Interner Bericht DESY F21-78/01 Oktober 1978

DESY-Bibliothck 7. DEZ, 1978

Bestimmung des Beitrages longitudinal polarisierter virtueller Photonen bei der n-Elektroproduktion der S₁₁(1535)-Resonanz

von

H. Wriedt

Bestimmung des Beitrages longitudinal polarisierter virtueller Photonen bei der n-Elektroproduktion der S₁₁(1535)-Resonanz

Dissertation zur Erlangung des Doktorgrades des Fachbereichs Physik der Universität Hamburg

> vorgelegt von Henning Wriedt aus Hamburg

> > Hamburg

Gulachter der Dissertation: Dr. F. W. Brasse Prof. Dr. P. Schmüser Gutachter der Disputation:

> Prof. Dr. P. Schmüser Prof. Dr. H. Spitzer

Datum der Disputation:

21. September 1978

Vorsitzender des Promotionsausschusses und Sprecher des Fachbereichs Physik: Prof. Dr. H. G. Danielmeyer

Zusammenfassung

In dieser Arbeit wird ein Experiment zur Elektroproduktion von n-Mesonen im Bereich der Resonanz S₁₁(1535) bei Impulsüberträgen von $q^2 = 0.6$ und 1.0 GeV²/c² sowie Polarisationsfaktoren ϵ von jeweils 0.5 und 0.9 beschrieben. Ziel der Messung war die Trennung von longitudinalem und transversalem Wirkungsquerschnitt der Reaktion

ep → epŋ

Die gestreuten Elektronen wurden in einem doppelt fokussierendem Spektrometer, die dazu koinzidenten Rückstoßprotonen in einem nicht fokussierendem Spektrometer nachgewiesen.

Die aus den gemessenen differentiellen Wirkungsquerschnitten gewonnenen Winkelverteilungen weisen darauf hin, daß der np-Endzustand durch eine reine S₁₁-Welle dominiert wird. Ein geringer Beitrag einer P₁₁-Welle kann jedoch nicht ausgeschlossen werden. Beide Hypothesen über den np-Endzustand liefern für R_n, das Verhältnis vom totalen longitudinalen zum totalen transversalen Wirkungsquerschnitt, für beide Werte von q² Resultate, die im Rahmen der Fehler mit Null verträglich sind.

Die aus diesen Messungen bestimmten Multipolamplituden E_{O^+} und S_{O^+} stimmen mit vorhandenen Resultaten einer Dispersionsrelations-Analyse überein.

Inhaltsverzeichnis

Zusammenfassung

Inhaltsverzeichnis

Ι.	Einleitung	I
11.	Theoretische Grundlagen des Experiments	2
	I. Kinematik	2
	2. Wirkungsquerschnitt	6
	3. Entwicklung nach Multipolamplituden	7
ш.	Apparatur	8
	I. Primärstrahl: Erzeugung, Führung und Intensitätsmessung	8
	2. Target	11
	3. Elektronspektrometer	12
	4. Protonspektrometer	13
	4.1. Proportionalkammer	15
	4.2. Szintillationshodoskop	15
	4.3. Akzeptanz und Auflösung	17
	5. Elektronik und Datennahme	19
IV.	Messungen	23
	1. Kinematische Parameter der Messungen	23
	2. Test- und Eichmessungen	25
v.	Auswertung und Analyse der Daten	27
	I. Reduktion der Information des Elektronspektrometers	
	und Normierung der Messungen	29
	1.1. Reduktion von Mehrfach-Ereignissen im Elektron-	
	spektrometer auf Einfach-Ereignisse	32
	2. Reduktion der Information des Protonspektrometers	
	und Rekonstruktion der Trajektorien	49
	3. Kinematische Analyse von Ereignissen mit rekonstruierter	
	Trajektorie	54
	3.1. Untersuchung von Ereignissen mit Mehrfach-Trajek-	
	torien im Protonspektrometer	62

	4.	Monte-Carlo-Simulation des Experiments	63
		4.1. Strahlungskorrekturen	64
		4.2. Transport der Elektronen und Protonen durch die	
		Spektrometer	65
		4.3. Auswertung simulierter Koinzidenzereignisse	66
	5.	Berechnung der differentiellen Wirkungsquerschnitte	67
	6.	Korrekturen und Fehler	74
VI.	Er	zebnisse	78
	1.	Totale Einarm-Wirkungsquerschnitte	78
	2.	Differentielle Wirkungsguerschnitte	84
		2.1. Anpassungen an die Winkelverteilungen	100
	3.	Separation von longitudinalem und transversalem	
		Wirkungsquerschnitt und Berechnung von R	102
		3.1. Reine S.,-Welle	103
		3.2. Überlagerung von S,,- und P,,-Welle	108
		3.3. Vergleich der beiden Ansätze	112
	4.	Parametrisierung des totalen Wirkungsquerschnitts	
		für η -Produktion, σ_{n}^{tot}	112
	5.	Vergleich mit anderen Experimenten	117
VII.	Ve	rgleich mit theoretischen Vorhersagen	121
	1.	Multipolamplituden	121
		I.I. Reine S.,-Welle	121
		1.2. Überlagerung von S.,- und P.,-Welle	121
		1.3. Vergleich der Multipolamplituden mit den	
		Ergebnissen von Multipolanalysen	122
	2.	Quarkmodellvorhersagen über den Verlauf des totalen	
		S_{11} -Elektroproduktionsquerschnitts und von $R_{S_{11}}$	125
Anhan	g		128
	0	Anhang Berechnung der Wirkungsquerschnitte g_, g.,	
		σ, und σ, als Funktion der Multipolamplituden	
		$E_{1+}, M_{1+} \text{ und } S_{1+}$	128
		a. Reine S -Welle $(1=0, i=1+1/2)$	129
		b. Reine PWelle $(1=1, i=1-1/2)$	130
		c. Uberlagerung von S. $-(1=0, i=1+1/2)$	
		und P., -Welle (1=1, j=1-1/2)	131
		d. Überlagerung von S., $-(1=0, j=1+1/2)$	
		und D ₁₂ -Welle (1=2, j=1-1/2)	132
		10	

Anhang 2	Fehlerrechnungsformeln für die longitudinalen	
	und transversalen Wirkungsquerschnitte, $\sigma_{\rm L}^{ m tot}$ und $\sigma_{m}^{ m tot}$ sowie ihr Verhältnis R	135
	a. Fehler des longitudinalen Wirkungsquer-	
	schnitts, otot	137
	b. Fehler des transversalen Wirkungsquer-	
	schnitts, $\sigma_{\rm T}^{\rm tot}$	137
	c. Fehler des Verhältnisses von longitudi-	
	nalem zu transversalem Wirkungsquer-	
	schnitt, R	138
Literaturverzeichnis		140

I. Einleitung

Auf der Grundlage von Quarkmodellen war es möglich, wesentliche Aspekte der Photoproduktion im Resonanzgebiet vorherzusagen ¹⁾. Um zu prüfen, inwieweit dies – als Ausdruck eines tieferen Verständnisses – auch für die Elektroproduktion möglich ist, müssen einzelne Endzustände experimentell untersucht werden.

In Koinzidenzexperimenten im Bereich der 2. Resonanz, die zum Ziel hatten, die Struktur der Resonanz S₁₁(1535) aufzuklären ²⁻⁴⁾, wurde beobachtet, daß der S₁₁(1535) - Produktionsquerschnitt wesentlich schwächer mit zunehmendem Viererimpulsübertrag q² des virtuellen Photons abfällt als der totale ep-Querschnitt. Als mögliche Erklärung wurde ein großer longitudinaler Anteil am S₁₁(1535) - Erzeugungsquerschnitt genannt ⁵⁾: Zum einen verschwindet dieser Anteil in der Photoproduktion, d. h. bei q² = 0, zum anderen würde selbst die rein longitudinale Erzeugung der S₁₁(1535)-Resonanz nur zu einem longitudinalen Anteil am totalen ep-Querschnitt im Bereich der 2. Resonanz von etwa 17% (für q² = 0.6 GeV²/c²) bzw. 19% (für q² = 1.0 GeV²/c²) führen, sofern man annimmt, daß weder die D₁₃(1520)-Resonanz noch der nichtresonante Untergrund zum longitudinalen Querschnitt beitragen. Diese Werte wären mit den bisher bekannten Ergebnissen für den longitudinalen Anteil am totalen ep-Querschnitt im Sereich der 2. Resonanz von etwa ist den bisher bekannten

In einem Koinzidenzexperiment am Deutschen Elektronen-Synchrotron (DESY), über das in der vorliegenden Arbeit berichtet wird, wurde der Wert des Polarisationsfaktors ε variiert, so daß der longitudinale Anteil des Wirkungsquerschnitts bestimmt werden konnte. Ebenso wie in den drei vorangegangenen Experimenten wurde die Resonanz S₁₁(1535) über den Zerfallskanal S₁₁(1535) \rightarrow np nachgewiesen, in den sie zu 65 % zerfällt ⁹⁾. Diese Messungen zur n-Elektroproduktion erfolgten bei Viererimpulsüberträgen $q^2 = 0.6$ und 1.0 GeV²/c² und Polarisationsfaktoren ε von jeweils 0.5 und 0.9. Ein Teil dieser Ergebnisse ist bereits veröffentlicht worden ⁸⁾. Parallel zu diesem Experiment wurden am Synchrotron der Universität Bonn Messungen zur n-Elektroproduktion im Bereich der S₁₁(1535)-Resonanz bei $q^2 = 0.4 \text{ GeV}^2/c^2$ und $\varepsilon = 0.35$ bzw. 0.79 vorgenommen, die ebenfalls eine Trennung von longitudinalem und transversalem Wirkungsquerschnitt ermöglichten ⁷⁾.

II. Theoretische Grundlagen des Experiments

Die Elektron-Proton-Streuung wird in niedrigster Näherung durch den Austausch eines virtuellen raumartigen Photons zwischen Elektron und Proton (Abb. 1) beschrieben. Beiträge durch den Austausch von zwei oder mehr virtuellen Photonen werden wegen der Kleinheit der Feinstrukturkonstante α als vernachlässigbar verglichen mit der experimentellen Genauigkeit angesehen ¹⁰⁾. Experimentelle Ergebnisse untermauern diese Annahme für den Zweiphotonaustausch ¹¹⁾.

Im ersten Abschnitt dieses Kapitels werden die wichtigsten kinematischen Variablen angegeben, die man in der Einphotonaustausch-Näherung erhält. Detaillierte Ausführungen finden sich in früheren Arbeiten ^{12, 13)}. Im zweiten Abschnitt wird die Herleitung des differentiellen Wirkungsquerschnitts skizziert, im dritten Abschnitt seine Entwicklung nach Partialwellen beschrieben.

II. | Kinematik

Im folgenden bezeichne der Index

- l das primäre Elektron,
- 2 das Targetproton,
- 3 das Meson-Nukleon-System,
- 4 das gestreute Elektron,
- 5 das Rückstoßproton
- und 6 das erzeugte Meson.

Abb. I Ein-Photon-Austausch

Größen, die mit dem Symbol "*" versehen sind, beziehen sich auf das Ruhesystem der Hadronen des Endzustandes (CM-System), Größen ohne dies Symbol auf das Laborsystem. Weiterhin wird angenommen, daß genau ein Meson erzeugt wird.

Das negative Quadrat des Viererimpulses des virtuellen Photons Y_v ergibt sich bei Vernachlässigung der Ruhmasse des Elektrons zu:

P P

- Z -

$$q^2 = -(q_0^2 - \dot{q}^2) = 2E_1E_4 (1 - \cos\theta_4)$$
, (1)

wobei

und

E₁ die Energie des primären Elektrons, E₄ die Energie des gestreuten Elektrons θ, der Elektronstreuwinkel ist.

q² wird in dieser Arbeit abgekürzt als "Viererimpulsübertrag" bezeichnet.

Der Elektronvertex, ee' $\gamma_{\rm V},$ ist aus der Quantenelektrodynamik bekannt, so daß die interessierende Reaktion

reduziert werden kann auf

 $\gamma_v p \neq h$.

Hierbei bezeichnet h die Hadronen des Endzustandes.

Dem virtuellen Photon wird die imaginäre Masse $| -q^2$ und die Energie v zugeordnet:

$$v = E_1 - E_4$$
 (2)

Mit Masse behaftete Vektorbosonen, also auch virtuelle Photonen, verfügen über drei voneinander unabhängige Polarisationsfreiheitsgrade: Zwei transversale und einen longitudinalen. Der Freiheitsgrad der longitudinalen Polarisation verschwindet für Teilchen mit Masse O, also für reelle Photonen. Für den transversalen Polarisationsgrad ε des Photons gilt ¹⁰:

$$\varepsilon = (1 + 2 \frac{q}{q^2} \tan^2 \frac{\theta_4}{2})$$
 (3)

Die invariante Masse W des hadronischen Systems h errechnet sich bei Vernachlässigung der Protonbewegung im Target aus:

$$W^{2} = 2 m_{p} v + m_{p}^{2} - q^{2} , \qquad (4)$$

dabei ist

Um differentielle Wirkungsquerschnitte bestimmen zu können, müssen die Erzeugungswinkel θ^* und ϕ bekannt sein. Die Definition des Polarwinkels θ^* und des Azimutalwinkels ϕ ergibt sich aus Abb. 2.

Der Zusammenhang zwischen gemessenen Laborgrößen und gesuchtem Polarwinkel $\theta_{c}^{\mathbf{H}}$ lautet:

$$\tan\theta_{6}^{\star} = \sqrt{1-\beta_{3}^{2}} \cdot \frac{-\sin\theta_{5}}{\cos\theta_{5} - \frac{\beta_{3}}{\beta_{5}}}$$
(5)

mit θ_5 und $\beta_i = \left|\frac{p_i}{E_i}\right|$

Geschwindigkeit des Teilchens i in Einheiten der Lichtgeschwindigkeit.

Polarwinkel des Protons im Laborsystem

Die Messungen von Laborwinkel und Impuls des Rückstoßprotons liefern die vollständige Kinematik des auslaufenden Protons, so daß mit der Kenntnis des Anfangszustandes die Kinematik des hadronischen Vertex eindeutig festgelegt ist und man für die Masse des erzeugten Mesons erhält:

$$m_6^2 = W^2 + m_p^2 - 2E_3E_5 + 2 \left| \vec{p}_3 \right| \cdot \left| \vec{p}_5 \right| \cos\theta_5$$
 (6)

Das ist die Missing-Mass-Zwangsbedingung.

Zwei weitere Größen, die häufiger benutzt werden, sind die äquivalente Photonenergie im Laborsystem,K, die bei der Absorption eines reellen Photons an einem ruhenden Proton einen hadronischen Zustand der Masse W erzeugt ¹⁴:

$$\kappa = \frac{W^2 - m_p^2}{2m_p}$$
(7)

und der Flußfaktor $\Gamma_{\rm t},$ der ein Maß für den Fluß transversal polarisierter virtueller Photonen ist:

- 4 -

- 5 -

Abb. 2 Definition der Laborwinkel

wobei a die Feinstrukturkonstante ist.

II.2 Wirkungsquerschnitt

Der differentielle Wirkungsquerschnitt für die Wechselwirkung von Elektronen mit Frotonen durch Austausch eines virtuellen Photons läßt sich darstellen als Produkt aus Flußfaktor und differentiellem Wirkungsquerschnitt virtueller Photonen mit Protonen:

$$\frac{d^{5}\sigma}{d(\cos\theta_{4})d\phi_{4}dE_{4}d(\cos\theta_{6}^{\mathbf{x}})d\phi} = \Gamma_{t} - \frac{d^{2}\sigma}{d\Omega_{6}^{\mathbf{x}}}$$
(9)

mit $\frac{d^2_{\sigma}}{d\Omega_6^{\pi}} = \frac{d^2_{\sigma}}{d(\cos\theta_6^{\pi})d\phi}$

Der Querschnitt für virtuelle Photoproduktion setzt sich aus vier separaten differentiellen Querschnitten zusammen, die von q², W und $\cos\theta_6^{*}$ abhängen. Sie werden

unpolarisierten transversalen Photonen	(_g),
longitudinalen Photonen	(σ_L) ,
polarisierten transversalen Photonen	(op)
und der Interferenz zwischen polarisier	ten transversalen und
longitudinalen Photonen	(σ ₁)
15)	

zugeordnet '':

$$\frac{d^2\sigma}{d\alpha_6^*} = \sigma_T + \varepsilon\sigma_L + \varepsilon\sigma_p \sin^2 \theta_6^* \cdot \cos 2\phi + \sqrt{2\varepsilon(\varepsilon+1)} \sigma_I \sin \theta_6^* \cos \phi \quad (10)$$

Diese vier Querschnitte können aus Multipolamplituden aufgebaut werden, wenn man die $\gamma_{\rm V}$ N \rightarrow N'm-Ubergangsamplitude nach Bahndrehimpulszuständen entwickelt (m bezeichne das Meson im Endzustand).

- 7 -

II.3 Entwicklung nach Multipolamplituden

In der Elektroproduktion gibt es bei gegebenem Gesamtdrehimpuls j des hadronischen Endzustandes zu jedem Bahndrehimpuls 1 des Mesons m drei unabhängige Multipole. Bei Gesamtdrehimpulsen j = $1 + \frac{1}{2}$ (j = $1 - \frac{1}{2}$) regen transversale Photonen mit Drehimpuls 1_{γ} = 1 ± 1 elektrische Multipolamplituden E_{1+} (E_{1-}) an, transversale Photonen mit Drehimpuls 1_{γ} = 1 hingegen regen magnetische Multipolamplituden Multipolamplituden M_{1+} (M_{1-}) an, und longitudinale Photonen regen die longitudinalen Multipolamplituden L_{1+} (L_{1-}) an 13 .

Der Zusammenhang zwischen diesen Multipolamplituden und den Querschnitten $\sigma_{\rm T}$, $\sigma_{\rm L}$, $\sigma_{\rm p}$ und $\sigma_{\rm I}$ wird in Anhang I zunächst in allgemeiner Form dargestellt. Anschließend werden die Querschnitte für vier hadronische Endzustände, die in der Diskussion der Ergebnisse erörtert werden, nämlich

- (i) Endzustand mit Isospin I = $\frac{1}{2}$, Gesamtdrehimpuls j = $\frac{1}{2}$ und Parität P = -1, das ist eine S₁₁-Welle;
- (ii) Endzustand mit I = $\frac{1}{2}$, j = $\frac{1}{2}$ und P = +1, das ist eine P₁₁-Welle;
- (iii) Uberlagerung zweier Endzustände mit I = $\frac{1}{2}$, j = $\frac{1}{2}$, P = -1 und I = $\frac{1}{2}$, j = $\frac{1}{2}$, P = +1, das sind eine S₁₁- und eine P₁₁-Welle;
- (iv) Uberlagerung zweier Endzustände mit I = $\frac{1}{2}$, j = $\frac{1}{2}$, P = -1 und I = $\frac{1}{2}$, j = $\frac{3}{2}$, P = -1, das sind eine S₁₁- und eine D₁₃-Welle;

explizit als Funktion der Multipolamplituden E_{1+} , M_{1+} und S_{1+} berechnet.

- 8 -

III. Apparatur

Die für das Experiment verwendete Apparatur bestand aus vier wesentlichen Komponenten:

- dem primären Elektronenstrahl (Synchrotron, Strahlführungssystem),
- den Geräten zur Intensitätsmessung des Elektronenstrahls (Sekundäremissions-Vervielfacher, Faradaykäfig, Silberphosphatgläser),
- der Streuapparatur (Target, Streukammer) und
- der Nachweisapparatur f
 ür die gestreuten Elektronen und R
 ückstoß protonen (Elektronspektrometer, Protonspektrometer), die in Abb. 3a
 dargestellt ist.

III.1 Primärstrahl: Erzeugung, Führung und Intensitätsmessung

Die Elektronen wurden im Synchrotron alle 20 msec auf die gewünschte Energie (je nach Einstellung zwischen 1.7 GeV und 4.5 GeV) beschleunigt und mittels langsamer Ejektion ¹⁹, ²⁰) ausgelenkt. Das Synchrotron lief im Flat-Top-Betrieb ²¹⁾, d. h. dem sinusförmigen 50 Hz-Strom der Magnete wurde eine sinusförmige 200 Hz-Komponente überlagert, so daß der zeitliche Verlauf des Magnetfeldes ein flaches Dach zeigte. Dadurch wurden Pulsdauern (Spillängen) von 2.5 - 3 msec bei einer Energieunschärfe innerhalb eines Pulses von maximal ±2.5 °/oo erreicht ²²⁾.

Im Mittel wurden etwa 10¹⁰ Elektronen pro Puls aus dem Synchrotron ejiziert und mittels eines Transportsystems, das aus 2 vertikalen Korrekturspulen, 4 horizontalen Ablenkmagneten und 10 Quadrupolen bestand ²³⁾, zum Target geführt. Die Kontrolle der Strahllage zwischen den einzelnen Meßläufen erfolgte durch das Einschwenken von Zinksulfid-Schirmen, die über Fernsehkameras beobachtet wurden.

Zur Verminderung der Vielfachstreuung wurde der Elektronenstrahl zwischen Synchrotron und Faradaykäfig weitgehend in einem evakuierten Strahlrohr geführt. An den Stellen, an denen die Installierung eines starren Rohres nicht möglich war, waren mit Helium gefüllte Plastiksäcke angebracht, so etwa unmittelbar hinter dem Target zwischen den beiden Spektrometern. Ebenfalls zwischen Target und dem ersten Magneten des Elektronspektrometers sowie in der öffnung des Protonspektrometermagneten befanden sich derartige Heliumsäcke.

- 91-

Am Ende des Strahls unmittelbar vor dem Faradaykäfig befand sich ein Streifenmonitor, der ein Bild der horizontalen und vertikalen Intensitätsverteilung des Strahls lieferte ²⁴⁾. Für jede Energieeinstellung wurde vor den McBläufen die Strahllage am Faradaykäfig horizontal und vertikal variiert, um diejenige Einstellung zu ermitteln, bei der Abweichungen von der Solllage das Verhältnis der Ladungsmessungen mittels Sekundäremissionsmonitors (SEM) einerseits und Faradaykäfigs andererseits (s. unten) am geringsten änderten. Der Strahl wurde so auf jeweils eine halbe Streifenbreite genau waagerecht und senkrecht justiert (1 Streifenbreite \cong 5 mm); Schwankungen während der Messungen bis zu ±1 Streifen wurden zugelassen, das entspricht Intensitätsänderungen bis zu ±1 Z im ungünstigsten Fall der Messungen bei 1.7 GeV.

~ 10 ~

Strahllage und Strahlprofil wurden mit Hilfe des Streifenmonitors während der gesamten Meßzeit überwacht um zu gewährleisten, daß der Strahl in seinem gesamten Querschnitt auf die Meßgeräte für die Ladungsmessung trifft. Die relative Ladungsmessung erfolgte in einem Sekundäremissionsmonitor ²⁵,26) mit einer nutzbaren öffnung von 200 mm Durchmesser, zur absoluten Normierung diente der dahinter stehende Faradaykäfig ²⁵, ²⁶), dessen nutzbare öffnung einen Durchmesser von 150 mm hatte.

Das Verhältnis aus beiden Werten ist in der folgenden Tabelle für die während der Messungen eingestellten Energien der primären Elektronen angegeben:

rgie des Primärstrahls	gemessene Ladung im Faradaykäfig
[GeV]	gemessene Ladung im SEM
1,694	1.30
2.104	1.29
3.540	1.23
4,503	1.19

Die Langzeitkonstanz dieses Verhältnisses lag je nach Energieeinstellung zwischen 1 ^o/oo und 17 ^o/oo. Um zu prüfen, ob wesentliche Anteile am Strahl die nutzhare öffnung des Faradaykäfigs verfehlten und eine zu geringe oder durch Aufschauern und nachfolgende Ladungstrennung im Magnetfeld des Faradaykäfigs eine zu hohe Strahlintensität vortäuschten, wurde für die Energieeinstellungen mit schlechter Strahlqualität – 1.7 GeV und 2.1 GeV – die Ausdehnung des Strahls zwischen Streifenmoni-

Tabelle |

Ene

tor und Faradaykäfig mit Silberphosphatgläsern ²⁷⁾ vermessen. Die größte Ausdehnung wurde bei 1.7 GeV gemessen, die Strahlbreiten für 50 % bzw. 10 % der maximalen Intensität sind in der folgenden Tabelle aufgeführt:

Tabelle 2

Strahlprofil bei 1.7 GeV Primärenergie

Relativer Anteil der	vertikaler	horizontaler
maximalen Intensität	Abstand vom Mitte	lpunkt des Faradaykäfigs
[7]	[mm]	[mm]
50	30	28
10	55	55

Darüberhinaus wurde am Rande des Faradaykäfigs bei der Strahlenergie von 1.7 GeV eine Intensität von 1.4 \mathbb{Z} der maximalen festgestellt. Eine rotationssymmetrische zweidimensionale Normalverteilung mit einer Standardabweichung von σ = 25.6 mm beschreibt diese Messungen des Intensitätsverlaufs des Primärstrahls; hieraus wurde berechnet, daß bei diesem Strahlprofil etwa 1.4 \mathbb{Z} aller primären Elektronen die nutzbare Öffnung des Faradaykäfigs verfehlten. Die Strahldivergenz wurde aus einer zusätzlichen Strahlprofilmessung am Target zu \pm 1 mrad abgeschätzt.

Zusätzlich wurde die Intensität des Primärstrahls mit einem Monitor-Teleskop aus drei Szintillationszählern überwacht, das unter einem Winkel von 60⁰ zum Primärstrahl aufgebaut und mit einer Strahlungslänge Blei zum Target hin gegen niederenergetische Teilchen abgeschirmt war.

111.2 Target

Die mit flüssigem Wasserstoff gefüllte Targetzelle befand sich über dem gemeinsamen Drehpunkt von Elektron- und Protonspektrometer (Abb. 3a). Sie bestand vollständig aus Kapton-Polyimid-Folie von 75 µm Wandstärke, die zu einem Zylinder mit einem Durchmesser von 5 cm geformt war. An den Enden wurde sie durch angeklebte Kugelkalotten von etwa 3.5 cm Radius abgeschlossen. Die Länge in Strahlrichtung betrug bei 0.4 atm, dem mittleren Arbeits-druck während der Messungen, etwa 12 cm. Wegen der Strahlenschäden durch den Primärstrahl wurde die Targetzelle zwischen den Messungen mit q² = 1 GeV²/c² und q² = 0.6 GeV²/c² erneuert. Eine ausführliche Beschreibung der Streukammer, die die Targetzelle umgibt, und des gesamten Kühlsystems findet sich in der Dissertation von J. May ²⁸).

III.3 Elektronspektrometer

Identifizierung und Impulsanalyse der gestreuten Elektronen erfolgte in einem doppelt fokussierenden Spektrometer (Abb. 3a), das aus vier magnetischen Elementen, zwei Quadrupolen des DESY-Typs QA ²⁶⁾ und zwei nach oben ablenkenden Magneten des Typs MA ²⁶⁾, bestand. Die Teilchenbahnen wurden mit drei Szintillationshodoskopen (ϕ , Θ , PQ) ermittelt, der Teilchenidentifikation dienten ein Schwellen-Cerenkovzähler C, ein weiterer Szintillationszähler T und ein Sandwich-Schauerzähler S. Die Zähleranordnung war vollständig von einer Abschirmung aus 20 bis 30 cm dickem Eisen umgeben, die nur zum Target hin eine öffnung aufwies. Das gesamte Spektrometer befand sich auf einer Lafette, die horizontal zwischen 15[°] und 57[°] gegen die Richtung des primären Elektronenstrahls geschwenkt werden konnte.

Da sich eine ausführliche Beschreibung des Elektronspektrometers in der Dissertation von J. May ²⁸⁾ befindet, wird im folgenden nur ein zusammenfassender Überblick über die wichtigsten Eigenschaften des Spektrometers gegeben.

Unabhängig vom Wechselwirkungspunkt im Target wurden Elektronen mit gleichem Impulsbetrag und Horizontalwinkel horizontal auf denselben Punkt fokussiert (Strich-Punkt-Abbildung); unabhängig vom Vertikalwinkel wurden Elektronen aus demselben Targetpunkt und mit gleichem Impulsbetrag vertikal auf denselben Punkt fokussiert (Punkt-Punkt-Abbildung), es entstand also für jeden Impulsbetrag ein Bild des Targets in der vertikalen Ebene.

In dieser Targetbildebene befand sich das aus 40 Szintillationszählern bestehende Hodoskop zur Impulsmessung (PQ-Hodoskop, s. Abb. 3b), das 20 Impulskanäle definierte. Die Messung des Vertikalwinkels erfolgte in einem aus 16 Szintillationsstreifen bestehenden Hodoskop (\$-Hodoskop) in Verbindung mit dem Impulshodoskop. Zur Bestimmung des Horizontalwinkels der gestreuten Elektronen diente ein Hodoskop aus sechs Szintillationsstreifen (0-Hodoskop), das in der Horizontalwinkel-Fokalebene des Spektrometer-Sollimpulses aufgestellt war.

Abb. 3b Schematische Anordnung der Zähler im PQ-Hodoskop

Hodoskop	PQ	ф	θ
Messung von	Impuls	Vertikalwinkel	Horizontalwinkel
Zählerlänge [mm]	259-303	184	221
Zählerbreite [mm]	25	10	28
Zählerdicke [mm]	2	3	3
Anzahl der Zähler	2 x 20	16	6
Akzeptanz des			
Hodoskops	± 5 %	± 29 mrad	± 8.1 mrad

Für die Auslese wurde ein Teilchen dadurch als Elektron identifiziert, daß sowohl der 1.2 m lange Schwellen-Cerenkovzähler C (Füllung: CO₂ unter 1.3 atm) als auch der Szintillationszähler T angesprochen hatten. Die Pulshöhe des Sandwich-Schauerzählers S, der aus fünf Bleiplatten von jeweils einer Strahlungslänge und sechs Szintillatorplatten bestand, wurde in der Datenanalyse zur Abtrennung von minimalionisierenden Teilchen benutzt.

Die Akzeptanz des Elektronspektrometers wurde in der Dissertation von J. Gayler $^{29)}$ zu 0.0906 msr berechnet.

111.4 Protonspektrometer

Das nicht fokussierende Protonspektrometer (Abb. 4) diente der Identifizierung und Impulsanalyse der gestreuten Protonen. Es bestand aus einem Ablenkmagneten des DESY-Typs MV²³⁾ und zwei Hodoskopen, einem Proportionaldrahtkammer-Hodoskop HI unmittelbar hinter dem Magneten und einem Szintillationshodoskop HII etwa 5 m hinter dem Magneten. Die beiden Hodoskope befanden sich innerhalb einer 20 bis 30 cm dicken Eisenabschirmung, die nur die Magnetöffnung freiließ. Das gesamte Spektrometer war auf einer Lafette aufgebaut, die horizontal zwischen 13[°] und 70[°] gegen die Richtung des primären Elektronenstrahls geschwenkt werden konnte. Eine detaillierte Beschreibung der Lafette und des Magneten befindet sich in einem Bericht von K. H. Frank²³, die Vermessung des Magnetfeldes ist in der Dissertation von M. Merkwitz³⁰) beschrieben.

111.4.1 Proportionalkammer

Das Proportionaldrahtkammer-Hodoskop HI $^{30-32)}$ bestand aus drei mechanisch verbundenen Einzelkammern, die jeweils zwei Hochspannungsebenen und dazwischenliegend eine Signaldrahtebene enthielten. Die Signaldrähte bestanden aus 20 µm starkem vergoldetem Wolfram und hatten einen Abstand von 2 mm. In der ersten Kammer waren sie waagerecht gespannt, in den beiden anderen hatten sie eine Neigung von + 5^o bzw. - 5^o gegen die Horizontale, so daß eine Ortsauflösung von horizontal 4.8 mm und vertikal 0.6 mm (jeweils Standardabweichung) erreicht wurde. Die drahtbespannte öffnung betrug 1460 x 380 mm². Als Arbeitsgas wurde eine Mischung aus 0.3 \mathbb{Z} Ar, 31.7 \mathbb{Z} Ne und 68 \mathbb{Z} CO₂ verwendet, die an die Kammern angelegte Hochspannung betrug 5.7 kV - 5.8 kV.

III.4.2 Szintillationshodoskop

Das Szintillationshodoskop HII 30,33) (Abb. 4 und 5) bestand aus 15 übereinander angebrachten Gray-Code-Kammern, von denen immer vier um 12° gegen die darunterliegenden geneigt waren. Jede Kammer hatte eine empfindliche Oberfläche von 300 x 800 mm² und setzte sich aus vier 5 mm dicken, im Gray-Code angeordneten Szintillationszählern zusammen. Unmittelbar hinter ihnen befanden sich 16 Szintillationszähler (auch als Trigger- oder Laufzeitzähler bezeichnet), die jeweils zwei Kammern zur Hälfte überdeckten (Abb. 5). Ihre Dicke betrug 10 mm, ihre empfindliche Oberfläche entsprach, mit Ausnahme des obersten und des untersten, die nur die halbe Höhe aufwiesen, derjenigen der Gray-Code-Kammern. Jede Kammer war so in 30 übereinanderliegende Kanäle von 10 mm Breite aufgeteilt, daß ein hindurchfliegendes Teilchen mindestens zwei Zähler, einen Kammerzähler und einen Triggerzähler, treffen mußte. Der horizontale Durchgangsort eines Teilchens in HII wurde über die Messung der Differenz der Lichtlaufzeiten zwischen den beiden an den Enden der Triggerzähler befindlichen Photomultiplier mit einer Auflösung von 80±5 mm (Halbwertsbreite) 33) gemessen. Außerdem dienten die Triggerzähler in Verbindung mit dem Cerenkovzähler im Elektronspektrometer zur Flugzeitmessung der Hadronen. Weitere technische Einzelheiten des Hodoskops HII finden sich in der Arbeit von W. Wagner³³⁾.

Abb. 5a Vertikaler Schnitt durch eine Kammer des Szintillationshodoskops HII (entnommen aus Ref. 23)

III.4.3 Akzeptanz und Auflösung

Ausführliche Untersuchungen über die Akzeptanz und die Auflösung des Protonspektrometers sind von K. H. Frank angestellt worden ³⁴⁾. Danach hängt die Akzeptanz wesentlich ab von (Abb. 6)

- dem Abstand zwischen Target und Magnet, S,
- der Blendenstellung V,
- dem vertikalen Abstand zwischen Strahlhöhe und Magnetachse, Y,
- der Horizontalneigung der Magnetachse, N und
- der Targetlänge TL.

Diese Parameter waren für das Experiment folgendermaßen ausgewählt worden:

Tabelle 4 Parameter des Protonspektrometers S 512.6 mm V - 1.4° Y 150 mm N 0° TL 120 mm

Die horizontale Akzeptanz war sowohl durch die Magnetöffnung als auch durch die empfindliche Breite des Hodoskops HII begrenzt. Sie betrug 112 mrad für Werte des Verhältnisses des Teilchenimpulses zur Feldstärke des Magneten $V_{PB} \ge 1$ GeV/Tesla und stieg an auf 114 mrad für $V_{PB} = 0.5$ GeV/Tesla aufgrund der longitudinalen Komponente des Randfeldes des Magneten, die eine horizontale Fokussierung proportional $\frac{1}{V_{PB}}$ bewirkte. Die vertikale Akzeptanz war ebenfalls durch die Magnet- V_{PB} öffnung und die Höhe von HII begrenzt; allerdings wurde die maximal zur Verfügung stehende Akzeptanz dadurch beschnitten, daß zum einen durch Verkleinern der Blende an der Magnetöffnung Teilchen mit Vertikalwinkeln größer - 25 mrad ausgeblendet wurden, zum anderen wurden

- 19 -

die unteren fünf Triggerzähler von HII nicht benutzt bzw. nicht für die Auswertung herangezogen. Damit wurde erreicht, daß der gesamte benutzte Bereich des Hodoskops HII außerhalb der direkten Sicht auf das Target lag und damit weitgehend frei von elektromagnetischem Untergrund blieb. Ein Vergleich der Zählraten der Triggerzähler 11 und 12 zeigte eine etwa zehnfach höhere Zählrate im Triggerzähler 12, in dem die Grenze der direkten Sicht verlief. Dieser Schnitt in der Akzeptanz erwies sich als unkritisch, da in den untersuchten kinematischen Bereichen die interessierenden Protonen aus dem Kanal ep \rightarrow epŋ im oberen Bereich des Hodoskops (kleine Triggerzählernummern) lagen (s. auch Abschnitt V.3.).

Die Auflösung des Horizontalwinkels hing ab von der Meßgenauigkeit der Horizontalorte in den Kammern HI und im Hodoskop HII sowie dem Horizontalwinkel θ_p selbst. Sie lag für diese Messungen bei 12.5 mrad ($\theta_p = 34^{\circ}$) bzw. 10 mrad ($\theta_p = 24^{\circ}$). Die Auflösung des Vertikalwinkels und des Impulses hing ab von der Meßgenauigkeit des vertikalen Ortes in HI und HII, von der Vielfachstreuung und von der Unbestimmtheit des Reaktionsortes im Target. Damit ergaben sich für die Auflösung des Vertikalwinkels Werte von 10 - 18 mrad je nach Impuls und Vertikalwinkel und für die Impulsauflösung Werte von 2 - 4 %, ebenfalls abhängig vom Impuls und Vertikalwinkel.

III.5 Elektronik und Datennahme

Die in diesem Experiment verwendete Elektronik war weitgehend identisch mit der früherer Experimente.

Unterschiede in der Elektronik des Elektronspektrometers gegenüber der Beschreibung von J. May ²⁸⁾ bestanden darin, daß als Hauptkoinzidenz des Elektronspektrometers, also als Definition eines Elektronereignisses in der schnellen Elektronik, eine Zweifach-Koinzidenz zwischen Cerenkovzähler C und Szintillationszähler T geschaltet war, in der das Signal des Cerenkovzählers zeitbestimmend war.

Diese Hauptkoinzidenz erzeugte ein Elektronmaster-Signal, das vorhanden sein mußte, damit die Information aus den Elektronspektrometer-Zählern (siehe Tabelle 5) in die Zwischenspeicher übernommen werden konnte.

Tabelle 5

Gewonnene Information der Nachweisgeräte in den Spektrometern

Elektronspektrometer:

- Adressen der angesprochenen Zähler des PQ-Hodoskops,

des 0 -Hodoskops,

- des φ -Hodoskops, des Cerenkovzählers,
- Amplituden der Photomultiplier

des Szintillationszählers,

des Schauerzählers,

- Zeitdifferenz zwischen Cerenkov- und Szintillationszähler-Signal als Maß der Elektron-Flugzeit;

Protonspektrometer:

- Adressen gefeuerter Signaldrähte der Proportionaldrahtkammern HI,
- Adressen getroffener Trigger- und Gray-Code-Zähler in HII,
- Lichtlaufzeit im Triggerzähler als Maß der Horizontalkoordinate des Teilchens,
- Zeitdifferenz zwischen Elektronmaster-Signal und Ansprechen des Triggerzählers als Maß der Flugzeit des Protons,
- aus den beiden Photomultipliern eines getroffenen Triggerzählers gemittelte Amplitude.

Die Elektronik des Protonspektrometers ist bereits von M. Merkwitz ³⁰⁾ beschrieben worden. Das Elektronmaster-Signal bewirkte, daß die Information von HI und HII im Protonspektrometer (siehe Tabelle 5) in die Zwischenspeicher gelangen konnte. Außerdem wurde ein HII-Signal als Definition eines Koinzidenzereignisses in der schnellen Elektronik erzeugt, sofern in Koinzidenz mit dem Elektronmaster-Signal mindestens einer der Trigger- und mindestens einer der zugehörigen Gray-Code-Zähler angesprochen hatte.

Die in den Zwischenspeichern befindliche Information wurde, wie bei M. Merkwitz ³⁰⁾ beschrieben, von einem PDP-8/I-Kleinrechner weiterverarbeitet ³⁵⁾, falls ein HII-Signal erzeugt worden war. Bei nichtkoinzidenten Elektronereignissen wurde, abhängig von der gewählten Untersetzer-Einstellung, die anliegende Information jedes oder

- 20 -

jedes fünfzigsten derartigen Ereignisses weiterverarbeitet. Nacheinander lasen ein 14-Wort-Elektron-Scanner die Information des Elektronspektrometers sowie die Energie- und Ejektionszeitpunkt- (Spill-) Information des Elektrons, ein I-Wort-Scanner die Information der Proportionaldrahtkammern und des Szintillationshodoskops in den Kernspeicher der PDP ein. Die gemittelten Amplituden der HII-Triggerzähler-Multiplier wurden über CAMAC eingelesen ³⁶.

Der Kernspeicher der PDP bestand aus zwei Puffern zu je 3600 12-Bit-Worten, die abwechselnd mit Daten gefüllt und über eine Online-Verbindung auf einen Plattendatensatz der IBM-Rechenanlage des Typs 370/168 blockweise übertragen wurden. Außerdem wurde ein Teil dieser Daten von der IBM einer vorläufigen Analyse unterzogen, deren Ergebnisse auf demselben Datensatz gespeichert wurden und auf die während der Messung mittels der PDP zugegriffen werden konnte, um so den Verlauf der Messung kontrollieren zu können. War der Plattendatensatz zu einem bestimmten Teil gefüllt, so wurde ein Dump-Programm gestartet, das die von der PDP transferierten Daten auf ein Magnetband entlud. Ein an die PDP angeschlossenes Digitalvoltmeter überwachte während der gesamten Meßzeit die Ströme sämtlicher Strahlführungs- und Spektrometermagnete, die Versorgungsund Hochspannungen der Proportionaldrahtkammern sowie die Hochspannungen aller Triggerzähler-Multiplier. Die Meßwerte des Digitalvoltmeters wurden online verglichen mit den in der IBM gespeicherten Sollwerten und Toleranzen der einzelnen Meßstellen.

Zu Beginn und am Ende eines jeden Meßlaufs, dessen Dauer durch die gewünschte Primärstrahlladung am Integrator²⁶⁾ des Sekundäremissionsmonitors vorgewählt war, wurde der Inhalt von 50 Borer BCD-Zählern in den Kernspeicher der PDP eingelesen. Der wichtigste Teil dieser Zähler, als Monitorblock bezeichnet, wurde während des Meßlaufs in regelmäßigen Abständen ausgelesen, um bei einem Mißlingen des Transfers der Zählerinhalte am Ende des Meßlaufs einen möglichst großen Teil der Daten trotzdem auswerten zu können. Die Bedeutung der in den Zählern des Monitorblocks gezählten Signale findet sich in Tabelle 6:

Tabelle 6

Information der Zähler des Monitorblocks

- Koinzidenzen der drei Zähler des Monitor-Teleskops (vgl. Abschnitt III.I.) bei meßbereiter Apparatur
- alle Koinzidenzen der drei Monitorzähler
- zufällige Koinzidenzen zweier Monitorzähler
- Elektronmaster-Signale bei meßbereiter Apparatur
- alle Elektronmaster-Signale
- digitalisierte Ladung des Sekundäremissionsmonitors
- digitalisierte Ladung des Faraday-Käfigs

IV. Messungen

IV.1 Kinematische Parameter der Messungen

Die Auswahl der kinematischen Parameter der Messungen war einerseits dadurch bestimmt, daß an bereits vorliegende Messungen 4) bei Viererimpulsüberträgen von $q^2 = 0.6$ und 1.0 GeV²/c² angeschlossen werden sollte, zum anderen sollten die systematischen Fehler möglichst klein gehalten werden. Deshalb wurden die Messungen für ε = 0.9 bei beiden Werten des Viererimpulsübertrages noch einmal durchgeführt. Als Elektronstreuwinkel wurde der für das Elektronspektrometer kleinstmögliche von 15° gewählt 23), bei dem ein hoher Wert von ε bei gleichzeitig hoher Zählrate erreicht wurde. Um eine möglichst gute Trennung von longitudinalem und transversalem Anteil am Wirkungsquerschnitt zu erreichen, mußte die Differenz der beiden Einstellungen von є möglichst groß sein, d. h. bei beiden Werten des Viererimpulsübertrages $q^2 = 0.6$ und 1.0 GeV^2/c^2 mußte auch bei einem möglichst kleinem Wert von ε gemessen werden. Kleine Werte von & sind durch große Elektronstreuwinkel erreichbar, allerdings um den Preis kleiner Zählraten und - aufgrund niedriger Primärenergie, um den vorgegebenen Wert von q² zu erreichen schlechterer Strahlqualität. Der kleinste Fehler von R, dem Verhältnis von longitudinalem zu transversalem Querschnitt hätte bei vorgegebener Meßzeit und vorgegebenen statistischen Fehlern bei einem Elektronstreuwinkel von etwa 65° für $q^2 = 0.6 \text{ GeV}^2/c^2$ gelegen ³⁷⁾, das Elektronspektrometer war allerdings nur bis 57° schwenkbar ²³⁾.

Die virtuelle Photonrichtung θ_{γ} und damit der Erzeugungskegel der Pro-tonen dreht sich bei wachsendem Elektronstreuwinkel θ_4 zu kleineren Winkeln. Für $\theta_4 = 57^\circ$ beträgt θ_{γ} bereits 15.5° (q² = 0.6 GeV²/c²) bzw. 17.3° (q² = 1.0 GeV²/c²), wodurch ein großer Teil des Erzeugungskegels der Protonen außerhalb der Akzeptanz des Protonspektrometers zu liegen kommt, dessen minimaler zentraler Winkel für maximale Akzeptanz bei 24° liegt 23). Wegen all dieser Gründe wurde als Kompromiß für die Messungen bei kleinem c ein Elektronstreuwinkel von 45° gewählt. Eine vollständige Übersicht über die kinematischen Parameter findet sich in der folgenden Tabelle:

0.94-0.99 94-1.02

0.90-0.92

1.49-1.64

4.503

3.194

150

34.20

30.20

1460

171.9

303.3 43.0

15.8

20.15 8.71

0

0

$[Gev^2/c^2]$	m	Gev	E ₁ [GeV]	E4 [GeV]	e, e,	p [⊕]	, Y	des Primärstrahls [mCb]	Ereig
0.56-0.62	0.47-0.51	1.49-1.58	1.694	0.594	45 ⁰	240	18.20	43.24	345
).57-0.60	0.89-0.91	1.49-1.61	3.540	2.440	150	33.90	28.10	9.54	3054
0.94-1.02	0.50-0.53	1.49-1.58	2.104	0.795	450	240	20.00	28.79	123

Kinematische

Parameter

Gesamtladung

und 1

Ereigni

Gesamt ladung

Anzahl der

/ Koinzidenzsse * 10

Tabelle

Die ne Trajektorie Bei den Koinzidenzereignissen in dieser Tabelle rekonstruiert angegebene werden konnte handelt Zahl es der Einarm-Ereignisse sich (vgl. E Abschnitt rohe Ereignisse, V.2.) ist die d.h. mi t auch dem um Untersetzerverhältnis solche, bei denen H hochskalierte Anzahl. der Auswertung keiDamit konnte erreicht werden, daß

- die Differenz der Polarisationsgrade mit $\Delta \epsilon \approx 0.4$ hinreichend groß war, um eine Trennung von longitudinalem und transversalem Querschnitt zu erreichen,
- der Fehler in R bei vorgegebener Meßzeit nur 7 % (falls R = 0) bzw. 15 % (falls R = 1) über dem minimal möglichen lag (für $q^2 = 0.6 \text{ GeV}^2/\text{c}^2$),
- für beide Werte von q² das Protonspektrometer jeweils in der Einstellung für $\varepsilon = 0.9$ den Bereich in θ_5^{\star} und ϕ akzeptierte, in dem auch der Bereich für $\varepsilon = 0.5$ enthalten war und dieser Bereich sich in θ_5^{\star} von 0° bis 180° erstreckte (s. dazu auch Abschnitt VI.2.),
- bei einer minimalen Primärenergie von 1.694 GeV die Strahlqualität noch hinreichend gut war und der gesamte Querschnitt des Primärstrahls innerhalb der öffnung des Faradaykäfigs lag und
- die Zählraten bei großem Elektronstreuwinkel noch ausreichend groß waren, um für den totalen n-Produktionsquerschnitt je 30 MeV-Bereich in W einen statistischen Fehler von weniger als 10 % zu erreichen.

IV.2 Test- und Eichmessungen

Die Datennahme dieses Experiments erfolgte in vier Meßblöcken, wobei die beiden ersten die Messungen bei $q^2 = 1.0 \text{ GeV}^2/c^2$, die restlichen beiden die Messungen bei $q^2 = 0.6 \text{ GeV}^2/c^2$ umfaßten. In jedem Meßblock wurde sowohl bei den kinematischen Parametern für $\varepsilon = 0.9$ als auch für $\varepsilon = 0.5$ gemessen. Vor Beginn der Datennahme wurde die gesamte Apparatur ausführlichen Tests unterzogen. Dazu wurden die Impulshöhenspektren sämtlicher Photomultiplier aufgenommen und die Koinzidenzen der Spektrometerelektronik zeitlich aufeinander abgestimmt. Die Überprüfung der zeitlichen Abstimmung erfolgte darüberhinaus vor jedem Meßblock mittels radioaktiver Präparate und Impulsgeneratoren. Ebenfalls vor jedem Meßblock wurden die Triggerzähler des Szintillationshodoskops HII mit einem radioaktiven Präparat geeicht, um aus der Lichtlaufzeit den horizontalen Durchgangsort bestimmen zu können. Diese Eichmessungen wurden nach jedem Meßblock wiederholt. Eine ausführliche Darstellung des Verfahrens findet sich in der Arbeit von M. Merkwitz 30), ebenso ist dort die zeitliche Einstellung der Proportionaldrahtkammern HI zu Beginn jeden Meßblockes beschrieben.

Zu Beginn jeder Neueinstellung der kinematischen Parameter, also zweimal pro Meßblock, wurden - wie in III.1. beschrieben - Strahllage-Tests durchgeführt, an die sich jeweils Testmessungen mit elastischer Elektron-Proton-Streuung anschlossen, mit denen zum einen die genaue Einstellung der Primärenergie erfolgte und zum anderen das Protonspektrometer möglichst weitgehend ausgeleuchtet wurde. Zusätzlich wurden derartige elastische Testmessungen etwa einmal in acht Stunden zwischen die Messungen bei $\varepsilon = 0.5$ eingeschoben. Neben der Kontrolle der Primärenergie konnte damit das Funktionieren der Apparatur, insbesondere des Protonspektrometers rasch überprüft werden. Aufgrund der geringen Koinzidenzrate (vgl. Tabelle 7) war dies mit den inelastischen Messungen allein nicht möglich. Die elektronische Verstärkung der Signale der Schauerzähler-Multiplier wurde ebenfalls jeweils nach Neueinstellung der kinematischen Parameter neu gewählt, so daß auch bei veränderter Energie des gestreuten Elektrons eine sichere Abtrennung minimalionisierender Teilchen möglich war.

Ferner wurden bei den Einstellungen der kinematischen Parameter für $q^2 = 0.6 \text{ GeV}^2/c^2$ und $\varepsilon = 0.9$ sowie für $q^2 = 1.0 \text{ GeV}^2/c^2$ und $\varepsilon = 0.5$ Messungen mit ungefüllter Targetzelle zur Ermittlung der Leertargetraten durchgeführt. - 27 -

V. Auswertung und Analyse der Daten

Die Auswertung der während der Messungen auf Magnetband gespeicherten Information erfolgte in vier Schritten (s. Abb. 7):

- Aufgeteilt nach Meßblöcken und Einstellung der kinematischen Parameter wurden im ersten Schritt die Daten dekodiert, schlechte Meßläufe verworfen, erste Korrekturen an den rohen Daten angebracht, die Information des Elektronspektrometers weitgehend ausgewertet, die relative Normierung der Meßläufe vorgenommen und die Information koinzidenter Elektron-Proton-Ereignisse jeweils auf zwei verschiedene Datensätze weggeschrieben: der erste, umfangreichere Datensatz A enthielt von allen koinzidenten Ereignissen die Information, die zur Rekonstruktion von Trajektorien durchs Protonspektrometer und zur kinematischen Analyse erforderlich war, während der zweite Datensatz B ausschließlich von koinzidenten Ereignissen, die zu mindestens einer rekonstruierten Trajektorie im Protonspektrometer geführt hatten, nur diejenige Information enthielt, die zur kinematischen Analyse benötigt wurde.
- Im zweiten Schritt wurde dann der Datensatz B dazu benutzt, Korrekturen an die Flugzeit der Hadronen zu gewinnen, die günstigsten Schnitte zur Abtrennung der m⁺-Mesonen von den Protonen zu ermitteln sowie das Verhalten von Ereignissen mit Mehrfach-Trajektorien bzw. mit Trajektorien, zu denen nur zwei der drei Proportionaldrahtkammer-Ebenen beigetragen hatten, zu studieren. Hierfür war der Datensatz B deswegen eingerichtet worden, weil die Analyse der in ihm enthaltenen Information relativ wenig Rechenzeit verbrauchte. Sie betrug ein Drittel derjenigen, die erforderlich war, um aus allen koinzidenten Ereignissen Trajektorien zu rekonstruieren und dann die kinematische Analyse durchzuführen bzw. ein Zehntel derjenigen, die nötig war, um aus den kodierten Daten bis zur kinematischen Analyse zu gelangen.

Die so ermittelten Korrekturen und Schnitte wurden dazu verwendet, um zunächst aus dem Datensatz A Schnitte an die Akzeptanz des Protonspektrometers zur Reduktion des Untergrundes zu gewinnen. Anschließend wurden unter Verwendung dieser Akzeptanzschnitte die Ereignisse, deren fehlende Masse in einem bestimmten Intervall um die Masse des n-Mesons lag,

Abb. 7 Struktur der Auswertung

in eine vierdimensionale Matrix nach fehlender Masse, W, $\cos\theta_6^{\star}$ und ϕ abgespeichert und auf einen Datensatz C weggeschrieben.

- Der dritte Schritt bestand in einer Monte-Carlo-Simulation des Experiments, mit der die Akzeptanzen der Apparatur berechnet wurden. Sie bestand aus drei Teilen:

zunächst wurden die Elektronen gewürfelt und ihre Bremsstrahlungsprozesse simuliert,

dann wurde der Transport der Elektronen, die Bremsstrahlungsquanten abgegeben hatten, durch das Elektronspektrometer simuliert und für den Fall, daß das Elektron in die Akzeptanz des Spektrometers gelangt war, wurde ein zugehöriges Proton gewürfelt – entweder aus der interessierenden Reaktion ep \rightarrow epn oder aus einer konkurrierenden Untergrundreaktion stammend – und sein Transport durch das Protonspektrometer simuliert,

und schließlich wurden die simulierten Elektron-Proton-Ereignisse denselben Auswerteprogrammen unterzogen wie auch die experimentellen Ereignisse. Wie für diese beschrieben, wurde auch für die simulierten Ereignisse eine vierdimensionale Matrix erzeugt und auf einen Datensatz D weggeschrieben.

Im vierten und letzten Schritt wurden die differentiellen Wirkungsquerschnitte aus dem Vergleich der beiden, aus den experimentellen bzw. simulierten Ereignissen ermittelten vierdimensionalen Matrizen berechnet, nachdem der Untergrund der experimentellen Ereignisse mittels eines aus den simulierten Ereignissen gewonnenen Fits von den Ereignissen aus dem ep + epn - Kanal abgetrennt worden war. Diese Querschnitte wurden zuletzt auf verschiedene Effekte (s. Abschnitt V.6.) korrigiert.

V.I Reduktion der Information des Elektronspektrometers und Normierung der Messungen

Von der Auswertung der Daten wurden von vornherein solche Meßläufe ausgeschlossen, bei denen während der Messung bereits Fehler erkannt worden waren, wie z. B. falsche Einstellung der Apparatur, Ausfall von Magneten oder Störungen von Teilen der Elektronik und die zumeist vorzeitig abgebrochen worden waren.

Bei der Dekodierung der für die Auswertung zugelassenen Meßläufe wurde festgestellt, daß einige Datenblöcke, die den Anfang oder das Ende eines Meßlaufs markierten, doppelt zur IBM-Rechenanlage transferiert worden waren. In solchen Fällen wurde jeweils einer der beiden von der weiteren Auswertung ausgeschlossen. Häufiger waren allerdings am Ende eines Meßlaufs die Zählerstände der 50 Borer BCD-Zähler nicht ausgelesen worden. Dann waren zumeist die Zählerstände des Monitorblocks von Hand ins Meßprotokoll übertragen worden, so daß diese Information für die Auswertung benutzt werden konnte. Nur sehr selten fehlte auch diese Information, dann wurde der letzte transferierte Monitorblock (vgl. Abschnitt III.5., Tabelle 6) benutzt und die von diesem Transfer bis zum Ende des Meßlaufs aufgetretenen Ereignisse wurden verworfen.

Mit Hilfe des Monitorblocks erfolgte die Normierung der Messungen: Aus dem Verhältnis des Zählerstandes der Elektronmaster-Signale während der Zeit, zu der die Apparatur meßbereit war zu dem der Elektronmaster-Signale während des gesamten Meßlaufs wurde die Totzeit der Apparatur ermittelt und damit die effektive SEM-Ladung bestimmt, das ist diejenige Ladung, die den SEM durchsetzt hatte, während die Apparatur meßbereit war. Die Berechnung der Totzeit über die entsprechenden Zählraten des Monitor-Teleskops (s. Abschnitt III.1.) führte zu Ergebnissen, die sich um maximal 1.2 ^o/oo unterschieden.

Aus dem Verhältnis der digitalisierten Inhalte der Integratoren von Faradaykäfig und SEM wurde schließlich die absolute Normierung ermittelt. Die Normierung wurde kontrolliert anhand der Einarmrate, das ist das Verhältnis von guten Elektron-Ereignissen (s. Abschnitt V.I.I.) zur effektiven SEM-Ladung (Abb. 8). Meßläufe, deren Einarmrate um mehr als 10 % vom Mittelwert der Einarmrate über alle Meßläufe der entsprechenden kinematischen Einstellung abwich, wurden in der weiteren Auswertung vernachlässigt.

Aus den dekodierten Daten wurden zunächst Verteilungen der angesprochenen Zähler bzw. Signaldrähte in den Hodoskopen, der Pulshöhen verschiedener Zähler sowie der Flug- und Laufzeiten erstellt und daraufhin durchgesehen,

Abb. 00 Mit (a² (q н р, ier effektiven
= 0.6 GeV²/c², er , m SEM-Ladung H. 0.5, des Messung) jeweiligen Meß1 laufs gewichtete Häufigkeitsverteilung der Einarmrate

ob während einer kinematischen Einstellung signifikante Änderungen auftraten, die während der Messungen nicht oder zu spät bemerkt worden waren. Es wurde beobachtet, daß während einiger Meßläufe die Pulshöhe eines der vier Schauerzähler-Multiplier nicht gemessen worden war. Trotzdem wurden diese Meßläufe für die folgende Auswertung verwendet, allerdings wurde auf sie kein Schnitt in der Summe der gewichteten Schaueramplituden (s. Abschnitt V.1.1.) angewendet. Dadurch wurde die Zahl der guten Elektron-Ereignisse geringfügig durch minimalionisierende Teilchen vergrößert: die obere Grenze dafür lag bei der Messung mit $q^2 = 0.6 \text{ GeV}^2/c^2$ und $\varepsilon = 0.5$ unter 1 $^{\circ}/\text{oo}$, bei $q^2 = 1.0 \text{ GeV}^2/c^2$ und $\varepsilon = 0.9$ lag sie bei 5 $^{\circ}/\text{oo}$. Schwankungen in den Flugzeit- und Laufzeitverteilungen eines Triggerzählers des Hodoskops HII konnten korrigiert werden.

V.1.1 Reduktion von Mehrfach-Ereignissen im Elektronspektrometer auf Einfach-Ereignisse

Die Ereignisse im Elektronspektrometer (Elektron-Ereignisse) wurden in drei Gruppen aufgeteilt (s. auch Tabelle 8):

- (i) in Ereignisse, bei denen kein PQ-, kein Θ- oder kein φ-Kanal angesprochen hatte (unvollständige Ereignisse),
- (ii) in Ereignisse, bei denen genau ein PQ, ein Ο- und ein φ-Kanal angesprochen hatte (Einfach-Ereignisse) und
- (iii) in Ereignisse, bei denen mehr als ein PQ, Θ- oder φ-Kanal angesprochen hatte (Mchrfach-Ereignisse).

Die unvollständigen Ereignisse stammten überwiegend von Elcktronen, die das Spektrometer außerhalb der Akzeptanz des PQ- oder des ϕ -Hodoskops durchquerten und damit zumeist auch den Schauerzähler verfehlten. Deshalb zeichnete sich diese Gruppe von Ereignissen durch eine kleine Schauersumme (s. unten) aus. Alle diese Ereignisse wurden verworfen, allerdings wurde auf die Verluste in den Spalten zwischen den Szintillatoren bzw. auf die unter 100 % liegenden Ansprechwahrscheinlichkeiten des PQ- und des ϕ -Hodoskops korrigiert. Die Korrektur betrug für das PQ-Hodoskop in Übereinstimmung mit dem Ergebnis von J. May ²⁸⁾ 2 °/oo, für das ϕ -Hodoskop lag sie mit 3 °/oo - 18 °/oo je nach Einstellung der kinematischen Parameter oberhalb der Werte von May.

- 32 -

Von den Einfach-Ereignissen wurden jene als gute Elektron-Ereignisse anerkannt, bei denen die Summe der gewichteten Amplituden der vier Schauerzähler-Multiplier (Schauersumme) oberhalb einer vorgegebenen Schwelle lag, die anderen wurden verworfen (Abb. 9). Die Gewichte für die Schaueramplituden waren so gewählt, daß für jede der vier Fulshöhenverteilungen das Maximum der nicht minimalionisierenden Teilchen in denselben Kanal zu liegen kam. Die Untersuchung der ausgeschiedenen Einfach-Ereignisse zeigte, daß durch den Schnitt in der Schauersumme weniger als 5 °/oo aller Koinzidenzereignisse aus dem Kanal ep + epn verloren wurden.

Von den Mehrfach-Ereignissen wurde angenommen, daß es sich zum Teil um Elektronen handelte, die Anstoßelektronen angeregt hatten, zum Teil um aufschauernde Elektronen (etwa durch Streuung an den Magnetwänden). Diese Hypothese wurde dadurch unterstützt, daß die Mehrfach-Ereignisse mit relativ kleiner Multiplizität im PQ-, ø- und 0-Hodoskop (Ereignisklassen C.I.I. und C.I.2. in der Tabelle 8) sich durch Cerenkov-Amplituden-Verteilungen auszeichneten, die denen der Einfach-Ereignisse entsprachen (Abb. 12 b.d.f). Diese von Anstoßelektronen begleiteten Elektronen wurden den guten Elektronen zugehörig betrachtet. Die Mehrfach-Ereignisse mit relativ großer Multiplizität im PQ-. 6- und 0-Hodoskop (Ereignisklasse C.1.3, in der Tabelle 8) zeichneten sich hingegen durch größere Cerenkov- und kleinere Schaueramplituden aus (Abb. 12 c,g). Sie wurden als aufschauernde Elektronen angesehen, wobei ein Teil des Schauers den Cerenkovzähler und die Hodoskope durchsetzt hatte. Dieser Anteil der Mehrfach-Ereignisse wurde verworfen, da die den Schauer erzeugenden Elektronen als außerhalb der Akzeptanz des Elektronspektrometers liegend angenommen wurden. Bei den Messungen mit $\varepsilon = 0.9$ war der Anteil derartiger Mehrfach-Ereignisse an allen Ereignissen etwa doppelt so groß wie bei den Messungen mit e = 0.5 (s. Tabelle 9), da wegen der höheren Energie des gestreuten Elektrons die Energie einzelner Teilchen des Schauers größer war und damit die Wahrscheinlichkeit größer wurde, daß ein von einem Schauerteilchen durchsetzter Zähler ein elektronisches Signal lieferte.

Zunächst wurden diejenigen Mehrfach-Ereignisse verworfen, deren Schauersumme unterhalb einer vorgegebenen Schwelle lag; die Schwelle für Mehrfach-Ereignisse war zumeist größer als die für Einfach-Ereignisse gewählt (Abb. 10), um den Untergrund möglichst weitgehend zu reduzieren. Die verbliebenen Mehrfach-Ereignisse wurden nach verschiedenen Kriterien in Klassen eingeteilt (Abb. 11) und deren zweidimensionale Schauer- gegen Cerenkov-Amplituden-Verteilungen mit denen der Einfach-Ereignisse verglichen (Abb. 12 a-j). Aufgrund dieser Vergleiche wurden die Mehrfach-Ereignisse folgender Klassen als gute Elektron-Ereignisse akzeptiert:

Abb. 9

EINFACHEREIGNISSE

Abb. 10

MEHRFACHEREIGNISSE

- Abb. 9 Häufigkeitsverteilung der Schauersumme von Einfach-Ereignissen $(q^2 = 0.6 \text{ GeV}^2/c^2, \epsilon = 0.9, 1. \text{Messung})$
- Abb. 10 Häufigkeitsverteilung der Schauersumme von Mehrfach-Ereignissen $(q^2 = 0.6 \text{ GeV}^2/c^2, \epsilon = 0.9, 1. \text{Messung})$

SUMME

Abb. 12a Zweidimensionale Häufigkeitsverteilung (Schauersumme gegen Cerenkov-Amplitude):

alle Ereignisse (Ereignisklassen A, B und C) $(q^2 = 0.6 \text{ GeV}^2/c^2, \epsilon = 0.9, 1. \text{ Messung})$

Einfach-Ereignisse oberhalb des Schnitts in der Schauersumme (Ereignisklasse B.1)

- 37 -

Abb. 12c wie Abb. 12a, aber: Mehrfach-Ereignisse oberhalb des Schnitts in der Schauersumme (Ereignisklasse C.1)

CERENKOV-RMPLITUDE

- 38 -

- 39 -

- 40 -

.

Abb. 12d wie Abb. 12a, aber:

Mehrfach-Ereignisse oberhalb des Schnitts in der Schauersumme und mit einem oder zwei angesprochenen θ-Kanälen Abb. 12e wie Abh. 12a, aber: Mehrfach-Ereignisse oberhalb des Schnitts in der Schauersumme und mit mehr als zwei angesprochenen θ-Kanälen (Ereignisklasse C.I.3.1)

Abb. 12f wie Abb. 12a, aber:

Mehrfach-Ereignisse oberhalb des Schnitts in der Schauersumme, mit einem oder zwei angesprochenen θ -Kanälen und einer bis vier guten PQ- ϕ -Kombinationen Abb. 12g wie Abb. 12a, aber:

Mehrfach-Ereignisse oberhalb des Schnitts in der Schauersumme, mit einem oder zwei angesprochenen θ -Kanälen und mehr als vier guten PQ- ϕ -Kombinationen (Ereignisklasse C.1.3.3)

Abb. 12h wie Abb. 12a, aber:

gute, reduzierbare Mehrfach-Ereignisse (Ereignisklasse C.1.1)

Abb. 12j wie Abb. 12a, aber:

verworfene Mehrfach-Ereignisse oberhalb des Schnitts in der Schauersumme (Ereignisklasse C.I.3) (i) Ereignisse, bei denen ein einzelner oder zwei benachbarte Θ-Kanäle angesprochen hatten und eine oder zwei gute PQ-φ-Kombination existierten.

Als gute $PQ-\phi$ -Kombinationen wurden solche Kombinationen von angesprochenen PQ- und ϕ -Kanälen bezeichnet, die innerhalb der $PQ-\phi$ -Akzeptanz lagen und bei denen zusätzlich je ein (falls ϕ -Kanäle 9-16 angesprochen hatten: je zwei) dem PQ-Kanal benachbarter Pund Q-Zähler angesprochen hatten (s. Abb. 3b).

- (ii) Ereignisse, bei denen zwei nicht benachbarte ⊕-Kanäle angesprochen hatten und genau eine gute PQ-¢-Kombination existierte;
- (iii) Ereignisse, bei denen ein einzelner oder zwei benachbarte Θ-Kanäle angesprochen hatten und drei oder vier gute PQ-φ-Kombinationen existierten und
- (iv) Ereignisse, bei denen zwei nicht benachbarte O-Kanäle angesprochen hatten und zwei gute PQ-\$\$\phi\$-Kombinationen existierten.

Ereignisse der Klassen (i) und (ii) wurden zu Einfach-Ereignissen reduziert und konnten somit in der weiteren Auswertung behandelt werden, indem für die Hodoskope, in denen zwei Kanäle angesprochen hatten, der Mittelwert der beiden Adressen als neue Kanaladresse definiert wurde. War sie nicht ganzzahlig, so wurde per Zufallszahl entschieden, ob in der weiteren Auswertung die größere oder kleinere verwendet wurde. Der Anteil der reduzierten Mehrfach-Ereignisse an allen guten Elektron-Ereignissen lag zwischen 9.5 % und 11.0 %. Auf die Ereignisse der Klassen (iii) und (iv) wurde am Schluß der Auswertung korrigiert, sie machten 8 ^o/oo aller guten Elektron-Ereignisse aus. Eine genaue Übersicht über die verschiedenen Ereignisklassen und ihre Beiträge findet sich in den beiden folgenden Tabellen.

	Tabelle 8 Ereignisklassen im Elektronspektrometer	C.1.3.4.	C.1.3.3.	C.1.3.2.	C.1.3.1.	C.1.3.	C.1.2.1.	C.1.2.	C.1.1.3.	C.1.1.2.	C.1.1.1.	c.1.	с.	B.1.	υ	A	klasse	Ereignis-
Bezeichnung in Tabelle 9	Ereignisklasse	414	143	912	973	2442	475	620	722	2556	8002	14342	18913	103142	103142	94815	1. Messun	m
Α.	Unvollständige Ereignisse	-															12	
В. В.1.	Einfach-Ereignisse davon oberhalb des Schauersummen-Schnitts	831	313	2320	2200	5664	932	1179	1515	5177	16283	29818	36152	207493	207493	189413	Messung	.с
C. C.1. C.1.1. C.1.1.1	Mehrfach-Ereignisse davon oberhalb des Schauersummen-Schnitts gute, reduzierbare Mehrfach-Ereignisse davon mit einem angesprochenen O-Kanal sowie	646	1341	1139	10266	234	1268	1502	1049	4806	18437	39186	84149	209569	229995	236607	1. Messung	1.0 Gev /C
C.1.1.2,	einer oder zwei guten PQ-∲-Kombinationen davon mit zwei angesprochenen, benachbarten O-Kanälen sowie einer oder zwei guten PQ-∳- Kombinationen	513	1094	9101	8583	11209	986	1209	769	3767	13850	30804	65153	164354	179395	184862	2. Messung	e 0 =
C.1.1.3. C.1.2.	davon mit zwei angesprochenen, nicht benach- barten O-Kanälen sowie einer guten PQ-ф-Kombi- nation gute, nicht reduzierbare Mehrfach-Ereignisse	168	97	275	552	1092	184	248	256	966	2937	5499	6780	38599	38599	31961	1. Messung	m
C.1.2.1. C.1.2.2.	davon mit einem angesprochenen O-Kanal sowie drei oder vier guten PQ-ф-Kombinationen davon mit zwei angesprochenen, benachbarten O-Kanälen sowie drei oder vier guten PQ-ф-	229	134	352	644	1359	344	416	395	1797	5497	9464	12753	72756	72756	59529	2. Messung	= 0.5 4 - 1.
C.1.3. C.1.3.1.	Kombinationen verworfene Mehrfach-Ereignisse oberhalb des Schauersummen-Schnitts davon mit mehr als zwei angesprochenen O-Kanälen	425	1187	668	5666	12273	1085	1237	824	4000	15680	34014	60771	171173	175818	170754	1. Messung	U Gev /C
C.1.3.2. C.1.3.3. C.1.3.4.	davon mit keiner guten PQ-ф-Kombination davon mit mehr als vier guten PQ-ф-Kombinationen davon mit zwei angesprochenen, nicht benachbarten O-Kanälen sowie mehr als einer guten PQ-ф-Kombina- tion.	169	560	845	4826	6400	525	605	350	1728	7378	16461	26305	75547	77137	~72170	2. Messung	= 0.9

- 47 -

- 48 -

Tabelle 9

Ereigniszahlen in den Ereignisklassen des Elektronspektrometers $q^2 = 0.6 \text{ Gev}^2/c^2$ $q^2 = 1.0 \text{ Gev}^2/c^2$

Tabelle 10

Koinzidenzereignisklassen

	alle	unvollständige	davon:		vollständig
	Ereignisse	Ereignisse	<2 Ebenen in HI	HII unvollständig	Ereignisse
q ² = 0.6 GeV	$2/c^2$, $\epsilon = 0.5$				
1. Messung	12787	2058	771	1287	10729
2. Messung	30222	3976	743	3233	26246
$q^2 = 0.6 \text{ GeV}^2$	/c ² , c = 0.9				
1. Messung	180401	19290	7383	11907	161111
2. Messung	122871	8680	1291	7389	114191
$q^2 = 1.0 \text{ Gev}^2$	/c ² , ε = 0.5	_			
1. Messung	6734	1810	806	902	4924
2. Messung	9044	1355	689	666	7689
$q^2 = 1.0 \text{ Gev}^2$	/c ² , E = 0.9				
1. Messung	103561	17744	9789	7955	85817
2. Messung	68346	12672	5934	6738	55674

- 49 -

V.2 Reduktion der Information des Protonspektrometers und Rekonstruktion der Trajektorien

Das Verfahren zur Reduktion der Protonspektrometer-Information und zur Rekonstruktion der Trajektorien ist ausführlich bei M. Merkwitz 30) beschrieben, deshalb wird es hier nur skizziert, auf Änderungen gegenüber jenem Verfahren wird ausführlicher eingegangen.

Zunächst wurden in der weiteren Auswertung der Koinzidenzereignisse mit gutem Elektron alle jene verworfen, bei denen weniger als zwei der drei Ebenen der Proportionaldrahtkammern HI gefeuert hatten oder keiner der Triggerzähler des Szintillationshodoskops HII mit vollständiger Information, das sind Adresse des Triggerzählers, Adresse des Gray-Code-Zählers, Lichtlaufzeit im Triggerzähler sowie Flugzeit der Protonen, angesprochen hatte.

- 51 -

Für die zugelassenen Ereignisse wurden die Durchgangsorte durch HII berechnet, dabei wurden bis zu fünf Teilchendurchgänge pro Ereignis zugelassen.

Aus den Adressen der getroffenen Drähte der Proportionaldrahtkammer wurden Cluster ermittelt, das sind Bereiche zusammenhängender gefeuerter Drähte, und ihre Mitten berechnet. Bis zu 18 Cluster pro Ebene wurden zugelassen. Aus den Clustermitten wurden dann die Durchgangsorte durch HI berechnet. Dazu wurden jede Clustermitte aus Ebene 2 mit jeder aus Ebene 3 kombiniert und verlangt, daß der sich ergebende Schnittpunkt innerhalb des Kammerrahmens lag. In dem Fall wurde nachgesehen, ob es eine Clustermitte in der Ebene I gab, deren Vertikalabstand h zur Projektion des Schnittpunktes auf diese Ebene kleiner als 20 mm war. Bis zu 18 derart ermittelter Durchgangsorte wurden pro Ereignis berechnet.

Für jedes Ereignis wurde schließlich versucht, durch jede Kombination der Durchgangsorte der Teilchen in HI und HII eine Trajektorie zu legen, wobei der oben erwähnte Vertikalabstand h nun kleiner als 2.5 mm sein mußte. Das Rekonstruktionsverfahren und die Anforderungen an eine Trajektorie sind ausführlich in der Arbeit von M. Merkwitz ³⁰⁾ beschrieben.

War es nicht gelungen, zu einem Ereignis mindestens eine Trajektorie zu finden, so wurde versucht, mit Hilfe von Orten in HI, die nur aus gefeuerten Drähten in jeweils zwei der drei Ebenen gebildet worden waren, zu Trajektorien zu gelangen. Damit wurde es möglich, Ereignisse in der weiteren Auswertung zu behandeln, die aufgrund von Ansprechverlusten der Proportionaldrahtkammern zum Feuern von Signaldrähten in nur zwei Ebenen geführt hatten. In Auswertungen früherer Experimente 4, 30) waren derartige Ereignisse in der Simulation des Experimentes (s. Abschnitt V.4.3.) berücksichtigt worden. Da für diese Ereignisse keine Zwangsbedingung hinsichtlich eines gefeuerten Drahtbereiches in der dritten Ebene bestand, erhöhte sich der relative Anteil an Mehrfach-Trajektorien in dieser Ereignisklasse beträchtlich gegenüber jenen Ereignissen, bei denen alle drei Ebenen angesprochen hatten (s. auch Tabelle II). Jede Clustermitte aus einer Ebene wurde wieder mit jeder aus einer zweiten kombiniert und zwar in der Reihenfolge: Ebene 2 mit Ebene 3, Ebene 1 mit Ebene 2 und schließlich Ebene 1 mit Ebene 3. Damit ein Schnittpunkt der Clustermitten als Ort akzeptiert wurde, war wegen der fehlenden Information einer dritten Ebene jetzt nur verlangt, daß er innerhalb des Kammerrahmens lag. Bis zu 125

solcher Durchgangsorte in III wurden pro Ereignis berechnet. Dann wurde erneut versucht, aus den neuen Durchgangsorten in III und den alten in HII Trajektorien zu rekonstruieren. Das Ergebnis der Rekonstruktion findet sich in der folgenden Tabelle:

Tabelle II

Koinzidenzereignisklassen von Ereignissen mit rekonstruiertem Durchgangsort in HI und vollständiger HII-Information

Anzahl benutzter	Anzah1	rekonst	ruierter	Traje	ktorie	n pro	Koinzi	denzereigni
Ebenen in HI	0	1	2	Ĩ	3	1	4	≥5

 $q^2 = 0.6 \text{ GeV}^2/c^2$, $\epsilon = 0.5$, 1. Messung

672 1667 8106 2. Messu 16749 1789 4887 18538	235 624 1123 660 1783	174 207 97 440	52 68 38 195	55 57 14 254
1667 8106 2. Messu 16749 1789 4887 18538	624 1123 660 1783	207 97 440	68 38 195	57 14 254
2. Messu 16749 1789 4887 18538	1123 660 1783	97	38 195	14 254
16749 1789 4887 18538	1123 660 1783	97	38 195	14 254
1789 4887 18538	660 1783	440	195	254
4887 18538	1783	557		
		557	233	268
= 0.9, 1. Messu	l Ing	i r		1
126053	6035	487	176	47
8454	2239	1873	459	384
4904 134507	8274	2360	635	431
	= 0.9, 1. Messu 126053 8454 4904 134507 2. Messu	= 0.9, 1. Messung 126053 6035 8454 2239 4904 134507 8274 2. Messung	= 0.9, 1. Messung 126053 6035 487 8454 2239 1873 4904 134507 8274 2360 2. Messung	= 0.9, 1. Messung 126053 6035 487 176 8454 2239 1873 459 4904 134507 8274 2360 635 2. Messung

3		86969	4463	383	169	41	
2		6070	1876	1540	417	316	
Σ	11947	93039	6339	1923	586	357	

- 52 -

Anzahl benutzter	Anzah	l rekonstr	uierter Ti	ajektorien	pro Koinzi	denzereignis
Ebenen in HI	0	1	2	3	4	≥5
$q^2 = 1.0 \text{ GeV}^2/c^2$,	ε ≈ 0.5 ,	l. Messung				
3		2958	145	8	3	2
2		368	158	97	33	29
Σ	2025	3326	303	105	36	31
		2. Messung			1	1
3		5406	205	19	5	6
2		459	152	106	45	36
Σ	1250	5865	357	125	50	42
$q^2 = 1.0 \text{ GeV}^2/c^2$,	ε = 0.9 ,	I. Messung				
3		64412	2339	156	53	12
2		4564	1328	939	302	248
Σ	11464	68976	3667	1095	355	260
		2. Messung				
3		38655	1608	155	45	10
2		3930	1290	756	280	389
Σ	8556	42585	2898	911	325	399

Jeder rekonstruierten Trajektorie wurden, wie bei M. Merkwitz ³⁰⁾ beschrieben, jeweils ein Wert für den Impuls, den Vertikal- und den Horizontalwinkel des zugehörigen Teilchens zugeordnet. Diese Information wurde dann in der folgenden kinematischen Analyse der Ereignisse weiterverwendet.

V.3 Kinematische Analyse von Ereignissen mit rekonstruierter Trajektorie

Ereignisse mit genau einer Trajektorie im Protonspektrometer (Ereignisse mit Mehrfach-Trajektorien im Protonspektrometer werden in Abschnitt V.3.1. diskutiert) wurden weiter untersucht mit dem Ziel, entscheiden zu können, ob es sich bei dem Hadron um ein Proton oder ein π^+ -Meson gehandelt hatte. Die Trennung zwischen diesen beiden Teilchenarten erfolgte aufgrund der Impuls- und der Flugzeitinformation für die Hadronen: mit den gewählten kinematischen Parametern konnten Protonen aus dem Kanal ep + epn mit Impulsen zwischen etwa 0.43 GeV/c und 1.48 GeV/c nachgewiesen werden, ihre Geschwindigkeit betrug 40 % bis 85 % der Vakuumlichtgeschwindigkeit. π^+ -Mesonen aus demselben Impulsbereich hatten hingegen Geschwindigkeiten von mindestens 95 % der Lichtgeschwindigkeit, so daß die Differenz der Flugzeiten eines Protons und eines π^+ -Mesons desselben Impulses über eine Entfernung von 7 m mindestens 4 ns betrug.

Die durch die Zeitdifferenz zwischen den Signalen des Cerenkovzählers und des jeweiligen Triggerzählers im Szintillationshodoskop HII gemessenen Flugzeiten mußten auf eine Reihe von Effekten, die sie beeinträchtigten, korrigiert werden (s. dazu Abb. 13 a-d):

- Es wurde berücksichtigt, daß die Weglänge der Hadronen im Protonspektrometer nicht genau 7 m betrug, sondern von der jeweiligen Trajektorie abhing;
- (ii) es wurde berücksichtigt, daß die Lichtlaufzeit in den Szintillatoren der Triggerzähler vom Abstand zwischen Durchgangsort des Teilchens und Kathode des Photomultipliers abhing;
- (iii) es wurde berücksichtigt, daß das Ansprechen der Diskriminatoren der Triggerzähler und des Cerenkovzählers von der Amplitude des jeweiligen Signals abhing: je größer die Amplitude, desto früher wurde die Schwelle des Diskriminators überschritten. Daher erschien die Flugzeit bei großer Triggerzähleramplitude länger und bei großer Cerenkovzähleramplitude kürzer, da der Triggerzähler elektronisch die Zeitmessung startete und der Cerenkovzähler sie elektronisch beendete.

ZWEIDIMENSIONALE FLUGZEITVERTEILUNGEN

Abb. 13a KEINE KORREKTUREN

Abb. 13b WEGLAENGENKORREKTUR

1/V (1/EINHEIT DER LICHTGESCHWINDIGKEIT)

Abb. 13c

WEGLAENGEN- UND LAUFZEITKORREKTUR

1/V (1/EINHEIT DER LICHTGESCHWINDIGKEIT)

Abb. 13d ALLE

Abb. 13 a-d Zweidimensionale Verteilung der Flugzeit gegen die reziproke Geschwindigkeit der Hadronen

- 57 -

Zur kinematischen Analyse jeden Ereignisses wurden zunächst aus der gespeicherten Information des Elektronspektrometers die kinematischen Größen des hadronischen Systems bestimmt. Anschließend wurde zu jedem Ereignis die Masse des fehlenden Teilchens sowohl unter der Hypothese, daß es sich bei dem nachgewiesenen Hadron um ein Proton als auch daß es sich um ein m⁺-Meson gehandelt habe, berechnet. Dann wurde aus der zweidimensionalen Verteilung der reziproken Geschwindigkeit (berechnet unter der Annahme, daß es sich bei dem Hadron um ein Proton gehandelt hatte) gegen die Flugzeit der Bereich guter Protonen (s. Abb. 14) derart ausgewählt, daß möglichst wenig Ereignisse, deren fehlende Masse der des n-Mesons entsprach, außerhalb dieses Bereiches lagen. Andererseits wurde der Bereich so eng gewählt, daß der Anteil von zufälligen physikalischen Untergrund-Ereignissen möglichst klein war. Um dies zu prüfen, wurden die Randgebiete innerhalb und außerhalb des Bereichs guter Protonen gesondert untersucht (Abb. 15), ebenso der Bereich, dessen Flugzeit dem der n⁺-Mesonen entsprach (Abb. 16). Es zeigte sich, daß das Randgebiet außerhalb des Bereichs guter Protonen, das sich zu kürzeren Flugzeiten (also zum Bereich der #-Mesonen) hin erstreckte, noch Ereignisse enthielt, deren fehlende Masse der des n-Mesons entsprachen. Ihr Anteil lag unter | % derjenigen im Bereich guter Protonen. Zur Berücksichtigung des zufälligen physikalischen Untergrundes wurde ein zum Bereich guter Protonen kongruenter Bereich, der zu höheren Flugzeiten verschoben war, ausgewählt (s. Abb. 14) und die Ereignisse aus diesem Bereich von denen aus dem Bereich guter Protonen abgezogen (s. Tabelle 13).

Die Auswahl der Bereiche erfolgte getrennt für jeden Triggerzähler in HII, um der unterschiedlichen Auflösung der Flug- und Laufzeitmessung der einzelnen Triggerzähler Rechnung zu tragen. Es zeigte sich, daß es bei den Messungen mit $q^2 = 1.0 \text{ GeV}^2/c^2$ in den unteren Triggerzählern (d. h. für $\varepsilon = 0.5$ die Triggerzähler 10 und 11, für $\varepsilon = 0.9$ der Triggerzähler 11) keine Ereignisse gab, deren fehlende Masse der des n-Mesons entsprach, dementsprechend wurden alle Ereignisse, deren Durchgangsort in jenem Teil von HII lag, von der Auswertung ausgeschlossen. Ein Vergleich der Tabellen 11 und 12 zeigt, daß der Schnitt in HII die Zahl der Trajektorien, zu denen nur zwei Ebenen von HI beigetragen hatten, stark reduziert hat. Ursache dafür ist, daß die Triggerzähler 10 und 11 von HII, die am Rande der direkten Sicht aufs Target lagen, einen relativ großen Anteil an Trajektorien aus zufälligen Untergrundereignissen hatten. Aufgrund anderer kinematischer Verhältnisse gelangten bei den Messungen mit $q^2 = 0.6 \text{ GeV}^2/c^2$ auch Protonen aus Ereignissen, deren fehlende Masse der des n-Mesons ent-

Abb. 14 Zweidimensionale Verteilung der Flugzeit gegen die reziproke Geschwindigkeit der Hadronen, falls der HII-Triggerzähler 5 getroffen war $(q^2 = 1.0 \text{ GeV}^2/c^2, \epsilon = 0.9, 1. \text{ Messung})$

	UUHUHHI	DEN FERLENDEN	MHSSE FUI	ER FIUNEN,
Abb. 16	DIE WIE	PROTONEN AUSGE	EWERTET W	URDEN

Abb. 15 Häufigkeitsverteilung des Quadrats der fehlenden Masse für Randgebiete außerhalb des Bereichs guter Protonen $(q^2 = 1.0 \text{ GeV}^2/c^2, \epsilon = 0.9, 1. \text{ Messung})$

Abb. 16 Häufigkeitsverteilung des Quadrats der fehlenden Masse für π^+ -Mesonen, die wie Protonen ausgewertet wurden sprach, in die unteren Triggerzähler, so daß dort auf Schnitte verzichtet wurde.

Ereignisse aus dem Bereich guter Protonen und dem zugehörigen Untergrundbereich, deren Quadrat der fehlenden Masse zwischen 0.2 GeV^2/c^2 und 0.41 GeV^2/c^2 (Quadrat der n-Masse: 0.301 GeV^2/c^2) lag (s. Tabelle 13), wurden schließlich in eine vierdimensionale Matrix nach fehlender Masse, W, $\cos\theta_6^{\pi}$ und ϕ eingeordnet, um aus dem Vergleich mit einer in der Monte-Carlo-Simulation gewonnenen analogen Matrix die differentiellen Wirkungsquerschnitte ermitteln zu können.

Tabelle 12

ort in HI und vo	liständig	er HI-Inf	ormation	nach Sch	nitten in	don HII-
Triggorgählorn	210 cultury	Set III LIII.	ormacion	nach och	interen In	den mit
Triggerzantern	T.					
Anzahl benutzter	Anzah1	rekonstru	lierter 1	rajektor	ien pro Ko	inzidenzereign
Ebenen in HI	0	1	2	3	4	≥5
$q^2 = 1.0 \text{ GeV}^2/c^2$,ε=0.5	, I. Mess	ung			
3		2555	91	5	1	2
2		141	42	42	6	8
Σ	1315	2696	133	47	7	10
			3			
		2. Mess	ung			
3		4932	156	17	4	5
2		262	68	71	23	11
Σ	820	5194	224	88	27	16
$q^2 = 1.0 \text{ GeV}^2/c^2$,ε=0.9	, I. Mess	ung			
3		59525	1901	126	45	1
2		3071	730	704	70	143
Σ	7412	62596	2631	830	215	154
			I		1	
		2. Mess	ung			
3		36173	1307	121	40	4
2		2185	558	460	125	124
-						

gute Proton- ereignisse 3769 8022 11791 60276 40371 100647	zufälliger Untergrund 705 1857 2562 13446 9515 22961	gute Protonereignisse mit fehlender Masse im Bereich der n-Masse 1683 3305 4988 18006 11925 29931
ereignisse 3769 8022 11791 60276 40371 100647	Untergrund 705 1857 22562 13446 9515 22961	Masse im Bereich der n-Masse 1683 3305 4988 18006 11925 29931
3769 8022 11791 60276 40371 100647	705 1857 2562 13446 9515 22961	1683 3305 4988 18006 11925 29931
3769 8022 11791 60276 40371 100647	705 1857 2562 13446 9515 22961	1683 3305 4988 18006 11925 29931
8022 11791 60276 40371 100647	1857 2562 13446 9515 22961	3305 4988 18006 11925 29931
11791 60276 40371 100647	2562 13446 9515 22961	4988 18006 11925 29931
60276 40371 100647	13446 9515 22961	18006 11925 29931
60276 40371 100647	13446 9515 22961	18006 11925 29931
40371 100647	9515 22961	11925 29931
100647	22961	29931
_		
1598	86	764
3107	258	1499
4705	356	2363
34300	2469	9854
20327	1760	5801
54627	4229	15655
	1598 3107 4705 34300 20327 54627	1598 98 3107 258 4705 356 34300 2469 20327 1760 54627 4229

Tabelle

10

V.3.1 Untersuchung von Ereignissen mit Mehrfach-Trajektorien im Protonspektrometer

Um auf Ereignisse mit mehr als einer Trajektorie im Protonspektrometer korrigieren zu können, wurden die Verteilungen des Quadrats der fehlenden Masse verschiedener W-Bereiche von Ereignissen mit mehr als einer Trajektorie mit denen genau einer Trajektorie verglichen, wobei jeweils nur Ereignisse aus dem Bereich guter Protonen und dem zugehörigen Untergrundbereich (s. Abschnitt V.3.) berücksichtigt wurden. Außerdem wurden diese Vergleiche nach Ereignisklassen getrennt angestellt, die aus Ereignissen mit jeweils derselben Anzahl von Trajektorien und verwendeter Proportionaldrahtkammer-Ebenen bestanden. Die Verteilungen des Quadrats der fehlenden Masse von Ereignissen mit mehreren Trajektorien wurden gewonnen. indem die zu jeder Trajektorie gehörige Information wie ein Einfach-Trajektorien-Ereignis behandelt wurde. Zusätzlich wurde registriert, wieviele Trajektorien pro Ereignis zu einem Quadrat der fehlenden Masse zwischen 0.275 Gev² und 0.325 Gev² geführt hatten. Aus diesen Informationen wurde die Wahrscheinlichkeit dafür, daß irgendeine Trajektorie eines Mehrfach-Trajektorien-Ereignisses eine fehlende Masse ergab, die der des n-Mesons entsprach, berechnet. Gegenüber früheren Untersuchungen, die auf 100 % der Wahrscheinlichkeit von Einfach-Trajektorien-Ereignissen gekommen waren ³⁰⁾, wobei allerdings nur Ereignisse mit vollständiger Proportionaldrahtkammer-Information Eingang gefunden hatten, wurden hier für Ereignisse mit drei Proportionaldrahtkammer-Ebenen Wahrscheinlichkeiten zwischen 50 % und 90 % bzw. zwischen 35 % und 85 % für Ereignisse mit zwei Ebenen ermittelt, abhängig von der Einstellung der kinematischen Parameter. Die hieraus resultierenden Korrekturen sind in der folgenden Tabelle zusammengestellt:
Tabelle 14

Anteil von Ereignissen mit mehr als einer Trajektorie im Protonspektrometer und fehlender Masse im Bereich der Masse des n-Mesons bezogen auf Ereignisse mit genau einer Trajektorie im Protonspektrometer und fehlender Masse im Bereich der Masse des n-Mesons

Messung	Anteil
$q^2 = 0.6 \text{ GeV}^2/c^2$, $\epsilon = 0.5$	
I. Messung	6.3 %
2. Messung	9.1 %
ε = 0.9	
1. Messung	6.3 %
2. Messung	7.1 %
$q^2 = 1.0 \text{ GeV}^2/c^2, \epsilon = 0.5$	
1. Messung	4.7 %
2. Messung	5.5 %
$\varepsilon = 0.9$	
1. Messung	5.0 %
2. Messung	5.4 %
	1

V.4 Monte-Carlo-Simulation des Experiments

Wegen der komplexen Struktur der experimentellen Anordnung wurden die differentiellen Wirkungsquerschnitte nicht analytisch aus den gemessenen Zählraten berechnet, sondern über eine Monte-Carlo-Simulation des Experiments ermittelt, in der die Akzeptanz der Spektrometer, die Vielfachstreuung sowie die interne und externe Strahlung der Elektronen berücksichtigt wurden.

Die differentiellen Wirkungsquerschnitte

 $\left(\frac{d^{5}\sigma}{d\Omega_{c} dE_{c} d\Omega_{c}^{\star}}\right)$ exp

der Reaktion ep \rightarrow epn ergaben sich dann aus dem Vergleich der Zählraten aus Experiment, N_{exp}, und Simulation, N_{MC}, im interessierenden Bereich des vierdimensionalen Raumes, dessen Dimensionen aus q², W, $\cos\theta_{6}^{\pi}$ und ϕ bestanden, gemäß:

$$\left(\frac{\mathrm{d}^{5}\sigma}{\mathrm{d}^{0}_{e} \mathrm{d}^{E}_{4} \mathrm{d}^{0}_{6}}\right)_{exp} \approx \frac{\mathrm{N}_{exp}}{\mathrm{N}_{MC}} \left(\frac{\mathrm{d}^{5}\sigma}{\mathrm{d}^{0}_{e} \mathrm{d}^{E}_{4} \mathrm{d}^{0}_{6}}\right)_{MC}$$
(11)

hierbei sind

 $\left(\frac{\mathrm{d}^{5}\sigma}{\mathrm{d}\Omega_{e}^{-}\mathrm{d}E_{4}^{-}\mathrm{d}\Omega_{6}^{\mathbf{x}}}\right)\mathrm{MC}$

die der Simulation zugrunde gelegten differentiellen Querschnitte. Eine detaillierte Diskussion der Gültigkeit dieser Formel findet sich in der Dissertation von J. Gayler²⁹⁾.

An den der Monte-Carlo-Simulation zugrunde liegenden differentiellen Querschnitten war nur ihr relativer Verlauf wichtig, da die absolute Normierung identisch in der Zählrate der Simulation berücksichtigt wurde. Die Abhängigkeit von W und q² wurde aus einem Fit an die Daten einer älteren Messung⁴ ermittelt; außerdem wurden die Querschnitte in Übereinstimmung mit jenen Messungen isotrop in $\theta_{\mathbf{k}}^{\mathbf{x}}$ und ϕ gewählt.

V.4.1 Strahlungskorrekturen

Beim Durchgang durch Materie senden Elektronen externe und interne Bremsstrahlung aus: Erfolgte die Emission der Photonen vor der Streuung des Elektrons am Proton, so war die Energie des primären Elektrons kleiner, erfolgte sie nach der Streuung, so war die Energie des am Proton gestreuten Elektrons größer als der jeweils gemessene Wert, da die Strahlung nicht registriert wurde. Dies wurde mit von J. May²⁸⁾ entwickelten Programmen, die auf Arbeiten von Mo und Tsai^{38, 39)} basieren, berücksichtigt.

In diesen Programmen wurden Elektronereignisse aus dem Prozeß ep + epn simuliert:

Nach der Wahl der Primärenergie, die entsprechend der im Experiment mit Hilfe der Energieuhr aufgenommenen Energieverteilung erfolgte, wurde zunächst der Energieverlust durch externe Bremsstrahlung vor der Streuung berechnet. Danach wurde unter Verwendung des aus einer älteren Messung⁴, - 65 -

gewonnenen differentiellen Wirkungsquerschnitts die interne Bremsstrahlung berechnet. Dabei wurde entschieden, welcher der für dieses Ereignis möglichen drei Prozesse beigetragen hatte: die Emission weicher Photonen, die Emission eines harten Photons in Richtung des primären Elektrons oder die Emission eines harten Photons in Richtung des gestreuten Elektrons. Das war erforderlich, da jeder dieser Beiträge zu einer anderen Streukinematik führte. Schließlich wurde der Energieverlust durch externe Bremsstrahlung nach der Streuung berechnet.

Zusätzlich wurde das Verhältnis von simuliertem Querschnitt ohne Strahlung zu dem mit interner und externer Strahlung für jeden Bereich in q^2 und W berechnet. Bei der Berechnung des gemessenen Querschnitts (s. Abschnitt V.5.) wurde darauf korrigiert, da nur der gemessene Querschnitt ohne Strahlung von physikalischem Interesse ist.

V.4.2 Transport der Elektronen und Protonen durch die Spektrometer

Als Maß des simulierten Querschnitts mit interner und externer Strahlung, der den Transportprogrammen angeboten wurde, dienten die simulierten Elektronereignisse aus dem Prozeß ep + epn. Sie wurden, getrennt nach Bereichen in W von 30 MeV Breite, in 9x9-Matrizen nach q^2 und W eingeordnet. Diese 9x9-Matrizen überdeckten jeweils den 30 MeV breiten W-Bereich bzw. den zugehörigen q^2 -Bereich. Nach dem Transport des letzten Elektrons durch das Spektrometer wurde jeweils ein Fit an die Matrizen gemacht, um statistische Fluktuationen auszugleichen. Als Maß des simulierten Querschnitts mit Strahlung wurde der Wert des Fits an das mittlere belegte Bin der Matrix, gewichtet mit der Fläche des Bins, gewählt.

Zusätzlich zu den Elektronereignissen aus dem Prozeß ep + epn, deren Emission von Bremsstrahlung simuliert worden war, wurden Elektronereignisse aus den Untergrundreaktionen ep + ep $+ 2\pi$ und ep + ep $+ 3\pi$ simuliert. Da sie nur dazu dienten, die Form des physikalischen Untergrundes zu reproduzieren, der im letzten Schritt der Auswertung von den Missing-Mass-Spektren abgezogen wurde, konnte auf Strahlungskorrekturen für diese Ereignisse verzichtet werden. Das Verhältnis von Zwei-Pion- zu Drei-PionEreignissen wurde unter dem Kriterium der Reproduktion der experimentellen Spektren bestimmt. Die Energie der gestreuten Elektronen ergab sich aus einer per Zufallszahl gewählten Gleichverteilung in W.

Elektronereignisse aus beiden Prozessen wurden durch das Elektronspektrometer transportiert. Befanden sie sich innerhalb seiner Akzeptanz, so wurden, nachdem die getroffenen Zähler des PQ-, Θ - und ϕ -Hodoskops gesetzt waren, zu jedem Elektron zur Erhöhung der Effizienz jeweils 30 Protonen, deren Polar- und Azimutalwinkel gewürfelt wurden, durch das Protonspektrometer transportiert. Lag das Proton innerhalb seiner Akzeptanz, dann wurden die Information über die getroffenen Drähte der Proportionaldrahtkammern und den Durchgangsort durch das Szintillationshodoskop HII sowie die Information des Elektronspektrometers zusammen mit einer Markierung, die Auskunft darüber gab, ob es sich um ein Ereignis aus der Reaktion ep + epn oder um ein Ereignis aus den Untergrundreaktionen handelte, auf einen Datensatz weggeschrieben.

V.4.3 Auswertung simulierter Koinzidenzereignisse

Die simulierten Koinzidenzereignisse wurden mit denselben Programmen ausgewertet, die auch für die experimentellen Ereignisse verwendet worden waren (s. Abschnitt V.2.). Defekte in der Proportionaldrahtkanmer wie gerissene Drähte oder Drähte mit verminderter Ansprechwahrscheinlichkeit wurden dergestalt berücksichtigt, daß, falls ein simuliertes Teilchen den Draht getroffen hatte, per Zufallszahl entschieden wurde, ob der Draht gemäß seiner Ansprechwahrscheinlichkeit in die Auswertung einbezogen wurde. Auf Totzeitkorrekturen für die einzelnen Ebenen der Proportionaldrahtkammer konnte verzichtet werden, da die höchsten Totzeitverluste pro Ebene bei 3 % lagen, und damit die Wahrscheinlichkeit, daß zwei der drei Ebenen gleichzeitig nicht angesprochen hatten, weniger als 3 °/oo betrug. Allein diese 3 °/oo waren maßgeblich, weil auch Ereignisse mit nur zwei gefeuerten Ebenen ausgewertet wurden (s. Abschnitt V.2.).

Die Auswertung der simulierten Ereignisse erfolgte in zwei Schritten: Zunächst wurden alle simulierten Ereignisse behandelt und in eine vier-

 $Q \times 2 = 0.6 \text{ GEV} \times 2/C \times 2, \text{ EPSILON} = 0.5$

dimensionale Matrix nach dem Quadrat der fehlenden Masse, W, $\cos 0.5\%$ und ϕ eingeordnet, dann wurde dasselbe Verfahren für die simulierten Untergrundereignisse allein durchgeführt und auch für sie eine entsprechende vierdimensionale Matrix erzeugt.

Die Zahl der simulierten Ereignisse ist in der folgenden Tabelle zu finden:

Tabelle 15									
$\left[\frac{q^2}{Gev^2/c^2}\right]$	£	Untergrund- ep → epn Ereignisse							
0.56 - 0.62	0.47 - 0.51	58 • 10 ³	$34 \cdot 10^3$ $43 \cdot 10^3$						
0.57 - 0.60	0.89 - 0.91	165 • 10 ³							
0,94 - 1.02	0.50 - 0.53	59 • 10 ³	$40 \cdot 10^3$ $46 \cdot 10^3$						
0,94 - 0,99	0.90 - 0.92	188 • 10 ³							

V.5 Berechnung der differentiellen Wirkungsquerschnitte

Um die differentiellen Wirkungsquerschnitte für die Reaktion ep \rightarrow epn zu berechnen, wurden die Zählraten aus dem Experiment und der Simulation, N_{exp} und N_{MC}, miteinander verglichen. Dazu mußte jeweils der physikalische Untergrund bzw. dessen Simulation von den entsprechenden Verteilungen abgetrennt werden (Abb. 17 a-h).

Dies geschah dergestalt, daß für jede kinematische Einstellung zunächst für jeden W- $\cos\theta_{6-\phi}^{*}$ - ϕ -Bereich der simulierten Untergrund-Ereignisse ein Polynom-Fit f(MM²) an ihre Verteilung über dem Quadrat der fehlenden Masse im Bereich 0.24 GeV² < MM² < 0.38 GeV² gemacht wurde, sofern die jeweilige Verteilung mehr als 40 Ereignisse enthielt (Abb. 18). Die Ergebnisse des Fits wurden dann für einen Fit der Form

$$g(MM^2) = \alpha f(MM^2) + \beta + \gamma MM^2$$

an den Untergrund sowohl in der Verteilung aller simulierten Ereignisse als auch aller experimentellen Ereignisse über dem Quadrat der fehlenden Masse für den jeweiligen $W-\cos\theta_6^{*}-\phi$ -Bereich benutzt (Abb. 19 und 20). Die Anpassungen erfolgten hierbei nur außerhalb des Bereichs des

VERTEILUNG DES QUADRATS DER FEHLENDEN MASSE

Q**2 = 1.0 GEV**2/C**2, EPSILON = 0.5

1.1

VERTEILUNG DES QUADRATS DER FEHLENDEN MASSE

Qxx2 = 1.0 GEVxx2/Cxx2, EPSILON = 0.9

.

Abb. 18 Simulierte Untergrund-Ereignisse mit Polynom-Fit an ihre Verteilung über dem Quadrat der fehlenden Masse $(q^2 = 0.6 \text{ GeV}^2/c^2, \epsilon = 0.9, W = 1.535 \text{ GeV}, \cos\theta_6^{**} = -0.3, \phi = 60^{\circ})$

- VERTEILUNG DES QUADRATS DER FEHLENDEN MASSE
- Abb. 17 a-h Häufigkeitsverteilung des Quadrats der fehlenden Masse für Protonen aus Koinzidenzereignissen mit genau einer Trajektorie im Protonspektrometer und 1.490 GeV < W < 1.580 GeV Experiment und Simulation

- 72 -

SIMULATION MIT ANPASSUNG AN DEN UNTERGRUND

- Abb. 19 Alle simulierten Ereignisse mit Polynom-Fit an den Untergrund $(q^2 = 0.6 \text{ GeV}^2/c^2, \epsilon = 0.9, W = 1.535 \text{ GeV}, \cos\theta_6^* = -0.3, \phi = 60^\circ)$
- Experimentelle Ereignisse mit Polynom-Fit an den Untergrund Abb. 20 $(q^2 = 0.6 \text{ GeV}^2/c^2, \epsilon = 0.9, W = 1.535 \text{ GeV}, \cos\theta_6^* = -0.3, \phi = 60^\circ)$

- 74 -

Nach der Subtraktion des so ermittelten Untergrundes wurde aus dem Verhältnis der verbliebenen Zählraten von Experiment und Simulation, normiert auf die im Faradaykäfig gemessene Ladung (s. Abschnitt III.I. und IV.I., Tabelle 7) bzw. dem den Transportprogrammen angebotenen Querschnitt für alle mit mehr als 40 Ereignissen belegten $W - \cos\theta_6^{\frac{\pi}{2}} - \phi$ -Bereiche berechnet.

V.6 Korrekturen und Fehler

Diese rohen Querschnitte wurden mit einer Reihe von Korrekturen versehen:

- (i) Die Länge der Targetzelle (s. Abschnitt III.2.) betrug nicht genau 120.0 mm, sondern 119.8 mm bei den Messungen mit q² = $0.6 \text{ GeV}^2/c^2$ und 119.9 mm bei denen mit $q^2 = 1.0 \text{ GeV}^2/c^2$. Aus der Unsicherheit der Bestimmung der Targetlänge, der Wasserstoffdichte und dem Einfluß der Bläschenbildung wurde ein Fehler von ± 1 % für die Zahl der Protonen pro cm² im Target abgeschätzt.
- Aus den Messungen mit leerer Targetzelle (s. Abschnitt IV.2.) (ii) wurde eine Leertargetrate für Koinzidenzereignisse von 1.0 % ± 0.5 % für die Messungen mit c = 0.9, in Übereinstimmung mit den Ergebnissen eines vorangegangenen Experiments 4), und von 0.5 % ± 0.5 % für die Messungen mit ε = 0.5 bestimmt.
- (iii) Der Verlust von Protonen durch Kernreaktionen im Target wurde zu 0.6 % + 0.5 % abgeschätzt.
- In den Szintillationszählerhodoskopen des Elektronspektro-(iv) meters (s. Abschnitt III.3.) traten Zählverluste auf, weil die Zähler Ansprechwahrscheinlichkeiten von weniger als 100 % hatten oder weil Elektronen die Zähler nicht getroffen, sondern die Spalte zwischen ihnen durchsetzt hatten. Für das PQ-Hodos-

kop wurde ein Verlust von 0.2 % ermittelt, in Übereinstimmung mit den Messungen von J. May ²⁸⁾. Für das ϕ -Hodoskop ergaben sich bei den Messungen mit $\varepsilon = 0.9$ Verluste von 0.2 % - 0.7 % und bei den Messungen mit $\varepsilon = 0.5$ Verluste von 0.6 % - 1.8 %, die damit deutlich höher lagen als in der zitierten Arbeit von J. May. Der Fehler wurde für die Messungen mit $\varepsilon = 0.9$ zu ± 0.5 %, für die mit $\varepsilon = 0.5$ zu ± 1.0 % abgeschätzt. Verluste im 0-Hodoskop wurden nicht berücksichtigt.

- (v) Der Anteil guter, nicht reduzierbarer Mehrfach-Ereignisse im Elektronspektrometer betrug, wie in Abschnitt V.I.I. ausgeführt, 0.8 % aller guten Elektron-Ereignisse. Als Fehler für alle guten Mehrfach-Ereignisse, reduzierte wie nicht reduzierbare, wurde ± 1.0 % angenommen.
- (vi) Der Verlust von Ereignissen bei der Abtrennung der Protonen von den π⁺-Mesonen mittels Flugzeit-Schnitten
 (s. Abschnitt V.3.) wurde mit 0.8 % + 0.5 % berücksichtigt.
- (vii) Der Anteil von Ereignissen mit mehr als einer guten Trajektorie im Protonspektrometer (s. Abschnitt V.3.1., Tabelle 14) lag zwischen 4.7 X und 9.1 X, als Fehler wurden ± 1.0 X angenommen.
- (viii) Die Strahlungskorrekturen (s. Abschnitt V.4.1.) lagen, abhängig von den jeweiligen kinewatischen Parametern, zwischen 2 % und 47 %, ihr Fehler wurde zu ± 3 % abgeschätzt.

Neben den in Zusammenhang mit den Korrekturen aufgeführten Fehlern gab es noch weitere Fehlerquellen, die sich jedoch nicht in Korrekturen niederschlugen:

(i) Der Fehler der Ladungsmessung des Primärstrahls (s. III.1.) wurde für die Messungen mit $\varepsilon = 0.9$ zu ± 2 %, für die mit $\varepsilon = 0.5$ zu ± 3.5 % abgeschätzt;

- die Akzeptanz des Elektronspektrometers (s. III.3.) war auf ± 1 % bekannt ²⁹;
- (iii) die Akzeptanz des Protonspektrometers (s. III.4.2.) war ebenfalls auf ± 1 % bekannt ³⁰⁾;
- (iv) für den Fehler aufgrund falsch rekonstruierter Trajektorien mit nur zwei gefeuerten Ebenen in der Proportionaldrahtkammer (s. V.2.) wurde ± 1 % angenommen;
- (v) für falsch rekonstruierte Trajektorien wegen schlechter Laufzeit-Eichungen (s. IV.2.) wurde ein Fehler von ± 1 % berücksichtigt;
- (vi) bei der Subtraktion des zufälligen Untergrundes (s. V.3.) wurde ein Fehler von ± 1 % angenommen und
- (vii) der Fehler bei der Abtrennung des physikalischen Untergrundes von Ereignissen aus der Reaktion ep → epŋ (s. V.5.) wurde mit ± 2 % berücksichtigt.

In der folgenden Tabelle sind alle erwähnten Fehler noch einmal zusammengestellt:

Tabelle 16

Fehlerquelle	relativer Fehler der Messungen mi							
	ε =	0.	5		е =	0.9	9	
Ladungsmessung	3.5	7.	(2.5	7.)	2	7	(1	%)
Anzahl der Protonen im Target	1	7.			1	7		
Leertargetmessungen	0.5	7.			0.5	7		
Absorption von Protonen im Target	0.5	7,			0.5	7		
Akzeptanz des Elektronspektrometers	1	z	(0.5	7)	Ĩ.	%	(0.5	7.)
Zählerverluste im Elektronspektrometer	1	7.			0.5	7.		
Mehrfachtrajektorien im Elektronspek-								
trometer	1	z	(0.5	%)	I.	7.	(0,5	%)
Akzeptanz des Protonspektrometers	1	7			1	7,		
Mehrfachtrajektorien im Protonspek-								
trometer	1	z	(0.5	%)	1	72	(0.5	2)
Ereignisse mit weniger als 3 Ebenen								
in HI	1	2	(0.5	7)	1	Z	(0.5	7.)
Laufzeiteichung	1	7.			1	Z		
Flugzeit-Schnitte	0.5	7,	(0.5	7.)	0.5	Z	(0.5	7.)
Subtraktion des zufälligen Unter-								
grundes	1	7	(1	Z)	1	76	(1	%)
Abtrennung des physikalischen Un-								
tergrundes	2	7.	(1.5	%)	2	7.	(1.5	%)
Strahlungskorrekturen	3	7.	(1.5	7.)	3	76	(1.5	7.)
Quadratisch addierter Gesamtfehler	6	7.	(4	%)	5	7,	(3	7.)

Hieraus ergab sich ein allgemeiner systematischer Fehler von \pm 6 % für die Messungen mit ε = 0.5 und von \pm 5 % für die Messungen mit ε = 0.9. Die eingeklammerten Zahlen sind eine Abschätzung für jene Teile der systematischen Fehler, die unabhängig in die Messungen mit ε = 0.5 und ε = 0.9 eingehen. Der unabhängige systematische Fehler beträgt \pm 4 % für die Messungen mit ε = 0.5 und \pm 3 % für die Messungen mit ε = 0.9.

VI. Ergebnisse

VI.1 Totale Einarm-Wirkungsquerschnitte

Um die Konsistenz dieser Messungen mit früheren zu prüfen, wird in der folgenden Tabelle der totale Querschnitt der Reaktion ep \rightarrow e'X, also der Fall, in dem nur das gestreute Elektron nachgewiesen worden war, mit den Ergebnissen von Anpassungen an alle bisherigen Einarm-Messungen ⁶⁾ mit Polarisationsfaktoren $\varepsilon \leq 0.6$ bzw. $\varepsilon \geq 0.9$ verglichen (s. auch Abb. 21 a-d):

Tabelle 17							
W		σ ^{tot} [μb]					
GeV	ε = 0.	.5	3	ε = 0.9			
	Experiment	Flt	Experiment	Fit			
q ² = 0.6	GeV^2/c^2						
1.445			99.2 ± 0.2	100.9 ± 1.4			
1.475			121.1 ± 0.2	$119.5 \pm \frac{1}{1.7}$			
1.505	128.1 ± 0.5	140.5 ± 6.8	138.5 ± 0.2	135.6 ± 1.9			
1.535	123.7 ± 0.3	122.2 ± 5.8	124.9 ± 0.2	120.8 ± 1.8			
1.565	110.3 ± 0.4	102.6 ± 4.9	106.6 ± 0.1	101.8 ± 1.5			
1.595			98.3 ± 0.1	92.2 ± 1.6			
q ² = 1.0	GeV^2/c^2						
1.415	1		62.7 ± 0.2	56.9 ± 1.0			
1.445	1		64.9 ± 0.2	$62.6 \pm \frac{1.2}{1.1}$			
1.475	76.8 ± 2.1	74.2 ± 3.0	76.5 ± 0.2	76.2 ± 1.4			
1.505	81.8 ± 0.4	90.0 ± 3:9	90.4 ± 0.2	87.5 ± 1.5			
1.535	76.9 ± 0.3	80.2 ± 3.7 3.6	82.8 ± 0.2	78.8 ± 1.4			
1.565	67.8 ± 0.4	$67.1 \pm 2.9 \\ 2.7$	70.4 ± 0.2	65.9 ± 1.2			
1.595			65.9 ± 0.1	60.0 ± 1.2			
1,625			67.5 ± 0.2	62.6 ± 1.2			

Bei der Berechnung dieser experimentellen Querschnitte wurde der Beitrag von Elektronen aus π^{0} -Zerfällen außerachtgelassen. Für ϵ = 0.5 beträgt er etwa 2 %, für ϵ = 0.9 weniger als 0.1 % ⁴⁰⁾.

Als Fehler der Querschnitte dieses Experiments ist jeweils nur der statistische angegeben, hinzu kommt ein systematischer Fehler von ± 4 % für die Messungen mit $\epsilon = 0.9$ und von ± 5 % für die Messungen mit $\epsilon = 0.5$.

Bei Berücksichtigung der systematischen Fehler ist eine weitgehende Ubereinstimmung zwischen experimentellen und angepaßten Querschnitten festzustellen. Die experimentellen Querschnitte für die Messungen mit $\varepsilon = 0.9$ sind zwar durchweg größer als die angepaßten, im Mittel etwa 3 % für die Messungen mit $q^2 = 0.6 \text{ GeV}^2/c^2$ und etwa 5 % für die Messungen mit $q^2 = 1.0 \text{ GeV}^2/c^2$, jedoch lag die Diskrepanz zwischen experimentellen und angepaßten totalen Querschnitten in den zentralen Bereichen in W (1490 - 1580 MeV), in denen die Separation von longitudinalem und transversalem Querschnitt erfolgte, innerhalb der Gesamtfehler.

Die longitudinalen und transversalen Einarmquerschnitte sowie ihr Verhältnis, R, sind, aus den totalen Einarmquerschnitten berechnet, in den Abbildungen 22 a,b und 23 dargestellt und in der folgenden Tabelle angegeben. Darin setzen sich die angegebenen Fehler der longitudinalen und transversalen Einarmquerschnitte sowie von R aus dem statistischen Fehler und jenen Teilen der systematischen Fehler zusammen, die für die einzelnen Messungen unabhängig voneinander sind. Sie betragen \pm 2 Z für die Messungen mit ε = 0.9 und \pm 3 Z für die Messungen mit ε = 0.5 (s. dazu auch Anhang 2).

Abb. 21 a-d Totale Einarm-Querschnitte, dies Experiment und Ergebnisse von Anpassungen nach Ref. 6

0.0 1.40 1.45 1.50 1.55 1.60

EPSILON = 0.9

W (GEV)

Abb. 21d

50.0

50.0

0.0 1.46 1.51 1.58

EPSILON = 0.5

W (GEV)

Abb. 21c

Abb. 23 a-b Verhältnis von longitudinalem zu transversalem Einarm-Querschnitt

TRANSVERSALER UND LØNGITUDINALER EINARMQUERSCHNITT

Abb. 22 a-b Transversale und longitudinale Einarm-Querschnitte

- 82 -

EINARMQUERSCHNITT

		Tabel	le 18		
W [Ge V]	σ^{tot}	[μb] [ε = 0.9	σtot σL [μb]	յtot T [µb]	R
q ² = 0.6	GeV^2/c^2				
1.505	128.1 ± 0.5	138.5 ± 0.2	25.8 ± 11.8	115.0 ± 9,4	$0.22 \pm 0.13 \\ 0.11$
1.535	123.7 ± 0.3	124.9 ± 0.2	2.9 ± 10.8	122.3 ± 8.6	0.02 ± 0.10
1.565	110.3 ± 0.4	106.6 ± 0.1	-8.6 ± 9.2	114.3 ± 7.3	-0.08 ± 0.08
q ² = 1.0) $Ge V^2 / c^2$				
1.475	76.8 ± 2.1	76.5 ± 0.2	-0.8 ± 9.1	77.2 ± 7.8	-0.01 ± 0.13
1.505	81.8 ± 0.4	90.4 + 0.2	22.1 ± 7.9	70.2 + 6.4	0.31 + 0.15
1.535	76.9 ± 0.3	82.8 + 0.2	14.8 + 7.2	69.3 + 5.8	0.21 ± 0.13
1.565	67.8 <u>+</u> 0.4	70.4 ± 0.2	6.4 ± 6.2	64.6 <u>+</u> 4.9	0.10 ± 8 18

Als Mittelwert von R ergibt sich hieraus im Bereich 1.49 GeV < W < 1.58 GeV:

Diese Werte für R bzw. \overline{R} stimmen im Rahmen der Fehler gut mit den Ergebnissen eines Experiments von Alder et al. ⁴⁰⁾ bei q² = 1.2 GeV²/c² überein:

Tabelle 20	(aus	Referenz	40)
------------	------	----------	-----

W [GeV]	R
1.495	0.00 ± 0.15
1.515	0.00 ± 0.13
1.535	0.02 ± 0.13
1,555	0.18 ± 0.16

Der Mittelwert von R im Bereich 1.485 GeV < W < 1.565 GeV beträgt $\overline{R} = 0.05 \pm 0.13$.

Die differentiellen Wirkungsquerschnitte der Reaktion ep + epn für $q^2 = 0.6 \text{ GeV}^2/c^2$ und $\varepsilon = 0.5 \text{ bzw. 0.9}$ sowie für $q^2 = 1.0 \text{ GeV}^2/c^2$ und $\varepsilon = 0.5 \text{ bzw. 0.9}$ sind in den Tabellen 21 bis 24 zusammengestellt; darin erstrecken sich die W-Bereiche jeweils über 30 MeV, die $\cos\theta_6^*$ -Bereiche jeweils über 0.2 und die ϕ -Bereiche jeweils über 30°. Es ist jeweils nur der statistische Fehler angegeben, darüberhinaus gibt es einen systematischen Fehler von 5 % bzw. 6 % (s. Abschnitt V.6.). In den Abbildungen 24 bis 29 sind Winkelverteilungen über $\cos\theta_6^*$ bzw. ϕ dargestellt; es werden nur solche Winkelverteilungen gezeigt, in denen mehr als drei Bereiche in $\cos\theta_6^*$ bzw. in ϕ belegt sind.

- 84 -

Die Winkelakzeptanz umfaßte bei allen kinematischen Einstellungen für die zentralen Bereiche in W (1490 - 1580 MeV) und für $45^{\circ} \le \phi \le 75^{\circ}$ den gesamten $\cos\theta_{6}^{\star}$ - Bereich, hingegen war die Akzeptanz in ϕ in etwa auf den Bereich - $15^{\circ} \le \phi \le 90^{\circ}$ für die Einstellungen mit $\varepsilon = 0.9$ und auf $15^{\circ} \le \phi \le 75^{\circ}$ für die Einstellungen mit $\varepsilon = 0.5$ beschränkt.

do/do* (ub/sr)

		~	0	~	0	۲ ۲	4	-	-	4	0		
	9.9	.7	5	ι	-	•	ω	.5	0.7	9.9	988		
3									0.83 +- 0.33	1.14 +- 0.18	¢ ([∞]): -30	W = 1.505 GEV, Q*C	
	0.74 +- 0.16								0.82 +- 0.14	0.65 +- 0.22	0	= 0.599 CEV#CEV/C	
	0.67 +- 0.12	0.98 +- 0.11	1.21 +- 0.18			1.13 +- 0.12	1.03 +- 0.11	1-01 +- 0-11	1.02 +- 0.12	0.89 +- 0.26	30	*C, EPSILON = C.	
	0.92 +- 0.11	1.06 +- 0.10	1.06 +- 0.11	1.08 +- 0.11	0.96 +- 0.11	0.96 +- 0.10	0.98 +- 0.13	0.80 +- 0.11	0.79 +- 0.10	0.82 +- 0.16	60	16	
				3.92 t 0	0.76 +- 0		0.30 +- 0				36		

.51

-	85	

Tabelle 21

da/do*	(ub/sr)	

	₩ = 1.505	GEV,	Q*C =	0.62	l GE	V*GEV/C*C,	EPSILON	=	0.51
$\cos\theta_6^*$	φ (°):	30			60	7			
-0.9	0.08	+- 0	.39						
-0.7	1.72	+- 0	.34	0.92	+	0.26			
-0.5	1.08	+- 0	.34	0.73	+-	0.19			
-0.3	0.52	+- 0	.42	0.74	+-	0.26			
-0.1				0.44	+	0.27			
0.1				0.73	+-+	0.27			
0.3				0.69	+	0.31			
0.5				1.04	+	0.21			
0.7				1.87	+-	0.43			
0.9	0.30	+- 0	.53	1.04	+-	0.23			
	1								

do/du* (ub/sr)

W = 1.535 GEV, Q*Q = 0.589 GEV*GEV/C*C, EPSILON = 0.49

cos0 [*] 6	¢ (°): 0	30	60	90
-0.9	0.58 +- 0.38	1.09 +- 0.23	1.80 +- 0.41	
-0.7	1.09 +- 0.27	0.94 +- 0.17	0.80 + 0.18 0.79 + 0.19	
-0.3		0.77 .4 0.11	1.25 +- 0.20	
-0.1			1.07 ++ 0.17	
0.1			0.74 +- 0.24	
0.3			1.01 +- 0.20	0.30 +- 0.41
0.5		1	1.29 +- 0.22	0.96 +- 0.49
0.7			1.02 +- 0.22	
0.9		1.21 +- 0.23	0.81 += 0.27	

dσ/dΩ^{*} (µb/sr)

W = 1.565 GEV, Q#G = 0.557 GEV#GEV/C#C, EPSILON = 0.47

$\cos\theta_{6}^{*}$	¢ (°):	0			30			60	
-0.9				0.32	+	0.31			
-0.7	1.02	+-	0.35	0.69	+-	0.18	0.56	+	0.21
-0.5				0.85	+-	0.22	0.73	+	0.20
-0.3							0.96	+	0.18
-0-1							0.78	+	0.25
0.1							0.83	+-	0.19
0.3							0.82	+-	0.25
0.5							0.94	+-	0.25
0.7							0.82	+	0.26
0.9				0.43	+-+	0.38	0.09	+-	0.32

- 86 -

do/dn* Χ.

(µb/sr)

. • 1.535

GEV. -30

> 2 0 н

0

.589

CEV*CEV/C*C,

EPSELON

. ? 90

0

30

60

90

cos8

(°):

1.34 +-

0.56

0.85

11

0-23

0.89 0.89 0.92 0.80

1111

0.14 0.14 0.11 0.13

1.35 1.00 1.00 1.20 1.20 1.16 1.12 1.12 1.12 1.14 1.12 1.25 1.01

1.14 0.80 1.46 1.37 0.40

11111

0.39

0.153113579

1.03

t

0.35

1.04

t

0.19

Tabelle 22 (Fortsetzung)

do/du[#] (µb/sr)

dσ/dΩ[#] (µb/sr)

ы	ĸ	1.565	GEV,	Q \$ C	=	0.578	CEV#GEV/C#C,	EPSILON	=	0.90
	10	0.								

cosθ [%] 6	¢ (˘): 0		30		60		90	
-0.9	0.94 +-	0.21	0.73 +-	0.18	0.86 +-	0.47		
-0.7	0.71 +-	0.16	0.77 +-	0.10	0.50 +-	0.17		
-0.5			0.77 +-	0-14	1.03 +	0.13		
-0.3			0.53 +-	0.20	0.99 +-	0.14		
-0-1					1.17 +-	0.18		
0.1					1.15 +-	0.14	1.63 +-	1.28
0.3					1.07 +-	0.17	0.45 +-	0.37
0.5					0.80 +-	0.15	1.40 +-	0.50
0.7					0.65 +-	0.14		
0.9			1.07 +-	0.22	0.63 +-	0.15		

dσ/dΩ^{**} (µb/sr) W = 1.505 GEV, Q*Q = 1.016 GEV*GEV/C*C, EPSILON = 0.53

^{cos0} [*] 6	¢ (°): 30			6 C	
0.9	0.78 +-	0.24	0.38	+-	0.21
-0.7	0.96 +-	0.23	0012500042		
-0.3			0.77	++	0.20
-0.1			0.67	+-	0.22
0.1			0.75	+-	0.21
0.3			1.00	+	0.24
0.5			1.01	+-+	0.23
0.7			0.81	+	0.20

· / · · *	2 3 4 3
do/dn	(ub/sr)

-

W = 1.535 GEV., Q*Q = 0.980 GEV*GEV/C*C, EPSILON = 0.51

os0 *	¢ (): 0	30)	60	
0.9	0.82 +- 0.	22 0.40 +-	0.19		
0.7	0.69 +- 0.	15 0.49 +-	0.14	0.79 +	0.24
0.5		0.58 +-	0.15	0.68 +-	0.19
0.3		1.57 +-	1.90	0.35 +-	0.11
0-1				0.61 +-	0.13
0.1				0.63 +-	0.14
0.3				0.34 +-	0.13
0.5				0.40 +-	0.12
0.7				0.53 +4	0.14
0.9		0.29 +-	0.20	0.39 +-	0.16

cos0 6	φ (): 3	0			60			90	
-0.9	0.92 +	-	0.24	0.73	+-	0.27			
-0.7	0.60 +		0.21	0.86	+	0.15			
-0.5	0.65 +		0.26	1.02	+-	0.27			
-0.3				0.90	+	0.20			
-0.1				1.32	+	0.27			
0.1				1.07	4-	0.26	2.23	+-	0.65
0.3				0.92	+-	0.28			
0.5				0.96	+→	0.25			
0.7	1			0.55	+-+	0.27			

 $d\sigma/d\Omega^{*}$ (µb/sr)

H = 1.565 GEV, Q*Q = 0.943 GEV*GEV/C*C, EPSILON = 0.50

cosθ [*] 6	¢ (°): 30			60	
-0.9	0.53 +-	0.21			
-0.7	0.46 +-	0.25	1.01	+-	0.25
-0.5			0.33	+-	0.21
-0.3			1.12	+-	0.24
-0.1			0.86	+-+	0.25
0.1			0.68	+-	0.28
0.3			0.63	+-	0.30
0.5			0.71	+-	0.28
0.7			0.68	+-	0.30

Tabelle 23

do/d0 * (ub/sr)

W = 1.565 GEV, Q = 0.967 CEV = 0.91

$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	cos6	¢ (°): -30	с	30	60	90
	-0.9 -0.7 -0.5 -0.3 -0.1 0.1 0.1 0.3 0.5 0.7 0.9	0.53 +- 0.23	0.59 +- 0.15 0.16 +- 0.17	0.75 +- 0.12 0.71 +- 0.11 0.52 +- 0.14 1.09 ← 0.34	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$

90 1

do/dΩ[₩] (ub/sr)

W = 1.595 GEV, Q*C = 0.954 CEV*CEV/C*C, EPSHLON = 0.90

cose ₆	¢ (°): 0		30		60		90	
-0.9	0.50 +-	0.17	0.36 +-	0.11	0.64 +-	0.27		
-0.5			0.17 +-	0.13	0.46 +-	0.10		
-0.3					0.84 +-	0.19	0.21 +-	0.20
0.1					0.65 +-	0.11	0.45 +-	0.20
D.3					0.66 +-	0.16	1.13 +-	0.36
0.7					0.22 +-	0.10	0.45 +-	0.18
0.9					0.06 +-	0.14		

Tabelle 24

do/d0^{**} (ub/sr)

W = 1.535 GEV, Q*C = 0.980 GEV*GEV/C*C, EPSILON = 0.91

cos06	¢ ([°]): -30	c	30	60	90
-0.9 -0.7 -0.5 -0.3 -0.1 0.1 0.3 0.5 0.7 -0.9	0.92 +- 0.21	0.69 +- 0.29 1.05 +- 0.21	0.51 +- 0.18 0.55 +- 0.13 0.77 +- 0.14 0.88 +- 0.18 0.65 +- 0.39	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	1.02 + - 0.35 5.77 + - 0.29 0.66 + - 0.22 0.47 + - 0.25 1.24 + - 0.31 1.36 + - 0.31 1.27 + - 0.26 1.07 + - 0.25 1.20 + - 0.28 1.06 + - 0.33

89 1

	-
do/df.	(ub/sr)
	100/02/

W = 1.505 GEV, Q*C = 0.993 GEV*GEV/C*C, EPSILON = C.92

cos6	⁶ (⁰): -30	c	30	60	90
$ \begin{array}{c} -0.9 \\ -0.7 \\ -0.5 \\ -0.3 \\ -0.1 \\ 0.1 \\ 0.3 \\ 0.5 \\ 0.7 \\ \end{array} $	0.99 +- 0.19 1.06 +- 0.30	1.39 +- 0.32 0.87 +- 0.15	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
0.9			0.81 +- 0.30	0.69 +- 0.39	0.82 +- 0.28

Qxx2 = 0.6 GEVxx2/Cxx2, EPSILON = 0.5

COS THETAX

cos0

-0.9

-0.7

-0.5

-0.3

-0.1

0.1

0.5

0.7

Qxx2 = 0.6 GEVxx2/Cxx2, EPS1LON = 0.9

0xx2 = 0.6 GEVxx2/Cxx2, EPS1LON = 0.9

W = 1.595 GEV

COS THETAX

Abb. 25 a-i wie Abb. 24 a-f

0xx2 = 1.0 GEVxx2/Cxx2. EPSiLON = 0.5

Abb. 26c PHI = 60 GRAD

.

411 97

Q*x2 = 1.0 GEV*x2/C*x2, EPSILON = 0.9

COS THETAX

0xx2 = 1.0 GEVxx2/Cxx2, EPSILON = 0.9

 $Q \times 2 = 0.6 \text{ GEV} \times 2/C \times 2, \text{ EPSILON} = 0.9$

COS THETAX

Abb. 27 a-1 wie Abb. 24 a-f

MXX2 = 1.0 GEVXX2/CXX2, EPSILON = 0.9

PHI (GRAD)

W = 1.505 GEV

V1.2.1 Anpassungen an die Winkelverteilungen

An die Winkelverteilungen wurden Kurven angepäßt, deren Verlauf dem für eine reine S₁₁-Welle, für die Überlagerung einer S₁₁- und einer P₁₁-Welle sowie für die Überlagerung einer S₁₁- und einer D₁₃-Welle entsprach (s. Anhang 1).

Da die Anpassungen in den beiden letzten Fällen bei Verwendung aller Parameter wegen der kleinen ϕ -Akzeptanz keine befriedigenden Ergebnisse lieferten, wurde in einem zweiten Versuch die Abhängigkeit von cos ϕ und cos 2ϕ vernachlässigt und nur die Koeffizienten $A_{o} + \epsilon B_{o}$ bzw. $A_{o} + \epsilon B_{o}$ und $A_{I} + \epsilon B_{I}$ bzw. $A_{o} + \epsilon B_{o}$ und $A_{Z} + \epsilon B_{Z}$ der Winkelverteilungen (s. Anhaug Al a-d) bestimmt.

Die Möglichkeit, daß es sich bei den Ereignissen im np-Kanal ausschließlich um Zerfälle der P₁₁ (1470)-Resonanz handelte, die dieselbe Winkelverteilung wie die S₁₁ (1535)-Resonanz aufweist (s. Anhang Ala und Alb), wird durch den Verlauf des Einarmquerschnitts (s. Abschnitt VI.1.) ausgeschlossen: Wegen des geringen Verzweigungsverhältnisses der P₁₁ (1470) in den Kanal np (18 Z gegenüber 65 Z bei der S₁₁ (1535)⁹⁾) müßten die wesentlich stärkeren pionischen Zerfallskanäle (etwa 60 Z mN und etwa 25 Z mnN zu einem Feak im Einarmquerschnitt führen, der noch unterhalb der Schwelle für n-Froduktion (1487 MeV) liegt. Er lag jedoch im Experiment bei etwa 1505 MeV. Auch die Möglichkeit der Überlagerung einer S₁₁- und einer D₁₃-Welle, also des Beitrages der D₁₃(1520)-Resonanz zum np-Endzustand kann ausgeschlossen werden, da ihre Zerfallswahrscheinlichkeit für diesen Kanal weniger als 1 Z beträgt⁹).

Dies wird durch das Ergebnis der Anpassungen unterstützt, die eine deutliche Dominanz des konstanten Anteils ($A_0 + cB_0$) aufweisen. Die Ergebnisse der Anpassungen für eine reine S_{11} -Welle sowie die Überlagerung einer S_{11} - und einer P_{11} -Welle sind in der folgenden Tabelle zusammengestellt:

- 100 -

1.505 1.535 1.565 1.595 1.625	q ² = 0 1.505 1.535 1.555 1.555 1.555 1.555	w [GeV]
0.781 <u>+</u> 0.073 0.881 <u>+</u> 0.069 0.687 <u>+</u> 0.080	.6 GeV ² /c ² 0.843±0.079 0.994±0.053 0.746±0.063 .0 GeV ² /c ²	A + ∈B o
0.719±0.026 0.854±0.036 0.654±0.030 0.449±0.031 0.364±0.035	0.950±0.026 1.032±0.033 0.862±0.037 0.505±0.039	$\begin{bmatrix} S_{11} - Welle \\ Lub/sr] \\ \varepsilon = 0.9 \end{bmatrix}$
0.81 1.04 1.05	1.75 0.94 0.83	$\chi^2/Freih$ $\varepsilon = 0.5$
1.12 1.03 1.48 2.07 0.55	1.01 U.93 1.28 0.82	eitsgrad ε = 0.9
0.807±0.076 0.906±0.081 0.708±0.090	0.854±0.079 1.001±0.055 0.743±0.066	A +eBo e = 0.5
0.712±0.028 0.913±0.041 0.656±0.034 0.440±0.032 0.348±0.036	0.950±0.026 1.052±0.035 0.861±0.039 0.499±0.039	[ub/sr] [= 0.9
0.164 <u>+</u> 0.131 0.082 <u>+</u> 0.138 0.079 <u>+</u> 0.158	0.129±0.141 0.047±0.093 -0.019±0.119	$S_{11} - \text{ und } P_{11}$ $A_1 + \varepsilon B_1$ $\varepsilon = 0.5$
-0.030±0.048 0.204±0.068 0.006±0.057 -0.052±0.053 -0.097±0.059	0.023±0.043 0.117±0.061 -0.003±0.064 -0.125±0.068	$\frac{-Welle}{[\mu b/sr]}$ $\frac{\varepsilon = 0.9}{\varepsilon}$
0.70 1.11 1.16	0.90	χ^2 /Freih $\epsilon = 0.5$
1.15 0.72 1.55 2.13 0.38	1.03 0.82 1.35 0.66	heitsgrad [E = 0.9

die Winkelverteilungen

- 101 -

- 102 -

In dieser Tabelle sind nur die statistischen Fehler berücksichtigt; daneben gibt es einen systematischen Fehler von 5 % bzw. 6 % (s. Abschnitt V.6.).

Aus den Anpassungen erkennt man, daß die S₁₁(1535)-Resonanz den Endzustand pn deutlich dominiert. Allerdings läßt sich ein Beitrag der P₁₁(1470)-Resonanz, die zu etwa 18 % in den Kanal pn zerfällt und zudem eine Halbwertsbreite von rund 200 MeV besitzt⁹⁾, nicht ausschließen. Jeweils bei den Messungen mit $\varepsilon = 0.9$ für beide Werte von q² ist der Koeffizient A₁+ ε B₁ bei W = 1535 MeV signifikant von O verschieden. Dasselbe Verhalten wurde bereits bei einer früheren Messung⁴⁾ beobachtet. Genauere Aussagen ließen sich erst aus Messungen gewinnen, die einen größeren Teil der ϕ -Akzeptanz überdeckten.

VI.3 Separation von longitudinalem und transversalem Wirkungsquerschnitt und Berechnung von R_n

In diesem Abschnitt werden für die beiden diskutierten Fälle einer reinen S₁₁-Welle sowie der Überlagerung einer S₁₁- und einer P₁₁-Welle der longitudinale und der transversale Wirkungsquerschnitt separiert, ihr Verhältnis bestimmt und einige Aussagen über die Multipolamplituden gewonnen.

Als R_η wird das Verhältnis vom totalen longitudinalen zum totalen transversalen Wirkungsquerschnitt der Reaktion $\gamma_v p \rightarrow p\eta$ definiert. Falls der Endzustand eine reine S₁₁-Welle ist, entspricht das jener Definition, die R_η als Verhältnis vom differentiellen longitudinalen, σ_L , zum differentiellen transversalen Wirkungsquerschnitt, σ_{π} , festlegt.

Die Trennung der beiden Anteile am Wirkungsquerschnitt erfolgte über die Variation des transversalen Polarisationsgrades ε des virtuellen Photons, der die Werte $\varepsilon_1 = 0.5$ und $\varepsilon_2 = 0.9$ hatte, während die übrigen kinematischen Parameter der Messung unverändert waren. Damit ergeben sich der totale longitudinale Wirkungsquerschnitt zu:

$$\sigma_{\rm L}^{\rm tot} = \frac{\sigma_{\rm n, \epsilon_2}^{\rm tot} - \sigma_{\rm n, \epsilon_1}^{\rm tot}}{\epsilon_2 - \epsilon_1}$$
(12)

und der totale transversale Wirkungsquerschnitt zu:

$$\sigma_{\rm T}^{\rm tot} = \frac{\varepsilon_2 \cdot \sigma_{\rm n,\varepsilon_1}^{\rm tot} - \varepsilon_1 \cdot \sigma_{\rm n,\varepsilon_2}^{\rm tot}}{\varepsilon_2 - \varepsilon_1}$$
(13)
wobei $\sigma_{\rm n}^{\rm tot} = \int_{\rm d\Omega_6^{\rm x}} d\Omega_6^{\rm x}$

$$\sigma_{\rm T}^{\rm tot} = \int \sigma_{\rm T} \, \mathrm{d}\omega_6^{\rm m} \tag{14}$$

und
$$\sigma_{\rm L}^{\rm tot} = \int \sigma_{\rm L} d\Omega_6^{\rm x}$$

Somit erhält man für R_n:

$$R_{\eta} = \frac{\sigma_{L}^{\text{tot}}}{\sigma_{T}^{\text{tot}}} = \frac{\sigma_{\eta,\varepsilon_{2}}^{\text{tot}} - \sigma_{\eta,\varepsilon_{1}}^{\text{tot}}}{\varepsilon_{2} \cdot \sigma_{\eta,\varepsilon_{1}}^{\text{tot}} - \varepsilon_{1} \cdot \sigma_{\eta,\varepsilon_{2}}^{\text{tot}}}$$
(15)

VI.3.1 Reine S11-Welle

Die Querschnitte lassen sich durch die Koeffizienten der Winkelverteilung bzw. durch die Multipolamplituden ausdrücken. Für eine reine S_{11} -Welle ergibt sich unter Verwendung der Gleichungen (A6) und (A7):

$$\sigma_{\rm T}^{\rm tot} = 4\pi A_{\rm o},$$

$$\sigma_{\rm L}^{\rm tot} = 4\pi B_{\rm o},$$

$$\sigma_{\rm L}^{\rm tot} = 4\pi (A_{\rm o} + \epsilon B_{\rm o})$$
(16)

und somit

$$R_{\eta} = \frac{B_{o}}{\Lambda_{o}} = \frac{q^{2}}{|q^{*}|^{2}} \cdot \frac{|S_{o+}|^{2}}{|E_{o+}|^{2}} .$$
(17)

Es ergeben sich folgende Werte für die totalen Querschnitte und für R_n (s. auch Abb. 30 - 32):

Abb. 30 a-b Totale Wirkungsquerschnitte der Reaktion $\gamma_v p$ + ηp unter der Hypothese einer reinen S₁₁-Welle im Endzustand

TRANSVERSALER UND LØNGITUDINALER WIRKUNGSQUERSCHNITT

(HYPOTHESE: REINE S11-WELLE)

VERHAELTNIS VON LONGITUDINALEM ZU TRANSVERSALEM

WIRKUNGSQUERSCHNITT (HYPOTHESE: REINE S11-WELLE)

Abb. 32 a-b Verhältnis von longitudinalem zu transversalem Wirkungsquerschnitt der Reaktion $\gamma_v p \rightarrow np$ unter der Hypothese einer reinen S₁₁-Welle im Endzustand

Abb. 31 a-b Totaler transversaler und longitudinaler Wirkungsquerschnitt der Reaktion $\gamma_v p \rightarrow np$ unter der Hypothese einer reinen S₁₁-Welle im Endzustand

 $\sigma_{J_{\star}}^{\text{tot}}$

Als Mittelwert von R_n im gesamten W-Bereich ergibt sich:

In diesem wie im folgenden Abschnitt bestehen die angegebenen Fehler aus folgenden Anteilen:

Der Fehler des totalen Wirkungsquerschnitts $\sigma_{\eta}^{\text{tot}}$ ist nur durch den statistischen Fehler gegeben, während sich die Fehler des totalen transversalen, σ_{T}^{tot} , und des totalen longitudinalen Wirkungsquerschnitts, σ_{L}^{tot} , sowie von R aus dem statistischen Fehler und jenen Teilen der systematischen Fehler, die für die einzelnen Messungen unabhängig voneinander sind, zusammensetzen.

Eine genaue Beschreibung der Berechnung dieser Fehler aus den Fehlern der einzelnen Messungen und den systematischen Fehlern findet sich im Anhang 2. Für die Überlagerung einer S₁₁- und einer P₁₁-Welle ergibt sich unter Verwendung der Gleichungen (Al2) und Al3):

$$\sigma_{\rm T}^{\rm tot} = 4\pi A_{\rm o} ,$$

$$\sigma_{\rm L}^{\rm tot} = 4\pi B_{\rm o} ,$$

$$\sigma_{\rm \eta}^{\rm tot} = 4\pi (A_{\rm o}^{\rm +} \epsilon B_{\rm o})$$

und somit

$${}^{R}_{n} = \frac{B_{o}}{A_{o}} = \frac{q^{2}}{\left|\frac{1}{2}\pi\right|^{2}} \cdot \frac{\left|S_{o+}\right|^{2} + \left|S_{1-}\right|^{2}}{\left|E_{o+}\right|^{2} - \left|M_{1-}\right|^{2}}$$
(18)

Es ergeben sich folgende Werte für die totalen Querschnitte und für R (s. auch Abb. 33 - 35):

Tabelle 28								
W	σ ^{tot} η	[ıb]	otot T	$\sigma_{\rm L}^{\rm tot}$	R _η			
[GeV]	ε = 0.5	ε = 0.9	[µb]	[µb]				
$q^2 = 0$.	$6 \text{ GeV}^2/c^2$		r		r			
1.505	10.73+0.99	11.94+0.33	9.21+2.41	2.99+2.78	0.32+8 32			
1.535	12.58+0.69	13.22+0.44	11.82+1.81	1.55+2.26	0.13+0 28			
1.565	9.34 <u>+</u> 0.83	10.82+0.49	7.72+1.92	3.46+2.39	0.45+8 33			
q ² = 1.	.0 GeV ² /c ²		1	I	I			
1.505	10.14±0.96	8.95±0.35	11.76+2.43	-3.07+2.76	$-0.26 \pm 0 24 \\ 16$			
1.535	11.39+1.02	11.47+0.52	11.27+2.56	0.23+3.04	0.02 + 0.38 - 0.23			
1,565	8.90+1.13	8.24+0.43	9.70 <u>+</u> 2.65	-1.61+3.07	$-0.17 \pm 0.39 \\ -0.22$			

(HYPOTHESE: S11- UND P11-WELLE)

Abb. 33 a-b Totale Wirkungsquerschnitte der Reaktion $\gamma_v p \rightarrow np$ unter der Hypothese der Überlagerung einer S₁₁- und einer P₁₁-Welle im Endzustand. Abb. 34 a-b Totaler transversaler und longitudinaler Wirkungsquerschnitt der Reaktion $\gamma_v p \rightarrow np$ unter der Hypothese der Überlagerung einer S₁₁- und einer P₁₁-Welle im Endzustand

VERHNELTNIS VON LONGITUDINALEM ZU TRANSVERSALEM

WIRKUNGSQUERSCHNITT (HYPOTHESE: S11- UND P11-WELLE)

Abb. 35 a-b Verhältnis von longitudinalem zu transversalem Wirkungsquerschnitt der Reaktion $\gamma_v p \rightarrow np$ unter der Nypothese der Überlagerung einer S₁₁- und einer P₁₁-Welle im Endzustand Als Mittelwert von R im gesamten W-Bereich ergibt sich:

Wie bereits in Abschnitt VI.2.1. erwähnt, ist der Koeffizient $A_1 + \epsilon B_1$ für beide Werte von q² bei W = 1535 MeV jeweils bei den Messungen mit $\epsilon = 0.9$ signifikant von O verschieden. Bei den Messungen mit $\epsilon = 0.5$ ist dies nicht der Fall, die Anpassungen an eine reine S_{11} -Welle und an die Überlagerung einer S_{11} - und einer P_{11} -Welle sind statistisch gleich signifikant (vgl. Tabelle 25).

VI.3.3 Vergleich der beiden Ansätze

Die beiden diskutierten Ansätze für den Endzustand der Reaktion $\gamma_v p \rightarrow pn$ liefern für den totalen longitudinalen und den totalen transversalen Querschuitt und damit für ihr Verhältnis R_n im Rahmen der Fehler völlig übereinstimmende Ergebnisse.

Das weist darauf hin, daß nur die Multipolamplituden niedrigster Ordnung (also S_{0+} und E_{0+}) wesentlich zu diesen totalen Querschnitten beitragen, während die Amplituden höherer Ordnung z. B. in Gleichung (18) vernachlässigt werden können.

Ein Beitrag der S₁₋- und M₁₋-Multipolamplitude deutet sich in den Ergebnissen des zweiten Ansatzes, der Überlagerung einer S₁₁- und einer P₁₁-Welle, für den Koeffizienten A₁+cB₁ an.

VI.4 Parametrisierung des totalen Wirkungsquerschnitts für η -Produktion, σ_n^{tot}

Der totale Wirkungsquerschnitt für η-Elektroproduktion, $\sigma_{\eta}^{\text{tot}}$, kann im Bereich der S₁₁(1535)-Resonanz als Funktion von W durch einen Breit-

- 113 -

Wigner-Ansatz dargestellt werden:

$$\sigma_{\eta}^{\text{tot}} = \frac{\left| \prod_{p=1}^{+\infty} \mathbf{x} \right| \cdot W}{\left| \prod_{p \to K} \mathbf{K} \right|} \cdot \frac{A}{\left(W - W_{\text{Res}} \right)^2 + 1/4 \Gamma^2 (W)} , \qquad (19)$$

dabei sind

$$\stackrel{\rightarrow}{p}_{\eta}^{\Psi}$$
 der Impuls des $\eta\text{-Mesons im CM-System und}$

K die äquivalente Photonenenergie im Laborsystem (s. Gl. 7).

Die Funktion der Breite der Resonanz, F (W), ist gemäß den Zerfallsmoden der S₁₁ (1535)-Resonanz ⁹⁾ parametrisiert:

$$\Gamma(\mathbb{W}) = \Gamma_{0} \left(0.65 \frac{\left|\frac{\partial \mathcal{H}}{p_{n}}\right|}{\left|\frac{\partial \mathcal{H}}{p_{n}, \text{Res}}\right|} + 0.30 \frac{\left|\frac{\partial \mathcal{H}}{p_{n}}\right|}{\left|\frac{\partial \mathcal{H}}{p_{n}, \text{Res}}\right|} + 0.05\right) , \qquad (20)$$

mit

 $p_{\pi}^{\gamma \star}$ dem Impuls des $\pi\text{-Mesons}$ im CM-System und

 $\stackrel{\rightarrow \infty}{p_{\pi,\,Res}} \quad \mbox{dem Impuls des π-Mesons für die Resonanzmasse im $CM-System.$}$

Die Größen A, W_{Res} und Γ_o sind freie Parameter der Anpassung, wobei

A die Amplitude der Resonanz,

W die Masse der Resonanz und

Die Ergebnisse der Anpassungen, denen die Wirkungsquerschnitte aus Abschnitt VI.3.2. zugrunde liegen, sind in den Abb. 36a – d abgebildet und in der Tabelle 30 zusammengestellt. Zum Vergleich sind die Parameter angeführt, wie sie sich aus einer früheren Messung⁴ ergeben: - 114 -

Α₁ + ε_B₁: Τ τ

Tabelle 30

QXX2 = 1.0 G	EVxx2/Cxx2
$d\sigma/d\Omega^{*}$ (µb/sr)	$d\sigma/d\Omega^{*}$ (µb/sr)
W (GEV) EPSILON = 0.5	W (GEV) EPSILON = 0.9
Abb. 36c	Abb. 36d $A_{o} + \epsilon B_{o}$:
	$\begin{array}{c} A_1 + \epsilon_{B_1}; \\ T \\ T \\ T \\ \end{array}$

Abb. 36 a-d Koeffizienten der Winkelverteilung unter der Hypothese der Überlagerung einer S_{11}^{-} und einer P_{11}^{-} Welle im Endzustand. Die durchgezogenen Kurven sind das Ergebnis der Anpassung an die Koeffizienten $A_0^{+\epsilon}B_0^{-}$.

	dies Exper	iment	früheres Experiment
	ε = 0.5	$\varepsilon = 0.9$	ε = 0.9
$q^2 = 0.6 \text{ GeV}^2$	² /c ²		
$\Lambda \left[\mu b.GeV^2\right]$	0.132±0.063 0.035	0.153 ± 0.027 0.021	0.136 ± 0.036 0.022
Г _о [MeV]	$126 \pm \begin{array}{c} 31\\ 19 \end{array}$	$130 \pm \frac{14}{11}$	$122\pm \frac{20}{13}$
W _{Res} [MeV]	1534	1534± 2/2	1538± 3
$q^2 = 1.0 \text{ GeV}^2$	$2/c^2$		
$A\left[\mu b.GeV^2\right]$	$0.161 \pm 0.129 \\ 0.052$	0.018 0.111±0.014	0.115 ± 0.010 0.008
Г _о [MeV]	148± 58	$124 \pm \frac{1}{1} \frac{3}{0}$	122± 5
W _{Res} [MeV]	1536	1536± 2	1536± 3

Bei den Anpassungen an die Messungen mit $\varepsilon = 0.5$ wurde die Masse der Resonanz, W_{Res}, nicht als freier Parameter behandelt, sondern gleich dem Wert von W_{Res} für die zum selben Wert von q² gehörenden Messungen mit $\varepsilon = 0.9$ gesetzt. Dies Verfahren wurde gewählt, da die Resonanz bei den Messungen mit $\varepsilon = 0.5$ nur durch drei Meßpunkte gegeben war und so nur zwei freie Parameter zur Verfügung standen. Legt man den Anpassungen die Wirkungsquerschnitte aus Abschnitt VI.3.1. (Reine S₁₁-Welle) zugrunde, so ergeben sich für die Parameter im Rahmen der Fehler dieselben Werte wie in der obigen Tabelle.

Für die verschiedenen Messungen sind die angepaßten Parameter in guter Ubereinstimmung miteinander. Eine Abhängigkeit von q^2 ist nur für die Amplitude der Resonanz festzustellen.

- 117 -

VI.5 Vergleich mit anderen Experimenten

Zum Vergleich der Ergebnisse dieses Experiments mit denen anderer Experimente $^{2-4}$, 7) ist in Abb. 37 der totale η-Elektroproduktionsquerschnitt für Messungen mit großem Polarisationsgrad (ε >0.7) aufgetragen, wie er sich aus den fünf Experimenten ergibt. Der zum Vergleich eingetragene totale η-Photoproduktionsquerschnitt wurde aus mehreren Veröffentlichungen 41 durch Mittelung gewonnen. Die neueren Messungen 7, 8) weisen in Übereinstimmung mit den alten Ergebnissen von Alder et al. $^{4)}$ darauf hin, daß die totalen η-Querschnitte von Kummer et al. $^{2)}$ signifikant zu klein sind.

Es ist bereits in Abschnitt VI.2.1. darauf hingewiesen worden, daß durch die Ergebnisse von Alder et al. ⁴⁾ für $q^2 = 0.6$ und 1.0 GeV²/c² der Beitrag einer P₁₁-Welle nicht auszuschließen ist. Um weiter Erkenntnisse über einen möglichen derartigen Beitrag zu gewinnen, wurden Anpassungen an die von Beck et al. ³⁾ und von Alder et al. für $q^2 = 0.22 \text{ GeV}^2/c^{2-4}$ veröffentlichten Winkelverteilungen vorgenommen. Während die Winkelverteilungen von Alder et al. für $q^2 = 0.22 \text{ GeV}^2/c^{2-4}$ mit einer reinen S₁₁-Welle verträglich sind und keinen Hinweis auf den Beitrag einer P₁₁- Welle liefern, weisen die Winkelverteilungen der Messungen von Beck et al. bei $q^2 = 0.20$ und 0.28 GeV²/c² auf den Beitrag einer P₁₁-Welle hin. Die Ergebnisse der Anpassungen an die Winkelverteilungen von Beck et al. sind in der folgenden Tabelle zusammengestellt:

Tabelle 31

Anpa	issunge	n an	die	Ergebnisse	von	Beck	et	a1.	3)
W =	1.535	GeV							

1

	Hypothese:				
a ²	S _{II} -Welle	S ₁₁ ⁻ und P ₁₁ -Welle			
$\left[\frac{Gev^2/c^2}{Gev^2/c^2} \right]$	A _o +∈B _o [µb/sr]	A _o +εB _o [μb/sr]	A _l +∈B _l [ub/sr]		
0.20	1.020+0.067	0.979 <u>+</u> 0.071	0.310 <u>+</u> 0.176		
0.28	1.077+0.060	1.042+0.063	0.276+0.129		
0.40	1.066+0.051	1.064+0.052	-0.024+0.070		
	1		1		

Abb. 37 Totaler Wirkungsquerschnitt der Reaktion $\gamma_{\mathbf{v}} p \rightarrow np$ als Funktion von q² für W = 1.535 GeV und $\varepsilon > 0.7$. Die gestrichelte Kurve gibt den Verlauf des totalen Einarmquerschnitts, normiert auf den n-Photoproduktionsquerschnitt, wieder. - 119 -

In Abschnitt VI.4. sind die Ergebnisse des vorliegenden Experiments für die Parametrisierung des totalen Wirkungsquerschnitts für n-Produktion, σ_n^{tot} , als Funktion von W bereits mit den Ergebnissen von Alder et al. ⁴) für gleiche Werte von q²verglichen worden. In der Tabelle 32 sind die entsprechenden Ergebnisse der Messungen von Breuker et al. ⁷) aufgeführt.

An diesen Ergebnissen fällt auf, daß bei Breuker et al. die Breite der Resonanz signifikant größer ist als bei den zuvor genannten Experimenten.

Hingegen besteht zwischen diesem Experiment und dem von Breuker et al. im Rahmen der Meßfehler Übereinstimmung für den Mittelwert des Verhältnisses von longitudinalem zu transversalem Wirkungsquerschnitt, \overline{R}_{n} (Abb. 38), der sich bei Breuker et al. für $q^2 = 0.4 \text{ GeV}^2/\text{c}^2$ zu 0.23 ± 0.23 ergibt⁷⁾. Der Wert des Fehlers wurde neu berechnet, da bei Breuker et al. der systematische Fehler in der Mittelung nicht voll berücksichtigt ist. - 120 -

Bonn, Ref. 7

🖡 dies Experiment

VII. Vergleich mit theoretischen Vorhersagen

VII.1 Multipolamplituden

In diesem Abschnitt werden aus den separierten longitudinalen und transversalen Wirkungsquerschnitten die zur Resonanz beitragenden Multipolamplituden berechnet bzw. quantitativ abgeschätzt. Wie aus Anhang I hervorgeht, ist es nur für die reine S_{11} -Welle möglich, die Amplituden ohne Zusatzannahmen zu bestimmen. Im Falle der Überlagerung einer S_{11} - und einer P_{11} -Welle wird in der Resonanz maximale Interferenz zwischen den beitragenden Amplituden angenommen. Es zeigt sich, daß beide Hypothesen über die zum np-Endzustand beitragenden Wellen im Rahmen der Fehler für die Multipolamplituden E_{ot} und S_{ot} übereinstimmende Ergebnisse liefern.

VII.I.I Reine S11-Welle

Bei Verwendung der Querschnitte aus Abschnitt VI.3.1. und der kinematischen Größen für den Kanal S_{11} + np ergeben sich aus den Gleichungen (A6) für die Multipolamplituden E_{0+} und S_{0+} dieses Kanals folgende Werte:

		Tabelle 33			
	$q^2 = 0.6$	GeV^2/c^2	$q^2 = 1.0 \text{ GeV}^2/c^2$		
W [GeV]	Е ₀₊ 2 [µb]	S ₀₊ ² [µb]	E ₀₊ 2 [μb]	S ₀₊ ² [µb]	
1,505	2.91+0.79	1.21+1.01	3.56+0.76	-0.67+0.88	
1.535	2.48+0.37	0.27+0.52	2.39+0.46	-0.18+0.57	
1.565	1.31±0.31	0.67+0.45	1.55+0.40	-0.18+0.48	

VII.1.2 Überlagerung von S11- und P11-Welle

Zur Berechnung von Tabelle 34 wurden die Querschnitte aus Abschnitt VI.3.2. bzw. aus Tabelle 25 sowie die Gleichungen (A14) mit den kinematischen Größen für den Kanal $S_{11} \rightarrow np$ verwendet. - 122 -

Darüberhinaus sind die Phasendifferenzen zwischen den Multipolen der S_{11}^{-} und der P_{11}^{-} Welle jeweils zu Null angenommen worden, außerdem wurde auf eine Trennung von A_1 und B_1 verzichtet (s. Abschnitt VI.3.2.) und stattdessen A_1 gleich dem Wert für $A_1^{+}\epsilon B_1^{-}$ bei $\epsilon = 0.9$ gesetzt, während $B_1^{-} = 0$ gesetzt wurde. Zwar bewirken diese beiden Annahmen gegen-läufige Effekte hinsichtlich der Größe der Amplituden, doch kann davon ausgegangen werden, daß die Einschränkung der Phasendifferenz einen wesentlich stärkeren Beitrag liefert als die Annahme $B_1^{-} = 0$. Die Resultate für E_{0+}^{-} und S_{0+}^{-} stellen damit Abschätzungen der oberen Grenzen sind. S_{1-}^{-} verschwindet identisch.

			Tabelle 3	4		
	q ²	= 0.6 GeV ² /	c ²	$q^2 = 1.0 \text{ GeV}^2/c^2$		
W [GeV]	Е ₀₊ ² [µb]	S ₀₊ 2 [µb]	$\left \begin{array}{c} M_{1} - \end{array} \right _{\min}^{2} \\ \left[\mu b \right] \end{array} \right $	E ₀₊ 2 [jub]	S ₀₊ 2 [µb]	M ₁₋ ² [µb]
1.505 1.535 1.565	3.01±0.79 2.45±0.38 1.30±0.32	1.09 <u>+</u> 1.01 0.37 <u>+</u> 0.54 0.69 <u>+</u> 0.47	0.01 <u>+</u> 0.01	3.85 <u>+</u> 0.80 2.31 <u>+</u> 0.54 1.64 <u>+</u> 0.45	-1.02 <u>+</u> 0.92 0.05 <u>+</u> 0.65 -0.28 <u>+</u> 0.54	0.03 <u>+</u> 0.02

Aus der Abschätzung von M_{1-min} kann der minimale Beitrag der $P_{11}(1470)$ -Resonanz zum totalen transversalen Querschnitt abgeschätzt werden. Unter Verwendung der zur Gl. (21) analogen Gleichung für eine P_{11} -Welle ergibt sich für $q^2 = 1.0 \text{ GeV}^2/c^2$ bei W = 1535 MeV:

 $\sigma_{\rm T}^{\rm tot, P_{11}} \ge 0.8\pm0.5~\mu b$.

Dieser Wert ist zu vergleichen mit dem totalen transversalen Einarmquerschnitt für $q^2 = 1.0 \text{ GeV}^2/c^2$ bei W = 1535 MeV von 69.3±5.8 µb (s. Abschnitt VI.1., Tabelle 18).

VII.1.3 Vergleich der Multipolamplituden mit den Ergebnissen von Multipolanalysen

In diesem Abschnitt werden die Ergebnisse der beiden vorangegangenen Abschnitte mit den Ergebnissen von Multipolanalysen verglichen, die Devenish und Lyth ⁴²⁾ sowie Gayler ⁴³⁾ mit der Methode von Devenish und Lyth durchgeführt haben. Das von Devenish und Lyth entwickelte Verfahren verläuft folgendermaßen: Zunächst werden Multipolamplituden als Darstellung der N^X-Resonanzformfaktoren gewählt und die q²-Abhängigkeit dieser Formfaktoren in Übereinstimmung mit ihrem bekannten Schwellenverhalten parametrisiert. Aus den so dargestellten Formfaktoren und Breit-Wigner-Verteilungen für die Endzustands-Wechselwirkungen wird der Imaginärteil der jeweiligen Multipolamplitude berechnet. Der Zusammenhang des Imaginärteils mit dem Realteil der Multipolamplitude wird hergestellt über Dispersionsrelationen bei festem Viererimpulsübertrag t auf das Nukleon. Schließlich werden die Parameter mittels einer Anpassung an Meßergebnisse bestimmt, wobei der Anschluß an die Ergebnisse einer Multipolanalyse für die Photoproduktion ⁴⁴

Um die so ermittelten Multipolamplituden mit den in den vorigen Abschnitten berechneten vergleichen zu können, müssen sie sich jeweils auf denselben Zerfallskanal der untersuchten Resonanz beziehen. Die in VII.I.I. und VII.I.2. berechneten Amplituden sind die für den np-Zerfallskanal; ihre Umrechnung auf jene für den $\pi^{\circ}p$ -Zerfallskanal erfolgt im Falle einer reinen S₁₁-Welle unter Verwendung der Gleichungen (16) und (A6):

$$\sigma_{T}^{\text{tot, SII}} = \sigma_{T}^{\text{tot, np}} \cdot \frac{1}{\delta_{S_{11}} \rightarrow np} = 4\pi A_{o}^{\eta p} \cdot \frac{1}{\delta_{S_{11}} \rightarrow \eta p}$$

$$= \sigma_{T}^{\text{tot, }\pi^{o}p} \cdot \frac{1}{\delta_{S_{11}} \rightarrow \pi^{o}p} = 4\pi A_{o}^{\pi^{o}p} \cdot \frac{1}{\delta_{S_{11}} \rightarrow \pi^{o}p}$$
(21)

und analog für $\sigma_{\rm L}^{\rm tot,~S}$ [].

Dabei ist å der relative Anteil des jeweiligen Zerfallskanals. Insgesamt ergibt sich:

$$\begin{vmatrix} \mathbf{E}_{o+}^{\pi^{O}\mathbf{p}} & 2 \\ \mathbf{E}_{o+}^{\pi^{O}\mathbf{p}} & 2 \end{vmatrix} = \frac{\begin{vmatrix} \mathbf{p}_{n} \\ \mathbf{p}_{n} \\ \mathbf{p}_{n} \end{vmatrix} \cdot \frac{\delta_{S_{11}} + \pi^{O}\mathbf{p}}{\delta_{S_{11}} + \pi^{P}\mathbf{p}} \cdot \left| \mathbf{E}_{o+}^{\pi^{D}\mathbf{p}} \right|^{2} \\ \begin{vmatrix} \mathbf{s}_{o+}^{\pi^{O}\mathbf{p}} \\ \mathbf{p}_{n} \\ \mathbf{p}_{n} \end{vmatrix} \cdot \frac{\delta_{S_{11}} + \pi^{O}\mathbf{p}}{\delta_{S_{11}} + \pi^{P}\mathbf{p}} \cdot \left| \mathbf{s}_{o+}^{\pi^{D}\mathbf{p}} \right|^{2} \\ \end{vmatrix}$$
(22)

Die entsprechenden Beziehungen für eine P11-Welle lauten:

$$\begin{vmatrix} \aleph_{1-}^{\pi^{O}p} \end{vmatrix}^{2} = \frac{\begin{vmatrix} \stackrel{\rightarrow \pi}{p_{1}} \\ \stackrel{\rightarrow \pi}{p_{\pi^{O}}} \end{vmatrix} \cdot \frac{\delta_{S_{11}} \stackrel{\rightarrow \pi^{O}p}{s_{11}} \cdot \eta_{p}}{\delta_{S_{11}} \stackrel{\rightarrow \pi^{O}p}{s_{11}}} \cdot \begin{vmatrix} \aleph_{1-}^{\eta_{D}p} \end{vmatrix}^{2}$$

$$(23)$$

$$\begin{vmatrix} S_{1-}^{\pi^{O}p} \end{vmatrix}^{2} = \frac{\begin{vmatrix} \stackrel{\rightarrow \pi}{p_{1}} \\ \stackrel{\rightarrow \pi}{p_{\pi^{O}}} \end{vmatrix} \cdot \frac{\delta_{S_{11}} \stackrel{\rightarrow \pi^{O}p}{s_{11}} \cdot \eta_{p}}{\delta_{S_{11}} \stackrel{\rightarrow \eta_{D}}{s_{11}}} \cdot \begin{vmatrix} S_{1-}^{\eta_{D}p} \end{vmatrix}^{2}$$

In der folgenden Tabelle sind den aus diesem Experiment bei W = 1.535 GeV ermittelten Beträgen der Multipolamplituden diejenigen aus den Multipolanalysen von Devenish und Lyth ⁴²⁾ sowie von Gayler ^{43, 45)} gegenübergestellt:

warmen I an a star I a

Tabelle 35

Multipol~	dies Exp	periment	Devenish	Gay	ler
amplitude	Hypothese:		und Lyth		
	reine S _{II}	S ₁₁ und P ₁₁		Fit	Fit 2
$q^2 = 0.6 \ GeV^2/c$	2				
$\left E_{O+}^{\pi^{O}p} \right ^{2} $ [µb]	0.15 <u>+</u> 0.02	0.15 <u>+</u> 0.02 [*]	0.15		
$\left S_{0^{+}}^{\pi^{0}p} \right ^{2} \qquad \left[\mu b \right]$	0.02+0.03	0.02 <u>+</u> 0.03 [*]	0.02-0.03		
$\left M_{1-}^{\pi^{o}p} \right _{\min}^{2} \left[\mu b \right]$		0.01+0.01	0.00 ^{##}		
$q^2 = 1.0 \text{ GeV}^2/c$	2				
$\left E_{o+}^{\pi o} \right ^2 $ [µb]	0.15+0.03	0.14 <u>+</u> 0.03 [*]	0.10	0.14	0.16
$\left S_{0+}^{\pi^{0}p} \right ^{2}$ [µb]	-0.01+0.03	0.00 <u>+</u> 0.04 [#]	0.01	0.00	0.03
$\left M_{1-}^{\pi^{O}p} \right _{\min}^{2} \left[\mu b \right]$		0.02+0.01	0.00 ^{**}	0.04 ^{**}	0.00 ^{**}
* Die Werte si	ind unter die	ser Hypothese	Abschätzunge	n der obe	ren Gre

W Die Werte sind unter dieser Hypothese Abschätzungen der oberen Grenzen, sie geben $\left| E_{0+}^{\pi^{O}p} \right|_{\max}^{2}$ bzw. $\left| S_{0+}^{\pi^{O}p} \right|_{\max}^{2}$ wieder. WW Die Werte gelten für $\left| M_{1-}^{\pi^{O}p} \right|^{2}$ bei W = 1.434 GeV. - 125 -

Die weitgehende Übereinstimmung zwischen den Werten für $|\mathbf{E}_{o+}|$ darf nicht überbewertet werden, weil darin lediglich zum Ausdruck kommt, daß die Ergebnisse dieses Experiments diejenigen der früheren Messungen ²⁻⁴) im wesentlichen wiedergeben. Den Anpassungen von Devenish und Lyth sowie von Gayler liegen nämlich unter anderem jene Resultate zugrunde. Unterschiede zwischen den den einzelnen Anpassungen zugrunde gelegten Daten sind bei Gayler ⁴³ beschrieben.

Aufgrund der experimentellen Werte für $|M_{1-}|$ kann auch weiterhin keine eindeutige Aussage über einen Beitrag der P₁₁(1470)-Resonanz getroffen werden: Während die untere Grenze von M₁₋ für $q^2 = 0.6 \text{ GeV}^2/c^2$ mit 0 verträglich ist, liegt sie für $q^2 = 1.0 \text{ GeV}^2/c^2$ um 1.5 Standardabweichungen darüber. Daraus resultiert ein Beitrag der P₁₁-Welle von mehr als 1 % zum totalen transversalen Einarmquerschnitt für $q^2 = 1.0 \text{ GeV}^2/c^2$ und W = 1535 MeV, verglichen mit einem Beitrag der S₁₁-Welle von etwa 25 % für dieselben Werte von q^2 und W.

VII.2 Quarkmodellvorhersagen über den Verlauf des totalen

S11-Elektroproduktionsquerschnitts und von RS11

Für die Abhängigkeit des totalen Elektroproduktionsquerschnitts der Resonanzen S₁₁(1535) und D₁₃(1520) von q² gibt es Modellrechnungen von Ravndal ⁴⁶⁾ und Lipes ⁴⁷⁾, die das relativistische symmetrische Quarkmodell von Feymann, Kislinger und Ravndal ⁴⁸⁾ auf die Elektroproduktion erweitert haben. Die Ergebnisse dieser Rechnungen für R_{S11}, das Verhältnis vom totalen Iongitudinalen zum totalen trausversalen Elektroproduktionsquerschnitt der S₁₁(1535)-Resonanz, stimmen zwar mit den Ergebnissen dieses Experiments im Rahmen der Fehler überein (s. Abb. 38), doch eine Reihe anderer Resultate dieser Modelle widersprechen experimentellen Ergebnissen ⁴⁹⁾.

Während den bisher erwähnten Quarkmodellen die SU(6)-Symmetrie zugrunde liegt, geht ein allgemeinerer Ansatz von der SU(6)_W-Symmetrie aus, in der an die Stelle des Quark-Spins der Lorentzinvariante W-Spin des Quarks als gute Quantenzahl tritt⁵⁰. Außerdem benutzt dieser Ansatz die Melosh-Transformation, die die Verbindung herstellt zwischen den Quarks als Konstituenten der Hadronen einerseits und als Modell für die Transformationseigenschaften der Ströme in der Stromalgebra andererseits⁵⁰. Die Melosh-Transformation liefert als allgemeine Struktur des Operators des elektromagnetischen Stromes im Konstituentenraum einen aus vier Termen bestehenden Ausdruck, die

- (i) die Anregung des Bahndrehimpulses eines Quarks,
- (ii) die Anregung des W-Spin-Flips eines Quarks,
- (iii) die gleichzeitige Anregung von Bahndrehimpuls und W-Spin eines Quarks bei Änderung der z-Komponente des Bahndrehimpulses um eine Einheit und
- (iv) die gleichzeitige Anregung von Bahndrehimpuls und W-Spin eines Quarks bei Änderung der z-Komponente des Bahndrehimpulses um zwei Einheiten

bewirken 51).

Während in die zitierten Quarkmodelle $^{46-48)}$ eine mögliche Spin-Bahn-Anregung der Quarks nicht einbezogen worden ist, berücksichtigt Foster $^{52)}$ diese Anregung, indem er die Multipolamplituden der S₁₁(1535)- und der D₁₃(1520)-Resonanz sowohl für Proton- als auch für Neutrontargets als Funktionen der Amplituden der ersten drei dieser Anregungen angibt. (Die vierte Amplitude kann vernachlässigt werden, da sich der Bahndrehimpuls der Quarks beim Übergang von Nukleon zur S₁₁(1535)- bzw. D₁₃(1520)-Resonanz nur von O auf I erhöht.) Aus den experimentell bestimmten Multipolampli-

tuden E_{0+} , E_{2-} und M_{2-} für Protontargets berechnet Foster dann die drei Amplituden der Quarkanregungen für jeweils drei Werte von q² und aus ihnen wiederum die Multipolamplituden für Neutrontargets. Der Vergleich dieser Vorhersagen mit den Ergebnissen eines Elektroproduktionsexperiments von geladenen Pionen an Deuterium ⁵³⁾ bei q² = 0.5 GeV²/c² zeigt eine nur grobe Übereinstimmung. Um genauere Aussagen über die Brauchbarkeit dieses Ansatzes machen zu können, sind daher noch weitere Messungen zur Elektroproduktion der S₁₁(1535)und der D₁₃(1520)-Resonanz besonders an Neutrontargets erforderlich.

Sollten derartige Experimente diesen Ansatz bestätigen, so wäre damit auch die Fragestellung, die diesem Experiment zugrunde lag, aufgelöst: Der Verlauf des totalen Elektroproduktionsquerschnitts der S₁₁(1535)-Resonanz würde durch einen der SU(6)_W-Symmetrie entsprechenden Ansatz wiedergegeben, ohne daß auf einen longitudinalen Anteil am totalen Wirkungsquerschnitt zurückgegriffen werden müßte – in Übereinstimmung mit den Ergebnissen dieses Experiments. Allerdings hätte dieser Ansatz nur die Fragestellung verschoben: es bliebe ein Quarkmodell zu finden, daß die Abhängigkeit der Quarkanregungsamplituden als Funktion von q² beschreibt.

Anhang 1

Berechnung der Wirkungsquerschnitte σ_T , σ_L , σ_p und σ_I als Funktion der Multipolamplituden E_{1+} , M_{1+} und S_{1+}

Analog zur Photoproduktion, wo die Übergangsamplitude in vier unabhängige CMS-Amplituden F_i zerlegt wird, die dann nach Bahndrehimpulszuständen entwickelt werden ¹⁶⁾, geht man in der Elektroproduktion vor ¹⁷⁾. Allerdings führt hier die Existenz longitudinal polarisierter Photonen zum Auftreten zweier zusätzlicher CMS-Amplituden F_5 und F_6 . Man erhält:

$$F_{1} = \sum_{\substack{n=0\\ m}}^{\infty} \left[(1M_{1+} + E_{1+}) P'_{1+1} (x) + ((1+1) M_{1-} + E_{1-}) P'_{1-1} (x) \right] ,$$

$$F_{2} = \sum_{\substack{n=0\\ 1=0}}^{\infty} \left[(1+1) M_{1+} + 1M_{1-} \right] P'_{1} (x) ,$$

$$F_{3} = \sum_{\substack{n=0\\ 1=0}}^{\infty} \left[(E_{1+} - M_{1+}) P''_{1+1} (x) + (E_{1-} + M_{1-}) P''_{1-1} (x) \right] ,$$

$$F_{4} = \sum_{\substack{n=0\\ 1=0}}^{\infty} (M_{1+} - E_{1+} - M_{1-} - E_{1-}) P''_{1} (x) ,$$

$$F_{5} = -F_{1} - xF_{3} + \sum_{\substack{n=0\\ 1=0}}^{\infty} \left[(1+1) L_{1+} P'_{1+1} (x) - 1L_{1-}P'_{1-1} (x) \right]$$
und
$$F_{6} = -xF_{4} + \sum_{\substack{n=0\\ 1=0}}^{\infty} (1L_{1-} - (1+1) L_{1+}) P'_{1} (x)$$

wobei $P_1(x)$ die Lengendrepolynome und $P'_1(x)$ ihre Ableitungen sind sowie $x = \cos\theta_6^{\frac{\pi}{6}}$ gilt.

Die longitudinalen Amplituden hängen mit den skalaren Multipolamplituden S₁₊ über die Beziehung

$$S_{1\pm} = \frac{\left| \frac{d}{dx} \right|}{q_{0}^{*}} L_{1\pm}$$
(A2)

zusammen ¹⁸⁾.

Die in Abschnitt II.2., Gleichung 10 benutzten Querschnitte $\sigma_{\rm T}$, $\sigma_{\rm L}$, $\sigma_{\rm P}$ und $\sigma_{\rm I}$ können als Funktion der Amplituden F_i in folgender Weise dargestellt werden ¹⁸:

$$\begin{split} \sigma_{\rm T} &= \frac{\left| \dot{\mathbf{p}}_{6}^{\,\,\text{m}} \right|^{\,\,\text{W}}}{m_{\rm p}^{\,\,\text{K}} \,\,\text{K}} \,\, \left[\left| \mathbf{F}_{1} \right|^{\,\,2} + \left| \mathbf{F}_{2} \right|^{\,\,2} - 2\cos\theta_{6}^{\,\,\text{m}} \cdot \operatorname{Re}\left(\mathbf{F}_{1} \mathbf{F}_{2}^{\,\,\text{m}}\right) \right] + \sigma_{\rm p}^{\,\,\text{m}} \sin^{2}\theta_{6}^{\,\,\text{m}} \\ \sigma_{\rm L} &= \frac{\left| \dot{\mathbf{p}}_{6}^{\,\,\text{m}} \right|^{\,\,\text{W}}}{m_{\rm p}^{\,\,\text{K}} \,\,\text{K}} \,\, \left(\frac{q^{2}}{q_{0}^{\,\,\text{m}} \, 2} \,\, \left[\left| \mathbf{F}_{5}^{\,\,\text{s}} \right|^{\,\,2} + \left| \mathbf{F}_{6}^{\,\,\text{s}} \right|^{\,\,2} + 2\,\cos\theta_{6}^{\,\,\text{m}} \cdot \operatorname{Re}\left(\mathbf{F}_{5}^{\,\,\text{s}} \mathbf{F}_{6}^{\,\,\text{m}}\right) \right] \\ \sigma_{\rm p} &= \frac{\left| \dot{\mathbf{p}}_{6}^{\,\,\text{m}} \right|^{\,\,\text{W}}}{m_{\rm p}^{\,\,\text{K}} \,\,\text{K}} \,\, \left[\frac{1}{2} \,\, \left| \mathbf{F}_{3} \right|^{\,\,2} + \frac{1}{2} \,\, \left| \mathbf{F}_{4} \right|^{\,\,2} + \operatorname{Re}\left(\mathbf{F}_{2}\mathbf{F}_{3}^{\,\,\text{m}} + \mathbf{F}_{1}\mathbf{F}_{4}^{\,\,\text{m}} + \mathbf{F}_{3}\mathbf{F}_{4}^{\,\,\text{m}} \cos\theta_{6}^{\,\,\text{m}} \right) \right] \quad (A3) \\ \sigma_{\rm I} &= -\frac{\left| \dot{\mathbf{p}}_{6}^{\,\,\text{m}} \right|^{\,\,\text{W}}}{m_{\rm p}^{\,\,\text{K}} \,\,\,} \sqrt{\frac{2 \cdot q^{2}}{q_{0}^{\,\,\text{m}} \, 2}} \,\,\cdot \,\,\operatorname{Re}\left[\left(\mathbf{F}_{1}^{\,\,\text{m}} + \mathbf{F}_{3}^{\,\,\,\cos\theta_{6}^{\,\,\text{m}} + \mathbf{F}_{4}^{\,\,\text{m}} \right) \mathbf{F}_{6}^{\,\,\,\text{m}} \,\,\cdot \,\,\\ \left. + \left(\mathbf{F}_{2}^{\,\,\text{m}} + \mathbf{F}_{3}^{\,\,\text{m}} + \mathbf{G}_{6}^{\,\,\,\text{m}} \right) \,\,, \end{split}$$

dabei gilt:

$$F_5' = F_1 + F_3 \cos\theta_6^{\pi} + F_5$$

und $F_6' = F_4 \cos\theta_6^{\pi} + F_6$. (A4)

Uber die Gleichungen (A1) und (A3) werden dann die differentiellen Wirkungsquerschnitte $\sigma_{\rm T}$, $\sigma_{\rm L}$, $\sigma_{\rm p}$ und $\sigma_{\rm I}$ mit den Multipolamplituden $E_{1\pm}$, $M_{1\pm}$ und $S_{1\pm}$ verknüpft.

a. Reine S11-Welle (1=0, j=1+1/2)

Aus Gleichung (Al) ergibt sich:

$$F_{1} = E_{0+}$$

 $F_{2} = F_{3} = F_{4} = 0$
 $F_{5}^{*} = L_{0+}$
 $F_{6}^{*} = 0$

(A5)

und damit aus den Gleichungen (A2) und (A3):

$$\sigma_{\rm T} = \frac{\left|\frac{\dot{p}_{\rm f}}{m_{\rm p}} \cdot \mathbf{K}\right|^2}{m_{\rm p} \cdot \mathbf{K}} \cdot \left|\mathbf{E}_{\rm o+}\right|^2 \equiv \Lambda_{\rm o}$$

$$\sigma_{\rm L} = \left|\frac{\dot{p}_{\rm f}}{m_{\rm p}} \cdot \mathbf{K}\right|^2 \cdot \left|\frac{\mathbf{q}_{\rm o+}}{\mathbf{q}_{\rm f}}\right|^2 \cdot \left|\mathbf{S}_{\rm o+}\right|^2 \equiv B_{\rm o} \qquad (A6)$$

$$\sigma_{\rm p} = \sigma_{\rm L} = 0.$$

Der differentielle Wirkungsquerschnitt hat die Form:

$$\frac{d^{2}\sigma}{d\Omega^{**}_{6}} = \sigma_{T} + \varepsilon\sigma_{L} = \Lambda_{o} + \varepsilon B_{o}.$$
 (A7)

b. Reine P₁₁-Welle (1=1, j=1-1/2)

Aus Gleichung (Al) ergibt sich:

$$F_1 = 0$$

 $F_2 = M_{1-}$
 $F_3 = F_4 = F_5' = 0$
 $F_6' = L_{1-}$
(A8)

und damit aus den Gleichungen (A2) und (A3):

$$\sigma_{\mathrm{T}} = \frac{\left| \stackrel{\rightarrow \pi}{\mathbf{p}_{6}} \right| \cdot \mathbf{W}}{m_{\mathrm{p}} \cdot \mathbf{K}} \cdot \left| \stackrel{\mathsf{M}}{\mathbf{1}}_{-} \right|^{2} \equiv \Lambda_{\mathrm{o}}$$

$$\sigma_{\mathrm{L}} = \left| \stackrel{\rightarrow \pi}{m_{\mathrm{p}}} \right| \cdot \mathbf{W} \cdot \mathbf{K} \cdot \frac{\mathbf{q}^{2}}{\left| \stackrel{\rightarrow}{\mathbf{q}} \right|^{2}} \cdot \left| \mathbf{S}_{1-} \right|^{2} \equiv B_{\mathrm{o}} \quad (A9)$$

$$\sigma_{\mathrm{p}} = \sigma_{\mathrm{L}} = 0.$$

Der differentielle Wirkungsquerschnitt hat die Form:

$$\frac{d^2\sigma}{d\Omega_6^{\star}} = \sigma_T + \epsilon\sigma_L = \Lambda_0 + \epsilon_B_0.$$
(A10)

c. Uberlagerung von S_{11}^{-} (1=0, j=1+1/2) und P_{11}^{-} Welle (1=1, j=1-1/2)

Aus Gleichung (Al) ergibt sich:

$$F_{1} = E_{0} + F_{2} = M_{1} - F_{3} = F_{4} = 0$$

$$F_{5}^{*} = L_{0} + F_{6}^{*} = L_{1} - F_{0}^{*} + F_{0}^{$$

und damit aus den Gleichungen (A2) und (A3):

$$\sigma_{\mathrm{T}} = \frac{\left| \frac{\partial \mathbf{x}}{\partial p}^{\dagger} \cdot \mathbf{W} \right|}{m_{\mathrm{p}} \cdot \mathbf{K}} \cdot \left[\left| \mathbf{E}_{0+} \right|^{2} + \left| \mathbf{M}_{1-} \right|^{2} - 2 \operatorname{Re} \left(\mathbf{E}_{0+} \cdot \mathbf{M}_{1-}^{\star} \right) \cos \theta_{\mathrm{f}}^{\star} \right]$$

$$\equiv \mathbf{A}_{0} + \mathbf{A}_{1} \cos \theta_{\mathrm{f}}^{\star}$$

$$\sigma_{\mathrm{L}} = \frac{\left| \frac{\partial \mathbf{x}}{\partial p} \right|^{2} \cdot \mathbf{W}}{m_{\mathrm{p}} \cdot \mathbf{K}} \cdot \frac{q^{2}}{\left| \frac{\partial \mathbf{x}}{\partial \mathbf{q}} \right|^{2}} \left[\left| \mathbf{S}_{0+} \right|^{2} + \left| \mathbf{S}_{1-} \right|^{2} + 2 \operatorname{Re} \left(\mathbf{S}_{0+} \cdot \mathbf{S}_{1-}^{\star} \right) \cos \theta_{\mathrm{f}}^{\star} \right]$$

$$\equiv \mathbf{B}_{0} + \mathbf{B}_{1} \cdot \cos \theta_{\mathrm{f}}^{\star} \qquad (A12)$$

$$\sigma_{\mathbf{I}} = -\frac{\begin{vmatrix} \mathbf{p}_{6}^{*} \\ \mathbf{w}_{p} & \mathbf{K} \end{vmatrix}}{\mathbf{m}_{p} \cdot \mathbf{K}} \cdot \sqrt{\frac{2 \cdot q^{2}}{\frac{1}{q^{*}} 2}} \quad \cdot \text{ Re } (\mathbf{E}_{0^{+}} \cdot \mathbf{S}_{1^{-}}^{*} + \mathbf{M}_{1^{-}} \cdot \mathbf{S}_{0^{+}}^{*})$$

Der differentielle Wirkungsquerschnitt hat die Form:

$$\frac{d^{2}\sigma}{d\Omega_{6}^{\pi}} = \sigma_{T} + \varepsilon\sigma_{L} + \sqrt{2\varepsilon(\varepsilon+1)}^{\dagger}\sigma_{I} \cdot \sin\theta_{6}^{\pi} \cdot \cos\phi \qquad (A13)$$
$$= \Lambda_{o} + \varepsilon B_{o} + (\Lambda_{I} + \varepsilon B_{I}) \cos\theta_{6}^{\pi} + \sqrt{2\varepsilon(\varepsilon+1)}^{\dagger} D_{o} \sin\theta_{6}^{\pi} \cos\phi.$$

Aus den Gleichungen (A12) ergibt sich als Zusammenhang zwischen den Multipolamplituden E_{o+} , M_{1-} , S_{o+} und S_{1-} einerseits und den Parametern A_o , A_1 , B_o und B_1 andererseits:

$$\begin{split} \left| \mathbf{E}_{o+} \right|^{2} &= \frac{\mathbf{m}_{p} \cdot \mathbf{K}}{2 \cdot \left| \vec{p}_{6}^{*} \right| \cdot \mathbf{W}} \cdot \left[\mathbf{A}_{o}^{+} \left(\mathbf{A}_{o}^{2} - \frac{\mathbf{A}_{1}^{2}}{\cos^{2} \left(\phi_{\mathbf{E}_{o}^{+}}^{-\phi} \mathbf{M}_{1^{-}}^{-} \right)} \right)^{1/2} \right] \\ \left| \mathbf{M}_{1^{-}} \right|^{2} &= \frac{\mathbf{m}_{p} \cdot \mathbf{K}}{2 \cdot \left| \vec{p}_{6}^{+} \right| \cdot \mathbf{W}} \cdot \left[\mathbf{A}_{o}^{-} \left(\mathbf{A}_{o}^{2} - \frac{\mathbf{A}_{1}^{2}}{\cos^{2} \left(\phi_{\mathbf{E}_{o}^{+}}^{-\phi} \mathbf{M}_{1^{-}}^{-} \right)} \right)^{1/2} \right] \\ \left| \mathbf{S}_{o4} \right|^{2} &= \frac{\mathbf{m}_{p} \cdot \mathbf{K}}{2 \cdot \left| \vec{p}_{6}^{+} \right| \cdot \mathbf{W}} \cdot \left| \frac{\mathbf{P}_{q}^{*} \mathbf{P}_{2}^{2}}{\mathbf{q}^{2}} \cdot \left[\mathbf{B}_{o}^{+} \left(\mathbf{B}_{o}^{2} - \frac{\mathbf{B}_{1}^{2}}{\cos^{2} \left(\phi_{\mathbf{S}_{o}^{+}}^{-\phi} \mathbf{S}_{1^{-}}^{-} \right)} \right)^{1/2} \right] \\ \left| \mathbf{S}_{1^{-}} \right|^{2} &= \frac{\mathbf{m}_{p} \cdot \mathbf{K}}{2 \cdot \left| \vec{p}_{6}^{+} \right| \cdot \mathbf{W}} \cdot \left| \frac{\mathbf{P}_{q}^{*} \mathbf{P}_{2}^{2}}{\mathbf{q}^{2}} \cdot \left[\mathbf{B}_{o}^{-} \left(\mathbf{B}_{o}^{2} - \frac{\mathbf{B}_{1}^{2}}{\cos^{2} \left(\phi_{\mathbf{S}_{o}^{+}}^{-\phi} \mathbf{S}_{1^{-}}^{-} \right)} \right)^{1/2} \right] \\ \left| \mathbf{S}_{1^{-}} \right|^{2} &= \frac{\mathbf{m}_{p} \cdot \mathbf{K}}{2 \cdot \left| \vec{p}_{6}^{+} \right| \cdot \mathbf{W}} \cdot \left| \frac{\mathbf{P}_{q}^{*} \mathbf{P}_{1}^{2}}{\mathbf{q}^{2}} \cdot \left[\mathbf{B}_{o}^{-} \left(\mathbf{B}_{o}^{2} - \frac{\mathbf{B}_{1}^{2}}{\cos^{2} \left(\phi_{\mathbf{S}_{o}^{+}}^{-\phi} \mathbf{S}_{1^{-}}^{-} \right)} \right] \right] \end{aligned}$$

Hierbei sind die komplexen Amplituden dargestellt gemäß: $E_{o+} = |E_{o+}| \cdot \exp(i\phi_{E_{o+}})$. Die Wahl der Vorzeichen der Wurzeln erfolgt so, daß sich für $|E_{o+}|$ und $|S_{o+}|$ gegenüber $|M_{1-}|$ und $|S_{1-}|$ jeweils der größere Wert ergibt.

d. Uberlagerung von S_{11}^{-} (1=0, j=1+1/2) und D_{13}^{-Welle} (1=2, j=1-1/2)

Aus Gleichung (Al) ergibt sich:

= D_o.

$$F_{1} = E_{0+} + E_{2-} + 3M_{2-}$$

$$F_{2} = 6M_{2-} \cos\theta_{6}^{*}$$

$$F_{3} = 0$$

$$F_{4} = -3 (E_{2-} + M_{2-})$$

$$F_{5}^{*} = L_{0+} - 2L_{2-}$$

$$F_{6}^{*} = 6L_{2-} \cdot \cos\theta_{6}^{*}$$
(A15)

und damit aus den Gleichungen (A2) und (A3):

Der differentielle Wirkungsquerschnitt hat die Form:

$$\frac{d^{2}\sigma}{d\Omega_{6}^{\pi}} = \sigma_{T} + \varepsilon\sigma_{L} + \varepsilon\sigma_{p} \sin^{2}\theta_{6}^{\pi} \cos 2\phi + \sqrt{2\varepsilon(\varepsilon+1)} \sigma_{I} \sin\theta_{6}^{\pi} \cos\phi$$

$$= \Lambda_{o} + \varepsilon B_{o} + (\Lambda_{2} + \varepsilon B_{2}) \cos^{2}\theta_{6}^{\pi} + \varepsilon C_{o} \sin^{2}\theta_{6}^{\pi} \cos 2\phi + (\Lambda_{17})$$

$$+ \sqrt{2\varepsilon(\varepsilon+1)} D_{I} \cos\theta_{6}^{\pi} \cdot \sin\theta_{6}^{\pi} \cdot \cos\phi \quad .$$
Anhang 2

Fehlerrechnungsformeln für die longitudinalen und transversalen Wirkungsquerschnitte, σ_L^{tot} und σ_T^{tot} sowie ihr Verhältnis R

Zur Berechnung der Fehler der longitudinalen und transversalen Wirkungsquerschnitte, σ_L und σ_T sowie ihres Verhältnisses R, kann das Gaußsche Fehlerfortpflanzungsgesetz nicht angewendet werden, da die Fehler nicht klein sind gegenüber den betrachteten Größen. Stattdessen wird im folgenden ein allgemeinerer Ansatz benutzt. Da die drei interessierenden Größen sich jeweils aus zwei Meßwerten berechnen, werden die Formeln der Fehlerrechnung nur für diesen Fall abgeleitet.

Es seien

 $\overline{S_1}$ und $\overline{S_2}$ die Erwartungswerte der Messungen, S, und S₂ die Meßwerte und F1 und F2 die Fehler der Messungen (eine Standard-Abweichung).

Die Wahrscheinlichkeit dafür, daß sowohl S1 als auch S2 gemessen wird, ergibt sich dann zu:

$$W = \exp\left[-\frac{1}{2}\left(\frac{S_{1}-\overline{S_{1}}}{F_{1}}\right)^{2}\right] \cdot \exp\left[-\frac{1}{2}\left(\frac{S_{2}-\overline{S_{2}}}{F_{2}}\right)^{2}\right]$$

$$= \exp\left[-\frac{1}{2}\left(\frac{S_{1}-\overline{S_{1}}}{F_{1}}\right)^{2} + \left(\frac{S_{2}-\overline{S_{2}}}{F_{2}}\right)^{2}\right]\right] , \qquad (A18)$$

wobei die Meßwerte normalverteilt angenommen werden. Hieraus ergibt sich als Bedingung für eine Standard-Abweichung von S, und S, zusammen:

$$\left(\frac{S_1 - \overline{S_1}}{F_1}\right)^2 + \left(\frac{S_2 - \overline{S_2}}{F_2}\right)^2 = 1$$
(A19)

Für die weitere Rechnung wird folgende Ersetzung vorgenommen:

$$\frac{S_1 - \overline{S_1}}{F_1} = x \quad \text{und}$$

$$\frac{S_2 - \overline{S_2}}{F_2} = y$$
(A20)

Wird jeweils ein bestimmter Wert von W in Gleichung (A18) betrachtet, so gilt

$$x = a \cdot \cos\phi$$

 $y = a \cdot \sin\phi$

und

insbesondere folgt aus Gleichung (A19), den Fall einer Standard-Abweichung von S1 und S2 zusammen:

,

$$x = \cos\phi$$

 $y = \sin\phi$ (A21)

Sei G die von den Meßwerten S₁ und S₂ abhängende Größe, deren extremale Werte gesucht sind unter der Bedingung, daß die zugehörigen Meßwerte von S1 und S2 zusammen gerade eine Standard-Abweichung von den Erwartungswerten entfernt sind. Hierfür gilt die Bedingungsgleichung:

$$0 = \frac{\partial G}{\partial \phi} = \frac{\partial G}{\partial x} \cdot \frac{\partial x}{\partial \phi} + \frac{\partial G}{\partial y} \cdot \frac{\partial y}{\partial \phi}$$
$$= -\frac{\partial G}{\partial x} \cdot \sin\phi + \frac{\partial G}{\partial y} \cdot \cos\phi$$

oder: $\tan\phi = \frac{\left(\frac{\partial G}{\partial y}\right)}{\left(\frac{\partial G}{\partial y}\right)}$ (A22)

Aus dem in Gleichung (A22) bestimmten Wert von ϕ lassen sich mit Hilfe der Gleichungen (A20) und (A21) jene Werte von S₁ und S₂ berechnen, die die extremalen Werte von G ergeben.

a. Fehler des longitudinalen Wirkungsquerschnitts, o

Der longitudinale Wirkungsquerschnitt berechnet sich gemäß Gleichung (12) zu:

$$\sigma_{\rm L}^{\rm tot} = \frac{{\rm S}_2^{-{\rm S}_1}}{\varepsilon_2^{-\varepsilon_1}} , \label{eq:scalar}$$

somit gilt:

$$\frac{\partial \sigma_{L}^{\text{tot}}}{\partial x} = -F_{1}$$

und

$$\frac{\partial \sigma_{L}^{\text{tot}}}{\partial y} = F_2$$

und damit nimmt Gleichung (A22) die Form

$$\tan\phi_{\sigma_{L}}^{tot} = -\frac{F_{2}}{F_{1}}$$

an. Für S, und S, folgt daraus dann:

$$S_{1} = \overline{S_{1}} + F_{1} \cdot \cos \left[\arctan \left(-\frac{F_{2}}{F_{1}} \right) \right]$$

$$S_{2} = \overline{S_{2}} + F_{2} \cdot \sin \left[\arctan \left(-\frac{F_{2}}{F_{1}} \right) \right]$$

b. Fehler des transversalen Wirkungsquerschnitts, $\sigma_{\mathrm{T}}^{\mathrm{tot}}$

Der transversale Wirkungsquerschnitt berechnet sich gemäß Gleichung (13) zu:

2

$$\sigma_{\rm T}^{\rm tot} = \frac{\varepsilon_2 \cdot s_1 - \varepsilon_1 \cdot s_2}{\varepsilon_2 - \varepsilon_1} ,$$

somit gilt:

$$\frac{\partial \sigma_{\mathbf{T}}^{\text{tot}}}{\partial \mathbf{x}} = \varepsilon_2 \cdot \mathbf{F}_1$$

und

$$\frac{\frac{\partial \sigma_{T}^{\text{tot}}}{\partial y} = -\varepsilon_{1} F_{2}$$

und damit nimmt Gleichung (A22) die Form

$$\tan \phi_{\sigma_{T}}^{tot} = -\frac{\varepsilon_{1}}{\varepsilon_{2}} \cdot \frac{F_{2}}{F_{1}}$$

an. Für S1 und S2 folgt daraus dann:

$S_1 = \overline{S_1} + F_1 \cos \theta$	$\left[\arctan\left(-\frac{\varepsilon_1}{\varepsilon_2}\cdot\frac{F_2}{F_1}\right)\right]$
$S_2 = \overline{S_2} + F_1 \cos \theta$	$\left[\arctan\left(-\frac{\varepsilon_1}{\varepsilon_2}\cdot\frac{F_2}{F_1}\right)\right]$

c. Fehler des Verhältnisses von longitudinalem zu transversalem Wirkungsquerschnitt, R

Das Verhältnis von longitudinalem zu transversalen Wirkungsquerschnitt berechnet sich gemäß Gleichung (15) zu:

,

$$R = \frac{S_2 - S_1}{\varepsilon_2 S_1 - \varepsilon_1 S_2}$$

somit gilt:

$$\frac{\partial \mathbf{R}}{\partial \mathbf{x}} = -\frac{(\varepsilon_2 - \varepsilon_1) \mathbf{S}_2}{(\varepsilon_2 \mathbf{S}_1 - \varepsilon_1 \mathbf{S}_2)^2} \cdot \mathbf{F}_1$$

und

$$\frac{\partial R}{\partial y} = \frac{(\epsilon_2 - \epsilon_1) S_1}{(\epsilon_2 S_1 - \epsilon_1 S_2)^2} \cdot F_2$$

und damit nimmt Gleichung (A22) die Form

 $\tan\phi_{R} = -\frac{S_{1}}{S_{2}} \cdot \frac{F_{2}}{F_{1}}$

an. Für S1 und S2 folgt daraus dann:

$$s_{1} = \overline{s_{1}} + \frac{F_{1}^{2}}{F_{1}^{2} \overline{s_{2}}^{2} + F_{2}^{2} \overline{s_{1}}^{2}} \left[\overline{s_{2}} (F_{1}^{2} \overline{s_{2}}^{2} + F_{2}^{2} \overline{s_{1}}^{2} - F_{1}^{2} F_{2}^{2})^{-1/2} - F_{2}^{2} \overline{s_{1}} \right]$$

$$s_{2} = \overline{s_{2}} + \frac{F_{2}^{2}}{F_{1}^{2} \overline{s_{2}}^{2} + F_{2}^{2} \overline{s_{1}}^{2}} \left[\overline{s_{1}} (F_{1}^{2} \overline{s_{2}}^{2} + F_{2}^{2} \overline{s_{1}}^{2} - F_{1}^{2} F_{2}^{2})^{-1/2} - F_{1}^{2} \overline{s_{2}} \right]$$

- Literaturverzeichnis
 - vgl. z. B. G. v. Gehlen; Proceedings of the 6th International Symposium on Electron and Photon Interactions at High Energies, Bonn (1973) 117
 - P. S. Kummer, E. Ashburner, F. Foster, G. Hughes, R. Siddle, J. Allison, B. Dickinson, E. Evangelides, M. Ibbotson, R. S. Lawson, R. S. Meaburn, H. E. Montgomery, W. J. Shuttleworth; Phys. Rev. Letters 30 (1973) 873
 - 3. U. Beck, K. H. Becks, V. Burkert, J. Drees, B. Dresbach,
 B. Gerhardt, G. Knop, H. Kolanoski, M. Leenen, K. Moser,
 H. Müller, Ch. Nietzel, J. Päsler, K. Rith, M. Rosenberg,
 R. Sauerwein, E. Schlösser, H. E. Stier; Phys. Letters 51B (1974) 103
 - J.-C. Alder, F. W. Brasse, W. Fehrenbach, J. Gayler. R. Haidan,
 G. Glöe, S. P. Goel, V. Korbel, W. Krechlok, J. May, M. Merkwitz, R. Schmitz, W. Wagner; Nucl. Phys. B91 (1975) 386
 - vgl. z. B. J. Gayler; Proceedings of the VIII All Soviet Union High Energy Physics School, Eriwan (1975), part 1, 281
 - F. W. Brasse, W. Flauger, J. Gayler, S. P. Goel, R. Haidan, M. Merkwitz, H. Wriedt; Nucl. Phys. B110 (1976) 413
 - H. Breuker, V. Burkert, E. Ehses, W. Hillen, G. Knop, H. Kolanoski, M. Leenen, Ch. Nietzel, M. Rosenberg, A. Samel, R. Sauerwein; Phys. Letters 74B (1978) 409
 - F. W. Brasse, W. Flauger, J. Gayler, V. Gerhardt, S. P. Goel, C. Gößling, R. Haidan, M. Merkwitz, D. Poeck, H. Wriedt; DESY 77/73 (1977)

9. Particle Data Group, Rev. Mod. Phys. 48 (1976) S1

- vgl. z. B. E. Amaldi, S. Fubini, G. Furlan; International Centre for Theoretical Physics IC/77/36
- 11. R. E. Taylor; Proceedings of the EPS International Conference, Palermo (1975) 377
- 12. H. F. Jones; Nuovo Cimento 40A (1965) 1018
- 13. E. Ganßauge; DESY F21-68/3 (1968)
- 14. L. N. Hand; Phys. Rev. 129 (1963) 1834
- C. W. Akerlof, W. W. Ash, K. Berkelman, M. Tigner; Phys. Rev. Letters 14 (1965) 1036
- G. F. Chew, M. L. Goldberger, F. E. Low, Y. Nambu; Phys. Rev. 106 (1957) 1345
- 17. P. Dennery; Phys. Rev. 124 (1961) 2000
- 18. N. Zagury; Nuovo Cimento 52A (1967) 506
- 19. F. W. Brasse, G. Hemmie, W. Schmidt, DESY 65/18 (1965)
- 20. W. Schmidt; DESY F22-69/2 (1969)
- 21. G. Hemmie; DESY S1-67/22 (1967)
- 22. G. Hemmie; DESY S1-73/2 (1973)
- 23. K. H. Frank; DESY F21-72/1 (1972)
- 24. E. Raquet; DESY 69/12 (1969)
- 25. A. Ladage, H. Pingel; DESY 65/12 (1965)
- 26. DESY-Handbuch (1966)
- 27. V. Eckardt; DESY 67/12 (1967)

- 28. J. May; DESY F21-71/3 (1971)
- 29. J. Gayler; DESY F21-71/2 (1971)
- 30. M. Merkwitz; DESY F21-76/01 (1976)
- 31. G. Glöe; Diplomarbeit, Hamburg 1973
- 32. P. Irps; Diplomarbeit, Hamburg 1974
- 33. W. Wagner; Diplomarbeit, Hamburg 1973
- 34. K. H. Frank; DESY F21-72/2 (1972)
- 35. R. Schmitz; Diplomarbeit, Hamburg 1973
- 36. K. H. Meß; DESY F35-75/1 (1975)
- 37. F. W. Brasse, W. Flauger, J. Gayler, S. P. Goel, R. Haidan, J. May, M. Merkwitz; DESY-Proposal Nr. 134 (1974)
- 38. L. W. Mo, Y. S. Tsai; Rev. Mod. Phys. 41 (1969) 205
- 39. Y. S. Tsai; SLAC-PUB-848 (1971)
- 40. J.-C. Alder, F. W. Brasse, E. Chazelas, W. Fehrenbach,
 W. Flauger, K. H. Frank, E. Ganssauge, J. Gayler, W. Krechlok,
 V. Korbel, J. May, M. Merkwitz, P. D. Zimmerman; Nucl. Phys.
 B48 (1972) 487
- 41. R. Frepost et al; Phys. Rev. Letters 18 (1967) 82
 Cambridge Bubble Chamber Group; Phys. Rev. 169 (1968) 1081
 C. Bacci et al., Phys. Rev. Letters 20 (1968) 571
 ABBIHIM-Collaboration; Phys. Rev. 175 (1968) 1669
 E. D. Bloom et al; Phys. Rev. Letters 21 (1968) 1100
 B. Delcourt et al; Phys. Letters 29B (1969) 75
 E. Lehmann; Diplomarbeit, Hamburg 1977

42. R. C. E. Devenish, D. H. Lyth; Nucl. Phys. B93 (1975) 109

- 43. J. Gayler; DESY 76/42 (1976)
- 44. R. C. E. Devenish, D. H. Lyth, W. A. Rankin; Phys. Letters 52B (1974) 227
- 45. J. Gayler; private Mitteilung
- 46. F. Ravndal; Phys. Rev. D4 (1971) 1466
- 47. R. G. Lipes; Phys. Rev. D5 (1972) 2849
- R. P. Feyman, M. Kislinger, F. Ravndal; Phys. Rev. D3 (1971) 2706
- 49. vgl. z. B. A. B. Clegg; Proceedings of the 6th International Symposium on Electron and Photon Interactions at High Energies, Bonn (1973) 49
- 50. vgl. z. B. A. J. G. Hey; British Summer School Lectures 1974 THEP 75/6-12
- 51. vgl. z. B. F. E. Close; Proceedings of the XVII International Conference on High Energy Physics, London (1974) 11-157
- 52. F. Foster; Contribution to the 1977 International Symposium on: Lepton and Photon Interactions at High Energies, Hamburg, paper 77
- 53. J. V. Morris, D. C. Darvill, M. Davenport, F. Foster, G. Hughes, J. Wright, J. Allison, B. Dickinson, S. R. Hill, M. Ibbotson,
 A. Latham, H. E. Mills, K. Stephens, R. J. Thompson, O. Vapenikova; Phys. Letters 73B (1978) 495

Danksagung

Die vorliegende Arbeit entstand im Rahmen eines Experiments, das am Deutschen Elektronen-Synchrotron (DESY) von der Gruppe F21 durchgeführt wurde.

Herrn Prof. Dr. H. Schopper und Herrn Prof. Dr. G. Weber danke ich, daß ich mit einem Stipendium und der mir darüber hinaus gewährten Gastfreundschaft diese Arbeit durchführen konnte.

Mein Dank gilt allen Mitgliedern der Gruppe F21, ohne deren gute Zusammenarbeit und bereitwillige Unterstützung in jeder Phase des Experiments diese Arbeit nicht vorstellbar ist.

Insbesondere danke ich Herrn Dr. F. W. Brasse für die Themenstellung der Arbeit, ihre stete Förderung sowie für die Durchsicht des Manuskriptes. Besonders herzlich möchte ich Herrn Dr. J. Gayler danken, der dem Experiment entscheidende Impulse gab und der mich in zahlreichen Diskussionen mit Hinweisen und Kritik sehr unterstützt hat. Auch für die Überlassung eines Programms und die sorgfältige Durchsicht meines Manuskriptes gebührt ihm mein Dank.

Den Herren J. Koll, G. Singer, K. Thiele und H. Weiß danke ich für ihre Hilfsbereitschaft und ihre sorgfältigen technischen Arbeiten, die eine wichtige Voraussetzung für das Gelingen der Messungen waren.

llerrn K.-II. Wroblewski von der Gruppe F52 danke ich für das Ausmessen der Silberphosphatgläser.

Für die enge Zusammenarbeit bei der Auswertung danke ich Herrn Dipl.-Phys. V. Gerhardt und Herrn Dipl.-Phys. R. Haidan, der auch durch seine Arbeit an der Elektronik der Meßapparatur einen unentbehrlichen Beitrag zu diesem Experiment geleistet hat, sowie Herrn Th. Ploenes, der mir ein Programm überlassen hat.

Frau H. Klement danke ich für die mühevolle Schreibarbeit, die sie mit großer Sorgfalt ausgeführt hat.

Mein Dank gilt auch den vielen Mitarbeitern des DESY, die ich hier nicht namentlich aufzählen kann. Besonders erwähnen möchte ich jedoch die Mitarbeiter des Hallendienstes, des Synchrotrons, der digitalen Datenerfassung und des Rechenzentrums, ohne deren Arbeit dies Experiment nicht hätte in Angriff genommen werden können. Der letzte, aber nicht der geringste Dank gilt den Freunden aus meiner Wohngemeinschaft, die in den vergangenen drei Jahren nicht nur die von dieser Arbeit herrührenden Belastungen, die ich an sie weitergegeben hatte, mit großer Freundlichkeit getragen haben, sondern die mich auch immer wieder dazu angehalten haben, die Wichtigkeit meiner Arbeit kritisch zu beurteilen und nicht einen Teil der Welt für das Ganze zu halten. Lebenslauf

30.5.1948	Geboren in Hamburg
	Schulbesuch:
1955 bis 1959	Schule Meerweinstraße in Hamburg
1959 bis 1968	Heinrich-Hertz-Schule in Hamburg
24. 1. 1968	Abitur
	Physik-Studium:
Sommersemester 1968	
bis Sommersemester 1970	Universität Hamburg
29.4.1970	Diplom-Vorprüfung in Physik
Wintersemester 1970/71	Universität München
ab Sommersemester 1971	Universität Hamburg
Sommersemester 1972	Beginn der Diplomarbeit: "Bau eines Michelson-
	Interferometers zur Messung des Brechungsindexes
	von Gasen und Messung des Brechungsindexes von
	Freon 13 (CF ₃ C1)"
20.1.1975	Diplom-Hauptprüfung in Physik
Mai 1975	Beginn der Doktorarbeit: "Bestimmung des Bei-
	trages longitudinal polarisierter virtueller
	Photonen bei der n-Elektroproduktion der
	S ₁₁ (1535)-Resonanz" am Deutschen Elektronen-
	Synchrotron in Hamburg

Ich versichere, diese Arbeit selbständig unter Angabe aller verwendeten Hilfsmittel angefertigt zu haben.

Hamburg, den 10.7.1978