Interner Bericht DESY F21-71/3 Juli 1971

5

DESY-Bibliothek 2 5. AUG. 1971

Koinzidenzmessungen zur Untersuchung der Reaktion ep $\rightarrow ep\pi^{\circ}$ beim Impulsübertrag q² \simeq 1 GeV² im Massenbereich zwischen 1.136 und 1.316 GeV

von

Jürgen May

Interner Bericht DESY F21-71/3 Juli 1971

DEST-Bibliot

Koinzidenzmessungen zur Untersuchung der Reaktion ep $\rightarrow ep\pi^{\circ}$ beim Impulsübertrag q² \approx 1 GeV² im Massenbereich zwischen 1.136 und 1.316 GeV

von

Jürgen May

.

Koinzidenzmessungen zur Untersuchung der Reaktion ep \rightarrow ep π° beim Impulsübertrag q² \simeq 1 GeV² im Massenbereich zwischen 1.136 und 1.316 GeV

von

Jürgen May

Diese Arbeit entstand als Dissertation im Rahmen eines Experimentes der Gruppe F21 in Zusammenarbeit mit einer Gruppe vom Collège de France aus Paris.

INHALTSVERZEICHNIS

ZUSAMMENFASSUNG

1.	EINL	EITUNG	1
	1.1	Kinematik	3
	1.2	Wirkungsquerschnitt	5
	1.3	Multipole	8
2.	APPA	RATUR	9
	2.1	Primärstrahl	9
	2.2	Ladungsmessung	10
	2.3	Target	10
	2.4	Elektronenspektrometer	12
	1	Allgemeines zur Optik	12
	2	Aufbau	13
	3	Hodoskope	15
	4	Triggerzähler	18
	5	Teilchendefinierende Zähler	18
	2.5	Protonenspektrometer	21
	1	Magnet	21
	2	Hodoskope	21
3.	INFO	RMATIONSFLUSS	24
	3.1	Informationsmenge	24
	3.2	Logik des Elektronenspektrometers	25
	3.3	Protonenlogik	26
	3.4	Computer	28
4.	MESS	UNGEN	29
	4.1	Testmessungen	29
	1	Akzeptanz und Spaltverluste	29
	2	Elast. Wirkungsquerschnitt (Einarm)	31
	3	Elast. Koinzidenzmessung	31
	4	Folgerungen	31
	4.2	Durchführung der inelast. Messungen	32

5.	AUSWERTUNG		34
	5.1	Übersicht	34
	5.2	Querschnittsberechnung	35
	5.3	Datenreduktion	37
	1	Untergrund	37
	2	Reduktionsverfahren A	38
	3	Identische Analyse	40
6.	KORRI	EKTUREN UND FEHLER	42
	6.1	Strahlungsquerschnitt	42
	6.2	Weitwinkelbremsstrahlung	42
	6.3	Mehrdeutige Elektronenereignisse	43
	6.4	weitere Korrekturen	44
7.	ERGEBNISSE		47
	7.1	Wirkungsquerschnitte	47
	7.2	Winkelverteilungen	47
	7.3	D-Wellen	48
	7.4	Totaler Querschnitt	48
	7.5	Multipole	48
8.	DISK	USSION UND VERGLEICH DER ERGEBNISSE	51
	8.1	Vergleich bei gleichem Impulsübertrag	51
	8.2	Vergleich mit Messungen bei anderen	
		Impulsüberträgen	52
	8.3	Übergangsformfaktor	53
	8.4	Vergleich mit Modellen	54
	ANHANG		
	Δ 1	Taballan dar Wirkungequarechnitta	56
	n i	reperten der artkangoddersenniere	

A2	Erzeug. elast. Monte-Carlo-Ereignisse	60
A3	Produktion inelast. Ereignisse	64
A4	Gray - Code	67
A5	Zur Lichtsammlung des Čerenkovzählers	67

LITERATURVERZEICHNIS

DANKSAGUNG

ZUSAMMENFASSUNG

Die Erzeugung von π° -Mesonen durch Elektron-Proton-Streuung wurde am Deutschen Elektronen Synchrotron im Massenbereich 1.136 $\stackrel{<}{-}$ W $\stackrel{<}{-}$ 1.316 GeV bei Impulsüberträgen q² $\stackrel{\sim}{-}$ 1 GeV² und Polarisation des virtuellen Photons von ϵ^{\sim} 0.94 untersucht. Der Nachweis der auslaufenden geladenen Teilchen der Reaktion ep \rightarrow ep π° erfolgte in Koinzidenz durch Messen jeweils der Impulse und Winkel, sowie durch Identifikation des Elektrons mit diskriminierenden Zählern und des Protons durch seine Flugzeit.

Zur Bestimmung der Koeffizienten der π° -Winkelverteilung im hadronischen Schwerpunktssystem für S- und P-Wellen wurden differentielle π° -Produktionsquerschnitte ermittelt. Die hierzu notwendigen Strahlungskorrekturen ergaben sich aus einer Monte-Carlo Simulation des Experimentes. Die Winkelverteilung weist deutlich die Interferenz von longitudinalen mit transversalen Amplituden, sowie diejenige von S- mit P-Wellen aus.

Die Ergebnisse einer Multipolanalyse mit der Annahme von M_{1+} -Dominanz liefern neben M_{1+} endliche Beiträge von S_{1+} , E_{0+} und S_{0+} sowie für W < 1.236 GeV auch solche von M_{1-} , in recht guter Übereinstimmung mit dispersionstheoretischen Modellen. Der magnetische Übergangsformfaktor $G_M^{\times}(q^2 = 0.97)$ stimmt für W = 1.236 GeV mit anderen Messungen überein.

÷

3

.

EINLEITUNG

Prozesse, bei denen Elektronen an Protonen gestreut werden, können in erster Bornscher Näherung durch den Austausch eines raumartigen Photons zwischen Elektronen- und Protonenvertex beschrieben werden. In "Ein-Photonaustausch"-Näherung kann so die Elektroproduktion als Erweiterung der Photoproduktion angesehen werden, da

- für das Quadrat des Viererimpulses q² des ausgetauschten Photons gilt q²≠0 (virtuelles Photon),
- das elektromagnetische Feld, durch das das Photon beschrieben wird wegen der Kopplung an die Elektronenladung auch skalare bzw. longitudinale Komponenten hat.

Eine weitere Eigenschaft des virtuellen Photons ist seine Polarisation. Diese Polarisation, wie auch die kinematischen Parameter des Photons sind durch die Elektronenkinematik bestimmt. Daher kömnen sie leicht variiert werden, um die Abhängigkeit des Wirkungsquerschnittes von der Photonenkinematik zu untersuchen. So kann beispielsweise durch Variation von q² Information über die Ladungs- und Stromverteilung am Hadronenvertex erhalten werden (Formfaktoren).

Während bisher schon eine große Zahl von Experimenten durchgeführt wurde, bei denen über den Nachweis des gestreuten Elektrons alleine (Einarm) der totale Absorptionsquerschnitt für virtuelle Photonen gemessen wurde, gibt es nur wenige Experimente, bei denen in Koinzidenz zum Elektron auch ein Hadron nachgewiesen wurde. Solche Experimente sind unerlässlich, wenn Aussagen über die Beteiligung einzelner Kanäle und Drehimpulszustände an der Elektroproduktion gemacht werden sollen.

Der Grund für die kleine Zahl von Koinzidenzexperimenten liegt neben dem grösseren Aufwand an experimentellen Schwierigkeiten. Diese treten bei begrenzter Meßzeit und kleiner Nachweiswahrscheinlichkeit für Koinzidenzen vor allem auf wegen des mit der Primärintensität anwachsenden Verhältnisses von unkorrelierten zu korrelierten Koinzidenzen, was meist auf große Einzelraten im Hadronenspektrometer zurückzuführen ist.

Zur π° - Produktion im Bereich der ersten Resonanz wurden zwar schon einige Experimente durchgeführt (EPKO), bei denen zum gestreuten Elektron das auslaufende Proton in Koinzidenz nachgewiesen wurde. Bei keinem dieser Experimente reichte jedoch die gemessene Information aus, die Koeffizienten der π° -Winkelverteilung für S- und P-Wellen vollständig zu bestimmen. Entweder war der vermessene Winkelbereich zu klein oder die Winkel im Schwerpunktssystem (CMS) der Hadronen konnten wegen fehlender Impulsmessung des Protons nicht eindeutig bestimmt werden.

Bei NINA in Daresbury wurden von einer Lancaster-Manchester-Kollaboration (HELL) Koinzidenzexperimente durchgeführt, bei denen, ähnlich dem zu beschreibenden, Winkelverteilungen des π° gemessen wurden. Die Auswertung der Daten ist jedoch noch nicht völlständig abgeschlossen.

Im folgenden wird ein Experiment beschrieben, das in Zusammenarbeit mit einer Gruppe vom Collège de France von der DESY-Gruppe F 21 beim Deutschen Elektronen Synchrotron Hamburg durchgeführt wurde. Ziel dieses Experimentes war es, die π^{o} -Winkelverteilung der Reaktion ep \rightarrow ep Π^{o} im Bereich der Δ_{33} (1236)-Resonanz bei einem Impulsübertrag von q² = 25f⁻² = 0.97 GeV² zu bestimmen, um Aussagen über einige am Prozeß beteiligte Multipole machen zu können.

Ergebnisse dieses Experiments wurden bereits veröffentlicht (ALB 2).

Ergebnisse einer Messung bei kleinerem Impulsübertrag $q^2 = 0.58 \text{ GeV}^2$ (ALB 1) wurden in der Dissertation von J. Gayler (GAYL) diskutiert.

⁺⁾Durch eine fehlerhafte Behandlung der mehrdeutigen Ereignisse im Protonenspektrometer unterscheiden sich die bei (ALB 2) angegebenen Werte der Koeffizienten der π° -Winkelverteilung innerhalb der angegebenen Fehler von denen der vorliegenden Arbeit. Der Unterschied im Wert von $G_{M}^{*}(q^{2} \simeq 1 \text{ GeV}^{2})$ (vgl. Abb.8.2) beruht auf einem Rechenfehler in (ALB 2).

1.1 Kinematik

Ein einlaufendes Elektron mit Viererimpuls p_1 werde am Targetproton p_2 inelastisch gestreut, vgl. Abb. 1.1. Werden bei gegebenem p_1 die Viererimpulse des auslaufenden Teilchens p_4 und eines weiteren p_5 gemessen, so ist auch derjenige des nicht nachgewiesenen Systems p_6 bekannt, insbesondere also auch seine Masse M_6 wegen $M_6^2 = p_6^2$ (Missing Mass). Wird Teilchen 4 etwa als Elektron identifiziert (Čerenkov - oder Schauerzähler), so ist p_4 durch seine räumlichen Komponenten \vec{p}_4 bestimmt und der Impulsübertrag $q'= p_1 - p_4$ auf das Proton ist durch $q'^2 = (p_1 - p_4)^2 = 2m^2 - 2p_1p_4$

durch q'² = $(p_1 - p_4)^2 = 2m^2 - 2p_1p_4$ $\approx -2E_1E_4$ (1- $\cos \Theta_4$) $\approx -q^2$ gegeben. Hierbei wurde die Metrik p² = $E - \vec{p}^2$ verwendet und die Elektronenmasse m wie im folgenden vernachlässigt (Ausnahme: Strahlungseffekte). Der Impulsübertrag q' und p₂ bilden ein System, dem die Masse W mit

$$W^2 = p_3^2 = (p_5 + p_6)^2 = (q + p_2)^2$$

= $-q^2 + M^2 + 2M(E_1 - E_4)$

zugeschrieben werden kann. M ist hier die Masse des Protons.

Soll aus dem Streuexperiment Information über einen bestimmten Produktionskanal gewonnen werden, etwa wie im vorliegenden Fall über ep \rightarrow ep π° , so muß das System P₅, P₆ als p π° identifiziert, d.h. von den anderen möglichen Reaktionen ep \rightarrow eN(k π), (N: Nukleon, k:Zahl der erzeugten Pionen) abgetrennt werden. Wird mit \vec{P}_5 der Dreierimpuls eines positiv geladenen Teilchens der unbekannten Masse M₅ (M₅ = M, bzw. m_{π}) mit Winkel Θ_{35} gegen \vec{q} nachgewiesen, so ist es nicht immer möglich, mit Hilfe der Zwangsbedingung (Missing Mass)

$$M_{6}^{2} = (p_{3} - p_{5})^{2} = W^{2} + M_{5}^{2} - 2E_{3}E_{5} + 2 |\vec{p}_{3}| |\vec{p}_{5}| \cos \theta_{35}$$
(1.1)
$$\stackrel{?}{=} m_{\pi}^{2} \phi$$

und $M_5 = M$ den $p\pi^{\circ}$ -Kanal eindeutig abzutrennen, da die Laborimpulse und -winkel des π^+ aus der Reaktion ep $\rightarrow en\pi^+$ für gegebenes W gleich denen des

Protons aus der Reaktion ep $\rightarrow ep\pi^{0}$ sein können (s. Abb. 1.3). Die Abtrennung der π^{+} – und der mehrfach π -Produktion ist jedoch immer dann möglich, wenn Teilchen 5 als Proton identifiziert und $M_{6}^{2} = m_{\pi}^{2}$ apparativ von $M_{6}^{2} \geq (2m_{\pi})^{2}$ abgetrennt werden kann. Zur Identifikation des Protons eignet sich im interessierenden kinematischen Bereich die Messung der Flugzeit (\div TOF) der Teilchen.

Die Messung des Protonenimpulses empfiehlt sich nicht nur wegen der genannten Möglichkeiten, verschiedene Prozesse von einander zu trennen, sondern ist zur Ermittelung der Winkelverteilung im Schwerpunktssystem der Hadronen nötig, da die Laborwinkel Θ_5 des Protons wegen $\beta_3/\beta_5^* > 1$ und sin (0) = sin (π) = 0 aus Stetigkeitsgründen nach

$$tg_{5} = \frac{\sin \Theta_{6}^{*}}{\gamma_{3}(\beta_{3}/\beta_{5} - \cos\Theta_{6}^{*})}$$

doppelt belegt sind. Mit $\beta_i = |\vec{p}_i|/E_i$, $\gamma_3 = E_3/W$ und $E_3^2 = \vec{q}^2 + W^2$. Das Symbol

* bezeichnet die kinematischen Größen im CMS. Die Polar- und Azimutalwinkel des Pions werden in Abb. 1.2 definiert.

Abb. 1.3 zeigt diese Doppelbelegung bei $E_1 = 4.236 \text{ GeV} \text{ und } \Theta_4 = 15^{\circ}$. Über dem Winkel $\Theta_3 + \Theta_{35}$ gegen den Primärstrahl werden dort die Laborimpulse eines Hadrons aus einigen Reaktionen zu verschiedenem W in der <u>Streuebene</u> gezeigt. Die Kurven sind durch die polaren Schwerpunktswinkel parametrisiert (für ep \rightarrow ep+2 π bzw. ep \rightarrow en π^+ in 10°-Schritten, gekennzeichnet durch die Punkte auf den Kurven). Die offenen Kreise entsprechen Vorwärts-, die großen Punkte Rückwärtswinkeln (180° im CMS).

Die Pfeile an der Abszisse zeigen die Stełlungen des Protonenspektrometers an, an denen Messungen durchgeführt wurden s.u.. Um sich einen Eindruck von der Kinematik außerhalb der Streuebene zu verschaffen, denke man sich die Kurven einzeln um eine durch die CMS-Winkel 0[°] und 180[°] laufende Achse gedreht.

.

· •

Abb, 13Impuls - Winkeldiagramm in der Streuebene für die in den Reaktionen
 $ep
ightarrow ep \pi^{0}$, $ep
ightarrow en \pi^{+}$, $ep
ightarrow ep \pi \pi$ unterstrichenen Teilchen. Die Kurven
sind parametrisiert durch die Schwerpunktswinkel (zeigt die Vor-
wärtsrichtung an).

Zusätzlich wurde die Lage der Strahlungspeaks der Weitwinkelbremsstrahlung (WAB) eingezeichnet, d.h. für die Reaktion ep \rightarrow ep γ , wobei das erzeugte Photon entweder in \vec{p}_1 - oder in \vec{p}_4 -Richtung emmitiert wird. Die invariante Masse W ist hier durch $W^2 = (p_5 + p_{\gamma})^2$ gegeben. Der Sekundärpeak liegt in der Impuls-Winkelebene des Protons fest. Der Lage der Peaks ist zu entnehmen, daß selbst beim Spektrometerwinkel 50[°] die WAB-Anteile in der Akzeptanz klein sein werden, da die Peakbreite ca. (m/E)^{1/2} = $\overline{\Theta}_{\gamma}$ beträgt (vgl. Kap. 7.2).

1.2 Wirkungsquerschnitt

In der Näherung, daß zwischen Leptonen und Hadronen nur ein Photon ausgetauscht wird, läßt sich entsprechend zur Photoproduktion der Wirkungsquerschnitt für die Reaktion eN \rightarrow eN π als solcher für die Absorption virtueller Photonen auffassen, die sich durch einen Polarisationstensor ρ_{uv} charakterisieren lassen.

Werden mit $\langle |\mathbf{j}_{\mu}| \rangle$, $\langle |\mathbf{J}^{\mu}| \rangle$ die Matrixelemente des elektromgn. Übergangsstromes der Leptonen bzw. der Hadronen bezeichnet, so erhält man (GOUR) für das Matrixelement des Graphen in Abb. 1.1

$$M_{fi} = \langle p_4 | j_{\mu} | p_1 \rangle \frac{1}{q^2} \langle p_5 p_6 | J^{\mu} | p_2 \rangle$$

und nach Quadrieren und Summieren über die beteiligten Spin-Zustände

$$|M_{fi}|^{2} = \frac{1}{q^{4}} \sum_{\text{Spins}} j_{\mu}^{*} j_{\nu} J^{\mu} J^{\nu} = \frac{1}{q^{4}} L_{\mu\nu} T^{\mu\nu}$$
(1.21)

Der Leptonentensor L_{µν} kann nun zusammen mit dem Quadrat des Photonenpropagators als Produkt des Polarisationstensors $\rho_{µν}$ mit einem den Photonenfluß bestimmenden Faktor interpretiert werden (DOMB).

$$\frac{L_{\mu\nu}}{q^4} = \frac{\rho_{\mu\nu}}{(1-\varepsilon)q^2} \, .$$

Der transversale Polarisationsparameter & ist durch

$$\varepsilon = (1 + 2 \frac{\hat{q}^2}{q^2} tg^2 \Theta_4/2)^{-1}$$

gegeben (HAND).

Ist der Elektronenstrahl unpolarisiert und wird auch keine Polarisation des gestreuten Elektrons beobachtet, so ist der nach Spinsummation und Mittelung resultierende Tensor $\rho_{\mu\nu}$ demjenigen äquivalent, der sich aus der inkohärenten Mischung folgender Zustände ergibt:

$$\dot{\overline{\varepsilon}}_1 = \{ \overline{1+\varepsilon}, 0, -\varepsilon_L \}, \quad \dot{\overline{\varepsilon}}_2 = \{0, \overline{1-\varepsilon}, 0\}, \quad (1.22)$$

dargestellt in dem durch $\dot{\mathbf{q}} = (\mathbf{q}_x=0, \mathbf{q}_y=0, \mathbf{q}_z=|\dot{\mathbf{q}}|)$ und y=0 als Streuebene definierten Koordinatensystem. ε_L ist die longitudinale Polarisation. Um ε_L sinnvoll zu definieren, kann man die Erhaltung des Hadronenstromes J^µ über M_{fi}, s. Glg.(1.21) auf $\rho_{_{\rm UV}}$ herüberziehen. Damit ergibt sich

$$\varepsilon_{\rm L} = \frac{q^2}{q_{\rm o}^2} \varepsilon$$

Als Folge der Polarisation des virtuellen Photons werden im Wirkungsquerschnitt der Reaktion ep \rightarrow eN π Glieder auftreten, die sich auf die Matrixelemente $\rho_{ik} = \varepsilon_{1i}\varepsilon_{1k} + \varepsilon_{2i}\varepsilon_{2k}$ zurückführen lassen. (wobei ε_{ik} die k-te Komponente des Vektors ε_{i} , i=1,2 ist). Insbesondere erwartet man rein longitudinale sowie longitudinal-transversal interferrierende Beiträge zum Wirkungsquerschnitt.

Für den differentiellen Querschnitt der 1-Pion-Elektroproduktion erhält man im CMS der Hadronen unter der Voraussetzung, daß sowohl Target und Primärstrahl unpolarisiert sind, als auch, daß keine Polarisation der auslaufenden Teilchen beobachtet wird (JONES)

$$\frac{d\sigma^5}{dE_4 d\Omega_4 d\Omega_6^*} = \Gamma_t \frac{d\sigma}{d\Omega_6}^*$$
(1.23)

mit den folgenden Definitionen:

dΩ₄ Raumwinkeldifferential des Elektrons im Labor dΩ^{*}₆ " " π° im CMS Θ^*_{6} Polarwinkel des π° gegen \vec{q}^* im CMS Φ^*_{6} Azimut von π° vgl. Abb. 2 P^{*}₆ Impuls des π° im CMS $T_{ik} \text{ Funktionen von } q^2, W^2 \text{ und } \cos\Theta_6^* \text{ vgl. 1.21}$ $\Gamma_t = \frac{\alpha}{2\pi^2} \frac{E_4 K}{E_1 q^2} \frac{1}{1-\epsilon}$ $K = (W^2 - M^2)/2M \quad \text{äquivalente Photonenenergie}$

und dem m-Produktionsquerschnitt für virtuelle Photonen

$$\frac{\mathrm{d}\sigma}{\mathrm{d}\Omega_{6}^{*}} = \frac{P_{6}^{*}W}{\mathrm{KM}} \cdot \left(\frac{1 - \varepsilon \cos 2\phi}{2} \operatorname{T}_{11} + \frac{1 - \varepsilon \cos 2\phi}{2} \operatorname{T}_{22} + \varepsilon_{\mathrm{L}} \operatorname{T}_{33}^{-} \right) \frac{\varepsilon_{\mathrm{L}}(1 + \varepsilon)}{2} (\operatorname{T}_{13} + \operatorname{T}_{31}) \cos \phi \right)$$

$$(1.24)$$

Der Vergleich von (1.24) mit (1.22) zeigt deutlich den Einfluß des Polarisationstensors auf die Form des Querschnitts. Auffallend ist die Ø-Abhängigkeit in (1.24). Sie ergibt sich bei der Darstellung der Polarisationsmatrix in einem Koordinatensystem, dessen Ebene y = 0 mit der π -N-Ebene zusammenfällt (Drehung um Ø). Ensprechende Glieder mit sin Ø oder sin2Ø treten nicht auf, da das Target und der Primärstrahl unpolarisiert angenommen wurden. Es ist üblich, den in 1.24 angegebenen Wirkungsquerschnitt in der Form

$$\frac{d\sigma}{*} = A + \varepsilon B + C \sin^2 \Theta_6^* \cos 2\emptyset + \sqrt{\varepsilon(\varepsilon+1)} \quad D \sin \Theta_6^* \cos \emptyset$$
(1.25)

zu verwenden und die Koeffizientenfunktionen $A(q^2, W^2, \cos \theta_6^*), \ldots$ $D(q^2, W^2, \cos \theta_6^*)$ in Potenzreihen nach $\cos \theta_6^*$ entwickelt an gemessene Winkelverteilungen anzupassen (vgl. Kap. 7.2)

Da der Polarisationsparameter & nur vom Leptonenvertex abhängt, ist eine Trennung der Terme A und B nur durch Variation der Elektronenkinematik möglich. Da diese im vorliegenden Experiment festlag, konnte nur die Summe

$$\overline{A} = A + \varepsilon B$$

bestimmt werden.

Gleichung (1.25) geht im Limes $q^2 \rightarrow 0$ in den Querschnitt für reelle Photoproduktion über. Der rein longitudinale Term B und das longitudinaltransversale Interferenzglied D verschwinden für $q^2 = 0$, während A in den gewöhnlichen Produktionsquerschnitt für unpolarisierte reelle Photonen und das Glied mit C in den Querschnitt für linearpolarisierte Photonen übergeht (Assymmetrieterm). Durch Integration über den gesamten π -Raumwinkel und Summation über alle hadronischen Kanäle erhält man aus (1.25) den Einarmquerschnitt für Elektroproduktion (HAND).

$$\frac{d^{3}\sigma}{dE_{4}d\Omega_{4}} = \Gamma_{t} (\sigma_{t} + \varepsilon\sigma_{1})$$

$$\sigma_{t} = \sum \int d\Omega_{6}^{*} A \text{ und } \sigma_{1} = \sum \int d\Omega_{6}^{*} B$$
(1.26)

1.3 Multipole

mit

Die Darstellung der $\gamma N \rightarrow N\pi$ Übergangsamplitude durch Bahndrehimpulszustände liefert unter Berücksichtigung des Photonenfeldes Multipolamplituden als Koeffizienten (DENN). Zu gegebenem Gesamtdrehimpuls j und Bahndrehimpuls $L(j = L \pm 1/2)$ im hadronischen Schwerpunktssystem gibt es -abgesehen vom Isospin – in der Elektroproduktion 3 unabhängige Multipole entsprechend den möglichen Strahlungsformen: magnetisch, elektrisch und skalar (zB. BDW). Entsprechend werden die Multipolamplituden zu gegebenem j = $L \pm \frac{1}{2}$ durch folgende Symbole gekennzeichnet.

$$E_{L^{\pm}}$$
 (W,q²), $M_{L^{\pm}}(W,q^{2})$, $S_{L^{\pm}}(W,q^{2})$

Die skalaren Multipole sind dabei mit den entsprechenden longitudinalen durch die die Stromerhaltung wiederspiegelnde Beziehung

$$L_{L^{+}} = \frac{q_{0}}{|\hat{q}|} \cdot S_{L^{+}}$$

verknüpft. Der kürzeren Schreibweise wegen, ist es zweckmäßig, folgende Definition einzuführen:

$$\hat{S}_{L_{\pm}^{\pm}} = \frac{\sqrt{q^2}}{|\hat{q}^*|} \cdot S_{L_{\pm}^{\pm}}$$

Die Beschreibung des π -Produktionsquerschnittes (1.24) durch die Multipole, ermöglicht es, die Koeffizientenfunktionen A,...,D durch jene auszudrücken. Darstellungen der Koeffizienten A,...,D durch die Multipole für S- und P-Wellen (L = 0,1) sind bei Mistretta et al. (MIST) oder Ganßauge (GANS) angegeben. Die in der vorliegenden Arbeit gewählte Notation ist mit der von Mistretta verwendeten bis auf S₁₊ identisch (S₁₊ Mistretta = 2 S₁₊ hier). In der nachfolgenden "Matrix"-Schreibweise lassen sich die Ergebnisse übersichtlich anordnen.

$$A = F \cdot Re(a^{+} \alpha a) \qquad C = F \cdot Re(a^{+} \gamma a)$$

$$C = F \cdot Re(b^{+} \gamma a)$$

$$R = \frac{1}{2}$$

$$C = F \cdot Re(b^{+} \gamma a)$$

$$R = \frac{1}{2}$$

$$C = F \cdot Re(b^{+} \gamma a)$$

$$R = \frac{1}{2}$$

$$R =$$

mit
$$a^{+}\alpha a = \sum_{ik} a_{i}^{*} \alpha_{ik} a_{k}$$
, a^{*} : konj. komplex, α^{T} : α transponiert
 $F = \frac{P_{6}^{*} W}{KM}$, $x = \cos \Theta_{6}^{*}$

. .

. .

2. APPARATUR

Die Messung des differentiellen Wirkungsquerschnitts der π° -Elektroproduktion erfordert bei gegebenem Primärstrahl und Protonentarget eine Apparatur, die es erlaubt, die Viererimpulse des gestreuten Elektrons und des auslaufenden Protons zu messen(vgl. Kap. 1.1).

Dies geschah mit Hilfe der in Abb. 2.1 gezeigten Apparatur durch Messen der Streuwinkel und Impulse der Teilchen im Laborsystem, sowie durch Identifikation des Elektrons mit Čerenkov- und Schauerzähler und Ermittelung der Flugzeit des Protons.

2.1 Primärstrahl

Das Experiment wurde in der Verlängerung des externen Elektronenstrahles 20 (vgl. SCHM) des DESY durchgeführt (Abb. 2.2). Das Target befand sich in einer Entfernung von ca. 107 m vom Ring des Synchrotrons (dem Strahl entlang gemessen). An das Strahlführungssystem waren durch die verwendete Apparatur eine Reihe von Anforderungen gestellt:

Die Impulsmessung in der vertikalen Ebene der Spektrometer verlangt möglichst kleine vertikale Strahlausdehnung. Da die Winkeldivergenz des Primärstrahles unmittelbar Einfluß auf die Winkelmessung hat, sollte sie 1 mr nicht wesentlich überschreiten. Abgesehen davon waren der Divergenz allein schon durch den Abstand zwischen Target und Faradaykäfig (24m) Schranken gesetzt, um die durch das Target gehende Ladung vollständig nachzuweisen. Zur Vermeidung von Strahlausdehnung infolge Energieunschärfe (ca. 3 ^O/oo wegen der Spillänge) bzw. von Verschiebungen des Targetfleckes bei Energieschwankungen des Synchrotrons, sollte die Dispersion am Ort des Targets möglichst verschwinden. Diese Anforderungen wurden mittels zweier Ablenkmagnete und eines Quadrupoldubletts in der erwähnten Verlängerung des Strahls 20 erfüllt.

Das "Einfädeln" des Strahles jeweils am Beginn einer Messung erforderte, bedingt durch nicht reproduzierbare Emittanz des Synchrotrons und damit notwendigen Abgleich der Komponenten des Führungssystems (4 Ablenkmagnete, 10 Quadrupole), in der Regel mehrere Stunden Zeit. Dazu konnte mit Hilfe in den Strahl einschwenkbarer Zinksulfidschirme die Strahlausdehnung und -lage an mehreren Stellen beobachtet werden.

11 × 1

Abb. 2.2

Während der Messungen diente ein fest vor dem Faradaykäfig montierter Schirm zur kontinuierlichen Beobachtung. Die genaue Strahlausdehnung am Target wurde mittels Silberphosphatgläser (ECKA) ermittelt. Typische Werte waren (volle Breiten bei 50 % bzw. 1 % der maximalen Intensität):

		vertikal	horizontal
50	%	1.5 mm	3 mm
1	%	4 mm	8 mm

Um die Zahl der nicht mit dem nachgewiesenen Elektron korrelierten Teilchen im Protonenarm (s.u.) klein zu halten, war es selbst bei Spillängen von ca. 500 µsec während der Messungen bei 34⁰nicht möglich, mit maximaler Primärstrahlintensität zu messen. Wesentlich größere Spillängen ohne gleichzeitige Vergrößerung des Energiebandes des Primärstrahles (d.i. Flat-top) wären wünschenswert gewesen.

2.2 Ladungsmessung

Die Ladung des Primärstrahles wurde sowohl mit einem Faradaykäfig (DESH) als auch mit einem SEM (Sekundäremissions-Monitor) (DESH) über! DESY-Integratoren gemessen. Der SEM befand sich zwischen Target und Faradaykäfig und diente u.a. dazu, bei Verschlechterung der Strahlqualität auf eventuell aufgetretene Ladungsverluste hinzuweisen. Die Messungen zeigten, daß bei guter Primärstrahlqualität relative Schwankungen beider Geräte gegeneinander zu vernachlässigen waren, so daß in die Ladungsmessung nur die absout Unsicherheit der Messung mit Faradaykäfig (± 1 % inklusive Integrator, vgl. LAPI, PERA) eingeht.

2.3 Target

Zur Streuung der primären Elektronen wurde ein Target mit flüssigem Wasserstoff verwendet. Dieser befand sich in der Targetzelle (s. Abb. 2.1) über dem Drehpunkt beider Spektrometer. Die Zelle, ein aus 75 µ Polyimidfolie (Du Pont) geklebter Zylindermantel vom Durchmesser 50 mm, an dessen Enden Kugelkalotten (Kugelradius ca. 35 mm) angeklebt waren, wurde vor dem Einbau in die Streukammer bei 0.4 atm Überdruck vermessen. Längenänderungen unter dem Einfluß tiefer Temperaturen waren kleiner 0.2 %. Die effektive Targetlänge (ca. 9 cm) wurde unter Berücksichtigung einer mittleren Ausdehnung sowie Divergenz des Primärstrahles

ermittelt. Beide ließen sich aus der Schwärzung der Zellenwände un der Strahlgröße vor dem Faradaykäfig abschätzen.

Wegen der Belastung durch den Primärstrahl kann eine Zelle nicht beliebig lange dem Elektronenstrahl ausgesetzt werden. Daher wurden für die Messungen bei Protonenwinkeln von 41.7°, sowie für 34° bzw. 50° verschiedene Zellen verwendet. Im allgemeinen halten die Zellen ohne weiteres 8 - 12 Tage Strahlbelastungen bei Faradayströmen von 10⁻⁷ A und guter Fokussierung auf das Target aus.

Die Zelle befand sich unterhalb des Wärmeaustauschers in der in Abb. 2.3 schematisch gezeigten <u>Streukammer.</u> Diese war zur Wärmeisolation auf ca. 5.10^{-6} Torr evakuiert. Das Austrittsfenster aus Polyimidfolie erlaubtees Teilchen ,im Raumwinkel \pm 80° horizontal und \pm 20° vertikal auszutreten. Zur Kontrolle des Primärstrahls konnte vor dem Target ein Zinksulfid-Schirm in den Strahl geklappt werden, der durch ein Fenster von einer Fernseh-Kamera beobachtet wurde. Zur Verflüssigung des Wasserstoffs diente eine Kältemaschine (Philips: Cryogenic Transfer System PGH 105) mit komprimiertem Helium als Arbeitsgas. In der Maschine wird das Gas zyklisch expandiert und komprimiert. Die Kompressionswärme wird dem System durch Kühlwasser entzogen. Um die Kälteleistung abzuführen, hat die Maschine zwei Wärmeaustauscher mit Arbeitstemperaturen von 80°K und 20°K. Letzterer steht mit dem Wärmeaustauscher in der Streukammer über ein abgeschlossenes Transfersystem (13 atm He) in Verbindung. Der Targetwärmeaustauscher besteht aus einer doppelt gewickelten Spule aus 250 cm 8xl Kupferrohr, durch das das Helium aus dem Transfersystem geleitet wird, und um das Wasserstoffgas streichen kann. Der kondensierte Wasserstoff tropft von dort in die Targetzelle. Das Volumen des H₂-Systems ist so bemessen, daß bei einem Anfangsdruck von 1 atm die Zelle bei einem H₂-Druck von 0.4 atm mit flüssigem Wasserstoff gefüllt ist. Dieser Druck kann während der Messungen über eine am Kühlkopf der Kältemaschine angebrachte Gegenheizung reguliert werden. Im Mittel waren hierzu ungefähr 35 Watt notwendig.

Die gesamte Anlage zur Verflüssigung des Wasserstoffs arbeitete äußerst zuverlässig, ohne Ausfall mehr als 1500 Arbeitsstunden. Nachdem etwa 50 Minuten nach Einschalten der Kältemaschine in warmem Zustand die Zelle gefüllt war, mußte über Tage hinweg nicht in das System eingegriffen werden.

2.4 Elektronenspektrometer

2.41 Allgemeines zur Optik

Für die Wahl des verwendeten Spektrometers waren folgende Kriterien maßgebend: es sollte es ermöglichen, bei geringer Ausdehnung in Richtung der Spektrometerachse (wichtig bei großen Winkelfahrbereich), von der Targetlänge sowie vom Impuls und Winkel des Teilchens weitgehend unabhängig zu akzeptieren und aufzulösen. Diese Eigenschaften hat das in Abb. 2.1 gezeigte, doppelt fokussierende Spektrometer. Es hat einen Winkelfokus in der horizontalen Ebene und bildet das Target impulsabhängig in der vertikalen Ebene ab. D. h.:

a) unabhängig vom Entstehungsort im Target werden (monochromatische Teilchen mit gleichem Horizontalwinkel horizontal auf den gleichen Punkt fokussiert (Strich-Punkt);

Abb. 2.4 Analogrechnerkurven

a: Teilchenbahnen in der vertikalen Ebene für 3 Winkelund 5 Impulse b: Horizontalebene, ausgedehntes Target, 3 Impulse, 2 Winkel c: Vertikalebene, ausgedehntes Target, 3 Winkel, 2 Impulse

b) für jeden Impuls gibt es unabhängig vom Vertikalwinkel ein Bild des Targets in der vertikalen Ebene (Punkt-Punkt) (vgl. PANO).

Mit dieser vertikalen Abbildung erreicht man große Impulsakzeptanz, wobei die Impulsauflösung hauptsächlich durch die Impulsdispersion sowie, über die vertikale Vergrößerung, durch die Strahlausdehnung im Target gegeben ist. Die horizontale Strich-Punkt Fokussierung ergibt gute Auflösung des Horizontalwinkels auch bei großen Targetlängen, die aus Intensitätsgründen oft erforderlich sind.

Nachteilig für den mechanischen Aufbau eines Spektrometers mit vertikaler Impulsdispersion ist neben der vertikalen Ausdehnung die Tatsache, daß die optische Achse nicht in der Horizontalebene liegt und daher die Nachweisapparatur i.a. schräg steht.

2.42 Aufbau

Das Spektrometer befindet sich auf einer um den Targetmittelpunkt im Winkelbereich $15^{\circ} < T_4 < 75^{\circ}$ schwenkbaren Lafette (s. Abb. 2.1). Die Einstellung erfolgt ferngesteuert und wird optisch mit einer Fernsehkamera abgelesen. Die Einstellgenauigkeit beträgt <u>+</u> 0.01 Grad.

Das Magnetsystem besteht aus einem Quadrupolpaar QA (DESH) und zwei in Serie geschalteten Ablenkmagneten (MA (DESH) zur Erzeugung der Impulsdispersion in der vertikalen Ebene. Der erste Quadropol fokussiert horizontal, der zweite vertikal.

Die Sollbahn des Spektrometers sei durch Teilchen definiert, die auf der Spektrometerachse mit Impuls P_o fliegen. P_o, der Spektrometerimpuls, ist der zentrale Impuls in der Akzeptanz. Den Analogrechnerkurven in Abb. 2.4 können anhand der gezeigten charakteristischen Teilchenbahnen die optischen Eigenschaften des Spektrometers entnommen werden. Abb. 2.4a zeigt die Ortsablagen der Bahnen von der Sollbahn in der <u>vertikalen</u> Ebene. Ein Targetpunkt definiert dort eine, wegen der chromatischen Aberration der Quadrupole etwa um 6^o gegen die Sollbahn geneigte, leicht gekrümmte Kurve. Zähler, die also die gezeigte Ebene senkrecht durchsetzen und einen Abschnitt dieser Kurve enthalten, messen ein Impulsintervall (P- Hodoskop). Weiter entnimmt man Abb. 2.4 c, daß für den Vertikalwinkel zwar ein Fokus existiert, dieser aber impulsabhängig ist, d.h. zur Bestimmung des Vertikalwinkels muß die Projektion der Teilchen-

Abb.2.5 Gemittelte, von den Φ - PQ - Kombinationen akzeptierte Impulse und Vertikalwinkel (Ergebnisse von Monte-Carlo-Rechnungen)

trajektorie in die vertikale Ebene bekannt sein. Die hierzu notwendige zweite Ortsmessung wird am besten in der Nähe des Winkelfokus durchgeführt(Φ-Hodoskop), da dort der Einfluß der vertikalen Strahlausdehnung am gerinsten ist. Diese geht wegen der vertikalen Vergrößerung jedoch voll in die Impulsauflösung ein (Abb. 2.4 c).

Für die im nächsten Abschnitt beschriebene Zähleranordnung ist in Abb. 2.5 der Zusammenhang zwischen den mittleren akzeptierten Vertikalwinkeln und Impulsen für alle möglichen ϕ - PQ- Kombinationen gezeigt. Die Werte wurden mit Hilfe eines Monte Carlo Programmes (vgl. Kap. 4.1) berechnet. Bemerkenswert ist die Tatsache, daß für große und kleine Vertikalwinkel die Akzeptanz je nach Impuls durch den zweiten Quadrupol oder die äusseren ϕ -Zähler begrenzt wird.

Die Abbildungseigenschaften in der <u>horizontalen</u> Ebene sind in Abb. 2.4 b gezeigt. Unabhängig vom Targetpunkt werden Teilchen gleichen Impulses in der Ebene des O-Hodoskops fokussiert. Der Einfluß der

chromatischen Aberration des Quadrupolsystems ist im unteren Teil dargestellt. Sie bewirkt eine Verschiebung des Winkelfokus um 25 cm auf 1 % Impulsänderung, was bei 10 % Impulsakzeptanz einen etwa 1 cm breiten Brennfleck im 0-Hodoskop verursacht.

Vor dem ersten Quadrupol befindet sich eine horizontal und vertikal symmetrisch verstellbare Bleiblende. Die Blendenöffnung wird so gewählt, daß die Akzeptanz der Nachweisapparatur nicht durch sie beeinträchtigt, im übrigen aber verhindert wird, daß unnötig viele Teilchen auf die Quadrupolwände prallen und so Strahlungsuntergrund im Spektrometer erzeugen. Um die Vielfachstreuung herabzusetzen, durchlaufen die nachzuweisenden Teilchen das Magnetsystem in einer Vakuumkammer bei ungefähr 1 Torr Restgasdruck. Die Ein- und Austrittsfenster bestehen aus je 125µ Polyimidfolie. Die Zählerapparatur ist allseitig bis auf das Magnetgap mit Eisen abgeschirmt (gegen das Target 30 cm Fe, sonst 20 cm Fe).

2.43 Hodoskope

Die Messung der kinematischen Parameter der Teilchentrajektorien geschieht bevorzugt in den durch die Abbildungseigenschaften des Magnetsystems ausgezeichneten Flächen (Fokus → Winkel bzw. Bild → Impuls). Das geschieht durch Unterteilen dieser Flächen durch Zähler. Die Größe dieses Rasters bestimmt dann solange die Auflösung wie andere Effekte, beispielsweise Vielfachstreuung, vertikale Ausdehnung des Primärstrahles oder der Einfluß der chromatischen Aberration klein sind.Letztere wurden schon diskutiert. Das Durchsetzen von Materie läßt sich natürlich beim Nachweis der Teilchen grundsätzlich nicht vermeiden, jedoch durch Verwenden möglichst dünner Zähler herabsetzen. Im Zusammenhang damit treten Schwierigkeiten optischer und mechanischer Art auf.

Um die Lichtsammlung der dünnen und schmalen Hodoskopzähler zu verbessern, insbesondere um deren Ortsabhängigkeit zu vermindern, wurde die zur optischen Isolation dienende Aluminiumfolie nicht unmittelbar auf die Szintillatoren gelegt (Szintillatormaterial war für alle Zahler NE 102 A), sondern erst in einem Abstand, der einem mehrfachen der Szintillatorstärke entspricht. Dadurch wird der Raumwinkel, innerhalb dessen Licht zur Kathode des Photomultipliers gelangen kann, vergrößert.

O-Hodoskop

Entsprechend einer Winkelakzeptanz von 2.7 mrad pro Zähler wurde die Fokalebene mit 6 Szintillationsstreifen zu je 2.8 cm Breite unterteilt. Die einzelnen Szintillatoren sind über isolierende Al-Folie aneinander-

geklebt. Lichtleiter und Photomultiplier befinden sich abwechselnd oben und unten (s.Abb.2.6). Für die notwendige Festigkeit sorgt ein starrer ringförmiger justierbarer Rahmen, an dem die Multiplier befestigt sind. Entsprechend der Steigung des Sollstrahls hat das Hodoskop eine Neigung von 69⁰ gegen die Laborebene.

Φ-Hodoskop

Es besteht aus 16 waagrechten Szintillationsstreifen. Die Lichtleiter sind abwechselnd am einen oder anderen Ende angbracht und führen sternförmig zu den ebenfalls auf dem erwähnten Ring angebrachten Multipliern (Abb.2.6)

P-Hodoskop

Zur Impulsmessung ist die Bildfläche des Targets so in 20 Kanäle unterteilt, daß in der Mitte des N-ten Kanals der Impuls

 $p = P_0 (1 + (N - 10.5)/200)$

gemessen wird. Damit liegt der Spektrometerimpuls P_o zwischen den Kanälen 10 und 11, und die gesamte Impulsakzeptanz von <u>+</u> 5 % ist durch die Akzeptanz der Einzelkanäle von je 0.5 % gegeben. Da die dem genannten Impulsbereich entsprechende Ausdehnung des Hodoskops in Sollbahnrichtung 1.80 m betragen müßte (Abb. 2.4 a), ist eine den beiden anderen Hodoskopen ähnliche Anordnung der Zähler (zusammenhängende Fläche) optisch und mechanisch nicht geeignet. Wesentlich günstiger in dieser Hinsicht ist die verwendete Anordnung, bei der ein Kanal durch die Koinzidenz zweier Zähler gegeben ist - $P_n * Q_n \div PQ_n$ (Abb. 2.7a,b).

Abb. 2.7b

IMPULHODOSKOP

Um Zählratenverluste durch Spalte zwischen den Zählern Q_n und P_{n+1} klein zu halten, sowie zur Erhöhung der mechanischen Stabilität wurden beide Szintillatoren optisch isoliert zusammengeklebt. Mit dieser Anordnung werden bei geometrischen Ungenauigkeiten des Zählerpaares (P_{n+1}, Q_n) nur die Impulskanäle PQ_n und PQ_{n+1} betroffen.

Die 3 Hodoskope sind so gebaut, daß sie die Akzeptanz des Elektronenspektrometers nur in der Dimension beschneiden, in der sie eine kinematische Größe messen, d.h. die Zählerlängen sind jeweils so groß, daß sie nicht in die Akzeptanz eingehen. Während die Horizontalwinkelbzw. Impulsakzeptanz nur durch das O-, bzw. Impulshodoskop definiert wird, ist die Akzeptanz des Vertikalwinkels durch die Apertur des zweiten Quadrupols und das &-Hodoskop gegeben (s. Abb. 2.4a und 2.5)

	ф	Θ	Р
Funktion	vert.	horiz.	Impuls
Zählerlänge[mm	1] 184	221	259-303
Zählerbreite[m	m] 10	28	25
Zählerdicke[mm	ı] 3	3	2
Anzah1	16	6	20 x 2
Akzeptanz des			
Hodospos	<u>+</u> 29 mr	+8.1 mr	<u>+</u> 5 %

Zusammenstellung einiger Hodoskopdaten

Verwendete Photomultiplier sämtl. 56 AVP (VALV)

2.44 Trigger zähler

Am hinteren Ende des P-Hodoskops befindet sich ein 1 cm dicker, 31.8 cm hoher und 31 cm breiter Szintillationszähler, der gemeinsam mit dem Hodoskop H3 der Protonenseite zur Messung der Protonenflugzeiten dient. Der Zähler besteht aus zwei optisch isolierten Teilen, die keilförmig zulaufend sich teilweise überlappen. Um verschieden lange Lichtwege, bzw. Unterschiede in der Lichtsammlung für Teilchen mit derselben horizontalen Ortsablage auszugleichen, sind die Lichtleiter mehrfach in gleichlange Streifen unterteilt und werden geeignet gewunden, getrennt zur Kathode des entsprechenden Photomultipliers geführt.

2.45 Teilchendefinierende Zähler

Außer Elektronen gelangen meist auch Pionen in die Spektrometerakzeptanz. Diese stammen zwar aus anderen kinematischen Bereichen der ep-Streuung und würden so in einer Koinzidenzmessung bei guten Koinzidenzbedingungen kaum nachgewiesen. Wenn jedoch eine endliche Wahrscheinlichkeit für zufällige Koinzidenzen zwischen beiden Spektrometern besteht, so können auch Ereignisse durch Pionen simuliert werden. Eine Diskriminierung der Pionen ist vor allem dann erforderlich, wenn totale, d.h. Einarmquerschnitte gemessen werden sollen. Da in kinematisch ungünstigen Bereichen der Pionenfluß im Spektrometer wesentlich größer als der Elektronenfluß sein kann, werden möglichst mehrere Elektronen identifizierende Zähler verwendet. Das Elektronenspektrometer ist daher mit einem Schwellen-Čerenkovzähler zwischen O- und P-Hodoskop und einem Schauerzähler hinter dem Triggerzähler ausgerüstet. (Vgl. Abb. 2.1).

Čerenkovzähler

Die Unterscheidung von geladenen Teilchen gleichen Impulses aber verschiedener Masse mit Hilfe eines Čerenkovzählers ist dann besonders einfach, wenn es möglich ist, den Brechungsindex n des Radiators so zu wählen, daß eines der Teilchen kein Čerenkovlicht, das andere jedoch so viele Photonen erzeugt, daß unter Berücksichtigung der Lichtsammlung der verwendeten Optik, der Quantenausbeute in der Kathode und der Verstärkung des Multipliers seine Nachweiswahrscheinlichkeit praktisch 1 wird.

Diese Bedingungen werden von dem die ganze Akzeptanz erfassenden 1.2 m langen CO₂-gefüllten Čerenkovzähler erfüllt, der in Abb. 2.1 gezeigt ist. Das erzeugte Licht wird mit Hilfe eines sphärischen aluminiumbedampften Spiegels aus 1 mm Plexiglas auf die Kathode eines 58 UVP Quarzglas-Photomultipliers (VALV) fokussiert. Der Multiplier befindet sich direkt im Druckgefäß.

Experimentell wurde für Elektronen mit Impulsen von 2.6 GeV durch Vergleich von Koinzidenzraten mit und ohne Čerenkovzähler sowie aus Amplitudenspektren ermittelt, daß für CO₂ oberhalb 1.3 atm die Ansprechwahrscheinlichkeit des Zählers besser als 0.998 ist. Für 1.3 atm CO₂ liegt die Schwelle, oberhalb der Pionen Čerenkovlicht erzeugen, bei 4.2 GeV. Unter idealisierenden aber üblichen Annahmen (CKH) werden Angaben über die Güte der Lichtsammlung c des Zählers im Anhang 5 gemacht. Dabei zeigt sich für c deutlich eine Abhängigkeit von der Lage der Teilchentrajektorie im Zähler. Doch selbst im ungünstigsten Fall ist die sich aus dem Amplitudenspektrum ergebende mittlere Zahl von Photoelektronen noch groß genug, um die angegebene Nachweiswahrscheinlichkeit für alle Trajektorien annehmen zu können.

Schauerzähler

Beim Durchgang hochenergetischer Elektronen durch Materie bilden sich aufgrund vieler elektromagnetischer Prozesse Photonen- und Elektronenschauer aus (ROSS). Die Zahl der Elektronen durchläuft dabei in Abhängigkeit der in der Materie zurückgelegten Strecke wegen der Existenz des Photonenschauers ein flaches Maximum. Bei 3 GeV - Elektronen mit Blei als Radiator ergeben Monte Carlo Rechnungen (BURF) die Lage des Maximums bei 5 Strahlungslängen Blei mit einem

Erwartungswert von 17 Elektronen, deren Energien größer als 1.5 MeV sind. Diese Elektronen produzieren also in Szintillatoren erheblich mehr Licht als etwa ein Pion.

Der verwendete Schauerzähler ist vom Typ eines Sandwiches, d.h. es wird neben dem Schauermaximum dadurch auch von seiner Umgebung Gebrauch gemacht, daß abwechselnd Bleiplatten und Szintillatoren aufeinander folgen. Insgesamt sind es 6 Szintillatorplatten, die alle gemeinsam von 4 Multipliern,

<u>Abb. 2.8</u> Sandwich- Schauerzähler, Anordnung der Szintillatorplatten und Lichtleiter

jeweils zwei rechts und links, gesehen werden (s. Abb. 2.8). Die Zahl der Bleiplatten kann nach Bedarf variiert werden. Zur Messung wurde die folgende Anordnung gewählt:

3 Strahlungslängen Blei vor dem ersten Szintillator, zwischen allen Szintillatoren 1 Strahlungslänge Blei, ausgenommen zwischen den Szintillatoren 2 und 3.

Den Rechnungen zufolge (BURF) treffen so auf alle Szintillatoren mehr als 15 Elektronen mit Energien größer 1.5 MeV.

2.5 Protonenspektrometer

Zum Nachweis der Protonen wurde ein System aus einem Ablenkmagneten und 3 Hodoskopen verwendet. Alle Teile befanden sich auf einer im Winkelbereich $23^{\circ} < T_5 < 64^{\circ}$ schwenkbaren Laffette (s.Abb. 2.1). Die Komponenten werden im folgenden kurz beschrieben.

2.51 Magnet

Der Magnet stand um 6[°] gegen das Target geneigt hinter einer zylindrischen Betonabschirmung. Er war an der dem Target abgekehrten Seite mit einer Spiegelplatte versehen. Die Ablenkung der Teilchen erfolgte in der vertikalen Ebene. Das Magnetfeld wurde im Gap (110 x 100 x 23 cm³), sowie außerhalb des Eisens vermessen, in der Nähe der Spiegelplatte in 3 Komponenten. Es ergaben sich bei 8 kGauß folgende charakteristischen Werte: die effektive magnetische Länge zu 120 cm, die Abweichung der Erregung von der Linearität infolge Sättigung des Eisens zu 3 %, die Hauptkomponente des Feldes in 45 cm Abstand von der Spiegelplatte zu ca. 40 Gauß.

2.52 Hodoskope

Um Impuls und Winkel eines vom Target kommenden, im Magnetfeld abgelenkten Teilchens zu ermitteln, ist es nötig, seine Trajektorie zu messen. Hierzu sind bei gegebenem Vertex und Magnetfeld zwei Ortsmessungen in der vertikalen und eine in der horizontalen Ebene notwendig. Gute Auflösung (große Dispersion) bei gleichzeitig großer Akzeptanz erfordert vertikal ausgedehnte feingerasterte Apparaturen. Funkenkammern, die dazu besonders gut geeignet wären, wurden wegen des erwarteten hohen Strahlungsuntergrundes nicht verwendet. Hodoskope aus Sintillationszählern in der Art des ¢-Hodoskops wären bei de. geforderten Ortsauflösung von 0.5 cm in 4 m, bzw. von 1 cm in ungefähr 8 m Entfernung vom Target wegen der notwendigen vertikalen Ausdehung zu aufwendig.

Wesentlich weniger elektronischen Aufwand erfordern Anordnungen, mit denen der Durchgangsort eines Teilchens kodiert gemessen wird. Abb. 2.9 zeigt eine, auf dem 5-stelligen Gray-Code (s. Anhang 4) beruhende

Zählerkombination (= 1 Kammer), die es erlaubt, 31 Kanäle mit nur 5 Szintillatoren zu definieren. Aus solchen Einheiten waren die Hodoskope H1 (279 Kanäle = 9x31 = 9Kammern) und H2 (310 Kanäle = 10x31 = 10 Kammern) aufgebaut.

Bezüglich der Anzahl der Kanäle in den Hodoskopen ist mit dieser Anordnung die Zahl der Photomultiplier nicht minimal. Die Unterteilung in voneinander unabhängige Kammern hat im wesentlichen zwei Gründe. Erstens zwingen Schwierigkeiten in der Lichtsammlung bei hohen Zählern zur Unterteilung und zweitens die Tatsache, daß beim Durchgang mehrerer Teilchen durch ein Hodoskop, das nicht unterteilt ist, nur ein Kode erzeugt wird, der der logischen Summe des Einzelkodes der Ereignisse entspricht. Die Unterteilung macht also mehrere Teilchen unterscheidbar, sofern sie durch verschiedene Kammern fliegen.

Gegenüber logisch äquivalenten Anordnungen der Szintillatoren, z. B. gegenüber dem normalen Binärkode (s. Abb. 2.9) hat der Gray-Code zwei erwähnenswerte Vorteile. Bei vorgegebener Ortsauflösung etwa ist die kleinste Streifenbreite doppelt so groß; es treten keine Stoßstellen mehrerer Szintillatoren auf, d. h. die Kanalgrenzen sind immer durch nur einen Szintillator gegeben. Daher wirken sich einmal geometrische Ungenauigkeiten der Streifen nur auf die Nachbarkanäle aus, zum anderen sind Spaltverluste zu vernachlässigen.

Zu berücksichtigen ist bei Korrekturen, die von der Dicke der durchstrahlten Materie abhängen, beispielsweise Vielfachstreuung oder Absorption, daß die Materiebelegung der Kanäle verschieden ist, zwischen 1 und N Szintillatoren bei einer mittleren Belegung b einer Kammer aus N Zählern von

 $b = 2^{N-1}N/(2^{N} - 1) \frac{Szintillatoren}{Kanal}$

Im vorliegenden Fall ist b = 2.6 und daher die Nachweiswahrscheinlichkeit in einer Kammer praktisch immer 100 %, wenn nicht grobe Fehler vorliegen. Nichtansprechen eines Szintillators führt i. a. nur zu einer falschen Kodierung innerhalb einer Kammer, bei einem homogenen Teilchenfluß also zu einem typischen Muster in der Häufigkeitsverteilung der einzelnen

Kanäle. Es unterscheidet sich insbesondere charakteristisch von dem, das entsteht, wenn Szintillatoren gegeneinander verschoben sind. Diese Strukturen wurden benutzt, um mit elastischen Rückstoßprotonen die Ansprechwahrscheinlichkeiten und die relative Lage der Szintillatoren zu kontrollieren.

Ein weiteres Hodoskop H3 hinter H2 diente neben der Messung des Horizontalwinkels (3 horizontale Kanäle) zur Bestimmung der Flugzeiten der Teilchen (TOF). <u>H3</u> war vertikal vierfach unterteilt. Die einzelnen Segmente bestanden aus zwei horizontal gegeneinander verschobenen sich halb überlappenden Zählern, die so drei horizontale Bereiche definierten. Um Lichtlaufzeiten und vor allem um Unterschiede in der Lichtsammlung längs der Vertikalen auszugleichen, waren die Lichtleiter ähnlich dem des Triggerzählers auf der Elektronenseite unterteilt (zehn 8 cm breite Streifen) und alle gleichlang.

Es zeigte sich während der Messungen, daß die Triggerzähler von 1 abweichende Ansprechwahrscheinlichkeiten hatten (zwischen 0.96 und 1), was auf schlechte Oberflächenbeschaffenheit der Lichtleiter zurückzuführen war. Daher wurden zur Auswertung der Daten die Triggerzähler nicht verlangt, wohl aber benutzt falls Information vorhanden war.

	H 1	H2	Н3
Enfernung v. Target	4 m	7.8m	8.3m
Höhe	139.5cm	310cm	320cm
Breite (horiz)	8cm	15cm	3x5cm
Szintillatorstärke	O.4cm	0.8cm	lcm
Breite eines Kanals (vert)	O.5cm	lcm	80cm
Zahl der Kanäle	279	310	3x4

Zusammenstellung einiger Hodoskopdaten

Die Hodoskope befanden sich auf einem, um eine horizontale Achse schenkbaren Ausleger (13[°]-29[°]). Ihre Neigung, sowie die vertikale Position von HI waren in Grenzen variabel, so daß es möglich war, die geometrische Anordnung den Anforderungen entsprechend anzupassen. Da die Apertur des Magneten größer als der von den Hodoskopen akzeptierte Raumwinkel war, wurde vor dem Magneten eine Bleiblende angebracht, um

den Teilchenfluß durch den Magneten zu reduzieren.

3. INFORMATIONSFLUSS

3.1 Informationsmenge

Die beschriebene Apparatur ließ auf der Elektronenseite 16x6x20 = 1920 Kombinationen zwischen den Kanälen der Hodoskope zu, von denen ungefähr 1600 möglichen Trajektorien entsprachen, während auf der Protonenseite 279x310x12 = 1037880 Kombinationen möglich waren, von denen jedoch nur ca. 75000 vom Target zu erreichen waren. Somit war die Gesamtzahl möglicher Koinzidenzen zwischen beiden Spektrometern ungefähr 12.10⁷, eine Zahl, die nicht nur bei der Auswertung sondern schon zur Datennahme einen Computer unentbehrlich machte, da für jedes Ereignis die Information in den Hodoskopen registriert werden mußte, um die `Koinzidenz´ zwischen den Kanälen verschiedener Hodoskope hinterher durchführen zu können.

Die Informationsmenge eines Ereignisses betrug 194 bit und setzte sich zusammen aus:

	Vertikalwinkel	16	bit
	Horizontalwinkel	6	bit
Elektronen	Impulshodoskop	20	bit
Spektrometer	3 Spektren	3x7	bit
	Hodoskop l	45	bit
	Hodoskop 2	50	bit
Protonen-	Hodoskop 3	8	bit
Spektrometer	Flugzeit	4x7	bit

Zusätzlich zu dieser Information wurden in bestimmten Zeitabständen Zählerinhalte und Parameter registriert.

In Abb. 3.1 ist der Datenfluß und seine logische Steuerung skizziert. Der Beginn einer Messung war durch das Startsignal des Faraday-Integrators definiert. Dieses öffnete Gates der Zähler (BORER BCD-Zähler) und der schnellen Logik. Das Stopsignal des Integrators schloß die Gates und initialisierte die Auslese der Zähler und die damit gekoppelten Träger weiterer Information wie geometrische und kinematische Parameter, Datum, Uhrzeit, Nummer der Messung. Mit Hilfe eines Digitalvoltmeters wurden geeignet synchronisiert auf demselben Weg digitalisierte Meßgrößen eingelesen (SEM-Rest, Ströme der Spektrometermagnete, Blendenstellung des Elektronenspektrometers).

.

14

<u>Abb.3.1</u> DATENFLUSS

DATENKANÄLE

. . . .

PI - PRIORITY INTERRUPTS PIN/POT - PARALLEL INPUT / OUTPUT 12 BITWORT W - W BUFFER DSC - DATA SUBCHANNEL B - BANDEINHEITEN Parallel zum Transfer zum Computer druckte eine Schreibmaschine diese Information aus.

Während der Messung sorgte ein kleiner programmierbarer Rechner (FRIDEN 6010) für die Kontrolle sämtlicher Magnete sowie der Versorgungsspannungen der Protonen-Elektronik und unterbrach bei Abweichungen von den Sollwerten die Datennahme.

3.2 Logik des Elektronenspektrometers

Zur einfachen Bewerkstelligung des "Timings" durchlaufen alle Multipliersignale Verzögerungseinheiten. Diese bestehen aus eingebauten Kabeln mit Laufzeiten von 1,2,3,7,15,31 nsec die, geeignet mit 1 nsec-Kabeln kombiniert, Verzögerungszeiten bis zu 63 nsec in Schritten von 1 nsec ermöglichten. Diese wenig komfortablen Geräte haben den großen Vorteil, daß sie zuverlässig, preiswert und platzsparend sind.

Die Signale, ausgenommen die des Triggerzählers, werden im weiteren linear aufgeteilt (vgl. Abb. 3.2), um während der Datennahme störungsfrei Amplitudenspektren aufnehmen zu können. Der andere Ausgang wird über Diskriminatoren (Schwelle ca. 120 mV) zur Informationsverarbeitung verwendet. Die Signale der Triggermultiplier bzw. der Schauermultiplier werden zuvor jeweils linear addiert.

Das Produkt⁺⁾ Čerenkov*Schauer*Trigger* ($\sum_{i=0}^{6}$ -Hodoskop) bildete die Hauptkoinzidenz EM mit einer Auflösung von 12 nsec. Zeitlich war EM durch den Triggerzähler definiert. Mit dem durch die Information des EM-Gates modifizierten Signal EM wurden sämtliche Hodoskopzähler multipliziert. Die Auflösungszeiten lagen zwischen 15 und 20 nsec. Die resultierende Information wurde in 1-bit-Speichern zum Abruf durch den Computer bereitgestellt. Das <u>EM-Gate</u> bestand im wesentlichen aus einem sehr schnellen bistabilen Element das von EM gesetzt und vom Reset-Signal zurückgestellt wurde. Dadurch war sichergestellt, daß neue Information erst wieder gespeichert wurde, wenn die alte in den Buffern gelöscht war. EM war 10 nsec breit und wurde durch Clippen des bivalenten Zustandssignals gewonnen. Das Verhältnis von EM und EM liefert direkt den Anteil der Meßzeit, in dem die Apparatur wegen der Datennahme oder aus anderen Gründen unempfindlich war, d.h. die <u>Totzeit</u> gemäß 1- EM/EM: Neben der Information der Hodoskope wurde zu jedem Ereignis analoge Information

+) unter Produkt von Signalen wird ihre Koinzidenz, unter der Summe ihr logisches (analoges) "OR" verstanden.

.

14

.

<u>Abb.3.2</u>

mittels dreier ADC´s registriert. Da ein begonnener Konversionszyklus sich nicht ohne längere Totzeit abbrechen ließ, etwa im Falle eines schnellen Reset-Signals (s. Protonen-Logik), diente EM´* (e + e*p) als Gate für die Konverter, wobei e, e*p die dem Computer zugeführten Interruptsignale sind. Zur weiteren Kontrolle der Teilchen definierenden Zähler gaben die dreifach Koinzidenzen 0*T*C bzw. 0*T*S in Verbindung mit EM´Auskunft über Änderungen der Ansprechwahrscheinlichkeiten von Čerenkov und Schauerzähler. Während der eigentlichen Messungen blieb die Ansprechwahrscheinlichkeit jedoch konstant.

Um Aufschluß über den Anteil an <u>zufälligen Koinzidenzen</u> zu erhalten, waren Vierfach-Koinzidenzen mit einem verzögerten Eingang geschaltet. Die Summen dieser Raten waren niemals größer als 1.5 %o von EM´ und konnten also vernachlässigt werden, zumal die Akzeptanz für EM´ größer als die durch die Hodoskope definierte ist.

Ebenfalls zu vernachlässigen waren die <u>Totzeiten</u> der Diskriminatoren, da selbst bei Vergrössern derselben um einen Faktor 5 keine Verluste festzustellen waren. Die diesem Sachverhalt zugrunde liegenden kleinen Einzelraten hatten ihre Ursache in der äusserst wirksamen Eisenabschirmung des Elektronenspektrometers.

Zur Kontrolle des Primärstrahles unabhängig von den Spektrometereinstellungen sowie um eventuell Hinweise auf fehlerhaftes Funktionieren der Integratoren oder des Elektronenspektrometers zu erhalten, wurden Raten eines ungefähr im Winkel 90[°] gegen den Primärstrahl aufgebauten (magnetlosen) <u>Monitoreleskops</u> gezählt, die ungefähr alle 45 sec vom Computer übernommen wurden. Bei der Auswertung der Daten wurden jedoch nur Messungen verwendet, die keine Zweifel am einwandfreien Funktionieren aller Komponenten ließen, somit entfielen Korrekturen durch die Monitorzähler.

3.3 Protonenlogik

Die Nachweiselektronik des Protonenspektrometers bestand im wesentlichen aus im Collège de France entwickelten Schaltungen.

Die Signale der Hodoskopzähler wurden nach Passieren von Diskriminatoren (Schwelle \approx 900 mV) wegen der Laufzeitdifferenzen der akzeptierten Protonen mit geeignet gedehnten EM-Signalen multipliziert. (s. Abb. 3.3) Die Länge der Pulse war durch geklippte Kabel einzustellen. Es wurde bei $q^2 = 25f^{-2}$ mit Koinzidenzauflösungen von 16 ns für H₁ und 30 ns für H₂ bzw. H₃ gemessen. Um Rechenzeit auf der CII zu sparen, wurde die in den Buffern im Gray-Code anstehende Information jeweils einer Kammer in normalen Binärkode umkodiert.

.

×.

.

Zur Reduktion des Datenflusses wurde i.a. die "Summe" der Information von H₁ mit der "Summe" von H₂ in GM zur Koinzidenz gebracht. (Zur Bestimmung des Untergrunds wurden auch Messungen gemacht während derer GM als OR geschaltet war.) Um weiter Redundanz im Falle eines nicht koinzidenten Elektronenereignisses zu vermeiden, wurden zwei Interrupts erzeugt, e und e*p. e*p war GM, e war EM*GM logisch äquivalent. Da die Elektronenrate (EM^{*}) ungefähr 100 mal größer war als die Zahl der "guten" Koinzidenzen, wurde das Signal e während 7/8 der Meßzeit <u>nicht</u> als Interrupt, sondern als schnelles "Reset" = GR dazu verwendet, die von diesem Ereignisse registriert, wenn auch Information im Protonenarm vorhanden war.

Zur Ermittlung der Protonenflugzeiten wurden jeweils die zwei in gleicher Höhe befindlichen Zähler von H₃ addiert und, um Totzeiten im Konverter zu vermeiden, mit EM multipliziert. Die Zeitinformation von H₃ blieb dabei erhalten. Der Beginn der Konversion im TAC entsprach EM. Die vorausgegangene Multiplikation von EM mit (e*p) vermied Konversionen im Falle eines schnellen Reset-Signals.

Abb. 3.4 zeigt die mit dieser Anordnung für elastische Rückstoß-Protonen mit P = 0.7 GeV erreichte Zeitauflösung. Die Spektren sind nicht auf den Durchgangsort der Teilchen in den Elektronen-Triggern sowie den Protonen Triggern korrigiert, d. h. sie setzen sich jeweils aus vier Einzelspektren entsprechend den Kombinationsmöglichkeiten von 2 x 2 Zählern zusammen.

Diese Zeitauflösung reicht aus, um bei Flugstrecken von 8 m und Impulsen bis zu 1.5 GeV (vgl. Abb. 1.3) Protonen von Pionen sicher abzutrennen.

3.4 Computer

Zur Erfassung der Daten stand ein Rechner vom Typ CII 90-10 des Collège de France zur Verfügung. Dieser Computer hatte eine Speicherkapazität von 16.10³ 12 bit-Worten bei einer Zykluszeit von 1.75µsec. Die Peripherie (Abb. 3.1) bestand aus 1 Teletype, 3 Bandeinheiten, einem 64x12 bit-Multiplexer, der programmgesteuert auszulesen war sowie einem Display und der ON-LINE Verbindung zur DESY-Rechenanlage (IBM-360/75).

Eingeleitet durch eines der Interrupts e oder e*p wurde die Information der nachgewiesenen Teilchen aus dem Multiplexer gelesen, zur Kontrolle einer vorläufigen Analyse unterzogen und anschließend in einen von zwei 2000 Wörter fassenden Puffern (definierter Teil des Speichers) abgespeichert. Diese Buffer wurden abwechselnd beschrieben oder auf Band B3 gelesen bzw. zur IBM transferiert. Ein Pufferinhalt definierte einen Block.

Wenn die Elektronen-, bzw. die Protonenereignisse eindeutig waren, d. h. bei Nachweis nur eines Teilchens in den jeweiligen Hodoskopen, wurde die Information durch Erzeugen von Kanalzahlen komprimiert, im Falle nicht eindeutiger Ereignisse wurde die Information mit allen Redundanzen gespeichert. Neben der Verrichtung reiner Registrierarbeit diente die CII 90-10 dazu, mit Hilfe aus den Daten erstellter Displays den experimentellen Ablauf zu verfolgen. So konnten Zählratenverteilungen in allen Hodoskopen, sämtliche registrierten Spektren sowie einige kinematische Verteilungen sichtbar gemacht werden. Um mit vorausgegangenen Messungen vergleichen zu können, wurde die Displayinformation auf Band B2 geschrieben und war so jederzeit zugänglich.

Eine Messung bestand aus mehreren "Runs", diese wieder aus mehreren sog. Subruns, meist 150.10⁻⁶ Coul. Primärladung. Zu Beginn jedes Runs wurde durch eine Zählerauslese mit dem Computer überprüft, daß alle Zähler gelöscht sowie die über Kontravesschalter eingestellten Parameter mit den dem Computer eingegebenen übereinstimmten. Diese Information diente mit der entsprechenden am Ende eines Subruns zur Markierung des Datenflusses. Nach mehreren Runs wurde die vorläufig von der IBM auf Platte gespeicherte Information auf Magnetband übertragen, gleichzeitig erstellte ein OFFLINE-Programm eine vorläufige Analyse der Daten.

4. MESSUNGEN

4.1 Testmessungen

Die Berechnung von Wirkungsquerschnitten aus gemessenen Daten setzt die Kenntnis der Akzeptanzen bzw. Impulse und Winkel der von den apparativen Bins akzeptierten Teilchen voraus. Diese Kenntnis wird bei einer komplizierten Apparatur am einfachsten mit Hilfe von Monte Carlo Rechnungen erworben, wenn durch eine Reihe Experiment und MC-Ergebnisse vergleichender Tests sichergestellt ist, daß das Experiment gut simuliert wird. Ihrer ausgeprägten Struktur und dem in größeren kinematischen Bereichen gut bekanntem Wirkungsquerschnitt wegen eignet sich hierfür die elastische ep-Streuung gut. Im folgenden werden einige Ergebnisse der durchgeführten Testmessungen angegeben, andere wurden in der Arbeit von J. Gayler (GAYL).mitgeteilt

4.11 Akzeptanz und Spaltverluste

Die Akzeptanz des Impulshodoskops im Elektronenspektrometer wurde bei fester Primärenergie durch Vergleich des elastischen Impulsspektrums bei verschiedenen Spektrometerimpulsen P_o bestimmt. Bei Gültigkeit der Beziehung (vgl. 2.43)

$$P_{N} = P_{0} (1 + (N-10.5)0.05)$$
(4.1)

mit P_N dem am Ort N im Hodoskop nachgewiesenen Impuls, sollten die auf P_o korrigierten Verteilungen deckungsgleich sein. Sind sie verschoben, so erhält man aus der Verschiebung eine Korrektur zu (4.1). Abb. 4.1 zeigt einen elastischen Peak bei 3 Werten von P_o . Die Versetzung des Peaks beträgt (0.9 ± 0.2) ^o/oo der Differenz der Spektrometerimpulse in Übereinstimmung mit dem MC-Ergebnis, das 0.7 ^o/oo Abweichung von (4.1) angibt, und zwar ist die gemessene Impuls-Akzeptanz kleiner als die nach (4.1) berechnete.

Relative Abweichungen der Akzeptanzen der einzelnen Kanäle von einem Mittelwert wurden dadurch ermittelt, daß der elastische Peak bei gegebener Primärenergie durch Ändern des Spektrometerimpulses in Schritten von 0.25 % durch das Hodoskop geschoben wurde. Auf diese Weise misst jeder Kanal die Fläche unter dem Impulsspektrum. Bei

gleichen Impulsakzeptanzen müssen alle so gemessenen Spektren gleich sein. In Abb. 4.2 sind einige dieser Verteilungen zu sehen. Die Abweichungen der Flächen vom Mittelwert beträgt maximal 3.5 %. Innerhalb des statistischen Fehlers der Messungen von 1.5 % herrscht Übereinstimmung mit den Ergebnissen der MC-Rechnungen.

Analog zur Bestimmung der Impulsakzeptanz kann im Prinzip die Akzeptanz des <u>O-Hodoskops</u> gemessen werden, indem das Spektrometer bei festem Spektrometerimpuls P_o gedreht wird und die Impulsspektren verglichen werden. Wegen

$$d\Theta_4 = -\frac{M}{E_4 \sin\Theta} \frac{dE_4}{E_4}$$

zusammen mit der Einstellgenauigkeit des Spektrometerwinkels von $\stackrel{+}{-}$ 0.01° ist diese Methode bei $\Theta_4 > 15^{\circ}$ und großem E₄ jedoch zu ungenau. Da der Vergleich von MC-Ergebnissen mit gemessenen Impuls-Winkelverteilungen bei festem Spektrometerwinkel keinen Hinweis auf Diskrepanzen lieferte, (s. Abb. 4.4) werden zur Auswertung ohne Einschränkung die Ergebnisse der MC-Rechnungen verwendet.

Die <u>Verluste</u> v_N <u>in den Spalten</u> zwischen den Szintillatoren P_{N+1} und Q_N (vgl. Abb. 2.7 a), bzw. was sich gleich auswirkt, von 1 abweichende Ansprechwahrscheinlichkeiten dieser Zähler wurden durch geeignete Koinzidenzen folgendermaßen gezählt:

 $\mathbf{V}_{\mathbf{N}} = \mathbf{P}_{\mathbf{N}} \cdot \mathbf{Q}_{\mathbf{N}+1} - \mathbf{P}_{\mathbf{N}} \mathbf{Q}_{\mathbf{N}+1} (\mathbf{P}_{\mathbf{N}+1} + \mathbf{Q}_{\mathbf{N}} - \mathbf{Q}_{\mathbf{N}} \mathbf{P}_{\mathbf{N}+1})$

wobei Produkte wieder Koinzidenzen bedeuten. Das letzte Glied in der Klammer berücksichtigt den Durchgang mehrerer Teilchen durch P_{N+1} und Q_N . Die gemessenen Verluste waren kleiner als 2 $^{\circ}$ /oo. (Der hierin enthaltene, durch schlechte Ansprechwahrscheinlichkeit der Zähler entstandene Anteil kann durch Ausblenden geeigneter Trajektorien ermittelt werden).

Für entsprechende Verluste im ¢-Hodoskop ließ sich durch Ausblenden von Trajektorien mit Hilfe der Impulskanäle 9-14 (vgl. Abb. 2.5) eine obere Schranke zu 0.2 % ermitteln.

4.12 Elatischer Wirkungsquerschnitt, Einarmmessung

Dieser wurde bei einer Primärenergie $E_1 = 2.625$ GeV und Spektrometerwinkel $T_4 = 15^{\circ}$, d.h. bei einem Impulsübertrag von ca. 0.43 GeV² gemessen. Nach Abzug des hochenergetischen Untergrundes im Spektrometer (1.4 %), Korrekturen für mehrfache Ereignisse in den Hodoskopen (5.<u>8</u>%), Anbringen der Strahlungskorrekturen (interne Strahlung und Straggling im Target und den Folien) sowie Leertargetkorrekturen ergab sich innerhalb 3 % Übereinstimmung mit bekannten Wirkungsquerschnitten (JANS). Abb. 4.3 zeigt den gemessenen Verlauf des Querschnittes über den 6 Θ -Zählern verglichen mit dem gerechneten.

4.13 Elastische Koinzidenzmessungen

Abbildung 4.5 zeigt einige bei elastischen Koinzidenzmessungen gewonnene Verteilungen im Vergleich mit den entsprechenden MC-Verteilungen. Die Messungen wurden bei $E_1 = 2.630$ GeV, $P_0 = 2.373$ GeV, $T_4 = 15^{\circ}$ und Protonenspektrometerwinkel $T_5 = 63.3^{\circ}$ durchgeführt. Das Feld im Ablenkmagneten des Protonenspektrometers betrug 8013 Gauß. Die Impulse und Winkel der nachgewiesenen Teilchen wurden nach derselben Methode aus den getroffenen Kanälen der Hodoskope ermittelt wie bei den inelastischen Messungen s.u. Das Verfahren, nach dem die Ereignisse für die Simulation des Experimentes durch Monte Carlo produziert wurden ist im Anhang 2 beschrieben. Es berücksichtigt eine Energieverteilung der primären Elektronen, Straggling und interne Bremsstrahlung sowie die Energieund Winkelabhängigkeit des elastischen Wirkungsquerschnittes.

4.14 Folgerungen

Die gute Übereinstimmung der Messungen mit den MC-Rechnungen rechtfertigt die Verwendung der MC-Ergebnisse zur Auswertung der Messungen, insbesondere auch die MC-Akzeptanzen. Mit Hilfe der MC-Rechnungen verschafft man sich nun auch leicht einen Eindruck von der Güte der Spektrometer. Hierzu sind in Abb. 4.4 einige relative Akzeptanzverteilungen einzelner Hodoskopzäler des Elektronenspektrometers bei $P_o = 3.377$ GeV für isotrope MC-Verteilungen gezeigt. Diese Verteilungen sind typisch, weil praktisch gleich für alle Zähler des betreffenden

Typische Verteilungen bei elast. Koinzidenzen. Vergleich der Messung (------) mit Monte- Carlo-Rechnungen (X), letztere sind auf die exp. Gesamtrate normiert.

- a: Impulskanäle im e -Spektrometer unabhängig vom Winkel
- b: Impulskanäle für einzelne Horizontalwinkelkanäle 0;
- c: Verteilung im θ-Hodoskop unabhängig vom Impuls
- d: P5 : im Protonenspektrometer gemessener Impuls, P3 berechneter Impuls des Protons
- e: entsprechend zu d: $\Theta_5 \Theta_3$.

Hodoskopes. Absolute Akzeptanzen der ganzen Hodoskope werden in der Arbeit von J. Gayler angegeben.

Die Impuls- und Vertikalwinkelauflösung des Protonenspektrometers ist weitgehend unabhängig vom Vertikalwinkel der Teilchen, jedoch stark impulsabhängig. Werden mit MC monochromatische Protonen bei festem Vertikalwinkel mit konstanter Vertexwahrscheinlichkeit im Target (9 cm) erzeugt, und unter Anwendung des in Kap. 5.1 beschriebenen Verfahrens ausgewertet, so ergeben sich folgende volle Halbwertsbreiten

	Impulsauflsg.	Winkelauflsg.
bei 0.5 GeV	8 % (4 %)	1.5° (0.7°)
bei 1.3 GeV	5 % (2.5 %)	$0.6^{\circ} (0.2^{\circ})$

wobei die Streuung der aus den analysierten MC-Ereignissen ermittelten Werte um die MC-Ausgangswerte in Klammer angegeben wurde.

4.2 Durchführung der inelastischen Messungen

Vor den eigentlichen Messungen wurden jeweils umfangreiche apparative Tests mit Hilfe elastischer Streuung bei $E_1 = 2.63 \text{ GeV}$, $T_4 = 15^\circ$, $T_5 = 63.4^\circ$ gemacht. Die gemessenen Verteilungen und Zählraten gaben Aufschluß über den Zustand der Nachweiselektronik, über die Ansprechwahrscheinlichkeiten der Zähler, über Fehlverhalten der magnetischen Komponenten der Spektrometer sowie über die Position der Zähler des Protonenspektrometers. Der Grund für die Verwendung von $E_1 = 2.63 \text{ GeV}$ für diese Tests trotz notwendiger zeitraubender Energieumstellung vor den inelastischen Messungen war einmal, möglichst große Ereignisraten bei den apparativen Randbedingungen ($T_5 \leq 64^\circ$, $T_4 \geq 15^\circ$) zu erhalten, zum anderen war so die Möglichkeit gegeben, mit vorausgegangenen Testmessungen zu vergleichen.

Die Datennahme zur inelastischen Streuung bei $q^2 = 25 f^{-2}$ erfolgte bei $E_1 = 4.236$ GeV, $T_4 = 15^{\circ}$ und Sollimpuls des Elektronenspektrometers von $P_{\circ} = 3.377$ GeV. Der bei diesen Parametern vom Elektronenspektrometer akzeptierte $W-q^2$ -Bereich ist in Abb. 4.6 dargestellt.

Da der Protonenarm wegen seiner Horizontalwinkelakzeptanz von 21 mr nur

einen schmalen Streifen des Zerfallskegels des auslaufenden Protons erfassen konnte (vgl. Abb. 1.3), war es zur Bestimmung der Winkelverteilungskoeffizienten (1.25) nötig, bei mehreren Stellungen des Protonenspektrometers zu messen. Im Hinblick auf die Abhängigkeit des Querschnittes vom Azimuth wurde die für W = 1.236 GeV zentrale Stellung $T_5 = 41.7^{\circ}$ (Richtung von \overline{q}) und die beiden ungefähr symmetrischen Stellungen 34° und 50° gewählt. Das Feld im Ablenkmagneten des Protonenspektrometers betrug 8013 Gauß. Die Stellungen der Hodoskope H1, H2, H3 war für alle Einstellungen gleich. Im fogenden sind die zu den Messungen verwendeten mittleren Primärstrahlströme I_m und die integrierten Ladungen L_i aufgeführt.

		I _m			Li	
34 [°] .0 [°]	6.2	10 ⁻⁸	А	9.73	10 ⁻³	СЪ
41.0 ⁰	7.3	10 ⁻⁸	А	7.88	10^{-3}	СЪ
50.0 ⁰	10.	10 ⁻⁸	А	8.78	10^{-3}	СЪ

Zur Reduktion des Datenflusses wurden im wesentlichen nur Ereignisse registriert, wenn eine Koinzidenz e*p vorlag (s. 3.3). Alle 8 Stunden wurden Messungen eingeschoben, während der zusätzlich auch Elektronenereignisse unabhängig von der Information im Protonenspektrometer registriert wurden. Um gleichzeitig Information über den Untergrund in den Hodoskopen H1 und H2 zu erhalten, war GM (s. Abb. 3.3) zu diesen Messungen als OR geschaltet, d.h. die Information des Protonenarmes wurde registriert, wenn mindestens H1 oder H2 angesprochen hatte.

Die Primärenergie El wurde ebenfalls alle 8 Stunden durch Vermessen des elastischen Peaks (ohne Koinzidenz) bie $T_4 = 15^{\circ}$ kontrolliert. Dabei ergab sich für den Schwerpunkt der Energieverteilung im Primärstrahl ein um etwa 3 ^o/oo kleinerer Wert als der zum maximalen Feld des Synchrotrons gehörige. Die Berücksichtigung einer trapezförmigen Verteilung der Energie im Primärstrahl (1_1 , 1_2 , $1_3 = (3, 2, 1)^{\circ}$ /oo), (s. Anhg. 2) ergibt so eine Energieabweichung des ejizierten Strahles um 1-2 ^{o/}oo. Bemerkenswert ist in diesem Zusammenhang, daß bei $E_1 = 2.63$ GeV keine Abweichung der Primärenergie vom Sollwert außerhalb der Meßgenauigkeit von 1 ^o/oo festgestellt wurde.

5. AUSWERTUNG

5.1 Übersicht

Der Gang der Auswertung ist in Abb. 5.1 skizziert.

Die experimentellen Daten jedes registrierten Ereignisses liegen OFF LINE zunächst in der Form getroffener Zähler vor. Um hieraus Laborimpulse und Winkel zu gewinnen, wurden mit Monte Carlo Rechnungen, die die Apparatur bestmöglich berücksichtigen (vgl. GAYL und Kap. 4) Datensätze erstellt, die es ermöglichen, aus den Zählerkombinationen des Elektronenspektrometers die Kinematik des Elektrons, aus denen des Protonenarmes die des dort nachgewiesenen Teilchens abzulesen. Die Kenntnis der Laborkinematik erlaubt einmal nach Glg. (1.1) die Ermittelung der Missing Mass MM_{p} (MM_{π}) wenn angenommen wird, daß das nachgewiesene Teilchen ein Proton (Pion) ist, zum anderen mit Hilfe der Umkehrung von Glg. (1.2)

$$tg\Theta_{5}^{T} = \frac{1}{\sqrt{1-\beta_{3}^{2}}} \frac{\sin\Theta_{5}}{\cos\Theta_{5}-\beta_{3}/\beta_{5}}$$
(5.1)

die Berechnung des Polarwinkels im Schwerpunktsystem (CMS) der Hadronen, das sich mit der Geschwindigkeit β_3 im Labor bewegt. β_5 ist die Laborgeschwindigkeit des nachgewiesenen Teilchens. Um nach Abtrennen des Untergrundes (s.u.) den fünffachen differentiellen Wirkungsquerschnitt (1.23) zu berechnen, werden die verbliebenen Ereignisse in geeignete Bins I zusammengefaßt (I: $\int_{I} dr = \int_{I} dE_4 d\Omega_4 d\Omega_6^*$). Da jedoch i.a. nicht alle ursprünglich an der Stelle p im Konfigurationsraum der zu messenden Reaktion entstandenen Ereignisse von der Apparatur erfaßt werden, ist zur Querschnittsberechnung die Kenntnis der Akzeptanzwahrscheinlichkeit A(r,p)dr für diese Ereignisse erforderlich. Diese unter Berücksichtigung aller, die Akzeptanz bestimmender Effekte wie Targetausdehnung, Vielfachstreuung, Aperturen, Zählergrößen usw. analytisch zu ermitteln, stößt auf große Schwierigkeiten. Viel bequemer ist es, die Querschnitte über eine Monte-Carlo Simulation des Experimentes auszurechnen.

Die Verwendung einer Simulation des Experimentes bringt neben der einfachen Querschnittsberechnung vor allem den Vorteil großer Flexibilität, was die Behandlung der Daten anlangt (z.B. Anbringen von Cuts u. dgl.) wenn

ί.

.

.

Abb. 5.1 AUSWERTUNG (ÜBERSICHT)

nur die MC-Ereignisse genauso behandelt werden wie die experimentellen.

Einen wesentlichen Vorteil bietet die Simulation auch bezüglich der Behandlung von Strahlungseffekten. Da die Berechnung der Strahlungskorrekturen wesentlich von den experimentellen Akzeptanzen abhängt (CAFU, KOHA, URWI), empfiehlt es sich, Strahlungseffekte in die Simulation einzuschließen, d. h. anstelle der apparativen Akzeptanzen werden effektive, durch Strahlung modifizierte Akzeptanzwahrscheinlichkeiten eingeführt.

5.2 Querschnittsberechnung

Für die Zahlrate n_I im experimentellen Bin I = $\int_{I} dr$ erhält man mit T (p,p')dp als Wahrscheinlichkeit für die "Transformation" der Vertexkinematik p' nach p durch Strahlung und $\sigma_{e}(p')$ dem interessierenden Querschnitt:

$$n_{Ie} = K_{e} \int_{I} dr \int_{P} dp A_{e}(r,p) \int_{P} dp'T (p,p')\sigma_{e}(p')$$
(5.2)

 K_e ist das Produkt aus der Zahl der Primärteilchen und der Zahl der Targetteilchen/cm². Für die Monte Carlo Rate gilt eine (5.2) entsprechende Gleichung, wenn der Index e durch durch M ersetzt wird.

Mit der Annahme, daß die experimentelle Akzeptanz ($A_e = A_M$) und der relative Querschnittsverlauf in der Umgebung des Aufpunktes p' gut simuliert werden, erhält man für den Querschnitt in p'

$$\sigma_{e}(\mathbf{p}_{o}') = \frac{n_{Ie}}{\kappa_{e}} \cdot \frac{\sigma_{M}(\mathbf{p}_{o}')}{n_{IM}} \cdot \kappa_{M}$$
(5.3)

Die MC-Normierung K_M erhält man leicht durch Vergleich der MC-Einarm Rate $M_L(p)$ in einem geeigneten Intervall L mit dem Einarm Strahlungsquerschnitt σ_{rad} (p) (s. Anhang 3).

$$K_{M} = \frac{n_{L}(p)}{\sigma_{rad}(p)} .$$

Die Verwendbarkeit von Glg. (5.3) zur Querschnittsberechnung hängt natürlich von der Güte der Simulation ab, d.h. vom verwendeten Querschnitt $\sigma_{\rm M}$ und dem realistischen Teilchentransport durch die Spektrometer. Letzteres wurde durch den Vergleich mit der elastischen Streuung sichergestellt. Der Erzeugung von MC-Ereignissen im Bereich der 1. Resonanz wurde ein totaler Elektroproduktionsquerschnitt der Form (BART)

$$\sigma_{\text{Res}} = \frac{d^{3}\sigma}{d\Omega_{4}dE_{4}} \sim \Gamma_{t} G_{D}^{2} (q^{2}) |\bar{q}|^{b} \frac{1}{W(W^{2}-M^{2})} \frac{\Gamma(W)}{(W-1236)^{2} + \Gamma^{2}(W)/4}$$
(5.4)

zugrunde gelegt mit der durch Parametrisieren der πN -Streuphase δ_{33} gewonnen W - abhängigen Breite (DASU)

$$\Gamma(W) = 0.128(0.85 |\dot{p}_{\pi}^{*}| / m_{\pi})^{3} / (1 + (0.85 |\dot{p}_{\pi}^{*}| / m_{\pi})^{2})$$

und dem Dipolformfaktor $G_D(q^2)$. b(W) ist eine experimentell gewonnene, bei W = 1.236 GeV nur schwach von W abhängige Funktion (BART, BRAS). Für die Simulation wurde b(W) = 1.6 gesetzt.

Nach (5.4) wurden wie im Anhang 3 näher ausgeführt, unter Anwendung der Peakingnäherung für die interne Strahlung zunächst Elektronenstreuereignisse produziert und in Datensätzen bereitgestellt.

Zu diesen Ereignissen wurden dann in einem zweiten Schritt Protonen entsprechend der bei $q^2 = 15 f^{-2}$ (GAYL) erhaltenen Winkelverteilung erzeugt. Die so bei $q^2 = 25 f^{-2}$ gefundene Winkelverteilung wurde anschließend einmal iteriert (Abb. 5.1). Die Änderung der Winkelverteilungskoeffizienten durch diese Iteration lag innerhalb der Fehler des ersten Schrittes. Daher wurde auf eine weitere Iteration verzichtet.

5.3 Datenreduktion

Die Auswertung der experimentellen Daten erfolgt in zwei Schritten (vgl. Abb. 5.1).

- A Beseitigung von Mehrdeutigkeiten und Abtrennen von Untergrundereignissen (Kap. 5.32)
- B Identische Analyse von Experiment und Monte Carlo Ereignissen (Kap. 5.33)

Zur Aufstellung von Kriterien für die Kurchführung von A ist es nötig, kurz auf die möglichen Untergrundarten einzugehen.

5.31 Untergrund

Die massive Eisenabschirmung des <u>Elektronenspektrometers</u> wirkt sich dahingehend aus, daß zufällige Elektronenereignisse praktisch nicht auftreten (Kap. 3.2). Neben eindeutigen Ereignissen (pro Hodoskop nur ein Kanal) gibt es jedoch einen nicht unerheblichen Anteil an Ereignissen, bei denen mehrere Kanäle in einem Hodoskop angesprochen haben. Die Behandlung dieser Ereignisse wird in Kap. 6.3 angegeben.

Bezüglich des Protonenarmes werden zwei Arten von Untergrund unterschieden, je nachdem, ob die nachgewiesenen Teilchen durch einen Streuprozeß korreliert sind (UK) oder nicht (UG). Zum erstgenannten zählen die Beiträge aus den Reaktionen

$$e p \longrightarrow e n \pi^+$$
$$\longrightarrow e p \pi \pi$$

während unter UG jeglicher unkorrelierter Schmutz fällt. Letzterer ist beträchtlich, da die Hodoskope zwar bis auf die direkte Sicht zum Target gegen den Primärstrahl durch Beton, teilweise auch durch Blei abgeschirmt, dem Strahlungsuntergrund in der Halle jedoch voll ausgesetzt waren. Messungen mit GM als OR (s. Abb. 3.3) ergaben innerhalb der Koinzidenzauflösungszeiten der Hodoskope folgende Registrierwahrscheinlichkeiten von UG

für	H1:	w _{H1}	=	(0.15	-	0.19)/EM	unabhäng.	von	^H 2
für	H2:	w _{H2}	=	(0.25	-	0.45)/EM	unabhäng.	von	H ₁

Bei einer Akzeptanzwahrscheinlichkeit für ein Proton aus der Reaktion ep→epπ^o von ungefähr 0.01/EM bedeutet dies eine Überhöhung von UG um einen Faktor

14

rechts: nach der Reduktion A verbliebene "gute" Ereignisse.

5

.

3-7.5 je nach Stellung des Protonenarmes.

Wegen der Größe von wH1 und wH2 treten folgende Effekte auf

- 1. Zufällige Koinzidenzen zwischen Hl und H2 (auch mehrdeutige),
- 2. Mehrdeutigkeit bzw. falsche Kodierung beim Durchgang eines guten Teilchens in Koinzidenz mit einem zufälligen "Ereignis".

Eine genauere Analyse der voneinander unabhängig gemessenen Häufigkeitsverteilungen in H1 und H2 ergibt, daß der Untergrund "quasi-neutral" ist; d.h. durch neutrale bzw. geladene Teilchen so kleiner Energie hervorgerufen wird, daß mit großer Wahrscheinlichkeit nur ein Szintillator anspricht. Daher sind die Kanäle in einer Kammer, die nur durch einen Szintillator definiert sind (S-Kanäle), also die Kanäle 1, 3, 7, 15, 31 durch UG stark überhöht. Hierzu ein besonders ungünstiges Beispiel: In der Stellung $T_5=34^{\circ}$ wurde die Wahrscheinlichkeit w, ein Ereignis in Kammer 9 von H2 unabhängig von H1 zu registrieren, zu w = 0.125/EM gemessen, 6-Kanäle trugen zu ws = 0.115/EM, Kanäle mit zwei Szintillatoren zu wm = 0.0086/EM bei, während die Wahrscheinlichkeit, ein gutes Proton zu registrieren nur ungefähr wm/6 betrug. Legt man dem auf die Kammer einfallenden Teilchenfluß eine aus der gemessenen Trefferwahrscheinlichkeit berechenbare Poissonverteilung zugrunde, so stimmen die damit berechneten Werte für ws und wm innterhalb 10 % mit den gemessenene Werten überein und bestätigen so die Annahme, daß der Untergrund quasineutral ist.

5.32 Reduktionsverfahren A

a) eindeutige Trajektorien in Hl und H2

Abb. 5.2 zeigt die bei der Spektrometerstellung 34° gemessene H1-H2 Verteilung mit den eingezeichneten Akzeptanzgrenzen für mögliche Trajektorien nach MC-Rechnungen (0.5 < p_5 < 1.45) GeV. Ereignisse außerhalb der Akzeptanz werden ausnahmslos verworfen. Darüber hinaus werden wegen der erwähnten Eigenschaften von UG Ereignisse nur weiterverarbeitet, wenn für die Summe Ns der in H1 und in H2 getroffenen Szintillatoren gilt:

$Ns \ge 3$

Dies bedeutet eine Verkleinerung der Akzeptanz um ca. 2.6 % bei gleichzeitiger Reduktion des Untergrundes um bis zu 95 %.

Das zur Auswertung angewandte Verfahren erlaubt es, Schnitte jeder Art einzuführen, wenn dieselben auch zur Auswertung der MC-Ereignisse eingeführt werden.

Insbesondere müssen der Schnitte wegen keine zusätzlichen Korrekturen angebracht werden.

b) mehrdeutige Ereignisse in H1 und H2

Die sich durch die Kombinationen der getroffenen Kanäle ergebenden Trajektorien werden einzeln zunächst wie die der eindeutigen Ereignisse bezüglich Akzeptanz und Ns \geq 3 analysiert. Falls hierdurch die Merhdeutigkeit nicht beseitigt wird, erfolgt eine weitere Reduktion durch Verwerfen von S-Kanälen, wenn im gleichen Hodoskop mindestens ein Kanal mit mehr als einem Szintillator (M-Kanal) beteiligt ist. Mit wm ≤ 0.0086 und einer Wahrscheinlichkeit wgs = 5/31 dafür, daß ein gutes Proton im S-Kanal liegt, ist der Fehler, der dadurch entsteht, daß gute S-Kanal-Protonen verworfen werden, zu vernachlässigen. Nicht eindeutige Trajektorien werden anschließend bezüglich MM² analysiert. Das zugelassene Intervall, $-0.02 \leq MM^2_{p} \leq 0.08$, enthält alle in der weiteren Auswertung eingeführten MM^2_p -Schnitte. Mit diesem Verfahren bleiben weniger als 1.5 % der nach dem Reduktionsverfahren A als "gut" angesehenen Ereignisse mehrdeutig. Hierfür wird bei der Querschnittsberechnung eine Korrektur angebracht (Kap. 6.4).

c) weitere Schnitte

Die nach a) und b) verbliebenen Ereignisse zeigen noch eine deutliche Überhöhung der S-Kanäle in direkter Sicht zum Target gegenüber M-Kanälen, obwohl Trajektorien mit Ns<3 bereits eliminiert wurden. Der Grund hierfür ist, daß wm(H1)·ws(H2) bzw. ws(H1)·wm(H2) in der Akzeptanz wesentlich größer als die entsprechenden Wahrscheinlichkeiten für gute Protonen sind. Daher werden Ereignisse mit S-Kanälen in H1 und direkter Sicht auf das Target verworfen. Bezüglich H2 reicht es aus, S-Kanäle nur dann zu eliminieren, wenn keine H3-Information vorliegt. Durch den Schnitt in H1 wird die Akzeptanz um ungefähr 9 % verkleinert, durch den in H2 wird wegen der fehlerhaften Ansprechwahrscheinlichkeit von H3 ein Fehler von maximal 0.5 % gemacht.

d) Abtrennen von Pionen

Wie in Kap. 1.1 erwähnt, ist die Abtrennung von Pionen durch Missing-Mass-Schnitte nicht immer eindeutig. Daher wird hierzu die gemessene Flugzeit (TOF) verwendet. In Abb. 5.3 a ist eine gemessene Verteilung (TOF gegen 1/P₅) wiedergegeben, in der deutlich zwei Bereiche zu erkennen sind, in denen sich Ereignisse häufen. Bereich I wird wegen seiner MM_p^2 -Verteilung (Abb. 5.3 b), bzw. TOF-Ausdehnung nachgewiesenen Protonen, Bereich II wegen seiner MM_{π} -Verteilung nachgewiesenen Pionen zugeordnet (Abb. 5.3 e). Abb. 5.3 c zeigt zum Vergleich die MM_{π} -Verteilung der Ereignisse aus Bereich I. Ereignisse aus II werden, sofern ihr $MM_{\pi} \ge 0.8$ GeV ist verworfen.

Abb. 5.3 d zeigt die MM_p^2 - Verteilung für Ereignisse außerhalb der Bereiche I und II für die TOF-Information Ø registriert wurde. Die noch deutliche Überhöhung der Verteilung bei $MM_p^2 = m_\pi^2$ deutet an, daß durch zufällige Ereignisse in H3 mit endlicher Wahrscheinlichkeit Protonenflugzeiten verfälscht wurden. Allerdings ist der Untergrund unter diesem Peak beträchtlich. Nach Anbringen der Schnitte im Teil B der Auswertung bleiben von den gezeigten Ereignissen nur ungefähr 20 % (\doteq Nx) in den zugelassenen Intervallen, das sind etwa 1 % der zur Querschnittsberechnung zugelassenen Ereignisse (NQ). Da andererseits auch Ereignisse ohne Flugzeitinformation zur Auswertung herangezogen werden, etwa 13 % von NQ wegen der kleineren Akzeptanz von H3 und Ansprechwahrscheinlichkeit < 1, deren Anteil an Untergrundereignissen (UGa) sicher etwas größer als derjenige von Ereignissen mit voller Information ist, bleibt Nx bei der Querschnittsberechnung zur Kompensation von UGa unberücksichtigt. Stattdessen wird ein Fehler von 1% eingeführt (Kap. 6.4).

5.33 Identische Analyse (B)

Da aufgrund der Messungen mit GM als OR (Kap. 3.3) mit einer im Mittel bekannten Wahrscheinlichkeit experimentelle Ereignisse durch zufällige Teilchen in derselben Kammer eines Hodoskopes falsch kodiert wurden, wird diese Fehlregistrierung auf die MC-Ereignisse übertragen, indem mit den experimentell ermittelten Wahrscheinlichkeiten für zufällige Teilchen andere Kanäle derselben Kammer logisch zu der ursprünglichen Information addiert werden.

Da außerdem wegen der Größe von wH1 und wH2 (vgl. 5.31) die experimentellen Daten sicher noch, von guten Ereignissen nicht abtrennbaren, Untergrund enthalten, werden, um die Simulation realistischer zu machen, entsprechend wH1 und wH2 pro gutes MC-Proton wz Untergrundereignisse erzeugt.

$$w_z = \frac{wH1 \cdot wH2}{wG}$$

wG ist die Wahrscheinlichkeit, pro Elektron ein gutes Proton nachzuweisen. Diese Ereignisse werden entsprechend den gemessenen Kanalhäufigkeiten ohne

14.3

f: MM der Ereignisse aus II, $M_5 = m_{\pi}$ angenommen.

geometrische Korrelation zwischen H1 und H2 auf die Kanäle der Hodoskope verteilt.

wz ist maximal 7.5 (bei $T_5 = 34^{\circ}$). Diese zusätzlich erzeugten Ereignisse bewirken jedoch nach Anwendung aller bei der Auswertung der experimentellen Ereignisse gemachten Schnitte nur eine Korrektur von ca. 1 %. Ein Einfluß auf die Winkelverteilung ist wie für die künstlich falschkodierten Ereignisse nicht sichtbar.

Die so modifizierten MC-Ereignisse sowie die experimentellen aus Teil A der Analyse werden entsprechend ihrer Zugehörigkeit zu einem der 10 W-intervalle I_k

 $I_k: |w^{-}(1136+k\cdot 20)| < 10 \text{ MeV}, k = 0,...,9$

mit verhältnismäßig engen P₅ -abhängigen Missing-Mass Cuts versehen, um die starke Überhöhung der guten Ereignisse gegenüber dem restlichen Untergrund in der Nähe von $MM_p^2 = m_\pi^2$ auszunutzen.

Bei identischen M_5^2 -Verteilungen für exp. und MC-Ereignisse ist der nach (5.3) berechnete Querschnitt, abgesehen von der geänderten Statistik unabhängig von für beide Ereignisarten identischen Schnitten, da beide um denselben Faktor reduziert werden. Da der Untergrund in der Nähe von m_{π}^2 keine ausgeprägte Struktur hat, wäre die Reduktion am effektivsten wenn nur ein schmaler Bereich im Peak zur Auswertung zugelassen würde. Wegen möglicher Diskrepanzen zwischen MC und Experiment, sowie um nicht zu viele Ereignisse für die Querschnittsberechnung zu verlieren, wird zweckmäßig an den flachen Ausläufern des Peaks geschnitten. Eine Verfeinerung wird durch die Wahl P5-abhängiger Cuts erreicht. Ereignisse innerhab der oben eingeführten W-Intervalle werden zur Querschnittsberechnung in cos Θ_6^{-} - Ø - Bins zusammengefaßt (vgl. Kap. 5.1). Die Größe dieser Intervalle ist nicht konstant gewählt, sondern es wurde der in der Akzeptanz unterschiedlichen Auflösung Rechnung getragen. Als Maß für die Intervallgröße diente die Streuung der betreffenden Vertexwerte der MC-Ereignisse. Dabei erwiesen sich die bei der Auswertung der Daten zu $q^2 = 15 f^{-2}$ eingeführten Intervalle als geeignet (GAYL).

Zur Berechnung der Querschnitte nach Glg. (5.3) werden die Vertexmittelwerte von cos Θ_6^* und Ø der im betreffenden Intervall akzeptierten MC-Ereignisse, sowie die in Tabelle 1, Kap. 7.1 aufgeführten Werte für die Elektronenkinematik verwendet, d.h. der Aufpunkt p' entspricht diesen Werten.

6. KORREKTUREN UND FEHLER

6.1 Strahlungsquerschnitt

Die Verwendung eines falschen relativen Querschnittes zur MC-Simulation wirkt sich nach Glg. (5.3) in erster Näherung nur über die Behandlung der Strahlungseffekte auf den interessierenden Querschnitt aus. Zur Ermittelung des so entstandenen Fehlers wurde die Abhängigkeit von S = $\sigma_{\rm M}(p_{\rm o}')/\sigma_{\rm rad}$ (Kap. 5.2) vom verwendeten Querschnitt (Glg. 5.4) untersucht.

Eine Verschiebung der Resonanzmasse um-6 MeV in (5.4) bewirkt Änderungen ΔS von S um weniger als 1 % für 1.136 < W < 1.316 GeV. Eine Variation der $|\vec{q}|^{-}$ Abhängigkeit von $|\vec{q}|^{1.6}$ auf $|\vec{q}|^{1.8}$ ergab vernachlässigbares ΔS . Um den Einfluß der W-Abhängigkeit auf S festzustellen, wurde der in Kap. 7.4 angegebene totale Querschnitt σ_t als Summe eines resonanten (σ_{res} , vgl. 5.4) und eines nichtresonanten mit gleicher q²-Abhängigkeit wie σ_{res} in der Form

$$\overline{\sigma}_{t} = \sigma_{res} + f(q^{2}) \left[W - W_{S} (a+b(W - W_{S}) + c(W - W_{S})^{2}) \right]$$
(6.1)

mit W_S = M + m_{\pi} gefittet. Die Verwendung von (6.1) ergab $\bigtriangleup S < 2$ % im angegebenen W-Bereich.

Außer vom zugrunde gelegten Querschnitt hängt S auch von den verwendeten Methoden zur Berechnung von σ_{rad} ab. Rechnungen mit verschiedenen Kernen Ki (vgl. Anhang 3) lieferten jedoch $\Delta S < 1$ %. (Es wurden untersucht: äquivalente Radiatoren (MOTS) und (TSA2) sowie normale Peakingkerne nach Mo und Tsai). Als Unsicherheit des verwendeten Querschnitts bzw. der Berechnung von σ_{rad} wird

die Wurzel aus der quadratischen Summe der erwähnten Einzelabweichungen angegeben. Sie beträgt 3 %.

6.2 Weitwinkel Bremsstrahlung (WAB)

Protonen aus der Reaktion ep→epγ können zur Koinzidenzrate beitragen, wenn die Masse des Systems aus Proton und Photon im interessierenden W-Bereich liegt, das Proton akzeptiert wird und die experimentelle Missing-Mass Auflösung nicht ausreicht, Ereignisse mit $MM_p^2 = 0$ von solchen mit $MM_p^2 = m_\pi^2$ sauber zu trennen. In "Peaking-Näherung" würden die WAB-Beiträge hier verschwinden, da die Strahlungspeaks außerhalb der Akzeptanz liegen (Abb. 1.3). Die Peaks haben jedoch eine endliche Breite, so daß eventuell in einiger Entfernung vom Maximum noch Strahlungsbeiträge zu berücksichtigen sind. Außerdem ist bekannt (MOTS), daß auch für $\Theta_{\gamma} = 0^{\circ}$ wegen der q²-Abhängigkeit der Formfaktoren große Strahlungs-

querschnitte auftreten können. (Θ_{γ} ist der Winkel zwischen $\vec{q} = \vec{p}_1 - \vec{p}_4$ und der Richtung des Photons). In Abb. 6.1 ist der Verlauf des differentiellen Strahlungsquerschnittes

$$\frac{d^{4}\sigma}{d\Omega_{4}dE_{4}d\cos\Theta_{\gamma}} = f(\Theta_{\gamma})$$

in niedrigster Ordnung von α aufgetragen (MOTS). Die beiden Peaks entsprechen der γ -Emission in Richtung der primären bzw. sekundären Elektronen. Eine Überhöhung bei $\Theta_{\gamma} = 0$ ist nicht zu sehen. Um die WAB-Beiträge zum gemessenen π^{\bullet} -Querschnitt quantitativ zu ermitteln, wurde der 5-fach differentielle Strahlungsquerschnitt $d^5\sigma/d\Omega_4 dE_4 d\Omega_{\gamma}$ (Ω_{γ} : γ -Raumwinkeldifferential) in das durch die Elektronenkinematik $\vec{q} = \vec{p}_1$ -10^{-33} $-\vec{p}_4$, $W^2 = (p_1 - p_4 + p_2)^2$ festgelegte fiktive Schwerpunktsystem transformiert und für Protonen in der Akzeptanz des Protonenspektrometers berechnet.

Die so ermittelten, durch WAB vorgetäuschten π° -CMS-Querschnitte sind i.a. kleiner als 1 $^{\circ}$ /oo der im Angang 1 angegebenen, können jedoch lokal (d.h. für Raumwinkel < 10 $^{-6}$ sr) auch wenige Prozente von $\frac{d\sigma}{d\Omega_6}$ erreichen (z.B. bei T₅ = 50 $^{\circ}$ und kleinem W an dem, dem Sekundärpeak nahen Akzeptanzrand). Die Größe der gewählten cos $\Theta_6^* - \emptyset$ - Bins (Kap. 5.33) sorgt aber wieder dafür, daß der WAB-Einfluß zu vernachlässigen ist.

6.3 Mehrdeutige Elektronenereignisse

Im Gegensatz zu den mehrdeutigen Ereignissen im Protonenspektrometer treten mehrdeutige Elektronenereignisse nicht als Folge von "Zufälligen", sondern

a: Cerenkov - Schauer Spektrum für mehrdeutige Elektronenereignisse

- b: Zum Vergleich dasselbe für eindeutige Elektronen
- c: Nach Anbringen von Amplituden-Multiplizitäts-Korrelierten Cuts übrig bleibende Ereignisse aus a.

korreliert mit Elektronen auf, die in die Apertur des Magnetsystems fallen. Ein Teil (A) dieser Ereignisse stammt aus außerhalb der Akzeptanz (z.B. an Magnetwänden) gebildeten Schauern, für die aufgrund der Winkelaufstreuung eine endliche Nachweiswahrscheinlichkeit besteht. Der andere Teil (B) entsteht durch Schauerbildung, bzw. &-Elektronen, innerhalb der Akzeptanz etwa an Zählermaterie und bewirkt aus geometrischen Gründen im wesentlichen Vielfache im Impulshodoskop. Für den zuletzt genannten Anteil wurde eine Korrektur k am Querschnitt angebracht. Zur Trennung der Anteile A und B wurden die Amplitudenspektren des Schauer- und Cerenkovzählers verwendet. Abbildung 6.2 a zeigt das 3-dimensionale Cerenkov-Schauerspektrum für mehrdeutige, während in Abb. 6.3 b zum Vergleich das entsprechende Spektrum für eindeutige Elektronenereignisse zu sehen ist. Die Untersuchung der Ereignisse aus Abb. 6.2 a ergab, daß kleine Schauer- bzw. größte Čerenkov-Amplituden fast nur durch hohe Multiplizitäten in den Winkelhodoskopen entstehen. Daher wurden Ereignisse mit hoher Multiplizität in den Winkelhodoskopen sowie kleinen Schauer-und großen Cerenkov-Amplituden dem Anteil A zugeschrieben und verworfen. Nach einer Analyse der zum Rest gehörenden Protonen (Kap. 5.32) bleibt der in Abb. 6.2 c gezeigte Anteil übrig (I). Da andererseits eine Analyse nur mit einfachen Ereignissen im \odot - und Ø-Hodoskop (Impulshodoskop gemittelt) zu vergleichbaren Korrekturen führte (II), wurde als wahrscheinlichste Korrektur k der Mittelwert aus den aus I und II ermittelten Korrekturen angebracht. Es ergab sich k zu

k≈11 ± 2 %

wobei der angegebene Fehler der maximalen Abweichung vom Mittelwert entspricht. Die Korrektur k war weitgehend unabhängig von der Masse W des hadronischen Systems und wurde daher gleichmäßig an allen Zählraten des Elektronenspektrometers angebracht.

6.4 Weitere Korrekturen

Targetlänge

Wegen der Ausdehnung des Primärstrahles und der sphärischen Form der Targetendflächen ergab sich eine Korrektur zur gemessenene Targetlänge von ungefähr 0.5 %. Der Fehler der effektiven Targetlänge wird wegen der Unsicherheit der Dichte und Länge zu 1 % angenommen.

Ansprechwahrscheinlichkeit der Zähler

Aufgrund der gemessenen Amplitudenspektren aller Einzelzähler sowie aus den gemessenen unteren Schranken für die Ansprechwahrscheinlichkeit wird die Nachweiswahrscheinlichkeit im Elektronenspektrometer zu 0.995⁺0.005 angenommen. Fehlerhaftes Ansprechen der Zähler in den Hodoskopen HI und H2 der Protonenseite macht sich kaum anders als durch falsche Kodierung bemerkbar.

Ladungsmessung

Zur Kontrolle der Messung mit dem Faradaykäfig diente der SEM (s. Kap. 2.2), sowie das Verhältnis V_f der Zählrate im Elektronenspektrometer (EM') zur Faradayladung. Für die Messungen bei $T_5 = 34^\circ$ und $41,7^\circ$ war V_f im Mittel um 1.2 % verschieden, während es bei der Messung zu $T_5 = 50^\circ$ aus nicht ganz geklärten Gründen mit der Zeit um insgesamt 3.2% zunahm. Das Verhältnis von EM⁻ zur SEM-Anzeige zeigte diese Drift nicht und stimmte mit dem Mittelwert der 34° und 41.7° -Messung überein. Da die Messungen bezüglich V_f identisch sein sollten, wurde als wahrscheinlichster Wert der Mittelwert aus den Messungen zu 34° und 41.7° definiert und die Faradayladung entsprechend korrigiert. Zur Berücksichtigung dieser Unsicherheiten wurde zusätzlich zu dem in (DESH) angegebenen Fehler der Ladungsmessung durch die Kombination Faradaykäfig-(0.5%) - Integrator 0.5% bei Vollausschlag) ein weiterer Fehler von 1.5% eingeführt. Somit ergibt sich der Fehler der Ladungsmessung zu ca. 2%.

Protonenanalyse

Für die nicht analysierten mehrdeutigen Protonenereignisse wird die in Kap. 5.3 eingeführte Korrektur von 0.7 - 1.2 % je nach Spektrometerwinkel angebracht. Als Fehler bei der Behandlung der Ereignisse ergaben sich (ygl. Kap. 5.3)

1.5 % durch die Schnitte in der Flugzeit0.5 % durch die Elimination der S-Kanäle in H2.

Zusätzlich wurde ein Fehler von 1 % als Unsicherheit in der Abtrennung des Untergrundes angesetzt. Hiermit ergibt sich ein Fehler von 2 % nach quadratischer Addition.

Akzeptanzen

Der Fehler der Akzeptanz des Elektronenspektrometers setzt:sich aus den Fehlern der Einmessung der Hodoskope(⁺ 2 mm senkrecht zum Sollstrahl) und denen der magnetischen Komponenten zusammen. Die Auswirkung dieser Unsicherheiten auf die Akzeptanz wurde durch Monte Carlo-Rechnungen untersucht. Es ergab sich dabei ein Fehler von <1 % für die Akzeptanz.

Der Fehler der Akzeptanz des Protonenspektrometers ergab sich zu 1.5 % aus der Akzeptanzwahrscheinlichkeit von elastisch gestreuten Protonen bei Koinzidenzmessungen.

Absorption

Durch Kernwechselwirkung treten Protonenverluste im interessierenden Impulsbereich von 0.45 % pro Szintillator in Hl auf. Diese Korrektur, ebenso wie Energieverluste der Protonen durch Ionisation im Target wurde an den MC-Ereignissen angebracht.

Die folgende Tabelle faßt die eingeführten Fehler und Korrekturen noch einmal zusammen.

	Korrektur	Fehler	
Ansprechwahrscheinlichkeit			
der Zähler	0.5 %	0.5 %	70
Target	0.5 %	1. %	70
Ladungsmessung	-1.6 - 0.6 %	2. %	7
Protonenanalyse	0.7 - 1.2 %	2. %	10
Elektronenanalyse	11.0 -11.6 %	2. %	70
Akzeptanz Elektronenspektrom.		1. %	7
Akzeptanz Protonenspektrom.		1.5 %	7
Monte Carlo Normierung (Strahlun korrektur)	gs-	3. %	7

quadratisch addiert

5 %
7. ERGEBNISSE

7.1 Wirkungsquerschnitte

Nach Anbringen der im vorangehenden Kapitel angegebenen Korrekturen ergeben sich die im Angang I tabellarisch erfaßten Wirkungsquerschnitte. Die angegebenen Fehler sind statistische. Zur absoluten Normierung ist der systematische Fehler von 5 % zu berücksichtigen.

7.2 Winkelverteilungen

Mit der Annahme, daß nur S- und P-Wellen im CMS von π° und Proton zum Querschnitt beitragen, lassen sich die Koeffizienten der Winkelverteilung Glg. (1.25) nach $\cos \theta_6^*$ entwickeln.

A	=	Ā	+	A ₁ cos0 [*] 6 ⁺	A2co	s ² 0	Ś		
С	=	Co							(7.1)
D	=	Do	+	D ₁ cos⊖ ₆ *					

Die 6 Koeffizienten sind von Θ_6^* unabhängige Funktionen von W und q 2 . Diese Koeffizienten wurden unabhängig von W für die 10 W-Intervalle (s. Tabelle 3) an die gemessenene Querschnitte mit Hilfe einer Maximum-Likelihoodfunktion angepaßt (vgl. GAYL). Der Likelihoodfunktion liegt eine Poissonverteilung der Ereignisraten in den einzelnen coso^{*}, Ø-Intervallen zugrunde, um den auftretenden kleinen Ereigniszahlen Rechnung zu tragen. Die Ergebnisse dieses Fits sind in Tabelle 1 und in Abb. 7.1 aufgeführt. Die angegebenen Fehler der Koeffizienten sind größtenteils statistischer Natur. Zusätzlich wurden Fehler in der relativen Normierung der Messungen zu den 3 Stellungen des Protonenarmes dadurch berücksichtigt, daß die Normierung der Einzelmessung mit 3 % Standardabweichung normalverteilt um den jeweiligen Meßwert durch den Fit bestimmt wurde. Außerdem wurde die schlechtere Kenntnis des Protonenspektrometers außerhalb des durch elastische Testmessungen erfaßten Bereiches, sowie die größere Unsicherheit in der Behandlung des Untergrundes bei kleinen Impulsen durch Einführen eines linear vom Laborimpuls des Protons abhängigen Fehlers berücksichtigt. Die Erweiterung der Likelihoodfunktion durch diese Parameter führte bei vernachlässigbarer Auswirkung auf die Werte der Koeffizienten

TABELLE 1

KOEFFIZ. DER ""-WINKELVERT. IN "b/sr UND DER DARAUS GEW. TOTALE " -PROD.-QUERSCHNITT IN "b

92+-0.46 71+-0.29 64+-0.57	1.19+-0.52 0.90+-0.45	0.22+-1.58	1.02+-1.23	-0.98+-0.20	-0.43+-0.41	7t 24.8+-3.3	Fr 	CH1/Fr
92+-0.46 71+-0.29 64+-0.57	1.19+-0.52 0.90+-0.45	0.22+-1.58	1.02+-1.23	-0.98+-0.20	-0.43+-0.41	24.8+-3.3		
64+-0.57	0.90 + - 0.45	1.14+-0.88	0 1 5 . 0 / 7			L	40	1.08
04+-0.51	1.15+=0.36		0.15+-0.47	-1.00+-0.21	-0.39+-0.43	26.1+-3.2	27	1.14
	1.15. 0.50	-0.34+-1.04	-0.52+-0.96	-0.51+-0.38	-0.26+-0.41	32.3+-3.0	47	1.02
83+-0.39	1.24+-0.33	-0.76+-0.82	-0.11+-0.44	-0.64+-0.27	-0.21+-0.38	32.6+-2.9	49	1.05
28+-0.32	2.14+-0.32	-1.25+-0.75	-2.06+-0.41	-1.18+-0.22	-2.19+-0.46	62.1+-3.6	93	0.83
81+-0.42	2.28+-0.39	-2.67+-0.93	-3.94+-0.47	-1.22+-0.28	-3.08+-0.50	86.5+-4.1	110	1.10
49+-0.47	2.31+-0.48	-4.55+-0.89	-5.50+-0.59	-0.54+-0.28	-1.67+-0.43	100.9+-4.3	103	1.04
33+-0.40	1.38+-0.36	-3.63+-0.80	-5.85+-0.52	-0.73+-0.22	-2.22+-0.42	89.6+-4.1	99	0.97
06+-0.38	1.71+-0.32	-4.32+-0.65	-3.70+-0.45	0.05+-0.24	-0.99+-0.39	71.0+-3.6	PQ	1.14
60+-0.51	0.82+-0.36	-2.87+-0.82	-3.38+-0.47	-0.48+-0.27	-1.12+-0.34	59.1+-3.1	70	1.01
65+-0.41	1.13+-0.23	-3.36+-0.59	-2.47+-0.45	-0.46+-0.29	-0.84+-0.34	44.7+-2.8	63	0.73
87+-0.37	0.99+-0.27	-2.70+-0.59	-1.91+-0.45	-0.96+-0.31	-1.07+-0.34	37.0+-2.7	49	0.96
	83+-0.39 28+-0.32 81+-0.42 49+-0.47 33+-0.40 06+-0.38 60+-0.51 65+-0.41 87+-0.37	83+-0.39 1.24+-0.33 28+-0.32 2.14+-0.32 81+-0.42 2.28+-0.39 49+-0.47 2.31+-0.48 33+-0.40 1.38+-0.36 06+-0.38 1.71+-0.32 60+-0.51 0.82+-0.36 65+-0.41 1.13+-0.23 87+-0.37 0.99+-0.27	83+-0.39 1.24+-0.33 -0.76+-0.82 28+-0.32 2.14+-0.32 -1.25+-0.75 81+-0.42 2.28+-0.39 -2.67+-0.93 49+-0.47 2.31+-0.48 -4.55+-0.89 33+-0.40 1.38+-0.36 -3.63+-0.80 06+-0.38 1.71+-0.32 -4.32+-0.65 60+-0.51 0.82+-0.36 -2.87+-0.82 65+-0.41 1.13+-0.23 -3.36+-0.59 87+-0.37 0.99+-0.27 -2.70+-0.59	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{c} 83+-0.39 \\ 1.24+-0.33 \\ 2.14+-0.32 \\ 2.14+-0.32 \\ -1.25+-0.75 \\ -2.06+-0.41 \\ -1.18+-0.22 \\ -2.19+-0.46 \\ -2.19+-0.47 \\ -2.19+-0.46 \\ -$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$

BEI DEN MIT * GEKENNZEICHNETEN FITS WURDE C = 0. GESETZT, SIEHE TEXT

TABELLE 2

PARAMETRISIERUNG DER π^{0} -WINKELVERTEILUNG DURCH [M1+] UND INTERFERENZTERME

W[G _e V]	F* M1+ ²	$\frac{R_{e}(M1+F1^{*}+)}{ M1+ ^{2}}$	$\frac{R_{e}(M1+M1^{*})}{ M1+ ^{2}}$	<u>Re(M1+F0+)</u> M1+ ²	<u>Re(M1+Ŝ0+</u>) M1+ ²	$\frac{Re(M1+S1+)}{ M1+ ^2}$
1.176	2.010+-0.160	0.032+-0.033	-0.177+-0.053	0.399+-0.106	-0.333+-0.083	-0.120+-0.029
1,196	3.036+-0.185	0.027+-0.025	-1.094+-0.041	0.281+-0.087	-0.238+-0.065	-0.112+-0.021
1.216	3.809+-0.209	0.022+-0.023	-0.027+-0.030	0.279+-0.070	-0.079+-0.049	-0.052+-0.014
1.236	3.405+-0.172	0.056+-0.022	0.017+-0.034	0.164+-0.062	-0.126+-0.051	-0.081+-0.017
1.256	2.606+-0.168	-0.023+-0.026	-0.010+-0.038	0.344+-0.071	0.048+-0.061	-0.042+-0.017
1.276	2.247+-0.116	0.023+-0.037	-0.009+-0.046	0.137+-0.073	-0.126+-0.075	-0.059+-0.020
1.296	1.635+-0.119	-0.052+-0.041	0.055+-0.073	0.307+-0.082	-7.168+-0.118	-0.061+-0.029
1.316	1.257+-0.126	-11.166+-1.160	0.070+-0.078	0.210+-0.000	-0.508+-0.190	-0.102+-0.041

.

<u>Abb. 7.1</u> Koeffizienten der π⁰-Winkelverteilung für S- und P-Wellen im Vergleich mit den Vorhersagen des dispersionstheoretischen Modells von v. Gehlen (GEHL) und den Messungen von Moritz et al. (MORI).

nur zu einer Vergrößerung der durch den Fit bestimmten Fehler. Da für W = 1.136 und 1.156 GeV die experimentellen Daten im wesentlichen in der Nähe von $\emptyset = 45^{\circ}$ bzw. $\emptyset = 135^{\circ}$ liegen, läßt sich der Koeffizient C_o wegen der cos2 \emptyset - Abhängigkeit dort nur sehr schlecht bestimmen. Daher wurde C_o für diese W-Werte um O. normalverteilt mit einer Standardabweichung von O.5µb/sr vorgegeben. Die Ergebnisse dieses Fits sind in der durch * gekennzeichneten Zeilen der Tabelle 1 angegeben. Ebenfalls aufgeführt sind in der Tabelle die Zahl der Freiheitsgrade des Fits und die χ^2_{-} -Werte.

7.3 D-Wellen

Fits unter Einschluß von $\overline{A}_3 \cos^3 \Theta^*$, $C_1 \cos \Theta^*$, $D_2 \cos^2 \Theta^*$ entsprechend den D-Wellenanteilen mit Gesamtdrehimpuls j = 3/2 verändern die Koeffizienten für S un P-Wellen kaum innerhalb der angegebenen Fehler und liefern Werte für \overline{A}_3 , C_1 und D_2 im Bereich 1.176 $\leq W \leq 1.316$ GeV, die innerhalb großer Fehler (alle > lµb/sr) mit Null verträglich sind. Dieser Sachverhalt rechtfertigt die Annahme, daß nur S und P-Wellen zu den gemessenen Querschnitten beitragen, d.h. daß die Daten unempfindlich auf eventuelle kleine D-Wellenbeitrage sind.

7.4 Totaler Querschnitt

Die Integration von $d\sigma/d\Omega_6^*$ über den ganzen Paumwinkel des π° liefert den totalen π° -Wirkungsquerschnitt für virtuelle Photonen, (vgl. 1.26)

$$\overline{\sigma}_{t}(W,q^{2}) = \int \frac{d\sigma}{d\Omega_{6}^{*}} d\Omega_{6}^{*} = 4\pi (\overline{A}_{0} + \overline{A}_{2}/3)$$
(7.2)

σ, wurde in der Parametrisierung

$$\bar{A}_{o} = \bar{\sigma}_{t}/4\pi - \bar{A}_{2}/3$$

A₁, A₂, C₀, D₀, D₁ wie in Glg. (7.1) durch den oben angegebenene Maximum-Likelyhood-Fit bestimmt. Die Ergebnisse sind Abb. 7.2 und Tabelle 1 zu entnehmen.

7.5 Multipole

Da mit der Annahme, daß nur S- und P-Wellen zum Querschnitt beitragen 7 Multipole (vgl. Kap. 1.3) und somit 13 Parameter zu bestimmen wären bei nur 6 gemessenen Koeffizienten A_i, C, D_j, müssen zu einer Multipolanalyse Annahmen gemacht weerden.

ł Ergebnisse für $\overline{\sigma}_t$ nach Moritz et al.

Vorhersagen des Modells von v. Gehlen

TAEELLE 3

ZUSAMMENSTELLUNG EINIGEP KINEMATISCHER GRÜSSEN FUR E1 = 4.236 GeV UND Θ_4 = 15.

W [GeV]	q^2 [GeV ²]	ε	K [GeV]	q _o [GeV]	।दै। [GeV]	$\sqrt{\frac{q^2}{{q^*}^2}}$	$\sqrt{\frac{q^2}{q^{*2}}}$	P [*] ₆ W K M	Gev ⁻¹
	1 005			0 755	1 255	C. 668	3.832	0.730	1.298
1.156	0.999	0.949	0.243	0.776	1.265	0.974	4.260	1.784	1.388
1.176	0.993	0.946	(.263	C.798	1.276	C. 979	4.784	0.822	1.501
1.196	0.986	C.945	6.293	(.819	1.287	C. 984	5.455	0.851	1.723
1.216	0.980	0.944	0.319	0.842	1.311	0.588	7.499	1.896	1.801
1.256	0.967	0.942	0.372	C.887	1.325	(.594	9.172	0.904	1.905
1.276	0.960	0.939	0.399	0.911	1.338	0.996	11.813	0.915	1.977
1.296	0.953	0.938	0.426	6.934	1.351	C . 998	16.513	0.925	2.146
1.316	0.946	0.936	0.494	6.700	1.000	L . 777	2102.30	10126	L . L IO

Es werden Ergebnisse von zwei Analysen angegeben, die beide auf der Dominanz von $^{\rm M}{}_{\rm 1+}$ beruhen.

<u>1.</u> In der Nähe von W = 1.236 GeV wurden die Koeffizienten A_2 , $C_0 D_1$ durch die drei resonanten Multipole mit j = L + 1/2 und L = 1 parametrisiert. A₀ behält außerdem ein Korrekturglied A₀ zur Berücksichtigung der nichtresonanten Terme mit j = 1/2 = 1 ± 1/2:

$$\overline{A}_{o} = F \left(\frac{5}{2}M^{2} + \frac{9}{2}E^{2} + 4\varepsilon S^{2} - 3EM + \overline{A}_{os}\right)$$

$$\overline{A}_{2} = F \left(-\frac{3}{2}M^{2} + \frac{9}{2}E^{2} + 12\varepsilon S^{2} - 9EM\right)$$

$$C_{o} = F \left(-\frac{3}{2}M^{2} + \frac{9}{2}E^{2} - 3EM\right)$$

$$D_{1} = F \sqrt{72} S(M - E)$$

$$(7.3)$$

Durch den Fit werden FM, FE, FS, \overline{FA}_{OS} , \overline{A}_{1} und D_{O} bestimmt. Hierbei bedeuten: $M = |M_{1+}|$, $E = \operatorname{Re}(E_{1+}M_{1+})/M$ $S = \operatorname{Re}(\widehat{S}_{1+}M_{1+})/M$ und $F = \frac{P_{6}^{*}W}{Km_{p}}$ (vgl. Kap. 1.3).

Dieser Darstellung liegt folgender Sachverhalt zugrunde: Zunächst setzt die Bestimmung von $|E_{1+}|$ und $|\hat{S}_{1+}|$ aus der Interferenz mit M₁₊ voraus, daß die Multipolamplituden gleiche Phasen (mod π) wie M₁₊ haben. Da dies allgemein jedoch nicht der Fall ist, sind die Glieder mit E² und S² als Korrekturen zu betrachten (es gilt ja $E^2 \leq |E_{1+}|^2$, bzw. $S^2 \leq |\hat{S}_{1+}|^2$).

Weiter sind folgende Terme vernachlässigt:

in
$$\overline{A}_2$$
: -3Re(M₁-(M^{*} + 3E^{*}₁₊)) + 12Re($\hat{S}_{1+}\hat{S}_{1-}^*$)
in C₀: 3Re(M^{*}₁-(E₁₊ - M₁₊))
in D₁: 6Re($\hat{S}_{1-}E^*_{1+}$) + 6Re(M₁- \hat{S}^*_{1+}),

d.h. ausschließlich Interferenzglieder von (1+)- mit (1-)- Multipolen; speziell keine Interferenz von S_{1-} mit M_{1+} .

Da aufgrund eines Theorems von Watson (WATS) die Phasen der Multipole $MP_{L\pm}^{1}$ mit Isospin I und Gesamtdrehimpuls j = L±1/2 durch diejenigen der entsprechenden Pion-Nukleon – Streuphasen gegeben sind (mod π), sind für W ≃1.236 GeV Interferenzglieder von (1+)-Multipolen zum Isospin 3/2, bzw. bei Dominanz von I = 3/2 mit den (1-)-Multipolen klein, da die Phasendifferenzen ungefähr 90° betragen (PDG). So erhält man z.B. in der Photoproduktion für 1.217< W< 1.247 GeV $|M_{1-}|^{2}/|M_{1+}|^{2}< 2\%$ (NPS).

Da in (7.3) Interferenzterme von M_{1-} mit M_{1+} nicht berücksichtigt werden, sollten die in Tabelle 4 angegebenen Ergebnisse dieses Fits nur in unmittelbarer

.

<u>Abb. 7.3</u> Ergebnisse der Multipolanalyse 2 verglichen mit den Vorhersagen des dispersionstheoretischen Modells von v. Gehlen (durchgezogen) und denjenigen des Modells von Gutbrod (---- $F_{\pi} = G_D$, ---- $F_{\pi} = (1 + q^2/m_p^2)^{-1}$).

Nachbarschaft von W = 1.236 GeV vernünftig sein. Die Ergebnisse für W = 1.236 GeV sollen nur zum Vergleich mit denen der anderen Analyse dienen.

TABELLE 4

	MULTIPOLE I	N (ub / sr) ^{1/2} ,A	OS IN µb/sr	
W [G eV]	√F* M1+	√F*Re(E1+M1+) M1+	/F*Re(S1+M1+) M1+	√F ± ∆os
1.196 1.216 1.236 1.256 1.276	1.551+-0.080 1.877+-0.078 1.853+-0.070 1.611+-0.068 1.478+-0.086	0.042+-0.046 0.040+-0.046 0.094+-0.040 -0.039+-0.045 0.028+-0.061	-0.235+-0.033 -0.106+-0.027 -0.144+-0.026 -0.071+-0.026 -0.092+-0.027	1.619+-0.509 0.871+-0.492 0.037+-0.442 0.380+-0.409 0.176+-0.529

2. Da sich die Phase der resonanten Partialwelle P_{33} im Bereich um W = 1.236 GeV schnell ändert, d.h. Re $(M_{1+}^{3/2})$ außerhalb der Resonanz von Null verschieden ist, spielen dort auch Interferenzterme von j = 3/2 mit j = 1/2 -Multipolen eine Rolle. Daher wurden für die zweite Anpassung die Koeffizienten der Winkelverteilung in einer Parametrisierung durch

$$\mathbb{E} \| \mathbf{M}_{1+} \|^{2}, \ \operatorname{Re}(\mathbf{M}_{1+} \mathbb{E}_{1+}^{*}) / \| \mathbf{M}_{1+} \|^{2}, \ \operatorname{Re}(\mathbf{M}_{1+} \hat{\mathbf{S}}_{1+}^{*}) / \| \mathbf{M}_{1+} \|^{2}, \ \operatorname{Re}(\mathbf{M}_{1+} \hat{\mathbf{S}}_{0+}) / \| \mathbf{M}_{1+} \|^{2}, \ \operatorname{Re}(\mathbf{M}_{1+} \mathbb{M}_{1-}^{*}) / \| \mathbf{M}_{1+} \|^{2}$$

an die experimentellen Daten angepaßt (vgl GAYL). Die in 1. nicht erfaßten Interferenzerme, d.h. insbesondere auch die in j = 1/2-Multipolen quadratischen, werden, ausgedrückt durch ihre Projektionen auf M₁₊,als Korrekturen berücksichtigt. Beispielsweise werden

$$|\hat{s}_{0+}|^{2} \quad \text{durch} \quad (\text{Re}(M_{1+}\hat{s}_{0+}^{*})/|M_{1+}|)^{2} \text{ und}$$

$$\text{Re}(\hat{s}_{1+}E_{0+}^{*}) \quad \text{durch} \quad \text{Re}(M_{1+}\hat{s}_{1+}^{*}) \cdot \text{Re}(M_{1+}E_{0+}^{*})/|M_{1+}|^{2}$$
(7.4)

dargestellt. Der Beitrag von S₁₋ wird wegen fehlender Interferenz mit M₁₊ vollständig vernachlässigt.

Die durch (7.4) eingeführten Korrekturen sind um so genauer, je weiter sich die Differenz der Phasen von M_{1+} und den j = 1/2-Multipolen von 90[°] entfernt. Andererseits versagt das Verfahren, wenn M_{1+} nicht dominiert.

Die Ergebnisse dieser Analyse sind in Abb. 7.3 und in Tabelle 2 dargestellt, und stimmen mit denen der Analyse 1 für W \approx 1.236 GeV ungefähr überein.

8. DISKUSSION UND VERGLEICH DER ERGEBNISSE

Deutlich zutage tritt in Abb. 7.1 die Resonanzform der Koeffizienten \overline{A}_{0} , \overline{A}_{2} und C_{0} und kann in Übereinstimmung mit den Ergebnissen der Multipolanalyse durch die Resonanz von M_{1+} erklärt werden. Das Verhältnis $\overline{A}_{2}/\overline{A}_{0}$ 3/5 zeigt, daß außer M_{1+} andere Multipole zum Querschnitt beitragen, während $C/\overline{A}_{0} = 3/5$ mit M_{1+} im Gebiet der Resonanz erklärt werden könnte. Der Beitrag anderer Multipole manifestiert sich weiter in den signifikant von Null verschiedenen Koeffizienten D_{0} und D_{1} , d.h. endliche Beiträge von longitudinalen Multipolen. Aus $\overline{A}_{1} \neq 0$ ergibt sich eindeutig ein endlicher Beitrag von S-Wellen bzw. E_{0+} und (oder) S_{0+} .

8.1 Vergleich bei gleichem Impulsübertrag

2.11

Messungen der π° -Produktion in ep-Streuung wurden bei $q^2 = 1 \text{ GeV}^2$ ebenfalls bei DESY von einer Karlsruher Gruppe (MORI) durchgeführt. Die Ergebnisse dieser Gruppe sind in den Abbildungen 7.1 und 7.2 als offene Kreise gekennzeichnet. Da dieses Experiment bei anderer Kinematik durchgeführt wurde, müssten zum genauen Vergleich bezüglich der q²-, bzw. E-Variation Korrekturen über W angebracht werden. Der größte Unterschied in q² liegt bei W = 1.136 GeV. Er beträgt jedoch nur ca. $\Delta q^2 = 26.52 - 25.81 \text{ f}^{-2} = 0.71 \text{ f}^{-2}$. Da die erwarteten Korrekturen sicher wesentlich kleiner als die angegebenen Fehler wären, wurde auf eine Korrektur verzichtet. Da die Karlsruher Gruppe nur die Laborwinkel des zum Elektron koinzidenten Teilchens mißt und nicht auch seinen Impuls, kann weder zwischen Vorwärts- und Rückwärtswinkeln im Schwerpunktsystem der Hadronen unterschieden, noch eine Untergrundsreduktion mit Hilfe der Missing Mass vorgenommen werden. Allerdings erlaubt die Apparatur es, den ganzen Zerfallskegel des Protons für nicht zu großes W zu akzeptieren! Als Folge der genannten Gründe ließen sich mit einer solchen Apparatur direkt, d.h. ohne weitere Annahmen, die Koeffizienten der, über den Polarwinkel 06 integrierten Verteilung

$$W(\Theta) = \int_{-1}^{+1} \frac{d\sigma}{d\Omega_{6}} d\cos\Theta_{6}^{*} = 2(\overline{A}_{O} + \frac{\overline{A}_{2}}{3}) + \frac{4}{3}\varepsilon \operatorname{Ccos} 2\emptyset + \frac{\pi}{2} \sqrt{\varepsilon(\varepsilon+1)} D_{O} \cos\emptyset$$

aus der gemessenen azimutalen Winkelverteilung bestimmen. Die in der zitierten Arbeit angegebene und in Abb. 7.1 eingezeichneten Koeffizienten wurden jedoch mit der Annahme, daß \overline{A}_1 und D_1 zu vernachlässigen sind durch Anpassen einer Monte-Carlo Verteilung an das Experiment bestimmt. Der Einfluß der in $\cos \Theta_6^*$ linearen Terme mit \overline{A}_1 und D_1 auf die Winkelverteilung im Laborsystem, wird bei fehlender Impulsmessung abgeschwächt, er verschwindet jedoch nicht, da der Jakobiwinkel von 90° verschieden ist ($\Theta_{gr} = 110^{\circ}$ für q² = 1 GeV W = 1.236 GeV).

Der Vergleich der Ergebnisse beider Experimente zeigt innerhalb der angegebenen Fehler weitgehende Übereinstimmung bezüglich \overline{A}_0 und \overline{A}_2 . Im Verlauf über W sind leichte Unterschiede sichtbar, die deutlich im totalen Querschnitt $\overline{\sigma}_t$ (s. Abb. 7.2) hervortreten. C wird in der vorliegenden Arbeit betragsmäßig systematisch größer gemessen, ebenso D_o (klein aber für W < 1.216 GeV deutlich von Null verschieden).

8.2 Vergleich mit Messungen bei anderen Impulsüberträgen

Die derzeitige experimentelle Situation ist in Abb. 8.1 wiedergegeben. Gezeigt werden die Koeffizienten der Winkelverteilung $W(\Theta^*, \emptyset)$ (Glg. 7.1) in Abhängigkeit vom Impulsübertrag für W = 1.236 GeV der bisher durchgeführten Messungen. Die Ergebnisse der Manchester-Lancaster Lollaboration (NINA) sind vorläufige, diejenigen von CEA (MIST) erstrecken sich über einen W-Bereich 1.226 $\leq W \leq 1.232$ GeV. Der Polarisationsparameter ε liegt für alle Messungen im Bereich 0.94 $\leq \varepsilon < 1$ (Ausnahme: MORI q² = 1 GeV², $\varepsilon = 0.89$). Der eingezeichnete Asymmetriekoeffizient C der Photoproduktion wurde durch Mittelung eines Meßpunktes von Frascati (BARB) und eines von Stanford (DRIM) bei K = 0.335 GeV und Interpolation zwischen einem weiteren Punkt von Frascati bei 0.350 GeV gewonnen. Die eingezeichneten Fehler aller Koeffizienten enthalten die von den jeweiligen Autoren angegebenen systematischen Fehler.

Während im Bereich $q^2 < 0.4 \text{ GeV}^2$ die Meßwerte stärker streuen, scheint die q^2 -Abhängigkeit oberhalb 0.4 GeV² durch unabhängige Messungen gesichert zu sein. Um einen besseren Anschluß an die Photoproduktion zu erhalten, wären weitere Messungen bei kleinem Impulsübertrag sinnvoll.

Die Streuung der in Elektroproduktion gemessenen Koeffizienten unterhalb $q^2 = 0.4$ GeV² erlaubt keine Aussage über den genauen Verlauf mit q^2 . Für q^2 >0.5 GeV² fallen \overline{A}_0 , \overline{A}_2 , C mit zunehmendem q^2 ab. Um eine Vorstellung des Verlaufs zu bekommen, wurden in Abb. 8.1 durch die Photoproduktionspunkte Kurven der Form

$$A(q^2) = A(q^2=0) |q^*|^a G(q^2)^2$$
 (8.1)

mit a = 1.6 und a = 2.0 eingezeichnet.

Dieses Verhalten der Koeffizienten \overline{A}_0 , \overline{A}_2 , C erwartet man ungefähr bei Anregung des j = 3/2-Isobars bei M_{1+} -Dominanz, da unter Berücksichtigung des Schwellenverhaltens von M_{1+} (BJWA) der resonante Wirkungsquerschnitt proportional dem Produkt aus Schwellenfaktor \overline{q}^{*2} und $\gamma N \Delta$ -Vertexformfaktor $G(q^2)^2$ sein sollte.

Abb. 8.1 Koeffizienten der π^{0} - Winkelverteilung für W = 1.236 GeV und $0 \le q^{2} \le 1$ GeV². Die Werte von NINA (HELL) sind vorläufig. Die Kurven sind von der Form $A(q^{2})=A(0)|\vec{q}^{*}|^{a}\cdot(1+q^{2}/0.71)^{-4}$

_____ a = 1.6

Nach der statischen Theorie (FNW) oder dem Quarkmodell (DASU) ist der Übergangsformfaktor proportional zum Isovektoranteil des Nukleonenformfaktors und wird in (8.1) daher durch den Dipolformfaktor

$$G_{\rm D}(q^2) = (1 + q^2/0.71)^{-2}$$

angenähert.

Bezüglich der Koeffizienten \overline{A}_1 , D_0 und D_1 ist die experimentelle Information bei kleinem q² äußerst spärlich, da die verwendeten Apparaturen teilweise keine Impulsmessung des auslaufenden Protons zuließen.

8.3 Übergangsformfaktor

Ausgehend vom Wirkungsquerschnitt $\frac{d\sigma}{d\Omega_4}$ für einen durch seine Quantenzahlen gegebenen "stabilen" Zustand in der von Bjorken und Walecka (BJWA) angegebenen Form, läßtsich entsprechend zum magnetischen Formfaktor des Protons ein magnetischer Formfaktor für den YNA -Vertex definieren. Wird die Instabilität der A (1236) Resonanz durch ihre Zerfallsbreite berücksichtigt, so erhält man nach Ash et. al (ASH) für den Übergangsformfaktor

$$G_{M}^{*2}(q^{2}) = \frac{F|M_{1+}|^{2}}{\frac{1}{q}^{*2}} \cdot \frac{6\Gamma}{\alpha \sin \delta_{33}} \cdot \frac{KM^{3}}{W}$$
 (8.2)

mit der Breite Γ = .12 GeV, der Pion-Nukleon-Streuphase (P₃₃) δ_{33} = 90[°] und der Feinstrukturkonstanten α . Das Schwellenverhalten von M₁₊ ist durch den Nenner $\stackrel{\rightarrow}{q}^{*2}$ herausgezogen. Mit $\sqrt{F} |M_{1+}| = 1.853(\mu b/sr)^{1/2}$ bei W = 1.236 GeV erhält man so

$$G_{M}^{*}$$
 (q²=0.97) = 0.450 ± 0.017

Dieser Wert ist gemeinsam mit dem Ergebnis bei $q^2 = 0.58 \text{ GeV}^2$ in Abb. 8.2 mit den Ergebnissen anderer Experimente verglichen. Der Normierungsfaktor G_M^* (o) · $G_D(q^2)$ setzt sich aus dem Dipolformfaktor G_D und dem von Ash et al. (ASH) aus den Photoproduktionsdaten von Fischer et al. (FIFI) ermittelten Übergangsformfaktor G_M^* (o) = 3.0 zusammen.

Die Übereinstimmung mit den Einarmmessungen von Bartel et al. (BART) ist insofern bemerkenswert, als die dort angegebenen Werte durch Anpassen einer Breit-Wigner Verteilung (vgl. 5.4) und eines empirischen, nichtresonanten Untergrundes, an jie Einarmquerschnitte gewonnen wurden

<u>Abb. 8.2</u> Verhältnis des auf 1 bei q²=0 normierten Übergangsformfaktors zum Dipolformfaktor. Die Punkte von Bartel et al. sind aus Einarmmessungen, diejenigen von Moritz et al. aus totalen π° -Querschnittsmessungen gewonnen. Zum Vergleich die Vorhersagen der Theorie von Gutbrod mit $F_{\pi} = G_{EP}$ (\Box) und $F_{\pi} = (1+q^2/m_p^2)(\blacksquare$).

8.4 Vergleich mit Modellen

Neben der Aussage, daß der magnetische $\gamma N \triangle$ -Übergangsformfaktor gleiches q²-Verhalten wie der Nukleonformfaktor haben soll (s. vorangegangenes Kap.), folgt aus dem Quarkmodel (DASU), daß sowohl elektrische wie auch Coulomb-Beiträge zur Anregung von (1236) verschwinden sollten. Während E₁₊ für W \cong 1.236 GeV mit Null verträglich ist (Tab. 2), ist der Beitrag von S₁₊ zwar klein aber von Null verschieden.

Ein von Pritchett und Walecka (PRWA) diskutiertes Modell, das Nukleon-Resonanzen als Schwingungszustände der Pionenwolke beschreibt und mit Hilfe des eingeführten erhaltenen elektromagnetischen Stromes Aussagen über Formfaktoren macht, sagt große skalare Beiträge bei der Anregung von $\Delta(1236)$ voraus. Für q² = 1 GeV² erhalten die Autoren für das Verhältnis V von Coulomb zu transversalem Formfaktor

$$V = \frac{|f_{c}|^{2}}{|f_{+}|^{2} + |f_{-}|^{2}} = 4 \frac{\left| |\hat{s}_{1+}|^{2} dW}{\int (|M_{1+}|^{2} + 3|E_{1+}|^{2}) dW} \right| > 0.5$$

Da Re $(\hat{S}_{1+}M_{1+}^*)/|M_{1+}|^2 = 0.05$ im Resonanzbereich annähernd konstant und $E_{1+} \approx 0$ gemessen wird (vgl. Abb. 7.3) liefert das Experiment nur

$$V \approx (2 \operatorname{Re}(\hat{S}_{1+}M_{1+}^{*})/|M_{1+}|^2)^2 \approx 0.01$$

Wesentlich besser stimmen die Vorhersagen eines Bornterm-Modells mit W-abhängiger, dem Watsontheor_em genügender Endzustandswechselwirkung von Pritchett und Zucker (PRZU) bezüglich V mit dem Experiment überein. Nach diesem Modell wäre V \approx 0.03 zu erwarten. Andererseits weichen die Ergebnisse dieses Modells für

$$V' = \frac{|f_{-}|^{2}}{|f_{+}|^{2}} = \frac{1}{3} \frac{\int (M_{1+} + 3E_{1+})^{2} dW}{\int (E_{1+} - M_{1+})^{2} dW}$$

vom experimentellen Befund ($E_{1+} \approx 0$) ab, da die Theorie wegen V' ~ 0 verlangen würde, daß $M_{1+} \approx -3E_{1+}$ gilt.

Einem genauen Vergleich mit den experimentellen Daten halten dispersionstheoretische Modelle von Gutbrod (GUT) und von v. Gehlen (GEHL) stand. Ausgangspunkt für beide Modelle sind Dispersionsrelationen für die Multipolamplituden, die aus fixed t-Dispersionsrelationen für die invarianten allgemeinen Photoproduktionsamplituden (DENN) durch Partialwellenprojektion gewonnen werden. Die Partialwellen-Dispersionsrelationen bilden ein gekoppeltes System von Integralgleichungen. Dieses wird von v. Gehlen mit Hilfe des Watsontheorems (WATS) im Bereich elastischer mN-Streuphasen, bzw. empirischen Annahmen über diese im inelatischen Bereich nach einem Variationsverfahren gelöst. Abb. 7.1 zeigt die W-Abhängigkeit der auf diese Weise gewonnenen Koeffizienten der π^{0} -Winkelverteilung, wobei für den Pionformfaktor der Isovektoranteil des Diracformfaktors eingesetzt wurde, und $|M_{1+}|^{2}$ an den Ergebnissen der Einarmmessungen von Bartel et. al. (BART) und dem von Moritz et al. angegebenen totalen π^{0} -Querschnitt angepaßt wurde. Die Übereinstimmung mit dem Experiment ist i. a. gut. Relativ große Diskrepanzen treten für \overline{A}_{0} bei höherem W und für \overline{A}_{1} auf. Die Ergebnisse dieses Modells für die Multipole bzw. die Interferenzglieder ist in Abb. 7.3 als durchgezogene Kurven eingezeichnet.

Das Modell von Gutbrod (GUT) macht Aussagen über die resonanten Multipole, deren W- und q²-Verhalten. Ausgehend von Dispersionsrelationen für die Multipolamplituden werden dort die Beiträge des linken Schnittes (in der W-Ebene) zur Amplitude durch den Beitrag des linken Schnittes der Lösung der Bethe-Salpeter-Gleichung in Leiternäherung mit Pion- und Nukleonaustauschpotentialen gegeben. In Abb. 7.3 sind die Isospin-3/2Multipole mit Gesamtspin j = 3/2 für $F_{\pi}(q^2) = (1+q^2/0.71)^{-2}$ strichliert bzw. für $F_{\pi}(q^2) = (1+q^2/m_{\rho}^2)^{-1}$ lang-strichliert eingezeichnet. Das Modell ist, abgesehen von zwei Cutoff-Parametern für die Austauschpotentiale, die durch Anpassen an die Photoproduktionsdaten bestimmt sind, frei von Parametern. Während die Verhältnisse Re($M_{1+}S_{1+}^{*}/M_{1+}^{2}$ und Re($M_{1+}E_{1+}^{*}/M_{1+}^{2}$ innerhalb der experimentellen Fehler befriedigend durch das Modell wiedergegeben werden, $F_{\pi}(q^2) = (1+q^2/m_{\rho}^2)^{-1}$ angenommen, gibt es Abweichungen bei M_{1+} für höhere invariante Massen W.

Differencielle # - Produktionsquerschnitt	Differentielle	π ⁰ -	Produktionsquerschnitte
---	----------------	------------------	-------------------------

SIG = $\frac{d\sigma}{d\Omega_6^*} \int \mu b/s$	sr], 0 ₆	und	⊅ in	Grad	
--	---------------------	-----	------	------	--

	w = 1.136 GFV		Q**2 = 1.005 GEV**2			E = 0.949	t	GEV		
Θ_6	Φ	SIC		Θ_6^{\bullet}	Φ	SIG		Θ_6^*	Φ	SIG
124.6	34.0	1.2 +- 0.6	1	85.7	55.9	1.1 +- 0.5	1	53.9	120.4	2.8 4- 1.2
123.3	149.1	2.8 +- 1.2	i i	81.2	119.8	3-1 +- 1-3	i	52.2	150.2	2.3 4- 1 1
115.0	131.9	1.8 +- 0.8	i	78.4	54-1	1.6 +- 0.6	- 1	44.4	131.2	4.6 4- 1.2
109.6	146.9	4.8 +- 2.1	i	74.5	131.1	2-4 +- 1-0	i	41.3	43-1	1.7 += 0.0
108.6	135.3	1.1 +- 0.6	i	71.1	121.3	1.6 += 0.7	i i	41.2	150.6	3.6 4- 1.1
107.6	45.1	0.6 +- 0.4	i	65.7	54.8	1-0 +- 0-4	i	40.4	34.2	1 2 4- 0 7
103.3	132.2	1.7 +- 0.7	i	65.4	120.7	4.3 +- 1.7	1	30.2	-18.1	2.0 +- 1.4
101.7	51.1	1.0 +- 0.5	i	63.5	133.1	4-3 +- 1-3	i i	38.6	100.0	5 0 4- 3 6
99.3	121.9	3.3 +- 1.7	i	55.1	54-8	1.5 += 0.7	1	35.2	35 4	5 7 4- 7 4
93.5	132.4	4-1 +- 1-5	i	54.8	46.3	2.5 += 0.9		31 5	-0 4	2. 2. 4- 2.4
92.8	53.1	0-5 +- 0-3	i	54.7	131.7	3 6 4= 0.9	- 1	21.2	26.0	1.4 +- 0.8
90.9	122 5	274-12		2401	1 2 1 0 1	3.0 +- 0.9	1	2102	24.9	1.9 +- 0.8

ć,

2

ž

÷

	W = 1.	156 GEV Q**	Q**2 = 0.999 GEV**2		E = 0.947	[t = 1.3℃	GEV	
θ6	Φ	SIG	⊖ ° 6	Φ	SIG	Θ_6^*	Φ	SIG
134.1	132.8	2.1 +- 0.8	1 86.8	54.2	2.1 +- 0.7	1 49.2	37.4	1.8 +- 1.0
133.9	120.7	3.0 +- 1.8	84.0	118.8	2.4 +- 1.1	45.6	-33.1	2.9 +- 1.5
129.9	-22.3	1.8 +- 1.0	83.4	110.2	2.4 +- 0.8	43.1	44.9	4.0 +- 1.4
126.6	34.3	1.8 +- 0.8	1 79.9	60.0	2.5 +- 1.3	40.4	119.7	4.9 +- 1.1
126.9	120.5	1.4 +- 0.7	78.3	47.4	4.1 +- 1.6	1 39.5	35.8	1.3 +- 0.7
121.7	131.7	2.7 +- 1.4	77.6	55.1	2.2 +- 0.7	38.2	42.9	2.9 +- 1.6
115.2	39.4	1.4 +- 0.8	1 75.6	118.8	3.1 +- 1.2	38.2	133.5	2.4 +- 1.1
113.8	3.3	1.2 +- 0.6	75.0	110.2	5.1 +- 1.3	37.1	36.4	2.2 +- 1.1
113.4	44.1	C.9 +- 0.4	67.4	58.4	2.3 +- 1.2	34.8	25.3	2.1 +- 1.1
112.1	51.4	2.4 +- 1.0	65.2	54.5	4.9 +- 1.2	34.1	130.5	2.6 +- 1.3
111.8	110.3	2.9 +- 1.5	64.8	110.5	3.6 +- 1.0	32.1	186.6	5.5 +- 3.1
111.4	120.3	2.4 +- 0.8	63.7	47.3	3.0 +- 1.1	31.7	-19-4	3-1 +- 1-3
104.0	118.8	2.8 +- 1.1	63.5	119.5	4-1 +- 1-4	31.3	2.3	2-3 +- 1-0
102.2	110.9	4 . 4 +- 1.4	55.9	54-1	2-0 +- 0-7	30-4	118.8	7.4 +- 3.9
102.1	46.0	3.1 +- 1.1	53.3	110-5	2-4 +- 0-8	28-1	151.7	4-5 +- 2-5
98.3	52.7	1.5 +- 0.5	51-2	120.7	4-8 +- 1-5	26.7	131-2	1.9 +- 1.1
96.5	119.3	2.4 +- 1.1	51.2	45.2	3-5 +- 1-0	23.7	210-5	5-6 +- 2-8
93.0	110.9	4.6 +- 1.4	50.4	-37.8	6.5 +- 3.1	22.8	149.9	3.6 +- 1.4
92.5	48.4	1.7 +- 0.9	1					200 1 107

	W = 1.	176 GEV	Q**2 = 0	.993 GE	V**2	£ =	0.9	46	ſ _t =	= 1.506	*10**-3	/GEV		
Θ_6^*	Φ	- S I G		Θ_6^*	Φ		SIG			⊖6	Φ		SIC	G
144.5	148.8	2.9 +- 1.	7	89.5	191.9	3.0	+-	1.7	1	58.2	153.8	9.2	+-	2.6
136.3	111.9	6.4 +- 1.	8	88.4	54.4	4.1	+-	0.9	1	55.0	53.9	5.5	+-	1.2
136.2	120.4	3.2 +- 1.	0 1	86.9	174.8	5.5	+-	1.5	1	54.5	101.6	10.3	+-	2.4
135.7	131.5	1.9 +- 1.	1	86.9	155.4	5.7	+-	1.8	1	53.0	110.0	9.1	+-	1.7
131.0	14.9	3.4 +- 1.	5	86.7	183.8	3.7	+-	1.4	î.	51.3	46.7	3.8	+-	0.9
129.8	-1.5	2.2 +- 0.	9	86.7	165.7	5.4	+-	1.3	1	47.2	-35.3	4.9	+-	2.5
128.4	26.3	3.3 +- 0.	9	85.2	108.5	8.9	+-	1.9	i i	45.9	172.1	10.0	+-	5.2
126.5	-20.4	1.6 +- 0.	7	83.7	101.7	7.9	+ -	1.6	1	44.2	37.7	4.6	+-	1.9
124.4	18.1	2.4 +- 1.	0 1	80.2	146.2	6.3	+-	2.7	i –	42.9	36.2	6.4	+-	1.9
124.3	103.7	5.3 +- 2.	7 1	78.6	48.6	7.8	+ -	1.9	i –	42.8	102.7	10.3	+-	2.6
123.9	-35.8	4.9 +- 2.	8 1	77.9	54.8	4.6	+- (0.9	i i	42.3	44.8	3.2	+-	1.0
123.4	111.0	4.2 +- 1.	1 İ	77.8	154.5	8.1	+-	1.8	î.	41.0	109.9	8.2	+	1.4
123.1	35.3	3.3 +- 0.	9 1	77.6	60.2	5.8	+-	2.3	î –	39.6	44.6	5.1	+-	2.0
122.8	2.3	2.6 +- 0.	9 İ	77.3	174.8	5.9	+ -	1.4	i	37-2	2.2	4.2	+-	2.4
122.7	119.6	4.2 +- 1.	7 İ	77.2	184.7	5.1	+-	1.4	i –	37.0	-16.8	1.5	+-	0.7
121.5	43.2	3.1 +- 1.	2 1	76.4	165.0	7.5	+-	1.5	î –	36.7	122.0	3.3	+-	1.4
114.2	109.3	5.9 +- 1.	2 1	76.2	192.5	6.7	+-	2.3	i	36.7	35.9	4-4	+-	1.4
113.5	37.7	4.3 +- 1.	3 1	74.3	108.6	7.3	+-	1.7	i i	35.4	2.0	5.4	+-	1.4
112.5	102.8	3.9 +- 1.	6 1	74.2	102.2	8.2	+-	1.6	i –	32.6	135-1	5.6	+-	3.0
111.2	44.9	3.8 +- 0.	8 1	70.2	191.6	3.7	+-	1.5	i	32.1	25.9	2.1	+-	0.9
108.1	52.4	4.1 +- 1.	4 1	67.8	174.1	6.0	+-	1.3	i	32.0	109.3	8.2	+-	2.7
103.9	108.4	5.4 +- 1.	2 1	67.6	184.3	7.6	+- 3	2.1	1	30.7	109.6	8.8	+-	4.4
103.2	46.0	4.7 +- 1.	1	67.4	165.3	7.0	+-	1.4	1	30.1	15.8	2.5	+-	1.0
102.4	39.0	3.2 +- 1.	8	67.3	146.1	7.2	+- 3	2.9	1	29.1	121.7	4.4	+-	2.0
102.0	102.5	4.7 +- 1.	4	66.5	54.9	5.5	+- (0.9	1	27.9	220.1	14.8	+-	5.6
98.9	53.1	4.4 +- 1.	0 1	66.5	155.6	10.0	+- 3	2.2	1	26.7	222.5	9.5	+	4.1
96.1	184.0	4.7 +- 2.	0 1	66.4	48.9	3.1	+-	1.1	F .	23.0	120.6	8.9	+	2.3
96.1	166.0	4.7 +- 1.	5	65.4	101.7	6.7	+ -	1.4	1	21.8	133.9	8.2	+-	2.9
94.2	175.9	4.1 +- 1.	6	63.4	108.4	5.3	+- 1	1.2	1	19.5	165.3	6.6	+-	2.0
93.8	107.8	9.3 +- 2.	0 1	59.7	173.7	7.1	+-	1.8	1	16.6	134.8	5.1	+-	2.1
92.5	102.1	7.9 +- 1.	7	59.1	190.0	10.6	+-1	3.3	1	16.1	149.9	6.8	+-	2.3
92.2	157.2	7.9 +- 3.	1	59.1	183.3	6.5	+-	1.9	1	15.7	210.2	7.1	+-	3.0
91.5	47.9	5.6 4- 1	5 1	58.4	164 0	0.7	1.00	2.0	1 C	15 7	100 7	10 1	1.00	2 0

56

	W = 1.	196 GEV		Q**2	= 0.986 GE	V**2	ε	0.945	F	= 1.611	*1()**-3	/ GE V		
Θ_6^*	Φ		SIG		Θ_6^{H}	Φ		SIG		Θ_6	Φ		516	;
150 5	110.4	4.0	+- 1-	7 1	89.1	155.0	9.3	+- 1.6	1	54.9	191.9	11.4	+-	2.9
146 3	121.1	4 - 8	+- 2-	4	88.3	173.4	9.0	+- 2.2	1	54.4	93.1	5.9	+-	2.6
139.2	110.3	5.9	+- 1.	5 1	88.2	145.2	8.0	+- 1.4	1	54.4	154.1	13.8	+-	2.0
137 0	101.4	6-8	+- 1-	6 1	88.0	54.2	7.3	+- 1.2	1	53.6	185.5	7.4	+-	2.6
131.3	4-1	2-9	+- 1.	2 1	87.9	191.6	4.2	+- 1.7	1	53.0	100.0	10.3	+	1.5
128 8	-20.9	2.9	+- 1.	0 1	84.6	99.3	11.7	+- 1.7	1	52.9	165.1	5.7	+-	1.2
120.00	3.5	5-2	+- 1.	ĩ i	83.2	137.6	8.6	+- 3.2	1	52.0	46.8	5.6	+-	1 = 1
125 0	108.3	10.3	+- 2-	8 i	83.1	93.5	10.8	+- 2.9	i.	50.6	144.3	14.1	+-	6.7
124 5	101-0	10-1	+- 1.	6	82.3	180.6	5.1	+- 1.7	1	47.5	-24.4	4.0	+-	2.0
124 3	26.0	3.7	+- 0-	9 1	79.3	48.5	7.7	+- 1.7	1	47.1	181.1	5.1	+-	2.0
124 0	19.3	3-5	+- 1.	1 1	78.4	183.4	12.2	+- 3.5	1	46.0	52.4	6.5	+-	3.6
1 21 0	25 0	4.5	+- 1-	î î	78-3	196-1	5.8	+- 3.2	1	45.5	153.9	5.6	+-	1.9
117 7	67 3	3.0	4- 1-	6 1	78-1	145.0	9-4	+- 1.4	i.	45.0	38.4	9.7	+-	3.0
11/00	4200	5 6	4- 2.	3 1	77.5	188.8	7-0	+- 2.5	i	44.6	163.7	10.0	+-	2.2
110.7	20 4	5.1	4- 1-	8	77.4	136-9	11.5	+- 2.9	i	44.3	173.8	10.1	+-	2.2
114 . 7	100 5	7 7	4- 1	3 1	77.2	155-4	8-3	+- 1.6	i i	43.6	45.2	7.8	+-	1.7
11301	100.5	6 6	4- 1	2 1	77.1	54-5	9.3	+- 1-3	i	42.7	-18.6	5.8	+-	2.7
112 6	03 7	5.2	+- 1e	5	75-5	174.5	6.6	+- 2.1	i	41.2	100.7	12.0	+-	1.6
100 9	44 3	6.9	+- 1.	2 1	75.4	99.4	11.8	+- 1.7	i	41.0	94.6	15.6	+-	4.8
107.0	51 3	6.8	+- 2	8	75-1	165-4	7.8	+- 2.0	i	40.1	37.1	5.7	+-	1.6
107.00	30 0	7 3	4- 2	3 1	74.7	97.3	12.7	+- 3.4	i i	38.4	108.4	12.7	+-	3.7
105.1	154 2	1.5	4- 1	4	68.3	178.7	12.9	+- 3-4	i i	38.0	43.6	5.4	+-	2.4
106 5	130.2	5.6	+= 2.	4	68.1	173-4	9.7	+- 2.5	- i -	36.2	34.8	2.7	+-	0.9
103.2	100-1	13.1	+- 1.	9	67.4	135.5	5.7	+- 1.9	i	35.6	17.9	2.5	+	1.0
102.5	173.2	4.2	+- 1.	3	67.2	54.1	6.4	+- 1.0	i i	33.7	3.0	3.5	+	1.0
102.1	46.6	6.2	+- 1.	0 1	67.0	191.9	7.7	+- 2.5	i	33.6	-18.5	4.8	+-	1.7
102.0	183.6	2.9	+- 1.	3	66.9	200.5	11.5	+- 4.2	i	32.3	25.7	5.8	+-	1.5
100-0	193.3	5.0	+- 2-	5	66.8	144.8	9.2	+- 1.4	î.	32.1	101.3	5.3	+-	2.0
09 7	173.8	4 - 4	+- 1.	3	66.8	154.7	10.7	+- 1.8	i i	31.9	233.7	10.9	+-	5.5
00 5	190.2	3.5	+- 1.	5	66.3	47-8	5.2	+- 1.2	i	31.7	108.9	7.5	+-	2.9
90.0	52 7	6.1	+- 1.	4	66+0	164-4	11.2	+- 2.3	i i	31.3	4.6	3.0	+-	1.6
70.0	1/5 /	4.9	4- 1	4	65.5	99-8	11.9	+- 1.7	i	28.0	238.8	21.3	+-	7.8
98.0	14504	5.0	4- 1.	1	64-1	93-6	13.2	+- 3.4	i	24.4	102.3	13.1	+-	4.0
07 6	155.5	7.0	+- 1	3	58-0	135.9	12-1	+- 4.4	i	22.7	112.3	12.7	+-	4.1
97.04	193 3	5.2	+- 1	5	57.9	193.9	5.9	+- 2.5	i	22.6	110.0	7.5	+-	2.2
03 7	103.5	9.4	4- 1.	5	56.5	145-0	11.3	+- 2.1	i	20.9	121.3	8.3	+-	2.9
03 1	93.2	12.0	4- 3	7	56-2	182.0	9-4	+- 2.0	i	17.1	166.5	7.9	+-	1.3
93.1	49.6	7.0	4- 1	5	55-6	54.1	4 - 9	+- 1.1	i	14.1	228.8	6.6	+-	3.6
90 /	163 0	5.1	4- 1	3	55-0	173.1	6-4	+- 1-4	i					
07.4	10207	201	- 14		3380	A 1 - 2 8 A								

	W = 1.216 GEV			Q**2 = 0.980 GEV**2			$\varepsilon = 0.944$ $t = 1.712*10**-3/GEV$			GEV				
Θ_6^*	Φ	SIC	G		⊖6	Φ		SIG		Θ_6^*	Φ		SIG	;
1 50 . 3	111.0	6.4 +-	3.0	1	98.5	136.1	8.4	+- 1.6	1	54.1	135.2	12.5	+	1.5
146.5	101.3	8.1 +-	3.8	1	96.3	162.7	6.7	+- 2.9	1	53.8	188.2	4.5	+-	2.4
142.4	101.0	4.0 +-	1.8	i	93.8	97.7	12.4	+- 2.3	1	53.3	92.1	8.7	+-	1.7
1 39 . 1	155.7	2.3 +-	1.0	i	93.4	153.0	10.8	+- 3.5	1	53.3	97.7	12.9	+-	2.3
138.1	100.5	9.7 +-	1.8	1	93.0	92.1	13.9	+- 2.1	1	52.7	47.1	7.2	+-	1.2
136.0	93.3	6.6 +-	1.9	1	91.3	48.0	8.3	+- 1.4	1	52.6	145.4	9.4	+-	1.4
127.2	4.2	3.5 +-	0.8	i	91.2	143.9	9.5	+- 1.8	1	51.9	164.9	6.6	+-	2.4
127.1	-18-1	6.0 +-	1.6	1	90.0	160.4	12.2	+- 5.9	1	51.2	155.4	11.8	+-	2.5
125.2	99-1	9.8 +-	1.7	- î	88.5	135.4	11.3	+- 1.4	1	49.4	193.3	7.5	+-	2.5
125.1	93.0	9.2 +-	1.9	i.	87.9	53.7	10.2	+- 1.6	1	48.2	38.7	5.3	+-	2.3
124-9	16.0	5.2 +-	1.2	1	87.0	127.9	9.9	+- 3.0	1	45.0	134.6	13.5	+-	3.5
124 - 8	25.7	4.2 +-	1.0	- i -	84.7	97.5	13.4	+- 2.6	1	43.7	189.6	6.5	+-	1.7
121.6	34.9	4.9 +-	1.3	- E	84.1	92.3	14.5	+- 2.2	1	43.5	45.3	11.1	+-	2.4
118.7	28.4	8.3 +-	2.2	- i	79.3	48.7	9.4	+- 1.8	1	42.0	144.5	8.6	+-	1.5
118.2	21.3	9.7 +-	5-1	- î	79.1	157.2	9.1	+- 3.4	1	41.5	92.2	14.3	+-	2.3
114.4	98.2	10.1 +-	1.9	i	78.2	144.2	8.9	+- 2.0	1	40.8	153.7	10.3	+-	1.7
114.3	165.9	3.7 +-	1.1	- i	77.9	54.2	10.8	+- 1.4	1	39.7	182.6	6.5	+	1.5
114.3	37.2	6-2 +-	1.1	- i -	77.8	135.1	11.0	+- 1.3	1	39.7	36.2	6.9	+-	1.7
114.0	93.2	11.9 +-	2.1	- i	77.6	127.0	11.1	+- 2.3	1	39.0	98.8	13.3	+-	2.1
112.2	180-4	2-7 +-	1.2	- i	75.4	183.7	9.2	+- 5.2	1	38.9	44.1	5.0	+-	2.4
110-6	44.0	5.9 +-	1.2	- i	74.4	92.4	16.0	+- 2.4	1	38.1	163.9	7.0	+-	1.3
109.7	162.4	4.7 +-	1.1	i	66.6	54.4	13.0	+- 1.6	1	37.5	173.7	9.9	+-	1.9
109-7	155.1	6.9 +-	2.2	1	66.5	127.1	15.3	+- 2.7	1	37.1	26.6	7.6	+-	3.3
109.5	154.9	6.7 +-	1.1	1	66.5	163.3	6.6	+- 3.6	1	36.1	36.6	8.9	+-	2.3
109.4	171.5	2.2 +-	0.8	- È	66.3	135.0	9.8	+- 1.2	1	32.7	1.4	5.1	+-	1.4
109.1	172.9	4.9 +-	1.4	1	66.3	168.9	9.0	+- 5.1		31.4	-17.0	4.1	+-	1.4
108.4	137.5	13.3 +-	3.8	1	66.1	48.7	8.1	+- 1.6	1	31.1	25.9	7.1	+-	1.8
107.9	186.8	3.1 +-	1.5	1	65.3	97.4	12.8	+- 2.5	1	30.9	100.8	4.6	+-	1.00
107.7	145.5	7.0 +-	1.3	1	65.2	145.1	7.3	+- 1.7		30.6	93.9	5.1	+-	2.0
106.5	180.4	3.4 +-	1.2	1	64.4	92.5	13.9	+- 2.2	1	30.6	237.5	18.3	+-	8. I
106.2	39.1	6.8 +-	2.0	1	63.4	156.8	7.5	+- 3.4	1	30.5	16.4	5.1	+-	1.0
104.5	97.6	18.8 +-	3.0	- E	60.5	176.7	5.4	+- 2.4	1	23.8	103.2	9.3	+-	3.0
103.4	92.5	12.0 +-	2.1	1	60.1	167.0	4.6	+- 2.2		23.1	93.1	5.6	+-	203
102.0	153.5	4.5 +-	1.3	1	57.4	168.2	14.1	+- 5.8		23.1	100.2	5.5	+-	1.0
101.6	46.4	7.6 +-	1.1	1	57.0	126.8	19.1	+- 5.0	1	15.0	112.2	8.6	+-	201
101.3	144.3	7.6 +-	1.2	1	56.2	53.3	10.6	+- 1.8		13.7	154.5	8 e 3	+-	1.0.0
98.8	52.2	10.3 +-	2.2	1										

	W = 1	236 CEN	V	ç	**2 =	= 0.973 GE	V**2	= 3	0.942	t	= 1.807	*10**-3	/GEV		
Θ6	Φ		SI	G		\ominus_6^{\bullet}	φ		SIG		Θ_6^*	Φ		SI	G
157.3	93.7	5.3	+	1.8	1	103.8	91.2	12.5	+- 1.5	1	54.5	125.7	12.2	+-	1.4
154.5	121.5	4.0	+-	1.2	i	101.4	134.2	7.5	+- 1.2	i	54.2	97.0	11.4	+-	5.6
152.8	85.7	4.3	+-	2.4	i	101.3	46.3	8.9	+- 1.1	i	54.0	91.2	12.9	+-	1.5
148.2	91.6	10.7	+	3.2	1	99.0	126.5	8.1	+- 1.4	i .	53.9	147.9	7.8	+-	3.8
145.8	99.3	6.5	+-	3.3	i.	98.0	144.2	12.4	+- 3.8	i	52.1	47.4	7.2	+-	1.0
139.7	85.9	6.5	+-	2.2	1	97.0	52.0	5.0	+- 1.6	i	52.1	135.0	8.9	+-	1
136.5	91.7	8.9	+-	1.4	Í.	96.2	96.9	11.2	+- 6.0	i	49.6	187.1	4.3	+-	1.7
131.7	99.6	14.2	+-	7.4	- F	94.3	90.6	12.5	+- 1.5	1 I	48.0	39.8	5.1	+-	2.5
127.3	84.7	11.8	+-	3.7	1	91.9	47.8	8.7	+- 1.2	i	44.3	126.1	7.5	+-	2.0
126.5	-18.2	4.5	+-	1.2	1	90.5	134.3	10.9	+- 1.9	i	41.4	134.7	10.6	+-	1.5
125.7	91.3	10.6	+-	1.3	- E	89.4	125.5	11.5	+- 1.5	i	41.2	185.6	7.4	+-	2.2
125.5	3.2	3.7	+-	0.7	1	89.1	144.4	14.3	+- 5.6	Î.	40.7	-29.2	4.6	+-	2.6
125.2	16.5	2.8	+-	0.7	1	88.3	118.2	14.8	+- 4.7	i i	39.9	91.4	10.3	+	1.3
123.7	25.3	3.9	+-	0.8	1	88.0	53.5	8.4	+- 1.3	1	39.9	98.1	12.8	+-	4.6
121.3	145.5	4.5	+-	1.0	1	86.1	96.4	12.0	+- 6.5	ĺ.	39.7	37.1	4.2	+-	1.2
121.2	33.6	4.1	+-	1.3	1	84.7	90.6	11.5	+- 1.5	i	39.6	-16.4	4.2	+-	1.6
118.6	139.3	8.2	+-	2.6	1	84.3	85.8	13.1	+- 5.9	i	39.6	86.0	4.5	+	2.4
118.0	28.4	5.4	+-	1.3	1	79.9	48.6	9.1	+- 1.5	i	39.5	179.6	8.7	+	2.6
116.8	152.0	4.6	+-	1.0	1	78.7	134.3	9.2	+- 2.1	1	37.3	3.0	3.4	+	1.0
116.1	21.8	5.0	+-	2.5	1	78.3	125.3	11.0	+- 1.3	1	36.6	164.9	9.8	+-	2.2
115.3	97.3	5.8	+-	2.8	1	77.5	54.2	9.1	+- 1.2	1	36.6	153.9	7.7	+-	1.7
114.5	85.3	6.6	+-	3.2	1	77.5	117.8	8.2	+- 2.4	1	35.6	145.2	7.3	+-	1.2
114.0	90.9	14.1	+-	1.6	1	74.6	90.9	11.1	+- 1.4	1	35.4	35.6	6.2	+-	1.5
114.0	177.6	3.1	+-	1.2	1	73.2	95.8	8.7	+- 4.6	1	34.6	28.4	8.4	+-	3.7
114.0	36.6	6.7	+-	0.9	1	69.2	146.7	11.2	+- 5.2	1	34.6	173.1	6.3	+-	1.9
114.0	161.6	3.4	+-	1.0	1	67.5	96.1	10.2	+- 4.9	1	32.9	25.3	3.1	+-	1.0
113.2	166.1	2.1	+-	0.8	1	66.8	48.6	5.2	+- 1.1	1	32.2	170.0	6.1	+-	1.2
112.9	181.7	3.2	+-	1.5	1	66.7	54.0	8.7	+- 1.2	1	30.4	92.0	5.3	+-	1.5
112.4	144.1	5.5	+-	1.2	1	66.5	125.2	12.2	+- 1.4	1	27.6	93.0	12.9	+-	3.3
111.6	135.9	5.9	+	1.0	1	66.3	134.3	10.3	+- 2.2	1	26.4	92.7	8.6	+-	1.9
109.9	44.1	5.7	+-	1.2	1	66.3	118.1	13.9	+- 3.2	1	23.2	97.2	13.4	+-	6.4
108.7	127.8	5.4	+-	1.9	1	64.7	85.7	12.4	+- 5.6	1	18.3	200.6	9.6	+-	4.8
105.8	39.5	7.6	+-	1.8	1	64.5	91.1	15.5	+- 1.8	1	16.2	84.5	16.0	+-	6.1
105.1	85.6	16.6	+-	5.6	1	55.6	53.4	7.9	+- 1.4	1	15.3	104.4	5.0	+-	2.7
104.7	151-0	4.6	+-	1.7	1	55.4	117-8	11.8	+- 3-7	1	13.9	124-6	6-0	+-	0.9

a,

2

ž.

5

	W = 1.	256 GEV	Q**2 = 0.967	GEV**2	E = 0.9	41 lt	= 1.899	*10**-3	/GEV		
Θ_6^*	Φ	5 I G	⊖6	Φ	SIG		Θ6	Φ		SIC	3
150.6	82.8	3.7 +- 1	.5 103.	6 89.0	9.5 +-	1.6 1	52.9	124.4	5.0	+-	0.9
149.7	25.7	2.4 +- 0	.9 102.	1 133.7	10.4 +-	2.9 1	52.6	85.4	10.8	+-	2.3
146.0	84.3	8.5 +- 3	8.4 101.	0 125.4	7.2 +-	1.0	52.5	47.3	6.2	+-	1.0
138.9	83.1	4.3 +- 0	0.9 100.	4 45.6	4.9 +-	0.8 1	52.5	138.8	14.9	+-	5.4
137.0	89.3	3.8 +- 1	le4 99e	1 118.1	9.3 +-	2.1	51.4	178.1	6.2	+-	3.5
130.3	145.6	4.0 +- 1	.9 96.	2 52.1	8.3 +-	3.1 1	51.3	44e1	9.2	+-	3.0
126.6	161.2	1.3 +- 0).6 94.	8 84.4	11.2 +-	2.0 1	43.3	45.5	4.9	+-	1.2
126.0	2.0	2.8 +- 0	0.6 94.	0 89.3	9.3 +-	1.5	42.5	117.7	8.3	+-	2.7
126.0	83.8	9.8 +- 1	1.6 91.	7 43.9	10.8 +-	3.5	41.6	37.7	4.3	+-	1.2
126.0	150.8	2.2 +- 1	•1 90.	3 47.6	6.6 +-	0.9 1	41.4	88.7	6.1	+-	1.2
125.5	89.3	5.8 +- 1	.3 90.	3 124.6	8.8 +-	1.4	40.2	125.6	4.9	+-	0.9
125.2	16.4	3.4 +- 0	.8 89.	0 117.1	9.9 +-	1.5	40.1	84.7	8.1	+-	1.6
123.5	-17.5	3.4 +- 1	.2 1 87.	6 52.4	6.4 +-	1.3	38.1	43.2	7.7	+-	3.7
122.7	135.6	4.4 +- 1	.0 84.	4 84.8	8.8 +-	2.2	36.5	135.6	6.6	+-	1.3
122.6	25.4	2.6 +- 0	.8 84.	3 89.1	8.5 +-	1.3	36.0	35.9	8.4	+-	2.2
122.1	143.1	3.2 +- 0	.8 79.	1 49.2	8.9 +-	1.4	35.6	29.5	5.2	+-	2.2
118.3	159.0	2.3 +- 1	.1 78.	7 124.5	7.6 +-	1.4	34.6	17.0	6.8	+-	2.1
118.0	10.5	4.6 +- 2	2.1 77.	7 116.7	10.9 +-	1.4	33.7	146.0	6.4	+-	1.8
117.7	150.2	3.2 +- 1	.3 76.	8 53.4	8.3 +-	1.3	32.6	2.5	3.3	+-	1.0
117.4	20.9	4.7 +- 1	.5 75.	9 84.9	14.5 +-	3.3	32.1	26.8	4.0	+-	1.2
116.3	145.0	5.7 +- 2	.9 75.	1 89.1	8.6 +-	1.4	31.4	-18.5	2.1	+-	1.1
115.6	28.1	4.6 +- 1	.0 66.	8 116.9	11.9 +-	1.6	31.0	156.0	7.2	+	3.3
115.0	-15.2	2.8 +- 1	.5 66.	3 53.8	7.5 +-	1.2	30.3	162.3	5.7	+	0.8
114.7	84.0	10.4 +- 1	.7 66.	3 123.9	8.5 +-	1.5	29.5	88.5	3.4	+-	1.8
114.4	88.9	9.0 +- 1	.6 66.	0 48.6	9.1 +-	1.4	29.2	88.8	5.9	+-	2.1
113.2	134.1	5.3 +- 1	•1 64.	3 89.4	9.8 +-	1.6	28.1	83.0	4.6	+-	1.5
112.5	36.2	7.1 +- 1	.0 63.	4 139.1	9.2 +-	5.2	25.6	83.5	6.3	+-	1.8
111.6	126.5	6.4 +- 1	.1 59.	2 157.6	6.4 +-	3.6	20.5	84.1	3.8	+-	1.5
108.9	161.9	5.9 +- 3	•1 55•	1 52.5	6.7 +-	1.4	18.6	73.8	4.9	+	1.0
108.5	43.2	3.7 +- 1	1 54.	3 116.9	7.7 +-	1.3	16.0	89.4	5.7	+-	3.2
104.3	84.2	9.0 +- 1	•7 54.	3 89.5	8.7 +-	1.4	15.3	80.4	6.8	+-	3.5
103.8	39.6	7.3 +- 1	.5								

58

	W = 1.	276 GEV]**2 = 0∗960 GE	V**2	E = 0.939	+	= 1.987	*10**-3/	GEV		
⊖ * 6	Φ	SIG	⊖,	Φ	SIG		θ,	φ		510	;
151 1	74.8	4.9 +- 1.9	1 104.4	87.4	8.1 +- 2.1	1	64.0	88.0	9.0	+ -	2.0
147 3	19.2	2.7 +- 1.3	1 104.3	38.8	3.9 +- 0.9	1	56.7	109.1	12.0	+-	3.8
1 30 7	76.3	4.5 +- 1.1	1 102.5	123.5	4.8 +- 1.3	1	54.3	53.1	4.07	+-	1.3
136.5	83.3	4-3 +- 1-0	100.5	45.2	5.7 +- 0.9	1	53.5	84.0	8.7	+-	1.8
121 0	135.7	2.3 +- 0.9	100.3	116.1	5.5 +- 0.8	1	53.2	115.6	7.5	+-	1.0
1 20 6	160.0	2.8 +- 1.4	97.4	109.2	6.3 +- 3.5	1	52.6	87.8	8.3	+	2.0
129.0	151 7	1.7 +- 0.6	95.4	41.3	2.7 +- 1.5	1	52.5	125.6	6.3	+-	2.1
12902	79.1	2.7 +- 1.2	95.1	84.0	9.4 +- 1.6	1	52.4	47.2	4.9	+-	0.9
120+0	142 0	5.0 += 1.2	94-0	87.8	7.9 +- 1.9	1	49.2	41.5	5.1	+-	2.2
120.0	02 2	9.1 += 1.2	9-39	47.3	5.3 +- 0.8	1	48.0	30.8	3.9	+-	2.3
125 . /	125 1	4.0 += 0.8	90-0	115.3	8-1 +- 1-0	i i	43.2	39.1	4.7	+-	1.3
124.7	13501	1.9 4= 0.5	89-5	122.9	4.9 +- 2.0	- i	43.2	45.1	5.6	+-	1.5
123.4	15 1	2.1 += 0.7	88.5	109.7	7.5 +- 2.7	i	40.3	116.7	5.4	+-	1.0
122.1	110 4	4.0 += 2.2	87.3	51.7	4.8 +- 1.4	i i	39.9	84.0	6.4	+-	1.4
1/102	174 0	6.3 += 1.1	86.0	84.2	8.5 +- 1.7	i	36.4	35.5	2.6	+-	1.0
120.9	12007	1 7 4= 0.9	1 84-1	87.5	8.4 +- 1.9	- î	36.2	125.9	5.0	+-	0.9
120.7	-15.9	1 0 4- 1.0	82.2	122.7	8.8 +- 5.0	i	34.2	4.2	1.7	+-	0.7
110.1	145 2	4.8 *= 2.0	79.2	48.4	6.7 +- 1.1	- i	34.1	76.4	12.2	+-	4.€
119.4	25 4	3.6 4- 1.1	78-4	115.0	6.7 +- 0.9	i	33.7	137.2	4.5	4-	1.5
119.2	19.0	3.8 +- 1.3	78.3	109-4	8.0 +- 2.4	- î	30.1	26.2	3.4	+-	1 . 1
110.1	27 0	4.4 +- 0.9	77-3	53.1	5.0 +- 1.0	i i	29.1	80.9	5.2	+-	2.6
110.5	07 6	7 2 4- 1-2	76-1	85.5	7.1 +- 1.7	- î	29.1	-16.3	2.3	+-	1.1
114.9	0.0 1	5.9 +- 2.3	75.2	87.9	7.0 +- 1.8	- i .	28.9	16.2	1.7	+-	0.9
113.1	125 2	6 7 4- 0.8	1 67-2	115-1	10-1 +- 1-3	1	27.6	82.8	5.2	+-	1.8
11/00	12002	9.0 4- 1.5	67-0	109-3	5.4 +- 1.8	i.	27.5	82.2	3.6	+	1.4
110.1	11100	6 1 A= 0.8	66-6	49.0	4.6 +- 0.9	i	25.5	161.4	4.3	+-	0.6
110.0	160 2	2.0 A= 1.7	66-1	53.6	3.7 +- 0.9	i	17.0	79.5	4.0	+-	1.8
104.9	140.02	2 • 7 += 1 • /	1 65.2	85.1	8.5 +- 2.0	1	16.6	35.0	2.4	+-	0.6
10/#4	41=0	0 1 4- 1 3	0.502	N 28 1	20.000 (C) 20.000	÷.					
104.1	82.5	0 el +- 1e3	1								

	w = 1.02	296 GEV G)**2 = ()	.953 GE	V**2	= 3	0.938	t =	2.068	*10**-3/0	έEV		
Θ_6^*	Φ	SIG		Θ_6	φ		SIG		⊖6	Φ		SIG	;
152.1	66.0	1.8 +- 0.9	1	104.3	81.9	6.1	+- 1.0	1	64.7	86.7	8.5	+-	3.7
149.6	65.8	1.8 +- 1.0	1	103.9	38.9	3.5	+- 0.8	1	55.1	86.2	5.6	+-	2.8
144-4	63.5	2.1 +- 1.2	1	101.5	114.3	7.0	+- 1.1	1	54.8	52.5	4.01	+-	1.1
1 37 . 9	75.3	3.9 +- 0.9	1	100.4	108.1	6.4	+- 1.3	1	54.1	48.6	3.2	+-	0.7
134.3	79-8	2.5 +- 1.1	i.	94.8	83.1	6.4	+- 1.1	1	54.0	109.0	6.4	+-	1.5
133.6	128-6	2.2 +- 0.9	i	93.9	42.0	2.5	+- 1.1	1	53.8	84.8	5.0	+-	1.2
1 2 2 . 1	133.9	2-6 +- 0-8	i	90.8	113.8	4.8	+- 1.0	1	50.6	114.'	5.6	+-	1.2
1 20 4	130.6	2.7 +- 1.1	i	90.3	108.8	5.4	+- 1.2	1	42.3	46.7	2.6	+-	0.9
120.0	76 1	3.5 +- 1.0	i	90.3	47.2	4.8	+- 0.8	1	40.8	39.1	1.7	+-	0.7
120.0	125 0	3.3 +- 0.7	i i	86.4	51.4	2.3	+- 0.9	1	39.6	83.1	5.0	+-	1.2
120+2	PO 7	4-0 +- 0-9	1	85.0	84.1	7.8	+- 1.5	- E	39.1	108.4	5.0	+-	2.3
124.1	117 4	4.2 4- 1.0	- i	83-8	86.6	14.9	+- 5.7	1	36.6	115.9	3.4	+-	0.7
173.9	11/00	1 1 4- 0 4		79-7	48-9	6.2	+- 1.0	i	34.2	37.2	2.2	+-	0.8
17203	3.5	1.0 4. 0.7		78.7	113.1	5 - 1	+- 1.2	i	32.5	-17.1	1.7	+-	1.0
118.7	1/02	1.9 += 0.1		78.6	108-4	7.5	+- 1.4	i	31.1	27.2	3.2	+-	1.1
116.2	122.4	2.7 4. 0.4		76.8	53-1	5.3	+- 1-1	- i	29.9	1.4	1.8	+-	0.7
115.4	2402	201 +- 0.0	1	75.9	84-4	8.6	+- 1.5	- i	29.1	126.1	5.4	+-	2.3
115.2	10.9	6 3 4- 0.9		74.7	86-1	5.9	+- 2.9	i	29.0	75.1	3.8	+-	1.8
114.4	81.4	4.5 *- 0.8	1	47 5	49.6	5 - 8	+- 1-2	i	28.1	17.4	2.0	+-	0.8
114.1	139.1	4.1 +- 2.1		46.0	113.5	6-6	+- 1.6	- î	27.8	81.8	3.4	+-	1.3
113.1	115.9	4.1 +- 0.7	1	60.9	53.4	4 - 8	+- 1-0	i	26.8	145.3	3.9	+-	0.6
111.4	36.2	3.4 +- 0.8		66.3	108.9	6-0	+- 1.3	i i	24.4	83.4	4.0	+-	2.1
110.5	109.2	3.2 +- 1.4		00.0	04 5	5.4	4- 1-3	i .	20.0	9.0	1.5	+-	0.5
106.5	75.9	6.0 +- 2.7		04.9	0400	284	1.0.7		MC10800				

	W = 1.	316 GFV Q**	*2 = (.946 GE	V**2	£ =	0.936	T _t =	2.146	*10**-3/0	EV		
⊖,	Φ	SIC		Θ_6^*	Φ		S I G		Θ_6^*	φ		51G	
141.9	68-5	2.6 +- 0.9	1	113.9	29.4	1.4	+- 0.4	1	77.7	52.1	2.4	+-	n. 8
137.4	126-5	2.2 +- 0.6	- i -	112.4	108.0	4.8	+- 0.9	1	77.2	81.9	3.8	+ -	1.2
136.4	74-4	2-6 +- 0-8	i	110.3	35.2	3.3	+- 0.9	1	67.2	49.9	2.6	+-	C. 7
130.4	117 1	1.3 += 0.6	- i -	108.8	33.3	1.6	+- 0.8	1	66.8	107.3	5.8	+-	1.2
130.0	122 2	1.4 4- 0.8	- i -	106-1	76.6	5.4	+- 1.8	1	65.8	53.0	3.5	+-	0.8
1 34 . 9	10000	2 6 4 1 2		104-4	79.9	4 - 4	+- 1.1	1	64.4	82.2	5.9	+-	1.8
129.9	124.3	2.0 - 1.02		102.9	39.8	3 - 3	+- 0.7	1	56.1	52.7	2.6	+-	C.9
126.6	74.3	2.6 +- 0.1		107.9	113 5	4.6	4- 1-5	1	54.6	107.3	5.6	+-	1.3
126.1	115.3	4.2 += 1.H	1	102.0	107 (5 7	4- 0.9		53.3	47.9	3-0	+-	0.7
124.7	78.4	3.0 +- 1.4	1	101.5	107.4	2.1	- 1.0		53 3	82.5	4-5	4-	1.4
123.6	109.4	4.1 +- 1.4	1	99.4	43.4	4.0 0	1		13.4	100 0	4 9	4-	1.6
123.2	153.5	2.3 +- 1.0	1	94.7	81.2	5.6	+- 1 + 2	1	41.0	1119.9	1 3		0.5
121-6	-16-4	1.6 +- 0.9	1	93.3	43.7	5.4	+- 1.5		41.4	44 . H	1.0 3	+-	0.0
110.7	5.2	0-8 +- 0-4	1	89.6	107.8	4.9	+- 0.9	1	40.6	36.8	1.5	+-	0.1
117 7	21. 1	C 7 += 0 - 3	i	89.5	46.8	2.9	+- 0.5	1	40.0	38.9	1 . 2	+-	0.6
1 1 / . /	21	1 1 4- () 5	- i	86.4	81.9	4.7	+- 1.1	1	37.3	7.8	1.3	+-	0.6
110.0	0.0	1.1 +- 0.9	1	86.2	50-9	2.7	+- 1.5	1	33.1	114.1	4.7	+-	1.2
115.3	14 . 4	2.9 +- 0.0		70 9	48 5	2.9	+= 0.6	- î	29.9	26.0	1.7	4-	0.8
114.5	78.8	1.6 +- 1.1		14.0	104 0	6 1	4- 1.2	i	23-0	142.6	3.4	+-	0.6
114 . 1	113.3	4.3 +- 1.1		18.5	TUDeH	0.1	- 1 - C	1	1.0.01				

Erzeugung elastischer Monte Carlo Ereignisse

Um die Ergebnisse der MC-Rechnungen mit den experimentellen für die elastische Streuung zu vergleichen, wurden Streuereignisse nach dem hier angegebenen Verfahren produziert.

Ein Elektron habe entsprechend einer Energieverteilung $P(E_1'',E_0)$ des Primärstrahles mit der Sollenergie E_0 eine Energie E_1'' . Im Target der Länge T werde es nach t Strahlungslängen elastisch gestreut. Auf der Strecke t hat es mit der Wahrscheinlichkeit $I(E_1'',E_1',t)dE_1'$ die Energie $E_1''-E_1'$ verloren (Straggling), wobei E_1' die

Abb. Al Die Effekte, die zur Energieverteilung des gestreuten Elektrons beitragen.

Endenergie des Elektrons sei. Die eigentliche Streuung erfolge elastisch mit $E_1 = E'_1$ in den interessierenden Winkelbereich $\Delta \Theta_4$. Die Wahrscheinlichkeit hierfür ist durch den "Strahlungsquerschnitt" S_R gegeben, d.h. durch den durch Strahlungskorrekturen modifizierten elastischen Streuquerschnitt S₀. Als Folge davon hat das Elektron eine, von der elastischen Energie

$$E_4 = E_1 \times (1 + \frac{E_1}{M} (1 - \cos \Theta_4))^{-1}$$

abweichende Energie E', mit der es in der restlichen Targetlänge t' noch einmal mit der Wahrscheinlichkeit I(E'',E',t') Energie verliert.

Elektrons beitragen. Für $P(E_1^{"}, E_0)$ wurde eine Trapezform gewählt, vgl. Abb. Al. Typische verwendete Parameter sind $l_1 = 1-3^{\circ}/\circ0$, $l_2 = 1-2^{\circ}/\circ0$, $l_3 = 1^{\circ}/\circ0$ von Eo.

Die von Mo und Tsai (MOTS) modifizierte, von Bethe und Heitler angegebene (BEHE) Straggling-Wahrscheinlichkeit $I(E''_1,E'_1,t)$ kann als Funktion der beiden Variablen Q¹ und t umgeschrieben werden

$$I(E''_{1}, E'_{1}, t)dE'_{1} = I(Q, t)dQ$$

= $\frac{bt}{1-Q} [Q+\frac{3}{4}(1-Q)^{2}](\ln\frac{1}{Q})^{bt} dQ$

mit Q = E_1'/E_1'' und b = b(Z) $\approx (3/4)$ einer Funktion der Kernladung X des Radiators. S_R setzt sich in unmittelbarer Nachbarschaft des elast. Peaks multipikativ aus dem Rosenbluth-Querschnitt S₀(E₁,E₄) und der Strahlungskorrektur F(E₁,E₄,E₄^{*}) zusammen.

$$S_{R}(E_{1}, E_{4}, E_{4}^{*}) = S_{O}(E_{1}, E_{4}) * F(E_{1}, E_{4}, E_{4}^{*})$$
 (A2.2)

Bei Berücksichtigung von Vielfach-Photoemission kann

$$F(E_1, E_4, E_4^*) = exp(\delta(E_1, E_4, E_4^*))$$

gesetzt werden (LIST) mit der Soft-Photon Korrektur δ (TSAI,MEYE). E_4^* (Abschneideenergie) ist die kleinste interessierende Sekundärenergie.

MC-Verfahren

Die Ereignisproduktion verläuft in 4 Schritten:

- I Wahl des Vertex t, der Energie E_1'' und E_1' ,
- II Korrektur der momentanen E₁-Verteilung mit Hilfe von S_{IR}(E₁) s.u. und Erzeugen des Streuwinkels,
- III Energieverluste durch interne Strahlung und Ausgangsstraggling.
- IV Protonenkinematik.

<u>Zu I.</u> Der Vertex t wird, über T gleichverteilt, die Energie E₁ aus $P(E_1, E_0)$ gewonnen. Mit t und der Zufallszahl z, 0 < z < 1 kann E₁ dann via Q unabhängig von E₁ nach

erzeugt werden.

<u>Zu II.</u> Bei der Erzeugung von E' hätte eigentlich der Strahlungsquerschnitt berücksichtigt werden sollen (anschaulich: dort, wo der Querschnitt groß ist, werden auch viele Teilchen gestreut, bzw. müssten dort produziert werden). Diese Faltung der Ereignisverteilung V(E₁) mit S_{IR}(E₁), dem, über den Winkel bereich $\Delta \mathbf{Q}_4$ integrierten Querschnitt S_R, wird nun nachgeholt durch Vergleich der Zählraten N_i in geeigneten E₁-Intervallen d_i mit der Rate N_N eines Normierungsintervalles. Für N_i gilt:

$$N_{i} = \int_{i} dE_{1}V(E_{1})S_{IR}(E_{1}) \approx S_{IR}(E_{i}) \int_{i} V(E_{1})dE_{1} = S_{IR}(E_{i}) n_{i}$$

entsprechend $N_N = S_{IR} (E_N) \cdot n_N$

mit der nach I im Intervall i erzeugten Zahl von Ereignissen n_i. Angenommen, es seien schon R = $\sum_{j=1}^{n}$ n_j Ereignisse erzeugt und das (R+1)-te falle in das Intervall d_i. Dann liefert die Lösung von

$$\begin{array}{c} \text{Min} \\ \text{K} = 0, 1, 2 \end{array} \left\{ \left| \frac{N_i + K}{d_i} - \frac{d_N}{N_N} - \frac{S_{\text{IR}}(E_i)(n_i + 1)}{S_{\text{IR}}(E_N) - n_N} \right| \right\}$$
 (A2.3)

einen Wert K. Entsprechend werden die folgenden Fälle unterschieden:

K=0
$$N_i$$
+1 ware zu groß \rightarrow das Ereignis wird verworfenK=1 N_i +1 ist gut \rightarrow das Ereignis wird verwendetK=2 N_i +1 ist zu klein \rightarrow ein weiteres Ereignis wird im Intervall d, erzeugt.

 $N_i - n_i$ ist so die Zahl der von (A 2.3) zusätzlich in d_i erzeugten Ereignisse. Da die N_i von der Statistik im Intervall d_N abhängen, ist es zweckmäßig, als Normierungsintervall eines mit guter Statistik zu wählen.

Die Erzeugung des Streuwinkels im $\Delta \Theta_4$ -Bereich erfolgt unter Verwendung desselben Integrationsverfahrens, das zur Berechnung von S_{IR} führte. Für kleine $\Delta \Theta_4$ ist es nicht nötig S_R zu integrieren sondern

$$S_{IR}(E_1) = F(E_1, \overline{\Theta}_4, E_4^*) \int_{\Delta \Theta_4} S_0(E_1, \Theta_4) d\Theta_4$$

zu verwenden mit einem mittleren Winkel 0,.

<u>Zu III.</u> mit $\delta(E_1, E_4, E_4')$ läßt sich auf einfache Weise die Energie E_4' berechnen, die das Elektron unter Berücksichtigung der internen Strahlung hat. δ hat folgende Form (TSAI, MEYE)

$$\delta = A(E_1, E_4) \ \ln \left(\frac{E_4' - E_4}{E_1 - E_4} \right)^2 + B(E_1, E_4)$$
(A2.4)

Da ${\rm S_R(E_1,E_4,E_4')}$ das Integral über das Spektrum zwischen E' und E_4 ist, erhält man mit O < z < 1 und E_4 < E_4' < E_4

$$E'_{4} = E_{4} - (E_{4} - E_{4}^{*}) \exp(\frac{\ell_{nz}}{2A})$$
 (A2.5)

Straggling in der restlichen Targetlänge t' und im Austrittsfenster erfolgt wie unter I.

Zu IV: Die Ermittelung der Protonenkinematik wird unter der Annahme durchgeführt, daß ein Teil der gestreuten Elektronen den Energieverlust $E_4 - E_4'$ durch Emission von Photonen vor dem eigentlichen Streuprozeß in Richtung des Primärstrahles erlitt, der andere Teil nach der elastischen Streuung in Sekundärrichtung. Diese Aufteilung geschieht zu gleichen Teilen in Übereinstimmung mit der in niedrigster Ordnung von α exakten Behandlung des Strahlenschwanzes (MOTS), wenn dort das Integral über die γ -Winkel im Minimum zwischen den Peaks geteilt wird.

Mit den obigen Annahmen liegt die Kinematik des zugehörigen Rückstoßprotons dann fest.

ANHANG 3

Produktion inelastischer MC-Ereignisse

In mancher Hinsicht gleicht das hier angewandte Verfahren dem für die Erzeugung elastischer Ereignisse. Es wird nach der Wahl des Vertex eine Primärenergie E' durch Überlagerung einer Energieverteilung im Primärstrahl mit Straggling erzeugt und mit dem integrierten Strahlungsquerschnitt $\overline{S}_{IR}(E'_1)$ so wie an der entsprechenden Stelle im Anhang 2 gefaltet. Die Wahl einer Sekundärenergie E' erfolgt über den Strahlungsquerschnitt $\overline{S}_{R}(E'_1,E'_4)$. Abschließend wird eine Sekundärenergie E' nach der Wahrscheinlichkeit für Straggling auf der restlichen Targetlänge gewählt. Die Erzeugung der Vertex Kinematik wird nachfolgend beschrieben, dabei werden auch die Größen $\overline{S}_{IR}(E'_1,E'_4)$ definiert.

<u>Abb. A2</u> Zur Bezeichnung der eingef. Energien. Die eigentl. Streuung findet zu geg. E1 in Peaking-Näherg. auf $E_1 = const$ bzw. $E_2 = const$ statt.

Die E_i , E_f -Ebene (Abb. A2) sei zwischen der größten (kleinsten) möglichen Primär-(Sekundär)-Energie und der Pionenschwelle $W_s = 1.073$ GeV mit einem geeignet feinen Raster überzogen. An jedem Rasterpunkt E_i , E_f wird ein mit dem in Glg. (5.4) angegebenen Querschnitt $S(E_i, E_f \cos \Theta_4)$ bewichteter über $\Delta \cos \Theta_4$ gemittelter $\cos \Theta_4$ Wert berechnet ($\Delta \cos \Theta_4$ enthalte die Akzeptanz des Elektronenspektrometers). Außerdem wird S über dieses Winkelintervall integriert:

$$\overline{S}(E_i, E_f) = \int d \cos \Theta_4 S(E_i, E_f, \cos \Theta_4), \ \overline{S}(E_i, E_f) = 0 \ \text{für } W < W_S$$

 $\Delta \cos \Theta_A$

Weiter werden zu jedem Punkt E', E' drei Strahlungsanteile berechnet, entsprechend einer Soft-Photonkorrektur w_s, dem Anteil des Primärpeaks w₁ und dem des Sekundärpeaks w₄.

$$\begin{split} \bar{S}_{R}(E_{1}^{*},E_{4}^{*}) &= \bar{S}(E_{1}^{*},E_{4}^{*})e^{\delta(E_{1}^{*},E_{4}^{*},\Delta)} &\stackrel{E_{1}^{*}-\Delta}{+} \int \stackrel{E_{4}^{*}max(E_{1}^{*})}{dE_{1}^{*}K_{1}\bar{S}(E_{1}^{*},E_{4}^{*})} + \int \stackrel{dE_{4}^{*}K_{4}\bar{S}(E_{1}^{*},E_{4}^{*})}{E_{1min}(E_{4})} \\ &\downarrow &\downarrow &\downarrow &\downarrow &\downarrow \\ W(E_{1}^{*},E_{4}^{*}) &= w_{s}(E_{1}^{*},E_{4}^{*}) + w_{1}(E_{1}^{*},E_{4}^{*}) + w_{4}(E_{1}^{*},E_{4}^{*}), \\ wegen \delta,\Delta,K_{3}^{*}s.u.. \\ Aus \bar{S}_{R}(E_{1}^{*},E_{4}^{*}) & wird \end{split}$$

$$\overline{S}_{IR}(E'_1) = \int dE'_4 \overline{S}_R((E'_1, E'_4))$$

$$MinE_4$$

berechnet mit MinE4, der kleinsten vom Spektrometer akzeptierten Energie.

Angenommen die "Faltung" mit $\overline{S}_{IR}(E'_1)$ sei bereits durchgeführt (vgl. Anhang 2), d.h. es läge ein Teilchen mit Energie E'_1 vor, dann wird die Energie E'_4 nach

7

z.
$$\overline{S}_{IR}(E_1') = \int^{E_4} dE_4 \ \overline{S}_R(E_1', E_4)$$

MinE₄

C7 1

mit z als Zufallszahl (O<z<1) gewonnen. Je nachdem in welchem von 3 angegebenen Intervallen V liegt mit

$$V = z \cdot W(E'_1, E'_4)$$

werden dann die Vertex Energien E₁ bzw. E₄ ermittelt:

0 < V < W _s	$w_s \stackrel{<}{=} V < w_s + w_1$	$w_s + w_1 \stackrel{<}{=} V < w_4$
$E_1 = E'_1$ $E_4 = \Delta .(z)^{1/2A} + E'_4$ vgl. (A.2.5)	$E_{4} = E'_{4}$ $E_{1} \text{ nach:}$ $z.w_{1}(E'_{1},E'_{4}) =$ $E_{1}'-\Delta$ $\int dE K_{1} \overline{S}_{4}(E,E'_{4})$ $E_{1}\min(E'_{4})$	$E_{1} = E_{1}'$ $E_{4} \text{ nach:}$ $z \cdot w_{4}(E_{1}', E_{4}') =$ $E_{4}(\max(E_{1}'))$ $\int dE K_{4} \overline{S}_{3}(E_{1}', E)$ $E_{4}' + \Delta$

Abschließend wird cos04 nach

$$z.\overline{S}(E_1,E_4) = \int_{1}^{\cos \Theta_4} d\cos \Theta_4 \cdot S(E_1,E_4,\cos \Theta_4)$$

Min(cos Θ_4)

gewonnen. Wie im Fall der elastischen Ereignisse wird für $0 < V \stackrel{<}{=} w_s$ die Energiedifferenz $E_4 - E_4'$ abwechselnd einer γ -Emission in Primär-bzw. Sekundärrichtung zugeordnet. Mit den Größen E_1, E_4 , $\cos \Theta_4$ ist so auch die Kinematik am hadronischen Vertex bestimmt.

Bemerkungen

1. Die Zahl der verwendeten E_1 -Stützstellen betrug 80, diejenige für E_4 60, 2. bei diesem feinen Raster ($\Delta E \approx 7,5$ MeV) war es ausreichend, Integrale etwa der Form

$$\int_{40}^{E_{40}'} f(E_1, E_4) dE_4 durch \int_{40}^{E_{40}'} dE_4 f(E_1, E_4) \text{ mit } E_1 \text{ nach } Min|E_1 - E_1| i = 1,80$$

$$E_{40}$$

$$E_{40}$$

ohne zusätzliche Interpolation in E, zu berechnen.

3. bei verwendeten $\Delta \approx 7,5$ MeV werden die δ -Korrekturen (MEYE) so groß, daß die zur Berücksichtigung von Vielfach-Photoprozessen eingeführte Exponentiation von δ signifikante Unterschiede zu (1+ δ) liefert. Infolgedessen würde bei Nichtberücksichtigung von Vielfachprozessen in den Kernen K_j der Peakingapproximation Unstetigkeiten im Photonenspektrum bei der Photoenergie $\omega_i = \Delta$ auftreten. Zur Vermeidung solcher Unstetigkeiten wurde die von Mo und Tsai angegebene (empirische) Korrektur K_{mi} angebracht. Damit ha**b**ten die Kerne folgende Form:

$$K_{i} = \frac{\alpha}{\pi} \left(\frac{1 + x_{i}^{2}}{2} \ln \frac{q^{2}}{me^{2}} - x_{i} \right) \frac{K_{mi}}{\psi_{i}}, \text{ mit } x_{1} = \frac{E_{1}^{i} - \psi_{1}}{E_{1}^{i}}, x_{4} = \frac{E_{4}^{i}}{E_{4}^{i} + \psi_{4}}$$

und

A

$$K_{\text{mi}} = \left(\frac{\Delta}{E_{j}}\right)^{\overline{2}} \cdot \left(\ln(x_{i}^{-1})\right)^{A}; \text{ mit } A = \frac{\alpha}{\pi} \left(\ln \frac{q^{2}}{me^{2}} - 1\right) \qquad i, j = A, 4 \qquad i \neq j$$

4. Mit diesem Verfahren können in 7 min. Rechenzeit (IBM 360-75) ca. 40000 MC-Ereignisse produziert werden.

5. Der in Kap. 5.2 eingeführte Querschnitt $\sigma_{rad}(E_0, E''_4, \cos\theta_4)$ wurde mit S_R nach

(A.3.1) (ohne Mittelung über $\cos \theta_4$) wie folgt berechnet

$$\sigma_{rad}(E_0, E_4'', \cos \Theta_4) = \\ \sum_{\substack{k=1 \\ k \neq k}}^{E_1} E_4 \max(E_0) \\ \int dE_1' \int dE_4' I(E_0E_1', \frac{T}{2}) S_R(E_1', E_4' \cos \Theta_4) I(E_4', E_4'', \frac{T}{2}). \\ E_1 \min(E_4) E_4$$

ANHANG 4

Gray-Code

a) Umrechnung vom Gray-Code in Dezimalzahlen

Jedes fünfziffrige im Gray-Code gegebene Wort $(S_1, S_2, S_3, S_4, S_5)$ mit $S_i = 0, 1$ (i = 1,..., 5) entspricht genau einer Dezimalzahl K. Der Zusammenhang zwischen K und den Komponenten S_i ist gegeben durch

$$K = \left[\left(2^{5} - 1 + \frac{5}{j=1} (-1) \right)^{5} + \frac{5}{i=j} (-1)^{5} + \frac{5}{i=j} (-1)^{5} + \frac{5}{i=j} \right] (-1)^{5} + \frac{5}{i=j} (-1)^{5} +$$

b) Umkehrung

Berechnung der Komponenten S, aus K

$$S_{i} = \left[\frac{K}{2^{i}} + \frac{1}{2}\right] \mod 2$$
, $i = 1, ..., 5$

mit

[a] = Max (N), N ganz N $\stackrel{<}{-}$ a

ANCANG 5

Zur Lichtansammlung des Čerenkovzählers

Unter geeigneten Annahmen läßt sich aus der gemessenen Amplitudenverteilung ein Gütefaktor c des Čerenkovzählers bestimmen. c ist das Verhältnis von gemessener Zahl der Photoelektronen zur berechneten.

Die Varianz des Anodensignals A des verwendeten Photomultipliers (PM) setzt sich unter der Annahme, daß (I) alle beteiligten Prozesse voneinander unabhängig ablaufen, aus den Einzelvarianzen wie folgt zusammen (BIRK)

$$V(A) = V(N) + \frac{V(c)}{\bar{N}} + \frac{V(Q)}{\bar{N}} + \frac{V(M)}{\bar{N}c\bar{Q}}$$
(1)

mit N: Zahl der durch Čerenkov-Effekt erzeugten Photonen

CN: Zahl der auf die Kathode auftreffenden Photonen

Q: Quantenausbeute der Kathode

M: Verstärkung des Multipliers

$$V(X): = \frac{X^2 - \bar{X}^2}{\bar{X}^2}$$
 ist dabei die relative Varianz der Größe X mit dem
Erwartungswert \bar{X} .

Wird weiter angenommen, daß sich (II) alle Photonen bezüglich der Prozesse <u>c und</u> <u>Q gleich verhalten, d.h. z.B.</u>

$$V(c) = \frac{1-\bar{c}}{\bar{c}}$$

so geht (1) über in

$$V(A) = V(N) - \frac{1}{N} + \frac{1 + V(M)}{\overline{N}c\overline{Q}}$$

V(M) setzt sich wie (1) aus den Einzelverstärkungen der Dynoden des PM zusammen. Angenommen, die Verstärkung der ersten Dynode sei M₁, alle weiteren Dynoden versträrkten M-fach, und (<u>III</u>) für M, M₁ und für N gelte jeweils eine Poissonverteilung, so erhält man

$$V(A) = \frac{1 + \frac{M}{\overline{M}_1(\overline{M} - 1)}}{\overline{NcQ}}$$
(2)

V(A) wird durch Anpassung einer Poissonverteilung an das "Amplitudenspektrum" (Abb. A5) gewonnen, \bar{Q} , \bar{M}_1 , \bar{M} sind PM-Eigenschaften und \bar{N} wird berechnet (s.u.). Daher kann aus (2) \bar{c} ermittelt werden.

Für die Zahl N der im Frequenzintervall dv auf der Strecke dl im Radiator mit Berechnungsindex n von einem einfach geladenen Teilchen mit Geschwindigkeit β erzeugten Photonen gilt (z.B. RITS):

$$\frac{d^2 N}{d1 dv} = 0.0459 \left(1 - \frac{1}{\beta^2 n^2}\right)$$

<u>Abb. A5</u> Amplitudenspektren des Cerenkovzählers für 2 durch die angegebenen Hodoskopbereiche definierte "Trajektorien" (a,b) und das für die ganze Akzeptanz. Die ausgezogenen Kurven sind angepaßte Poissonverteilungen.

Durch Faltung mit der Quantenausbeute einer Kathode vom Typ U (VALV) erhält man mit der Annahme(IV), daß c und n frequenzunabhängig sind für die Zahl der Photoelektronen z

$$\frac{dz}{dl} = 417 \ (1 - \frac{1}{\beta^2 n^2}) \ . \ c \ /cm$$

Mit $\beta = 1$, $n = 1.000427$.P (LABÖ), $P = 1.3$ atm, $1 = 120$ cm ergibt sich so z zu

 $z = c \cdot 55.6$ Photoelektronen (3) Mit $\overline{M} = \overline{M}_1/2 = 3.55$ (Gesamtverstärkung 10⁸ bei 1 + 13 Dynoden) ergibt sich aus (3) und (2) mit $z = \overline{N_c 0}$

 $\overline{c} = 0.022 \cdot \frac{1}{V(A)}$

Um die AbhängigkeitderLichtsammlung von der Trajektorie zu ermitteln, wurde die Akzeptanz in 48 Teile unterteilt (3/3 O-Hodoskop, 4/4 ¢-Hodoskop, 4/4-Impulshodoskop). In Abb. A5 sind das so gefundene beste und schlechteste Spektrum sowie das der Gesamtakzeptanz wiedergegeben.

Mit den Annahmen I - IV erhält man so Gütefaktoren zwischen c = 0.2 und c = 0.75.

LITERATURVERZEICHNIS

ALB 1	 W. Albrecht, F.W. Brasse, H. Dorner, W. Flauger, K.H. Frank, J. Gayler, V. Korbel, J. May, P.D. Zimmerman, A. Courau, A. Diaczek, J.C. Dumas, G. Tristram, J. Valentin, C. Aubret, E. Chazelas, E. Ganssauge; Nucl. Phy. <u>B25</u>, 1(1970)
ALB 2	Autoren wie bei ALB 1 sowie W. Fehrenbach; Nucl. Phys. <u>B27,</u> 615(1971)
ASH	W.W. Ash, K. Berkelman, C.A. Lichtenstein, A. Ramanauskas, R.H. Siemans; Phys. Lett. <u>24B,</u> 165(1967)
BARB	G. Barbiellini, G. Bologna, G. Capon, G. de Zori, F. L. Fabri, G.P. Murtas, G. Diambrini, G. Sette, J. de Wire; Phys. Rev. <u>184</u> , 1402(1969)
BART	W. Bartel; DESY F22-69/3 W. Bartel, B. Dudelzak, H. Krehbiel, J. McElroy, U. Meyer- Berkhout, W. Schmidt, V. Walther, G. Weber; Phys. Lett. <u>28B</u> , 148 (1968)
BDW	F.A. Berends, A. Donnachie, D. Weaver; Nucl. Phys. <u>B4,</u> 1(1968)
BEHE	H.A. Bethe, W. Heitler; Proc. Roy. Soc (London), <u>A146</u> , 83 (1934)
BIRK	J.B. Birks; The Theory and Pracice of Scintillation Counting, Pergamon Press (1964)
BJWA	J.D. Bjorken, J.D. Walecka; Ann. Phys. <u>38,</u> 35(1966)
BRAS	F.W. Brasse, J. Engler, E. Ganssauge, M. Schweizer; Nuovo Cimento <u>55A</u> , 679 (1968)
BURF	H. Burfeindt; DESY 67/25 (1967)

CAFU C. de Callan, G. Fuchs; Nuovo Cimento 38, 1594, (1965) CKH A.A. Cone; Dissertation Harvard (1965) U. Kötz; DESY intern (1967) D. Harms; DESY F22-69/4 (1969) DASU R.H. Dalitz, D.G. Sutherland; Phys. Rev. 146, 1180 (1966) R.H. Dalitz; Resonant States and Strong Interactions, Oxford Internat. Conf. on Element. Particles (1965), 157 DENN P. Dennery; Phys. Rev. 124, 2000 (1961) DESH DESY Handbuch (1966) DOMB N. Dombey; Rev. Mod. Phys. 41, 236 (1969) DRIM D.J. Drickey, R.F. Mozley; Phys. Rev. 136, B543 (1964) ECKA V. Eckardt; DESY 67/12(1967) EPKO J.P. Perez y Yorba, P. Bounin, J. Chollet; Phys. Lett. 11, 350 (1964) C.W. Akerlof, W.W. Ash, K. Berkelman, C.A. Lichtenstein; Phys. Rev. Lett. 16, 147 (1966) R. Kikuchi, K. Baba, S. Kaneko, K. Huke, Y. Kobayashi, T. Yamakawa; Nuovo Cim. 43A, 1178 (1966) C.W. Akerlof, W.W. Ash, K. Berkelman, C.A. Lichtenstein, A. Ramanauskas, R.H. Sieman; Phys. Rev. 163, 1482 (1967) K. Baba, N. Kajiura, S. Kaneko, K. Huke, R. Kikuchi, Y. Kobayashi, T. Yamakawa; Nuovo Cim. 59A, 53 (1969) E. Amaldi, B. Borgia, P. Pistilli, M. Balla, G.V.Di Giorgio, A. Giazotto, S. Serbssi, G. Stoppini; Nuovo Cim. <u>65A,</u> 377 (1970)

2

.8

TSAI Y.S. Tsai; Phys. Rev. <u>122</u>, 1889 (1961) TSA 1 Y.S. Tsai; Proc. Int. Conf. at Stanford University 1963, Stanford University Press (1964) TSA 2 Y.S. Tsai; SLAC-PUB-848 (1971) URWI P. Urban, F. Widder; Phys. Lett. <u>22</u>, 526 (1966) VALV Valvo-Handbuch WATS K.M. Watson; Phys. Rev. <u>95</u>, 228 (1954)

N. Kajiura, K. Baba, R. Hamatsu, N. Ishihara, S. Kameko, T. Katsura, T. Ohsugi, S. Fukui, M. Ho**n**joh, T. Osuka, K. Ueno K, Huke, T. Katayama, y. Kobayashi, T. Yamakawa; Lett. Nuovo Cim. <u>3</u>, 714 (1970) sowie: ASH, BRAS, MIST

FIFI
 G. Fischer, H. Fischer, G.v. Holtey, H. Kämpgen, G. Knop,
 P. Schulz, H. Wessels, W. Braunschweig, H. Genzel, R. Wedemeyer;
 Nucl. Phys. B16, 93 (1970)

FNW S. Fubini, J. Nambu, V. Wataghin; Phys. Rev. 111, 329(1958)

GANS E. Ganssauge; DESY-F21 68/3 (1968)

GAYL J. Gayler; DESY F21-71/2 (1971)

GEHL G. v. Gehlen; Nucl. Phys. <u>B9</u>, 17(1969), Nucl. Phys. <u>B20</u>, 102(1970) sowie private Mitteilung

GOUR M. Gourdin; Nuovo Cimento 21, 1094 (1961)

GUT F. Gutbrod; DESY 69/22 (1969) sowie private Mitteilung

HAND L.N. Hand; Phys. Rev. <u>129</u>, 1834 (1963

- HELL
 R.D. Hellings, J. Allison, A.B. Clegg, F. Foster, G. Hughes,
 P. Kummer, R. Siddle, B. Dickinson, M. Ebbotson, R. Lawson,
 H.R. Montgomery, W.J. Shuttleworth, A. Sofair, J. Fannon;
 DNPL/P 65 (1971), sowie private Mitteilung
- JANS T. Janssens, R. Hofstadter, E.B. Hughes, M.R. Yearian; Phys. Rev. 142, 922 (1966), siehe auch SCHM

JONES H.F. Jones; Nuovo Cimento 40A, 1018 (1965)

KOHA R.D. Kohaupt; DESY 65/14 (1965)

LABO Landolt-Börnstein II/8; Springer Berlin 1962

- LAPI A. Ladage, H. Pingel; DESY 65/12 (1965)
- LIST L. Maximon; MIT 1967 Summer Study, USAEC TID-24667 R.D. Kohaupt; DESY 68/16 (1968), s.auch MOTS, MEYE
- MEYE N. Meister, D.R. Yennie; Phys. Rev. <u>130</u>, 1210 (1963)
- MIST C. Mistretta, J.A. Appel, R. J. Budnitz, L. Carroll, J. Chen, J.R. Dunning, M. Gotein, K. Hanson, D.C. Imrie, R. Wilson; Phys. Rev. <u>184</u>, 1487 (1969)
- MORI J. Moritz; DESY F23-71/1 (1971)
- MOTS L.W. Mo, Y.S. Tsai; Rev. Mod. Phys. <u>41</u>, 209 (1969)
- NPS P. Nölle, W. Pfeil, D. Schwela; Nucl. Phys. <u>B26</u>, 461 (1971)
- PDG Particle Data Group: D. J. Herndon, A. Barbaro-Galtieri, A.H. Rosenfeld; UCRL-20030 πN(1970)
- PANO W.K.H. Panofsky; Review talk presented at the HEP Instrumentation Conference Dubna (1970)
- PERA F. Peters, E. Raquet; DESY S2 69/1 (1969)
- PRWA P.L. Pritchett, J.D. Walecka; Phys. Rev. <u>168</u>, 1638 (1968)
- PRZU P.L. Pritchett, P.A. Zucker; Phys. Rev. D1, 175(1970)
- RITS D.M. Ritson, Techniques of HED; Interscience London (1961)

ġ.

1

ROSS B. Rossi, High Energy Particles; Prentice-Hall, Inc. Englewood Cliffs, N7 (1965)

SCHM W. Schmidt; DESY F22-69/2 (1969)
DANKSAGUNG

Herrn Prof. Dr. E. Lohrmann danke ich dafür, daß er diese Arbeit ermöglicht und wohlwollend gefördert hat.

Die Arbeit umfaßt einen Teil des Experimentes zur π° -Elektroproduktion, das in Zusammenarbeit mit einer Gruppe des Collège de France (Paris) und der Gruppe F21 am Deutschen Elektronen Synchrotron gemacht wurde. Sie wäre ohne die dankenswerte Mitarbeit aller Mitglieder der Kollaboration nicht zustande gekommen. Großen Anteil am Gelingen des Experimentes haben außerdem die Herren J. Koll, G. Singer, K. Thiele und H. Weiß mit sorgfältigen technischen Arbeiten.

Besonders herzlich möchte ich Herrn Dr. F.W. Brasse danken, dem die schwierige Aufgabe oblag, alle Anstrengungen zu koordinieren, und der mir mit Rat und Tat jederzeit hilfreich zur Seite stand.

Den Herren Dr. F. Gutbrod, H. Wessel und Prof. G. v. Gehlen danke ich dafür, daß sie die Ergebnisse ihrer theoretischen Modellrechnungen zur Verfügung stellten; Herrn Dr. Gutbrod insbesondere auch für die Erläuterung einiger Modelle. Der Lancaster-Manchester Kollaboration danke ich für die Mitteilung ihrer vorläufigen Ergebnisse der π° -Elektroproduktion bei $q^2 = 0.3$; 0.6; 0.8 GeV² und W = 1.235 GeV.

Frau B. Elsner und Herr W. Knaut halfen mir bei der Ausführung ' eines Teiles der Zeichnungen. Die mühevolle Schreibarbeit hat Fräulein I. Bohmann mit großer Fertigkeit besorgt. Ihnen allen danke ich hiermit.

Ferner möchte ich Herrn Dr. Krehbiel für die Überlassung seiner Schaltpläne zum Bau der Analog-Digital-Konverter zur Flugzeitmessung und Herrn P. Kuhlmann für die Anfertigung eines Programmes zum Lesen inkrementell beschriebener Datenbänder danken, das während der ersten Testmessungen wertvolle Dienste leistete. Herrn G. Hochweller und Herrn G. Delfs sei Dank für den ON-LINE Anschluß der CII 90-10 und die Einrichtung des Displays.