Interner Bericht DESY F15-93-04 Dezember 1993

2

÷.

Die Untersuchung des Zerfalls $D_s^+ \rightarrow K^0 K^+$

Eigentum de Property of	DES	Y Bib	liothek library
Zugang: Accessions: 2	O. DEZ.	1993	
Leiht ist: Loan period:	7	l e days	

K. Busse

von

Eigentum de Property of	" DES	Y ^{Sibliothek} library
Zugang: Accessions: 2	O. DEZ.	1993
Leihfrist: Loan períod:	7	l e days

DESY behält sich alle Rechte für den Fall der Schutzrechtserteilung und für die wirtschaftliche Verwertung der in diesem Bericht enthaltenen Informationen vor.

DESY reserves all rights for commercial use of information included in this report, especially in case of filing application for or grant of patents.

> "Die Verantwortung für den Inhalt dieses Internen Berichtes liegt ausschließlich beim Verfasser"

Die Untersuchung des Zerfalls

.

$$D_s^+ \to K^0 K^+$$

Karsten Busse 💪

Diplomarbeit

Institut für Metallphysik und Nukleare Festkörperphysik

Technische Universität Carolo Wilhelmina zu Braunschweig

Abgabetermin: 19. November 1993

Zusammenfassung

In dieser Arbeit wird die Häufigkeit des Zerfalls des D_s^+ -Mesons in K^0K^+ bestimmt. Als Datengrundlage dienen die vom ARGUS-Detektor am e^+e^- -Speicherring DORIS bei DESY gemessenen Ereignisse. Die Schwerpunktsenergien liegen bei der $\Upsilon 4S$ -Resonanz sowie dem resonanzfreien Kontinuum, der skalierte Impuls x_p wird auf $x_p > 0.4$ beschränkt, um *B*-Mesonen-Zerfälle auszuschließen. Es werden zwei verschiedene Wege eingeschlagen, um den Einfluß einer D^\pm -Reflexion zu umgehen, wobei der erste (Auswertung A) zu einer geringen Ereignismenge führt und der zweite (Auswertung B) eine große MC-Unsicherheit aufweist. Als gemeinsames Resultat wird die Zerfallsbreite Γ zu $\Gamma(D_s^+ \to K^0K^+) = 2.55 \pm$ 0.5% bestimmt.

Mit der Analyse geht die Untersuchung zweier *D*-Mesonen-Zerfälle einher, die die Zerfallsbreiten $\Gamma(D^+ \rightarrow K^0 K^+) = 0.75 \pm 0.25\%$ und $\Gamma(D^+ \rightarrow K^0 \pi^+) = 2.3 \pm 0.5\%$ als Resultat liefert.

Abstract

In this thesis the decay of D_s^+ mesons into K^0K^+ is studied. The employed data are taken with the ARGUS detector at the e^+e^- storage ring DORIS at DESY. The centre of mass energy is restricted to $\Upsilon 4S$ events and the non-resonant continuum. The scaled momentum x_p is restricted to $x_p > 0.4$ to exclude B meson decays. Two different ways are chosen to exclude a D^\pm reflexion. The first one (Auswertung A) leads to less data and the second one (Auswertung B) shows more MC uncertainty. The final branching ratio is $\Gamma(D_s^+ \to K^0K^+) = 2.55 \pm 0.5\%$.

With the same data the branching ratios of two D meson decays can be obtained:

- $\Gamma(D^+ \to K^0 K^+) = 0.75 \pm 0.25\%$
- $\Gamma(D^+ \to K^0 \pi^+) = 2.3 \pm 0.5 \%$

Inhaltsverzeichnis

K	onsta	nten u	und Definitionen	vi
1	The	oretisc	che Grundlagen	1
	1.1	Histor	ie	. 1
	1.2	Wechs	elwirkungen	. 2
	1.3	Teilche	enerzeugung und Vernichtung	. 6
	1.4	Matrix	xelemente und Formfaktormodelle	. 8
		1.4.1	Das BSW-Modell	. 9
		1.4.2	Das ISGW-Modell	. 9
2	Das	Exper	riment	10
	2.1	DESY		. 10
		2.1.1	Historie	. 11
		2.1.2	Strahlführung	. 11
		2.1.3	DORIS	. 11
		2.1.4	ARGUS	. 12
	2.2	Das M	agnetsystem	. 13
		2.2.1	Speicherringmagnete	. 13
		2.2.2	Detektormagnete	. 15
	2.3	Die De	etektorelemente	. 15
		2.3.1	Der Siliziumstreifenzähler	. 15
		2.3.2	Die Vertexkammer	. 16
		2.3.3	Die Driftkammer	. 17
		2.3.4	Das Flugzeitsystem	. 18
		2.3.5	Das Kalorimeter	. 18
		2.3.6	Die Myonkammern	. 19
	2.4	Das A	uslesesystem	. 20
		2.4.1	Datenfluß	. 20
		2.4.2	Das Triggersystem	. 20
		2.4.3	Die Datenauswertung	. 21
		2.4.4	Programmpakete	. 22

ii		R	INHALTSVERZEICHNIS
2			
3	2 1	In such setiments	23
	3.1	Tribberidentification	
	3.2		
		3.2.1 Driftkammer-information: dE/dx	
		3.2.2 IOF-INIOFMATION	
	2.2	3.2.3 IIKelinood ratio	
	3.3	Neutrale Tellchen	
		3.3.1 Nachweis neutraler Teilchen	
		3.3.2 Nicht detektierbare Teilchen	
	3.4	Invariante Masse und Reflexion	
	3.5	Monte-Carlo	
		3.5.1 Fakeraten	
4	Das	D_{\star}^+ – Meson	31
	4.1	Erzeugung	
	4.2	Zerfall	
	4.3	Zerfallsprodukte	33
		4.3.1 Identifikation der K^0	33
		4.3.2 Identifikation der K^{\pm}	37
	4.4	Vorauswahl der Daten	37
		interestational and a second s	
5	Date	ensichtung	40
	5.1	Korrekte Identifikation: $K^+ = K^+$	41
		Auftretendes Teilchen: D_s^+	41
		Auftretendes Teilchen: D^{\pm}	41
	5.2	Fehlidentifikation: $K^+ = \pi^+ \dots \dots \dots \dots \dots$	
		Auftretendes Teilchen: D^{\pm}	43
	5.3	Fehlidentifikation: $K^+ = Prot$	43
		Auftretendes Teilchen: Λ_c	
	5.4	Kombination: $K_s^0 \pi^{\pm} + \pi^{\mp}$	
		Auftretendes Teilchen: D^0	45
	5.5	Kombination: $K_{\bullet}^{0}\pi^{\pm}+\pi^{0}$	45
	5.6	Verteilung der Reflexionen	
	5.7	Ausgeschlossene Daten	
6	Refl	exionskinematik	49
	6.1	Relativistische Grundlagen	
		6.1.1 Laborsystem	49
		6.1.2 Schwerpunktsystem (SPS)	
	6.2	Berechnung der Reflexion	51
		6.2.1 Einstieg und erste Näherung	
		6.2.2 Variablentransformationen	
	6.3	Substitution	

i

.

· ·

INHALTSVERZEICHNIS

.

.

																																																					56	8
7	Die	Auswe	er	t	1	u	n	ıg	\$	1/2217												~																															57	7
	7.1	Bereits	ste	e	l	h	u	nę	g (de	25	M	10	-	N	a	ch	W	e	IS	e	11	12	1	e	n	Z	1		•		1			*		1			•	•	2			5.3	1	1	•	ľ				57	7
		7.1.1	N	M	1	0].	V	Ve	ert	le	d	er	1	D,	ţ,	-1	M	es	0	Π	e	n			•	•	1		•	•	ł			4		24		•		•	×	•	8.8	6.1	5.1		2	1		13	50	55	R
		7.1.2	N	M	1	(3.	V	Ve	ert	te	d	er	1	D	±	-]	M	es	60	T	e	n			٠	•	3		÷	e.			1	٠	•	i.		•	•	•		1			*		•		•	0.10	•	61	n
	7.2	Auswei	rt	t١	u	I	18	3	A	:]	Di	re	k	te	r	V	Ve	g		•		ŀ	•	3		•	4	1		÷	1			•				•	£.	2	2	2	2		•	•	•	٠	•				6	0
		7.2.1	7	Z	ι	1	52	ar	nr	m	en	fa	SS	su	n	g	v	01	1	A	1	15	W	/e	21	t	u	ng	5	A	Ŀ.,		•			•		•	*	*			3	0	1	•	٠		1	2.2		•	0.	2
	73	Auswe	ert	tı	u	1	ng	g	B	:]	In	di	re	k	te	er	V	V	eg						•		3		•	•			•	•	,			•	÷	•		ł			1	•					ē.	•	0	3
	1.0	7.3.1	1	Z	1	1	S	ar	nı	m	en	fa	ISS	su	n	g	v	0	n	A		18	ş٧	ve	er	t	u	nį	g	E	3			•	•	1		•	*	e.		2			•	٠	٠	٠	1	6.	ř.	÷	0	0
	7.4	Enderg	ge	el	b	1	ni	S	u	n	d l	Li	te	Ta	at	u	r٧	e	rg	şl	ei	c	h		•	2	8		•	•		ŝ	•	•	1	1					3	29		<))	e:	•	•	5	1	6.2	5	e.	6	(
8	Ere	ignisre	k	0	2	r	15	st	r۱	uł	cti	io	n																																								6	8
0	81	Das E	re	ei	iı	g	n	is	ί.				į,		1					1		÷	3					•	•			0	s		2			•	•	•			e.	٠	·	÷			6.9	4) () ()	*	*	0	8
	8 2	Die Re	ek	k	0	1	15	st	ru	ık	tic	on	ί.							3								•		÷.			÷	2	3		•	×	1		2.0	10	•	5	72	5		•	į	•	•	٠	(1
	0.2	821	1	S		e	k	u	nd	lä	rv	er	rte	ex	c					5					•				,	ļ		•	÷		ļ		2	ų,	÷.		80		e.	e:	×					t 3	1	2	1	1
		822		F	E	T	s	te	٩r	J	et						•			0		4	12						×	5		•			2							ŝ	•			÷			1.3	•		٠	1	2
		823	- 2	7	7.	v	vi	eif	te	r	Je	t														1	ŝ			1			a,	5								•	55		Ċ,			•	į.	•	•	•	7	2
	8.3	Für de	er	n		1	V	ic	ht	p	hy	si	ke	er	0		,	,				•			,			•		5		ł	•	ŝ			•		•	1			ł)		×		2	2	1	2.5	•	2	1	3
										_																																											7	5
A	Tra	ansform	n	a	t	.1	10	n	le	n						1	U	re 1	٤.		į																							2	1	2	2						7	15
	Det	finitioner	n	,	ľ	ŀ	(1	ar	'Z1	0	гп	1e	n	u	n	α	n		16	:1		1	ŝ.	•			•		1			Ì											•			i,	3				÷		1	76
	Tra	nsforma	at	ti	C))	n	:)	×p	¢	\$	p		0	۰,	2	•	1	1	2	2	1	5	•	•		•	•	•		•	ľ					Ĩ,							а 14	۰۵ ۱۹								1	76
	Tra	ansforma	at	ti	C)]	n	(L	V,	z , /	β)	\$	\$	(μ	<i>, 1</i>	1)	1	e,	•)	6	•			•		1		7	*				•						2		i.									1	77
	Tra	ansforma	at	ti	C)	n	:]	μ	4	> 1	4	8		÷,	•	٠	1	_		ľ		6		Ċ.			4			*					*	1					2	2						2		2		1	77
	Tra	ansforma	at	ti	i	2	n	:	(п	n	R ,	μ)) <	⇒	(m	14	1,	1)		8	1	•	3		•	•	1						• (×)	ŝ		0.0															
		te Ce		_1	1	_																																															1	79
Б		ODEV V	la			~		h	0.7																					•																8.	e.	•	•	\sim	•	2		79
	M	JPEK-V	0 V)]		g	A	A	C.			• • 11		te	'n	1	Гe	il	cł	ie	en	ŝ	Ĵ.																				•		•	i i	į.	÷	÷	×		1		80
	Ut	ersicht	d (e			1	11	0	C	1.2.1	U G	P			1																																					3	82
C	M	C-Tabe	ell	l	e	1	n																																														. 1	83
	Im	pulsbere	ei	ic	1	h	:	x,		>	0.	4				-	20	0	•	•	2			,		•	•	3		•	2	5			2	4	1		•	•	5	5		3	1	5	5		•	•	9		1	84
	Im	pulsbere	ei	ic	:1	h	:	x	2	>	0.	5		•	•	÷		2		•	19	e	•	,			•	3		•	1	9		•	•	•	1		•		•			6.9	0	£ 3	*	×	•			201	23	gr
	Im	pulsbere	ei	ic	cl	h	:	x	p :	>	0.	6						•	ł.	٠	jn	ŝ	ł	1	1	÷	÷	9			3				•	•	2		•	·	•	•		8		•	•	÷				000		00
																																																					3	86
I) R	effexion	ns	sj	p		r(bB	۶r	a	m	m	L																																									

R

iii

${f Abbildungsverzeichnis}$

	5 bit be in and Charmonium
$1.1 \\ 1.2$	Vergleich: Positronium und Charmonium 6 Annihilation und Fragmentation
	Conclutting her DESY
2.1 2.2	Aufbau von Argus
	Levelschlängigkeit des Energieverlustes
3.1	Impulsaonangigkeit des Elugzeit
3.2 3.3	Massenbestimmung über die Flagsete Flag
	and a full it W Emission and Annihilation
4.1	D_{g}^{+} -Zertall mit w-Emission und Amminiation 34
4.2	Zerfall des K_s
4.3	Masseverteilung der K. ⁰ Rekonstruktion
4.4	Untergrundrate der A, Ackonstruktion
51	Masse im $K^0 K^{\pm}$ -System
5.2	Masse im $K^0 \pi^{\pm}$ -System
5.3	Masse im K ⁰ Prot-System
5.4	Masse im $K^0 \pi^{\pm} \pi^{\mp}$ -System
5.5	Masse im $K^0 K^{\pm}$ -System mit Reflexionen
5.6	Winkelabhängigkeit der Reflexionen
5.7	Ausgeschlossene Daten
	2 Diagramm
6.1	Reflexionen im m ⁻ -Diagrammi
6.2	D^{\pm} -Reflexion: MC-Daten und erfective (reflect v
7 1	Auswertung A: D [±] der Reflexion
7.0	Auswertung A: Daten und Reflexion
(.2	Auswertung A: Daten und Reflexion
1.3	Auswertung B: D^{\pm} und D^{\pm} -Reflexion
(.4	Auswertung B. Daten, Reflexion und Fit
1.5	Ausweitung D. Daten, territer
8.1	dE/dx der Teilchenbahnen
8 2	Ereignisdisplay des Beispielevents

Tabellenverzeichnis

 $\mathbf{\hat{A}}$

.

1.1	Liste der Elementarteilchen	2
1.2	Übersicht der Wechselwirkungen	3
1.3	Liste der Erhaltungssätze	4
1.4	Grundzustände der Mesonen (mit Massen)	5
1.5	Definition der Luminosität	7
2.1	DORIS II/III Maschinenparameter	13
2.2	Resonanzenergien	13
2.3	Technische Daten des Siliziumstreifenzählers	16
2.4	Technische Daten der Vertexkammern	16
2.5	Technische Daten der Driftkammer	17
2.6	Technische Daten des Flugzeitsystems	18
2.7	Technische Daten des Kalorimeters	19
2.8	Technische Daten der Myonkammern	19
4.1	Erzeugungsquerschnitte und Luminosität	32
4.2	Scan-Luminositäten	38
4.3	Υ- und Kontinuums-Luminositäten	39
7.1	Abhängigkeit der Akzeptanz von x,	57
7.2	Akzeptanzberechnung und Breite der D+	58
7.3	Reflexionsfaktoren	58
7.4	Akzeptanzberechnung und Breite der D^+ aus der Reflexion	59
7.5	Auswertung A: Ergebnisse	53
7.6	Auswertung B: Ergebnisse	56
8.1	Beispielevent: Impulse und likelihoods	71
8.2	Ereignisrekonstruktion: invariante Massen	73

Konstanten und Definitionen

Naturkonstanten

Vakuum-Lichtgeschwindigkeit	С	=	$299792458ms^{-1}$
Plancksches Wirkungsquantum	h	=	$2\pi\hbar$
mit	ħ	=	$6.582122\cdot10^{-22}MeVs$
elektrische Elementarladung	e	=	$1.602177\cdot 10^{-19}C$
Influenzkonstante	€0	=	$8.854187\cdot 10^{-12}Fm^{-1}$
Feinstrukturkonstante	α	=	$e^2/4\pi\epsilon_0\hbar c$
		=	1/137.035 989
Comptonwellenlänge des Elektrons	λ_c	=	h/mec
		=	$2.426311\cdot10^{-12}m$
klassischer Elektronenradius	re	=	$\alpha \lambda_c/2\pi$
		=	$2.817941 \cdot 10^{-15} m$

Als Vereinfachung wird häufig vom SI-Maßsystem (kg, m, s, ...) auf *natürliche Einheiten* $(c = 1 \text{ und } \hbar = 1)$ übergegangen. Dadurch erhalten z.B. Energie, Impuls und Masse dieselbe Maßeinheit (eV).

4

.

Teilchenbezeichnungen

e	: Elektron	μ	:	Myon	ν	:	Neutrino
q	Quark	π	:	Pion	K	:	Kaon
Prot	Proton	K^0_s	;	K-short	K_l^0	;	K-long

Teilchenmassen in $[MeV/c^2]$

$m_e = 0.510999$	$m_{\pi^{\pm}} = 139.568$	$m_{\pi^0} = 134.974$
$m_{K^{\pm}} = 493.65$	$m_{K^0} = 497.7$	$m_{\Lambda^{\pm}} = 2285$
$m_{D^{\pm}} = 1869$	$m_{D^0} = 1864$	$m_{D_s^{\pm}} = 1969$

vii

R

Indizierungen

theo: theoretischer Wert trunc: Mittelwert nach truncated mean Methode PDG: Literaturwert der Particle Data Group [1]

Allgemeine Teilchenkennzeichnung

Q : untersuchtes Teilchen, aus A und B zusammengesetzt A : gemessenes Teilchen, kann aus Fehlidentifikation von X stammen

B : gemessenes Teilchen, nicht fehlidentifiziertes Teilchen

R : in X und B zerfallendes Teilchen, ruft Reflexion hervor

X : Tochterteilchen von R, wird als A fehlidentifiziert

Da fast alle in dieser Arbeit verwendeten Konstanten aus [1] entnommen werden, erfolgt bei diesen häufig keine Literaturangabe. Abweichende Quellen werden angeführt.

Kapitel 1

Theoretische Grundlagen

Nur durch Übereinkunft gibt es süßes, bittres, warmes, kaltes und farbiges, in Wirklichkeit gibt es nur Atome und das Leere.

[Demokrit (nach [2])]

1.1 Historie

Die Vorstellung vom Aufbau der Materie hat sich, im Verlaufe des technischen Fortschritts der Experimente, vom Altertum bis heute ständig entwickelt. Ohne je einen diesbezüglichen Versuch durchgeführt zu haben, sagte Demokrit (ca. 400 v.Chr.) die Existenz von *unteilbaren Grundbausteinen* der Materie voraus. Heute wird die *chemisch* nicht weiter zerlegbare Materie mit dem Wort ATOM (griech./lat. für unteilbar) beschrieben, obwohl dieser Begriff an sich nicht zutreffend ist.

Der Physiker kann und will nämlich noch tiefer in das einzelne Atom hineinsehen, er untersucht die *Subbausteine*. Bereits als um 1900 die Atomhypothese als bewiesen angenommen wurde, ging man von einer komplexen inneren Struktur derselben aus. So wußte man rasch, daß um einen positiv geladenen Kern eine Hülle von Elektronen existieren muß. Die Entwicklung der Quantentheorie führte dann das Photon als wechselwirkendes Teilchen in die Physik ein. Aus der Dirac-Theorie ergab sich 1928 die Existenz von Antiteilchen, also den Ebenbildern der Teilchen mit der Eigenschaft, daß Teilchen und Antiteilchen sich beim Aufeinandertreffen zu reiner Energie vernichten. Aus der Untersuchung von radioaktiven Kernzerfällen stieß Pauli 1931 auf die Existenz von Neutrinos, die jedoch erst 20 Jahre später experimentell nachgewiesen werden konnten.

Ähnlich erging es Yukawa 1936, der, um den Zusammenhalt der Atomkerne erklären zu können, ein Teilchen postulierte, das etwa 200mal schwerer als ein Elektron sein sollte. Im

KAPITEL 1. THEORETISCHE GRUNDLAGEN

Jahre 1947 wurde es dann auch nachgewiesen: das π -Meson (Pion). Von diesem Zeitpunkt an wurden noch viele Proton-ähnliche Teilchen, die Baryonen, und Pion-ähnliche Teilchen, die Mesonen, gefunden. In der Höhenstrahlung entdeckte man auch ein schweres Elektron, das Myon (μ). Nachdem die Anzahl an Elementarteilchen drastisch anwuchs, der Begriff *Teilchenzoo* wurde in diesem Zusammenhang geprägt, entwickelten 1963 Gell-Mann und Zweig (unabhängig voneinander) das Quarkmodell.¹ Am Anfang ging man von drei Quarks aus, deren Anzahl sich bis heute aber auf sechs erhöht hat (wobei das sechste erst indirekt nachgewiesen wurde).

In der Standardtheorie wird das gesamte momentane Wissen zusammengefaßt. Dabei treten drei Generationen von Leptonpaaren und Quarkpaaren (plus ihrer Antiteilchen) auf, die in der <u>Tabelle 1.1</u> aufgeführt sind. Zusätzlich müssen die Wechselwirkungen und deren Feldquanten (Eichbosonen, Vermittlerteilchen) mitbetrachtet werden (siehe <u>Tabelle 1.2</u>). Einzig die Gravitationstheorie ist noch nicht in das Standardmodell eingebunden.

		Leptonen und Leptonne	utrinos
		Generationen (Masse in [MeV])
	1.	2.	3.
1	e= (0.511)	$\mu^{-}(106)$	$\tau^{-}(1780)$
VI	$\nu_{e} (< 7.3 \cdot 10^{-6})$	ν_{μ} (< 0.27)	$\nu_{\tau} \ (< 35)$
-		Quarks	
-		Generationen (Masse in	MeV])
	1.	2.	3.
qu qd	u(p) (28) d(own) (515)	c(harm) (1.31.7 · 10 ³) s(trange) (0.10.3 · 10 ³)	$t(op) (> 91 \cdot 10^3)$ $b(ottom) (4.7 \dots 5.3 \cdot 10^3)$

Tabelle 1.1: Liste der Elementarteilchen

1.2 Wechselwirkungen

"Und Gott sprach: Es werde Licht, und es ward Licht " [1. Mose, 1,3]

... und seitdem beherrscht es die Gesetze der Physik. Die Ausbreitung des Lichtes gehorcht nämlich nicht der *einfachen*, Newtonschen Mechanik, sondern es tritt ein interessanter Effekt auf: Niemand konnte bisher eine höhere Geschwindigkeit als die Vakuumlichtgeschwindigkeit c messen! Die Geschwindigkeitserhöhung, die ein Speerwerfer durch einen schnellen Anlauf dem Speer mitgibt, kann durch Beschleunigen einer Taschenlampe nicht erreicht werden, das Licht kommt immer mit der gleichen Geschwindigkeit an seinem Zielpunkt an (nur seine Energie variiert). Darum geht man, im Rahmen der Relativitätstheorie, davon aus, daß die Vakuumlichtgeschwindigkeit eine absolute Grenzgeschwindigkeit darstellt.

	Ladung in [e]	Gravit.	Wechselw schwach	irkung e.m.	stark	Spin in [ħ]
l	-1	*	*	*	-	1/2
VI	0	*	*	-		1/2
q.,	2/3	*	*	*	*	1/2
qd	-1/3	*	*	*	*	1/2
Fe	eldquant	GGrav	W^{\pm}, Z	γ	$g_1 \dots g_8$	$\frac{1}{2}$

Tabelle 1.2: Übersicht der Wechselwirkungen (*: ja, -: nein)

Direkte Folgen dieser Annahme sind z.B. die relativistische Massenzunahme eines Teilchens mit Ruhemasse. Die beiden Arten von ruhemasselosen, freien Teilchen, die Photonen und die Leptonneutrinos, bewegen sich ausschließlich mit Lichtgeschwindigkeit.

Die Ruhemasse der Teilchen (Leptonen und Quarks) und der schwachen Eichbosonen $(W^{\pm}: 80 \, GeV; Z^0: 91 \, GeV)$ findet über den *Higgsmechanismus* Eingang in die Theorie. Weitere Informationen zu den Schlagworten spontane Symmetriebrechung und *Higgsteilchen* sollten der Spezialliteratur (z.B. [3] und [4]) entnommen werden.

Es gibt noch keine anerkannte Theorie, die aussagt, warum es Leptonen und Quarks sowie Kräfte zwischen ihnen gibt. Auch warum nun genau drei Familien (Generationen) existieren, oder ob das Higgsteilchen vielleicht nur in den Köpfen der Theoretiker Bestand hat, ist, wie so manch andere Frage, noch nicht geklärt.

Ausgehend von den Leptonen, den Quarks und den Wechselwirkungen (ohne die Gravitation) gelingt es dem Standardmodell, die weiterführenden Phänomene zu erklären. Es stellt eigentlich eine Zusammenfassung aus mehreren Theorien dar, die im Laufe der Zeit entwickelt wurden. Als grundlegendes Prinzip wird die Eichtransformation angesetzt. Die Vermutung ist einfach: Wenn etwas beschreiben werden soll, dann dürfen nur solche Begriffe Verwendung finden, die überall verstanden werden können. Wenn also ein physikalisches Gesetz in eine Gleichung gefaßt wird, sollte es in genau dieser Form hier und überall sonst seine Gültigkeit beibehalten. Die verwendeten Parameter dürfen an unterschiedlichen Orten (in Zeit und Raum) keine unterschiedlichen Werte aufweisen, sie müssen *Erhaltungsgrößen* sein. Um eine ungefähre Vorstellung davon zu erhalten, was unter einer Erhaltungsgröße zu verstehen ist, folgt ein kleines Beispiel.

Beispiel einer Erhaltungsgröße: Wenn man Weihnachten jemanden fragt, wann Sylvester ist, kann er entweder sagen in einer Woche oder am 31.12. An diesem Tag sind beide Antworten richtig. Aber nur die zweite Antwort würde auch an jedem anderen Tag im Jahr als wahre Antwort Gültigkeit haben. Das ist die Formulierung, die ein Physiker in seinen Naturgesetzen erreichen will, das Datum ist eine Erhaltungsgröße.

3

IR

¹Den Begriff Quark führte Gell-Mann nach einem Wortspiel von James Joyce (Three Quarks for Muster Mark) in Finnegans Wake ein.

R

KAPITEL 1. THEORETISCHE GRUNDLAGEN

Es gibt viele verschiedene Eichtransformationen, doch zu jeder gehört eine Erhaltungsgröße, die die Transformation charakterisiert (siehe <u>Tabelle 1.3</u>).

Formel	Beschreibung	Erhaltungsgesetz
$x \rightarrow x + x_0$	räumliche Translation	Impulserhaltung
$t \rightarrow t + t_0$	zeitliche Translation	Energieerhaltung
$x \rightarrow Ax$	räumliche Drehung	Drehimpulserhaltung
$x \rightarrow x + vt$	gleichförmige Bewegung	Schwerpunkterhaltung
$A \rightarrow A + \nabla \chi$	Vektorpotentialeichung	Ladungserhaltung
$\Psi \rightarrow O\Psi$	Drehung im Definitionsraum	Leptonenzahlerhaltung $(SU_2 \times U_1)$
		Isospinerhaltung (SU_3)
		Farberhaltung (SU_3C)

Tabelle 1.3: Liste der Erhaltungssätze

Die uns umgebende Welt besteht aber nun nicht aus freien Quarks und Elektronen, sondern aus gebundenen Zuständen. Es gibt zwei Arten von masselosen Eichbosonen, die jede eine Art von Wechselwirkung verursachen.

Die Photonen sind die Träger der elektromagnetischen Kraft. Sind vermitteln zwischen zwei entgegengesetzt geladenen *Partikeln* beliebiger Größenordnung eine Bindung. Beispiele sind hier die Bindung von Atomkern und Hüllenelektronen, das Positronium (=Elektron+Positron) und Van-der-Waals-Kräfte. Die Quantenelektrodynamik (QED) beschreibt mit einer großen Genauigkeit² alle Phänomene, denen diese Kraft zugrundeliegt.

Die Gluonen übermitteln die Farbkraft. Sie binden die Quarks derart aneinander, daß der gebundene Zustand farbneutralist. Dadurch sind nur die Kombinationen Quark-Antiquark mit entgegengesetzter Farbladung (rot-antirot, blau-antiblau, grün-antigrün) oder ein 3-Quark Zustand (rot-blau-grün) möglich. Die beschreibende Theorie ist die Quantenchromodynamik (QCD). Viele Effekte sind denen in der QED äquivalent, und die mathematische Formulierung liefert ein interessantes und reizvolles Beschäftigungsgebiet.

Bei beiden Arten von Bindungen treten *Resonanzen* auf. Diese können als mögliche Schwingungen (Anregungen) eines Grundzustandes aufgefaßt werden. Der Vergleich von Positronium (e^+e^- -Photon) und *Charmonium* ($c\bar{c}$ -Gluon) in <u>Abbildung 1.1</u> macht die Ähnlichkeit von QED und QCD deutlich.

Berücksichtigt man die Tatsache, daß die Quarks Fermionen sind, erhält man zwei Arten von Mesonen: Entweder antiparallele Spinstellung (Pseudoskalarmesonen), mit Gesamtdrehimpuls 0 des Grundzustandes, oder parallele Spinstellung (Vektormesonen) mit Gesamtdrehimpuls 1 des Grundzustandes. Die bisher gefundenen Grundzustände der Mesonen sind in <u>Tabelle 1.4</u> aufgeführt.³ Die Kombinationen b- \overline{s} und b- \overline{c} sowie das top-Quark wurden bisher noch nicht entdeckt (b- \overline{s} -Indizien bestehen bereits).

1.2. WECHSELWIRKUNGEN

R

Abbildung 1.1: Die Gegenüberstellung von Positronium (links) und Charmonium (rechts) zeigt deutlich die Ähnlichkeit der beiden Bindungszustände. Man muß aber beachten, daß beim Charmonium die dargestellten Energiedifferenzen um ca. 8 Zehnerpotenzen höher liegen. Die angegebenen Buchstaben- und Zahlenkombinationen beschreiben die jeweiligen Anregungszustände [2, S.98].

		1	Pseud	oskalarm	esone	n (mit Ma	asse in	[MeV])		
		и		d		5		с		Ь
ū	π ⁰	(0.135)	π^{-}	(0.140)	K^-	(0.494)	D^0	(1.865)	B-	(5.279)
d	π^+	(0.140)	η	(0.547)	\overline{K}^{0}	(0.498)	D^+	(1.869)	\overline{B}^{0}	(5.279)
3	K^+	(0.494)	K^0	(0.498)	η'	(0.958)	D_{i}^{+}	(1.969)	\overline{B}_{g}^{0} .	
ī	\overline{D}^0	(1.865)	D^{-}	(1.869)	D-	(1.969)	η_c	(2.979)	B_c^-	
ī	B+	(5.279)	B^0	(5.279)	B^0_{μ}		B_{c}^{+}	a	η_b	
-			Vel	ktormeso	nen (1	nit Masse	in [M	eV])		
		u		d		\$		с		Ь
ū	ρ^0	(0.768)	ρ-	(0.768)	K*-	(0.892)	D*0	(2.007)	B*-	(5.325)
d	ρ ⁺	(0.768)	ω	(0.782)	\overline{K}^{*0}	(0.896)	D*+	(2.010)	\overline{B}^{*0}	(5.325)
\overline{s}	K*+	(0.892)	K*0	(0.896)	Φ	(1.019)	D;+	(2.110)	\overline{B}^{*0}_{s}	
ī	\overline{D}^{*0}	(2.007)	D*-	(2.010)	D;-	(2.110)	J/Ψ	(3.097)	B_c^{*-}	
ī	B*+	(5.325)	B*0	(5.325)	B*0		B_c^{*+}		$\Upsilon(1S)$	(9.460)

Tabelle 1.4: Grundzustände der Mesonen (mit Massen)

²Von der kleinsten meßbaren Entfernung ($10^{-18}m$) bis zu den größten Abständen (in der Astronomie) konnte keine Diskrepanz zwischen Theorie und Experiment festgestellt werden.

³In dieser Arbeit wird das D⁺_p - Meson untersucht. Es ist die Kombination von einem c-Quark mit einem 3-Quark (oder s⊂ für ein D⁻_p) mit antiparalleler Spinstellung.

Abbildung 1.2: Durch die e^+e^- -Paarvernichtung (Annihilation) entsteht ein Quark- $(c\bar{c})$ -Paar. Durch Fragmentation (starker Zerfall) bilden sich weitere Quarkpaare $(q\bar{q}, s\bar{s})$. Hier ist die Erzeugung eines $D_s^+(c\bar{s})$, eines $\overline{D}(q\bar{c})$ und eines Kaons $(s\bar{q})$ dargestellt (q = u, d).

1.3 Teilchenerzeugung und Vernichtung

Da die uns umgebende Welt nur aus Elementarteilchen der ersten Generation besteht und die der zweiten Generation teilweise in der Höhenstrahlung vorkommen, müssen die Physiker Erzeugungsmechanismen anwenden, um mit allen Elementarteilchen forschen zu können. Im Prinzip muß eine genügend große Energiemenge in einen Punkt zusammengeführt werden, um dann, unter Beachtung von Impuls- und Energieerhaltungssatz, Teilchen zu erzeugen. In der Höhenstrahlung wird ein hochenergetisches Teilchen an den Bestandteilen der Luft (Atome und Moleküle) abgebremst und setzt so Energie frei. Bei der Paarbildung wird ein Photon mit genügend hoher Energie an einem Kern gestoppt und zerfällt in ein Elektron und ein Positron.

Bei Elektron-Positron-Collidern wird genau dieses Prinzip, nur in umgedrehter Reihenfolge, angewendet. Elektronen und Positronen werden erzeugt (im allgemeinen Elektronen durch Glühemission und Positronen durch Paarbildung), beschleunigt und in Bündeln (*Bunches*, etwa 10¹¹ Teilchen je Bündel) gespeichert. An einem genau bestimmten Punkt, dem Wechselwirkungspunkt (*interaction point*), werden die beiden Teilchenbündel gegeneinandergelenkt und Elektronen und Positronen können zusammenstoßen.

Wie häufig dies geschieht, hängt in erster Linie von der Dichte der Bunches ab. Eine Maßzahl für die Häufigkeit ist die *Luminosität* L. Sie läßt sich aus den sogenannten *Maschinenparametern* berechnen (siehe <u>Tabelle 1.5</u>). Hierfür sind die Stromstärke der Bunches und ihre jeweilige Ausdehnung am Wechselwirkungspunkt zu bestimmen. Da aber die Strahlgröße zu stark variieren kann, wird bevorzugt ein anderer Weg gewählt.

Aus der QED kennt man sehr genau die Abläufe der Elektron-Positron-Streuung.

Die Theorie ist derart gesichert, daß aus der Anzahl von $e^+ \cdot e^-$ -Streuungen (Bhabha-Ereignisse) auf die Luminosität zurückgerechnet werden kann. Später wird dann nur die *integrierte Luminosität* \mathcal{L}_{int} von Interesse sein. Hierbei wird die Luminosität über einen bestimmten Zeitraum aufsummiert.

Als nächster Schritt steht dann die Berechnung des Wirkungsquerschnittes σ an. σ beschreibt, wie häufig eine bestimmtes Endprodukt bei einer vorgegebenen Luminosität und Schwerpunktenergie entsteht. Es gilt:

- $N = \sigma \cdot L$
- N : Zahl der Reaktionen eines bestimmten Typs in $[s^{-1}]$
- σ : Wirkungsquerschnitt für die bestimmte Reaktion in $[m^2]$
- L : Luminosität in $[s^{-1}m^{-2}]$

1

Da mit sehr kleinen Längendimensionen gearbeitet wird, führt man als neue Einheit das barn ein.

$$barn = 1 \cdot 10^{-28} m^2$$

 $\approx 4\pi \cdot r_e^2$
 r_e : klassischer Elektronenradius

Dabei kann man sich vorstellen, daß 1 barn (engl. Scheune) für Elementarteilchen so groß ist, wie ein Scheunentor.

6

IR

7

1.4 Matrixelemente und Formfaktormodelle

IR

Die theoretische Bestimmung des Wirkungsquerschnittes erfolgt über die Übergangswahrscheinlichkeit vom Ausgangszustand $|i\rangle$ zum Endzustand $|f\rangle$. Dabei hat sich eine sehr kurze Schreibweise herausgebildet, die einen großen Interpretationsspielraum bietet und ein wenig die Anschauung vernachlässigt. Sobald jedoch das Grundprinzip verstanden ist, lassen sich selbst die schwierigsten Gleichungen kurz (und damit wenig fehleranfällig) darstellen.

Die Darstellung $|i\rangle$ sei ein mathematisches Gebilde (z.B. eine Funktion, eine Menge), in dem alle notwendigen Parameter enthalten sind. Desweiteren gibt es Faktoren (Operatoren), die entweder den Wert eines Parameters aus dem Gebilde *herausziehen* oder ihn verändern können. Als letztes wird noch eine weitere Darstellung $\langle f |$ benötigt, die aus dem Gebilde $|i\rangle$ eine handhabbare Zahl macht.

Die Verknüpfung des Ausgangszustandes i (vom englischen *initial* für Anfang-) mit einem Endzustand f (vom englischen *final* für Schluß-) wird Übergangsamplitude oder Matrixelement M genannt:

 $M_{if} = \langle f | i \rangle.$

Das Quadrat des Matrixelementes (M_{if}^2) ergibt dabei ein Maß für die Übergangswahrscheinlichkeit vom Zustand *i* zum Zustand *f*.

Die einzelnen Darstellungen von i und f müssen nicht immer alle Informationen (Parameter) beinhalten, denn im allgemeinen werden Operatoren eingeführt, die die äußeren Versuchsbedingungen beschreiben. Trifft zum Beispiel ein Teilchen im Zustand i auf ein Hindernis (Target, Streukern), so kann der Einfluß dieses Stoßpartners durch einen Streuoperator U beschrieben werden. Der spontane Zerfall eines Teilchens wird durch den Operator J der Übergangsströme gekennzeichnet. In J sind alle möglichen Zerfälle (stark, schwach und elektromagnetisch) der Elementarteilchen zusammengefaßt. In dieser Arbeit wird zum Beispiel folgendes Matrixelement benötigt:

$$M_{ij} = \langle K^0 K^{\pm} | J | D_s^{\pm} \rangle$$

Die eigentlichen Schwierigkeiten beginnen bei der Aufstellung einer berechenbaren Gleichung. Da die einzelnen Zerfälle nur ungenügend bekannt sind, werden verschiedene Modellbeschreibungen eingeführt, wobei im folgenden das BSW- (Bauer, Stech und Wirbel, siehe [5]) und das ISGW- (Isgur, Scora, Grinstein und Wise, siehe [6]) Modell erwähnt werden.

Zuerst wird der Zweikörperzerfall (ein Meson zerfällt in zwei andere Mesonen) durch einen Mesonen-Übergang und eine Mesonen-Erzeugung ersetzt:

$$\langle K^0 K^{\pm} | J | D^{\pm}_{\bullet} \rangle \longrightarrow \langle K^{\pm} | J | D^{\pm}_{\bullet} \rangle \cdot \langle K^0 | J | 0 \rangle$$

Während die Mesonen-Erzeugung aus dem Vakuum (,0 ') hinreichend gut bekannt ist, muß für den Mesonen-Übergang ein Ansatz gefunden werden. Der entscheidende Parameter ist hierbei der Vierer-Impulsübertrag q.

1.4.1 Das BSW-Modell

Das BSW-Modell geht von einem Laborsystem aus, in welchem das zerfallende Teilchen einen (im Grenzwert) unendlich großen Impuls aufweist (*infinite momentum frame*). Dadurch erhält auch das Zerfallsprodukt einen unendlich großen Impuls, und der Impulsübertrag wird vernachlässigbar klein: $q^2 \rightarrow 0$.

Die Berechnung des Formfaktors $F(q^2)$ aus der (stark vereinfachten) Gleichung

$$\langle K^{\pm}|J|D^{\pm}_{s}\rangle = F(q^{2}) \cdot f(p_{Ds})$$

liefert in diesem Modell den Wert bei q = 0, der dann in die weiteren q^2 -Bereiche extrapoliert werden muß [7, 5].

1.4.2 Das ISGW-Modell

Als das Bezugssystem des ISGW-Modells wird das Schwerpunktsystem des zerfallenden Teilchen gewählt. Hier treten geringe Geschwindigkeiten auf (so daß ein nichtrelativistischer Ansatz häufig ausreicht) und der Vierer-Impulsübertrag q nähert sich dem Maximalwert.

Die Extrapolation auf kleinere q-Werte des berechneten $F(q_{max}^2)$ bedingt eine relativistische Korrektur, die je nach Anwendung zu verschiedenen Skalierungsfaktoren κ führt [7, 6].

KAPITEL 1. THEORETISCHE GRUNDLAGEN

Kapitel 2

Das Experiment

Experimente sind der Versuch, alte Fehler durch neue zu ersetzen.

[H. Gransow]

2.1 DESY

Das Deutsche Elektronen-Synchrotron DESY wurde am 18.Dezember 1959 in Hamburg offiziell als selbständige Stiftung bürgerlichen Rechts gegründet. Es ist ein mit öffentlichen Mitteln finanziertes Forschungszentrum für Teilchenphysik und Forschung mit Synchrotronstrahlung. DESY erhält jährlich (1992) 235 Mio. DM zur Deckung sämtlicher Ausgaben, wobei etwa die Hälfte auf Personalkosten entfällt. Der Etat wird zu 90% vom Bundesministerium für Forschung und Technologie und zu 10% von der Stadt Hamburg aufgebracht. Es sind über 3000 DESY-Mitarbeiter und Gastwissenschaftler auf dem ca. 50 Hektar großen DESY-Gelände im Westen Hamburgs tätig. Jährlich werden etwa 120 Diplom- und 60 Doktorarbeiten, vornehmlich im Fach Physik, bei DESY abgeschlossen, außerdem wird in 9 Berufen eine gewerbliche Ausbildung betrieben.[8]

14

2.1.1 Historie

h-
V
al
u-
0-
üΓ
er
zt.
i i z

2.1.2 Strahlführung

Die Beschleunigung der Elektronen und Positronen auf ihre erforderliche Endenergie geschieht in mehreren Etappen. Mittels Glühemission werden freie Elektronen geschaffen, die einerseits im Linearbeschleuniger LINAC I auf 220 MeV vorbeschleunigt werden können, andererseits in LINAC II durch Auftreffen auf ein Wolframtarget hochenergetische Photonen emittieren, welche dann über Paarbildung Positronen erzeugen. Die Positronen werden beschleunigt und dann im Positron-Intermediate-Accumulator PIA gesammelt. Im Synchrotron DESY II werden nacheinander die Elektronen und die Positronen weiter beschleunigt, um dann entweder in PETRA oder in DORIS eingeleitet zu werden. Mit dem Einsatz von HERA wurde ein dritter Linearbeschleuniger (LINAC III) und ein weiteres Synchrotron (DESY III) für die Protonenbeschleunigung benötigt. Seitdem dient PETRA als Vorbeschleuniger für Elektronen und Protonen, die in HERA eingespeist werden.

2.1.3 DORIS

Der Speicherring DORIS wurde 1974 mit zwei Strahlrohren, jeweils eins für Elektronen und Positronen, in Betrieb genommen. 1982 wurde er, zur Energie- und Luminositätserhöhung, zu dem Einzelspeicherring DORIS II umgebaut. Er bestand aus zwei Halbkreisen sowie zwei 58 m langen, geraden Teilstücken, in welche die jeweiligen Experimente eingebracht

11

Abbildung 2.1: Strahlführung bei DESY (nach [8])

werden konnten. Im Jahre 1991 wurde ein gerades Teilstück durch einen gebogenen Bypass ersetzt, der zusätzliche Synchrotronstrahlungs-Experimente ermöglicht (jetzt DORIS III).

DORIS II/III wurde im Bereich der $b\overline{b}$ -Resonanzen (Υ -Resonanzen), das entspricht einer Strahlenergie von 5 GeV, betrieben. Man unterscheidet dabei zwischen drei verschiedenen Resonanzen, bei denen ARGUS Messungen aufgenommen hat (siehe <u>Tabelle 2.2</u>).

Zur Bestimmung der Betriebsbedingungen wurden die Bereiche um die Resonanzen zusätzlich an mehreren Punkten durchgemessen (*gescannt*); die genommenen Daten tragen die Bezeichnung $\Upsilon nS - Scan$ (n = 1, 2, 4).

Dauerhafte Messungen außerhalb der Resonanzbereiche werden als Kontinuumsmessungen (*Cont.*) bezeichnet (Energien siehe <u>Tabelle 4.3</u>).

2.1.4 ARGUS

Seit Oktober 1982 wird der Detektor ARGUS (A Russian German United States Swedish Collaboration) zeitweise in einer der beiden Wechselwirkungszonen von DORIS eingesetzt. Das Ziel war es, einen Detektor zu konstruieren, der einen möglichst großen Raumwinkel um den Wechselwirkungspunkt herum abdeckt, die im Magnetfeld gekrümmten Spuren geladener Partikel zur Impulsmessung bestimmen kann sowie die Energie von schauerbildenden Teilchen mißt. Eine Darstellung des Detektors ist in <u>Abbildung 2.2</u> gegeben.

2.2. DAS MAGNETSYSTEM

13

R

Umfang	288 m
Durchmesser der Halbkreise	55 m
Bunch-Länge	ca. 25 mm
Bunch-Querschnitt	ca. 0.04 mm ²
Strahlenergie Emax	5.6 GeV
Strahlstrom Imax	35 mA
Strahllebensdauer τ	1.0 - 1.5 h
Fülldauer	ca. 2 min
Restvakuum	4 pbar
maximale Luminosität Lmax	$0.33 \cdot 10^{28} m^{-2} s^{-1}$

Tabelle 2.1: DORIS II/III Maschinenparameter

Energie	Resonanz
9.46 GeV	$\Upsilon(1S)$
10.02 GeV	$\Upsilon(2S)$
10.58GeV	$\Upsilon(4S)$

Tabelle 2.2: Resonanzenergien

Am 3.5.1993 wurde beschlossen, ARGUS nicht mehr an DORIS III einzusetzen und damit das Elektron-Positron-Meßprogramm zu beenden.

2.2 Das Magnetsystem

Ein geladenes Teilchen erfährt beim Durchgang durch elektrische und magnetische Felder eine Kraft:

$$\frac{d\vec{p}}{dt} = Q(\vec{v} \times \vec{B}) + Q\vec{E} \qquad (2.1)$$

Während das elektrische Feld zur Beschleunigung des Teilchens beiträgt, führt das magnetische Feld zu einer Krümmung der Flugbahn. Je nach Eigenschaften des Magnetfeldes können verschiedene Effekte erzielt werden, die in einem Speicherring Anwendung finden.

2.2.1 Speicherringmagnete

Dipolmagnete

Homogene Magnetfelder mit einem Nord- und einem Südpol bewirken, daß das Teilchen auf eine Kreisbahn gelenkt wird. Diese Dipolmagnete sind die Grundlage jedes Synchrotrons, da sie die geschlossene Sollbahn hervorrufen.

Abbildung 2.2: Aufbau von ARGUS. 1: Myonkammern; 2: Schauerzähler; 3: ToF-Zähler; 4: Driftkammer; 5: Vertexkammer; 6: Eisenjoch; 7: Solenoidspulen; 8: Kompensationsspulen; 9: Mini-β-Quadrupole.

14

2.3. DIE DETEKTORELEMENTE

15

R

Schaltet man Dipolmagnete mit alternierender Magnetfeldrichtung dicht hintereinander, erhält man Wiggler oder Undulatoren. Diese werden zur Erhöhung der Synchrotronstrahlung eingesetzt.

Quadrupole

Magnetfelder, die von von zwei Nord- und zwei Südpolen erzeugt werden, wirken bei richtiger Anordnung fokussierend auf das Strahlpaket. Die Teilchen werden bei einer Abweichung von der Sollbahn auf diese zurückgelenkt.

Sextupole

Da die Teilchen sich geringfügig in ihren Impulsen unterscheiden, ist die fokussierende Wirkung der Quadrupole gestört. Hier hilft die Verwendung von Sextupolen, d.h. eine Magnetanordnung mit drei Nord- und drei Südpolen, die als eine Art Korrekturlinse wirken. Der Einsatz von Sextupolen entspricht der chromatischen Korrektur in der Optik.

2.2.2 Detektormagnete

Zur Bestimmung des Impulses und des Ladungsvorzeichens geladener Teilchen wird der Detektor ARGUS mit einem Magnetsystem ausgestattet. Eine zylindrische, normalleitende Spule erzeugt ein homogenes Magnetfeld von 0.8 Tesla entlang der Strahlrichtung. Ein Eisenjoch von ungefähr fünf Strahlungslängen Dicke dient zur Rückführung des Magnetflusses. Durch Kompensationsspulen, die direkt am Strahlrohr angebracht sind, wird der Einfluß des Magnetfeldes auf die Teilchenstrahlen unterdrückt. Eine Erhöhung der Luminosität wird durch den Einsatz weiterer Fokussierungsmagnete, den Mini-Beta-Quadrupolen, erreicht, welche die Strahlen auf den Wechselwirkungspunkt konzentrieren.

2.3 Die Detektorelemente

2.3.1 Der Siliziumstreifenzähler

Seit der Datennahme im Jahre 1991 befindet sich der Siliziumstreifenzähler als erstes Nachweiselement außerhalb des Strahlrohres. Er besteht aus sieben Platten mit parallelen Streifen in Strahlrichtung. Die Platten sind als Heptagon um das Strahlrohr angeordnet. Das Signal aus den Streifen wird über Adapter zu den Verstärkerchips geleitet, die wegen ihrer Strahlenempfindlichkeit weiter vom Wechselwirkungspunkt entfernt angebracht sind. Es ist geplant, den Durchstoßpunkt des jeweiligen Teilchens mit einer Auflösung im Bereich von 20 μ m zu bestimmen. Für weitere Daten siehe <u>Tabelle 2.3</u>. Im Rahmen dieser Arbeit stand eine Information aus den Siliziumstreifenzählern für Analysezwecke noch nicht zur Verfügung.

14

16

KAPITEL 2. DAS EXPERIMENT

Anzahl der Zähler	7
Größe der Zähler	$63 \times 14.4 \text{ mm}^2$
Lesekanäle pro Zähler	256
Länge der Kanäle	60 mm
mittl. Abstand zur Strahlachse	12.5 mm
Ortsauflösung	20 µm
4π-Abdeckung	92%
im Einsatz seit	1991

Tabelle 2.3: Technische Daten des Siliziumstreifenzählers

2.3.2 Die Vertexkammer

IR

Seit 1985 befindet sich eine Vertexdriftkammer (VDC) im zentralen Bereich des Detektors. Sie soll den Nachweis von Sekundärvertizes, die durch den Zerfall neutraler Teilchen entstehen, verbessern.

	Vertexkammer	µ–Vertexkammer
Länge	1 m	15 60 cm
Innendurchmesser	ø 10 cm	ø 37 mm
Außendurchmesser	ø 28 cm	ø 28 cm
Signaldrähte	594 W-Drähte ø 20 µm	1070 W-(Au)-Drähte ø 20 µm
Felddrähte	1412 Cu-Be-Drähte ø 127 µm	ca. 32000 Stahldrähte ø 25 μ m
Größe der Einzelzelle	ø 9 mm	$5.2 \times 5.3 \text{ mm}$
Anzahl der Lagen	8	16
Hochspannung	3500 - 3550 V	3550 V
Gasmischung	100% CO ₂	80% CO ₂
0.001000000	0.3% Wasser	18% Propan
		2.5% Methylal
		0.2% Wasser
Betriebsdruck	1.5 bar	3.1 bar
Ortsauflösung	50 µm	40 µm
Einsatzzeit	1985 - 1990	1990 -
4π-Abdeckung	95%	93%

Tabelle 2.4: Technische Daten der Vertexkammern

Die erste Version war eine Driftkammer mit parallelen Drähten, die nur die Auflösung in der r- ϕ -Ebene ermöglichte. Sie wurde 1990 durch die Mikrovertexdriftkammer (μ VDC) ersetzt, die neben einer größeren Nähe zum Wechselwirkungspunkt auch eine bessere Ortsauflösung aufweist. Durch eine neue Geometrie wurde vor allem eine genausogute

2.3. DIE DETEKTORELEMENTE

17

17R

Auflösung in z-Richtung erreicht. Nur noch vier Lagen der Drähte verlaufen parallel zur Strahlachse. Jeweils sechs Lagen verlaufen unter einem Winkel von $\pm 45^{\circ}$ relativ zur Strahlachse. Sie werden dabei über fünf *Flügel* (engl. vanes) um das Strahlrohr herumgeführt.

Wichtige Daten der beiden Vertexkammern sind in der <u>Tabelle 2.4</u> zusammengefaßt, weitere Beschreibungen können z.B. den Veröffentlichungen [9] und [10] entnommen werden.

2.3.3 Die Driftkammer

Das Hauptelement des ARGUS-Detektors ist die Driftkammer. In ihr werden der Spurverlauf, die Spurkrümmung zur Impulsbestimmung und die spezifische Ionisation (dE/dx) von geladenen Teilchen bestimmt.

Länge	2 m	
Innendurchmesser	ø 30 cm	_
Außendurchmesser	ø 172 cm	
Signaldrähte	5940 W-Drähte ø 30 µm	
Felddrähte	24588 Cu-Be-Drähte ø 75.2 μm	
Größe der Driftzellen	$18 \times 18.8 \text{ mm}^2$	
Anzahl der Lagen	36	
Stereowinkel α	40 - 80 mrad	
Gasmischung	97% Propan	
0	3% Methylal	
	0.2% Wasser	
Gasverstärkung	$\sim 10^{4}$	
4π-Abdeckung	96%	
$\sigma(p)/p$	$\sqrt{(0.01^2 + 0.01^2 \cdot p^2)}$ (p in GeV/c)	
$\sigma\left(\frac{dE}{dx}\right) / \left\langle \frac{dE}{dx} \right\rangle_{trunc}$	(4.5-5)%	
Betriebsdruck	etwas überhöhter Normaldruck	1
Ortsauflösung	120 µm	
Magnetfeld	0.8 T	

Tabelle 2.5: Technische Daten der Driftkammer

Die Driftkammer ist als zwei Meter langer Zylinder konstruiert, in dem 36 Lagen von ca. $3 cm^2$ großen (r- ϕ -Ebene) Driftzellen den radialen Abstand von 15 bis 86 cm von der Strahlachse abdecken. Jede zweite Lage liegt nicht parallel zur Strahlachse (Stereowinkel α), um eine z-Auflösung zu erhalten. Die 97 %ige Propangasfüllung wird etwas oberhalb des Umgebungsluftdrucks gehalten, um keine Fremdgase durch geringe Undichtigkeiten in den Detektor gelangen zu lassen. Nach achtjährigem Betrieb wurde die Kammer 1990 aufgrund von Alterungserscheinungen durch eine baugleiche Driftkammer ersetzt. Die Daten der Driftkammer sind in <u>Tabelle 2.5</u> zusammengefaßt, weitere Informationen sind in [11] zu finden.

2.3.4 Das Flugzeitsystem

R

18

Das Flugzeitsystem (Time of Flight System, ToF) umschließt zylindrisch die Hauptdriftkammer. Es wird von 64 rechteckigen ($218 \times 9.3 \text{ cm}^2$) Szintillatorelementen (NE 110) im Barrel und je 48 trapezförmigen (Länge: 48.4 mm, Breite: 51 bis 114.4 mm) in den Endcaps gebildet. Jedes Barrelelement wird von zwei Photomultipliern ausgelesen, jedes Endcapelement von einem.

Anzahl der Zähler	Barrel : 64 Endcap : je 48
Szintillator	NE 110
Dicke	2 cm
4π-Abdeckung	92%
Zeitauflösung σ_{ToF}	220 ps

Tabelle 2.6: Technische Daten des Flugzeitsystems

Gemessen wird die Zeit, die vom Kreuzen der beiden Teilchenstrahlen bis zum Nachweis des Signals vergeht. Dabei muß die Signallaufzeit in dem Szintillator und den Kabeln nachträglich eingerechnet werden, um aus dem Impuls und der Flugstrecke des Teilchens die Geschwindigkeit (bzw. folgernd die Masse) zu bestimmen.

Weitergehende Informationen können in Tabelle 2.6 und in [12] nachgelesen werden.

2.3.5 Das Kalorimeter

Das elektromagnetische Kalorimeter [13] besteht wie das ToF-System aus zwei Teilen. Der Barrelbereich ist in 20 Ringe mit je 64 Zählern unterteilt, die die Winkel mit $|\cos \theta| < 0.75$ abdecken. Jedes Endcap beinhaltet 5 Ringe, die bei zunehmendem Radius aus 32 bis 64 Zählern bestehen und die Winkel mit $0.7 < |\cos \theta| < 0.96$ abdecken (siehe auch Tabelle 2.7).

Die Schauerzähler bestehen aus mehreren Schichten von 1 mm Blei und 5 mm Szintillator, die insgesamt etwa 12.5 Strahlungslängen Material ausmachen. Das Licht aus den Szintillatoren wird über Wellenlängenschieber und Plexiglas-Lichtleiter aus dem Magnetfeldbereich heraus auf die Photomultiplier geleitet.

Bevor die Teilchen die Kalorimeter errreichen, haben sie etwa 0.16 ($\cos \theta = 0$) bis 0.52 ($\cos \theta = 0.9$) Strahlungslängen durchdrungen. Im Kalorimeter verlieren Photonen und Elektronen, im Gegensatz zu Hadronen und Myonen, nahezu ihre gesamte Energie. Die

Anzahl der Zähler	Barrel : 1280 Endcap : je 240
Dicke	12.5 Strahlungslängen (40 cm)
Szintillator	ALTUSTIPE UV 15105
Minimalenergie	50 MeV
Auflösung $\sigma(E)/E$ Barrel Endcap	$\frac{\sqrt{0.072^2 + 0.065^2 \ GeV/E}}{\sqrt{0.075^2 + 0.076^2 \ GeV/E}}$
4π-Abdeckung	96%

Tabelle 2.7: Technische Daten des Kalorimeters

Energieverteilung auf benachbarte Schauerzähler läßt Rückschlüsse auf die Teilchenart zu, da Hadronen eine größere räumliche Streuung bei der Energieabgabe haben.

2.3.6 Die Myonkammern

ARGUS ist mit drei Lagen von Myonkammern [14] ausgerüstet. Die innerste Lage befindet sich innerhalb des Eisenjochs und deckt 43% des Raumwinkels ab. Neben den Myonen (mit mind. 700 MeV/c Impuls) erreicht nur ein geringer Anteil der anderen Teilchensorten die Kammern. Außerhalb des Magnetjochs sind zwei weitere Lagen von Myonkammern angebracht, die dort 87% des Raumwinkels abdecken und von Myonen mit einem Mindestimpuls von 1.1 GeV/c erreicht werden.

Kanäle	1744
Länge	1 - 4 m
Querschnitt	$56 \times 56 \text{ mm}^2$
Gasfüllung	92% Ar, 8%CH4
Arbeitsspannung	2.35 kV
Raumabdeckung	87%
(innere Lage	43%)

Tabelle 2.8: Technische Daten der Myonkammern

Jedes Zählrohr besteht aus einer rechteckigen, 1 bis 4 m langen Aluminiumröhre mit 56 mm Seitenbreite und einem 50 μ m dicken, goldbeschichteten Wolframdraht sowie einer Argon-Methan-Gasfüllung (siehe auch <u>Tabelle 2.8</u>).

19

IR

2.4 Das Auslesesystem

R

2.4.1 Datenfluß

Um möglichst wenig Information im Hintergrundrauschen zu verlieren, werden die Signale aus den Driftkammern noch innerhalb des Detektors vorverstärkt. Die lichtoptischen Signale aus dem ToF-System und dem Kalorimeter stehen ohne diese Zeitverzögerung außerhalb des Detektors zur Verfügung und werden deshalb als erstes untersucht (schnelle Trigger, s.u.).

KAPITEL 2. DAS EXPERIMENT

Nach dem Durchlaufen des Hauptverstärkers werden die Signale der Hauptdriftkammer zur Messung der Driftzeit (über TDCs) und der Signalhöhe (über ADCs) weiterverarbeitet und digitalisiert. Wenn der Pretrigger das Ereignis akzeptiert, werden jetzt die Daten zur zweiten Triggerstufe vorbereitet, ansonsten werden sie verworfen. Wird auch die zweite Triggerstufe passiert, liest ein CAMAC-Prozessor die Daten aus, komprimiert sie und gibt sie an einen VAX-Rechner weiter. Hier können sofort weitere Strukturtests durchgeführt werden, um z.B. Teilchen-Strahlrohr-Ereignisse zu verwerfen. Soll dieses Ereignis einer weiteren Analyse unterzogen werden, erfolgt die Abspeicherung auf den *EXDATA*-Bändern der IBM-Rechner.

2.4.2 Das Triggersystem

Während des Meßbetriebs an DORIS findet jede Mikrosekunde ein *bunch-crossing*, also ein mögliches Ereignis, statt. Bis zum nächsten bunch-crossing muß das Triggersystem entscheiden, ob der Detektor interessante Daten liefert oder nicht. Dabei werden zwei *Trigger* (Auslöser) benutzt, ein schneller Pretrigger und ein langsamerer Haupttrigger (der Little Track Finder, LTF).

Der schnelle Trigger

Anhand der am schnellsten verfügbaren Daten, den ToF- und den Kalorimeterwerten, werden verschiedene Grundanforderungen untersucht, von denen ein interessantes Ereignis mindestens eine zu erfüllen hat. Dabei faßt man die Meßwerte zu Gruppen zusammen, um weniger Daten handhaben zu müssen.

ETOT: Total Energy Trigger

In zwei Detektorhälften (positive und negative z-Hemisphäre) werden alle Schauerzählerwerte aufsummiert. Wird in beiden Teilen mindestens je 700 MeV Energie deponiert, ist das Ereignis akzeptiert. Bhabha- und $\gamma\gamma$ -Ereignisse sollen damit identifiziert werden.

• HESH: High Energy Shower Trigger

Die Kalorimeter im Barrel werden in 16 Gruppen unterteilt (mit Überlappung). Beinhaltet eine Gruppe mindestens 1 GeV Energie, wird der Trigger gesetzt. IR

• CPPT: Charged Particle Pretrigger

Jede Hemisphäre wird in 16 ToF/Schauerzähler-Gruppen (nur aus dem Barrel, ohne Überlappung) geteilt. Wenn in beiden Teilen mindestens je eine Gruppe existiert, die sowohl > 50 MeV Energie als auch ToF-Werte besitzt, wird das Ereignis angenommen.

• CMT: Coincidence Matrix Trigger

Entspricht dem CPPT ohne Hemisphärenbezug, aber mit einem Winkel von mehr als 112.5° zwischen den Gruppen.

Nach gut 300 ns hat der Pretrigger seine Arbeit beendet. Er läßt noch etwa 100 Ereignisse pro Sekunde passieren, die dann von der zweiten Triggerstufe überprüft werden.

Der Little Track Finder LTF

Der langsame Trigger benutzt die Driftkammerinformation, um geladene Spuren zu identifizieren. Dabei werden ca. 2000 Referenzmuster mit der Verteilung der angesprochenen Drähte (und der ToF-Information) verglichen, um mindestens einen oder zwei (in Abhängigkeit vom gesetzten Pretrigger) Spurkandidaten zu finden. Bei einer Akzeptanz der Spurfindung von etwa 97% erhält man ungefähr 10 Ereignisse pro Sekunde, dabei benötigt der LTF 20 μ s zur Bearbeitung.

2.4.3 Die Datenauswertung

Als nächster Schritt muß aus den abgespeicherten Zahlenkolonnen der physikalisch interessante Inhalt extrahiert werden. Dafür steht das ARGUS-Rekonstruktionsprogramm (ARG13) zur Verfügung.

Aus den getroffenen Drähten werden Spuren rekonstruiert, die man mit Teilchenbahnen anzupassen versucht. Dabei wird der genaue Magnetfeldverlauf, der Energieverlust der Teilchen und eine mögliche Streuung der Teilchen an den Drähten mit berücksichtigt. Man versucht, eine gefundene Teilchenspur durch die Vertexdriftkammer zu verfolgen und in das Strahlrohr zu extrapolieren, auf der anderen Seite werden die ToF-, Kalorimeterund Myonkammerinformationen an die Teilchenbahn angebunden. Nachdem das gesamte Ereignis durchgearbeitet wurde, legt man die Information zusammen mit den Rohdaten auf den EXPDST-Magnetbändern ab. Alle *multihadronischen* Ereignisse (d.h. es führen mindestens drei geladene Spuren aus dem Wechselwirkungsvolumen heraus) werden auf den EXMUHA-Bändern zusammengefaßt, wobei die physikalisch interessanten und zur weiteren Bearbeitung benötigten Daten im komprimierten MINI-Format noch einmal separat abgespeichert werden. Die MINI-Datensätze liefern die Datengrundlage dieser Arbeit.

20

2.4.4 Programmpakete

R

Der Zugriff auf die Daten erfolgt mithilfe der bei ARGUS entwickelten Kinematical Analysis Language (KAL, [15]). Diese Sprache, die auf FORTRAN 77 basiert, ermöglicht eine schnelle Untersuchung von beliebigen Teilchenkombinationen, weil es die interessanten Größen (invariante Masse, Impuls usw.) mit einfachen Befehlen zur Verfügung stellt.

Die Erzeugung von Diagrammen und die Berechnung der Anpassungsfunktionen wird vom Graphical Editor Programm (GEP, [16]) übernommen. Es speichert einen Datensatz mit bis zu zwölf Parametern je Eintrag und ermöglicht die Ausgabe beliebiger Untermengen der Daten, sofern sie durch die Parameter bestimmt werden. Kapitel 3

Analyse

Es ist besser, eine Frage zu diskutieren, ohne sie zu entscheiden, als eine Frage zu entscheiden, ohne sie zu diskutieren.

[J. Joubert]

Die einzigen Teilchensorten, die lange genug leben, um eine Spur in der Driftkammer zu hinterlassen, aus der man den Impuls bestimmen kann, sind Elektronen (e), Myonen (μ), Pionen (π), Kaonen (K) und Protonen (Prot). Also muß einer Spur, nachdem ihr Impuls bestimmt worden ist, noch mindestens einer dieser fünf Kandidaten zugeordnet werden. Es wird eine Teilchenidentifikation durchgeführt.

3.1 Impulsbestimmung

Aus der Spurkrümmung in der $(r \cdot \phi)$ -Ebene der (von ARG13) rekonstruierten Teilchenbahnen folgt der Transversalimpuls des Partikels. Hierfür werden nur die 0°-Lagen der Detektordrähte herangezogen, von denen mindestens vier ein brauchbares Signal geliefert haben müssen. Über die Stereodrähte (mindestens drei Signale sind notwendig) erhält man eine dreidimensionale Auflösung des Detektors und somit auch die z-Komponente des Impulses.

Bei der Spurrekonstruktion geht das Programm davon aus, daß die Teilchen von innen nach außen fliegen. Deswegen sind die Spuren von Höhenstrahlungsteilchen oder Spiralbahnen langsamer Teilchen häufig fehlerhaft (umgekehrte Ladungsvorzeichen und Impulsrichtung eines Spurabschnittes).

KAPITEL 3. ANALYSE

3.2 Teilchenidentifikation

RB

24

Neben der Impulsbestimmung ist die Teilchenidentifikation der wichtigste Anspruch an den Detektor. Bei ARGUS wird hierfür auf den spezifischen Energieverlust (dE/dx) und die Flugzeit (ToF) zurückgegriffen. Bei beiden Methoden erhält man die Teilchengeschwindigkeit, so daß die Kenntnis des Impulses erforderlich ist, um die Ruhemasse zu bestimmen.

3.2.1 Driftkammer-Information: dE/dx

Aus der Höhe der Impulse an den Driftkammerdrähten erfährt man, wieviel Energie das durchfliegende Teilchen an die umgebende Gasatmosphäre abgegeben hat. Nach der *Bethe-Bloch-Formel* (s. <u>Gleichung (3.1)</u> [17]) ist dieser Energieverlust, neben äußeren Parametern, nur von der Teilchengeschwindigkeit abhängig.

$$\frac{dE}{dx} = \frac{K_1}{\beta^2} \left[\ln \frac{2m_e c^2 \beta^2}{K_2 (1 - \beta^2)} - \beta^2 \right]$$
mit β : v/c
 K_1, K_2 : Materialkonstanten
$$(3.1)$$

Bei ARGUS wird eine von WALENTA ET AL. [18] verifizierte Beziehung benutzt.

$$\Delta E = \frac{\alpha \cdot \Delta x}{\beta^2} \left[\ln \frac{m_e c^2 \alpha \cdot \Delta x}{I^2 (1 - \beta^2)} + 0.891 - \beta^2 - \delta \right]$$
(3.2)
 $\alpha : \text{spezifischer Gasfaktor (abhängig von Dichte, Ordnungszahl etc.)}$

I : mittlere Ionisationsenergie

 δ : Dichtekorrektur

In <u>Abbildung 3.1</u> ist der gemessene Energieverlust gegen den Teilchenimpuls aufgetragen und die aus <u>Gleichung 3.2</u> hervorgehenden Theoriekurven hinzugefügt. Der Energiemeßwert ergibt sich aus der *truncated mean* Mittelung (d.h. ohne die höheren und tieferen "Ausreißer") aller dE/dx-Informationen der einzelnen Drähte, die von der Spur berührt werden.

Eine Aussage über die wahrscheinliche Teilchenart wird über die χ^2 -Hypothese erhalten, die die Abweichung des gemessenen Energieverlustes von dem theoretischen Wert mit dem aufgetretenen Fehlerquadrat in Verbindung setzt.

$$\chi_{i}^{2}(\mathrm{d}E/\mathrm{d}x) = \frac{\left(\left\langle \frac{\mathrm{d}E}{\mathrm{d}x} \right\rangle_{trunc} - \left\langle \frac{\mathrm{d}E}{\mathrm{d}x} \right\rangle_{i}^{theo} \right)^{2}}{\sigma^{2}} \qquad (i = e, \mu, \pi, K, Prot)$$
(3.3)

In σ sind alle Meßunsicherheiten (Auflösungsvermögen etc.) zusammengefaßt.

3.2. TEILCHENIDENTIFIKATION

Aus <u>Abbildung 3.1</u> kann abgelesen werden, daß für einen hohen Energieverlust oder für geringe Impulse eine eindeutige Teilchenbestimmung möglich ist. Impulse bis 700 *MeV* erlauben eine Trennung von Pionen und Kaonen, bis 1200 *MeV* kann zwischen Protonen und Kaonen unterschieden werden.

3.2.2 ToF-Information

Durch die Spurlänge l der rekonstruierten Teilchenbahnen vom Wechselwirkungspunkt bis zum Flugzeitsystem und der im ToF-Zähler gemessenen Flugzeit τ ergibt sich für jede Spur die Teilchengeschwindigkeit

$$\beta = \frac{l}{c\tau}.$$

In Kombination mit dem Impuls p folgt eine Aussage über die Teilchenmasse:

$$m^2 = p^2 \cdot \left(\frac{1}{\beta^2} - 1\right)$$

Als Maß für die Teilchenwahrscheinlichkeit wird auch hier ein χ^2 definiert:

$$\chi_i^2(ToF) = \frac{(1/\beta^{mess} - 1/\beta_i^{theo})^2}{\sigma^2} \qquad (i = e, \mu, \pi, K, Prot).$$
(3.4)

In <u>Abbildung 3.2</u> ist das ermittelte Massenquadrat gegen den Teilchenimpuls aufgetragen. Man erhält auch hier eine gute Identifikation über einen großen Impulsbereich.

25

3.2.3 likelihood ratio

Als charakteristische Größe geht

$$\chi_i^2 = \chi_i^2(ToF) + \chi_i^2(dE/dx) \qquad (i = e, \mu, \pi, K, Prot)$$

in den endgültigen Wahrscheinlichkeitswert ein.

Es wird für jede Teilchenhypothese eine likelihood L, über

$$L_i = \exp\left(-\frac{\chi_i^2}{2}\right)$$
 $(i = e, \mu, \pi, K, Prot$

definiert. Mit der Angabe eines Häufigkeitsverhältnisses c_i wird dem Umstand Rechnung getragen, daß einzelne Teilchensorten bedeutend häufiger auftreten als andere. In dieser Arbeit wurde:

$$c_e: c_\mu: c_\pi: c_K: c_{Prot} = 1:1:5:1:1$$

gewählt, mit anderen Worten, es werden etwa fünfmal soviele Pionen wie andere Teilchensorten den Detektor durchfliegen. Diese Zahl soll jedoch nur eine ungefähre Größenordnung liefern.

Nun läßt sich das normierte likelihood ratio

$$lh_i = \frac{c_i L_i}{\sum c_j L_j} \qquad (i = e, \mu, \pi, K, Prot)$$

errechnen, welches eine brauchbare Größe zur Teilchentrennung darstellt. Es entspricht der Wahrscheinlichkeit, mit der die Teilchenart i die betrachtete Spur hervorgerufen haben könnte.

3.3 Neutrale Teilchen

3.3.1 Nachweis neutraler Teilchen

Schauerzähler

Das elektromagnetische Kalorimeter kann außer den geladenen Partikeln auch die schauererzeugenden Photonen (γ) nachweisen.

Ein hochenergetisches Photon erzeugt im Schauerzähler ein e^+e^- -Paar, das einen Paarbildungsschauer hervorruft. Aus dem Energieschwerpunkt des Schauers (und dem Ort des Hauptvertex) wird die Impulsrichtung des Photons ermittelt.

Es kommt häufig vor, daß beim Zerfall eines schnellen π^0 beide Photonen einen gemeinsamen Schauer erzeugen. In diesem Fall muß der Schauer sowohl mit einer Photon- als auch mit einer π^0 -Hypothese belegt werden.

Als drittes sind noch die Antineutronen zu erwähnen, die durch Annihilation im Kalorimeter besonders energiereiche Schauer erzeugen können.

Zum Teil werden Schauer, die ein geladenes Teilchen hervorgerufen hat, nicht der dazugehörigen Spur zugeordnet, so daß hier ein Photon vorgetäuscht wird.

Sekundärvertizes

Drei neutrale Teilchensorten können anhand der Bildung von *Sekundärvertizes* erkannt werden. Diese Vertizes sollen aus den Spuren zweier geladener Teilchen bestehen, deren gemeinsamer Anfangspunkt mehr oder weniger deutlich vom Wechselwirkungspunkt (genauer: vom Mainvertex) abweicht.

Auf diese Weise können:

- konvertierende Photonen (in e⁺e⁻),
- λ^0 (in Proton und Pion) und
- $K^0_*(\text{in }\pi^+\pi^-)$

nachgewiesen werden.

3.3.2 Nicht detektierbare Teilchen

Auch wenn der ARGUS-Detektor bei der Teilchenerkennung ein Allroundtalent ist, so entgehen doch einige Teilchensorten seinen "Argusaugen".

Während die kurzlebigen Teilchen aus ihren Zerfällen rekonstruiert werden können, bleiben nur die langlebigen, neutralen Teilchen ohne Nachweis. Im einzelnen sind dies:

KAPITEL 3. ANALYSE

• das Neutron ($\tau = 890 s$).

R

- die Neutrinos ($\tau = \infty$ (?)) und
- das K_l^0 ($\tau = 5 \cdot 10^{-8} s$).

Trotzdem können sie unter Umständen indirekt nachgewiesen werden. Über den Energieund den Impulserhaltungssatz lassen sich die kinematischen Größen der fehlenden Teilchen ausrechnen, wenn genügend Informationen aus den nachgewiesenen Spuren vorliegen.

Dieses Verfahren findet vor allem bei leptonischen (B-Meson-) Zerfällen Anwendung, bei denen ein Neutrino in der Impulsbilanz fehlt.

3.4 Invariante Masse und Reflexion

Die Rekonstruktion kurzlebiger Teilchen bildet das Grundprinzip der Datenauswertung. Man muß aus den Zerfallsprodukten auf das urprüngliche Teilchen zurückschließen. Bei den meisten rein hadronischen Zerfällen liegt ein Zweikörperzerfall vor: ein Teilchen, nennen wir es Q', zerfällt in die Teilchen A' und B'. Bei leptonischen Zerfällen (die in dieser Arbeit nicht betrachtet werden) treten meistens drei Endprodukte auf, wobei eines das Neutrino ist.

Um den Zerfall zu rekonstruieren, muß man die Teilchen A und B auswählen und deren *invariante Masse* ermitteln. Dies ist die Energie im Schwerpunktsystem der A-B-Kombination. Im Rahmen der Meßungenauigkeit muß die invariante Masse mit der Ruhemasse des Teilchens Q übereinstimmen.

Bei der Auswahl der Teilchen A und B wird man aber nicht nur die richtigen Kombinationen erfassen, sondern auch eine große Menge an kombinatorischem Untergrund. Wegen der relativ geringen Anzahl von untersuchten Q-Zerfällen gegenüber der großen Anzahl von Teilchen der Sorten A und B, wird dieser Untergrund auch deutlich dominieren. Dies stellt jedoch kein Problem dar, da beim kombinatorischen Untergrund die invariante Masse über einen weiten Bereich verteilt ist und deswegen keine Anhäufung bei der Q-Ruhemasse aufweist. Die Massenverteilung des Untergrundes wird im allgemeinen durch eine Polynomfunktion angeglichen.

Problematisch wird es erst, wenn Teilchen A in Wirklichkeit ein fehlinterpretiertes Teilchen X ist. Dadurch können Reflexionen entstehen, die die Auswertung, wie in dieser Arbeit, erschweren:

Entstammt die Kombination X-B aus einem gemeinsamen (Zwei- oder Dreikörper-) Zerfall, so gehört die Kombination A-B (mit A = fehl X) zu der Reflexion dieses Zerfalls. Später (in Kapitel 5 und 6) wird noch genauer auf die Reflexion eines Zweikörperzerfalls von Teilchen R in die Teilchen X und B eingegangen. Die hier gewählten Bezeichnungen (A, B, Q, X und R) werden dort beibehalten und dienen zur Indizierung.

R

3.5 Monte-Carlo

Ein wichtiges Hilfsmittel bei der Datenauswertung ist die Ereignissimulation. Hierbei wird in mehreren Schritten ein Teilchenzerfall von der Erzeugung bis zum Nachweis im Computer durchgerechnet.

Der Ereignisgenerator MOPEK 43 erzeugt nach Angabe der Schwerpunktsenergie und einer Zerfallstabelle per Zufallsgenerator (Monte-Carlo-Methode, MC) ein Ereignis. Dabei werden alle Zerfälle vom virtuellen Photon bis zu den langlebigen Endprodukten aufgestellt und die kinematischen Informationen abgespeichert.

Als zweites wird durch das SIMARG-Programm der Weg der Partikel durch den Detektor verfolgt, wobei alle Detektorausgaben simuliert werden. Die Güte dieses Programmteils hängt stark mit dem Verständnis atomarer Vorgänge zusammen. Als Grundlage dienen theoretische Beschreibungen und statistische Vergleichsmessungen.

Im letzten Schritt werden die erhaltenen Daten dem Rekonstruktionsprogramm unterworfen, um die gleiche Art von Rohdaten zu erhalten, wie sie auch ein echtes Ereignis erzeugen würde.

Erst ein Vergleich von genügend vielen MC-Werten mit Meßdaten kann zeigen, ob und wie gut die Simulation die Wirklichkeit widerspiegelt.

Es hat sich herausgestellt, daß die MC-likelihood nur bedingt den vergleichbaren Meßdaten entspricht [19, 20].

3.5.1 Fakeraten

Für die Reflexionsberechnung ist die Kenntnis der einzelnen Fehlidentifikationsraten (Fakeraten) erforderlich.

Zum einen können sie aus gemessenen Daten ermittelt werden. Hierbei werden die Sekundärvertizes von konvertierten Photonen oder von K_s^0 als saubere Elektronen- oder Pionen-Proben herangezogen und die jeweilige Fehlidentifikation untersucht.

Zum anderen genügt es im allgemeinen, auf MC-Daten zurückzugreifen, so wie es in dieser Arbeit geschehen ist. Die Daten weisen eine ausreichende Übereinstimmung mit der Fakeraten-Messung auf.

In Abbildung 3.3 ist die Fakerate η_{fake} für Kaonen dargestellt, die aus der Fehlinterpretation von echten (MC-) Pionen ermittelt wird.

29

Abbildung 3.3: Fakerate für (falsche) Kaonen aus (echten) Pionen

Kapitel 4

Das D_s^+ -Meson

Wer über die Quantentheorie nicht entsetzt ist, der hat sie nicht verstanden.

[N. Bohr]

4.1 Erzeugung

Das D_*^+ -Meson besteht, wie in <u>Tabelle 1.2</u> schon gezeigt, aus zwei Quarks mit den Eigenschaften (*flavour*) charm und strangeness. Seine Masse beträgt 1968.8 (±0.7) MeV/c² [1].

Nachdem das D_s^+ -Meson (ursprünglich als F-Meson bezeichnet) als Folge der Entdeckung des Charmquarks mit einigen möglichen Zerfällen vorhergesagt worden war, wurde es 1977 bei DESY (DASP-Kollaboration) entdeckt und in der Folgezeit von anderen Experimenten bestätigt.

Bei DESY treten hauptsächlich zwei Mechanismen auf, die ein D_s^+ -Meson erzeugen können. Der erste Fall ist in Abbildung 1.2 dargestellt: das Kontinuumsereignis.

Bei ausreichender Energie bildet sich ein $c\overline{c}$ -Paar, das über starke Wechselwirkung weitere Quark-Antiquark-Paare erzeugt. Tritt dann eine Kombination von Charm- und Strange-Quark auf, wird ein D_s^+ -Meson erzeugt (im Grundzustand oder angeregt).

Der zweite Mechanismus tritt fast nur bei der $\Upsilon 4S$ -Resonanzenergie auf: der Zerfall eines B-Mesons.

Man nimmt an, daß der Y4S-Resonanzzustand vollständig in ein B-Mesonen-Paar übergeht. Die einzelnen B-Mesonen geben bei ihrem Zerfall eine so große Energiemenge ab, daß D_s^+ -Mesonen entstehen können.

30

Kontinuumser	eignisse
Erzeugungsqu	erschnitte (aus [21])
$\sigma(D^+)$	$= (0.28 \pm 0.03 \pm 0.03)$ nb
$\sigma(D^+)$	$= (0.65 \pm 0.09 \pm 0.09)$ nb
$\sigma(D^0)$	$= (1.18 \pm 0.15 \pm 0.08)$ nb
$\sigma(\Lambda_c)$	$= (0.30 \pm 0.04 \pm 0.09)$ nb
integrierte Lu	minosität
Lint	$= 358.45 pb^{-1}$
unberücksicht	tigte Akzeptanz η' (aus [1])
$K^0 \rightarrow K^0$	= 0.5
$K^0 \rightarrow \pi^+\pi^-$	= 0.686 ± 0.003
Endfaktor N	$\mathcal{L}_{\text{cas}} = \mathcal{L}_{\text{int}} \cdot \sigma(D_s^+) \cdot \eta'$
Enularior	- 34425

KAPITEL 4. DAS D⁺_S -MESON

Tabelle 4.1: Erzeugungsquerschnitte und Luminosität

Als wichtiger Faktor für die Datenauswertung muß die Anzahl der erzeugten D_s^+ -Mesonen bekannt sein. Da in dieser Arbeit nur die kontinuumsartige Erzeugung interessiert, benötigt man den Wirkungsquerschnitt $\sigma(e^+e^- \rightarrow D^\pm_s X)$ der nichtresonanten Zerfälle. Weil die absoluten Zerfallswahrscheinlichkeiten nur sehr ungenau bekannt sind, werden die in <u>Tabelle 4.1</u> angegebenen Werte auf den Referenzzerfall $D_s^+ \to \Phi \pi^+$ mit $\Gamma_{Ref,PDG} = 2.7 \%$ bezogen (siehe [21], hieraus stammen die Wirkungsquerschnitte in Tabelle 4.1, und [1]).

Zerfall 4.2

32

Die mittlere Lebensdauer des D_s^+ -Mesons von $\tau = 4.50 \substack{+0.30 \\ -0.26} \cdot 10^{-13} s$ deutet auf einen Zerfall über die schwache Wechselwirkung hin. Der Zerfall des c-Quarks ist aufgrund seiner Masse und des zur Verfügung stehenden Phasenraums der entscheidende Faktor bei der Instabilität des D+-Mesons.

Der Cabibbo-bevorzugte Übergang des c-Quarks in ein s-Quark unter Aussendung eines W^+ -Bosons kann mit zwei Feynmandiagrammen dargestellt werden.

Abbildung 4.1 (a) zeigt die externe W-Emission. Sie beinhaltet die häufigsten Zerfälle des $\overline{D^+_s}$ -Mesons, so auch den Referenzzerfall in $\Phi\pi$, der zur Bestimmung der Anzahl aller erzeugten D_s^+ -Mesonen herangezogen wird.

In Abbildung 4.1 (b) wird die interne W-Emission dargestellt. Dieser Fall ist der unwahrscheinlichere von beiden, da hier das Boson nicht in Leptonpaare zerfallen kann, und außerdem die Quark-Zerfallsprodukte des Bosons die Farbladungen der anderen Quarks aufheben müssen.

Abbildung 4.1: D_s^+ -Zerfall mit externer (a) und interner (b) W-Emission sowie mit Annihilation (c)

Als dritte Zerfallsmöglichkeit steht die Annihilation in ein W^+ zur Diskussion, wie sie in

Abbildung 4.1 (c) gezeigt ist.

Der in dieser Arbeit untersuchte Zerfallskanal entstammt entweder einer internen W-Emission oder einer Annihlation:

 $D^+_{s} \longrightarrow K^+ K^0$

Zerfallsprodukte 4.3

4.3.1 Identifikation der K_{\bullet}^{0}

Das Meson K^0_*

Von dem K^0 -Teilchen existieren zwei Erscheinungsformen, die beide mit der gleichen Wahrscheinlichkeit auftreten. Das langlebige K_I^0 und das kurzlebige K_s^0 (genannt K-short). Der Nachweis vom K_{i}^{0} im Argusdetektor ist gegenüber dem vom K_{l}^{0} bedeutend besser, weil die Zerfälle fast vollständig innerhalb der Driftkammern vonstatten gehen. Deswegen wird bei der Untersuchung des Zerfallkanals nur diese Variante des K^0 berücksichtigt. Ein K^0_* zerfällt zu fast 100% in genau zwei Pionen, wobei hier nur $\pi^+\pi^-$ Paare untersucht 34

R

werden ($\Gamma_{PDG}(K_s^0 \to \pi^+\pi^-) = 68.61(\pm 0.28)$ %). Die Identifikation durch Sekundärvertizes ist bereits im vorhergehenden Kapitel erwähnt worden. Eine Verbesserung des Signals kann durch Vergleich von Orts- und Impulsrichtung des Sekundärvertex erreicht werden [22]:

Der Impuls-Richtungsschnitt (PR-Schnitt)

Bei einer Zerfallslänge von $c_{\tau} = 2.675 \,\mathrm{cm}$ werden die meisten K^0_* in einem meßbaren Abstand vom Hauptvertex zerfallen. Nimmt man an, daß das K^0_* direkt im Hauptvertex erzeugt wurde, was eine kurze Lebensdauer der Primärteilchen erfordert, so muß die Richtung des Zerfalls mit der Impulsrichtung der beiden Pionen zusammenfallen.

Bezeichnet ψ den Winkel zwischen der Richtung des K_s^0 und der Impulsrichtung der Pionen (siehe Abbildung 4.2), so wird mit der Bedingung $\cos \psi > 0.9$ ein großer Teil des kombinatorischen Untergrundes entfernt, und man erhält ein sehr gutes K_s^0 -Signal. In Abbildung 4.3 ist die Signalverbesserung durch diesen Cut dargestellt.

Massenangleichung

Besitzt man eine gute Vorauswahl mit vernachlässigbarem Untergrund, wie sie nach dem Impuls-Richtungsschnitt vorliegt, kann das Signal durch eine Massenangleichung noch verbessert werden. Hierbei wird ausgenutzt, daß die originale Massenbreite Γ des Teilchens erheblich kleiner als das Auflösungsvermögen σ des Detektors ist.

Durch Vorgabe der Teilchenmasse variiert man die gemessenen Impulse innerhalb der Meßungenauigkeit solange, bis die invariante Masse des Systems mit der vorgegebenen Ruhemasse übereinstimmt.

Abbildung 4.3: Einfluß des PR-Schnittes auf die K_s^0 -Häufigkeit (offen: ohne Cut, Balkendiagramm: mit Cut $\cos \psi > 0.9$)

KAPITEL 4. DAS DS -MESON

Das mathematische Grundprinzip beruht auf den Lagrange-Multiplikatoren; die Umsetzung ist in ARGUS Softwarenote 41 beschrieben.

Nur K^0_{\bullet} , die diesen Weg durchlaufen haben, werden für die Rekonstruktion herangezogen.

Güte der Rekonstruktion

R

36

Die Güte der Rekonstruktion kann an einem Monte-Carlo-Datensatz überprüft werden. Für den verwendeten Cut ergab sich ein Untergrund-Signal-Verhältnis von 5% (siehe Abbildung 4.4).

Abbildung 4.4: Das Verhältnis von Untergrund zu Signal bei der K_s^0 -Rekonstruktion ist impulsabhängig. Hier ist das Ergebnis einer MC-Studie mit PR-Schnitt dargestellt.

R

4.3.2 Identifikation der K^{\pm}

Das Meson K^{\pm}

Das K^{\pm} -Meson gehört mit einer Lebensdauer von $\tau = 1.24 \cdot 10^{-8} s$ zu den langlebigen, geladenen Teilchen, die im Detektor eine Spur hinterlassen. Nur ein geringer Bruchteil zerfällt innerhalb der Driftkammern. Wie in Kapitel 3 bereits erwähnt, kann eine Identifizierung nur in den seltensten Fällen eindeutig ausfallen.

Impulsabhängigkeit der Identifikation

Der Teilchennachweis beginnt bei etwa 200 MeV Mindestimpuls, da sowohl einiges an Materie (Strahlrohrwand, Vertexkammer etc.) durchdrungen als auch eine genügend lange Spur in der Driftkammer erzeugt werden muß.

Ab 700 MeV-Impulsen werden die Pionen als Kaonen fehlidentifiziert, die Protonen-Fehlidentifikation setzt bei etwa 1200 MeV-Impulsen ein.

Vorauswahl der Daten 4.4

Als Datengrundlage werden alle multihadronischen Events der Experimente 2 und 4 bis 10 benutzt. Hierbei wird auf die vorsortierten Ereignisse zurückgegriffen, die mindestens einen K^0_* -Kandidaten enthalten.

Damit die Unsicherheit in der Erzeugungsrate von D_s^+ -Mesonen klein gehalten werden kann $(\sigma(e^+e^- \rightarrow D^{\pm}_*X)$ ist energieabhängig), werden die Daten im Verlaufe der Auswertung auf Kontinuums- und Y4S-Ereignisse beschränkt. Die über alle verwendeten Datennahmeperioden integrierte Luminosität \mathcal{L}_{int} ergibt sich somit zu :

$\mathcal{L}_{int} = 358.45 \ pb^{-1}$

Einige Anmerkungen zu den so ausgeschlossenen Events folgen in Abschnitt 5.7.

Bei den $\Upsilon 4S$ -Ereignissen muß zwischen zwei Varianten unterschieden werden: Die echten Resonzereignisse zerfallen in ein B-Mesonen-Paar; die anderen werden bei derselben Energie erzeugt, müssen jedoch den Kontinuumsereignissen zugezählt werden. Da aber ohne konkrete Untersuchung nicht zwischen den beiden Arten unterschieden werden kann, faßt man alle Ereignisse bei dieser Energie zu den Resonanzdaten zusammen.

Durch die Rekonstruktion der D_s^+ -Mesonen ergibt sich aber ein meßbarer Unterschied zwischen den Resonanz- und den Kontinuumsereignissen. Die D_{\bullet}^+ -Mesonen aus B-Zerfällen besitzen im Mittel einen deutlich geringeren Impuls (p_{Meas}) als die direkt erzeugten. Durch die Beschränkung auf hohe D_s^+ -Impulse werden so die Resonanzereignisse und ein großer Teil des kombinatorischen Untergrundes aus den Arbeitsdaten entfernt. Hierfür

4.4. VORAUSWAHL DER DATEN

	Scan	:∫ L dt [pb^{-1}]
Exp.	$\Upsilon(1S)$	$\Upsilon(2S)$	$\Upsilon(4S)$
2	1.30	2.32	2.82
3	0.24		
4			1.88
5	10.34		3.08
6			1.62
7			17.51
8			5.43
9			1.54
10			
11			2.17

Tabelle 4.2: Scan-Luminositäten

wird als neue Variable der skalierte Impuls x_p eingeführt. Aus der bekannten Strahlenergie $E_{Beam} = 1/2 \, E_{ECMS}$ und der gemessenen Masse m_{Meas} ergibt sich ein Maximalimpuls p_{Max} aus

$$p_{Max} = \sqrt{E_{Beam}^2 - m_{Meas}^2}$$

und damit der Skalierungsfaktor für x_p:

 $x_p = p_{Meas}/p_{Max}$.

An die in dieser Arbeit verwendete Datenauswahl werden folgende Anforderungen gestellt:

- Die invariante Masse m_{KK} des $K^0_s\,K^\pm$ -Systems liegt bei $1.7 < m_{KK} < 2.3\,GeV.$
- Der skalierte Impuls x_p wird zu $x_p > 0.4$ gefordert.
- Die K_s^0 werden dem Impuls-Richtungsschnitt unterzogen (cos $\psi > 0.9$).

Zusätzlich muß innerhalb der Daten zwischen $\Upsilon 1S, \Upsilon 2S, \Upsilon 4S$ und *Cont* unterschieden werden können. Bei der numerischen Auswertung wird dann nur auf die letzten beiden Gruppen zurückgegriffen.

Diese Anforderungen ergeben ein Datensample mit ca. 10 000 $K^0_s\,K^\pm$ -Einträgen, die weiter untersucht werden.

		L	$C_{int} = \int I$	$L dt [pb^{-1}]$	1			
Jahr	Exp.	$\Upsilon(1S)$	$\Upsilon(2S)$	$\Upsilon(4S)$	Kont.	E(Ko	nt.)[GeV]
1983/84	2	7.68	38.20	9.69	3.56	9.386	-	10.527
1984	3	15.40		2.78	4.10	9.390	-	10.532
1985	4			50.18	21.06	10.432	-	10.548
1986	5	23.86		44.74	22.50	9.358		10.516
1988	6			67.55	8.18	10.458	-	10.530
1989	7			5.13	33.40	10.468		10.000
1989	8			57.15	15.64	10.462	-	10.466
1990	9			11.81	4.64	10.455		10.400
1991	10				3.21	10.522	-	10.407
1992	11			7.28	5.93	10.460	-	10.322

Tabelle 4.3: Integrierte Luminositäten und Kontinuumsenergien

1.0

38

R

39

Kapitel 5

Datensichtung

To be shure of hitting the target, shoot first and, whatever you hit, call it the target.

Nach der Bereitstellung eines vorsortiertes Datensamples (Kapitel 4) werden die Einträge genauer untersucht. Hierbei interessiert, ob und wie gut der gesuchte Zerfall zu erkennen ist und ob noch weitere Zerfälle anderer Teilchen in der Datenmenge zu registrieren sind. Hierbei wird noch kein Ausschluß der Y-Resonanzen durchgeführt.

Die Diagramme werden mit dem Programm *GEP* erstellt, in dem auch eine Berechnung der Anpassungsfunktion (im folgenden *Fit* genannt) durchgeführt wird. Als Form der Massenverteilung wird in allen Fällen eine Gaußverteilung angenommen, in der die Breite variabel und die Bezugsmasse (Ruhemasse der Teilchen) fest gewählt wird. Die Untergrundfunktion wird als Gleichung zweiten Grades angesetzt.

In diesem Kapitel werden die drei Identifikationsmöglichkeiten des selektierten geladenen Kaons (1: $K^+ = K^+$; 2: $K^+ = \pi^+$; 3: $K^+ = Prot$) sowie die Kombination der $K_s^0 \pi^{\pm}$. Identifikation mit einem weiteren, entgegengesetzt geladenen bzw. einem neutralen Pion untersucht. Bei anderen Kombinationen konnte keine signifikante Anhäufung in der Massenverteilung festgestellt werden.

In einigen wenigen Ereignissen, speziell bei dem Versuch der vollständigen Rekonstruktion eines Ereignisses (wie es in Kapitel 8 dargestellt ist), können die K_s^0 als Fehlidentifikation eines Λ^0 erkannt werden. Diese Fälle treten jedoch nur bei bei hohen K_s^0 -Impulsen auf und sind bei den weiteren Betrachtungen unerheblich.¹ 5.1. KORREKTE IDENTIFIKATION: $K^+ = K^+$

41

R

5.1 Korrekte Identifikation: $K^+ = K^+$

Auftretendes Teilchen: D,+

In Abbildung 5.1 ist bei der Ruhemasse des D_s^+ -Mesons (1.969 GeV) eine deutliche Anhäufung der Einträge zu erkennen. Die angefittete Gaußfunktion ergibt 642 (±62) Einträge bei $\sigma = 20 MeV$ Breite.

Abbildung 5.1: Masse im $K_{,}^{0} K^{\pm}$ -System

Auftretendes Teilchen: D^{\pm}

Das D^{\pm} -Meson besitzt wie das D_s^+ -Meson einen Zerfall in ein K_s^0 und ein K^{\pm} -Meson. Dieser Zerfall ist allerdings stark unterdrückt, aber wegen der hohen Erzeugungsrate von D-Mesonen erscheint das Signal in den Diagrammen. In <u>Abbildung 5.1</u> tritt das Signal zwar nicht deutlich hervor, es kann jedoch bei einer Masse $m_D = 1.869 \, GeV$ und einer Breite $\sigma = 20 \, MeV$ zu 83 (± 50) Einträgen angefittet werden. Die Zuverlässigkeit des Fits muß bei Betrachtung des Diagramms allerdings in Frage gestellt werden; bei der

¹In dieser Arbeit werden keine eindeutig identifizierten K^{\pm} gefordert. Eine Beschränkung der Kaonenlikelihood auf $lh_K > 0.95$ zeigte jedoch eine nicht zu vernachlässigende Menge von A-Kandidaten. Dieser Fall wurde, vor allem wegen der ungenauen MC-Daten in diesem lh_K -Bereich, nicht weiter untersucht.

42

R

Auswertung werden deshalb verschiedene Untergrundanpassungen durchgerechnet und die Ergebnisse gemittelt.

Da die Einträge beider Zerfälle in einem gemeinsamen Diagramm auftreten, werden sie, sofern es möglich ist, auch gemeinsam angefittet. Bei der Bestimmung der Nachweiseffizienz wurde aber für die D^{\pm} keine eigene MC-Simulation durchgerechnet, sondern die der D_s^+ übernommen. Mögliche Abweichungen, zum Beispiel bedingt durch die unterschiedlichen Peterson-Fragmentationsfunktionen, fallen gegen den statistischen Fehler der Messungen jedoch kaum ins Gewicht.

5.2 Fehlidentifikation: $K^+ = \pi^+$

Abbildung 5.2: Masse im $K_{p}^{0} \pi^{\pm}$ -System

Ausgehend von der Annahme, daß das K^{\pm} -Meson auch ein fehlidentifiziertes Pion sein könnte, wird die Kombination $K^0_{,} \pi^{\pm}$ derselben Teilchenpaare untersucht, die im $K^0_{,} K^{\pm}$ -Sample einen Eintrag liefern. Dabei ergibt sich Abbildung 5.2.

AR

Auftretendes Teilchen: D[±]

Der deutliche Peak in <u>Abbildung 5.2</u> geht auf den Zerfall des D^{\pm} -Mesons in $K_{\bullet}^{0}\pi^{\pm}$ zurück. Ein Fit ergibt, daß in diesem Peak, bei einer Breite von $\sigma = 20 MeV$, etwa 720 Einträge zu finden sind. Die mittlere Masse wird mit der Ruhemasse des D^{\pm} fest angesetzt. Für die Bestimmung der Reflexion werden alle Einträge, die bis zu 35 MeV von der D^{\pm} -Masse abweichen, mit einem Flag versehen. Sie werden als D^{\pm} -Kandidaten bezeichnet.

Bei der Auswertung in Kapitel 7 wird die Problematik, die mit diesem Zerfallskanal in Verbindung steht, noch deutlich in Erscheinung treten.

5.3 Fehlidentifikation: $K^+ = Prot$

Analog zum vorhergehenden Fall wird die Fehlidentifikation eines Protons untersucht. Das zugehörige Massendiagramm ist in Abbildung 5.3 zu finden.

Abbildung 5.3: Masse im K. Prot-System

KAPITEL 5. DATENSICHTUNG

Auftretendes Teilchen: Λ_c

KR

Von den zwei Buckeln im Diagramm wird einer von dem Zerfall eines Λ_c in K_s^0 Prot hervorgerufen. (Der andere beruht auf der Reflexion des D_s^+ - und des D^\pm -Peaks.) Durch einen Fit bei festgehaltener Λ_c -Masse konnten in der Datenauswahl 170 Teilchen dieser Art nachgewiesen werden. Die Breite der Gaußkurve wurde zu $\sigma = 25 MeV$ bestimmt.

Auch hier werden die Einträge, die im Bereich von $\pm 35 MeV$ um die Λ_c -Masse auftreten, als Λ_c -Kandidaten mit einem Flag versehen.

5.4 Kombination: $K_s^0 \pi^{\pm} + \pi^{\mp}$

Die Kombination der $K_s^0 \pi^{\pm}$ -Paare aus Punkt 5.2 mit einem π^{\mp} ist in <u>Abbildung 5.4</u> dargestellt. Die Untergrundverteilung ist durch die Datenvorauswahl bedingt und weist deshalb einen ansteigenden statt eines eigentlich zu erwartenden sinkenden Verlaufs auf.

Abbildung 5.4: Masse im $K^0, \pi^{\pm}\pi^{\mp}$ -System

IR

Auftretendes Teilchen: D⁰

Der in <u>Abbildung 5.4</u> festzustellende Peak wird durch den Zerfall des D^0 -Mesons in $K_0^{\circ} \pi^{\pm} \pi^{\mp}$ hervorgerufen. Ein Fit ergibt bei der D^0 -Ruhemasse $m_{D0} = 1.865 \, GeV \, 650$ Einträge (Breite $\sigma = 17 \, MeV$).

Alle Kandidaten, die in einem Massenbereich $\pm 30~MeV$ um die nominelle D^0 -Masse liegen, werden mit einem Flag versehen, um bei Bedarf aus dem Datensample ausgeschlossen werden zu können. Die sofortige vollständige Entfernung führt zu Problemen bei der Bestimmung der Anzahl der D^{\pm} -Mesonen im $K_{*}^{0}K^{\pm}$ -Kanal.

5.5 Kombination: $K_s^0 \pi^{\pm} + \pi^0$

Die große Häufigkeit der D^0 -Mesonen im vorhergehenden Punkt ließ vermuten, daß auch D^{\pm} -Mesonen aus dem Zerfallskanal $K^0_* \pi^0 \pi^{\pm}$ verstärkt im Datensample vorhanden sind. Eine Betrachtung dieser Datenkombination konnte die Vermutung jedoch nicht bestätigen. Entweder muß eine sehr saubere π^0 -Rekonstruktion angestrebt werden, um ein Signal zu erhalten, oder, was wahrscheinlicher ist, die unterschiedlichen Zerfallsvorgänge bedingen die Verschiedenheit. Weil das D^{\pm} bevorzugt in $K^0\rho^{\pm}$ zerfällt, ist das fehlende π^0 mit dem Pion gekoppelt und nicht, wie beim D^0 (das häufiger in $K^*\pi$ zerfällt), mit dem K^0_* . Dadurch ergibt sich ein anderes Reflexionsverhalten, und die Ereignisse fallen deswegen nicht ins Gewicht.

5.6 Verteilung der Reflexionen

In Abbildung 5.5 sind die Daten der $K_{\bullet}^{0}K^{\pm}$ -Identifikation zusammen mit den Reflexionen der drei anderen festgestellten Teilchenidentifikationen dargestellt. Die Reflexionen beruhen nicht auf MC-Daten, sondern auf den beschriebenen Cuts in den Daten. Dadurch sind sowohl Peak- als auch Untergrund-Daten aus den jeweiligen Darstellungen in den Reflexionen enthalten.

Während die Λ_c^{\pm} -Reflexion flach verteilt ist und somit keine Probleme bereitet, liegt die D^0 -Reflexion dicht, hoch und störend an dem D^{\pm} -Peak. Das größte Problem bereitet aber die D^{\pm} -Reflexion. In vielen Fällen kann nicht zwischen Peak und Reflexion unterschieden werden, so daß eine Bestimmung der D_s^{\pm} -Einträge mit einer gleichzeitigen Betrachtung der D^{\pm} -Einträge einhergehen muß.

In <u>Abbildung 5.6</u> wird die Abhängigkeit der Reflexionen von der K^{\pm} -Flugrichtung im K_s^0 K^{\pm} -Schwerpunktsystem dargestellt. Die Variable LV_K beschreibt den Cosinus des Winkels, der zwischen dieser Richtung und der Flugrichtung des Schwerpunktes auftritt. Sie findet häufig dann Anwendung, wenn sich bei einem Zerfall der Drehimpuls ändert. Die resultierenden Verteilungsfunktionen werden dann in Abhängigkeit von LV_K angegeben.

Abbildung 5.5: In der $K_s^0 K^{\pm}$ -Identifikation treten neben dem D_s^+ - und dem D^{\pm} -Peak die Reflexionen der drei anderen beobachteten Teilchen auf. Aus den im Text beschriebenen Massenschnitten folgen die D^0 -Kandidaten (Punkte), die D^{\pm} -Kandidaten (Schräglinien) und die Λ_c^{\pm} -Kandidaten (Kreuze). Die Überlappung von D_s^+ -Peak und D^{\pm} -Reflexion ist deutlich zu erkennen.

Im folgenden Kapitel wird auf die Theorie der Reflexionen näher eingegangen und die mathematische Grundlage für ein kurzes Programm zur Reflexionsberechnung hergeleitet. Das in QBASIC geschriebene Programm erscheint in Anhang D.

5.7 Ausgeschlossene Daten

Der Vergleich der Massenverteilungen (mit dem Cut $\text{LV}_K < -0.2$) von $\Upsilon 1S$ -Daten mit $\Upsilon 2S$ -Daten zeigt einem deutlichen Unterschied auf. Während in der $K_0^0 \pi^{\pm}$ -Darstellung etwa gleichviele D^{\pm} -Mesonen festgestellt werden können (die integrierte Luminosität ist auch etwa gleichgroß) treten im $K_0^0 K^{\pm}$ -Diagramm erheblich mehr D_s^+ -Mesonen bei den $\Upsilon 1S$ -Daten (ca. 50) auf, als bei den $\Upsilon 2S$ -Daten (kein Nachweis). Die Frage, ob dies nur auf statistische Effekte oder auf echte Zerfallsunterschiede der beiden Resonanzen zurückzuführen ist, mag einen Anreiz für weitere Untersuchungen liefern.

R

Abbildung 5.6: Die Massenverteilung der Reflexionen ist von der Flugrichtung LV_K des fehlidentifizierten Teilchens abhängig. Hier sind die Reflexionen der D^{0} -, D^{\pm} - und Λ_{c}^{\pm} -Kandidaten dargestellt.

12

Abbildung 5.7: Die Massenverteilung der $\Upsilon 1S$ -Daten (linke Spalte) und $\Upsilon 2S$ -Daten (rechte Spalte) mit dem Cut $LV_K < -0.2$. Die beiden oberen Diagramme zeigen die $K_s^0 K^{\pm}$ -Identifikation, die beiden unteren die $K_s^0 \pi^{\pm}$ -Identifikation. Es fällt auf, daß im Bild rechts oben keine D_s^+ -Mesonen auftreten.

Kapitel 6

Reflexionskinematik

Wie entsetzlich unzulänglich steht der theoretische Physiker vor der Natur – und vor seinen Studenten.

[A. Einstein]

6.1 Relativistische Grundlagen

Die mathematische Behandlung der Gesetze in der Hochenergiephysik erfordert die Kenntnis der relativistischen Zusammenhänge. Im Gegensatz zu der *einfachen* Newtonschen Physik, die unser tägliches Leben bestimmt, treten hier Geschwindigkeiten auf, die der des Lichtes nahe kommen. Damit die Konstanz der Lichtgeschwindigkeit in allen erdenklichen Bezugssystemen gegeben ist, werden alle Größen beim Übergang in ein neues Bezugssystem der *Lorentz-Transformation* unterzogen.

Für diese Arbeit sind speziell zwei verschiedene *Inertialsysteme* von großer Bedeutung. Im Laborsystem werden alle Messungen durchgeführt, es ist das normale, uns umgebende System. Das Schwerpunktsystem zeichnet sich durch seine definierten, einfachen Gesetzmäßigkeiten aus. In diesem System spielen vor allem die Zerfallseigenschaften eine Rolle.

6.1.1 Laborsystem

Zuerst müssen die Werte $(E, P) = \vec{p}$ (mit $\vec{p} = V$ ierervektor) in das SPS (Schwerpunktsystem) transformiert werden. Das Teilchen Q möge in die zwei Teilchen A und B zerfallen.

 $Q \Longrightarrow A + B$

50

Die gemessenen und errechneten Größen sind:

R

$$\underbrace{E_Q, P_Q, \vec{P}_Q (= P_{Qx}, P_{Qy}, P_{Qz}), m_Q}_{Q-Teilchen}, \underbrace{E_A, P_A, \vec{P}_A (= P_{Ax}, P_{Ay}, P_{Az}), m_A}_{A-Teilchen, B entsprechend}$$

$$\gamma = \frac{EQ}{mQ} \qquad \beta = \frac{PQ}{EQ} \tag{6.1}$$

Außerdem seien:

$$P_{Al} = \frac{P_A P_Q}{P_Q} \quad \text{longitudinaler Anteil} \tag{6.2}$$

$$P_{At} = \sqrt{P_A^2 - P_{Al}^2} \quad \text{transversaler Anteil.} \tag{6.3}$$

Transformationsvorschrift:

$$\begin{pmatrix} \mathbf{E}' \\ \mathbf{P}'_t \end{pmatrix} = \begin{pmatrix} \gamma & -\gamma\beta \\ -\gamma\beta & \gamma \end{pmatrix} \begin{pmatrix} \mathbf{E} \\ \mathbf{P}_t \end{pmatrix} \qquad \mathbf{P}'_t = \mathbf{P}_t$$
 (6.4)

 $\begin{bmatrix} \begin{pmatrix} E \\ P_l \end{pmatrix} = \begin{pmatrix} \gamma & \gamma\beta \\ \gamma\beta & \gamma \end{pmatrix} \begin{pmatrix} E' \\ P'_l \end{pmatrix} \quad Umkehrtransformation \end{bmatrix}$

Das Produkt zweier Vierervektoren ist systemunabhängig:

$$\vec{p}_1 \cdot \vec{p}_2 = E_1 \cdot E_2 - P_1 \cdot P_2$$

$$= E_1' \cdot E_2' - P_1' \cdot P_2'$$
(6.6)

(6.5)

dabei gilt speziell

$$\vec{p} \cdot \vec{p} = E \cdot E - P \cdot P$$

= m · m
= Ruhmassenguadrat (6.7)

6.1.2 Schwerpunktsystem (SPS)

$$LV_A = \frac{P'_{Al}}{P'_A} = -LV_B \tag{6.8}$$

$$P'_{\mathcal{A}} = -P'_{\mathcal{B}} \tag{6.9}$$

$$A + D_B - D_Q = m_Q$$
 (6.10)
 $m_Q^2 + m_Z^2 - m_Z^2$

$$E_A = \frac{\sqrt{2 \cdot m_Q}}{2 \cdot m_Q} \tag{6.11}$$

$$|\mathbf{P}'_{A}| = \sqrt{\mathbf{E}'_{A}^{2} - \mathbf{m}^{2}_{A}} \tag{6.12}$$

R

Durch diese Gleichungen und der oben angegebenen Umkehrtransformation besitzt man die Grundlage für weitere Umrechnungen, die im nächsten Abschnitt anstehen.

6.2 Berechnung der Reflexion

6.2.1 Einstieg und erste Näherung

Wird bei der Rekonstruktion eines zerfallenen Teilchens durch Fehlinterpretation von K^{\pm}, π oder *Proton* in Wirklichkeit ein anderes Teilchen rekonstruiert, so ruft dies eine Reflexion hervor. Der folgende Abschnitt gibt die mathematische Behandlung dieser Thematik und führt abschließend zu einem kurzen Programm zur Reflexionsberechnung.

Die in Kapitel 3.4 eingeführten Teilchenbezeichnungen werden auch hier für die Indizierung beibehalten. Rückblick: Das Teilchen X wurde fälschlicherweise als Teilchen A identifiziert. Man erhält dann in der Rekonstruktion statt der Masse m_R (des realen Teilchens) die Masse m_Q (der Reflexion).

Manche Größen bleiben bei der Fehlidentifikation unverändert. So gilt:

$$P_A = P_X$$
 und $P_Q = P_A$

(Teilchen B bleibt unbeeinflußt). Bei anderen Werten treten aber Unterschiede auf:

 $m_A \neq m_X$, $m_Q \neq m_R$, $E_A \neq E_X$, $E_Q \neq E_R$

Als einfachster Weg bietet sich eine Betrachtung der Massenquadrate an, um der Reflexion Herr zu werden.

$$\begin{split} m_Q^2 - m_R^2 &= E_Q^2 - P_Q^2 - E_R^2 + P_R^2 \\ &= (E_A + E_B) \cdot (E_A + E_B) - (E_X + E_B) \cdot (E_X + E_B) \\ &= E_A^2 - E_X^2 + 2 \cdot E_B \cdot (E_A - E_X) \\ &= m_A^2 + P_A^2 - m_X^2 - P_X^2 + 2 \cdot E_B \cdot (E_A - E_X) \\ &= m_A^2 - m_X^2 + 2 \cdot E_B \cdot (E_A - E_X) \end{split}$$

Abschätzung für $(E_A - E_X)$ mit $|m_A^2 - m_X^2| \ll E_A^2$. Bei Fehlidentifikationen $K \mapsto \pi$ $(K \leftrightarrow Prot)$ interessieren die Impulse oberhalb von 0.7 GeV (1.2 GeV). Das Verhältnis $\xi = \Delta m^2/E^2$ ergibt sich dann zu 0.3 (-0.67).

14

$$\begin{split} \mathbf{E}_{\mathcal{A}} - \mathbf{E}_{\mathcal{X}} &= \sqrt{\mathbf{m}_{\mathcal{A}}^2 + \mathbf{P}_{\mathcal{A}}^2} - \sqrt{\mathbf{m}_{\mathcal{X}}^2 + \mathbf{P}_{\mathcal{X}}^2} \\ &= \mathbf{E}_{\mathcal{A}} \cdot \left(1 - \sqrt{1 - \frac{\mathbf{m}_{\mathcal{A}}^2 - \mathbf{m}_{\mathcal{X}}^2}{\mathbf{E}_{\mathcal{A}}^2}}\right) \\ &= \mathbf{E}_{\mathcal{A}} \cdot \left(1 - \sqrt{1 - \xi}\right) \end{split}$$

Reihenentwicklung des Wurzelausdruckes

KAPITEL 6. REFLEXIONSKINEMATIK

.

$$\approx E_{A} \cdot \left(1 - 1 + \frac{\xi}{2} + \frac{\xi^{2}}{8} + \frac{\xi^{3}}{16} + (\cdots) \right)$$
$$= E_{A} \cdot \frac{\xi}{4} \cdot \left(2 + \frac{\xi}{2} + \left(\frac{\xi}{2} \right)^{2} + (\cdots) \right)$$

Reihenentwicklung eines Bruches

 $\approx E_A \cdot \frac{\xi}{4} \cdot \left(1 + \frac{1}{1 - \xi/2}\right)$ Fehler durch die Näherung bei $\xi = 0.3$ ($\xi = -0.67$): 0.1% (1.5%).

Dies in obige Gleichung eingesetzt ergibt:

$$\begin{split} m_Q^2 &- m_R^2 &\approx \left(m_A^2 - m_X^2 \right) \left(1 + \frac{E_B}{E_A} \cdot \frac{1}{2} \cdot \left(1 + \frac{1}{1 - (m_A^2 - m_X^2)/(2E_A^2)} \right) \right) \\ \left\{ m_Q^2 - m_R^2 &\approx \left(m_A^2 - m_X^2 \right) \left(1 + \frac{E_B}{E_X} \cdot \frac{1}{2} \cdot \left(1 + \frac{1}{1 + (m_A^2 - m_X^2)/(2E_X^2)} \right) \right) \right\} \\ & \text{Für hohe Energieen } E_A \text{ kann der Ausdruck noch weiter genähert werden:} \\ m_Q^2 - m_R^2 &\approx \left(m_A^2 - m_X^2 \right) \left(1 + \frac{E_B}{E_A} \right) \\ &\approx \left(m_A^2 - m_X^2 \right) \frac{E_Q}{E_A} \end{split}$$

Dieser Ausdruck läßt sich leicht im Diagramm überprüfen. In Abbildung 6.1 ist der Quotient $(E_Q/E_{K\pm})$ gegen das Quadrat der $K^0_s K^{\pm}$ -Masse $(\overline{m^2_Q})$ aufgetragen. Die eingezeichneten Linien entsprechen den erwarteten Reflexionen und Peaks.

$$\approx (m_A^2 - m_X^2) \frac{E_R}{E_X}$$

(Bei $K \leftrightarrow \pi$ und $E_X = 1 \ GeV$ (2 GeV) beträgt der Fehler etwa 6% (1%).)

6.2.2 Variablentransformationen

Für die Bestimmung der Form der Reflexion wird als nächstes auf die Variablen β (relative Geschwindigkeit des zerfallenden Teilchens; über x_p erhält man den Anschluß an die Fragmentationsfunktion und den Teilchenimpuls) und LV_X (Flugrichtung des fehlidentifizierten Teilchens im Ruhesystem des zerfallenden Teilchens, Einbindung von möglicherweise winkelabhängigen Zerfällen sowie der Fakewahrscheinlichkeit) übergegangen. Bei Vernachlässigung der Massenabhängigkeit von β , hat man ein unabhängiges Basissystem, das alle notwendigen Variablen umfaßt.

$$E_X = \gamma E'_X + \gamma \beta P'_X \cdot LV_X$$

= $E_R \cdot \frac{E'_X}{m_R} + P_R \cdot LV_X \cdot \frac{P'_X}{m_R}$
 $\implies m_Q^2 = m_R^2 + (f_1 + f_2 \cdot LV_X \cdot \beta_R)^{-1}$ mit

6.2. BERECHNUNG DER REFLEXION

R

53

Abbildung 6.1: Der Quotient $(E_{K0K\pm}/E_{K\pm})$ wird gegen das Massenquadrat $(m_{K0K\pm})$ aufgetragen. Jede Reflexion ergibt eine Gerade mit der Steigung $s = 1/(m_A^2 - m_X^2)$, der Schnittpunkt mit der x-Achse entspricht dem Ruhmassenquadrat des Teilchens. Die eingezeichneten Linien stellen die D^{\pm} - und D_s^{\pm} -Verläufe (senkrecht), die D^0 - und D^{\pm} -Reflexion (positive Steigung) sowie die λ_c -Reflexion (negative Steigung) dar.

 $\begin{array}{rcl} f_1 &=& {\rm E}'_X / ({\rm m}_R \cdot ({\rm m}_A^2 - {\rm m}_X^2)) \\ f_2 &=& {\rm P}'_X / ({\rm m}_R \cdot ({\rm m}_A^2 - {\rm m}_X^2)) \end{array}$

Jetzt wird für den Fall $m_A > m_X$ eine Transformation angesetzt. Hiermit läßt sich die Fehlidentifikation eines leichteren Teilchens (Pion) als ein schwereres (Kaon) behandeln. Für den anderen Fall ergibt sich eine abweichende Transformation. Ausgehend von dem Tripel (m_R, LV_X, β) , das als orthogonale Basis aufgefaßt werden kann, transformiert man erst in das System (m_R, μ, ν) , das für sich wiederum orthogonal ist, wenn man die Abhängigkeit der Werte f_1 und f_2 von m_R vernachlässigt.

$$\mu := \sqrt{f_1 + f_2 \cdot LV_X} \cdot \beta_R$$
$$\nu := \sqrt{LV_X^2 + \beta_R^{-2}}$$

52

RR

55

R

Nach diesem Zwischenschritt wird nun auf das Tripel (m_Q, T, ν) übergegangen, das mit der Näherung aus dem vorhergehenden Abschnitts ebenfalls als orthogonal angesehen werden kann.

$$m_Q = \sqrt{m_R^2 + \mu^{-2}}$$

$$T := m_R \cdot \mu$$

R

Eine ausführliche Betrachtung der Transformation sowie ihrer Umkehrtransformationen wird in Anhang A durchgeführt.

6.3 Substitution

~

Die Häufigkeit, mit der eine Resonanz mit bestimmter Masse, Impuls und Winkelverteilung der Tochterteilchen auftritt, ist bereits bekannt. Die Form des Peaks wird z.B. durch die Gauß- oder die Breit-Wigner-Kurven gegeben (Massenabhängigkeit). Die relative Höhe wird von der Peterson-Fragmentationsfunktion bestimmt, die auf den normierten Impuls zurückgreift. Drehimpulsänderungen durch den Zerfall zeigen sich in der Winkelverteilung. Da die Fehlidentifizierung berücksichtigt werden soll, benötigt man die Impulsabhängigkeit der Fakerate. Den Ausgangspunkt bildet die Verteilungsfunktion N. Sie besteht aus dem Produkt aller zuvor genannten Funktionen:

$$f_{Gauss} = \frac{1}{\sigma\sqrt{2\pi}} e^{-\frac{(m_{R0} - m_R)^2}{2\sigma^2}}$$

$$f_{Fragment} = \frac{a}{x_p} \left(1 - \frac{1}{x_p} - \frac{\epsilon}{1 - x_p}\right)^{-2}$$

$$f_{Winkel} = f(LV_X)$$

$$f_{Fake} = \eta(Pionimpuls)$$

$$N = N_0 \cdot f_{Gauss} \cdot f_{Fragment} \cdot f_{Winkel} \cdot f_{Fake}$$

Führt man die Variablentransformationen durch, benötigt man die Jacobideterminanten, um das Integral über die Verteilungsfunktion bestimmen zu können.

$$\int N(m_R, LV_X, \beta) \,\mathrm{d}m_R \,\mathrm{d}LV_X \,\mathrm{d}\beta =$$

$$\int \tilde{N}(m_Q, T, \nu) \left| \begin{array}{c} LV_{,\mu} & \beta_{,\mu} \\ LV_{,\nu} & \beta_{,\nu} \end{array} \right| \cdot \left| \begin{array}{c} m_R, m_Q & \mu, m_Q \\ m_R, T & \mu_T \end{array} \right| \,\mathrm{d}m_Q \,\mathrm{d}T \,\mathrm{d}\nu$$

$$\implies N(m_Q) = \int \tilde{N}(m_Q, T, \nu) \left| \begin{array}{c} LV_{,\mu} & \beta_{,\mu} \\ LV_{,\nu} & \beta_{,\nu} \end{array} \right| \cdot \left| \begin{array}{c} m_R, m_Q & \mu, m_Q \\ m_R, T & \mu_T \end{array} \right| \,\mathrm{d}T \,\mathrm{d}\nu$$

In Anhang D ist die Umsetzung der Gleichung in ein Programm zu finden. Ein Vergleich der D^{\pm} -Reflexion aus MC-Daten mit dem berechneten Verlauf ist in <u>Abbildung 6.2</u> dargestellt.

Abbildung 6.2: Der Vergleich der D^{\pm} -Reflexionsform aus den MC-Daten (Punkte mit Fehlerbalken) und den (vom Programm in Anhang D) errechneten Werten (durchgezogene Linie) zeigt im Flankenanstieg eine gute Übereinstimmung auf. Bei höheren Massen treten Abweichungen auf, die wahrscheinlich in der unberücksichtigten Impulsabhängigkeit der Gaußbreite und der stark genäherten Fakerate begründet liegen.

Kapitel 7

Die Auswertung

There is a theory which states that if ever anyone discovers exactly what the Universe is for and why it is here, it will instantly disappear and be replaced by something even more bizarre and inexplicable. There is another theory which states that this has already happened.

[D. Adams, The Restaurant at the End of the Universe]

Für die endgültige Bestimmung der Zerfallsrate müssen zwei Größen bekannt sein. Erstens, wieviele Einträge des gesuchten Zerfalls bleiben nach Durchführung aller Cuts (Einschränkungen von Parametern) in der Datenmenge zurück? Und zweitens, wie groß ist die dazugehörige Nachweiswahrscheinlichkeit (Akzeptanz) η?

Für die Bestimmung von η werden die MC-Simulationen durchgeführt. Alle MC-Datensätze, die im Laufe dieser Arbeit erzeugt und benutzt wurden, sind in Anhang B aufgeführt.

Benötigt werden folgende Daten:

- Die Akzeptanz des D_s^+ -Zerfalls für verschiedene Cuts in \mathbf{x}_p und LV_K ,
- die Akzeptanz der D^{\pm} -Reflexion für eine Kontrollrechnung und
- die Breite der Gaußkurven von D_s^+ und D^\pm als Richtwerte für die Fit-Routine.

7.1. BEREITSTELLUNG DER MC-NACHWEISEFFIZIENZ

57

17R

7.1 Bereitstellung der MC-Nachweiseffizienz

7.1.1 MC-Werte der D+ -Mesonen

Zu Beginn der Effizienzberechnungen werden aus den MC-Daten mehrere Tabellen erstellt, so daß bei Variation von x_p und LV_K die jeweiligen Nachweiswahrscheinlichkeiten zur Verfügung stehen. In <u>Tabelle 7.1</u> sind die Effizienzen η und η_{xp} aufgelistet. Für ein gegebenes x_p bezeichnet η_{xp} die Wahrscheinlichkeit, mit der ein D_s^+ -Zerfall in $K^\pm K_s^0$ in diesem Impulsintervall nachgewiesen wird. Die aufsummierte Nachweiswahrscheinlichkeit für alle x_p ab diesem Wert wird mit η bezeichnet. Bei x_p-Cuts (x_p > 0.4, x_p > 0.5, ...) findet η Verwendung, bei der Untersuchung der x_p-Verteilung muß η_{xp} benutzt werden.

Xn	Nrec	NMC	η_{xp}	$d\eta$	Σ Nrec	η	$d\eta$
> 0.95	7	3	2	(2)	7	0.001	(1)
0.90 - 0.95	33	66	0.50	(6)	40	0.008	(1)
0.85 - 0.90	86	166	0.52	(4)	126	0.026	(2)
0.80 - 0.85	97	233	0.42	(3)	223	0.045	(3)
0.75 - 0.80	141	364	0.39	(3)	364	0.074	(4)
0.70 - 0.75	190	504	0.38	(2)	554	0.113	(5)
0.65 - 0.70	184	487	0.38	(2)	738	0.150	(5)
0.60 - 0.65	217	509	0.43	(2)	955	0.194	(6)
0.55 - 0.60	247	607	0.41	(2)	1202	0.244	(6)
0.50 - 0.55	193	493	0.39	(2)	1395	0.284	(6)
0.45 - 0.50	143	369	0.39	(3)	1537	0.313	(7)
0.40 - 0.45	122	311	0.39	(3)	1660	0.338	(7)

Tabelle 7.1: Abhängigkeit der Akzeptanzen η und η_{xp} vom skalierten Impuls x_p .

Für drei x_p -Cuts ($x_p > 0.4$, $x_p > 0.5$, $x_p > 0.6$) wird jeweils eine Tabelle der Nachweiseffizienz in Abhängigkeit von der Kaon-Flugrichtung LV_K und der Kaon-Îikelihood lh_K aufgestellt. Die vollständigen Tabellen sind in Anhang C zu finden, die benötigten Werte sind als Auszug, mit zusätzlicher Angabe der Gauß-Breiten, in <u>Tabelle 7.2</u> zusammengefaßt.

In Auswertung B werden die Reflexionsfaktoren α_{Ds} und α_D benötigt (siehe <u>Tabelle 7.3</u>). α_{Ds} steht für den Anteil an D_s^+ -Mesonen (im LV_K-Bereich $-0.8 < \text{LV}_K < 0.8$) die bei der Reflexion in das $K_s^0 \pi^{\pm}$ -Diagramm einen Peak bei der D^{\pm} -Masse hervorrufen. Damit werden also sowohl die Einträge in der *Reflexionsschulter* als auch die D_s^+ -Mesonen mit eindeutiger Kaon-Identifikation nicht erfaßt (für α_D gilt dieses analog). Die Ermittlung von α erfolgt in zwei Etappen. Erst wird die D^{\pm} -Reflexion (mit den x_p -Cuts) mit einem Gauß-Peak und der Schulter-Funktion angepaßt und so α_D bestimmt. Dann wird aus α_D ein äquivalenter LV_K-Cut gesucht, der dieselbe Anzahl von Reflexionseinträgen und eine ähnliche Reflexionsform aufweist (etwa bei LV_K > -0.1). Die Anwendung des LV_K-Cuts

LVK	$x_p >$	Г	η
-0.80.8		0.0190	0.288
< -0.2	0.4	0.0160	0.129
-0.8.0.8		0.0195	0.241
< -0.2	0.5	0.0160	0.109
-0.8.0.8		0.0200	0.168
< -0.2	0.6	0.0170	0.072
-0.80.8	0.7	-	0.098
-0.80.8	0.8	-	0.039

Tabelle 7.2: Akzeptanzberechnung und Breite der D.+

$x_p >$	0.4	0.5	0.6	0.7	0.8
αD	0.54	0.52	0.49	0.46	0.43
aps	0.56	0.56	0.56	0.53	0.53

Tabelle 7.3: Reflexionsfaktoren für die Gleichungen 7.1 und 7.2.

auf die D_*^+ -Einträge liefert dann α_{D_*} . Die Genauigkeit, mit der α_D dem tatsächlichen Wert entspricht, hängt sehr stark vom Untergrund und vom überlagerten D+-Peak ab. Eine Variation von an und an, führt jedoch nur zu einer geringen Änderung des Ergebnisses, so daß der hiermit verbundene Fehler mit dem MC-Fehler erfaßt wird.

7.1.2 MC-Werte der D[±]-Mesonen

Um feststellen zu können, ob bei der Bestimmung der Reflexionseinträge ungefähr die korrekte Anzahl ermittelt wird, erfolgt eine MC-Betrachtung des D^{\pm} -Zerfalls. In Tabelle 7.4 ist aufgelistet, bei welchen x_p-Schnitten wieviele D^{\pm} -Mesonen (von den ursprünglich erzeugten) zu der Reflexion beitragen.

LV_K	$x_p >$	Eintr.	Г	η
all		338	0.0185	0.235
mid		319	0.0185	0.221
< -0.2	0.4	125	0.0185	0.087
> -0.2		213	0.0190	0.148
all		272	0.0190	0.189
mid		260	0.0190	0.181
< -0.2	0.5	108	0.0185	0.075
> -0.2		164	0.0190	0.114
< -0.2	0.55	96	0.0190	0.067
all		203	0.0195	0.141
mid		193	0.0195	0.134
< -0.2	0.6	85	0.0190	0.059
> -0.2		118	0.0200	0.082
all		125	0.0200	0.087
mid		119	0.0200	0.083
< -0.2	0.7	59	0.0190	0.041
> -0.2		66	0.0200	0.046
all		62	0.0200	0.043
mid		59	0.0200	0.041
< -0.2	0.8	30	0.0200	0.021
> -0.2		32	0.0200	0.022

Tabelle 7.4: Akzeptanzberechnung und Breite der D+ aus der Reflexion

17

14

• Anzahl der erzeugten D+: 1440

 \mathbb{R}

59

- LV_K -Bereich 'all' = -1 bis +1
- . LVK -Bereich 'mid'= -0.8 bis +0.8
- stat.Fehler auf η : 10%
 - In dieser Tabelle wird die Anzahl aller derjenigen D^{\pm} , die zu der Reflexion beitragen, mit der Anzahl aller in diesem Zerfallskanal $(\pi^{\pm} K_{\bullet}^{0})$ erzeugten D^{\pm} -Mesonen in Verbindung gesetzt.

58

7.2. AUSWERTUNG A: DIREKTER WEG

R

61

Abbildung 7.2: Mit der Einschränkung LV_K < -0.2 liegt die Reflexion vollständig neben dem D_s^+ -Peak und steht somit einer Peakmessung nicht mehr im Wege.

im Bereich der D^0 - Reflexion kann, obwohl die D^0 -Kandidaten aus den Daten entfernt werden, keine zufriedenstellende Anpassung erfolgen. Auch durch eine Funktion dritten Grades ergibt sich keine nennenswerte Verbesserung, so daß letztendlich der Untergrund in einem Ausschnitt angefittet und dann extrapoliert wird.

Die zur Verfügung stehenden Fit-Methoden (*maximum likelihood* und *least squares*) und die drei unterschiedlichen Untergrundbereiche liefern einen Satz von sechs Fit-Ergebnissen, der in <u>Tabelle 7.5</u> aufgeführt ist.

Dasselbe Verfahren wird für zwei weitere x_p -Schnitte wiederholt und die Gesamtzahl der ermittelten Mesonen gemittelt, wobei die Schnitte $x_p > 0.4$ mit dreifacher, $x_p > 0.5$ mit zweifacher und $x_p > 0.6$ mit einfacher Wichtung eingehen.

KAPITEL 7. DIE AUSWERTUNG

7.2 Auswertung A: Direkter Weg

Durch die Einschränkung von LV_K auf

RB

60

 $LV_K < -0.2$

läßt sich die D^{\pm} -Reflexion deutlich von dem D_s^+ -Peak unterscheiden (<u>Abbildung 7.2</u>).

Damit der Untergrund besser angefittet werden kann, wird die Anzahl der Einträge, die die Reflexion ausmachen, bestimmt, indem man die Anzahl der D^{\pm} -Mesonen aus dem $M(K_{\bullet}^{0}\pi^{\pm})$ -Diagramm (Abbildung 7.1) ermittelt.

Abbildung 7.1: Die zur Reflexion beitragenden D^{\pm} in der $K_s^0 \pi^{\pm}$ -Identifikation. Der Fit ergibt 160 Einträge mit $x_p > 0.4$ und $LV_K < -0.2$.

Die so ermittelte Anzahl $(N(\overline{D^+}))$ ergibt die Höhe der Reflexion, deren Form aus der Monte-Carlo-Simulation folgt. Als nächstes wird die Reflexion aus den Daten (Abbildung 7.2) subtrahiert.

Das erhaltene Diagramm (Abbildung 7.3) wird angefittet, wobei eine Untergrundfunktion zweiten Grades und zwei Gaußkurven angenommen werden. Für den Untergrundverlauf

Abbildung 7.3: Die Anzahl der D_s^+ und D^{\pm} -Mesonen kann nach Entfernung der Reflexion bestimmt werden. Man erhält etwa 85 D^{\pm} und 115 D_s^+ , wobei die Anzahl je nach Fitmethode und -bereich in geringen Grenzen (siehe Tabelle 7.5) variiert.

7.2.1 Zusammenfassung von Auswertung A

- Die Datenmenge wird in der Kaon-Flugrichtung $LV_K < -0.2$ eingeschränkt.
- Die Reflexion wird aus dem Diagramm heraussubtrahiert.
- Für drei x_p-Schnitte werden die Einträge ermittelt, mit der jeweiligen MC-Effizienz korrigiert und dann gemittelt.
- Aus den Mittelwerten wird das Verzweigungsverhältnis Γ der Zerfallskanäle bestimmt. Es ergibt sich:
- $\Gamma(D_s^+ \rightarrow K^0 K^+) = 2.5 (\pm 0.5 \pm 0.2 \pm 0.3)\%$
- $\Gamma(D^+ \rightarrow K^0 K^+) = 0.8 (\pm 0.2 \pm 0.1 \pm 0.1)\%$
- $\Gamma(D^+ \rightarrow K^0 \pi^+) = 2.3 (\pm 0.3 \pm 0.3 \pm 0.3)\%$

63

Untergrund-	Xp	D	+		D^+	\bar{D}^+
bereich		A	В	Α	B	С
I		113	118	79	83	-
П	≥ 0.4	115	116			-
III		123	128	86	91	-
Einträge	≥ 0.4	115	± 25	85	± 30	160 ± 22
mit Akzeptar	nz	891 :	E 194	659	± 233	1840 ± 250
I		70	73	66	72	-
II	≥ 0.5	80	92	-	-	
III		92	103	76	84	-
Einträge	≥ 0.5	85 :	£ 20	75	± 20	144 ± 18
mit Akzeptar	nz	780 ± 183		688	± 183	1920 ± 240
I		60	67	42	47	-
II	≥ 0.6	65	69	-	÷	
III		66	75	46	57	-
Einträge	≥ 0.6	67 :	± 16	47	± 16	97 ± 14
mit Akzep	tanz	930 :	± 222	653	± 222	1644 ± 237
Mittelwe	ert	860 :	± 170	668	± 170	1834 ± 200
Verzweigung	gsv. Γ	2.5	5%	0.8%		2.3 %
		±0	5 %	±	0.2%	±0.3 %

Die angegebenen Fehler bedeuten: 1.: statistische Unsicherheit der Fits, 2.: Unsicherheit der MC-Werte und 3.: Fehler des Vorfaktors N_{Ges} .

• Untergrundbereich I: 1.7 ... 2.3

KR

 Untergrundbereich II: 1.9 ... 2.3

Untergrundbereich
 III: 1.7 ... 2.1

- Fit-Methode A: maximum likelihood
- Fit-Methode B: least squares
- Fit-Methode C:
 Fit im D⁺-Diagramm
- Mittelwertbildung: Wichtung 3:2:1 der drei xp-Cuts

Tabelle 7.5: Auswertung A: Ergebnisse

7.3 Auswertung B: Indirekter Weg

Durch den Schnitt

 $-0.8 < LV_K < +0.8$

wird zweierlei erreicht:

- · Der Untergrund durch fehlidentifizierte Protonen wird stärker unterdrückt.
- Die statistische Anhäufung durch die Vielzahl langsamer Kaonen wird abgeschnitten.

Die Auswertung besteht auch hier wieder aus zwei Schritten. Zuerst wird im $K_s^0 \pi^{\pm}$. Diagramm (<u>Abbildung 7.4</u>) die Anzahl der Einträge bei der D^{\pm} -Ruhemasse (1.87 MeV) bestimmt. Da diese sowohl aus dem D^{\pm} -Peak als auch aus der D_s^{\pm} -Reflexion bestehen, wird das Fitergebnis mit N(1.87) bezeichnet.

14

Abbildung 7.4: Die zur Reflexion beitragenden D^{\pm} in der $K_s^0 \pi^{\pm}$ -Identifikation sowie die D_s^+ -Mesonen, die hier die Reflexion bilden, sind gemeinsam im Peak vertreten. Der Fit ergibt 565 Einträge (N(1.87)) mit x_p > 0.4 und -0.8 < LV_K < 0.8

Danach wird das $M(K_s^0 K^{\pm})$ -Diagramm (<u>Abbildung 7.5</u>) mit einer Funktion angefittet, die aus folgenden Teilen besteht:

- · eine quadratische Untergrundfunktion,
- eine gemeinsame Gaußfunktion für den D_s^+ -Peak und den Peak der D^\pm -Reflexion mit variabler Breite,
- eine angepaßte Funktion für die Schulter der Reflexion und
- eine Gaußfunktion für die D^{\pm} .

Der Versuch, die Anzahl der Einträge in der Schulter anzufitten, zeigte, daß diese Zahl sehr stark von der Breite des D_s^+ -Peaks abhängt. Diese Breite wird wiederum von der Anzahl der fehlidentifizierten D^{\pm} -Mesonen beeinflußt. Dieser Weg war nicht erfolgversprechend, darum wurde die Zahl N(1.87) als Größenordnung für die Reflexion genommen. Damit wird die Größe der Schulter festgesetzt, um sie dann später, falls notwendig, rekursiv

7.3. AUSWERTUNG B: INDIREKTER WEG

65

IR

anzupassen. Es zeigt sich jedoch, daß die so bestimmte Anzahl diesen Teil der Daten hinreichend genau beschreibt und eine Variation des Wertes das endgültige Ergebnis nicht wesentlich verändert.

Fittet man mit dieser Vorgabe das $M(K_s^0 K^{\pm})$ -Diagramm an, erhält man, neben der Anzahl der D^{\pm} -Mesonen, die Zahl (N(1.97)) der Einträge im D_s^+ -Peak. Diese Zahl ergibt sich aus der Addition der Anzahl der D_s^+ -Mesonen mit der Anzahl der reflektierten D^{\pm} -Mesonen in diesem Peak.

Abbildung 7.5: Die Anzahl der D_s^+ und D^{\pm} -Reflexion wird als gemeinsame Größe N(1.97) bestimmt, der D^{\pm} -Peak kann direkt bestimmt werden. Man erhält etwa 156 D^{\pm} und 491 Einträge für N(1.97).

Da der jeweilige Reflexionsfaktor α (siehe <u>Tabelle 7.3</u>) aus Monte-Carlo-Daten ermittelt wurde, läßt sich aus den Zahlen N(1.87) und N(1.97) die Anzahl an D_s^+ -Mesonen $(N(D_s^+))$ und reflektierenden D^{\pm} -Mesonen $(N(\overline{D^+}))$ ermitteln. Dafür werden zwei Gleichungen angesetzt:

$$N(1.87) = N(\overline{D^+}) + \alpha_{D_{\theta}} \cdot N(D_{\theta}^+)$$

$$(7.1)$$

$$N(1.97) = N(D_s^+) + \alpha_D \cdot N(D^+)$$
(7.2)

R

Durch Umformung erhält man die Gleichungen:

$$N(\overline{D^+}) = \left(\frac{N(1.87)}{\alpha_{Ds}} - N(1.97)\right) : \left(\frac{1}{\alpha_{Ds}} - \alpha_D\right)$$
(7.3)

$$N(D_{s}^{+}) = N(1.97) - \alpha_{D} \cdot N(D^{+})$$
(7.4)

Die akzeptanzkorrigierten Ergebnisse erhalten die Bezeichnungen $N'(D^+), N'(D^+_s)$ und $N'(\overline{D^+})$.

x. >	$N(D^+)$	N(1.97)	N(1.87)	$N(D_{\bullet}^{+})$	$N(\overline{D^+})$	$N'(D^+)$	$N'(D_{\bullet}^+)$	$N'(\overline{D^+})$
0.4	156	491	565	266	416	542	923	1882
	±47	±57	±40	±25	±42	±180	±90	±190
0.5	129	356	441	179	341	535	743	1883
0.0	±35	±45	±50	±24	±44	±130	±100	± 220
0.6	90	277	318	167	224	536	994	1671
	+25	±25	±25	±14	±20	±130	±82	± 160
0.7	22	164	209	90	161	(227)	918	1939
	±25	±25	±20	±10	±20	±250	±100	± 200
0.8	11	80	103	46	78	(324)	(1180)	1902
	±11	±16	±15	±8	±15	±320	±200	± 360
Mitte	wert					540	895	1855
						±120	±85	±190
Verzw	eigungsver	hältnis Γ				0.7%	2.6%	2.3%
						±0.2%	±0.2%	±0.2%

Tabelle 7.6: Auswertung B: Ergebnisse (Die eingeklammerten Werte wurden bei der Mittelwertbildung nicht mit berücksichtigt.)

7.3.1 Zusammenfassung von Auswertung B

- Die Datenmenge wird in der Kaon-Flugrichtung $-0.8 < LV_K < 0.8$ eingeschränkt.
- Die Einträge in der D[±] -Reflexion und des D⁺_s -Peaks werden aus zwei Diagrammen numerisch ermittelt.
- Für fünf xp-Schnitte werden die Anzahl der Einträge bestimmt, mit der jeweiligen MC-Effizienz korrigiert und dann gemittelt.
- Aus den Mittelwerten wird das Verzweigungsverhältnis Γ der Zerfallskanäle bestimmt. Es ergibt sich:
- $\Gamma(D^+_{\bullet} \to K^0 K^+) = 2.6 (\pm 0.2 \pm 0.3 \pm 0.3)\%$

• $\Gamma(D^+ \rightarrow K^0 K^+) = 0.7 (\pm 0.2 \pm 0.1 \pm 0.1)\%$

R

• $\Gamma(D^+ \to K^0 \pi^+) = 2.3 (\pm 0.2 \pm 0.3 \pm 0.3)\%$

Die angegebenen Fehler bedeuten: 1.: statistische Unsicherheit der Fits, 2.: Unsicherheit der MC-Werte und 3.: Fehler des Vorfaktors N_{Ges} .

7.4 Endergebnis und Literaturvergleich

In dieser Arbeit wurden zwei Wege zur Bestimmung des Verzweigungsverhältnisses des D_s^+ -Zerfalls in K^0K^\pm durchgeführt. Während der erste (Auswertung A) durch eine geringere Datenmenge einen höheren statistischen Fehler aufweist, besitzt der zweite (Auswertung B) eine größere Unsicherheit in der Monte-Carlo-Bestimmung. Beide Wege führen aber auf dieselben Ergebnisse:

$$\Gamma(D_s^+ \to K^0 K^+) = 2.55 (\pm 0.5)\%$$
(7.5)

$$= 0.94 (\pm 0.15) \cdot \Gamma(D_s^+ \to \Phi \pi^+) \tag{7.6}$$

$$\Gamma(D^+ \rightarrow K^0 K^+) = 0.75 (\pm 0.25)\%$$
(7.7)

$$\Gamma(D^+ \to K^0 \pi^+) = 2.3 (\pm 0.5)\%$$
(7.8)

Der Wert von $\Gamma(D_s^+ \to K^0 K^+)$ bezogen auf die Messung von $\Gamma(D_s^+ \to \Phi \pi^+)$ ist genauer, da die Unsicherheit in der D_s^+ -Erzeugungsrate entfällt.

Zum Vergleich sind die Werte der Particle Data Group [1] angegeben:

$$\Gamma_{PDG}(D_s^+ \to K^0 K^+) = 2.8 \,(\pm 0.7)\% \tag{7.9}$$

$$\Gamma_{PDG}(D^+ \to K^0 K^+) = 0.73 \, (\pm 0.18)\%$$
 (7.10)

$$\Gamma_{PDG}(D^+ \to K^0 \pi^+) = 2.6 (\pm 0.4)\%$$
(7.11)

Innerhalb der Fehlergrenzen stimmen die ermittelten Werte mit diesen Vergleichsdaten überein, auch wenn in zwei Fällen $(D_s^+ \to K^0 K^+ \text{ und } D^+ \to K^0 \pi^+)$ ein etwa 10% geringerer Wert festgestellt wird. Für den D_s^+ -Zerfall wurde 1989 von der MARK3-Kollaboration [1, 23] ein ebensoniedriger Wert gefunden $(\Gamma_{PDG}(D_s^+ \to K^0 K^+) \approx 2.58 \%).$

Eine theoretische Untersuchung von KAMAL, XU und CZARNECKI [24] liefert für den Zerfall des D_s^+ -Mesons in K^0K^+ die Ergebnisse, die nach dem *BSW*- und dem *ISGW*-Modell erwartet werden. In Abhängigkeit von dem *Wilson-Koeffizienten* a_2 als freien Parameter erhalten die Autoren für das BSW-Modell

$$\Gamma(D_s^+ \to K^0 K^+) = 1.41\% \quad (a_2 = -0.5)$$

$$\Gamma(D_s^+ \to K^0 K^+) = 2.03\% \quad (a_2 = -0.6)$$

und für das ISGW-Modell

$$\Gamma(D_s^+ \to K^0 K^+) = 1.79 \% \quad (a_2 = -0.5)$$

$$\Gamma(D_s^+ \to K^0 K^+) = 2.57 \% \quad (a_2 = -0.6).$$

Das ISGW-Modell gibt ein ähnliches Verzweigungsverhältnis wie die Messung an; es beschreibt demnach die Zerfallsvorgänge des D_s^+ -Mesons (vermutlich) besser als das BSW-Modell.

66

8.1. DAS EREIGNIS

KB 69

Kapitel 8

Ereignisrekonstruktion

.

Wissenschaft, das ist entweder Physik oder Briefmarkensammeln.

[E. Rutherford]

An einem Beispiel (Experiment 5, Run 2259, Event 3953) wird die vollständige Rekonstruktion eines Events gezeigt. Das Ereignis weist viele Vorteile auf, da es

- nur sechs Spuren geladener Teilchen besitzt,
- · die alle gut rekonstruiert werden können,
- nur zwei Photonen beinhaltet,
- zwei Teilchenjets aufweist,
- in der Impulsbilanz und
- in der Energiebilanz nahezu ausgewogen ist sowie
- kaum Rauschen vorhanden ist.

8.1 Das Ereignis

In <u>Tabelle 8.1</u> sind die gemessenen Impulse und die einzelnen Teilchenlikelihoods des Events zusammengefaßt. In <u>Abbildung 8.1</u> wird der gemessene, differentielle Energieverlust dE/dx der einzelnen Teilchenbahnen dargestellt, der über die Abweichung von den Theoriekurven in die likelihood eingeht.

In <u>Abbildung 8.2</u> ist das Ereignis in zwei Projektionen dargestellt. In der (r,ϕ) -Darstellung sind die Daten aus der Vertexkammer, der Driftkammer und den Schauerzählern mit

Abbildung 8.1: Der differentielle Energieverlust dE/dx der Teilchenspuren.

KAPITEL 8. EREIGNISREKONSTRUKTION

Abbildung 8.2: Ereignisdisplay in der (r,ϕ) - und der (r,z)-Darstellung.

8.2. DIE REKONSTRUKTION

TRACKNO	CHARGE	PX	PY	PZ	Р
1	-1	0.48965	-0.42152	0.38157	0.75035
2	1	1.7125	-0.75741	0.56371	1.95553
3	1	-0.35198	0.60885	-0.71706	1.00437
4	1	-1.6412	0.10299	-0.65282	1.76927
5	- 1	1.2848	-0.46449	1.1110	1.76090
6	-1	-1.1376	1.1825	-1.0653	1.95635
8	0	-0.21963	-0.31398	0.56055	0.67900
9	0	-0.019046	-0.074781	-0.083911	0.11400
FRACKNO	PILH	KALH	PRLH	ELLH	MULH
1	0.95065	0	0	0	0.04415
2	0.22553	0.61493	0.15942	0	0
3	0.99320	0	0	0	0
4	0.94149	0.05601	0	0	0
5	0.75853	0.24091	0	0	0
6	0.81902	0.05661	0.11984	0	0
8	0	0	0	0.75	0.25
9	0	0	0	0.75	0.25

Tabelle 8.1: Impulse und likelihoods der detektierten Teilchen von dem EVENT 3953 RUN 2259 EXPERIM 5.

eingebunden. Die Ziffern an den Spuren sind mit den Teilchennummern aus <u>Tabelle 8.1</u> identisch.

Es ist deutlich zu erkennen, daß ein Teilchenpaar (Teilchen 3 und 6) einen Sekundärvertex bildet.

8.2 Die Rekonstruktion

8.2.1 Sekundärvertex

Die Teilchenspuren 3 und 6 bilden recht deutlich einen Sekundärvertex. Während Teilchen 3 eindeutig als Pion identifiziert werden kann, sind für Teilchen 6 drei Zuordnungen möglich. Die Kaonenidentifikation kann vernachlässigt werden, da kein neutrales Teilchen mit langer Lebensdauer in Pion und Kaon zerfällt. Die Protonidentifikation liefert für die invariante Masse des neutralen Teilchens einen Wert von 1.236 GeV, was einer λ^0 -Identifikation (Ruhmasse: 1.116 GeV) widerspricht. Die Identifikation von Teilchen 6 als Pion führt jedoch zu einem erfreulichen Ergebnis. Es ergibt sich eine invariante Masse von 0.496 GeV und führt damit zu dem klaren Nachweis ein K_{\bullet}^0 (Ruhmasse: 0.498 GeV).

70

R

71

KAPITEL 8. EREIGNISREKONSTRUKTION

8.2.2 Erster Jet

Das nachgewiesene K^0_s bildet zusammen mit Teilchen 4, das entweder ein Pion oder ein Kaon ist, einen Teilchenjet (die Teilchen fliegen ungefähr in dieselbe Richtung). Wählt man die Pionenidentifikation für Teilchen 4, so ergibt sich eine invariante Masse von 1.799 GeV, wodurch ein D^+ -Meson (Ruhmasse: 1.869 GeV) als Urheber unwahrscheinlich wird. Die Identifikation von Teilchen 4 als Kaon liefert jedoch eine invariante Masse von 1.957 GeV und deutet somit auf ein D^+_s -Meson (Ruhmasse: 1.969 GeV) hin. Durch Hinzunahme von Teilchen 9, einem Photon, das in dieselbe z-Hemisphäre abgestrahlt wird, erhöht sich die invariante Masse auf 2.163 GeV, was die Existenz eines D^{*+}_s (Ruhmasse: 2.11 GeV) vermuten läßt.

8.2.3 Zweiter Jet

Die Rekonstruktion der anderen Ereignishälfte gestaltet sich erheblich schwieriger. Da zum Ereignisausgleich noch ein \overline{c} -Quark erwartet wird, sollte zumindest eine Teilchenkombination auf $\overline{D^{(*)0}}$, $D^{(*)-}$ oder $D_s^{(*)-}$ hindeuten. Als weiterer Identifikationshinweis kann die fehlende Masse¹ herangezogen werden, da sie eventuell ein nicht nachgewiesenes Teilchen beschreibt.

Die Proton-Identifikation von Teilchen 2 kann vernachlässigt werden, da für ein nichtnachgewiesenes Baryon zuwenig fehlende Energie vorhanden ist. Die Myon-Identifikation von Teilchen 1 wird ebenfalls nicht betrachtet, weil eine zeitaufwendige Betrachtung des Neutrinos damit verbunden ist. Nur wenn der jetzt eingeschlagene Weg nicht zum Erfolg führt, muß das Myon mit untersucht werden.

In den <u>Tabellen 8.2</u> werden alle sinnvollen Teilchenkombinationen des zweiten Jets untersucht. Nur zwei Kombinationen führen zu einer Masse im Bereich der *D*-Ruhmasse (doppelt unterstrichen). Für beide Identifikationen lassen sich die Zerfälle über ein ρ -Meson (einfach unterstrichen) rekonstruieren, die nach der Zerfallstabelle (aus [1]) erlaubt sind. Dabei werden allerdings in einem Fall Teilchen 8 als ein π^0 und Teilchen 2 als ein π^+ angenommen, die die unwahrscheinlicheren Identifikationen sind. Dagegen weist der andere Fall den sehr seltenen Zerfall eines ρ^- in $\pi^-\gamma$ auf.

Durch die Hinzunahme des letzten detektierten Teilchens, das bisher noch nicht erfaßt ist, ergeben sich drei mögliche Endprodukte (eingerahmt), die als *D*-Resonanzen (bei den Massen 2.01 *GeV* oder 2.44 *GeV*) oder als *D*_s-Resonanz (bei einer Masse von 2.54 *GeV*) identifiziert werden können. Da alle drei möglichen Deutungen weder zu einer vollständigen Ausgleichung des Ereignisses (Impuls und Energie) führen, noch ein fehlendes Teilchen eindeutig bestätigen, kann zwischen ihnen keine Auswahl getroffen werden. Zum Ausgleich der auftretenden Quarks muß das fehlende Teilchen im Falle einer *D*-Resonanz ein K^0 , bei der D_s -Resonanz ein π^0 oder ein γ sein. Wurden bei diesem Ereignis jedoch tatsächlich

8.3. FÜR DEN NICHTPHYSIKER

					1	m123	m134	m234	m1234
					π ⁻ π ⁻ π ⁺ γ ₈	1.036	1.775	2.084	2.316
1	π^+_{2}	K_2^+	78	π_{8}^{0}	$\pi_1 \pi_5 \pi_2 \pi_8$	S.O.	1.619	1.910	2.139
π.	0.535	0.772	0.761	0.705	$\frac{\pi_1 \pi_5 \pi_2}{\pi_5 \pi_5 K_2^+ \gamma_8}$	1.258	1.881	2.200	2.440
π-	0.780	1.016	1.202	1.097	$\frac{\pi_1 \pi_5}{\pi_1 \pi_2 K_2^+ \pi_0^0}$	8.0.	1.730	2.033	2.268
K-	1.038	1.228	1.325	1.223	$\frac{\pi_1 \pi_5 \pi_2 \pi_8}{\pi^- K^- \pi^+ \gamma_8}$	1.280	1.775	2.212	2.452
78	1.525	1.621		-	$\frac{\pi_1 K_5}{\pi^- K_5^- \pi^+ \pi^0}$	s.o.	1.619	2.046	2.282
π8	1.376	1.476		-	$\left[\frac{\pi_1 K_5 \pi_2 R_8}{\pi_5 K_5 K_7^2 \gamma_8}\right]$	1.468	1.881	2.324	2.570
0					$\frac{\pi_1 K_2 K_2}{\pi_1 K_2 K_2 \pi_0}$	s.o.	1.730	2.163	2.405

Tabelle 8.2: Die invarianten Massen (in [GeV]) aller Teilchenpaarungen von Teilchen aus dem zweiten Jet (Nummer 1, 2, 5 und 8) sind hier aufgeführt. Die Endteilchen dürfen nur neutral oder einfach geladen sein. In der rechten Tabelle wurde die KAL-Bezeichnung der invarianten Massen gewählt. m_{123} steht für die Masse der Kombination der ersten drei genannten Teilchen (Nummern 1, 5 und 2).

alle Zerfallsteilchen gemessen, so muß der zweite Jet die D_s -Resonanz sein. In diesem Fall ergibt sich folgende Ereignisidentifizierung:

8.3 Für den Nichtphysiker

Die vollständige Rekonstruktion eines Ereignisses hat sehr viel mit einem Puzzlespiel gemeinsam. Nur selten gelingt es, wie bei dem gezeigten Beispiel, eine zufriedenstellendes Schlußbild zu erhalten. Zu Beginn steht man vor einem Scherbenhaufen von Teilchenspuren, der nach und nach zu größeren, zusammengesetzten Teilchen führt, bis schließlich

73

¹Die fehlende Energie ergibt in Kombination mit dem überschüssigen Impuls eines detektierten Ereignisses eine invariante Masse.

74

keine weitere Identifikation mehr möglich ist. Man mag vielleicht denken, daß solch eine Arbeit langweilig und trocken ist, doch kommt das ganz auf den Standpunkt an, wie die folgende, abschließende Geschichte darzulegen versucht.

Eine kurze Geschichte

R

Stellen Sie sich vor, Sie würden den Keller Ihres Hauses einmal gründlich aufräumen wollen. Dabei finden Sie in der hintersten Ecke einen Stapel Glasscherben, rote und blaue, grüne und gelbe. Dann erinnern Sie sich eventuell daran, daß Ihre Großeltern früher ein schönes Glasmosaikfenster in der Haustür hatten, vielleicht wissen Sie auch noch, daß es rund war, aber wie es aussah, ist in Ihrer Erinnerung nicht verblieben.

Als nächstes versuchen Sie dann, die Scherben wieder zusammenzusetzen, doch vielleicht sind garnicht alle Bruchstücke vorhanden, oder es sind noch andere Glasscherben dazwischengeraten!

Doch weil Ihr Großvater ein ordentlicher Mensch war, finden Sie bei seinen Unterlagen die Rechnung des Glasers über eine 20 cm² große, runde Haustürscheibe, die eingesetzt wurde, nachdem Ihr großer Bruder mit dem Fußball das Mosaikfenster zerstört hatte.

Wenn Sie nun großes Glück haben, passen Ihre Glasscherben nun genau auf eine 20 Quadratzentimeter große, runde Fläche, und Sie können frohen Mutes mit dem Zusammensetzen beginnen.

Sie sehen sich jetzt die Scherben genauer an, und legen immer erstmal zwei aneinander, um vielleicht Muster zu erkennen. Dann sehen Sie vielleicht ein Blütenblatt, das aus zwei gelben Steinen zusammengesetzt ist. Sie legen dann noch eine dritte und eine vierte Scherbe daran, und jetzt liegt eine fertige, gelbe Blüte vor Ihnen. Da womöglich noch andere Blüten auf dem ursprünglichen Bild waren, legen Sie dann vielleicht drei rote oder drei blaue Glasstücke zusammen, und mit der Zeit haben Sie ein paar Scherbenblüten rekonstruiert.

Jetzt legen Sie die restlichen Scherben so um die vorhandenen Blüten herum, daß kein Platz mehr freibleibt, dabei müssen Sie eventuell einsehen, daß manche Scherben nur zufällig wie Blüten aussehen, doch mit viel Geduld haben Sie am Ende, wenn sie nicht vorher das Puzzlespiel aufgegeben haben, das schöne, alte Mosaik vor sich liegen.

> Wenn du von allem dem, was diese Blätter füllt, mein Leser, nichts des Dankes Wert gefunden: So sei mir wenigstens für das verbunden, was ich zurück behielt.

> > [G. E. Lessing]

Anhang A

Transformationen zur Reflexionsbestimmung

Im Folgenden werden die in Kapitel 6 benutzten Transformationen noch einmal aufgeführt, sowie die Umkehrtransformationen und die Jacobideterminanten angegeben.

Definitionen, Kurzformen und Hilfen

Def.: sat
$$x := sin\{arctan x\}$$
 sath $x := sin\{arctan h x\}$
cat $x := cos\{arctan x\}$ cath $x := cos\{arctan h x\}$

Außerdem gilt:

 $\operatorname{sat} x = \frac{x}{\sqrt{1+x^2}}$ $\operatorname{cat} x = \frac{1}{\sqrt{1+x^2}}$

Die meisten der verwendeten Indizes beschreiben die verschiedenen Teilchen. Da die Reflexion eines Zweikörperzerfalls bestimmt werden soll, treten sowohl die *richtig interpretierten* als auch die *falsch interpretierten* Teilchen in den Formeln auf. Die Massen (m), Impulse (P), Energieen (E) und Zerfallswinkel (LV) tragen den jeweils notwendigen Index. Es wurden folgende Bezeichnungen gewählt:

- R : Das reale, in X und B zerfallende Teilchen.
- X : Das reale, gemessene Teilchen, das fehlidentifiziert werden wird.
- B : Das reale, gemessene Teilchen, das nicht fehlidentifiziert wird.
- A : Das durch Fehlidentifikation von X entstandene Teilchen.
- Q : Das aus A und B zusammengesetzte Teilchen; die Reflexion.

Zur Kenntlichmachung des Bezugssystems sind die Energieen (E) und die Impulse (P), die im Schwerpunktsystem gemessen werden, mit einem Strich (') gekennzeichnet. Ferner

ANHANG A. TRANSFORMATIONEN

ist es hilfreich, einige Konstanten bereitzustellen.

$$\begin{split} \mathbf{E}'_{X} &= \frac{\mathbf{m}_{R}^{2} + \mathbf{m}_{X}^{2} - \mathbf{m}_{B}^{2}}{2 \cdot \mathbf{m}_{R}} \\ |\mathbf{P}'_{X}| &= \sqrt{\mathbf{E}'_{X}{}^{2} - \mathbf{m}_{X}^{2}} \\ f_{1} &= \mathbf{E}'_{X} / (\mathbf{m}_{R} \cdot (\mathbf{m}_{A}^{2} - \mathbf{m}_{X}^{2})) \\ f_{2} &= \mathbf{P}'_{X} / (\mathbf{m}_{R} \cdot (\mathbf{m}_{A}^{2} - \mathbf{m}_{X}^{2})) \end{split}$$

Es ist zu beachten, daß die Vorzeichen von f_1 und f_2 davon abhängig sind, ob ein schwereres oder ein leichteres Teilchen fehlidentifiziert wird.

Transformation: $x_p \Leftrightarrow \beta$

Der skalierte Impuls x_p findet vorallem in der Peterson-Fragmentationsfunktion Verwendung, die relative Geschwindigkeit β tritt bei Lorentztransformationen auf. Zwischen beiden Variablen besteht ein direkter Zusammenhang.

$$\beta = \frac{v}{c} = \frac{P}{E} = \frac{1}{\sqrt{1 + m^2/P^2}}$$
$$\Rightarrow \beta = \left(1 + \frac{m^2}{P_{max}^2} \cdot x_p^{-2}\right)^{-1/2}$$
$$\Rightarrow x_p = \frac{m}{P_{max}} \cdot \beta \cdot \left(1 - \beta^2\right)^{-1/2}$$

Die Jacobideterminante entspricht der (partiellen) Ableitung:

$$\frac{\partial x_p}{\partial \beta} = \frac{m}{P_{max}} \cdot \left(1 - \beta^2\right)^{-3/2}$$

m : Masse des (zerfallenden) Teilchens Pmax : experimentbedingter, maximaler Impuls

$$P_{max} = \sqrt{E_{Beam}^2 - m^2}$$

Transformation $(LV_x, \beta) \Leftrightarrow (\overline{\mu}, \nu)$

Die Variable LV_x beschreibt den Cosinus des Winkels, der zwischen der Flugrichtung des Teilchens X und der ursprünglichen Flugrichtung des Schwerpunktes im Schwerpunktsystem besteht. β ist die relative Geschwindigkeit des Schwerpunktes (im Laborsystem).

Die vorgenommene Transformation entspricht dem Übergang von kartesischen Koordinaten (LV_x, β^{-1}) in ebene Polarkoordinaten $(\overline{\mu}, \nu)$.

$$\overline{\mu} = LV_x \cdot \beta \quad \nu = \sqrt{LV_x^2 + \beta^{-2}} \quad LV_x = \nu \cdot \operatorname{sat}\overline{\mu} \quad \beta = (\nu \cdot \operatorname{cat}\overline{\mu})^{-1}$$

12R

77

Die Jacobideterminante ergibt sich zu:

 $\left|\begin{array}{c} LV,\nu \quad \beta,\nu\\ LV,\overline{\mu} \quad \beta,\overline{\mu}\end{array}\right| = \left|\begin{array}{c} \operatorname{sat}\overline{\mu} \quad \overline{\nu^{2}\operatorname{cat}\overline{\mu}}\\ \frac{\nu\cdot\operatorname{cat}\overline{\mu}}{1+\overline{\mu^{2}}} \quad \frac{\operatorname{sat}\overline{\mu}}{\nu}\end{array}\right| = \frac{1}{\nu}$

Transformation: $\overline{\mu} \Leftrightarrow \mu$

Diese Transformation wirkt nur auf eine Variable und wurde eingeführt, um die beiden anderen Transformationen simpler gestalten zu können. Es treten hier erstmals die Konstanten f_1 und f_2 auf, wobei aber ihre Vorzeichen keine Rolle spielen. Diese Transformation ist bei der Fehlidentifikation sowohl eines leichteren als auch bei der eines schwereren Teilchens zu verwenden. In Kapitel 6 (...) waren beide Konstanten positiv, so daß dort auf die Betragsstriche verzichtet werden konnte. Die Variable $\overline{\mu}$ stellt eine einheitenlose Größe (Verhältniszahl) dar, die in eine Massengröße übergeführt wird.

$$\mu = \sqrt{|f_1 + f_2 \cdot \overline{\mu}|}$$
 $\overline{\mu} = \frac{\mu^2 - |f_1|}{|f_2|}$

Die Jacobideterminante lautet:

 $\left|\frac{\partial\overline{\mu}}{\partial\mu}\right| = \frac{-2\,\mu}{|f_2|}$

Transformation: $(m_R, \mu) \Leftrightarrow (m_Q, T)$

Die letzte Transformation führt schließlich auf die gewünschte Variable m_Q , die Masse der Reflexion. Es muß zwischen zwei Transformationen unterschieden werden. Für ein positives Vorzeichen der beiden Konstanten f_1 und f_2 werden erneut Polarkoordinaten eingeführt, für ein negatives Vorzeichen sind hyperbolische Koordinaten notwendig.

$f_1, f_2 > 0$, leichteres Originalteilchen

$$m_Q = \sqrt{m_R^2 + \mu^{-2}} \qquad T = m_R \cdot \mu \qquad \qquad m_R = m_Q \cdot \operatorname{sat} T \qquad \mu = \frac{1}{m_Q \cdot \operatorname{cat} T}$$

Die Jacobideterminante ergibt sich zu:

$$\begin{vmatrix} m_R, m_Q & \mu, m_Q \\ m_R, T & \mu, T \end{vmatrix} = \begin{vmatrix} \operatorname{sat} T & \frac{-1}{m_Q^2 \operatorname{cat} T} \\ \frac{m_Q \cdot \operatorname{cat} T}{1 + T^2} & \frac{\operatorname{sat} T}{m_Q} \end{vmatrix} = \frac{1}{m_Q}$$

76

 $f_1, f_2 < 0$, schwereres Originalteilchen

R

$$m_Q = \sqrt{m_R^2 - \mu^{-2}}$$
 $T = \frac{m_R}{\mu}$ $m_R = \sqrt{\frac{\sqrt{m_Q^4 + 4 \cdot T^2} + m_Q^2}{2}}$ $\mu = \frac{m_R(m_Q, T)}{T}$

Unter Verwendung von $m_R(m_Q, T)$ ergibt sich die Jacobideterminante zu:

$$\left|\begin{array}{c} m_{R}, m_{Q} \quad \mu, m_{Q} \\ m_{R}, m_{Q} \quad \mu, m_{T} \end{array}\right| = \left|\begin{array}{c} \frac{m_{Q} \cdot m_{R}}{C} & \frac{m_{Q} \cdot m_{R}}{T \cdot C} \\ \frac{-m_{R}}{T^{2}} & \left(\frac{-m_{R}}{T^{2}} + \frac{1}{m_{R} \cdot C}\right) \end{array}\right| = \frac{m_{R}^{2} m_{Q}}{C \cdot T^{2}}$$

mit $C = \sqrt{m_Q^4 + 4 \cdot T^2} = m_R^2 + \mu^{-2}$.

14

Eine gemeinsame Darstellung der Jacobideterminante für beide Transformationen ist ebenfalls möglich:

$$\left|\begin{array}{cc} m_R, m_Q & \mu, m_Q \\ m_R, T & \mu, T \end{array}\right| = \frac{m_Q}{T} \cdot \frac{\mu \cdot m_R}{\mu^{-2} + m_R^2}$$

Die Unterschiede bestehen nur in der abweichenden Substitution.

Anhang B

Monte-Carlo-Programmteile

MOPEK-Vorgaben

Für die Erzeugung der MC-Daten wird die originale Zerfallstabelle an mehreren Stellen variiert. Die folgende Auflistung zeigt die abweichend gewählten Zerfallsverhältnisse. Als Schwerpunktenergie wurde

 $E_{MCECMS} = 10.58 \, GeV$

gewählt, dabei werden nur Kontinuumsereignisse simuliert und keine $\Upsilon 4S$ -Resonanzzerfälle erzeugt.

1

1.

•
$$\Gamma(D_s^+ \to K^0 K^+) = 100\%$$

- $\Gamma(K^0 \rightarrow K^0_s) = 100\%$
- $\Gamma(K_s^0 \to \pi^+\pi^-) = 100\%$

Für zwei Datensätze (D und DO):

• $\Gamma(D^+ \to K^0 \pi^+) = 100 \%$

Für einen Datensatz (D2B) geändert auf:

$$- \Gamma(D^+ \to K^0 \pi^+) = 50 \%$$

- $\Gamma(D^+ \to K^0 \rho^+) = 50 \%$

Für zwei Datensätze (DO und D2B):

ÜBERSICHT DER MC-ERZEUGTEN TEILCHEN

81

R

Aus diesen Zerfallswerten gehen folgende Dateien hervor, in denen die gewünschten Zerfälle (alle D_s^+ - und die genannten *D*-Zerfälle) aus der Monte-Carlo-Erzeugung zusammengefaßt sind.

MC.MINI.DS

R

- MC.MINI2.DS
- MC.MINI3.DS
- MC.MINI4.DS
- MC.MINI5.DS
- MC.MINI.D
- MC.MINI.D2B
- MC.MINI.D0

Alle MC-Untersuchungen greifen nur auf diese Dateien zurück.

Übersicht der MC-erzeugten Teilchen

Am Auszug einer MOPEK-Protokolldatei (auf Seite 81) wird verdeutlicht, welche Teilchen erzeugt wurden und wie häufig sie, bei einem Datensample von 20000 *Events*, auftreten. Die jeweils vorangestellten Nummern geben eine programminterne Bezeichnung an, mit der die Teilchen später identifiziert werden können.

	CONTRACTOR FOR	20000 EVENTS	1			LEPTONS
PARTICLE	STATISTICS FOR		13	E -	0	570
ID NAME	DECAYING	STABLE	14 15	E+ NU.E	000	566
1 .D.	8	0	16	NU.E= MU-	0	21
2 .D=. 3 .U.	8	0	18	MU+ NU.MU	0	14
4 .U=. 5 .S.	6 7	0	20	NU.MU=	0	21 1248
6 .S=.	20000	0	,			BOSONS
8 .C=.	20000	0	26	GLUON	14237	0
SOM	40042	DIQUARKS		SUM	14237	106471
SUM		0				

67 P14 68 PIC 69 PI- 70 ETJ 71 ETJ 72 RHC 73 RHC 73 RHC 74 RHC 73 RHC 74 RHC 75 PHE 96 K+ 97 K- 98 KO 99 KO 100 KO 101 KO	+ - A PR. 00 0- EGA0 I - - - - - - - - - - - - -	0 46205 0 1956 8576 9649 8486 4375 400 0 21095 21137 42351	99821 0 99753 0 0 0 0 0 0 6849 6834 0 0	290 291 292 293 294 295 296 297 298 299 300 301 302	SIGC+- SIGC SIGC- SIGC0 SIGC0 SIGC0 SIGC0 SIGC0 SIGC0 SIGC0 SIGC0 SIGC0 SIGC0 SIGC0 SIGC0 SIGC0 SIGC0 SIGC0 SIGC SIGC+ SIGC-	70 87 72 65 77 1412 1444 10 8 6 2	000000000000000000000000000000000000000
67 P14 68 P10 69 P1- 70 ETJ 71 ETJ 71 ETJ 72 RHC 73 RHC 73 RHC 74 RHC 78 OHL 96 K+ 97 K- 98 K0 99 K0 100 K0 102 K*	- A PR. 00+ 00- EGA0 I S S L +	46205 0 3956 1974 8576 9649 8486 4375 400 0 21095 21137 42351	0 99753 0 0 0 0 0 0 6849 6834 0 0	291 292 293 294 295 296 297 298 299 300 301 302	SIGC SIGC SIGC0	87 72 65 77 1412 1444 10 8 6 2	000000000000000000000000000000000000000
68 PIC 69 PI- 70 ETJ 71 ETJ 72 RHC 73 RHC 74 RHC 78 OHI 79 PH: 96 K+ 98 K0 99 K0 100 K0 101 K0 102 K*	- A PR. 00+ 00- 2GA0 I S S L +	0 3956 1974 8576 9649 8486 4375 400 0 21095 21137 42351	99753 0 0 0 0 0 6849 6834 0 0	292 293 294 295 296 297 298 299 300 301 302	SIGC+ SIGC0 SIGC0 SIGC0= LAMC+ LAMC+ LAMC-= XIC'+ XIC'-= XIC'0 XIC'0=	72 65 77 1412 1444 10 8 6 2	000000000000000000000000000000000000000
69 PI- 70 ETJ 71 ETJ 72 RHC 73 RHC 74 RHC 78 OMH 96 K+ 97 K- 98 K0 99 K0 100 K0 101 K0 102 K*	- A PR. 0+ 00 0- EGA0 I S S L +	3956 1974 8576 9649 8486 4375 400 0 21095 21137 42351	0 0 0 0 6849 6834 0	293 294 295 296 297 298 299 300 301 302	SIGC-= SIGC0 SIGC0= LAMC+ LAMC-= XIC'+ XIC'-= XIC'0 XIC'0=	72 65 77 1412 1444 10 8 6 2	000000000000000000000000000000000000000
70 ETJ 71 ETJ 72 RHG 73 RHG 74 RHG 78 OMH 79 PH: 96 K+ 97 K- 98 K0 99 K0 100 K0 102 K*	A PR. 00+ 00- EGA0 I S S L +	3956 1974 8576 9649 8486 4375 400 0 21095 21137 42351	0 0 0 0 6849 6834 0	294 295 296 297 298 299 300 301 302	SIGC0 SIGC0= LAMC+ LAMC-= XIC'+ XIC'-= XIC'0 XIC'0=	55 77 1412 1444 10 8 6 2	
71 ETJ 72 RHC 73 RHC 74 RHC 78 OML 96 K+ 97 K- 98 KO 99 KO 100 KO 101 KO 102 K*	A PR. 0+ 00 0- EGA0 I S L L +	1974 8576 9649 8486 4375 400 0 21095 21137 42351	0 0 0 6849 6834 0 0	295 296 297 298 299 300 301 302	SIGC0= LAMC+ LAMC-= XIC'+ XIC'-= XIC'0 XIC'0=	77 1412 1444 10 8 6 2	00000000
72 RHC 73 RHC 74 RHC 78 OMI 79 PHI 96 K+ 97 K- 99 KO 99 KO 100 KO 101 KO 102 K*	0+ 00 0- EGA0 I S S L +	8576 9649 8486 4375 400 0 21095 21137 42351	0 0 0 6849 6834 0 0	296 297 298 299 300 301 302	LAMC+ LAMC-= XIC'+ XIC'-= XIC'0 XIC'0=	1412 1444 10 8 6 2	000000000000000000000000000000000000000
73 RHC 74 RHC 78 OHI 79 PHI 96 K+ 97 K- 98 KO 99 KO 100 KO 101 KO 102 K*	00 D- EGA0 I S L +	9649 8486 4375 400 0 21095 21137 42351	0 0 6849 6834 0 0	297 298 299 300 301 302	LAMC-= XIC'+ XIC'-= XIC'0 XIC'0=	1444 10 8 6 2	000000000000000000000000000000000000000
74 RH(78 OHI 79 PH: 96 K+ 97 K- 98 KO 99 KO 100 KO 101 KO 102 K*	0- EGA0 I	8486 4375 400 0 21095 21137 42351	0 0 6849 6834 0 0	298 299 300 301 302	XIC'+ XIC'-= XIC'0 XIC'0=	10 8 6 2	0000
78 OMI 79 PH 96 K+ 97 K- 98 K0 99 K0 100 K0 101 K0 102 K*	EGA0 I	4375 400 0 21095 21137 42351	0 0 6849 6834 0 0	299 300 301 302	XIC'-= XIC'0 XIC'0=	8 6 2	000
79 PH 96 K+ 97 K- 98 K0 99 K0 100 K0 101 K0 102 K*		400 0 21095 21137 42351	0 6849 6834 0 0	300 301 302	XIC'0=	6 2	0
96 K+ 97 K- 98 K0 99 K0 100 K0 101 K0 102 K*	- 	0 21095 21137 42351	6849 6834 0 0	301 302	IIC'0=	2	0
97 K- 98 K0 99 K0 100 K0 101 K0 102 K*	= S L	0 21095 21137 42351	6834 0 0	302	AIC OF	-	0
97 K- 98 K0 99 K0 100 K0 101 K0 102 K*	- 5 11 +	21095 21137 42351	0	302		105	- U
99 K0 99 K0 100 K0 101 K0 102 K*	= S L +	21137 42351	0		IIC+	104	0
99 K0 100 K0 101 K0 102 K*	S L	42351		303	XIC-=	67	0
100 K0 101 K0 102 K*	S L +	62351	0	304	XIC0	07	0
101 K0 102 K*	L +		110	305	XIC0=	94	0
102 K*	+	0	119	306	OMC 0	3	0
and the second se		10847	0	307	OMC 0=	2	0
103 K*	-	10914	0	314	DELT++	141	0
104 K*	0	3011	0	315	DELT	165	0
105 #*	0=	2910	0	316	DELT+	193	0
118 D+	Sec.	4189	0	317	DELT-=	182	0
110 D-		4205	0	310	DELTO	162	0
120 00	1	11790	0	310	DPLT0-	162	0
120 00		11720	0	319	DELIO	161	0
121 D0		2433	0	320	DELT-	146	0
122 DS	5+	2431	0	321	DELT+=	21	ő
123 DS	5-	2951	0	322	SIGM"+	31	ő
132 D*	• 0	5953	0	323	SIGM*-=	64	ő
133 D*	*0=	5881	0	324	SIGM*0	34	0
134 D*	* +	5988	0	325	SIGM*0=	28	0
135 D*	• _	5985	0	326	SIGH* -	23	0
136 DS	S*+	1817	0	327	SIGM*+=	27	0
137 DS	S*-	1811	0	328	XI*O	9	0
50	UM	260089	213376	329	=0°IX (14	0
				330	TT*-	11	0
				331	TT*+=	11	0
				33	OTOCT ++	152	0
				334	SIGC ++	143	0
				33.	SIGC	145	0
			BARYONS	334	5100**	147	ő
274 DB	OTON	0	2882	33	SIGC -=	121	0
275 00	OTON-	0	2954	330	5 SIGC*0	121	
276 ME	TTTDON	0	1487	33.	7 SIGC*0=	149	0
270 142	SUTRON	0	1415	331	B IIC*+	8	
277 NE	EUTRON	526	0	33	9 IIC*-=	12	0
278 LA	AMU	553	0	34	0 XIC*0	5	0
279 L	AMU =	130	0	34	1 XIC*0=	14	
280 SI	IGMA+	139	0	34	2 OMC*0	1	
281 SI	IGMA-=	123	0	34	3 OMC*0=	2	
282 SI	IGMA 0	111	0	35	2 OMEG-	8	
283 SI	IGMA0=	107	0	35	3 OMEG+=	8	
284 SI	IGMA-	76	0		- CITM	8180	873
285 ST	IGMA+=	72	0		- 30M	0100	PECTAL
286 X	IO	101	0	,		0	FACTADS
287 1	TOP	114	0		- SOM	U	
288 1	T -	50	0	1			
289 X	I+=	57	0		- CHARGED		22026
					- TOTAL		32983
					***********	************	

80

MC-Tabellen

Zusätzlich zu den beiden in Kapitel 7 aufgeführten Tabellen mit MC- Effizienzen wurden noch sechs weitere erstellt, die hier angegeben werden. Sie sind in drei Gruppen, je nach Schnitt im skalierten Impuls x_p , unterteilt und beinhalten die Variation von LV_K und lh_K .

Die Effizienz $\eta(LV_K)$ beschreibt die Nachweiswahrscheinlichkeit über alle LV_K-Werte kleiner oder gleich dem eingesetzten Wert. Dabei wird, wie bei allen anderen Effizienzwerten in dieser Arbeit, der $K^0 \rightarrow K_0^0 \rightarrow \pi^+\pi^-$ Zerfall nicht mit eingerechnet sondern pauschal der Erzeugungsrate der jeweiligen Mesonen mit zugeschlagen. Die MC-erzeugten Ereignisse sind ausschließlich Kontinuumszerfälle und somit treten keine B-Meson-Zerfälle auf.

Die Effizienz $\eta(lh_K)$ berücksichtigt alle Kaonen-likelihoods größer oder gleich dem eingesetzten Wert. Diese Tabellen finden zwar bei der Auswertung keine Anwendung, werden aber der Vollständigkeit halber mit angegeben. Ein Untersuchung von H. D. Schulz [19] zeigte, daß erst bei $lh_K \approx 0.3$ die Meßwerte von den MC-Daten ausreichend gut beschrieben werden.

Impulsbereich: $x_p > 0.4$

Abhängigkeit der Akzeptanz η von Abhängigkeit der Akzeptanz η von der Kaon-Likelihood bei $x_p \ge 0.4$ der Kaon-Flugrichtung LV_K bei $x_n \ge 0.4$

Kaon-LH	N	ΣΝ	η	dη	• • • •				
1.00 - 1.05	83	83	0.017	(2)	LVK	N	ΣΝ	η	$d\eta$
0.95 - 1.00	96	179	0.036	(3)	-1.00.9	44	44	0.009	(1)
0.90 - 0.95	40	219	0.045	(3)	-0.90.8	82	126	0.026	(2)
0.85 - 0.90	23	242	0.049	(3)	-0.80.7	74	200	0.041	(3)
0.80 - 0.85	24	266	0.054	(3)	-0.70.6	81	281	0.057	(3)
0.75 - 0.80	28	294	0.060	(3)	-0.60.5	83	364	0.074	(4)
0.70 - 0.75	23	317	0.064	(4)	-0.50.4	95	459	0.093	(4)
0.65 - 0.70	40	357	0.073	(4)	-0.40.3	99	558	0.113	(5)
0.60 - 0.65	41	398	0.081	(4)	-0.30.2	74	632	0.129	(5)
0.55 - 0.60	52	450	0.092	(4)	-0.20.1	88	720	0.146	(5)
0.50 - 0.55	67	517	0.105	(4)	-0.1 - 0.0	102	822	0.167	(5)
0.45 - 0.50	69	586	0.119	(5)	0.0 - 0.1	101	923	0.188	(6)
0.40 - 0.45	80	666	0.135	(5)	0.1 - 0.2	105	1028	0.209	(6)
0.35 - 0.40	99	765	0.156	(5)	0.2 - 0.3	75	1103	0.224	(6)
0.30 - 0.35	107	872	0.177	(5)	0.3 - 0.4	92	1195	0.236	(6)
0.25 - 0.30	131	1003	0.204	(6)	0.4 - 0.5	103	1298	0.264	(6)
0.20 - 0.25	130	1133	0.230	(6)	0.5 - 0.6	94	1392	0.283	(6)
0.15 - 0.20	170	1303	0.265	(6)	0.6 - 0.7	78	1470	0.299	(6)
0.10 - 0.15	147	1450	0.295	(6)	0.7 - 0.8	74	1544	0.314	(7)
0.05 - 0.10	140	1590	0.323	(7)	0.8 - 0.9	67	1611	0.328	(7)
0.00 - 0.05	70	1660	0.338	(7)	0.9 - 1.0	49	1660	0.338	(7)

14

83

IR

R

Impulsbereich: $x_p > 0.5$

•

٠

Abhängigkeit der Akzeptanz η von Abhängigkeit der Akzeptanz η von der Kaon-Likelihood bei $x_p \ge 0.5$ der Kaon-Flugrichtung LV_K bei $x_p \ge 0.5$

Kaon-IH	N	ΣΝ	n	dn	0				
1 00 1 05	79	72	0.015	(2)	LVK	N	ΣΝ	η	d
1.00 - 1.03	72	144	0.029	(2)	-1.00.9	39	39	0.008	()
0.95 - 1.00	25	170	0.036	(3)	-0.90.8	74	113	0.023	(
0.90 - 0.95	10	108	0.040	(3)	-0.80.7	63	176	0.036	(
0.85 - 0.90	19	216	0.044	(3)	-0.70.6	66	242	0.049	(
0.80 - 0.85	10	210	0.048	(3)	-0.60.5	69	311	0.063	(
0.75 - 0.80	19	250	0.040	(3)	-0.50.4	77	388	0.079	(
0.70 - 0.75	10	200	0.051	(3)	-0.40.3	79	467	0.095	(
0.65 - 0.70	33	210	0.055	(4)	-0.30.2	68	535	0.109	(
0.60 - 0.65	33	319	0.003	(4)	-0.20.1	76	611	0.124	(
0.55 - 0.60	40	424	0.086	(4)	-0.1 - 0.0	83	694	0.141	(
0.50 - 0.55	50	424	0.000	(4)	0.0 - 0.1	82	776	0.158	(
0.45 - 0.50	59	400	0.050	(5)	0.1 0.2	87	863	0.176	(
0.40 - 0.45	13	550	0.113	(5)	0.2 0.2	64	927	0.189	(
0.35 - 0.40	89	040	0.151	(5)	0.2 0.0	82	1009	0.205	(
0.30 - 0.35	95	140	0.150	(5)	0.4 0.5	85	1094	0.222	1
0.25 - 0.30	118	858	0.174	(5)	0.4 - 0.5	78	1172	0.238	1
0.20 - 0.25	106	964	0.190	(0)	0.5 - 0.0	63	1235	0.251	
0.15 - 0.20	137	1101	0.224	(0)	0.0 - 0.7	64	1200	0.264	
0.10 - 0.15	120	1221	0.248	(0)	0.7 - 0.8	54	1353	0.275	
0.05 - 0.10	116	1337	0.272	(0)	0.8 - 0.9	40	1205	0.284	
0.00 - 0.05	58	1395	0.284	(6)	0.9 - 1.0	42	1393	0.204	

IMPULSBEREICII: $X_P > 0.6$

R

85

Impulsbereich: $x_p > 0.6$

Abhängigkeit der Akzeptanz n von	Abhängigkeit der Akzeptanz η vor
der Kaon-Likelihood bei $x_p \ge 0.6$	der Kaon-Flugrichtung LVK
	bei $x_n > 0.6$

					wer -p -				
Kaon-LH	N	ΣΝ	η	dη			ST NT		da
1.00 - 1.05	43	43	0.009	(1)	LVK	N	ΣN	η	αη
0.95 - 1.00	44	87	0.018	(2)	-1.00.9	28	28	0.006	(1)
0.90 - 0.95	19	106	0.022	(2)	-0.90.8	42	70	0.014	(2)
0.85 - 0.90	11	117	0.024	(2)	-0.80.7	42	112	0.023	(2)
0.80 - 0.85	14	131	0.027	(2)	-0.70.6	45	157	0.032	(3)
0.75 - 0.80	12	143	0.029	(2)	-0.60.5	47	204	0.041	(3)
0.70 - 0.75	13	156	0.032	(2)	-0.50.4	59	263	0.053	(3
0.65 - 0.70	21	177	0.036	(3)	-0.40.3	50	313	0.064	(4)
0.60 - 0.65	20	197	0.040	(3)	-0.30.2	39	352	0.072	(4
0.55 - 0.60	35	232	0.047	(3)	-0.20.1	50	402	0.082	(4
0.50 0.55	46	278	0.057	(3)	-0.1 - 0.0	55	457	0.093	(4
0.30 - 0.50	10	320	0.065	(4)	0.0 - 0.1	55	512	0.104	(4
0.40 0.45	42	367	0.075	(4)	0.1 - 0.2	64	576	0.117	(5
0.40 - 0.40	72	440	0.080	(4)	0.2 - 0.3	54	630	0.128	(5
0.35 - 0.40	74	514	0.005	(4)	0.3 - 0.4	56	686	0.140	(5
0.30 - 0.35	79	502	0.100	(5)	0.4 - 0.5	57	743	0.151	(5
0.25 - 0.30	19	090	0.124	(5)	0.5 0.6	67	810	0.165	(5
0.20 - 0.25	00	038	0.154	(5)	0.6 0.7	48	858	0 174	(5
0.15 - 0.20	89	141	0.152	(5)	0.0 - 0.7	10	806	0 182	(6
0.10 - 0.15	85	832	0.169	(5)	0.7 - 0.8	30	090	0.102	(6
0.05 - 0.10	84	916	0.186	(6)	0.8 - 0.9	30	920	0.100	(0
0.00 - 0.05	39	955	0.194	(6)	0.9 - 1.0	29	955	0.194	(0

84

Anhang D

Reflexionsprogramm

'Peterson-Fragmentationsfunktion: Parameter CONST epsilon! = .2 CONST normfrag! = 1.6345 'Gausskurve des Reflexions-Verursachers CONST md! = 1.869 CONST mr0! = 1.869 CONST sigma! = .017 CONST pi! = 3.141593 'Masse Teilchen X CONST mpi! = .13957 CONST mx! = .13957 'Masse Teilchen A CONST mkp! = .49365 CONST ma! = .49365 'Masse Teilchen B CONST mkn! = .49767 CONST mb! = .49767 'Cuts im skalierten Impuls CONST xpmin! = .4 CONST xpmax! = .999 'Maximalimpuls fuer xp-Berechnung CONST prmax! = 5.15 CONST pqmax! = 5.15 'Cuts in LVx CONST lyxmin! = -1 CONST lyxmax! = 1 'Cuts in der Massenverteilung des Originalteilchens 'hier: Masse(R) +- 5 sigma CONST mrmin! = 1.784 'md-5sigma CONST mrmax! = 1.954 'md+5sigma 'Schrittweite und Schrittanzahl bei der Reflexion CONST mqstep! = .01

14.0

```
R
CONST mgstepanz = 10
CONST tstepanz = 10
CONST nustepanz = 10
DECLARE FUNCTION fragment! (xp!)
DECLARE FUNCTION gauss! (mr!)
DECLARE FUNCTION fakerate! (pr!)
DECLARE FUNCTION winkelvert! (lvx!)
DECLARE FUNCTION jaco.x.beta! (beta!, xp!)
DECLARE FUNCTION jaco.lvx.nu! (nu!)
DECLARE FUNCTION jaco.muq.mu! (mu!, f2!)
DECLARE FUNCTION jaco.mr.mg! (mg!)
DIM feld!(200)
alpha! = (ma! ^ 2 - mx! ~ 2)
'Energie von Teilchen X im Schwerpunktsystem:
exsps! = (mr0! ~ 2 + mx! ~ 2 - mb! ~ 2) / (2 * mr0!)
fi! = exsps! / (mr0! * alpha!)
'Impuls von Teilchen X im Schwerpunktsystem
pxsps! = SQR(exsps! ^ 2 - mx! ^ 2)
f2! = pxsps! / (mr0! * alpha!)
'Grenzen fuer beta (von Teilchen R mit xp-Cuts)
betamin! = 1 / SQR(1 + mr0! ^ 2 / prmax! ^ 2 / xpmin! ^ 2)
betamax! = 1 / SQR(1 + mr0! 2 / prmax! 2 / xpmax! 2)
mugmax! = betamax! * lvxmax!
muqmin! = betamin! * lvxmin!
mumax! = SQR(f1! + f2! * muqmax!)
mumin! = SQR(f1! + f2! * muqmin!)
tmax! = mrmax! * mumax!
tmin! = mrmin! * mumin!
tstep! = (tmax! - tmin!) / (tstepanz + 1)
'Grenzen fuer die Reflexions-Massen
mqmax! = SQR(mrmax! ^ 2 + 1 / mumin! ^ 2)
mqmin! = SQR(mrmin! ^ 2 + 1 / mumax! ^ 2)
'Es ist sinnvoller, selbstgewachlte Grenzen anzugeben, um
'einheitliche Diagrammgrenzen zu erhalten.
mqmin! = 1.895
mqmax! = 2.155
'Bestimmung der Masseneintraege
lauf = 0
FOR mq! = mqmin! TO mqmax! STEP mqstep!
sum! = 0
```

11.00

12

87

88

R

ANHANG D. REFLEXIONSPROGRAMM

```
FOR t! = tmin! TO tmax! STEP tstep!
  winkt! = ATH(t!)
  mu! = 1 / (mq! * COS(winkt!))
  mr! = mq! + SIN(winkt!)
  IF mr! < mrmin! OR mr! > mrmax! THEN GOTO 100
   IF mu! <= mumin! OR mu! > mumax! THEW GOTO 100
   muq! = (mu! ~ 2 - f1!) / f2!
   winkmug! = ATH(mug!)
   numin! = 1 / (betamax! * COS(winkmuq!))
   numax! = 1 / (betamin! * COS(winkmuq!))
   nustep! = (numax! - numin!) / nustepanz
' Als feste Schrittweite fuer nu sollte etwa 0.02 gewachlt werden.
   'nustep! = .02
    FOR nu! = numin! TO numax! STEP nustep!
'Zur Kontrolle der Cuts werden alle Groessen berechnet, die noetig sind.
'bisher bekannt: mq,mr,t,mu,muq,nu,winkt,winkmuq
    lvx! = nu! * SIN(winkmuq!)
    beta! = 1 / (nu! * COS(winkmuq!))
    gamma! = 1 / SQR(1 - beta! ~ 2)
    px! = gamma! * (beta! * exsps! + pxsps! * lvx!)
    ex! = SQR(px! ^ 2 + mx! ^ 2)
    er! = gamma! * mr!
    pr! = beta! * er!
    xp! = pr! / prmax!
     chi! = alpha! / ex! - 2
    IF lvx! < lvxmin! OR lvx! > lvxmax! THEN GOTO 200
    IF mr! < mrmin! OR mr! > mrmax! THEW GOTO 200
     IF xp! < xpmin! OR xp! > xpmax! THEW GOTO 200
     IF beta! < 0 OR beta! > 1 THEN GOTO 200
     fakt1! = jaco.x.beta!(beta!, xp!)
     fakt2! = jaco.lvx.nu!(nu!)
     fakt3! = jaco.muq.mu!(mu!, f2!)
     fakt4! = jaco.mr.mq!(mq!)
     fakt5! = fragment!(xp!)
     fakt6! = gauss!(mr!)
     fakt7! = fakerate!(px!)
     ni! = ABS(fakt1! + fakt2! + fakt3! + fakt4! + fakt5! + fakt6! + fakt7!)
     sum! = sum! + ni!
 200 NEXT
 100 NEXT
 sum! = sum! * nustep! * tstep!
  feld!(lauf) = sum!
 lauf = lauf + 1
 endsum! = endsum! + sum!
 NEXT
 '----- Werteausgabe -----
```

.

*

```
OPEN "e:\texte\refldat.dat" FOR OUTPUT AS #1
FOR index = 0 TO lauf - 1
 mass! = mgmin! + index * mgstep!
 WRITE #1, mass!, feld!(index)
MEXT
CLOSE #1
.----Definition der Funktionen-----
FUNCTION fakerate! (pr!)
IF px! < .7 THEN
   eta! = 0
ELSE
  IF px! < 1.1 THEW
     eta! = ( px! - 0.7 ) / 0.4
  ELSE.
     eta! = 1 - ( px! - 1.1 ) / 7
  END IF
END IF
fakerate! = eta!
END FUNCTION
FUNCTION fragment! (xp!)
 conti! = normfrag! / xp! * (1 - 1 / xp! - epsilon! / (1 - xp!)) ^ (-2)
 fragment! = conti!
 END FUNCTION
 FUNCTION gauss! (mr!)
 gauss! = 1 / (SQR(2 * pi!) * sigma!) * EXP(-(mr0! - mr!) ^ 2 / (2 * sigma! ^ 2))
 END FUNCTION
 FUNCTION jaco.lvx.nu! (nu!)
 jaco.lvx.nu! = 1 / nu!
 END FUNCTION
 FUNCTION jaco.mr.mq! (mq!)
 iaco.mr.mq! = 1 / mq!
 END FUNCTION
 FUNCTION jaco.muq.mu! (mu!, f2!)
 jaco.muq.mu! = 2 * mu! / f2!
 END FUNCTION
 FUNCTION jaco.x.beta! (beta!, xp!)
 jaco.x.beta! = md! / prmax! / (SQR(1 - beta! ~ 2)) ~ 3
 END FUNCTION
 FUNCTION winkelvert! (lvx!)
 winkelvert = .5
 END FUNCTION
```

89

IR

Literaturverzeichnis

- Particle Data Group. Review of particle properties. Physical Review D, Paticles and Fields, 45(11), June 1992.
- [2] Hans Günther Dosch, Herausgeber. Teilchen, Felder und Symmetrien. Verständliche Forschung. Spektrum der Wissenschaft, dritte Auflage, 1986.
- [3] D. Ebert. Eichtheorien. Nummer ISBN 3-527-27819-2. VCH Verlagsgesellschaft, Weinheim, 1989. TU-BS: PY-K-326.
- [4] F. Halzen und A.D. Martin. Quarks and Leptons. Nummer ISBN 0-471-88741-2. John Wiley and Sons, Inc., 1984. TU-BS: PY-K-309.
- [5] M. Bauer, B. Stech, und M. Wirbel. Exclusive Non-Leptonic Decays of D-, D_s- and B-Mesons. Z. Phys. C. Particles and Fields, S. 103 - 115, 1986.
- [6] N. Isgur, D. Scora, B. Grinstein, und M.B. Wise. Semileptonic B and D decays in the quark model. *Physical Review D*, S. 799 - 817, 1988.
- [7] Thorsten Oest. Untersuchung semileptonischer b-Zerfälle ... Doktorarbeit, Universität Hamburg, 1992.
- [8] DESY-Zahlen und Fakten, November 1992.
- [9] K.W. Edwards et al. The ARGUS Vertex Drift Chamber. Nucl. Instr. and Meth., (A 252):384-386, 1986.
- [10] E. Michel et al. The ARGUS Microvertex Drift Chamber. Nucl. Instr. and Meth., (A 283):554-552, 1989.
- [11] M. Danilov et al. The ARGUS Drift Chamber. Nucl. Instr. and Meth., (217):153-159, 1983.
- [12] R. Heller et al. The ARGUS Time-of-Flight System. Nucl. Instr. and Meth., (A 235):26, 1985.
- [13] A. Drescher et al. Calibration and Monitoring of the ARGUS Shower Counters. Nucl. Instr. and Meth., (A 249):277, 1986.
 - 90

- [14] A.V. Arefiev et al. The ARGUS Muon Chamber. Instr. Exp. Tech., (29):333, 1986.
- [15] ARGUS. Kinematical Analysis Language. Technical report, ARGUS, 1989.
- [16] E. Bassler. GEP Graphical Editor Programm. Technical report, DESY, 1992.
- [17] Jan Tamminga. Analyse des Zerfalls $D \rightarrow \overline{K}^0 \pi^+ \pi^-$. Diplomarbeit, Fakultät für Physik, Universität Karlsruhe (TH), Oktober 1991.
- [18] A.H. Walenta et al. Measurement of the Ionization loss in the Region of Relativistic Rise for Noble and Molecular Gases. Nucl. Instr. and Meth., (161):45, 1979.
- [19] A. Adam und H.D. Schulz. $D^+_* \to \overline{K}^0 K^+$. Vortrag Stade, 1987.
- [20] mündliche Mitteilung H. Schröder.
- [21] Manfred Paulini. Untersuchung und Erzeugung von D⁺-Mesonen ... Doktorarbeit, Friedrich-Alexander-Universität Erlangen-Nürnberg, April 1993.
- [22] H. Cronström und T. Stenquist. $D^0 \rightarrow \Phi K^0$. Technical report, August 1987.
- [23] Adler et al. $D_s^+ \rightarrow K^+ K^{(*)0}$. Physical Review Letters, 63:1211, 1989.
- [24] A.N. Kamal, Q.P. Xu, und A. Czarnecki. Cabibbo-angle-favored two-body hadronic decays of D⁺_s. Technical report, Theoretical Physics Institute and Department of Physics, Edmonton, Alberta T6G 2J1, 1992.
- [25] K. Bethge und U.E. Schröder. Elementarteilchen und ihre Wechselwirkungen. Nummer ISBN 3-534-08750-X. Wissenschaftliche Buchgesellschaft Darmstadt, zweite Auflage, 1991. TU-BS: PY-K-344.
- [26] Otto Nachtmann. Phänomene und Konzepte der Elementarteilchenphysik. Nummer ISBN 3-528-08926-1. Friedr. Vieweg und Sohn, Braunschweig/Wiesbaden, erste Auflage, 1986. TU-BS: PY-K-343.
- [27] Donald W. Perkins. Hochenergiephysik. Nummer ISBN: 3-89319-236-0. Addison-Wesley, 1990. TU-BS: PY-K-345.
- [28] I.N. Bronstein und K.A. Semendjajew. Taschenbuch der Mathematik. Verlag Harri Deutsch, Thun, 23 Auflage, 1987.

10.0

1.5

[29] Helmut Kopka. IMTEX, Eine Einführung. Addison-Wesley, Bonn, München, 1991.

IR

ARGUS-Kollaboration

The ARGUS Collaboration

H. Albrecht, H. Ehrlichmann, T. Hamacher, R. P. Hofmann, T. Kirchhoff, R. Mankel¹, A. Nau, S. Nowak¹, H. Schröder, H. D. Schulz, M. Walter¹, R. Wurth DESY, Hamburg, Germany

C. Hast, H. Kapitza, H. Kolanoski, A. Kosche, A. Lange, A. Lindner, M. Schieber, T. Siegmund, B. Spaan, H. Thurn, D. Töpfer, D. Wegener Institut für Physik³, Universität Dortmund, Germany

P. Eckstein, R. Schwierz, R. Waldi Institut für Kern- und Teilchenphysik³, Technische Universität Dresden, Germany

> M. Paulini, K. Reim, H. Wegener Physikalisches Institut⁴, Universität Erlangen-Nürnberg, Germany

R. Eckmann, R. Mundt, T. Oest, R. Reiner, W. Schmidt-Parzefall II. Institut für Experimentalphysik, Universität Hamburg, Germany

J. Stiewe, S. Werner Institut für Hochenergiephysik⁵, Universität Heidelberg, Germany

K. Ehret, W. Hofmann, A. Hüpper, S. Khan, K. T. Knöpfle, M. Seeger, J. Spengler Max-Planck-Institut für Kernphysik, Heidelberg, Germany

D. I. Britton⁶, C. E. K. Charlesworth⁷, K. W. Edwards⁸, E. R. F. Hyatt⁸, P. Krieger⁷,
 D. B. MacFarlane⁶, P. M. Patel⁶, J. D. Prentice⁷, P. R. B. Saull⁶, K. Tzamariudaki⁶,
 R. G. Van de Water⁷, T.-S. Yoon⁷
 Institute of Particle Physics⁹, Canada

C. Frankl, D. Reßing, M. Schmidtler, M. Schneider, K. R. Schubert, S. Weseler Institut für Experimentelle Kemphysik¹⁰, Universität Karlsruhe, Germany

G. Kernel, P. Križan, E. Križnič, T. Podobnik, T. Živko Institut J. Stefan and Oddelek za fiziko¹¹, Univerza v Ljubljani, Ljubljana, Slovenia

V. Balagura, I. Belyaev, S. Chechelnitsky, M. Danilov, A. Droutskoy, Yu. Gershtein, A. Golutvin, I. Korolko, G. Kostina. D. Litvintsev, V. Lubimov, P. Pakhlov, S. Semenov. A. Snizhko. I. Tichomirov, Yu. Zaitsev Institute of Theoretical and Experimental Physics, Moscow. Russia

- ³ Supported by the German Bundesministerium für Forschung und Technologie, under contract number 055DD11P.
- ⁴ Supported by the German Bundesministerium für Forschung und Technologie, under contract number 054ER12P.

⁹ Supported by the Natural Sciences and Engineering Research Council, Canada.

Danksagung

Danksagung

12R

93

Zuerst und ganz besonders danken möchte ich Herrn Prof. Litterst, der mir die Durchführung einer Diplomarbeit ermöglichte, die für die Physik an der TU Braunschweig eher *exotisch* zu nennen ist.

Während meines zehnmonatigen Hamburgaufenthalts erlaubte mir mein dortiger Betreuer, Herr Dr. Schröder, eine sehr selbständige Arbeitsweise, die durch die Zimmer-6-Besatzung (Thomas, Roland, Maulwurf Thorsten und König Andreas) mit mehreren unvergeßlichen Aktionen, positiver wie negativer Art, aufgelockert wurde. Danken möchte ich neben diesen auch Manfred, dessen Doktorarbeit [21] mir in vielen Fragen weiterhalf.

Den nachhaltigsten Eindruck während des gesamten Studiums haben jedoch die III.4ler bei mir hinterlassen. Eine bessere Atmosphäre konnte ich mir kaum wünschen. Es verbleibt der Dank an meinen Kommilitonen Peter und, natürlich, an meine Eltern.

92

¹ DESY, IfH Zeuthen

² Supported by the German Bundesministerium für Forschung und Technologie, under contract number 054D051P.

⁸ Supported by the German Bundesministerium für Forschung und Technologie, under contract number 055HD21P.

⁶ McGill University, Montreal, Quebec, Canada.

⁷ University of Toronto, Toronto, Ontario, Canada.

⁸ Carleton University, Ottawa, Ontario, Canada,

¹⁰ Supported by the German Bundesministerium für Forschung und Technologie, under contract number 055KA11P

¹¹ Supported by the Department of Science and Technology of the Republic of Slovenia and the Internationalas Büro KIA. Jülich.

ż

\$