
Improvement of Programming Efficiency

in Medical Image Processing by a Dialog Language

G. Pfeiffer and K. H. Höhne

Deutsches Elektronen-Synchrotron DESY

Abstract

A System for Image processing in medicine should on the one hand provide an easy

and safe application of proven methods of picture analysis. On the other hand a

smooth path for improvements or new applications should be provided. It is ar-

gued that the required System and programming flexibility can be achieved by a

dialog language, which in addition pro v i "des for a better transparency and docu-

mentation of the resulting Software.

The System described which has been implemented on a PDPll-Computer consists of

two languages, a high level problem oriented dialog language and a low level

machine oriented programming language. The paper summarizes the high-level dia-

log language. Particular features include specific interactive facilities, ver-

satile display control and menu techniques, a powerful procedure concept and

the use of default values and current representations of data types in proce-

dures.

Zusammenfassung

Ein System zur Verarbeitung medizinischer Bilder sollte die Möglichkeit bieten,

erprobte und ausgetestete Verarbeitungsmethoden einfach und sicher anzuwenden.

Gleichzeitig sollten gut handhabbare Möglichkeiten bestehen, Verbesserungen oder

neue Methoden im System zu implementieren.

Die Verwendung einer Dialogsprache ist ein geeignetes Hilfsmittel, die ange-

strebte System-Flexibilität zu erzielen, und darüber hinaus kann sie eine bes-

sere Transparenz und Dokumentation der erzeugten Software gewährleisten.

Das hier beschriebene, auf einem PDPll-Rechner implementierte, System besteht

aus zwei Sprachen, einer höheren problemorientierten Dialogsprache und einer
niederen maschinen-orientierten Programmiersprache. Es wird eine Übersicht über

die wesentlichen Eigenschaften der Dialogsprache gegeben. Diese umfassen spezi-
elle interaktive Fähigkeiten, 'Menü1 -Techniken, problem-orientierte Datentypen,

aktuelle Darstellungen von Datentypen und ein vielseitiges Prozedurkonzept, ins-

besondere mit der Möglichkeit, Parametern ' Defaul t1 -Werte zuzuweisen.

+ Accepted for presentation at the First Congress of the European Federation for
Medical Informatics, Cambridge 4 - 8 September 1978.
Research supported by grant DVM 130 of the Bundesministerium für Forschung und
Technologie.

1. Introduction

Image processing is of growing importance among the vaiety of Computer applica-
tions in medicine. Many applications have been published, mostly in Nuclear Me-
dicine, Radiology or Cytology. In our laboratory we are presently developing a
System for the analysis of X-ray angiograms . The overall System is subdivided

into three major parts, the

- System hardware,

- system Software and the

- application Software.

In this paper we will concentrate on our approach to an appropriate System

Software. A detailed hardware description can be found in ref. 2. An overall

view of the hardware may be obtained from the block diagram in Fig. 1. An X-ray

picture series taken from a Standard TV-interface (50 frames/s) is digitized

in real time (256 x 256 pixels/frame) under control of a host Computer. The di-

gitized images are transferred to a mass storage device for further investiga-

tion. Image presentation is done on a colour TV monitor with light pen, track

ball and key board. Results of first applications are described in ref. 3.

The AijAtem Ao&tw<vie. represents an appropriate abstraction level to hide special
hardware pecularities from the user äs well äs to provide application oriented
tools for interaction with the hardware components. From experience with a Sy-

stem we had previously developed which included the interactive analysis of
4 5scintigraphic images ' we learned that the complexity of the man-machine inter

action is a major problem in the design of a System for large scale application
of image processing for use by physicians in a hospital. One has to face a
double task:

of algorithms for new applications. Typical problems are varying

modes of data acquisition, filtering algorithms or methods of data presentation

l nt-(>.gsi(Ltio n of proven algorithms into a System which must not only be operatio-

nal in daily routine, but sufficiently flexible to be applied to new areas of
scientific research. The system is constantly subjected to modif ications. These
may be changes to already avai lable programs (e.g. modifying a smoothing algo-
rithm) or even entirely new applications to be fit into the system.

Computer controlled
video tape recorder

DIGITAL MASS
STORAGE

l>
Fluoroscopy
video input

ECG
X-ray voltage
X-ray current

DIGITAL VIDEO
SYSTEM

- Real time digitizer
- fast picture störe
- colour display

processor

Fig . 1

Block Diagram of.the
Image Processing System

-////////////z.
HOST

COMPUTER
(POP 11/45)

"

to Central Computer

Colour display
monitor

Keybord

As has been pointed out by Kupka , the underlying issue is that of

and mm pt0ceduAa£ problem solving. The former involves transformation of a spe-

cial problem to a mathematical algorithm, which in turn is represented by a pro-

gram in an appropriate programming language. Non procedural Steps, on the con-

trary, are concerned with developing, testing or modifying algorithms and they

imply last but not least System maintenance tasks such äs adapting the System

to changing demands.

In this respect we feit that a problem oriented, conversational high level lan-

guage could improve programming and System flexibility in image processing.

Available dialog languages, which we investigated, proved to be deficient for

our application in one or more of the following respects:

- Low ef£ici.ency due to interpretative execution.

- Lack of specific facilities for image processing (£roblem ̂ rjentatjpji).

- Restricted £ortabjTlj_ty due to specialized hardware and to operating System de-

pendencies.

In particular MUMPS, which is widespread in medical data processing, was not

considered suitable, mainly due to its lack of execution speed and problem orien-

tation for image processing.

In this paper we will describe a dialog language which has been developed from

experience with an earlier version . Its purpose is to contribute to the solu-

tion of at least the first two of the difficulties mentioned above.

2. Requirements to the Language

Some design conditions are common to other conversational Systems. A detailed

discussion can be found in refs. 6 and 3. Further general conditions, which are
specific to the image processing application, have to be considered:

_ " Response times must be short enough not to frustrate the user.
This forbids interpretative execution of operations on large amounts of data
(e.g. transformations of image matrices).

- Intricate concepts should be avoided in favour of simple and

concise rules, so that untrained but interested physicians or technicians can

use the language.

lJî e_ra.n£e_o_f p^mb]_ems - A high level language may be inapplicable to some

Problems, e.g. acquisition of data from fast processes. Therefore, means must

be provided to include applications outside the primary scope of the language

_ _ £ Üs*LrA ~ A strict Separation of routine and scientific use is in

general not possible. The System has to satisfy users which only want to push

buttons and users writing sophisticated application programs.

_ _ _ iSU£pp_r_t - The instruction sets of special processors with

special memories must be accessible from the high level language.

3. System Concept

Fig. 2 shows the general structure of the System. Essentially it covers two dif-

ferent languages embedded in a common frame:

g
- a tow tQ\)Q_t machine oriented progranming language

and - a k-igk problem oriented dialog language.

DIALOG FRAME

HIGH LEVEL
PROBLEM ORIENTED
DIALOG LANGUAGE

1 1t
INTERPRE

\R

E X E C U T I 0

LOW LEVEL
MACHINE ORIENTED

PROGRAMMING LANGUAGE

,f
COMPILER

Fig. 2 Structure of the Dialog System

The dialog frame consists of operations and data structures common to both lan-

guages.

The low-J_eve]_ language belongs to the class of PL360-like languages and com-
bines the style of a high-level language with the efficiency of an assembler
language. It will be used when the application problem requires especially effi-
cient code or explicit access to System hardware. In the dialog System the low-

level language serves a double purpose:

- The system is ünp-t&wntzd in the low-level language. Thus System modifications,

which neven can be totally avoided, are achieved more easily.

- Procedures of the low-level language may be tink^d to the high-level language
during a dialog Session. Thus in applications not suited to high-level pro-
gramming one can switch to low-level progranming. However, use of the low-le-

vel language still requires considerable knowledge of Computer hardware. In
practice, therefore, its use will certainly be restricted to experts.

Althoucjh the low-level language and the high-level language fulfill entirely

different requirements, they have a set of common language constructs. In fact
there exists a subset of syntactic rules which have exactly the same definitions

in both languages. Essentially these are the rules for

- formulation of expressions and

- program control structures.

The common subset is limited on either side by the machine orientation äs well

äs the problem orientation of the respective language. Nevertheless the simila-

rity of the two languages can facilitate the rewriting'of tested algorithms from

high to low level language.

Details of the low-level language are described in ref. 9. In what follows we

concentrate on the kigh-t&ve.t language, since it is used in most applications.

To enhance efficiency, besides the interpreter a Compiler will be provided. The

user decides the mode of translation from the actual problem structure. While

the interpreter offers the füll scope of language definitions, usage of the Com-

piler will impose some restrictions on the user, e.g. the dialog features are

obviously not available.

4. Elements of the High-Level Language

The most important language features are summarized below. More details are gi-

ven in ref. 7. Some concepts used in this language have been taken from other

languages .

D§claratign_and_Data_TyBes

For numerical Computing and string processing the data types BOOL, STRING, IN-

JÊ EĴ and REAL are available. Since our application is Image processing, we pro-

vided the problem oriented data types _IMAGE_ and £R/\ME_. A series of images of e.g.an

angiographic study is represented by a three-dimensional image in the language.

Frames represent rectangular or arbitrarily shaped areas of an image (e.g. a

particular vessel in a kidney might be an arbitratily shaped frame). The frames

may have one, two or three dimensions.

By indexing images with frames one has access to sub-images. For example, from

a series of 200 images (256 x 256 pixels) a sub-series with a frame given by the

Parameters x = 10-200, y = 1-256, z = 20-100 could be extracted like

IMAGEtlO-200,1-256,20-100] or by using key words for axis

orientation

IMAGE[%Z=20-100, %X=10-200, %Y=l-256] or just

IMAGEtFRAME] if FRAME represents the desired

three-dimensional region.

Declaration of objects may be done implicitly from the context or explicitly by

a PECLARE Statement, e.g.:

DECL I1,I2:IHAGE, X,Y,Z:REAI_, TABLE[100]: INTEGER

Users may define their own problem oriented data types, a feature well known and

appreciated from other programming languages. For example, the user could combine

a picture taken from a patient with his identification into a new structured data

type, called RECORD:

STRUCT RECORD=IDENT:PERSON, ITEM:IMAGE

STRUCT PERSON=NAME[10]:STRING, AGE[3J:INTEGER

RECORD itself is composed of another structured type, called PERSON and an ob-

ject of primitive type IMAGE. The components of the structured types can be

accessed by numerical indices or by identifying names, äs in the example IDENT,

ITEM, NAME, AGE.

Current_Variables

When working intensively with one object, e.g. trying a number of manipulations

on an image, it is awkward to refer to this object always by its name. Better

practice is to identify the object cuM.e.vMy in use by a special symbol . Thus

there may exist a current representation of each data type, primitive or struc-

tured. It is identified by the type name and the character %, e.g.

IMAGE?[FRAME?]+REAL2

means addition of the current real number to an area of the current image, de-

fined by the current frame.

Reseryed_names

Some special purpose memories, e.g. two fast 256 x 256 8-bit memories for images

are part of the hardware. In the dialog language they are represented äs pre-de-

fined objects with reserved names. To avoid conflicts with user-defined names

the special sign '%' always must precede a reserved name. The hardware supplied

image memories for example are integrated into the language äs

%MEM1 [256,256,Hand «M2 [256,156,1]

of type IMAGE.

C°.Qtrol_Structures

A well-proven set of control structures was selected for the System. Iteration

is provided through a FOR, WHILE or REPEAT loop, conditional execution through

an IF...THEN...ELSE, whereby the ELSE clause is optional.

Examples:

FOR 10 ->• I UPTO 100+ UP DO<STATEMENT>
IF IMAGE? - I<LEVEL THEN 0 -> I ELSE Ixl -»• I

The last example requires comment. An Image is assigned to I. The condition will

be tested for each element of Image I and the THEN or ELSE exit i s taken de-

pending on the result of the test. Thus execution of the condition for an Image

involves implicit execution of a loop. The above Statement squares each image

element above a given threshold and zeroes the rest.

Case selection is performed by a sequence of IF...THEN...Statements, guarded by

DOCASE...ODCASE, e.g.

DOCASE

IF RESULT EQ A THEN PRINT A

IF RESULT EQ ß THEN PRINT B

ELSE PRINT 'FALSE1

ODCASE

The first TRUE condition is selected for execution.

A simplified loop structure allows iteration in an array without specifying any

loop indices, e.g.

DECL ARRYE256]:INTEGER

LOOP ARRYtX] DO X -> ARRY

Iteration is performed for all elements of the object ARRY. The dummy name 'X1

is only used to identify the current index in each iteration Step. This loop

Stores the numbers l to 256 in ascending order into ARRY.

Exgressions

Expressions are evaluated strictly from left to right, without hierarchy of ope-

rators. Parentheses may be used to override this rule. Assignment also obeys

these rules, äs the example indicates:

XY H- LEVL + (FPARM+100. -> X) -*• XY

The result is LEVEL=XY and X=FPARM+100. and XY=LEVEL+X.

10

Procedures

Procedures are divided into two classes,

- Internal Procedures (PROC) and

- External Procedures (XPROC) .

JnteAnaZ pfwctdusieA (referred to äs procedure) are program modules generated in-
teractively in the high-level language. Ex.t&inat p-tocecfuAe^ form the link be-

tween dialog programs and low-level programs. Internal and external procedures
are declared in a parallel manner. The handling of parameters i s the same for
both cases.

Depending on the context the user may select from several notations for the
passing of parameters:

notation

notation, for up to two parameters

- ke,ywox.d notation, for selection of specific parameters

This i s illustrated by the following procedure:

PROC SÜß (FIRST, SECOND: IMAGE)

IF AßS(FIRST-SECOND) LT LEVEL THEN 0 -* FIRST

RETURN

If applied to Images belonging to an angiographic series this procedure would

eliminate static regions, i.e. only dynamic changes above a given intensity

level would be preserved.

The procedure may be called in one of the following äquivalent ways:

SUB(I1,I2)
II SÜß 12

SUB with FIRST=I1 & & SECOND=I2

11

Procedure SUB can be transformed to an external procedure by the declaration:

XPROC SUB(FIRST,SECOND:IMAGE): XSUB

where XSUB is an arbitrary name referring to an entry point in the Iow-level

language.

Thus depending on the efficiency required, one may choose to generate either a

procedure In the high-level language or an external procedure in the Iow-level
language, External procedures turned out to benefit not only the user but also

the System programmier. During -Implementation they are extremely useful in a
kind of bootstrap procedure. Thus the language definition need not have con-

tained any operations at all from the beginning. Only the general concept of

procedures is provided in the syntax, äs well äs the means to generate them.

Just for convenience some primitive hardware supported operations like arith-

metic operations on integers were, in fact, included. Other operations can be

added äs desired. In particular all input/output functions äs well äs most

functions to control specific hardware have been realized äs external procedures.
This technique guarantees a flexible adaption of the System to changing require-

ments without changes in the dialog language itself.

Default_Parameters

In routine applications one mostly uses a set of Standard parameters which sel-

dom need to be changed. These parameters could receive pre-defined values.

Nevertheless, the Option must be preserved to change these parameters in spe-

cial applications. For that purpose one may assign default values of parameters
in the procedure definition, e.g.

PROC CONTRAST(I=IMAGE2,LLEV=MIN(I),ULEV=MAX(I):INTEGER)

256X(I-LLEV)/(ULEV-LLEV) + I

RETURN I

Variation of the thresholds LLEV, ULEV yield a contrast enhancement of the pic-
ture. In a call of this procedure the parameters LLEV, ULEV may be omitted.

Then the specified default values will be taken. If explicitly stated, however,

they override the respective defaults.

12

This feature proves to be particularly useful when combined with current variab

les. In the example the current Image is assigned to I äs default value. Cal ls

to CONTRAST now can be of the form:

CONTRAST

All parameters are used äs default from the procedure definition.

CONTRAST(IM,LLEV=10)

Only ULEV is used äs default.

Dial°_g_Sp.ecific_Features

The dialog specific facil i t ies are characterized by:

The concept of ctine.c,t and LndJJmdt execution äs first realized in the lan-

guage JOSS and adapted by many other dialog Systems. Procedures (also called

PARTS) are created by the user in indirect mode, using the edit facilities of

the language, while in direct mode each Statement is immediately translated

and executed. This concept unifies the usually separate steps of program

writing, editing and execution via a job-control language.

- Interruption of execution may be programmed via a

a STOP command or forced by a user interrupt. One can inspect and modify

values of variables, execute other programs and finally resume execution.

- u&o. of$ undefcned vasUabieA - Var iables need not be declared in advance. The

user must supply the missing information when the System prompts him. This

feature is particular useful in program development and testing.

I[]]3ae_Presentation_and_Menu_Technigue

We have paid special attention to image presentation. The hardware contains an

(X , Y) CRT display (16 grey levels) with a light pen and a TV display (256 levels

of brightness, up to 512 shades of colour) for presentation of x-ray images,

with light pen and track ball.

13

The dialog language offers various means of display control. Objects of any
type may arbitratily be added to or deleted from a V-Uplay Fx^e, using the com-
mands VPLAV and PCLEAR, e.g.

DPLAY IMAGE?,'KIDNEY ANGIOGRAM1

would issue the current image and the text at the present beam position, while

the command

DCLEAR IMAGE?(FRAME?)

would delete an area defined by the current frame from the Image being displayed.

Menü. te.c.hnÄ.qu.2. is provided by the PMEMU command followed by one or more items de-

scribing the menu, e.g.:

DMENU 500,20,LTHRLD,'SUBTRACT LOUER THRESHOLD'

Command DMENU itself is not primarily included In the language definition. Ra-

ther the language has been extended by this external procedure.

The command issues the text string at position (500,20) on the screen. Pointing

to the text with the light pen causes execution of the procedure LTHRLD. Menu

creation is greatly facilitated by utilization of structured data types, äs the
following example indicates:

STRUCT MENU=X,Y:INTEGER, EXC:PART, IDENT[20J:STRING

DECL LOWTHR=500,20,LTHRLD,'SUBTRACT...':MENU

DECL UPTHR=500,40,UTHRLD,'ADD... ':MENU

DMENU LOWTHR, UPTHR,...

The first Statement declares data type MENU. The two following Statements gene-
rate the objects LOWTHR and UPTHR. The DMENU command displays these items and

leaves the System waiting for light-pen input.

14

5, Present State

The dialog language has been successfully implemented on a PDP11/45 Computer,

using the low-level language. To gain experience with the application Software
12for the analysis of x-ray angiograms a stand-alone System PROFI11 has been

implemented concurrently.

Presently we insert the algorithms of PROFI11 into the dlalog-language System.
This is easily performed by using the external procedure technique of the dia-

log language.

6, Conclusion

The dialog language described is an attempt to provide an efficient, simple and

flexible tool for image analysis, especially for medical appl ications. E^-c-
cÄe.ncy of execution and decttco-ted /lotdujoAe Support is guaranteed by combining a
high-level interpreter/compiler System with a low-level programming language.
Problem osU.e.nte.d data types and a versatile display control are adapted to image
processing. The needs of the casual user and of routine Operation are met by
supplying a set of Standard functions triggered either by menu. 4e£ec-tüm via
light pen or by pressing puAk bii£toyu>. The dialog technique facilitates produc-

tion and maintenance of programs by the experienced user.

Acknowledgement

The authors wish to thank Profs. H. Schopper and G. Weber (DESY) for their con-

tinuous support of the project and to all members of the DESY-UKE collaboration

for many useful hints and discussions.

They are particularly grateful to Profs. W. Brauer and I. Kupka for valuable

comments and stimulating discussions.

15

References

1. K.H. Höhne, G. Nicolae, G. Pfeiffer, W.-R. Dix, W. Ebenritter, D. Novak,

M. ßöhm, B. Sonne, E. Bücheier; An Interactive System for Clinical Applica-

tion of Angiodensitometry; Digital Image Processing,Informatik Fachberichte,

Vol. 8, Springer, Berlin-Heidelberg-New York, 1977, 232 - 243.

2. G.G. Nicolae, K.H. Höhne; Digital Video System for Real-Time Processing of

Image Series; DESY report DV 78/2, Hamburg, 1978, submitted to IEEE Trans-

actions on Computers.

3. K.H. Höhne, M. Böhm, W. Erbe, G.C. Nicolae, G. Pfeiffer, ß. Sonne; Functio-

nal Imaging - A New Tool for X-Ray Functional Diagnostics; DESY report

DV 78/1, Hamburg, 1978, submitted to Radiology.

4. K.H. Höhne, K. Dahlmann, W.-R. Dix, W. Ebenritter, G. Pfeiffer, K. Harm,

R. Month; A decentralized Computer System for Processing of Information fron

Heterogenous Medical Applications; Proc. of the Ist World Conf. on Medical

Informatics (HEDINFO 74), Stockholm, 1974, 95 - 100.

5. K.H. Höhne, G. Pfeiffer; The Role of the Physician-Computer Interaction in

the Acquisition and Interpretation of Scintigraphic Data; Meth. Inform. Med.,

Vol. 13, 1974, 65 - 70.

6. I. Kupka; Conversational Languages and Structural Interactive Programming.

Formal Languages and Programming (Aguilar, R., Ad.), North-Holland, Amster-

dam, 1976, 43 - 64.

7. G. Pfeiffer, K.H. Höhne; A Dialog Language for Interactive Processing of

Scintigraphic Data; Proc. of the 4th International Conference on Information

Processing in Scintigraphy, Orsay, 1975, 221 - 232.

8. M. Klerer, J. Reinfels (Ds.); Interactive Systems for Experimental Applied

Mathematics; Academic Press, New York and London, 1968.

9. G. Pfeiffer; SIMPL11» eine einfache Implementierungssprache für PDPll-Rech-

ner; DESY report DV 76/2, Hamburg, 1976.

16

10. N. Uirth; PL360, A Programming Language for the 360; Computers Journal of

ACM, Vol. 15, 1968, 37 - 74.

11. J.W. Smith; JOSSII: Design Philosophy; Ann. Rev. Aut. Progr., Vol. 6, 1970,

183 - 256.

12. M. Böhm; PROFIll - A System for Processing and Retrieval of Functional

Images; to be published.

