auftrag gegeben. Die Festlegung der optimalen Polkonturen stützte sich auch hier auf numerische Rechnungen .

Im Gegensatz zu den Dipolen und Quadrupolen ist die Berechnung der magnetischen <u>Sextupole</u> schwierig, weil die magnetische Länge von gleicher Größenordnung wie die Apertur ist, so daß der Magnet eigentlich nur noch aus Streufeld besteht, das sich mit den sonst üblichen zweidimensionalen Verfahren nicht berechnen läßt. Aus diesem Grunde wurde ein Modellsextupol gebaut, dessen Feld empirisch vermessen und korrigiert werden soll. Abb.2 zeigt dieses Modell in der Multipolmeßvorrichtung.

Abb. 3 läßt in einer Holzmodellaufnahme die Anordnung von Ablenkmagnet, Quadrupol und Sextupol im PETRA-Ringtunnel erkennen.

Für den Strahltransfer von DESY nach PETRA sind Ablenkmagnete und Quadrupole erforderlich. Am Ende des Berichtsjahres waren elf Dipolmagnete neu entworfen und konstruiert, bestellreife Angebotsunterlagen waren vorhanden. Zwei ursprünglich vorgeschene Dipolmagnete mit größerer Induktion konnten durch Zur <u>magnetischen Vermessung</u> aller angeführten Magnete werden verschiedene Typen von Meßmaschinen benötigt. Eine Meßapparatur, welch zu serienmäßigen Untersuchungen aller Ringdipole geeignet ist, wurde konzipiert und in Auftrag gegeben. Eine Multipolmeßmaschine wurde in eigener Regie entworfen, konstruiert und gebaut. Neben der Mechanik gehört dazu eine leistungsfähige elektronische Ausrüstung und Steuerung und Auswertung der Meßvorganges. Abb.2 zeigt den Multipolmeßplatz mit Meßmaschine, Elektronik und Sextupol.

Abb. 1

(24 286/27)

Abb. 2

(24 389/1)

Abb. 3

(24 149/28)

Vakuumsystem:

Der größte Teil des FETRA-Vakuumsystems (ca. 70%) besteht aus den Standard-Vakuumkammern der periodischen Zellenstruktur des Bogens. Daher waren alle Bemühungen zuerst auf die optimale konstruktive Gestaltung der Standard-Vakuumkammern und deren Verbindungsart gerichtet. Das Ziel war, kostensparende Lösungen für ein möglichst "glattes" Vakuumsystem im Bereich des Strahles und besonders für die V erbindungsstellen der Vakuumkammern zu entwickeln.

Die Standard-Vakuumkammern werden aus einem stranggepressten Profil der Aluminiumlegierung AlMgSiO,5 gefertigt. In diesem Profil sind getrennte Räume für den Strahl und die integrierten Ionnenzerstäuberpumpen vorgesehen (Abb.4), Die Kammerkühlung erfolgt über einen Wasserkühlkanal an der Aussenseite der Kammer direkt am Einfallsort des Synchrotronlichtes. Es wurden bereits stranggepresste Kammerprofile gefertigt und getestet. Die gewünschten mechanischen Toleranzen, Festigkeiten, Dichtigkeit und Desorptionsraten wurden auf Anhieb erreicht.

Durch Abtrennen des Pumpraumes läßt sich dasselbe Kammerprofil ebenfalls im Bereich der Quadrupol- und Sextupolmagnete verwenden. Damit bleibt der Strahlraumquerschnitt innerhalb der Zelle homogen und die Vakuumkammer braucht nicht aus zwei verschiedenen Profilen mit Übergangsschweißungen gefertigt zu werden.

Zur Herstellung von Pumplöchern in der Trennwand zwischen Strahlund Pumpraum wurde das Funkenerosionsverfahren erfolgreich erprobt. Mit Hilfe dieses Verfahrens lassen sich auf einer Kammerlänge bis zu ca. 6 m Löcher beliebiger Form kostengünstig fertigen, die den Strahl hochfrequenzmäßig minimal beeinflussen. Abb. 5 Zeigt Pumplöcher, die nach diesem Verfahren in einer PETRA-Probekammer hergestellt wurden.

Zur vakuumdichten Verbindung der 7,2 m langen Standard-Vakuumkammern wurde eine neue Technik ohne schraubbare Flansche entwickelt. Die beiden Kammerenden sind über Aluminium-EdelstahlÜbergänge mit einem Edelstahlkragen bzw. mit einem Edelstahlfederungskörper ausgestattet. Die Verbindung zweier Kammern erfolgt am Einbauort durch Schweissen des Federungskörpers der einen Kammer an den Edelstahlkragen der anderen. Das Schweissen läßt sich automatisch mit Hilfe einer entwickelten Umlaufschweissmaschine (Abb.⁶) durchführen. Abb.7 zeigt einen Prototyp der Verbindungsstelle zweier Vakuumkammern. Zur Trennung der Kammern wird die erste Lamelle des Federungskörpers mit einem Werkzeug aufgeschnitten. Die erneute Verbindung beider Kammern erfolgt durch Entfernung der geschnittenen Lamelle und Schweissen der nächsten Lamelle an den Edelstahlkragen der Vakuumkammer.

Der 30 mm lange Ausdehnungsspalt zwischen den Kammern wird über einen zentrierenden Metallkasten mit Kontakten zur Innenfläche der Vakuumkammern "glatt" überbrückt. Zur Verbesserung des elektrischen Kontaktes werden die Innenflächen der Kammerenden durch Kupferzerstäubung beschichtet.

Insgesamt werden zum Einfügen von Edelstahl-Bauelementen in das PETRA-Vakuumsystem ca. 1300 Aluminium-Edelstahl-Übergänge mit Durchmessern von 20 bis 200 mm benötigt. Zur Herstellung dieser Übergänge wurden zwei neue kostensparende Techniken entwickelt und zum Patent angemeldet (DBP 25 52 199.7). Für beide Techniken werden zuerst die Edelstahlteile am Übergang mit geeigneten Metallschichten überzogen und thermisch behandelt*. Die Verbindung mit Aluminium erfolgt entweder durch Schutzgasschweissung (DEPI-Verfahren) oder durch Reibschweissung (REPI-Verfahren). Der Vorteil des DEPI-Verfahrens ist seine Konstruktionsfreundlichkeit. Es wird bei PETRA hauptsächlich für platzsparende Kammerübergänge angewandt (Abb.7) Beim REPI-Verfahren erreicht manFestigkeiten, die größer als die Festigkeit der verwendeten Aluminiumlegierung sind. Deshalb werden die REPI-Schweissungen besonders für Vakuumbauteile mit hoher mechanischer Beanspruchung eingesetzt. Mehrere DEFI- und REPI-Verbindungen bis zu einem Durchmesser von 200 mm wurden nach mehreren Ausheizzyklen erfolgreich auf Festigkeit und Dichtigkeit getestet. Abb. 8 zeigt einige REP1-Übergänge und Abb. 9 Festigkeitstests an REPI-Schweissungen.

* H.Hartwig, J.Kouptsidis: Verbindungen zwischen Aluminiumlegierungen und anderen Metallen für das Vakuumsystem von Hochenergiebeschleunigern. DESY-Berichte 38, S.140,(1975). Die integrierten Ionenzerstäuberpumpen wurden neu dimensioniert und können nunmehr auch bei den kleinen Magnetfeldern bis hinab zu 3 GeV Strahlenergie betrieben werden. Pumpelemente von 18 mm Zellendurchmesser sollen im homogenen Magnetfeld eingesetzt werden, und von 32 mm Durchmesser im Außenbereich des Streufeldes. Prototypen beider Elemente wurden bereits gebaut und werden zur Zeit getestet. Abb. Dzeigt ein Pumpelement mit 18 mm Zellendurch messer.

Ausheizversuche an PETRA-Vakuumkammerprofilen gestatteten die Ermittlung des günstigsten Ausheizsystems.

Für die Ionenzerstäuberpumpen von PETRA wurde eine vereinfachte Version von Hochspannungsgeräten entworfen; Prototypen werden zur Zeit in Verbindung mit dem PETRA-Datenerfassungssystem getestet. Ferner wurde die Anwendung des Elektronenstrahlschweissens bei der Herstellung den PETRA- Beschleunigungsstrukturen und anderer Vakuumkomponenten untersucht. Dabei wurden die optimalen Parameter zur Schweissung von Cu und Aluminiumlegierungen ermittelt und die erzielten Schweissnähte auf Dichtigkeit und Festigkeit erprobt.

Zur Erhöhung der Oberflächenleitfähigkeit von Vakuumkomponenten, z.B. den Kammerübergängen und den Beschleunigungsstrukturen, wurde die Kupferzerstäubung mit Argon-Ionen untersucht und probeweise angewandt.

Hochfrequenz:

Die Lösung der technischen Probleme des PETRA-Hochfrequenzsystems wurde durch detaillierte Rechnungen, Modellmessungen und Prototypversuche vorangeführt.

Zur Ermittlung der geometrischen Abmessungen, des Resonanz-

* H.Hartwig, J. Koupsidis, K. Reinecken: Elektronenstrahlschweissen von 500 MHz-Beschleunigungsresonatoren. DVS-Berichte, <u>38</u>, S. 43-46 (1975)

- 210 -

widerstandes und der ^Zellenkopplung der <u>Beschleunigungsstrecken</u> wurde ein Modell aus Aluminium hergestellt. Die Messungen und Rechnungen zeigten, daß es möglich ist, bei ausreichender Kopplung einen Resonanzwiderstand von 12-13 M Ω /m zu erzielen, wenn die Innenflächen der Struktur eine elektrische Leitfähigkeit von 50-60 mm^2/Ω ·m haben. Dadurch ist es möglich, gegenüber dem Vorschlag im Froposal durch spezielle Formgebung die Anzahl der Zellen je Beschleunigungsstrecke von 7 auf 5 zu reduzieren. Die Probleme der Bunchinstabilitäten, der parasitären Modeverluste ^{x)} und der technischen Fertigung werden hierdurch erleichtert. Bei großen Speicherringen mit hohen Bunchströmen können die parasitären Modeverluste die Größenordnung der Synchrotronstrahlungsverluste erreichen. Da die verschiedenen Modelle zur Abschätzung dieser Verluste sehr unterschiedliche Voraussagen machten, wurden kalorimetrische Messungen an verschiedenen Hochfrequenzstrukturen mit einem einzelnen Bunch im DORIS-Speicherring durchgeführt.

Um die Kühlungsbedingungen, Multipaktor- und Vakuumprobleme sowie die Frequenzstabilität der Beschleunigungsstrecken unter Hochfrequenzleistungsbedingungen studieren zu können, wird eine Prototypstrecke aus Aluminium hergestellt, deren Teile bereits mechanisch bearbeitet sind und die Anfang 1976 im Elektronenschweissverfahren verschweisst werden sollen. Hierzu mußten verschiedene Technologische Probleme gelöst werden, wie Elektronenschweissen von Aluminiumlegierungen ^{XX} und Verbindungen von Edelstahlrohren mit Aluminiumrohren. ^{XXX} Als Einkoppelfenster soll ein modifiziertes DORIS-Fenster eingesetzt werden. Wegen der beschränkten Platzverhältnisse im PETRA-Tunnel mußte ein kürzerer Hohlleiter-Koaxial-Übergang entwickelt werden, der die Tranformationsbedingungen erfüllt und gleichzeitig die thermischen Dehnungen aufnimmt.

- xx) Elektronenstrahlschweissen von 500 MHz-Beschleunigungsresonatoren. DVS-Berichte Bd. 38, S. 43-46 (1975)
 xxx)DESY Journal 7, Nov. 1975
- x) Calorimetric Measurements of Parasitic Mode Losses in Different RF-Structures in DURIS. Interner Bericht DESY H3-75/2

- 211 -

Ein solcher Übergang wurde zusammen mit einem DORIS-Einkoppelfenster an einer belasteten DORIS-Beschleunigungsstrecke mit einer Hochfrequenzleistung von 140 kW erfolgreich getestet. Abb. ¹¹,. zeigt diesen Übergang an der oben beschriebenen fünfkreisigen Modellstruktur.

Der Frequenzabgleich der Beschleunigungsstrecken wird durch motorisch angetriebene, induktiv wirkende Stempel vorgenommen; es wird dazu eine modifizierte DORIS-Version verwendet. Die Ablagesignale werden durch Phasenvergleich von Beschleunigungsspannung und zugeführter Leistung gewonnen.

Für die Hochfrequenz-Kleinsignalverarbeitung zur Cavity- Regelung müssen wegen der großen Stückzahl aus Kostengründen "strip line" Bauteile entwickelt werden, die anstelle der bisher verwendeten Koaxialkomponenten eingesetzt werden. Für einen Teil dieser Bauteile, wie Filter und Phasendiskriminatoren, konnten die Entwicklungsarbeiten bereits abgeschlossen werden.

Die Spezifikationen für die Hochfrequenzleistungsverstärker bestehend im wesentlichen aus 8x500 kW Klystroms und Stromversorgungsgeräten, konnten im Berichtszeitraum erstellt werden. Ausschreibungen erfolgten Ende des Jahres.

Die von DESY zu bauenden Hilfseinrichtungen waren gegen Ende des ^Berichtsjahres werkstattreif ausgelegt. Besondere Aufmerksamkeit verdienen in einem Speicherring wie PETRA die sogenannten "higher mode losses", Energieverluste des Strahles auf Grund von Anregungen elektromagnetischer Schwingungen in den Vakuumkammern. Aus diesem Grunde wurde eine von M.Sands vorgeschlagene Methode benutzt, diese Verluste experimentell zu bestimmen: Der Teilchenstrahl wird durch 2,8 cm lange Strompulse auf einen dünnen Draht simuliert, der durch das zu untersuchende Objekt führt. Energieverluste manifestieren sich in einer Verformung der Strompulse. Abb.12 zeigt die Meßanordnung, die die Untersuchung aller kritischer Komponenten in PETRA gestattet. Abb. 13 zeigt als typisches Beispiel die Verformung eines Strompulses beim Durchgang durch eine resonatorähnliche Struktur. Neben den bereits erwähnten kalorimetrischen Bestimmungen der "higher mode losses" stellt dieses die erste veröffentlichte experimentelle Überprüfung von kritischen Kammereigenschaften dar.

J.Peters: Wire Measurements with short pulses in cylindric Structures and Vacuum chambers. PEP -76/2 Interner Bericht.

Abb. 4: Profil der Standard-Vakuumkammer von PETRA

- 214 -

(24 408/15)

Abb. 6 (24 340/20)

Abb. 8 (23 932/15)

Abb. 7

(23 932/9)

- 216 -

Аbb. 9

(24 090/34)

(24 077/11)

Abb. 11

Abb. 12: Anordnung für Messungen im Zeitbereich an zylindr. Strukturen mit stufenartiger Querschnittsänderung

Rubrik : PETRA-Vakuum

Literatur Jahresbericht 1975

	1	
Auto-ren :	Titel :	Zitat :
1) H. Hartwig, J. Kouptsidis	Verbindungen zwischen Aluminium-Legierunge	n DVS-Berichte, <u>38</u> ,140,(1975).
	und anderen Metallen für das Vakuumsystem	Veröffunk
1	von Hochenergiebeschleunigern.	
2) H. Hartwig, J. Kouptsidis,	Elektronenstrahlschweissen von 500 MHz-	DVS-Berichte, 38,43-46,(1975).
K. Reinecken	Beschleunigungsresonatoren	
3) H.Hartwig	Aluminium/Edelstahl-Übergänge	DVS-Kolloquium ,Jülich 1-2 Dez. 1975
4) J. Kouptsidis	Elektronenstrahlschweissen	DVS-Kolloquium ,Jülich 1-2 Dez. 1975
5) H.E. Gödecke, J. Kouptsidis	Notes on the Bake-out of PETRA Vacuum	PET-75-1
	System	
6) H. Pingel	Pumpdown of the PETRA Vacuum-System and	PET-75-2
7) H. Pingel	Einige Daten für das Vakuumsystem von	PET-75-3 Techniscle Notizer
	PETRA	
a) H. Pingol	Absorption der Synchrotronstrahlung in	PET-75-4
o) n. ringer	einem Strahlungsabsorber aus Aluminium	
	und Aufbeizung des Absorbers bei Puls-	
	belastung	
•	Delas cung	
,	· · ·	

In der ersten Hälfte des Jahres 1975 wurden noch einmal die verschiedenen bei PETRA möglichen Injektionsverfahren diskutiert. Nach eingehender Diskussion auch mit Fachkollegen aus dem Ausland wurde entschieden, daß das im Proposal beschriebene System auch weiterhin die optimalste Lösung darstellt.(s. Abb. 14)

Im zweiten Halbjahr 1976 konnte man an die Modifikationen schon vorhandener und an die Modifikation neu zu entwickelnder Injektionselemente gehen. Die wesentlichen Arbeiten bis Ende 1975 waren folgende:Im Linac II wurde im Herbst-Shutdown ein neues, wesentlich übersichtlicheres Injektionssystem mit zwei HF-Choppern eingebaut.. Mit dem ersten Plattenpaar wird dem Strahl eine 62,5 MHz-Struktur aufgeprägt. Damit wird die Bunchfolgefrequenz um einen Faktor 4 herabgesetzt. Mit dem zweiten Chopper (15,6 MHz) wird der Strahl weiter zerhackt, sodaß in den ersten Linacabschnitt 2 nsec lange Bunche im Abstand von 32 nsec eingeschossen werden. Der 62,5 MHz-Generator für das erste Plattensystem ist fertig und hat sich bewährt, während ein Prototyp des 15,6 Mhz- Generators für das zweite Plattensystem 1975 im Labor aufgebaut und getestet wurde.

Zur Erhöhung des Positronenstromes wurde der 18 kGauss-Solenoid unmittelbar hinter dem e⁺-Konvertertarget durch eine kurze, gepulste Spule ersetzt und der ganze Konverter, der zwischen den Abschnitten 5 und 6 stand, hinter dem 7. Abschnitt aufgebaut.

Ein Deflektor hinter dem Linac I, der den Elektronenstrahl analog zum eben beschriebenen Verfahren am Linac II choppen soll, wurde 1975 entworfen, gebaut und während des Herbst-Shutdowns eingebaut. Außerdem wurde die Optik des Linac I-Transportweges so geändert, daß der Deflektor mit möglichst kleiner HF-Amplitude betrieben werden kann. Zum Aufbau des 15,6 MHz-Rechteckgenerators für diesen Deflektor wurden im Labor Modellversuche gemacht, die inzwischen erfolgreich abgeschlossen wurden. Die Materialbeschaffung für den später einzubauenden Generator läuft seit Ende des Jahres. In DORIS (Lit.3) sind zwei neue, schnelle Kicker zu entwickeln, die in der Lage sind, einen von den umlaufenden 30 Bunchen zu ejezieren, ohne die anderen zu beeinflußen. Mit einem Labormodell wurde gezeigt, daß die erforderliche Amplitude zu erreichen ist. Die gesamte Pulslänge ist dabei nicht größer als 50 nsec. Die später zu verwendenden Kicker sind seit Ende 1975 in der Konstruktion. Die "beam-bump-kicker", die die Teilchen in das gap der beiden schnellen Kicker lenken sollen, sind ebenso wie die dazu gehörenden Pulsnetzgeräte 1975 spezifiziert und entworfen worden.

lm Synchrotron (Lit.1) sind zwei neue Ejektionen für 7 GeV einzurichten. Dazu gehören 2 C-Kicker und zwei Puls-Septa, deren Entwürfe fertiggestellt und 1975 in die Konstruktion gegeben wurden. Die Pulser-Netzgeräte wurden spezifiziert.

Die Geometrie und die Optik der beiden Transportwege zwischen DESY und PETRA wurden berechnet, und das gesamte Vakuumsystem wurde entworfen und im Jahre 1975 zum Teil schon fertig konstruiert. Zur Ablenkung auf der DESY-Ringseite sind zwei DORIS-Reservemagnete vom Typ DM vorgesehen, deren Gaphöhe auf 45 mm herabgesetzt werden muß. In den großen Bögen sind die Strahlen um 54⁰ bzw. 69⁰abzulenken. Dafür sind 11 Dipolmagnete vorgesehen, die 3,10 m lang sind und eine Polschuhöffnung von 30 x 130 mm² haben. Diese Magnete wurden 1975 fertig konstruiert und sollen 1976 bestellt werden. Ein kleiner Quadrupoltyp, der in den Bögen noch erforderlich ist, wurde spezifiziert. Unmittelbar vor den Injektionspunkten in PETRA sind pro Strahl noch ein Gleichstromseptum mit einer Ablenkung von 160 mrad, ein Pulsseptum mit 20 bis 30 mrad Ablenkung und vier "beam-bumpkicker" zu bauen. Die Septa wurden im Jahre 1975 spezifiziert und zum Teil konstruiert. Die Spezifikation der Kickermagnete gestaltete sich etwas zögernder, da die PETRA-Daten noch im Fluss waren.

Kontrollen, Monitore:

Die Gesamtkonzeption der PETRA-Kontrollen wurde 1975 festgelegt. Die bei PETRA gegenüber DESY und DORIS wesentlich größeren Entfernungen lassen mit vernünftigen Kosten keine direkte Kontrolle der Beschleunigerelemente zu. Geplant ist deshalb ein System mit drei zentral aufgestellten Rechnern, die einerseits über ein serielles Datenübertragungssystem (SEDAC) Zugriff zu allen PETRA-Elementen haben und auf der anderen Seite die Kommunikation mit den Maschinenoperateuren abwickeln (Abb.5).

Das SEDAC-System wurde erfolgreich unter Betriebsbedingungen getestet, die endgültige Version befindet sich im Labortest. SEDAC kann mit einer Frequenz von etwa 4 KHz digitale Daten (16 bit) vom Rechner zum Prozeß (WRITE), digitale Daten (16 bit) vom Prozeß zum Rechner übertragen (READ), einzelne Analogsignale zum Kontrollraum durchschalten (ANALOG) und Anforderungen aus dem Prozeß aufsammeln (TEST)

Die Aufgabenverteilung auf die drei Rechner und die daran angeschlossenen SEDAC-Systeme soll nicht nach geographischen Gesichtspunkten erfolgen, sondern nach Aufgabenbereichen, um während der kritischen Aufbau- und Wartungsphase eine weitgehende Entkopplung der einzelnen Serviceaufgaben zu erreichen.

Da PETRA nur unter Rechnerkontrolle laufen kann, haben die frühzeitige Beschaffung und Indienststellung der Rechner eine hohe Priorität. Leider wurde das ursprüngliche Vorhaben, zumindest einen der Rechner noch im Berichtsjahr zu beschaffen, nicht realisiert.

Eine verstärkte Aktivität war dem Strahlagemonitor gewidmet. Durch unvermeidbare Fehler im Führungsmagnetfeld und bei der Magnetaufstellung ist eine Abweichung der Strahllage von der Sollbahn zu erwarten. Mit Hilfe des Lagemonitors wird diese Abweichung gemessen und durch gesteuerte Korrekturmagnetfelder minimalisiert. Hierzu muß die Strahllage an ca. 100 Stellen verteilt auf dem 2,3 km langen Umfang des Ringes bekannt sein. Eine störungsarme d.h. hochfrequenzmäßig glatte Vakuumkammer erhält man am ehesten mit einem Plattenmonitor, dessen Platten mit der Innenwand der Kammer abschließen. Es werden Sprünge und Hohlräume vermieden und die Apertur der Maschine nicht eingeengt. Die Geometrie des Monitors ist in Abb.16 gezeigt.

Zur Optimalisierung und Linearisierung wurden im Labor umfangreiche Untersuchungen durchgeführt. Hierbei wurde der Strahl durch eine Drahtanordnung simuliert, durch die ein Stromimpuls von ≦100 psec gesendet wird.

Sowohl im Speicherring DORIS als auch im Elektronen-Transfer-Kanal DESY-DORIS wurden Versuchstypen des entwickelten Monitors eingesetzt und gezielte Strahllageverschiebungen mit dem Monitor gemessen. Die Meßgenauigkeit von atwa ⁺ 2 mm entsprach den Erwartungen. Dieses erfreuliche Ergebnis sollte jedoch nicht darüber hinwegtäuschen, daß noch eine Weiterentwicklung bis zur Serienreife notwendig ist.

Zusammen mit W1 wurde ein Leuchtschirmmonitor entwickelt, der sowohl die Vakuum- als auch die Hochfrequenzanforderungen der PETRA-Vakuumkammer erfüllt. Zur (vereinfachten) Strahlprofilmessung im Injektionsweg zu PETRA wurde ein horizontal und vertikal messender "Drahtmonitor" entworfen.

Bau, Energieversorgung

Anfang 1975 wurde damit begonnen, die Haushaltsunterlage Bau gemäß §24 der Bundeshaushaltsordnung aufzustellen. Hierzu wurde ein freies Ingenieurbüro gewonnen. Nach Schaffung der technischen Voraussetzungen wie Feststellung der Bodenbeschaffenheit, Klärung von Gelände- und Sicherheitsfragen mit den zuständigen Ämtern, Detaillierungen von Gebäuden und Außenanlagen usw. wurde die Haushaltsunterlage Bau im April termingerecht fertiggestellt und den zuständigen Behörden zur Prüfung zugeleitet. Die Genehmigung wurde im Oktober erteilt, und im Nachgang für die Experimentierhallen Ost und West im Dezember. Zu diesem Zeitpunkt lag auch der das Baugelände umfassende Bebauungsplan Bahrenfeld II genehmigt vor. Als Beitrag zu den Baukosten wurden von der Bundesregierung rd. 12 Mio. DM im Rahmen des Konjunkturprogramms für PETRA zur Verfügung gestellt.

Im Hinblick auf die sich abzeichnenden Konjunkturmaßnahmen wurde im Sommer die Erarbeitung der Ausschreibungs unter lagen für die Bauwerke so beschleunigt, daß eine Bauvergabe bereits zum Jahresende in Aussicht genommen werden konnte. Die Ausschreibung erfolgte im September. Nach Auswertung der Angebote von 12 Firmen konnte der Auftrag zum Jahresende an eine kompetente Baufirma erteilt werden.

Die Strahlführungsmagnete in PETRA werden von Stromversorgungsgeräten gespeist, die zum großen Teil bereits bei DESY vorhanden sind und im DORIS-Versorgungsgebäude stehen. Die Stromzuführung im Ringtunnel erfolgt über blanke Aluminiumschienen mit einem Querschnitt von 1200 mm², die Gleichströme bis zu 1500 A führen sollen. Gegenüber herkömmlichen Kabelverbindungen sind sie kostensparender, haben geringere Leitertemperaturen und sind feuersicherer. Im Tunnelmodell wurden Versuche mit Probelängen solcher Schienen durchgeführt, um Erfahrungen mit den Isolierhalterungen, der Verlegungsart und den Abgängen zu sammeln.

Die Wasserrückkühlanlagen werden für eine Endenergie von 23 GeV ausgelegt. Aus dem Ringtunnel sind dann 9 MW über das Kühlwasser abzuführen. Es wird ein einziges Kühlwassersystem aus Aluminiumrohr verwendet, das mit entionisiertem Wasser gefüllt ist und seine Wärme über Wärmeaustauscher an das Kühlturmwasser abgibt. Konstruktionsarbeiten für diese Sammelleitungen wurden durchgeführt, und zur Beherrschung ihrer Wärmedehnung wurden einfache Lösungen angegeben. Es ergab sich aus den Planungsarbeiten für die erforderlichen Rückkühleinrichtungen, daß sie sich am einfachsten gestalten lassen, wenn sie mit denen für die Hochfrequenzsysteme vereinigt werden, wo zusätzlich ebenfalls etwa 9 MW Verlustwärme abgeführt werden müssen. So werden in den Hochfrequenzstationen Nord und Süd Wasserkühlanlagen vorgesehen, für die die ersten konstruktiven Gestaltungen erfolgten. Sie besitzen Wärmeaustauscher, Pumpen und einen für eine Station gemeinsamen Kühlturm zur Wärmeabfuhr.

Zur Abfuhr der noch verbleibenden Wärme aus dem Ringtunnel, die mit 0,6 kW/m errechnet wurde und im wesentlichen von den Magnet-Verbindungsleitungen stammt, wurde ein einfaches Konzept gefunden. Danach werden in Experimentierhallenanbauten Ventilatoren installiert, die je nach Jahreszeit und Wärmeanfall einen Außenluft-, Umluft- oder Mischluftbetrieb für Ringtunnel und Experimentierhallen gestatten. So können zum Beispiel im Winter die Experimentierhallen mit Abwärme geheizt werden, wenn der Speicherring läuft. Eine stufenweise Anpassung an die Wärmelast macht dieses System auch für den Aufenthalt im Ringtunnel bei Montagen geeignet.

Zeitplan: Der Zeitplan für den Bau von PETRA ist in Abb. 18 dargestellt.

Abb. 14: Schematische Darstellung der Injektion für PETRA mit Zwischenspeicherrung in DORIS

I: Vakuumschieber II. Moßplatte III. Durchgang 'IV Expl.geschweißt, rostfr. Stahl (24–597)

Abb. 16: Lagemonitor

Abb. 15: Übersicht über den schematischen Aufbau des Kontrollsystems

			<u> </u>	<u>R A</u>	- 1	e r m	11111	-								
_		<u>ຸ</u> 193	76		ł	<mark>,</mark> 19	77		1	, 19 :	76		1	<u>,</u> 19	79	
Bau Tunnel	-	;—		╞━━					1			<u>I</u>	1	1	1	
Bau Hallen	-	+		<u> </u>		1				1	t	!!	1	1	1	1
Installation Tunnel	1	<u> </u>	-	—	-			1	1			!!	1	1	1	1
Bau und Test Prot. Magnete		+				† T	1	F	t	1		1	1	1		t
Lieferung Magnete	1	\top	-	<u> </u>				<u> </u>	1	1	1	1	1	1		1
Bau und Test Prot. Quadrupol					1	1			1				1		1	1
Lieferung Multipole	1					-		<u> </u>		-			1	1		
Lieferung Injektionsmagnete	1		•		F								1	1		
Bau und Test Prot. Klystron			——			 						1	1	1		
Lieferung Klystrons +)	1	1	,					21		31	- 41	5	6	7	6	
Lieferung und Test Sender **						5				4		1		6		
Lieferung Cavities **									_	161	16	(32) ₁		48	•	4
Lieferung Stand Vakuumkammer					-				-					Ι		
Lieferung Sonderkammern																
Lieferung Vakuumkomponenten												-				
Lieferung Injektionskomponenten		H														
Lieferung und Test Kontrollsystem		[•							Ι				
Lieferung Monitore					_						1					
Montage Stromversorgung																
Montage Kühlung, Lüftung																
Magnetmontage Ring				-												
Vakuummontage Ring					I											
Test Injektion						Ţ	-									
Maschinentest PETRA		\square									ģ					
Beginn Experimentierbetrieb																

PETRA - Termine

.

*} Stückzahl: Summe der fertigen Komponenten

.

22.1.76

(24 596)

Abb. 18

Literatur Jahresbericht 1975

Rubrik : PETRA-Injektion Zitat : Titel : Autoten : DESY-PET 75/3, Juni 1975 Zur Dimensionierung des Transfer-.1.) A. Febel, B. Hellwig, kanals DESY-PETRA G. Hemmie, G. Jacobs DESY-PET 75/5, Mai 1975 Ist der Füllprozess nach der Cornell-2.) A. Febel, G. Hemmie methode für PETRA günstig? 11 DESY-PET 75/6, Juni 1975 Ejektion aus DORIS 3.) A. Wrulich DESY-PET 75/7, Sept. 1975 Frequenzerzeugung und Zeitsteuerung 4.) W. Kriens, J. Peters für die PETRA-Injektion DESY-PET 74/5, April 1974 Verschiedene Injektionsverfahren 5.) A. Febel, G. Hemmie für PETRA ÷7

- S2 - Aufbau der Experimente

Im Berichtszeitraum wurden wesentliche Arbeitskapazitäten für die Beseitigung der Brandfolgen im Bereich der Halle I eingesetzt. Alle Experimente in der Halle wurden abgebaut, die Geräte zerlegt, gereinigt und konserviert. Entsprechende Maßnahmen mußten am Gebäude und an der umfangreichen Abschirmung durchgeführt werden. Inzwischen wurde das Experiment der Gruppe F31 am 37 - Strahl 10 und der Gruppe F32/34 am e - Strahl 8a wieder aufgebaut und betrieben. Abb.: 1-4

Im Bereich der Hallen II und IIa wurden größere Umbauten am e - Strahl 20 jeweils für die Gruppen F21 und F22 ausgeführt.

In der Halle III wurden u.a. zwei staubfreie Montageräume zur Montage von Driftkammern für die Gruppen F11 und F12 aufgebaut.

In der Speicherring-Experimentierhalle IV sind im Rahmen der Wartungsschichten für das DASP-Experiment, im Nordteil der Halle, am Wechselwirkungspunkt 1 weiterhin ergänzende Arbeiten ausgeführt worden. Im Südteil der Halle wurden der PLUTO - Detektor aus der Wechselwirkungszone 2 herausgefahren und das Experiment der Gruppe F11/ Heidelberg, eine Na-Z-Zähleranordung, hineingefahren und fertig installiert.

In dem Mittelteil der Halle, neben der großen Grube wurde mit dem Neuzufbau eines Experimentes der Gruppe F12/Bonn/Mainz (Neutronenformfaktor) begonnen und weitgehend durchgeführt.

Im Herbst - shut - down wurden die Strahltransportkanäle zwischen Synchrotron und Speicherring für die Strahlführung bei höherer Teilchenenergie ausgelegt und dazu völlig umgebaut.

Im Speicherring selber wurden ebenfalls größere Montagearheiten durchgeführt.

Gleichzeitig wurden der Speicherring vermessen und entsprechend nachjustiert. Im Bereich des Synchrotrons wurden für den Aufbau einer Protonenstrahlquelle in der "Inneren Experimentierfläche" ein Pelletron und der Injektionsweg zum Synchrotron in Zusammenarbeit mit S1 und G1 montiert.

Für das PETRA- Projekt ist ein Strahllagemonitor entwickelt worden und im Zusammenhang mit dem Datenübertragungssystem wurden eine Reihe elektronischer Fragen untersucht. (Siehe Teil "PETRA")

Cerenkovzähler wurden bei uns montiert, vermessen und justiert. Dazu wurden sphärische Spiegel hergestellt, einige mit 1700 mm \emptyset .

Von der Vermessungsabteilung wurden neben den üblichen Vermessungsund Justierarbeiten so in Halle 1, Strahlführungskanäle, im Speicherring und Linac II auch Geräte und großflächige Funkenkammern vermessen.

Für PETRA ist eine Vermessungssystem ausgearbeitet worden, das mit 14 Vermessungspfeilern ausgelegt ist.

Dieses Pfeilersystem ist nach Lage und Höhe eingemessen, an das Synchrotron-Vermessungssystem und an das Landesnetz angeschlossen worden.

<u>Literatur :</u>

A.K. Drukier, C.Valette, G. Waysand Physique des Solides, Université Paris-Sud Facultédes Sciences d'Orsay, France

Luke C.L. Yuan Brookhaven National Laboratory Upton, New York und F. Peters DESY Hamburg

TRANSITION RADIATION EFFECTS IN SUPERCONDUCTING GRANULES Lettere nuovo cimento 14 (1975)

Abb. 1 Blick in ein Experimentiergebiet (23 424/4)

Abb. 2 Spontane Reinigungsaktionen zur Rettung der Elektronik (23 397/25)

Abb. 3 Blick in den Kabelkanal

Abb. 4 Neugestaltete Installation im renovierten Kabelkanal (24 521/33)

- K - Energieversorgung

Die Aktivitäten der Energieversorgungsgruppe konzentrierten sich 1975 auf folgende Gebiete:

1.) Energieerhöhung für DORIS.

Die Erhöhung der Endenergie des Speicherrings auf vorläufig 4.3 GeV und später 5 GeV brachte für die Energieversorgungsgruppe umfangreiche Arbeiten bei Srromversorgungsgeräten, Kabelverbindungen und bei Wasserkühlanlagen. Vom Frühjahr an wurden Funktions- und Inbetriebnahmetests mit den neuen Gleichstromquellen für den Ablenkmagnet-Stromkreis durchgeführt. Ein mehrtägiger Lauf mit der vollen Leistung von 9,7 MW, der zur Enderprobung aller Komponenten diente, konnte dann in der Abschalt- und Montagezeit im Spätsommer erfolgreich durchgeführt werden. Seitdem läuft diese bisher größte Stromquelle zur Magneterregung für Energien bis 5 GeV von DORIS ohne Beanstandungen. Zwei weitere Gleichstromquellen neuen Typs mit den Ausgangsdaten 1250 A, 700 V, die einen flexiblen Betrieb für die Magnetstromkreise von DORIS gestatten und von denen wir später insgesamt 10 Stück besitzen werden, laufen seit dem Anfang des Berichtszeitraums. - Einen großen Montageund Installationsaufwand, der ebenfalls in der Abschaltzeit erledigt werden mußte, bildete die Erhöhung der Energie der Transferwege auf 4,3 GeV und die Umgruppierung der meisten Stromkreise des Speicherrings für die bei höheren Energien erforderliche Strahloptik. Neben umfangreichen Arbeiten für Starkstromverkabelungen mußten wesentliche Änderungen für Schutz- und Überwachungseinrichtungen und für Kühlwasserkreisläufe durchgeführt werden. Schließlich mußten die

Wasser- Rückkühlanlagen für das Hauptsystem des Speicherrings durch den Einbau von neuen Pumpen und den dazu erforderlichen Rohrleitungen und Armaturen den bei den höheren Speicherring-Energien anfallenden größeren Wärmeverlusten angepaßt werden.

2.) Kompensations- und Filteranlagen für das DORIS-Drehstromnetz. Die Gleichstromquellen für die Magnetkreise des Speicherrings sind so ausgelegt, daß man mit ihnen "Energiefahren" kann (das ist auch für PETRA erforderlich). Das bedingt schnelle Stellglieder, für die bei den großen Geräteleistungen nur thyristorgesteuerte Gleichrichter zur Verfügung stehen. Sie haben den Nachteil, daß sie beim Herabsteuern induktive Blindleistung aufnehmen. Außerdem ruft jede Gleichrichterbelastung im Drehstromnetz Kurvenformverzerrungen hervor. Der Blindleistungsbezug verteuert die Stromkosten, und die Verzerrungen der Netzspannung stören viele empfindliche Verbraucher. Zur Abhilfe wurden deshalb Resonanzkreise für das 10 kV-Drehstromnetz von DORIS projektiert. Sie sollen in der Lage sein, die von den Gleichstromquellen produzierten eingeprägten – Oberwellenströme abzuleiten und gleichzeitig induktive Blindleistung zu erzeugen, um damit bei der Grundwellenfrequenz 50 Hz kompensierend zu wirken. Ende 1975 wurden entsprechende Anlagen in Auftrag gegeben.

3.) Maßnahmen zur Brandvorsorge

Um Gebäudeteile mit Kabelhäufungen sicherer gegen die Entstehung und Einwirkung von Kabelbränden zu schützen, wurde ein großer Teil der Arbeitskapazität der Energieversorgungsgruppe in Maßnahmen zur Brandvorsorge gebunden. Im einzelnen wurden durchgeführt:

- Überwachung der Temperatur von besonders gefährdeten Klemmstellen von Hochstromverbindungen
- Verminderung der Brandlast von Kabeltrassen durch Entfernung nicht mehr benutzter Kabel
- Einsatz von wassergekühlten Kabeln bei Lafetten
- Beseitigung von Kabelhäufungen
- Projektierung von stationären Wasser-Löschanlagen für Kabelkanäle und Gleichrichtergeräte
- Installationen zum Anschluß von Feuerwehrschläuchen
- Anfertigung von Einsatzplänen
- Änderung von Gebäudebelüftungen
- Erstellung einer Alarmanlage

Am Ende des Berichtszeitraums wurde ein Auftrag auf Sprühflutund Sprinkleranlagen für alle gefährdeten Gebiete erteilt, in denen mit Wasser gelöscht werden kann: Synchrotron, Speicherring, Kanäle der Experimentierhallen, Zentralgebäude mit Kabelkanälen, Teile der Kraftstation.

- bb) Verzeichnis der von der Energieversorgungsgruppe publizierten wissenschaftlichen Arbeiten:
- aaa) W. Bothe

" Die elektrische Energietechnik f
ür große Teilchenbeschleuniger am Beispiel DESY." Siemens-Zeitschrift 49(1975), S. 753 - 756

H. Narciß, D. Hrabal und Walter Schlüter "Magnetstromversorgung für den Doppelringspeicher DORIS." Siemens-Zeitschrift 49(1975), S. 757 - 760

ccc) H. Neumann

"Wassergekühlte Kabel für Doppelspeicherring bei DESY " DESY K1-75/1

eee) W. Bothe

"DC Power Supplies for the DORIS Storage Rings Fifth International Conference on Magnet Technology (MT-5)" Roma, April 21-25. 1975

- D3 - Strahlenschutz

Die Meßergebnisse aus der Überwachung der Orts- und Personendosis, der primären Aufgabe der Strahlenschutzgruppe, wurden im Jahresbericht D 3/22 zusammengestellt. Sie zeigen, daß sich in dem Jahr keine problematischen Situationen bezüglich der Strahlensicherheit ergaben. Die Messungen resultieren aus der Überwachung von monatlich 750 Personen, aus Ortsdosismessungen an 115 Punkten durch 2 unabhängige Meßsysteme, aus den Meßanlagen zur Überwachung von Luft und Wasser sowie einem System von Kontrollgängen mit Handgeräten. In der Strahlenschutzgruppe und in anderen Gruppen stehen 220 Geräte zur Verfügung und werden regelmäßig gewartet und geeicht. Das Ortsdosissystem wurde geändert und erweitert; durch Verwendung von Thermolumineszenz-Dosimetern verschiedener Art können wir die Neutronen-Ortsdosis zuverlässiger messen sowie insgesamt eine höhere Empfindlichkeit erreichen und damit der herabgesetzten maximal zulässigen Dosis von 150 mrem pro Jahr an der Geländegrenze Rechnung tragen.

Die Überlegungen zur Strahlensicherheit für PETRA wurden abgeschlossen; sie wurden ergänzt durch zwei externe Gutachten.

Verschiedene experimentelle Untersuchungen wurden durchgeführt, um das Ansprechvermögen von Dosimetern in gepulsten Strahlungsfeldern zu bestimmen. Insbesondere haben wir das Verhalten von moderierenden Neutronenzählern in den sehr kurzen Strahlungspulsen des Linac II studiert; die Ergebnisse können rechnerisch auf beliebige Geräte dieses Typs übertragen werden. Ferner wurde zusammen mit der Gruppe S 2 ein Experiment durchgeführt, um Basisdaten für Abschirmungsrechnungen (Quellterme, Winkelverteilungen, Absorptionskoeffizienten) zu gewinnen.

Von der Gruppe publizierte Literatur:

- 1. H. Dinter and K. Tesch, Moderated rem meters in pulsed neutron fields, Nucl. Instr. Neth. (to be published).
- 2. H. Dinter und K. Tesch, Die Strahlenschutzmaßnahmen für d**em** Speicherring PETRA, Interner Bericht D 3/19 (1975)
- 3. K. Amsinck, Untersuchungen über Ionisationskammern und Stabdosimeter in gepulsten Feldern, Interner Bericht D 5/21 (1975)
- 4. Orts- und Personendosen 1975, Interner Bericht D 3/22 (1975)
- 5. H.G. de Carvalho, J.B. Martins, O.A.P. Tavares (Rio de Janeiro), V. di Napoli, M.L. Terranova (Rom) und K. Tesch (DESY), Photofission Cross-Sections of ²⁰⁹Bi, ²³²Th and ²³⁸U Above 1 GeV, Lett. Nuovo Cimento 14(1975) 615.

.

BEREICH ZENTRALE DATENVERARBEITUNG, ENTWICKLUNG UND BETRIEB

Datenverarbeitung	
- R1 -	S.244
- R2 -	248
Neue Technologien	
- Bl -	256
- B2 -	259
- B3 -	261

Werkstätten	und	Service

- G1 -	262
– W1 –	262
- w4 -	262
- W5 -	263
- w7 -	263
- W8 -	263

Sicherheit

- D5 -	264

- R1 - Rechenmaschine

Rechenzentrum

Im Berichtsjahr wurden 270.000 Jobs mit einer durchschnittlichen CPU-Zeit von 1,6 min. bearbeitet. Die Zunahme gegenüber 1974 beträgt

in	der	Anzahl der Jobs	53%
in	der	CPU-Zeit	74%
in	der	Verweilzeit	33%.

Bei gleichbleibender Steigerungsrate wäre die Kapazität der Anlagen Ende 76 erschöpft.

Die Rechenanlagen zeigten sich der wachsenden Last nicht in dem von uns gewünschten Maße gewachsen. Insbesondere bei Platten und Trommeln traten eine Reihe von zum Teil hochintermittierenden Hardwarefehlern auf, deren Diagnose und Behebung sich in manchen Fällen über Monate hinzog. Diese Fehler bleiben für den Benutzer der Rechenanlage i.a. unsichtbar, binden aber beim Betreiber einen unerwünscht hohen Anteil seiner Arbeitskraft.

Der heiße Sommer stellte extreme Anforderungen an die Klima-Anlagen. Die an den Kaltwassersätzen auftretenden Schwierigkeiten scheinen jedoch nach etlichen unangenehmen Zusammenbrüchen jetzt behoben, vor allem dank des Einsatzes von - K 3 -.

Das Bandarchiv war Ende des Jahres auf 7000 Bänder angewachsen. Der Gebrauch von gruppeneigenen Magnetbändern ist stark rückläufig ganz im Sinne der Absicht, die hinter der Einrichtung des zentralen Bandarchivs stand. Genauso erfreulich ist die steigende Tendenz bei den Benutzern, nicht mehr benötigte gruppeneigene Magnetbänder dem Rechenzentrum zur Verfügung zu stellen, wenn auch ca. 50% dieser Bänder nicht den hohen Anforderungen im Rechenzentrum entsprechen.

Im Berichtsjahr wurden 2 wichtige Änderungen im Rechenzentrum vorgenommen:

a) Änderung der Plattenkonfiguration

Es wurden zwei schnelle Festkopfplatten gegen zwei langsame Festkopfplatten höherer Kapazität ausgetauscht. Außerdem wurde die Wechselplattenperipherie aufgestockt von 16 Laufwerken, die über 2 Steuereinheiten erreichbar sind, auf 24 Laufwerke, die über 4 Steuereinheiten erreichbar sind. Dadurch konnte der Plattenplatz für langfristige Datenhaltung von 500 MB auf 800 MB erweitert werden. Das hatte einen stabilisierenden Effekt auf die Dateien-Migration. Dateien-Auslagerung erfolgt jtzt etwa im 3-Tage-Rhythmus. Die Verdoppelung der Pfade zu den Platten und die Bereitstellung von systemspezifischen Laufwerken für temporäre Dateien hatte einen bemerkenswerten Einfluß auf die Verweilzeit der Jobs, wie man an den unterschiedlichen Zuwachsraten von CPU-Zeit und Verweilzeit ablesen kann. Darüber hinaus war die Erweiterung der Plattenkapazität die notwendige Voraussetzung für

b) Einführung von TSO.

Als erster Schritt bei der Einführung von Time-Sharing-Betrieb am DESY-Rechenzentrum wurden Anfang Oktober 4 Bildschirmgeräte mit TSO-Unterstützung den Benutzern zur Verfügung gestellt. Die wichtigsten Funktionen sind Editieren von Quellprogrammen, Syntaxprüfung und Submittieren von Jobs für die Stapelverarbeitung. Das Time-Sharing-System TSO wurde gewählt, weil es volle Kompatibilität der Dateien zwischen Stapel- und Timesharing-Verarbeitung bietet. Es haben sich bisher 80 TSO-Benutzer angemeldet. Die Erfahrungen des ersten Vierteljahres sind ermutigend. Eine unangenehme Einschränkung ist der Zwang, bei Ausfall eines Rechners TSO aus Speicherplatzgründen stoppen zu müssen.

Weitere wichtige Aktivitäten am Rechenzentrum waren der Ausbau der Unterstützung des Online-Anschlusses der Experimentrechner, die Einführung der strukturierten Programmsprache SHELTRAN, die Implementierung der formel-manipulierenden Programmsysteme REDUCE und FORMAC, des PROJACS-Systems zur Netzplantechnik und des STRUDL-Systems für die Konstruktion.

Abb. 2: TSO - Terminals im Benutzer-Raum

10.3.75 Colloquiums-Vortrag am HMI Berlin

W. Wimmer: "Entwurf des Rechnernetzes bei DESY"

Hybride Rechenanlage

Im Berichtsjahr waren Analog- und Digitalrechner während ca. 68% der normalen Arbeitszeit in Betrieb. 62% davon wurden hybride Programme gerechnet. Besonders umfangreich waren die Hybridrechnungen zur Strahlführung des PETRA-⁵peicherringes und der Injektionswege, sowie für Untersuchungen im Zusammanhang mit dem Entwurf eines neuen Injektionssystems für LINAC II. Daneben konnten neue ⁵insatzgebiete für die hybride Rechenanlage erschlossen werden. Es entstanden größere Simulationsprogramme auf dem Gebiet der Regelungstechnik, beispielsweise zur Untersuchung der Bedämpfung der longitudinalen Synchrotronschwingungam durch ein schmalbandiges Gegenkopplungssystem, zur Regelung der Stamm Quadrupol-Stromversorgungsendstufe bei langsamer Ejektion und zur Begelung des 200hz-Wechselrichters des flat-top-Systems des Synchrotrons.

- R2 - Automatische Filmauswertung

IM Dereich der Software-Entwicklung wurde das NEWLIB-System wesentlich verbessert. Durch die Einführung eines neuen Datei-Formates zur Speicherung der Quéllprogramme auf Platten wurde ein Faktor 5 an Einsparung erzielt. Weiterhin kann NEWLIB auch Dateien bearbeiten, die durch das DESY-Dateienverwaltungssystem auf Magnetband ausgelagert worden sind. Als weitere Sprache wird jetzt auch SHELTRAN unterstützt.

An den halbautomatischen Meßtischen vom Typ VANGUARD wurden 1975 – 34064 Ereignisse gemessen. Es wurden Ereignisse der DESY-Streamerkammer (ep) der Experimente 22 und 74 gemessen.

Im Berichtsjahr wurden am HPD Bilder der 2m-Blasenkammer des CERN gemessen. Es wurden wie im Vorjahr Ereignisse des pp Experiments (12 und 24 GeV/e) gemessen und zwar 82186 Ereignisse mit der Programmkette FUGOS und 72809 Ereignisse mit der Programmkette MIGOS. Außerdem wurden 5826 Ereignisse des Experiments $\pi^{+}p$ (16GeV/e) und 29095 Ereignisse des Experiments $\pi^{-}p$ (16GeV/e) beide mit Vormessungen aus Bonn gemessen. Aus der DESY-Streamerkammer wurden 17263 Ereignisse des Experiments mit kleinem \mathcal{E} sowie 944 Ereignisse der Cornell-Kammer gemessen. Es wurden 1975 also insgesamt 208123 Ereignisse gemessen.

Die Entwicklungsarbeit bei der IBM-seitigen Software für die automatische Filmauswertung hatte 3 Schwerpunkte. Nach Abschluß der Programm-Entwicklung für die Auswertung von Blasenkammerfilmen der CERN-2m-Kammer wurden die Filterprogramme für die Streamerkammer weiterentwickelt, so daß Streamerkammerereignisse mit 3 Vormeßpunkten pro Spur erfolgreich ausgemessen werden können.

Um die Filmauswertung zu beschleunigen, wurde die Arbeit an einem Filterprogramm fortgesetzt, das mit weniger Vormeßinformation auskommt. Der Aufbau der Meßprogramme am HPD I wurde mit dem Ziel geändert, eine größere Flexibilität bei der Auswertung von Filmen von unterschiedlichen Kammern und eine größere Austauschbarkeit der Programme für den HPD I und HPD II zu erhalten. Es wurden die Arbeiten an den IBM-Programmen für die Kommunikation zwischen dem HPD II über das Dataline-System mit dem Meßprogramm im Zentralrechner begonnen.

Die Arbeiten an der Koppelelektronik zwischen dem 4-view-HPD (HPD II) und dem Steuerrechner PDP-15 wurden 1975 abgeschlossen.

Für die hydraulisch bewegten Meßbühnen wurde eine hardwarekontrollierte Steuerelektronik (Orts-Geschwindigkeitsservo) in Betrieb genommen.

Der Aufbau des Filmtransportes mit Hilfe bipolarer getackteier Motorverstärker und die Fertigung der Brennermarken-Detektoren wurde begonnen.

Bei der Software lagen die Schwerpunkte auf der Weiterentwicklung des Kanalhandlers in der PDP-15 für die Kommunikation mit dem Dataline-System.

Ferner wurde ein 'Grafik-System' erstellt, das die Darstellung von alphanumerischen und grafischen Daten auf Refresh- und Storagedisplays unterstützt.

Die Arbeiten am 'Multitasking-Online-Processing-System' (MOPS), das als HPD-Subsystem unter dem Betriebssystem der PDP-15 (RSX-Plus bzw. RSX-Plus III) läuft, wurden abgeschlossen.

Das Interaktive Plotting System (IPS), das im Berichtsjahr über 60 Benutzer hatte, ist ein Multiterminalsystem und dient der interaktiven Manipulation von grafischen Daten. Das System ist durch Verwendung von Speicherröhrendisplays und eines elektrostatischen Plotters auf die besonderen Anforderungen bei der Darstellung von statistischen Daten ausgelegt (z.B. Scatterplots). Die dargesteltten Beispiele (Abb. 2) zeigen das vielseitige Spektrum der Anwendungen. Mit vier für aligmeine Benutzer frei zur Verfügung stehenden und zwei für Software Entwicklung und technische Wartung reservierten Terminalstationen wurde der Hardware-Ausbau des IPS vorerst abgeschlossen. Im Software-Bercich wurden folgende Aktivitäten begonnen bzw. fortgeführt:

- Entwicklung und Implementation einer einfacheren Softwareschnittstelle zum IPS-Benutzer,
- Datenübertragung durch sich selbst identifizierende Datenblöcke zur Verbesserung der interaktiven Möglichkeiten des Systems (z.B. Übertragung von Joystick- oder Lightpendaten zur IBM),
- Einführung eines übergeordneten Protokolls bei der Kommunikation zwischen Benutzertasks (IBM) und Terminaltasks (NOVA 1200) zur Vermeidung von 'Deadlock'-Situationen.

Die Hardware- und Softwareplanungen für ein zukünftiges DESY-Computernetz (DESYNET) wurden in Zusammenarbeit mit R1 weitergeführt, das langfristig Computerleistungen auf einfache Weise per 'Steckdose' an Benutzer auf dem Gelände herantragen soll. Es wurden u.a. die Einsatzmöglichkeiten moderner, kostensparender Technologien untersucht, z.B. Verwendung fertiger Ein-Chip-Mikroprozessoren an Stelle der bisher üblichen Prozessrechner.
Interne Berichte:

P.K. Schilling IPS User's Guide DESY R2-75/1

H. Butenschön NEWLIB, ein Programm zur Verwaltung von Programmen und Programmsystemen auf IBM-Rechenanlagen (Neufassung) DESY R2-75/2

Vorträge:

E.L. Bohnen Multi-Mini-Prozessor Konzept mit Hardware-Multitasking

> Vortrag im Institut für Informationsverarbeitung in Technik und Biologie (Fraunhofer-Gesellschaft), Karlsruhe

Abb. 1 : IPS-Terminal mit Plotter

(24 369)

- 253 ·

- Bl - Neue Technologien

Im Berichtsjahr verteilten sich die Arbeiten der Gruppe im wesentlichen auf die Schwerpunkte ^Pluto, Supraleitung und Petra-Magnetsystem, wobei mit dem Übergang des Pluto aus der Entwicklungs- und Aufbauphase zum Routinebetrieb die hierbei freiwerdenden Arbeitskapazitäten für die Entwicklung und den Bau von Komponenten des Petra-Magnetsystems zur Verfügung gestellt werden konnten.

<u>A Aktivitäten am Pluto</u>

Der supraleitende Detektormagnet Pluto hatte zu Beginn des Jahres seine erste Experimentierperiode am Speicherring mit einer ununterbrochenen Laufzeit von über zwei Monaten erfolgreich beendet. Er wurde in kaltem Zustand aus dem Wechselwirkungspunkt herausgefahren und sofort wieder in Betrieb genommen. Anschließend wurde das Magnetfeld mit Hilfe einer bei B 1 entwickelten wollautomatischen Meßmaschine vermessen und die Resultate nach Auswertung der auf Band gespeicherten Daten in katalogisierter Form' den Experimentatoren zur Verfügung gestellt. Eine Reihe von kältetechnischen Messungen schlossen sich an. Die Ergebnisse und Erfahrungen dieses fünfmonatigen, mit Ausnahme der Weihnachtspause, ununterbrochenen Betriebes wurden in Fachzeitschriften und auf Konferenzen veröffentlicht (1; 3). Anschließend wurden neben den erforderlichen Wartungs- und Überholungsarbeiten eine Reihe von Verbesserungen zur Erhöhung der Betriebssicherheit durchgeführt, insbesondere wurde eine dritte Expansionsmaschine in der Kälteanlage installiert, ein verbessertes Heizsystem für die Stromleiterköpfe entwickelt, die Steuerung für die Fahrwerke des Jochs neu installiert und ein verbessertes Quench-Überwachungssystem für die Kompensationsspulen entwickelt und installiert.

Im Oktober wurde Pluto erneut zwecks Erprobung des vervollständigten Detektorsystems in Betrieb genommen, um Anfang 1976 wieder in den Wechselwirkungspunkt zu fahren.

Aus dem Leistungsüberschuß der Pluto-Kälteanlage konnten ca. 3000 l flüssiges Helium an andere Experimentiergruppen abgegeben werden. Für eine eventuelle Verwendung im Pluto wurde zu einem früheren Zeitpunkt bei B 1 eine supraleitende Zylinderspule gebaut, welche wegen ihrer extrem hohen Stromdichte von fast 4 x 10⁸ A/m² ein hervorragendes Studienobjekt für das Verhalten solcher Spulen beim Übergang von der supraleitenden in die normalleitende Phase darstellt. Informationen hierüber sind außerordentlich wichtig und bilden die Grundlage für spätere Entwicklungen. Es zeigte sich z.B. im Verlaufe dieser Experimente, daß die internen Spannungen dieser Spule Werte von 2000 V übersteigen konnten, obwohl der Wert an den Enden auf 10 V begrenzt war. Diese hohen Spannungen konnten durch Einbau eines auf Heliumtemperatur abgekühlten Zylinders aus Kupfer erheblich reduziert werden. Die Wirkung dieses Zylinders beruht auf der Tatsache, daß bei einer schnellen Feldabnahme hohe Ströme in dem Kupfer induziert werden, welche die Feldabfallgeschwindigkeit und damit auch das dø/dt in der Spule begrenzen. Die Ergebnisse dieser Untersuchungen sind veröffentlicht (2).

C Arbeiten für die Petra-Magnete

Von B 1 wurden eine Reihe von Aufgaben im Rahmen der Entwicklung des Magnetsystems von Petra übernommen. Hierzu gehören u.a. die Berechnung von Magnetfeldern und Polprofilen, Ausarbeitung von Spezifikationen für Magneteisenmaterial nebst dazugehöriger Verhandlungen mit der Industrie, Entwicklung und Konstruktion von Magnetelementen der Transferkanäle DESY - Petra sowie Entwicklung und Bau von automatischen Magnetmeßvorrichtungen für die magnetische Vermessung einer großen Zahl verschiedenster Magnettypen. Einzelheiten der B 1 - Aktivitäten bei Petra nebst Abbildungen sind in dem Berichtsteil über Petra enthalten.

Rub	rik	•
LUL	LT T V	

	Autoren :	Titel :	Zitat :
1)	W. Eschricht, HJ. Fiebig, G. Horlitz, U. Knopf, G. Knust, O. Peters, W. Stahlschmidt, S. Wolff	The Operation of a Three Coil 5 Megajoule Superconducting Magnet System at the Electron-Positron- Storage-Ring Doris	V. International Conference on Magnet Technology (MT-5) Rom 1975, Seite 85
2)	W. Eschricht, HJ. Fiebig, G. Horlitz, U. Knopf, G. Knust, O. Peters, W. Stahlschmidt, S. Wolff	Investigations on Quench Propagation and Internal Voltage in a Super- conducting Coil	V. International Conference on Magnet Technology (MT-5) Rom 1975, Seite 547
3)	G. Horlitz, F. Böhm, C. P. Parsch und F. Wendler	Pluto, Beispiel für einen großen supraleitenden Magneten	Siemens Zeitschrift, 49. Jahrgang Heft 12, Seite 764
4)	G. Horlitz	Experimentelle Techniken am Elektron-Positron-Speicherring DORIS	Kerntechnik, 18. Jahrgang (1976) Nr. 1, Seite 15
			. · ·
,			

Kältetechnik

In der Nähe der PLUTO-Experimentier-Einrichtung wurde im Februar 1975 ein neuer Flüssig-Stickstoff-Tank mit 25 000 l Inhalt in Betrieb genommen. Durch die Aufstellung dieses Tanks kann an zusätzlichen Stellen in die zentrale Niederdruck-Gasversorgung von DESY und DORIS eingespeist werden und damit die Sicherheit dieser Gasversorgung vergrössert werden (Abb. 1).

Im Bereich des Apparatebaus wurde die Gasversorgungsanlage für die Funkenkammern von PLUTO aufgrund der Betriebserfahrungen des Jahres 1974 umgebaut und für grössere Durchflussmengen umgerüstet. Insbesondere wurde dazu eine Einheit für die kontinuierliche Mischung von Argon und Propan projektiert, getestet und eingebaut. Mit Hilfe dieser Anlage ist es möglich, die Argon-Propan-Konzentration auf 10⁻³ über längere Betriebsperioden stabil zu halten. Zusätzlich wurde die Anlage mit einem Messgerät zur Überwachung der Gemischkonzentration ausgerüstet.

Für die Gruppe - F 31 - wurde zur Versorgung von Proportionalkammern eine Gasmischeinrichtung mit automatischer Regelung für vier verschiedene Gase gebaut. Ausserdem kann dem Gas Methylal oder Äthylalkohol beigemischt werden.

Durch den Brand in Halle I mussten alle dort aufgebauten und in Betrieb befindlichen Flüssig-Wasserstoff-Targets abgebaut und zerlegt werden. Soweit möglich werden die einzelnen Komponenten wieder voll funktionsfähig gemacht. Als erstes ist das Target für das Experiment der Gruppe - F 31 - wieder aufgebaut und in Betrieb genommen worden.

Abb. 1: F1. Stickstoff-Versorgungs-Tank - Pluto und Speicherring (24 562/2)

- B3 - Beschleunigertechnologie

Supraleitende Resonatoren aus tiefgezogenem Niob-Blech, die in der Ebene des zu beschleunigenden Strahles geteilt waren - sog. Gruben-Cavities - wurden nach einer chemischen Politurbehandlung und Oxydation getestet. Es wurden im beschleunigenden Mode bei 3,3 GHz und bei einer Temperatur von 4,2 K maximale Feldstärken bis zu 10 MV/m im Dauerbetrieb erreicht. Eine Struktur aus drei derartigen Grubencavities konnte nach dem Tiefziehverfahren bis zum Jahresende fertiggestellt werden.

Ein Cavity für 1,3 GHz wurde nach dem herkömmlichen Verfahren aus Vollmaterial gedreht und zusammengeschweisst und ebenfalls ohne Hochtemperaturbehandlung im Betrieb mit einem Elektronenstrahl im Mikrotron getestet. Die maximal erreichbare Beschleunigung betrug bei 4,2 K im Dauerbetrieb 3,8 MeV/m und im Pulsbetrieb (O,5 ms HF-Puls, Abklingzeit mit Strahl 1 ms) wurden bis zu 6,5 MeV/m gemessen. Unter diesen Bedingungen war ein Betrieb des Mikrotrons möglich; der hochbeschleunigte Strom konnte in Abhängigkeit von der Sollphase (bis $4^{\circ} = 35^{\circ}$) gemessen werden. Die Strahlbelastung betrug in der Spitze 60 W. Es wurden während eines Vierteljahres mehrere Aufwärm- und Abkühl-Zyklen durchfahren, Belüftungen und Umbauten durchgeführt; die Abnahme der erreichten Feldstärke blieb dabei unter 10 %.

Die Entwicklungsarbeiten auf dem Gebiet der Hochfrequenz-Supraleitung wurden auf Beschluss des Direktoriums zum Ende dieses Jahres eingestellt.

Literatur-Verzeichnis

المرياب والارترام المتعري المستر

Lectures bei der International School of Radiation Damage and Protection " Ettore Majorana "

- The Detection of High Energy Radiation -Measurement of Flux Density and Spectra
- Fluence-to-Dose Equivalent Conversion Factors in Mixed Radiation Fields

- G1 - Umbauten und Gebäudeunterhaltung

Ausser kleineren Umbauten wurden der Erweiterungsbau der Enteisenungsanlage und am Linac II eine Verbindungsbrücke zum Laborgebäude III des Speicherringes begonnen.

Ferner wurde, um die Schallbelastung der Umwelt zu reduzieren, versuchsweise um eine Gruppe von drei 200-Hz-Drosseln eine Schallschluck-Mauer errichtet.

- W1 - Konstruktion

Im -F-Bereich entfiel der Hauptanteil der Arbeit auf Konstruktionen für das BONANZA-Spektrometer (Vakuumkammer, Abschirmung, Gestelle) und die Konstruktion eines Prototyps einer Driftkammer für -F 21-.

Als Ergänzung für die Vakuumkammer im DASP wurde ein Mittelstück aus Aluminium entworfen, welches durch mittels Sprengplattierung hergestellter Aluminium-/Austenit-Übergangsstücke anstelle des Stahlrohres in der DASP-Vakuumkammer eingebaut wurde. Diese Verbindungstechnik wurde an dieser Stelle bei DESY zum ersten Mal erfolgreich erprobt.

Im -M- und -Z-Bereich lag das Schwergewicht aller Arbeiten auf Entwürfen für Komponenten für PETRA, wobei Entwürfe für Magnete (Ablenkmagnete und Quadrupole), Magnetaufstellung und Cavities im Vordergrund standen.

- W4 - Mechanische Fertigung

Zunächst stand im Berichtsjahr die Anfertigung von Apparaten für die Forschungsgruppen im Vordergrund der mechanischen Fertigung neben Arbeiten für die Erhöhung der Einschussenergie von DORIS. Darunter fallen

Wendelrohr-Zählerkammern in gewickelter und Plexirohr-

Ausführung für einen Zylinder mit Schauerzählern für PLUTO eine zweite DASP-Vakuumkammer mit einem Mittelteil aus Aluminium zwei neue Septum-Magnete für 3⁰ Strahlablenkung und das Umrüsten zweier vorhandener Septummagnete.

Im weiteren Verlauf des Jahres gewannen die Arbeiten zur Vorbereitung von PETRA mehr Gewicht in der Fertigung, z.B.

Prototypen für Cavities und Einkopplungen Schweißproben an Al-V2A-Verbindungen Probeteile für die Ablenkmagnet-Fertigung.

Für die Überholung von verschmutzten und korrodierten Geräten aus der brandgeschädigten Halle I wurde im Mai und Juni ein Teil der Werkstattkapazität eingesetzt.

- W5 - Elektronik-Fertigung

Das Auftragsvolumen blieb gegenüber dem Vorjahr fast unverändert. In der Jahresmitte konnte der Umzug der Leiterplattenfertigung in speziell dafür hergerichtete Räume neben der Elektronik-Werkstatt erfolgen.

- W7 - Tischlerei

Die wichtigste Aufgabe war der Bau eines 15 m langen Modells des PETRA-Tunnels im Maßstab 1 : 1, das auch Modelle je eines Ablenk-, Quadrupol- und Sextupol-Magneten enthält.

Für die weitere Planung und zur Demonstration wurde ein Flächenmodell im Maßstab 1 : 1000 erstellt.

- W8 - Fernmelde- und Kabeltrupp

Unter den laufenden Arbeiten ragt besonders die Verkabelung des Speicherring-Experiments von - F 12 - mit insgesamt 73300 m Kabel heraus. Ausserdem waren die Folgen des Brandes in Halle 1 mit Aufräumungsarbeiten, Reinigung und Rückgewinnung von Kabeln besonders gravierend. Anschliessend mussten die Experimente und Rechner der Gruppen - F 31 -, - F 32 - und - F 34 - neu verkabelt werden.

Für die Bauphase von PETRA 1976 waren unfangreiche Planungsarbeiten durchzuführen, um ohne merkliche Störungen den Fernsprechbetrieb aufrechterhalten zu können. - D5 - Sicherheit

Um die im Mai bei dem Kabelbrand in Halle I zutage getretenen Mängel im Sicherheitssystem von DESY abzustellen, wurde eine Sonderkommission aus Vertretern verschiedener Gruppen ins Leben gerufen. Diese Kommission überprüft systematisch Organisation und technische Anlagen unter dem Gesichtspunkt der Feuersicherheit und hat inzwischen eine Menge Vorschläge zur Verbesserung gemacht, die zum Teil schon realisiert werden konnten. Dabei soll auch – D 5 – durch einen zweiten Sicherheits-Ingenieur verstärkt werden.