J. Gaylor

Interner Bericht DESY F21-79/03 September 1979

 \mathbf{a}

r 🕽

ELEKTROPRODUKTION PSEUDOSKALARER MESONEN IM RESONANZGEBIET BEI GROSSEN IMPULSÜBERTRAGEN

von

Rainer Haidan

"DIE VERANTWORTUNG FOR DEN INHALT DIESES INTERNEN BERICHTES LIEGT AUSSCHLIESSLICH BEIM VERFASSER." Elektroproduktion pseudoskalarer Mesonen im Resonanzgebiet bei großen Impulsüberträgen

.

.

Dissertation zur Erlangung des Doktorgrades des Fachbereichs Physik der Universität Hamburg

> vorgelegt von Rainer Haidan aus Wittichenau

Gutachter der Dissertation:	Dr. F. W. Brasse Prof. Dr. P. Schmüser
Gutachter der Disputation:	Prof. Dr. E. Lohrmann Prof. Dr. P. Söding
Datum der Disputation:	17. September 1979
Sprecher des Fachbereichs Physik und Vorsitzender des Promotionsausschusses:	Prof. Dr. H. V. von Geramb

ч 19 ч

Hamburg 1979

Inhaltsverzeichnis	
1. Einleitung	1
2. Theoretische Grundlagen	4
2.1 Kinematik	4
2.2 Wirkungsquerschnitt	6
2.3 Multipoldarstellung	10
3. Experimenteller Aufbau	17
3.1 Primärstrahl und Target	17
3.2 Elektronspektrometer	19
3.3 Hadronspektrometer	21
3.3.1 Ablenkmagnet	21
3.3.2 Proportionaldrahtkammern	22
3.3.3 Szintillationszählerhodoskop	22
3.3.4 Cerenkovzähler	23
3.3.5 Akzeptanz und Auflösung	26
3.4 Elektronik und Datennahme	27
4. Messungen	31
4.1 Elastische Tests und Eichungen	31
4.2 Inelastische Messungen	35

Elektroproduktion pseudoskalarer Mesonen im Resonanzgebiet bei großen Impulsüberträgen

Datenreduktion und Berechnung des Wirkungsquerschnitts Definition des gestreuten Elektrons Definition des koinzidenten Hadrons Abtrennung der hadronischen Endzustände pπ⁰ und pn 5.3.1 Unterscheidung von Protonen und Pionen 5.3.2 Subtraktion des Mehrfachpion-Untergrundes Berechnung strahlungskorrigierter differentieller Wirkungsquerschnitte

.

м.

5.5 Korrekturen und systematische Fehler

6. Ergebnisse	53
6.1 Wirkungsquerschnitte für die Reaktion $\gamma_{\rm v} p \neq p_{\rm ii}$	53
6.2 Wirkungsquerschnitte für die Reaktion $\gamma_{\rm v} p \star p_{\rm e}^{\circ}$	56
6.2.1 Bestimmung der Winkelverteilungskoeffiziente	n 57
\overline{A}_0 , \overline{A}_1 , \overline{A}_2 , C_0 , D_0 , D_1 für $Q^2 = 3 \text{ GeV}^2$	
6.2.2 Bestimmung der Winkelverteilungskoeffiziente	n 59
\overline{A}_0 , \overline{A}_1 , \overline{A}_2 , \overline{A}_3 für Q ² = 2 GeV ²	
6.2.3 Multipolanalyse im Bereich der 1. Resonanz	60
7. Dispersionsrelationsanalyse	63
8. Q ² -Verhalten der Nukleonresonanzen	67
8.1 Q ² -Verhalten der P ₃₃ (1232)	67
8.2 Q^2 -Verhalten der S $_{11}^{(1535)}$ und D $_{13}^{(1520)}$	69
9. Quarkmodelle	74
9.1 Harmonischer Oszillator	74
9.2 Stromalgebra	. 81
10. Zusammenfassung	89
Anhang A	I
Anhang B	١٧
Anhang C	v
Literaturverzeichnis	VIII

•

51

36

37

38

41

41

45

48

.

1. Einleitung

In den letzten Jahren zeigten Experimente zur tiefinelastischen Leptonstreuung eine Fülle von Ergebnissen, die auf eine Substruktur der Hadronen hinweisen (z. B. Skalenverhalten) und sich auf überzeugende Weise im Quarkmodell erklären lassen. Überdies fand man Eigenschaften (z. B. Abweichungen vom Skalenverhalten), die eine nichtabelsche Eichtheorie, realisiert in der Quantenchromodynamik,als einen guten Kandidaten für eine Theorie der starken Wechselwirkung erscheinen lassen.

- 1 -

Das attraktivste Merkmal einer solchen Theorie ist die asymptotische Freiheit (bei einer nicht zu großen Zahl verschiedener Quarks), die die Erfolge des naiven Partonmodells im Tiefinelastischen erklärt. Sie hat ihre Ursache in einer "laufenden" Kopplungskonstanten α_s , deren Wert mit kleiner werdendem Abstand r gegen 0 strebt; d. h. ab einem gewissen r kann man die Quarks/Partonen wie quasifreie Teilchen behandeln und Störungsrechnung treiben.

Umgekehrt leitet die Tatsache, daß bis heute trotz aller Anstrengungen freie Quarks nicht beobachtet wurden, auf die Annahme, daß für große Abstände das Quarkpotential unbegrenzt anwächst. Diese sogenannte "Confinementeigenschaft" des Quarkpotentials ist aber wegen der dann großen Kopplungskonstanten α_s einer Störungsrechnung nicht zugänglich. Hier ist man sehr auf experimentelle Hinweise über die Struktur des Potentials angewiesen. Dieser Bereich ist Gegenstand der Hadronspektroskopie, in der Quarks auf einen Raum von ≈ 1 f Durchmesser "confined" sind.

Die Elektroproduktion von Baryonresonanzen ist nun sehr gut geeignet, dieses Quarkpotential zu untersuchen, da in ihr die "Auflösung" des ausgetauschten Photons – sein Impuls – bei fester Resonanzmasse variiert werden kann und so die Struktur des Quarkpotentials als Funktion des Abstands untersucht werden kann. Die Kombination der Meßergebnisse für verschiedene Spin- und Bahndrehimpulszustände der Quarks in dem reichhaltigen Baryonresonanzspektrum läßt überdies Einsicht in die Spinstruktur der Quarkräfte erwarten.

Um obige Ideen zu testen, ist es wichtig, die Elektroproduktion von Baryonresonanzen bis zu Impulsüberträgen q² des virtuellen Photons zu kennen, bei denen sich das Skalenverhalten des totalen Wirkungsquerschnitts bereits deutlich zeigt. Das ist ab etwa q² = - 3 GeV² der Fall. In diesem Experiment wird die Messung der 1-Meson-Produktion, in der produzierte πN - Resonanzen durch ihren Zerfall in π + N nachgewiesen werden, bis zum Impulsübertrag -3 GeV² ausgedehnt. Die vorliegende Arbeit untersucht die Elektroproduktion pseudoskalarer Mesonen $v_{y}p \rightarrow p\pi^{0}$ und $v_{y}p \rightarrow p\pi$ bei q² =-2 und -3 GeV². Das spezielle Interesse gilt dabei 3 nachgewiesenen Resonanzzuständen des Nukleons: P₃₃(1232), S₁₁(1535) und D₁₃(1520).

Die Gründe sind einerseits experimenteller Natur:

- 2 -

Die P_{33} ist in ihrem Massenbereich die dominierende Resonanz, so daß sie durch die resonante Form ihrer Amplituden relativ gut von nichtresonantem Untergrund zu trennen ist.

Die S $_{11}$ läßt sich gut durch ihren dominanten Zerfallskanal $\rm N_{\odot}$ und ihre einfache S-Wellenwinkelverteilung im Zerfall identifizieren.

Die ${\rm D}_{13}$ ist dann, für ihren totalen Querschnitt, einfach zugänglich über eine Analyse des 2. Resonanzpeaks bei einer Masse W = 1.5 GeV im ep > e+X Wirkungsquerschnitt, der sich aus S $_{11}$ und D $_{13}$ zusammensetzt. Darüberhinaus geben die Zerfallswinkelverteilungen Aufschluß über den Produktionsmechanismus.

Andererseits sind diese Resonanzen im Lichte des Quarkmodells von besonderem Interesse:

Die P₃₃ sollte als L^P_{quark} = 0⁺ \rightarrow 0⁺ - Übergang ein nur einer Spinflip-Amplitude entsprechendes Verhalten unabhängig von q² zeigen.

 $\rm S_{11}$ und $\rm D_{13}$ werden im Quarkmodell dem gleichen SU(6) - Multiplett zugeordnet und unterscheiden sich in diesem Bild nur durch die relative Drientierung von Spin und Bahndrehimpuls. Unterschiede in ihrem q² - Verhalten können Hinweise auf die räumliche und die Spin - Struktur des Quarkpotentials geben.

Die vorliegende Arbeit gliedert sich wie folgt: Nach der Bereitstellung der kinematischen Formeln und des Formalismus zur Beschreibung des Wirkungsquerschnitts in Kap. 2 wird in Kap. 3 die Meßapparatur in ihren einzelnen Komponenten vorgestellt. Kap. 4 geht kurz auf die apparativen Tests und die gewählten Einstellungen in den Messungen ein. In Kap. 5 wird die Ermittlung der Koinzidenzquerschnitte dargestellt und in Kap. 6 werden die Ergebnisse der Messungen in Form von Winkelverteilungen und Multipolamplituden (1. Resonanz) angegeben und diskutiert.

Kap. 7 beschreibt kurz die Methode eines von Devenish und Lyth entwickelten Multipolanalysen-Programms, das mit Hilfe von Dispersionsrelationen zu festem Impulsübertrag t die Multipole angeregter Nukleonresonanzen bestimmt. Die hier vorgestellten Daten wurden zusammen mit den gleichzeitig gemessenen π^+n^- Daten dieser Analyse unterzogen (für eine ausführliche Darstellung siehe [GER]); es wird die Beschreibung der hier ermittelten Querschnitte durch die Analyse diskutiert und Ergebnisse für die S₁₁ und D₁₃ angegeben.

In Kap. 8 wird das resultierende q²-Verhalten der untersuchten Resonanzen P₃₃ sowie S₁₁ und D₁₃ unter Zuhilfenahme von weiteren Koinzidenzdaten und von Einammquerschnitten untersucht.

Kap. 9 beschäftigt sich ausführlich mit der Beschreibung der Resonanzen S₁₁ und D₁₃ im harmonischen Oszillator – Quarkmodell. Außerdem wird versucht, durch eine Betrachtung der algebraischen Eigenschaften der Übergangsamplituden im Rahmen einer SU(6)_w – Symmetrie eine Aussage über die Spinstruktur des Quarkpotentials zu gewinnen.

- 2. Theoretische Grundlagen
- 2.1 Kinematik

Der Prozeß der Einfach-Meson-Produktion in der eN-Streuung ist in der Näherung des 1-Photonaustauschs in Abb. 2.1 dargestellt. Die angegebenen Viererimpulse (Metrik: p = (E, \vec{p}) , p² = E² - \vec{p}^2) beziehen sich auf das Laborsystem mit ruhendem Nukleon im Eingangszustand, Größen mit einem * beziehen sich auf das hadronische Schwerpunktsystem (= Schwerpunktsystem der auslaufenden Hadronen \vec{p}_{N}^{*} , = - \vec{p}_{m}^{*}).

Die Kinematik des virtuellen Photons ist durch die Viererimpulse von ein- und auslaufendem Elektron festgelegt:

Der Viererimpuls $q = p_e - p_{e'} = (v, \dot{q})$, den das Photon vom gestreuten Elektron auf das Nukleon überträgt, ist raumartig ($q^2 < 0$); unter Vernachlässigung der Elektron-Ruhmasse ist

$$q^2 = -2 \cdot E_e \cdot E_e$$
, $(1 - \cos e_e) = -q^2$

Das virtuelle Photon ist polarisiert, im Laborsystem besitzt es sowohl eine transversale Polarisation c als auch eine longitudinale Polarisation c_1 :

$$\varepsilon = (1 - 2 \frac{\vec{q}^2}{q^2} \cdot \tan^2 \frac{\Theta_e}{2})^{-1}$$
$$\varepsilon_L = \frac{-q^2}{q_0^2} \cdot \varepsilon$$

Virtuelles Photon q und einlaufendes Nukleon p_N bilden ein System, dem die Masse W mit

$$W^2 = (q + p_N)^2 = q^2 + m_N^2 + 2 m_N \cdot v$$

 $m_N = Nukleonmasse$

zugeordnet werden kann.

Dies System geht in den hadronischen Endzustand $p_{\rm N}$, + $p_{\rm m}$ über. Im Laborsystem

- 5 -

wind en durch den Impuls und Azimut S und Polarwinkel & zur Richtung des virtuellen Photons für eines der beiden Hadronen charakterisiert. Abb. 2.2 definiert diese Winkel.

Für die Beschreibung resonanter hadronischer Zwischenzustände ist das hadronische Schwerpunktsystem besonders geeignet. Durch Ausführen der dazu nötigen Lorenztransformation längs $\dot{\vec{q}}$, der Richtung des virtuellen Photons, erhält man die entsprechenden Schwerpunktswinkel:

$$\begin{array}{l} \phi \text{ andert sich nicht,} \\ \tan \phi_{N}^{*} &= -\tan \phi_{m}^{*} = \sqrt{1 - \beta_{W}^{2}} \quad < \quad \frac{\sin \phi_{N}}{(\cos \phi_{N}) - \beta_{W}} \\ \\ \text{mit} \quad \beta_{W} &= \frac{\overline{q}_{\perp}^{*}}{(\omega + m_{N})} \quad , \quad \beta_{N} &= \quad \frac{|\vec{p}_{N}|}{E_{N}} \end{array}$$

4

der Geschwindigkeit des hadronischen Systems W bzw. des auslaufenden Nukleons.

Ist die Elektronkinematik gemessen, d. h. der Viererimpulsübertrag g bekannt. dann wird durch Identifizieren eines auslaufenden Hadrons (Festlegung seiner Masse) und Messung seines Impulses $|\vec{p}'|$ sowie Winkels 0' zur \vec{q} -Richtung der Viererimpuls p' dieses Hadrons ausreichend festgelegt, um aufgrund der Viererimpulserhaltung die Masse m. ("missing mass") des restlichen auslaufenden hadronischen Systems X zu bestimmen:

$$\begin{split} m_{X}^{2} &= (q + p_{N} - p')^{2} \\ &= W^{2} + m_{N}^{2} - 2 (v + m_{N}) \cdot E' + 2 [\vec{q}] \cdot [\vec{p}'] \cdot \cos \Theta' \end{split}$$

Reaktionen wie die hier untersuchte Einfach-Meson-Produktion, bei denen X also nur aus einem Teilchen besteht, zeichnen sich durch einen diskreten Wert $m_{\rm c}^2$ aus. Diese Eigenschaft wird zur Abtrennung der in dieser Arbeit untersuchten hadronischen Endzustände $p\pi^0$ und p_{π} von der Mehrfach-Meson-Produktion ausgenutzt.

Weitere im folgenden benutzte Größen sind:

- die ëquivalente Photonenergie
$$K = \frac{(W^2 - m_N^2)}{2 m_N}$$

die bei Absorption eines reellen Photons am Targetnukleon zur hadronischen Masse W führt

- der Impuls des Mesons im Schwerpunktsystem

$$\vec{p}_{m}^{\star}^{2} = \frac{(w^{2} + m_{m}^{2} - m_{N}^{2})^{2}}{4 w^{2}} - m_{m}^{2}$$

 die Viererimpulskomponenten des virtuellen Photons im hadronischen Schwerpunktsystem

2.2 Wirkungsquerschnitt

Der Elektroproduktionsprozeß e + N \Rightarrow e' + X läßt sich in niedrigster (2.) Ordnung in der elektromagnetischen Kopplungskonstanten $\alpha = \frac{1}{137}$ als Ein-Photon-Austauschprozeß und somit als Photoproduktion mit virtuellen Photonen γ_{v} beschreiben. Wegen der kleinen Kopplungskonstanten sollte dies der dominante Beitrag zur eN-Streuung sein. Experimentell ist diese Annahme für elastische e-p-Streuung bei nicht zu großen Impulsüberträgen auf das Nukleon ($|q^2| < 5 \text{ GeV}^2$) auf ca. 1 % gesichert, und es gibt plausible Argumente, die die Gültigkeit auch im inelastischen Fall erwarten lassen ([AMA]).

In dieser Näherung läßt sich das Übergangsmatrixelement für obige Reaktion schreiben als ([BJO])

$$M_{fi} = \alpha \cdot j_{\mu} \cdot J^{\mu} \cdot \frac{1}{-q^2}$$

 $\boldsymbol{j}_{\mu}^{}$ ist der leptonische elektromagnetische Strom und beschreibt den Vertex

Der zum betrachteten Prozeß gehörige Wirkungsquerschnitt ist dann

$$o = (2\pi)^4 \cdot \frac{1}{N} \cdot \int |M_{fi}|^2 \cdot \delta (p_f - p_i) \cdot \frac{p_f}{J_{ein}} d\tau$$

Die Integration erstreckt sich über den Phasenraum der Endzustände (Dichte ρ_f), J_{ein} bezeichnet den einlaufenden Teilchenstrom, N ist der Normierungsfaktor der Wellenfunktionen. Die zu bestimmten Endzuständen gehörigen differentiellen Querschnitte erhält man durch partielle Differentiation nach den entsprechenden Variablen.

Wenn man, wie im vorliegenden Experiment, im Anfangszustand nur unpolarisierte Teilchen hat und keine Endzustandspolarisation mißt, muß man über die Spins der Anfangszustände mitteln und über die Endzustandsspins s_f summieren:

$$|\overline{M_{fi}}|^{2} = \frac{1}{4} \frac{\alpha^{2}}{q^{4}} \sum_{s_{f}} |j_{\mu} J^{\mu}|^{2}$$
$$= \frac{1}{4} \frac{\alpha^{2}}{q^{4}} L^{\mu\nu} T_{\mu\nu}$$

Der Leptontensor läßt sich nach der Spurmethode zu

$$L^{\mu\nu} = \sum_{\text{Spins}} \mathbf{j}^{\mu*} \mathbf{j}^{\nu} = \frac{1}{m_e^2} \left[p_e^{\mu} p_e^{\nu} + p_e^{\nu} p_e^{\mu} + \frac{q^2}{2} g^{\mu\nu} \right]$$

$$g_{\mu\nu} = \begin{pmatrix} 1 - 1 & 0 \\ 0 & 1 - 1 & 1 \end{pmatrix}$$

berechnen.

Ober den Hadrontensor $T_{\mu\nu} = \frac{\Sigma}{\text{Spins}} J_{\mu}^* J_{\nu}$

- 7 -

- 8 -

ist a priori nichts bekannt, daher muß man ihn in seiner allgemeinsten Form, die die Symmetrien der hadronischen Wechselwirkung berücksichtigt, aus den Vierervektoren am Hadron-Vertex und g_{µv} konstruieren (vgl. z. B. [DEN]). Der Aufklärung seiner Struktur gelten letztlich die Messungen der Photo- und Elektroproduktion.

Im folgenden soll der in diesem Experiment untersuchte Fall der Einfachmeson-produktion

$$X = N' + m$$

mit $N' m = pr^0$, $n\tau^+$, p_m

betrachtet werden (Abb. 2.1). Die Berechnung des Leptontensors liefert folgende Darstellung für den 5-fach differentiellen Wirkungsquerschnitt im Schwerpunktsystem ([JON] , [AKE]):

$$\frac{d^{5}\sigma}{dE_{e},d\Omega_{e}^{*},d\Omega_{m}^{*}} = \Gamma_{t} \cdot \frac{d^{2}\sigma}{d\Omega_{m}^{*}} \qquad \text{mit} \quad \Gamma_{t} = \frac{\alpha}{2\pi^{2}} \cdot \frac{E_{e}^{*}}{E_{e}} \cdot \frac{K}{-q^{2}} \cdot \frac{1}{1-\sigma} \qquad (2.1)$$

 Γ_{t} läßt sich als Fluß transversaler virtueller γ -Quanten pro einlaufendem Elektron interpretieren.

Der virtuelle Photoproduktionsquerschnitt $\frac{d_{0}}{d_{0}^{*}}$ nimmt die allgemeine Form an:

$$\frac{d\sigma}{d\alpha^*}_{m} = A + \varepsilon \cdot B + \varepsilon \cdot C \cdot \sin^2 \varepsilon^* \cdot \cos^2 \varphi$$
$$+ \sqrt{\varepsilon \cdot (\varepsilon + 1)} \cdot D \cdot \sin^2 \cdot \cos \varphi$$

A D sind Funktionen der Hadrontensorkomponenten $T^*_{\mu\nu}$ im Schwerpunktsystem und lassen sich folgendermaßen interpretieren:

$$\frac{T_{11}^{*} + T_{22}^{*}}{2}$$
 stellt den Querschn
2 versale Photonen da

А

tellt den Querschnitt für unpolarisierte transersale Photonen dar.

gibt den Querschnitt für longitudinal polarisierte Photonen an (Helizität O).

rührt von der transversal-transversalen Interferenz her (Interferenz der beiden Helizitäten +1 und -1).

D ⊂ sin0^{*} ~ T^{*}₁₃

beschreibt die transversal-longitudinale Interferenz.

(Hierbei sind die Komponenten des Tensors mit der Richtung des virtuellen γ als z-Achse (Index 3) definiert).

Die Koeffizienten A, B, C, D sind nur noch Funktionen von W, q² und coso^{*}. Die coso^{*} -Abhängigkeit läßt sich als Potenzreihe darstellen, die bei vorgegebenem maximalen Drehimpuls des π N-Systems endlich ist. Läßt man nur S- und P-Wellen zu, so ist

$$A = A_0 + A_1 \cdot \cos^* + A_2 \cdot \cos^2 3^*$$

$$B = B_0 + B_1 \cdot \cos^* + B_2 \cdot \cos^2 3^*$$

$$C = C_0$$

$$D = D_0 + D_1 \cdot \cos^*$$

(2.2)

Nimmt man noch D-Wellen bis zum Gesamtdrehimpuls $J = |\vec{L} + \vec{S}| \le \frac{3}{2}$ hinzu, so treten zusätzlich die Terme $A_3 + \cos^3 \Theta^*, B_3 + \cos^3 \Theta^*$, $C_1 + \cos^{\Theta^*}$ und $D_2 + \cos^2 \Theta^*$ auf.

Wenn man, wie im vorliegenden Experiment, nur bei einem Wert von ε mißt, dann können die unpolarisierten Anteile nicht von den longitudinalen Anteilen getrennt werden und man kann nur

$$\overline{A}_i = A_i + \epsilon \cdot B_i$$

bestimmen.

Der totale Wirkungsquerschnitt für die Reaktion $\gamma_v N + N^*m$ ergibt sich aus Gleichung (2.1) durch Integration über $d\Omega^*_m$

$$\sigma_{\text{tot}} (\gamma_{v} N \rightarrow N^{\dagger} m) = \underbrace{4\pi \cdot (A_{o} + \frac{1}{3}A_{2} + \frac{1}{5}A_{4})}_{\sigma_{T}} + \epsilon \cdot \underbrace{4\pi \cdot (B_{o} + \frac{1}{3}B_{2} + \frac{1}{5}B_{4})}_{\sigma_{L}}$$
$$= 4\pi (\overline{A}_{o} + \frac{1}{3}\overline{A}_{2} + \frac{1}{5}\overline{A}_{4})$$

wobei σ_{1}, σ_{L} die entsprechenden totalen Querschnitte für transversale bzw. longitudinale Photonen darstellen. Durch Summation über alle hadronischen Endzustände erhält man den totalen Elektroproduktionsquerschnitt bzw. virtuellen Photon- Absorptionsquerschnitt

$$\frac{d^{2}\sigma}{dE_{e},d\Omega_{e'}} = \Gamma_{t} \circ \sigma_{tot} (\gamma_{v}N) = \Gamma_{t} \cdot (\sigma_{T} (\gamma_{v}N) + \varepsilon \circ \sigma_{L} (\gamma_{v}N))$$

2.3 Multipoldarstellung

Eine gebräuchliche Methode, die Wechselwirkung am Hadronvertex $\gamma_V N + N'\pi zu$ beschreiben, ist die Entwicklung des T-Matrixelements nach Multipolen. Sie ist besonders im Bereich der Nukleon-Resonanzen unterhalb W = 2 GeV sinnvoll, da sie eine Entwicklung des πN -Endzustandes nach definiertem Bahndrehimpuls 2, Spin sund Parität π unter Berücksichtigung des vom Photon übertragenen Drehimpulses darstellt. Angeregte Nukleonresonanzen treten entsprechend ihren Quantenzahlen in den zugehörigen Multipolen in Erscheinung.

Wenn \vec{t}_{γ} den Bahndrehimpuls des γ_{v} bezeichnet, setzt sich der totale Drehimpuls \vec{J}_{i} des Eingangszustandes wie folgt zusammen:

$$\vec{J}_{i} = \vec{z}_{\gamma} + \vec{S}_{\gamma} + \vec{S}_{N} = \vec{L} + \vec{S}_{N}$$
 $\vec{S}_{\gamma}, \vec{S}_{N}$ Spins von γ , Nukleon
mit $\vec{L} = \vec{z}_{\gamma} + \vec{S}_{\gamma}$. L kann also die Werte $z_{\gamma}, z_{\gamma} \neq 1$ annehmen. Diese Zustände
unterscheiden sich durch ihre Parität $\pi_{i} = (-1)^{-k}\gamma^{k-1}$ $(\pi_{\gamma} = -1, \pi_{N} = +1)$.
Für $L = z_{\gamma}$ ist $\pi_{i} = (-1)^{L} + 1$, diese Zustände nennt man magnetische 2^L-Pole M_L
Für $L = z_{\gamma} \neq 1$ ist $\pi_{i} = (-1)^{L}$, diese Zustände nennt man elektrische 2^L-Pole E_L

•

×.

Longitudinale bzw. skalare Photonen (Helizität O) zeigen gleiches Paritätsverhalten wie die elektrischen Multipole: L = $k_{\gamma} \pm 1$, $\pi_{i} = (-1)^{L}$, man ordnet ihnen longitudinale bzw. skalare Multipole zu. Aufgrund der Stromerhaltung sind longitudinale Multipole L₁ und skalare Multipole S₁ nicht unabhängig voneinander:

$$S_{L} = \frac{1\vec{q}^{*}}{q_{0}^{*}} L_{L}$$

In der Hochenergiephysik ist es üblich, die Multipole nicht (wie in der Kernphysik) nach dem Drehimpuls, den das Photon überträgt, sondern nach dem Bahndrehimpuls & des Endzustands, also des #N-Systems, zu klassifizieren:

$$\vec{J}_f = \hat{\ell} + \hat{S}_N$$
, also $J_f = \ell \pm \frac{1}{2}$

Die Parität ist $\pi_{f} = (-1)^{\ell} + 1$ ($\pi_{\tau} = -1, \pi_{N} = +1$).

Drehimpuls- und Paritätserhaltung liefern

$$\vec{J}_i = \vec{J}_f + L = \ell \text{ oder } L = \ell \pm 1$$

 $\pi_i = \pi_f$

für <u>magnetische</u> Übergangsamplituden $M_{l\pm} = \langle f | T | i_{magn} \rangle$

$$L = \ell , \quad \pi = (-1)^{L} + 1, \quad J = \begin{cases} L + \frac{1}{2} = \ell + \frac{1}{2} & : M_{\ell+1} \\ \\ L - \frac{1}{2} = \ell - \frac{1}{2} & : M_{\ell-1} \end{cases}$$

für <u>elektrische</u> und <u>longitudinale (skalare)</u> Übergangsamplituden : $E_{\underline{k}\pm} = \langle f | T | i_{elektr} \rangle$, $L_{\underline{k}\pm} = \langle f | T | i_{longit} \rangle$ $L = \underline{k} + 1, \pi = (-1)^{L}, J = L - \frac{1}{2} = \underline{k} + \frac{1}{2} : E_{\underline{k}+}, L_{\underline{k}+} (S_{\underline{k}+})$ $L = \underline{k} - 1, \pi = (-1)^{L}, J = L + \frac{1}{2} = \underline{k} - \frac{1}{2} : E_{\underline{k}-}, L_{\underline{k}-} (S_{\underline{k}-})$

Diese Bezeichnung wird im folgenden verwandt.

- 12'-

e

Für die Entwicklung des Obergangsmatrixelements nach Multipolen existieren in der Literatur verschiedene Ansätze, hier wird die Darstellung von Dennery [DEN] übernommen. Die Normierung der Multipolamplituden ist wie bei [CGL] und z. B. von Gehlen [GEH] . Das T-Matrixelement wird in 6 unabhängige Schwerpunktsystem-Amplituden F_i entwickelt, deren Zerlegung nach Multipolen die Darstellung des Elektroproduktionsquerschnitts liefert. Das Ergebnis dieser Rechnungen ist in den Gleichungen (2.3) und (2.4) als Darstellung der Koeffizienten A, B, C, D durch die F_i und deren Multipolentwicklung angegeben (vgl. [ZAG], [DEN]).

$$A = \frac{|\vec{p}_{\pi}^{*}|W}{MK} \left\{ |F_{1}|^{2} + |F_{2}|^{2} - 2\cos\theta^{*} \operatorname{Re}(F_{1}F_{2}^{*}) \right\} + \sin^{2}\theta^{*} C$$

$$B = \frac{|\vec{p}_{\pi}^{*}|W}{MK} - \frac{-q^{2}}{q_{0}^{*2}} \left\{ |F_{5}^{*}|^{2} + |F_{6}^{*}|^{2} + 2\cos\theta^{*} \operatorname{Re}(F_{5}^{*}F_{6}^{*}) \right\}$$
(2.3)

$$C = \frac{|\dot{p}_{\pi}^{*}||W}{MK^{*}} \left\{ \frac{1}{2} |F_{3}|^{2} + \frac{1}{2} |F_{4}|^{2} + Re \left[F_{2} F_{3}^{*} + F_{1} F_{4}^{*} + \cos \Theta^{*} \right] \right\}$$

$$F_{3} F_{4}^{*} \left\{ \left\{ F_{4}^{*} |F_{4}^{*}|^{2} + Re \left[F_{2} F_{3}^{*} + F_{1} F_{4}^{*} + G \left[F_{2} F_{3}^{*} + F_{1} F_{4}^{*} + F_{1} F_{4}^{*} + F_{1} F_{4}^{*} + F_{1} F_{4}^{*} + G \left[F_{2} F_{3}^{*} + F_{1} F_{4}^{*} + F_{1} F_{4} + F_{1} F_{1} + F_$$

$$D = -\frac{|\vec{p}_{\pi}^{*}|W}{MK} \cdot 2 \sqrt{\frac{-q^{2}}{q_{0}^{*2}}} \left\{ Re \left[(F_{1} + \cos \varepsilon^{*} F_{3} + F_{4}) F_{6}^{**} + (F_{2} + F_{3} + \cos \varepsilon^{*} F_{4}) F_{5}^{**} \right] \right\}$$

mit

$$F_5' = F_1 + \cos o^* F_3 + F_5$$

und

$$F_6' = \cos e^* F_4 + F_6$$

$$F_{1} = \sum_{k=0}^{\infty} \left[(2M_{k+} + E_{k+})P_{k+1}^{*}(x) + (-(k+1)M_{k-} + E_{k-})P_{k-1}^{*}(x) \right]$$

$$F_{2} = \sum_{k=0}^{\infty} \left[(k+1)M_{k+} + kM_{k-} \right] P_{k}^{*}(x)$$

$$F_{3} = \sum_{k=0}^{\infty} \left[(k_{k+}-M_{k+})P_{k+1}^{*}(x) + (E_{k-} + M_{k-})P_{k-1}^{*}(x) \right]$$

$$F_{4} = \sum_{k=0}^{\infty} \left[(M_{k+} - E_{k+} - M_{k-} - E_{k-})P_{k}^{*}(x) \right]$$

$$F_{5} = \sum_{k=0}^{\infty} \left[(k_{k+} - E_{k+} - M_{k-} - E_{k-})P_{k}^{*}(x) \right]$$

$$F_{6}^{*} = \sum_{k=0}^{\infty} \left[(k_{k-} - (k+1)L_{k+})P_{k}^{*}(x) \right]$$

Hierin bezeichnen $P_{g_{1}}(x), \; P_{2}^{+}(x),\; \ldots$ die Legendrepolynome und ihre Ableitungen $(x\; = \; \cos \theta^{*} \;).$

Beschränkt man sich auf S- und P-Wellen für das π N-System, so ergibt sich für die Koeffizienten A, B, C und D aus Gl. (2.3) als Funktion der entsprechenden Multipole E₀₊, S₀₊, M₁₊, E₁₊, S₁₊, M₁₋, S₁₋:

$$A_{0} = \frac{|\vec{p}_{\pi}^{*}||W}{MK} \left\{ |E_{0+}|^{2} + |M_{1-}|^{2} + \frac{5}{2} + |M_{1+}|^{2} + \frac{9}{2}|E_{1+}|^{2} - 3Re(M_{1+}E_{1+}^{*}) + Re\left[(3E_{1+}+M_{1+})M_{1-}^{*} \right] \right\}$$

$$B_{0} = \frac{|\vec{p}_{\pi}^{*}||W}{MK} - \frac{-q^{2}}{\vec{q}^{*}2} \left\{ |S_{0+}|^{2} + |S_{1-}|^{2} + 4|S_{1+}|^{2} - 4Re(S_{1+}S_{1-}^{*}) \right\}$$

$$A_{1} = \frac{|\vec{p}_{\pi}^{*}||W}{MK} - 2Re\left[E_{0+} (3E_{1+} + M_{1+} - M_{1-})^{*} \right]$$

$$\begin{split} B_{1} &= \frac{\vec{p}_{\pi}^{*} \cdot W}{MK} - \frac{-q^{2}}{q^{*} \cdot 2} \left\{ 2Re\left[S_{0+} \left(4S_{1+} + S_{1-} \right)^{*} \right] \right\} \\ A_{2} &= \frac{|\vec{p}_{\pi}^{*} \cdot |W|}{MK} \left\} - \frac{3}{2} \left[M_{1+} \right]^{2} + \frac{9}{2} \left[E_{1+} \right]^{2} + 9Re\left(M_{1+} E_{1+}^{*} \right) \right] \\ &- 3Re\left[\left(3E_{1+} + M_{1+} \right) M_{1-}^{*} \right] \right\} \\ B_{2} &= \frac{|\vec{p}_{\pi}^{*} \cdot |W|}{MK} - \frac{-q^{2}}{q^{*} \cdot 2} \right\} 12 - S_{1+} \left|^{2} + 12Re\left(S_{1+} S_{1-}^{*} \right) \right\} \\ C_{0} &= \frac{|\vec{p}_{\pi}^{*} \cdot |W|}{MK} \left\} - \frac{3}{2} \left[M_{1+} \cdot \right]^{2} + \frac{9}{2} \left[E_{1+} \cdot \right]^{2} - 3Re\left(M_{1+} E_{1+}^{*} \right) \right] \\ &+ 3Re\left[\left(E_{1+} - M_{1+} \right) M_{1-}^{*} \right] \left\{ \\ D_{0} &= -\frac{\left| \vec{p}_{\pi}^{*} \cdot |W|}{MK} - \left[\sqrt{2} - \frac{-q^{2}}{q^{*} \cdot 2} \right] Re\left[S_{0+} \left(3E_{1+} - M_{1+} + M_{1-} \right)^{*} - E_{0+} \left(2S_{1+} - S_{1-} \right)^{*} \right] \right\} \\ D_{1} &= -\frac{\left| \vec{p}_{\pi}^{*} \cdot W|}{MK} - \left[\sqrt{2} \cdot 6 \right] \sqrt{\frac{-q^{2}}{q^{*} \cdot 2}} \left\{ Re\left[S_{1+} \left(E_{1+} - M_{1+} + M_{1-} \right)^{*} + S_{1-} E_{1+}^{*} \right] \right\} \end{split}$$

(2.5)

Multipolamplituden zeichnen sich durch ein besonders einfaches Schwellenverhalten aus (vgl. z. B. [JON]); in niedrigster Ordnung von $K_{\gamma} = |\vec{q}^*|$ und $K_{m} = |\vec{p}_{m}^*|$ gilt ($K_{\gamma} \cdot K_{m} \ll m_{m}^{2}$) :

• •

$$\begin{array}{c} M_{\ell} & + \\ E_{\ell} & + \\ L_{\ell} & + \end{array} \end{array} \sim K_{\gamma}^{\ell} + K_{m}^{\ell}$$

$$\begin{array}{c} (2.6) \\ M_{\ell+1} & - \\ & \kappa_{\gamma}^{\ell+1} + \kappa_{m}^{\ell+1} \\ E_{\ell+1} & - \\ L_{\ell+1} & - \end{array} \\ \begin{array}{c} (2.6) \\ \kappa_{\gamma}^{\ell-1} + \kappa_{m}^{\ell+1} \end{array} \\ \end{array}$$

$$jedoch \qquad L_{1-} & \sim K_{\gamma} + K_{m} \end{array}$$

In Tabelle 2.1 sind für die aus der πN -Streuung bekannten πN -Resonanzen, die im hier betrachteten W-Bereich der 1. und 2. Nukleonresonanz eine Rolle spielen, die entsprechenden Multipole aufgelistet (Werte nach [PDG]).

² 21, 2J	Masse [GeV]	Breite [GeV]	Multipole
P ₃₃	1.230 bis 1.234	0.11 bis 0.12	M ₁₊ , E ₁₊ , S ₁₊
P11	1.39 bis 1.47	0.18 bis 0.24	M ₁₋ , S ₁₋
D ₁₃	1.51 bis 1.53	0.11 bis 0.15	M ₂₋ , E ₂₋ , S ₂₋
s ₁₁	1.50 bis 1.54	0.05 bis 0.15	E ₀₊ , S ₀₊

Tabelle 2.1: #N-Resonanzen im Bereich der 1. und 2. Nukleonresonanz

Die in der elastischen πN -Streuung mittlerweile gut bestimmten Streuphäsen ϵ_{1J}^{ℓ} für die einzelnen Partialwellen mit Spin J und Isospin I sind mit den Phasen der entsprechenden Multipolamplituden AM in der eN-Streuung über das Watson-Theorem verbunden [WAT] :

$$AM_{\ell\pm}^{I} = |AM_{\ell\pm}^{I}| \cdot exp(i \delta_{IJ}^{\ell})$$

.

ŧ

Allerdings gilt dieses Theorem nur bei voller Elastizität der entsprechenden Streuphase.

Für die in dieser Arbeit vorgestellte Analyse des Endzustands $p\pi^0$ ist das Watsontheorem jedoch nur sehr bedingt nutzbar, da es Aussagen zu Multipolamplituden definierten Isospins macht, der Zustand $p\pi^0$ jedoch kein reiner Isospinzustand ist, sondern Beiträge von I = $\frac{1}{2}$ und I = $\frac{3}{2}$ enthält. Um die Multipole mit definiertem Isospin zu isolieren, müssen die entsprechenden Querschnitte des Endzustands $\pi^+ n$ ebenfalls bekannt sein. Die Daten aus diesem Experiment liegen zwar vor (siehe [GER]), erstrecken sich aus kinematischen Gründen aber nur über einen erheblich kleineren Winkelbereich in Θ_m^* und ϕ , so daß eine Multipolanalyse keinesfalls möglich ist. Zusätzlich tritt hier die Komplikation des π -Austausch-Beitrags auf, der im Kanal $p\pi^0$ wegen der Erhaltung der C-Parität nicht möglich ist. Daher wird in der hier vorgelegten Analyse auf die Nutzung der π^+n - Daten verzichtet. Dementsprechend ist das Watsontheorem nur aussagekräftig, wenn eine Isospinkomponente dominiert, oder die Streuphasen für beide Isospinkomponenten nahe beieinander liegen und die beiden Multipolkomponenten sich nicht gerade kompensieren. 3. Experimenteller Aufbau

Das Experiment wurde am externen Strahl 20 des Synchrotrons durchgeführt. Seine Komponenten sind (Abb. 3.1)

- das Strahlführungssystem, das Wasserstofftarget und die Geräte zur Messung der Primärelektronenintensität
- das Elektronspektrometer zum Nachweis des gestreuten Elektrons
- das Hadronspektrometer zum Nachweis eines geladenen Hadrons in Koinzidenz mit einem gestreuten Elektron.

Da in Arbeiten über frühere Experimente ausführliche Darstellungen der meisten oben genannten Experimentekomponenten existieren, sollen im folgenden nur die für das Verständnis des beschriebenen Experiments nötigen Angaben gemacht werden. Änderungen und Ergänzungen des Experiments werden ausführlicher behandelt. Detaillierte Angaben zu Strahl, Target und Elektronspektrometer finden sich in [GAY], [MAY], die Komponenten des Hadronspektrometers sind in [FRA], [WAG], [FEH], [MER], [GLO], [IRP] näher untersucht.

3.1 Primärstrahl und Target

Die Elektronen werden mit der Methode der langsamen Ejektion aus dem Synchrotron in den externen Strahl 20 ausgelenkt. Durch Überlagerung einer 200 Hz-Komponente zum 50 Hz-Führungsfeld im Synchrotron erreicht man bei einem geforderten Energieband von 2 0 /oo der Sollenergie einen ca. 3 msec breiten ejizierten Elektronenpuls mit konstanter Intensität. Durch diesen "flat top" – Betrieb wurde die maximale Intensität des Synchrotrons für das Experiment nutzbar. Typisch waren 10^{10} Elektronen/Puls.

Das Strahltransportsystem zum Target der Meßapparatur besteht aus 4 Ablenkmagneten und 10 Quadrupolmagneten. Damit erreicht man eine typische Strahlausdehnung von ca. 1.5 mm vertikal und 3 mm horizontal (FWHM) am Target. Strahllage und -breite werden durch einen Zinksulfid-Schirm am Target und einen Streifenmonitor mit 5 mm breiten vertikalen und horizontalen Streifen ca. 15 m hinter dem

Target vor dem Eingang des Faradaykäfigs überwacht. Dadurch ist der Einfallswinkel des Primärstrahls auf ca. 0.25 mrad genau definiert.

Die Energie des Strahls (gegeben durch den Momentanwert des Synchrotron-Magnetstroms) wird dem Experiment über einen Energietaktgeber übermittelt. Damit liegt bis auf Ungenauigkeiten, bedingt durch Strahllageänderungen im Synchrotron und Energieverluste im Strahltransportsystem, sowie die Güte der Eichung des Taktgebers, die Primärenergie jedes einzelnen gemessenen Streuereignisses auf 1 MeV fest. Dieser Energiewert wird zusammen mit dem Zahlenwert eines Zeittaktsignals mit 1 usec – Taktpulsen, beginnend zum Anfang jedes Beschleunigungszyklus, ereignisweise eingelesen und gespeichert. Abb. 3.2 zeigt eine Energie-Zeit-Verteilung guter (d.h. voll rekonstruierter) Streuereignisse während einer Meßdauer von 1 Tag.

<u>Abb. 3.2</u>: Energie-Zeit-Verteilung guter Streuereignisse während einer Meßdauer von 1 Tag

Die Zahl der Primärelektronen wird mit Hilfe eines Faradaykäfigs und eines Sekundäremissionsmonitors (SEM) bestimmt. Da der Faradaykäfig die hohen benutzten Intensitäten im Dauerbetrieb nicht verträgt, wurde zur Messung der SEM, der ein zur durchtretenden Ladung proportionales Signal liefert, benutzt und ca. alle 4h gleichzeitig mit SEM und Faradaykäfig gemessen. Das Verhältnis SEM-Wert/

.

- 19"-

Faraday-Wert blieb auf 1 % konstant. Als Unsicherheit für die Ladungsmessung sind insgesamt 2 % anzumehmen.

Als Target wurde 12 cm flüssiger Wasserstoff bei 0.4 at Dampfdruck verwendet, entsprechend 5.304 - 10²³ Protonen/cm². Die Targetzelle besteht aus 75 um dicker Kapton-Polyimidfolie und hat die Form eines 5 cm dicken Zylinders mit Kugelkalotten als Endkappen. Die Länge der Zelle wurde bei Betriebsdruck auf 0_1 mm genau bestimmt.

3.2 Elektronspektrometer

Um den Viererimpuls des gestreuten Elektrons festzulegen, benötigt man eine Nachweisapparatur, die sicher Elektronen gegen andere Teilchen - insbesondere gegen Pionen - diskriminieren kann und den Dreierimpuls des Elektrons mißt. Dazu wird ein doppelt fokussierendes magnetoptisches System aus 2 Quadrupolund 2 vertikal ablenkenden Dipolmagneten in Verbindung mit drei Szintillationszählerhodoskopen für Impuls- und Richtungsmessung benutzt. Die Teilchenidentifikation erfolgt mit einem gasgefüllten Schwellencerenkovzähler und einem Sandwichschauerzähler; zur Definition einer Masterkoinzidenz dient außerdem ein Triggerzähler (s. Abb. 3.1). Der ganze Aufbau befindet sich auf einer um das Target drehbaren Lafette, mit der Winkel der Spektrometerachse zum Primärstrahl zwischen 15° und 57° einstellbar sind. Zur Abschirmung gegen elektromagnetischen Untergrund ist das ganze Spektrometer mit 20 bis 30 cm Eisen rundherum abgeschirmt.

Abb. 3.3 a - c demonstrieren das Prinzip der verwendeten Optik (gezeigt wird der besseren Übersicht wegen die Ablage vom mittleren akzeptierten Impuls).

a) Das System besitzt

einen Winkelfokus für monochromatische Teilchen in der Horizontalebene. An dieser Stelle befindet sich das sechsteilige 0-Hodoskop zur Messung des Horizontalwinkels (Abb. 3.3 b). Die Verschmierung des Fokus durch die endliche Impulsakzeptanz ist klein gegen die Auflösung. Dieser Fokus ist unabhängig vom Ausgangspunkt des gestreuten Elektrons längs der Targetachse, so daß – aus Intensitätsgründen nötige – lange Targets (hier 12 cm) verwandt werden können.

a) in der Vertikalebene für 3 Winkel und 5 Impulse b) in der Horizontalebene für ausgedehntes Target, 3 Impulse, 2 Winkel
 c) in der Vertikalebene für ausgedehntes Target, 3 Winkel, 2 Impulse

- b) In der Vertikalebene existiert für jeden Impuls ein (vergrößertes) Bild des Targets, die Orte dieser Bilder liegen wegen der starken chromatischen Aberration auf einer ca. 6° gegen die optische Achse geneigten Kurve. Mit den 40 Szintillationszählern des <u>PQ-Hodoskops</u> ist diese Kurve in 20 Impulskanäle geteilt (Abb. 3.3 a), der Kanal N ist durch eine Koinzidenz zwischen den Zählern P_N und Q_N definiert (Abb. 3.4). Die vertikale Größe des Targetbildes geht in die Impulsauflösung ein (Abb. 3.3 c), daher ist die vertikale Ausdehnung des Primärstrahls so klein wie möglich zu halten.
- c) Da kein vertikaler Winkelfokus existiert, ist die Bestimmung des Vertikalwinkels mit dem ϕ -Hodoskop (16 Szintillationszähler) nur in Verbindung mit dem PQ-Hodoskop möglich (Abb. 3.3 a).

Die Teilchenidentifikation erfolgt durch einen mit Kohlendioxyd von 1.3 at Druck gefüllten Schwellencerenkovzähler. Das von den Elektronen im Gasvolumen erzeugte Licht wird auf einen Photomultiplier des Typs 58 UVP (Valvo) fokussiert. Pionen erzeugen erst oberhalb 4.2 GeV Cerenkovlicht. Die Ansprechwahrscheinlichkeit des Zählers für Elektronen ist > 0.998.

Außerdem wird mit einem Sandwich-Schauerzähler geprüft, ob das durch das Spektrometer fliegende Teilchen den für Elektronen typischen elektromagnetischen Schauer in dichter Materie entwickelt. Dazu werden 6 Szintillatorplatten, zwischen die Bleiplatten von je einer Strahlungslänge gestellt sind, von 4 Photomultipliern gleichzeitig gesehen.

Für die Definition eines Elektron-Mastersignals (vgl. Kapitel 3.4) wird ein weiterer, aus 2 Hälften bestehender Szintillationszähler als Triggerzähler benutzt.

Tabelle 3.1 gibt abschließend einige Hodoskopdaten und -akzeptanzen an. Die Auflösungen sind der Monte-Carlo-Simulation des Experiments entnommen und geben typische Werte der vorliegenden Messungen an.

Abb. 3.4 : Schematische Anordnung der Zähler im PQ-Hodoskop

Hodoskop:	ф	O	PQ
Zählerlänge [mm]	184	221	259 - 303
Zählerbreite [mm]	10	28	25
Zählerdicke [mm]	3	3	2
Elementzahl	16	6	20
Gesamtakzeptanz	±29[mrad]	±8.1[mrad]	±5 % (<u>Δp</u>)
phys. Auflösung	4[mrad]	2.75[mrad]	0.52 %

3.3 Hadronspektrometer

Zum Nachweis eines geladenen Teilchens in zeitlicher Koinzidenz mit dem gestreuten Elektron dient das Hadronspektrometer (Abb. 3.1 und 3.5), Um den Prozeß der Einfach-Meson-Produktion von inelastischen Beiträgen (Mehrfach-Meson-Produktion) abtrennen zu können, genügt es, Richtung, Impuls und Masse eines gestreuten Hadrons zu bestimmen und dann die fehlende Masse ("missing mass") zu berechnen. In diesem Experiment geschieht die Messung mit einem nicht fokussierenden Magnetspektrometer durch Ablenkung des geladenen Hadrons mit einem Dipolmagneten und nachfolgende zweimalige Ortsmessung.

Da die hier untersuchten Prozesse $\gamma_{v}p \rightarrow \pi^{0}p$, $\gamma_{v}p \rightarrow \pi p$, $\gamma_{v}p \rightarrow \pi^{+}n$ in großen Teilen des akzeptierten Bereiches kinematisch nicht getrennt sind, benötigt man außerdem eine Unterscheidung von π^{+} und p. Dazu wird die Flugzeit des Hadrons gemessen; bei nicht zu großen Impulsen reicht die erzielte Zeitauflösung aus, um die relativistischen π^{+} von den langsameren p zu trennen. Für höhere Impulse ist zur Trennung ein Schwellencerenkovzähler in das Hadronspektrometer eingebaut worden, der nur auf π^{+} anspricht.

Zur Abschirmung gegen elektromagnetischen Untergrund ist das ganze Spektrometer ebenfalls mit 20 - 30 cm Eisen rundum abgeschirmt. Mit der fahrbaren Lafette, auf der das Spektrometer aufgebaut ist, lassen sich Winkel von 24° bis 70° der Spektrometerachse zum Primärstrahl einstellen.

3.3.1 Ablenkmagnet

Der 45 t schwere Dipolmagnet besitzt ein im Innern weitgehend homogenes Magnet-

.

feld von maximal 1.92 T und eine integrierte magnetische Länge von 1343 mm. Die Apertur beträgt 140 x 480 mm² am Eingang und 280 x 1360 mm² am Ausgang. Diese großen Öffnungen bewirken eine nicht zu vernachlässigende horizontale Fokussierung der Trajektorien. Daher wurde das gesamte Magnetvolumen bis weit vor die Spiegelplatten mit einer Hallsonde vermessen und für die Auswertung eine Feldmatrix erstellt.

Vor dem Magneteingang kann mit einer 20 cm dicken Bleiblende die vertikale Akzeptanz nach oben eingeschränkt werden und so der Bereich mit direkter Sicht in den Hodoskopen H1 und H2 verkleinert werden.

3.3.2 Proportionaldrahtkammern

Die erste Ortsbestimmung hinter dem Ablenkmagneten erfolgt wegen der guten räumlichen Auflösung mit einem Proportionaldrahtkammerpaket (H1). Es besteht aus 3 unabhängigen Kammern mit je einer Signaldrahtebene (736 $20_{\rm L}$ -Wolframdrähte, vergoldet, 2 mm Drahtabstand) und zwei Hochspannungsebenen ($60_{\rm U}$ -Wolframdraht, vergoldet, 1 mm Drahtabstand). Die Signaldrähte der 1. Kammer verlaufen horizontal, die der 2. und 3. Kammer um + 5⁰ bzw. - 5⁰ dazu geneigt. Damit wird eine Ortsauflösung von 0.7 mm vertikal und 8 mm horizontal (FWHM) erreicht auf einer empfindlichen Fläche von 380 x 1460 mm.

Als Gasgemisch hat sich anstelle der gebräuchlichen CH_4/CO_2 - Gemisch ein 0.32 % AR - 31,68 % Ne - 68 % CO_2 - Gemisch bewährt. Es verunreinigt die Kammern bei Entladungen wesentlich weniger und ist unempfindlicher gegen weiche γ -Strahlung.

3.3.3 Szintillationszählerhodoskop

In etwa 7 m Entfernung erfolgt die zweite Ortsbestimmung auf der Trajektorie mit dem Hodoskop H2 (Abb. 3.5). Es besteht aus 15 vertikal ortsauflösenden Kammern mit einer empfindlichen Fläche von jeweils 300 x 800 mm (H x B), dahinter befinden sich 16 Triggerzähler gleicher Größe, jedoch um eine halbe Kammerhöhe versetzt, so daß 1 Triggerzähler je 2 Kammern zur Hälfte überdeckt. Den Aufbau einer Kammer und des dazugehörigen Triggerzählers zeigt Abb. 3.6. Eine Kammer besteht aus 4 5 mm dicken Szintillationszählern mit je einem Photomultiplier ("Graycodezähler"). Durch die unterschiedliche Anordnung von Szintillationsmaterial und Lücken in jedem Graycodezähler wird die vertikale Koordinate in 30 Kanäle von 1 cm Breite zerlegt; jeder Kanal ist eindeutig durch die jeweils getroffenen der 4 Graycode-Zähler und den getroffenen Triggerzähler dahinter bestimmt.

Die Triggerzähler aus 1 cm dickem Szintillationsmaterial sind an beiden Enden mit einem Photomultiplier ausgerüstet. Durch Messung der Differenz der Lichtlaufzeiten vom Durchtrittsort des Teilchens bis zum rechten bzw. linken Photomultiplier läßt sich nach einer Ort-Zeit-Eichung der horizontale Ort des Teilchens auf ca. 4.8 cm (σ) genau bestimmen. Zur Kontrolle der Stabilität dieser horizontalen Ortsbestimmung während des Experiments befinden sich am Szintillatorrand rechts und links 2 Leuchtdioden, deren Lichtpulse Teilchendurchgänge an zwei festen Orten simulieren.

Die Messung der Flugzeit im Hadronspektrometer erfolgt ebenfalls mit den Triggerzählern.

3.3.4 Cerenkovzähler

Der gasgefüllte Cerenkovzähler hinter dem Hodoskop H2 hat die Aufgabe, p und π^* mit Impulsen oberhalb der Grenze für die Trennung über Flugzeitmessung zu identifizieren. Dies geschieht durch Wahl eines Brechungsindex im Radiatorgas, bei dem p unterhalb, π^+ aber oberhalb der Schwelle für die Erzeugung von Cerenkovlicht liegen.

Abb. 3.5 und 3.6 zeigen den Aufbau des Zählers (ausführliche Untersuchungen zur Auslegung des Zählers finden sich in [HAI]). Die Fokussierung des erzeugten Cerenkovlichts auf die Kathoden der 6 Photomultiplier erfolgt mit 6 gleichartigen Optikeinheiten: Ein Kugelspiegel (Krümmungsradius 1425 mm) fokussiert das auf ihn fallende Cerenkovlicht auf den Eingang eines Lichtkollektors (Schrägparaboloid nach [WIN]), an dessen Ausgang sich das konische Quarzglasdruckfenster und nachfolgend die Kathode des Photomultipliers befindet. Vor der Fokussierung wird das Cerenkovlicht mit dem rückwärtigen Spiegel umgelenkt, da

sonst die Photomultiplierstutzen hinter dem Hodoskop H2 keinen Platz gefunden hätten. Dieser Spiegel ist ebenfalls als Kugelspiegel ausgelegt, um die Divergenz der Teilchentrajektorien vom Target auszugleichen. Alle Spiegel sind aus aluminiumbedampftem Plexiglas hergestellt. Die 6 Optikeinheiten sind optisch nicht getrennt, so daß Licht von einem Teilchen auf mehrere Photomultiplier gelangen kann.

Für die Wahl des Radiatorgases waren gute UV-Transparenz, hoher Brechungsindex und einfache Handhabung entscheidend. Benutzt wurde das in einem DESY-internen Rohrnetz verfügbare nicht brennbare Frigen 13 bei einem Druck von 9 kp/cm². So erhält man einen Brechungsindex von n = 1.007 und folgende Schwellenimpulse:

$$p_{\pi} = 1.18 \text{ GeV}$$

 $p_{K} = 4.16 \text{ GeV}$
 $p_{D} = 7.92 \text{ GeV}.$

Als Photomultiplier sind Röhren vom Typ RCA 8854 eingebaut, die gute UV-Empfindlichkeit bis hinunter zu Wellenlängen von 220 nm bieten und mit einer besonders hoch vervielfachenden 1. Dynode ausgerüstet sind. Dadurch läßt sich der 1-Photoelektron-Peak gut von Signalen mit mehreren Photoelektronen unterscheiden, wie Tests mit Leuchtdioden-Lichtpulsen ergaben (Abb. 3.7). Als optisches Kontaktmittel zwischen Photomultiplier und Quarzdruckfenster wird das Silikonfett Dow Corning 200 fluid ([DOW]) wegen seiner guten UV-Transparenz verwandt.

Der Cerenkovzähler wurde am Strahl 26 des DESY – einem weitgehend monochromatischen e⁻-Strahl niedriger Intensität – mit 2 GeV Elektronen getestet.

Abb. 3.8 zeigt das Zählersignalspektrum bei einem Druck von 3.5 kp/cm² entsprechend einem Brechungsindex n = 1.00265 im Frigen 13 und damit $\sin^2 \Theta_c = 5.3 \cdot 10^{-3}$ (dieser Cerenkovwinkel und damit die vom Elektron erzeugte Cerenkovlichtmenge entsprechen den Verhältnissen bei π^+ mit 1.5 GeV Impuls und einem Brechungsindex n = 1.007 im Radiatorgas). Ereignisse mit in dem Zählermaterial aufgeschauerten Elektronen sind unterdrückt mit Hilfe eines großflächigen Szintillationszählers hinter dem Cerenkovzähler, der nur ein Signal entsprechend einem minimal jonisierenden Teilchen zeigen darf.

In Abb. 3.9 ist die Abhängigkeit des Zählersignals vom Brechungsindex im Radiatorgas dargestellt bei Einschuß ungefähr in der Mitte einer optischen Einheit. Der feste Ort war so gewählt, daß die mittlere Zahl der Reflexionen für ein Cerenkovphoton bis zur Photokathode ungefähr konstant blieb bei den verschiedenen Cerenkovwinkeln. Wegen des gut meßbaren 1-Photoelektron-Peaks läßt sich die Amplitude jedes Photomultipliers direkt in Photoelektronen umrechnen. Abb. 3.9 zeigt daher die mittlere Zahl der erzeugten Photoelektronen als Funktion von n-1 ($\approx \frac{1}{2} \sin^2 \theta_r$ für Brechungsindices n nahe 1, $\vartheta_r =$ Cerenkowinkel).

Für die Zahl $\rm N_{_{\rm Y}}$ der erzeugten Cerenkovphotonen pro Weglänge z im Radiator gilt:

$$\frac{N_{\gamma}}{2} = 2\pi + \alpha + Z^{2} + (\frac{1}{\lambda_{\min}} - \frac{1}{\lambda_{\max}}) + \sin^{2}\Theta_{c}$$

$$\alpha = \frac{e^{2}}{\hbar c}$$

$$Z = Ladung des Teilchens$$

$$\lambda_{\min, \max} = Wellenlängenbereich des Lichts$$

Diese Beziehung spiegelt sich gut in dem Meßergebnis wieder. Für den empfindlichen Wellenlängenbereich des Photomultipliers von 220 nm bis 650 nm erhält man

$$\frac{N_{\gamma}}{\ell \circ \sin^2 \varepsilon_c} = 1379 \text{ cm}^{-1}$$

während man für die Zahl der erzeugten Photoelektronen $\rm N_{\rm PF}$ aus Abb. 3.9

$$\frac{N_{PE}}{\ell \circ \sin^2 \theta_c} = 56 \text{ cm}^{-1} \qquad (\ell = 67 \text{ cm})$$

entnimmt, d. h. es wurde ein mittlerer Überführungsfaktor N_{PE}/N_y = 0.041 erreicht. Diese Zahl ist als mittlerer Wert für den Zähler zu sehen, da sie noch etwas von der Lage der Teilchentrajektorie im Zähler und vom Cerenkovwinkel abhängt.

Für Pionen von 1.5 GeV erhält man bei einem Betriebsdruck des Zählers von 9 kp/cm² ($\varepsilon_c = 4.18^{\circ}$) demnach im Mittel 20 Photoelektronen bei einer Weglänge von 67 cm, für den kürzesten Gasweg im Zähler (am Rand) von 47,5 cm bleiben immer noch 14 Photoelektronen, so daß man einen sicheren Nachweis der Pionen erwarten kann. Unterhalb dieses Impulses reicht die Trennung über die Flugzeitmessung aus.

Da der Cerenkovzähler auch als Antizähler benutzt wird, um π^+ -Kontaminationen bei den Protonen zu unterdrücken, ist es wichtig sich zu vergewissern, daß Protonen nicht über Anstoßelektronen Licht im Cerenkovzähler erzeugen. Aus dem Schwellenimpuls für Elektronen und der Beziehung zwischen maximaler Energie des angestoßenen Elektrons und dem Impuls des stoßenden Protons erhält man bei n = 1.007 einen "Schwellenimpuls" P_{S,A} des Protons für Erzeugung von Cerenkovlicht durch Anstoßelektronen P_{S,A} = 5.6 GeV, also weit oberhalb des betrachteten Impulsbereichs.

3.3.5 Akzeptanz und Auflösung

Die horizontale Akzeptanz des Hadronspektrometers wird bei hohen Impulsen durch die Triggerzähler in H2 bestimmt und beträgt 114 mrad. Bei kleinen Impulsen (< 1 GeV) bewirkt die dann merkliche horizontale Fokussierung ein geringfügiges Anwachsen der Akzeptanz, die dann von der horizontalen Magnetöffnung begrenzt wird.

Vertikalwinkel- und Impulsakzeptanz sind voneinander abhängig. Abb. 3.10 gibt als Beispiel die Akzeptanz einer Einstellung zu den Messungen mit Impulsübertrag $Q^2 = 3 \text{ GeV}^2$. Die obere Grenze der Vertikalwinkel ist durch die Stellung der Blende vor der Magnetöffnung bedingt.

Die Impuls- und Winkelauflösung ist bedingt durch die Auflösung in den Hodoskopen, Vielfachstreuung und die Unkenntnis des Targetorts, da aus der Information des Elektronspektrometers nicht der Vertex bestimmt werden kann. Dadurch

н

variiert die Auflösung über die Akzeptanz und auch mit dem Winkel des Hadronspektrometers. Typische Werte in den vorliegenden Messungen sind:

Impulsauflösung $\Delta P = 1.5$ bis $2 \approx$ Vertikalwinkelauflösung $\Delta V = 3$ bis9 mradHorizontalwinkelauflösung $\Delta H = 7$ bis10 mrad

3.4 Elektronik und Datennahme

Die Elektronik des Experiments läßt sich in 3 Teile gliedern:

- die schnelle Logik zur Ereignisdefinition (Triggerbedingung) und Erfassung der digitalen Ereignisinformation (angesprochene Hodoskopkanäle)
- 2) die langsame Elektronik für die analoge Ereignisinformation (Amplituden- und Zeitinformation eines Teils der Photomultiplier) und für die Einlese der gesamten Ereignisinformation in einem Prozeßrechner
- die Kontrollelektronik: Z\u00e4hler f\u00fcr wichtige Z\u00e4hlraten, Oberwachung von Versorgungsspannungen und der sonstigen Komponenten des Experiments.

Die Elektronik des Elektronspektrometers ist in Abb. 3.11 dargestellt. Das Triggersignal EM'für ein Streuereignis wird aus der Koinzidenz des Cerenkovzählersignals mit dem aus beiden Triggerzählerhälften linear gemischten Signal gebildet. Die Koinzidenzauflösung beträgt 20 nsec, zeitbestimmend ist der Cerenkovzähler. Diese relativ lose Triggerbedingung ist möglich durch die sehr wirksame Eisenabschirmung des Elektronspektrometers, so daß praktisch keine elektronischen Totzeiten in den Zählern des Elektronspektrometers auftreten und auch die Zufälligenraten sehr klein bleiben. Anderenseits werden so detaillierte Untersuchungen des Verhaltens der übrigen Zähler möglich.

Das Signal EM' setzt ein schnelles Flip-Flop, aus dessen Ausgangssignal der Elektronmaster EM gewonnen wird, der dann als Gate für sämtliche übrigen Signale des Experiments dient. Erst nach dem Reset dieses Flip-Flops durch die Ausleseelektronik kann durch eine neue Koinzidenz EM' ein neuer EM erzeugt werden und somit neue Ereignisinformation in die Speicher gelangen.

Das Ansprechen von Zählern der G-, ϕ - und PQ-Hodoskope wird in Koinzidenzregistern mit einer Zeitauflösung von 20 nsec zum EM registriert. Die Signalgrößen des CerenkovzählersC, der beiden Triggerzählerhälften T₁ und T₂, der vier Schauerzähler-Photomultiplier S_{1...4} und der 16 ϕ -Zähler werden mit Analog-Digital-Wandlern(ADC) gemessen, außerdem wird mit einem Zeit-Digital-Wandler (TDC) die Zeitdifferenz zwischen C und T₁ bzw. T₂ gemessen, so daß jederzeit die zeitliche Abstimmung der Masterkoinzidenz überprüft werden kann. Auch in allen ADC und TDC dient EM als Gatesignal.

In Abb. 3.12 ist die Elektronik des Hadronspektrometers dargestellt (stellvertretend für einen Triggerzähler im Hodoskop H2 und einen Signaldraht in der Proportionaldrahtkammer H1).

Der Impuls eines angesprochenen Signaldrahts in H1 gelangt über Vorverstärker und Hauptverstärker auf einen Schmitt-Trigger, dessen Ausgangsimpuls elektronisch um 300 nsec verzögert wird. Eine Koinzidenz mit dem EM-Signal setzt ein Flip-Flop. Die elektronische Realisierung der Verzögerung, um die zur Bildung und Übertragung des EM benötigte Zeit auszugleichen, führt zu Totzeiten von ca. 420 nsec, so daß bei hohen Einzeldrahtzählraten (z. B. im Bereich der direkten Sicht zum Target) merkliche Nachweisverluste in den einzelnen Ebenen der Kammer H1 entstehen (in den vorliegenden Messungen bis zu 7 %).

Im Hodoskop H2 dient eine Koinzidenz TE aus linkem und rechtem Triggerzählermultiplier-Signal und EM als Gate für Koinzidenzregister, in denen angesprochene Kammerzähler der vom Triggerzähler Überdeckten beiden Kammerhälften registriert werden. Wegen der unterschiedlichen Flugzeiten von Protonen und Pionen vom Target bis zum Hodoskop (7 m) muß die Koinzidenzauflösung zwischen Triggerzähler und EM auf ca. 60 nsec verbreitert werden. Die Koinzidenzregister der einzelnen Kammern besitzen ≥ 1 - Ausgänge (logische 1, wenn mindestens ein koinzidenter Kammerzähler vorlag), deren logisches OR den Hadronmaster HM definiert. Er zeigt eine Koinzidenz zwischen EM und mindestens einem H2-Kanal im Hadronspektrometer an.

Die Messung der Lichtlaufzeit im Triggerzähler zur horizontalen Ortsbestimmung erfolgt in einem TDC mit den beiden Photomultipliersignalen als Start- bzw. Stoppuls. Ein weiteres TDC mit EM als Startpuls und TE (in dem der rechte Triggerzähler-Photomultiplier zeitbestimmend ist) als Stoppuls mißt die Flugzeit des koinzidenten Hadrons. Jeder Triggerzähler-Photomultiplier besitzt einen

4.

. . .

- 29 -

eigenen ADC zur Messung seiner Pulshöhe, ebenso die 6 Photomultiplier des Gerenkovzählers im Hadronarm. Alle diese ADC und TDC benutzen HM als Gate.

Jeder Hadronmaster (der ja EM enthält), startet die Auslese der gesamten Information des Ereignisses aus Koinzidenzregistern, ADC und TDC in den ProzeBrechner vom Typ PDP-8 (Fa. DEC) über eine spezielle Ausleseelektronik. Ein Elektronmaster EM ohne Hadronmaster, d. h. ohne Koinzidenz im Hadronarm, startet die Auslese nur mit einer wählbaren Untersetzung 1 : N. In allen N-1 Fällen dazwischen wird nur ein Reset für alle Datenregister generiert und nach einer Zeit, die zur Beendigung der Konversion in den ADC und TDC ausreicht, die Datennahme wieder freigegeben. So mißt man neben der Koinzidenz- auch die Elektron-Einarmrate, vermeidet aber bei hohen Einarmraten Totzeitverluste durch die hohen Auslesezeiten von bis zu einigen 100 usec.

Neben dieser Registrierung von Streuereignissen werden fortlaufend während eines Meßblocks die Zählraten der wichtigsten Zähler im Elektronspektrometer (C, T_1 , T_2 , S_1 ...4, einige Hodoskopzähler) sowie die Raten von EM und EM' registriert, ebenso die Raten ausgewählter Zähler in H2. Die Rate einer verzögerten Koinzidenz von C und $T_1 + T_2$ liefert den zufälligen Anteil in EM', das Verhältnis der Raten von EM und EM' liefert die Totzeit 1- EM/EM', während der die Apparatur unempfindlich war. Während der Anteil der Zufälligen und die Totzeit in EM' zu vernachlässigen ist, muß auf die Totzeit des EM von typisch 5 % (bedingt durch Auslesezeit oder Ausfälle) korrigiert werden, da während dieser Zeit die Ladungsintegratoren weiterlaufen. Diese Zählerstände sowie die Stände der Integratoren von Faraday-Käfig und SEM und digitalisierte Werte von Versorgungsspannungen werden während und am Ende eines Meßblocks in die PDP-8 eingelesen.

Die Abspeicherung der Daten erfolgt über eine On-line Verbindung der PDP-8 zur Großrechenanlage IBM 370/168, wo die Daten auf Magnetband geschrieben werden. Ein Analyseprogramm in der IBM bereitet aus den transferierten Daten ständig Histogramme und Zahlenwerte, die zur PDP-8 zurückgeschickt werden und dort Aufschluß über das Funktionieren aller Komponenten des Experiments geben.

Zur weiteren Kontrolle unabhängig von Streudaten sind in sämtliche Photomultiplier und in die Triggerzähler-Szintillatoren Leuchtdioden eingebaut, die aus einer Pulsquelle über ein passives Verteilernetzwerk in den Spillpausen mit einer Rate von C.1 Hz betrichen werden und ein Ereignis in allen Hodoskopen (bis auf H1) simulieren. Wegen der starren Zeitbeziehung und konstanten Pulshöhe erlauben sie neben der Funktionskontrolle der Zähler auch die Kontrolle der Zeit- und Pulshöhenmessung in ADC und TDC während der Datennahme. Speziell zur Oberwachung der Ort-Laufzeit-Beziehung in den Triggerzählern des Hodoskops H2 sind am rechten und linken Rand des Szintillators Leuchtdioden eingebaut, die abwechselnd betrieben werden, so daß zwei Punkte auf der Eichgeraden ständig überwacht werden. Diese Ort-Zeitbeziehung erwies sich als sehr stabil.

Die "Leuchtdiodenereignisse" werden unter Kennzeichnung ebenfalls auf das Ereignis-Magnetband geschrieben, so daß auch später Fehler in den Daten erkannt und korrigiert werden können.

- 30 -

4. Messungen

4.1 Elastische Tests und Eichungen

Wegen ihrer definierten Kinematik und gut bekannten Eigenschaften im betrachteten Bereich eignet sich die elastische ep-Streuung hervorragend für apparative Tests und Eichungen. In ausführlichen elastischen Messungen während früherer Experimente ([GAY], [MAY]) wurden durch Vergleiche mit der Monte-Carlo-Simulation des Experiments geometrische Akzeptanzen und Eigenschaften der Spektrometer ermittelt, so daß diese als bekannt vorausgesetzt werden können.

In diesem Experiment wurde die Messung der elastischen Streuung für folgende Zwecke eingesetzt:

- Oberprüfen der Zähler und der magnetischen Komponenten
- Oberprüfen der zeitlichen Einstellung des Hodoskops H2 zum E-Mastersignal
- Oberprüfen der Funktion der Proportionaldrahtkammer und zeitliche Einstellung zum E-Master-Signal
- Eichung der horizontalen Ortsmessung in H2
- Korrektur der kinematischen Parameter Primär- und Sekundärenergie sowie effektives Magnetfeld B_{eff} im Hadronspektrometer

Vor Beginn jedes Meßblocks wurde nach der Funktionsprüfung aller Zähler und der Elektronik die zeitliche Einstellung aller Koinzidenzen innerhalb der beiden Spektrometer kontrolliert. Mit elastischen ep-Ereignissen wurden die Koinzidenzen zwischen Elektronmaster-Signal und den einzelnen Triggerzählersignalen im Hadronspektrometer überprüft. Da der Impuls der elastischen Protonen sowie die Entfernung der Triggerzähler zum Target bekannt sind, kann so sichergestellt werden, daß in der inelastischen Messung von den relativistischen π^+ bis zu den langsamsten akzeptierten Protonen alle vorkommenden Zeiten innerhalb der Koinzidenzauflösung liegen. Die gleichen Anforderungen gelten für die Koinzidenzen der Proportionaldrahtkammer-Signale mit dem Elektronmaster-Signal. Zur Kontrolle der Nachweiswahrscheinlichkeit und des zeitlichen Abgleichs wurde für verschiedene Hochspannungen eine Verzögerungskurve der Kammerkoinzidenzen aufgenommen, bei der das Elektronmaster-Signal definierter Breite schrittweise verzögert wurde und jeweils die Nachweiswahrscheinlichkeit für elastische Protonen gemessen wurde (Abb. 4.1).

Die Forderung nach einem ausreichend breiten Plateau mit hoher Nachweiswahrscheinlichkeit (> 99 %), in dem alle nachzuweisenden Hadronen der inelastischen Messung zeitlich Platz finden, legten dann verwendete Hochspannung sowie Zeit und Breite des Elektronmastersignals in den Koinzidenzen fest.

Die Bestimmung des horizontalen Orts in den Triggerzählern des Hodoskops H2 über die Messung der Lichtlaufzeit t erfordert eine Eichung zur Festlegung der Ort-Zeit-Beziehung. Diese wird bei festem Elektronspektrometer durch Messung der koinzidenten elastischen Protonen unter drei Winkeln des Hadronspektrometers gewonnen.

- 34 -

Da für die Start- und Stopsignale vom rechten bzw. linken Trigger-Photomultiplier Schwellen-Diskriminatoren verwandt werden, verbessert eine Korrektur der gemessenen Zeit t auf die gleichzeitig gemessenen Amplituden A_L , A_R der Photomultiplier die Zeit- und damit die Ortsauflösung. Unter der Annahme einer linearen Ort-Zeitund Zeit-Amplituden-Abhängigkeit wird ein linearer Fit

 $y_{ijk} = c_1 \cdot t + c_2 \cdot A_1 + c_3 \cdot A_R$

an die gemessenen elastischen Koinzidenzdaten der drei Winkeleinstellungen gemacht. Dabei wird für jede Zählerkombination (o_i , ϕ_j , PQ_k) im Elektronarm, die elastische Ereignisse enthält, anhand von Monte-Carlo-Rechnungen der zugehörige mittlere horizontale Ort y_{iik} der Protonen in H2 festgelegt.

In Abb. 4.2 ist die Differenz Δy zwischen dem aus dem Fit errechneten Ort y und dem durch das elastisch gestreute Elektron gegebenen Ort y_{ijk} des zugehörigen Protons als Funktion von y_{ijk} dargestellt. Die erzielte Auflösung σ variiert von Zähler zwischen 4 und 5.5 cm, Fängt jedoch praktisch nicht vom horizontalen Ort im einzelnen Zähler ab.

Zu jeder inelastischen Setzung wurde nach Einstellung der Primärenergie $E_{\rm e}$ des Strahls, des Elektronspektrometer-Impulses $F_{\rm e^{i}}$ und des Hadronspektrometermagnetstroms auf die Werte der inelastischen Messung nur durch Verändern der beiden Spektrometerwinkel elastische ep-Koinzidenzen bei diesen Energien gemessen.

Aus den Gleichungen für die elastische Streuung erhält man dann für $\rm E_{g}$ und $\rm E_{g'}$ die Beziehung

$$E_{e^{+}} = \frac{E_{e}}{1 + \frac{E_{e}}{m_{p}}} (1 - \cos e_{e})$$
(4.1)

Da der elastische Peak für einen festen O-Zähler noch mehrere PQ-Kanäle überdeckt, kann man trotz der größeren Impulsakzeptanz der PQ-Kanäle (0.5 % des Spektrometersollimpulses) die obige Beziehung auf ca. 1 ^O/oo genau überprüfen und zur Ermittlung von Korrekturfaktoren an die Primärenergie (ereignisweise bestimmt durch den Energietaktgeber) bzw. den Elektronspektrometer-Soliimpuls benutzen. Die Meßgenauigkeit des Elektronwinkels ($\Delta e_e = \pm 0.02^{\circ}$) geht bei der benutzten Kinematik nur mit $\approx 0.4^{\circ}$ /oo in E_a ein.

Ebenso erhält man aus den gemessenen und berechneten Protonimpulsen einen Korrekturfaktor für das effektive Magnetfeld B_{eff} des Protonspektrometers. Die Größenordnung der Korrekturen beträgt für E_e bzw. E_{e'}einige ⁰/oo, für B_{eff} etwa 1.5 >.

Die endgültige Aufteilung der Korrekturen auf E_e , $E_{e'}$ und B_{eff} – die ja nicht unabhängig voneinander sind – erfolgt anhand der inelastischen Daten mit Hilfe der "missing-mass"-Zwangsbedingung für die hadronischen Endzustände e^{-0} , $e^{+}n$, pr. Dazu wird durch Variation der Korrekturfaktoren die χ^2 -Summe $(m_\chi^2 - m_\chi^2)/a_{m\chi}^2$ für alle Ereignisse aus einem schmalen Bereich um den entsprechenden missingmass-peak m_ao, m_n bzw. m_n minimiert. Die Abweichung der Korrekturfaktoren von den Werten der elastischen Eichung, insbesondere von Gl. (4.1) werden mit einem Gewicht entsprechend ihrer Meßgenauigkeit ebenfalls entsprechend in χ^2 berücksichtigt. Die Mittelwerte $m_{\chi_1}^2$ sind dabei aus der Monte-Carlo-Simulation des jeweiligen Kanals entnommen.

So wird für jede inelastische Messung der wahrscheinlichste Wert für obige Korrekturfaktoren ermittelt.

- 33 -

4.2 Inelastische Messungen

Die inelastischen Messungen wurden in drei Meßblöcken durchgeführt. Die apparative Einstellung in den vier Messungen war von folgenden Gesichtspunkten geprägt:

- Messung bei möglichst kleinem Elektronstreuwinkel und damit großem Polarisationsparameter ε , um einen großen Flußfaktor Γ_+ für virtuelle Photonen zu erreichen (s. Gl. 2.1).
- Gute Raumwinkelakzeptanz $\Delta \Omega_m^*$ im Kanal p_π^0 im Bereich der 1. Resonanz für Q² = 3 GeV², um eine Multipolanalyse durchführen zu können.
- Gute Akzeptanz in $\cos \sigma_m^*$ und einen gewissen Teil in ϕ_m im Bereich der 2. Resonanz für Q² = 2 und 3 GeV² in den Kanälen $p\pi^o$ und p η .
- Ausdehnung der Messungen auf die 3. Resonanz bei $\varphi_m \approx 90^0$ für Q^2 = 2 und 3 $\text{GeV}^2.$
- Akzeptanz des Vorwärtsbereichs im Kanal $\pi^{\dagger}n$.

Zusätzliche Randbedingungen waren die maximale Primärenergie von 7.5 GeV des Synchrotrons und der maximale Elektron-Spektrometerimpuls (Sollwert) von 4.5 GeV.

Praktische Erfahrungen sprachen für einen gewissen Abstand von diesen Grenzen. Tab. 4.1 gibt die gewählten apparativen Einstellungen und den kinematischen Meßbereich an.

E _e [GeV]	E _e , [GeV]	್ _e [°]	е _р [°]	$\overline{Q^2}$ [GeV ²]	W [GeV]	£
6,380	4.348	15.15	28.	2.	1.46 - 1.82	0.90
6.701	4.500	18.4	35.	З.	1.14 - 1.61	0.88
6.571	4.352	18.9	30.	3.	1.13 - 1.64	0.88
6,902	4.348	17.75	26.	3.	1.46 - 1.88	0.86

Tab. 4.1: Einstellungen der inelastischen Messungen

.

1

5. Datenreduktion und Berechnung des Wirkungsquerschnitts

Ziel der Datenreduktion ist es, aus der Menge der aufgezeichneten Meßdaten möglichst vollständig die Ereignisse ep \rightarrow ep π^0 und ep \rightarrow ep η zu isolieren und kinematisch zu rekonstruieren. Etwaige Verluste bei dieser Rekonstruktion werden quantitativ abgeschätzt und als Korrekturfaktoren an die Querschnitte berücksichtigt.

Nach der Selektion guter, d. h. eindeutig identifizierter und kinematisch voll bestimmter, Elektronen aus der Elektronspektrometerinformation wird aus der Hadronspektrometerinformation die Trajektorie des koinzidenten Hadrons rekonstruiert und entschieden, ob es sich um ein Pion oder ein Proton handelt. Aus den Laborimpulsen und Winkeln von gestreutem Elektron und koinzidentem Proton wird sodann die "missing mass" m_y für die Reaktion ep \rightarrow e p + X berechnet und aus dem Peak um m_r bzw. m_n der hadronische Endzustand pre bzw. pn abgetrennt.

Mehrfachpionuntergrund (X = n · π , n > 2) im Kanal pr und Ausläufer dieses Untergrundes in den Bereich m_no infolge endlicher Auflösung in m_X werden durch Fits an den Untergrund abgezogen. Diese Subtraktion erfolgt binweise in jedem experimentellen W- $\cos \varepsilon_m^* - \phi_m - Bin (m = \pi^0 \text{ oder } \eta)$.

Um aus der erhaltenen Zählrate im jeweiligen Bin den differentiellen Querschnitt zu berechnen, ist neben der Zahl der Primärelektronen und der Dichte der Targetprotonen auch die Akzeptanzwahrscheinlichkeit des Bins nötig. Diese Wahrscheinlichkeit, daß ein Streuereignis mit kinematischen Werten aus dem betrachteten Bin auch tatsächlich von der Meßapparatur akzeptiert wird, muß unter Einschluß aller die Akzeptanz beeinflussenden Effekte wie Targetausdehnung, Vielfachstreuung, Aperturen usw. berechnet werden. Dies geschieht mit Hilfe einer Monte-Carlo-Simulation des gesamten Experiments. In diese Simulation werden Strahlungseffekte am ein- und auslaufenden Elektron eingeschlossen, so daß die notwendigen Strahlungskorrekturen bei der Berechnung des Querschnitts gleich mit berücksichtigt werden.

5.1 Definition des gestreuten Elektrons

Durch die Definition des Elektronmastersignals (vgl. Kap. 3.4) wird jedes Ereignis mit koinzidentem Triggerzähler- und Cerenkovzähler-Signal oberhalb der elektronischen Schwellen bei Vorliegen einer Koinzidenz mit dem Hadronarm registriert. Der Verlust an guten Elektron-Streuereignissen durch diese Triggerbedingung wird auf < 0.3 % abgeschätzt.

Unter den registrierten Ereignissen findet sich neben den echten Elektron-Streuereignissen noch ein gewisser Anteil an Untergrund, der mit Hilfe eines Schnitts in der Signalhöhe des Schauerzählers (= analoge Summe der 4 Photomultipliersignale) (Abb. 5.1 b) beseitigt wird. Der verbleibende Anteil kann durch Betrachten der Multiplizität (= Anzahl der angesprochenen Kanäle) in dem O-, p- und PQ-Hodoskop abgetrennt werden. Als Kriterium dienen dabei Cerenkov- und Schauerzähleramplitude. Außerdem müssen zu jedem angesprochenen PQ-Kanal, der zu einer Elektronspur gehört, 1 bis 2 davorliegende P-Zähler und dahinterliegende Q-Zähler angesprochen haben, und einige PQ-q-Kombinationen sind für echte Elektrontrajektorien geometrisch nicht möglich.

Es gibt 3 Klassen von Ereignissen:

- A) Einfach-Ereignisse mit genau einem 0-, $\phi-$ und PQ-Kanal; sie haben hohe Cerenkov- und Schauerzähleramplituden (Abb. 5.1 und 5.2 a), so daß sie als "gute" Elektronen in die weitere Auswertung eingehen. Durch den Schnitt in der Schauerzähleramplitude gehen praktisch keine Ereignisse ep_{π}^{0} bzw. ep_{π} verloren.
- B) Unvollständige Ereignisse, bei denen ein oder mehrere Hodoskope nicht angesprochen haben; diese stammen größtenteils von Elektronen außerhalb der Akzeptanz des PQ- oder ¢-Hodoskops, so daß sie auch den Schauerzähler meist verfehlen. Dementsprechend weisen sie oft kleine Schauerzähleramplituden auf. Alle diese Ereignisse werden verworfen. Allerdings müssen Spaltverluste und Ansprechwahrscheinlichkeit - 1 der Hodoskope berücksichtigt werden, diese Korrekturen betragen typisch 1 - 2 $^{\circ}/\circ\circ$ pro Hodoskop.
- $\texttt{C}) \ \texttt{Mehrfach-Ereignisse, bei denen in mindestens einem Hodoskop mehr als} \\$ nur ein Kanal angesprochen hat. Als Ursache kommen 2 Effekte in Frage:

Abb

ςΠ

 \sim

-dim. nıt

Amplitudenspektrum

ā

0.0

a) 2

genau

einem ŝ−,

÷

und PQ-Kanal Schauer-

gegen

Cerenkovzähler

fär 0.0

Ereignisse

ä

[Kanäle]

b) mit mehreren Kanälen

Ē

oder PQ-Hodoskop;

zugelassene Ereignisse

்

mit mehreren Kanälen im

e' ှိ

ŧ ÷

oder PQ-Hodoskop; verworfene Ereignisse

0.0

- a) Schauerbildung von Elektronen, die eine Magnetwand getroffen haben; diese Ereignisse gehören, da außerhalb der Akzeptanz liegend, nicht zum Querschnitt.
- p) Anstoßelektronen oder Schauerbildung im Zählermaterial innerhalb der Akzeptanz; diese Ereignisse müssen dem Querschnitt zugerechnet werden. Sie werden entweder durch Schwerpunktbildung im Hodoskop auf Einfach-Ereignisse reduziert oder pauschal durch eine Korrektur am Querschnitt berücksichtigt.

Die C-S-Verteilungen und weitere Untersuchungen zeigen, daß Ereignisse mit:

- l bis 2 \oplus -Zählern (meist benachbart) und 1 (oder 2 bei 1 oder 2 benachbarten \oplus -Zählern) guten PQ- ϕ -Kombinationen zum Typ \oplus) gehören und reduziert werden können (Abb. 5.2 b)
- 1 oder 2 benachbarte C-Zähler und 3 4 gute PQ-o-Kombinationen ebenfalls unter S) fallen; sie werden aber nicht reduziert, sondern mit 8 0 /oo Korrektur berücksichtigt.

Alle höheren Multiplizitäten sind als zu α) gehörig zu betrachten und werden verworfen (Abb. 5.1 c).

5.2 Definition des koinzidenten Hadrons

Zu jedem als gut anerkannten Elektronereignis wird versucht, aus der Hadronspektrometerinformation die Trajektorie eines möglichen koinzidenten Hadrons zu rekonstruieren. Wegen der langen Öffnungszeiten der Koinzidenzen in den Hodoskopen und der direkten Sicht von Teilen der Hodoskope auf das Target ist der nichtkoinzidente Untergrund hier jedoch erheblich größer als im Elektronspektrometer. Daher gibt es einen größeren Anteil von Ereignissen mit mehreren Orten in H1 oder H2.

Im Hodoskop H2 gibt es aufgrund der Triggerbedingung für eine Koinzidenz (vgl. Kap. 3.4) mindestens einen angesprochenen Graycode-Kanal in einer der Kammern. Die angesprochenen Kanäle werden für die weitere Auswertung zugelassen, wenn

• r

die Flug- und Laufzeitinformation des zugehörigen Triggerzählers vollständig ist, so daß ein oder mehrere Orte in H2 mit vollständiger Orts- und Zeitinformation für die Rekonstruktion einer Trajektorie zur Verfügung stehen.

In der Proportionaldrahtkammer H1 werden in jeder Ebene Schwerpunkte von allen Clustern (= zusammenhängende Bereiche angesprochener Drähte) gebildet. Liegt in allen 3 Ebenen je ein Schwerpunkt vor, so daß die "Schwerpunkt-Drähte" in der senkrechten Projektion auf die 1. Kammerebene ein Dreieck mit der Höhe $|\mathbf{h}| \leq 20 \text{ mm bilden}$, so wird der Schwerpunkt des Dreiecks als ein Ort (mit 3 Ebenen) in H1 anerkannt.

Zur Rekonstruktion einer Trajektorie werden der Reihe nach alle Kombinationen eines Orts in H1 mit einem Ort in H2 benutzt. Mit der jetzt bekannten Neigung \vec{n} der Trajektorie in H1 wird erneut die Projektion – nun aber längs \vec{n} – der "Schwerpunktdrähte" in die 1. Ebene berechnet und es kann ein schärferer Schnitt in der neuen Dreieckshöhe gemacht werden: $|h| \leq 2.5$ mm.

Unter der Näherung eines Kastenfelds mit integrierter magnetischer Länge entsprechend der Vermessung des Magneten wird die Trajektorie bis zum Target rekonstruiert. Es werden nur Trajektorien mit Ablenkung nach oben – positiv geladenen Teilchen entsprechend – rekonstruiert. Trajektorien, die auf Magnetmaterial stoßen, werden verworfen.

Läßt sich keine gute Trajektorie mit 3 Ebenen in H1 rekonstruieren, werden auch Orte in H1 mit nur 2 angesprochenen Ebenen zugelassen. Statt des jetzt nicht möglichen Dreieckshöhenschnitts wird lediglich verlangt, daß die beiden "Schwerpunktsdrähte" sich innerhalb der Kammer schneiden. Die weitere Auswertung verläuft analog.

Die Berücksichtigung der durch Messungen bekannten 3-dimensionalen Feldmatrix erfolgt durch Korrekturfunktionen Δp , $\Delta \Theta$, $\Delta \phi$ an Impuls und Targetwinkel der Trajektorie. Als Ansatz dieser Korrekturfunktionen wird ein Polynom 2. Grades in den Ortskoordinaten in H1 und H2 gewählt. Die Koeffizienten wurden an Monte-Carlo-Daten gewonnen, die mit Hilfe der gemessenen 3-dimensionalen Feldmatrix erzeugt und dann wie oben beschrieben rekonstruiert wurden. Die Differenz zwischen Erzeugungs- und Rekonstruktionswerten wurde mit obigem Ansatz angepaßt. Die Korrekturen verbessern die experimentelle "missing mass" - Auflösung merklich.

· · ·

- 39 -

Der Anteil der Ereignisse mit mehreren rekonstruierten Trajektorien beträgt je nach Blendenstellung zwischen 8 % und 20 % der 1-Trajektorien-Ereignisse. Zwar ist die Wahrscheinlichkeit, daß ein Ereignis mit genau einer guten Hadrontrajektorie noch zusätzliche Kanäle in H1 oder H2 durch zufälligen Untergrund erhält, unabhängig von der Lage der guten Trajektorie, nicht aber die Wahrscheinlichkeit, daß die zusätzlichen Kanäle auch zu weiteren Trajektorien führen. Denn in den meisten Fällen existiert nur ein zusätzlicher Kanal entweder in H1 oder in H2 und ein Ort der guten Trajektorie muß zur Rekonstruktion einer weiteren Trajektorie benutzt werden. Folglich ist der Anteil des Einfachmeson-Endzustandes an diesen Ereignissen nicht isotrop verteilt.

Daher wird anstelle einer pauschalen Korrektur auf Verluste durch nicht ausgewertete Mehrfach-Trajektorien versucht, die Mehrfachtrajektorien auf eine Trajektorie zu reduzieren. Dies geschieht durch sukzessives Streichen aller Trajektorien in einem Ereignis mit:

- 1) Flugzeit außerhalb der Bereiche von π^+ und p (vgl. Kap. 5.3).
- 2) Unphysikalischer "missing mass":

 m_v^2 < - 0.06 GeV² bei Auswertung als Proton <u>und</u>

- $m_{\rm o}$ < 0.8 GeV bei Auswertung als Pion.
- 3) Einem Gray-Code-Kanal in H2, der durch die Koinzidenz nur eines Kammerzählers mit dem Triggerzähler definiert ist und der im Bereich der direkten Sicht auf das Target liegt. Die Streichung erfolgt jedoch nur, wenn mindestens noch ein weiterer Ort in H2 existiert, der obiges Kriterium nicht erfüllt.

Kriterium 3) rünrt von der Beobachtung her, daß die Trajektorienzählraten in solchen Kanälen um ein mehrfaches überhöht sind gegenüber Nachbarkanälen mit 3 bis 5-fach-Koinzidenzen zwischen Trigger- und Kammerzählern.

Verbleiben nach dieser Reduktion noch > 2 Trajektorien, so wird die Trajektorie mit dem kleinsten

der entsprechenden

$$S^{2} = \frac{h^{2}}{\sigma_{h}^{2}} + \frac{d^{2}}{\sigma_{d}^{2}}$$

h = Dreieckshöhe in H1
d = Abstand Trajektorie-Targetmitte
 $\sigma_{h}^{2}, \sigma_{d}^{2}$ = Varianzen der entsprechenden
Verteilungen

- b) n > 1 und auf 1 Trajektorie reduziert, alle verworfenen Trajektorien
- c) n > 1 und auf 1 Trajektorie reduziert, verbliebene Trajektorie
- d) n > 1 und auf O Trajektorien reduziert, alle Trajektorien
- e) n > 2 und auf > 2 Trajektorien reduziert, ausgewählte Trajektorie
- f) n > 2 und auf > 2 Trajektorien reduziert, alle verworfenen Trajektorien

Abb. 5.4: wie Abb. 5.3, jedoch für Ereignisse mit nur 2 Ebenen in H1

ausgewählt. Bei Ereignissen mit nur 2 Ebenen entfällt der erste Summand.

Abb. 5.3, 5.4 a - f zeigen für 2 Ebenen- und 3 Ebenen-treignisse getrennt die m_X^2 - Spektren des Protonanteils (Identifikation vgl. Kap. 5.3). Die Trennung in gute und verworfene Trajektorien ist praktisch quantitativ. Der verbleibende "peak" in den verworfenen Trajektorien der \geq 2-Trajektorien-Ereignisse läßt sich zumindest bei 3 angesprochenen H1-Ebenen vollständig erklären durch Trajektorien, die in H1 direkt benachbarte Orte haben (etwa durch elektronische Totzeiten des mittleren Drahtes bei drei angesprochenen Drähten, was zu zwei Orten in H1 führt), den H2-Ort aber gemeinsam haben und dadurch fast gleich verlaufen.

Da bei nur 2 Ebenen in H1 die Dreieckshöhe entfällt, ist S² hier ein schwächeres Unterscheidungsmerkmal. In diesem Fall werden die Ereignisse mit \geq 2 verbleibenden Trajektorien von der weiteren Auswertung ausgeschlossen und der Verlust an guten Ereignissen pauschal berücksichtigt. Es ergeben sich Korrektunfaktoren von 1. – 2.5 %.

5.3 Abtrennung der hadronischen Endzustände $p\pi^0$ und $p_{\rm f}$

5.3.1 Unterscheidung von Protonen und Pionen

Da die untersuchten Endzustände $p\pi^0$ und $p\gamma$ in großen Bereichen nicht von den konkurrierenden Zuständen π^+n , $\tau^+\Delta$, $\tau^+n + m \cdot \pi m \ge 1$ kinematisch getrennt sind, ist eine Identifikation von p und τ^+ notwendig.

Aus der experimentellen Information stehen 3 Methoden zur Verfügung:

- Messung der Flugzeit des Hadrons
- Ansprechen des Cerenkovzählers im Hadronspektrometer
- Messung des Energieverlusts dE/dx in den TriggerZählern des Hadronspektrometers.

Die dritte Methode der Messung von dE/dx über die Amplitude der Triggerzähler wird für die Trennung von p und π^+ nicht benutzt. Bei den hohen auftretenden Hadronimpulsen bis zu 3 GeV reicht die erzielte Auflösung nicht mehr aus, um

- 42 -

Protonen von den minimal ionisierenden Pionen quantitativ zu trennen.

Die Flugzeit des Hadrons wird als Zeitdifferenz zwischen C_{Elektron}-Signal und dem Signal des getroffenen Triggerzählers gemessen (vgl. Kap. 3.4). Diese rohe Flugzeit wird auf einige Effekte, die die Auflösung verschlechtern, korrigiert:

- Berücksichtigung der unterschiedlichen Weglängen der einzelnen Trajektorien
- Berücksichtigung der Lichtlaufzeit vom horizontalen Ort 2 des Teilchendurchtritts im Triggerzähler bis zur Photokathode des rechten Photomultipliers
- Korrektur der Abhängigkeit von der Amplitude A_r des rechten Photomultipliers des Triggerzählers
- Korrektur der Abhängigkeit von der Amplitude A $_{
 m c}$ des Cerenkovzählers im Elektronarm.

Nach der rechnerischen Korrektur auf die Weglänge der Trajektorie werden die übrigen Korrekturen mit einem linearen Ansatz in ℓ , A $_{r,n}$ und A $_{c}$ an die Daten angepaßt. Abb. 5.5 zeigt das Ergebnis des Fits als Differenz &t der gemessenen Flugzeit zur für Protonen berechneten. δt ist gegen $1/\beta_{Proton}$ aufgetragen; Teilchen mit Masse ≠ m_{Proton} liegen daher auf Geraden mit endlicher Steigung. Die Protonen mit konstantem At sind deutlich von den Pionen unterschieden. Die Auflösung (o) beträgt 0.8 nsec.

Durch einen Schnitt in der Flugzeit (in Abb. 5.5 von -2. nsec bis +1.5 nsec) werden die in diesem Bereich liegenden Protonen von dem größten Teil der Pionen und des zufälligen Untergrunds abgetrennt. Die Protonverluste außerhalb des Schnitts betragen 1.5 - 5 % (je nach der erforderlichen Lage des Schnittes bei den einzelnen Setzungen), auf die die resultierenden Querschnitte korrigiert werden. Zur Subtraktion des zufälligen Untergrundes wird ein 6 nsec vor dem Protonbereich liegender Bereich gleicher Breite herangezogen. Ereignisse, die in ihm liegen, werden im weiteren Verlauf der Analyse von den entsprechenden Verteilungen subtrahiert.

Für den kritischen Bereich zu hohen Impulsen hin (p \geq 1.5 GeV) dient der Ceren-

Abb. 5,5 : Differenz ∆t der gemessenen Flugzeit zur für Protonen berechneten Flugzeit gegen den Impuls P. (1 Kan. = 0.593 nsec)Die Flugzeitschnitte für Protonen sind durch Pfeile gekennzeichnet.

kovzähler C_H zur Verbesserung der Abtrennung der im Protonbereich der Flugzeit liegenden Pionen. Wegen seines modularen Aufbaus kann je nach Lage der Trajektorie das erzeugte Cerenkovlicht auch auf mehrere Photomultiplier gelangen. Daher ist eine relative Eichung der Photomultiplier untereinander erforderlich. Diese Eichung wird mit r^{+} durchgeführt, an die besonders strenge Anforderungen gestellt werden:

- 1) ${\rm m_X}$ = ${\rm m_{Neutron}}$ bei Auswertung als π^+ und ${\rm m_X}^2$ < 0.06 bei Auswertung als Proton
- 2) enge Schnitte in der Flugzeit um den Bereich der Pionen
- 3) innerhalb der Zählerakzeptanz werden nur Trajektorien zugelassen, deren Cerenkovlicht laut Monte-Carlo-Simulation nur auf einen Photomultiplier fokussiert wird
- es wird verlangt, daß nur dieser eine Photomultiplier ein Signal hat und alle übrigen keins.

Aus den gemessenen Amplituden A dieser Ereignisse wird der Proportionalitätsfaktor c für jeden Photomultiplier gemäß A = c • w · $\sin^2 \circ_c$ bestimmt, hierbei ist w die jeweilige Weglänge der Trajektorie im Cerenkovgas. Die Forderung nach gleichem c für alle Photomultiplier liefern dann die Eichfaktoren.

Zur Ermittlung der Cerenkovzähleramplitude für beliebige Ereignisse innerhalb der Zählerakzeptanz ist diese in Bereiche mit 1, 2, 3 und 4 beleuchteten Photomultipliern aufgeteilt. Nur für diese Photomultiplier wird jeweils die analoge Summe der geeichten Amplituden gebildet und auf eine mittlere Weglänge w = 65 cm normiert. Die so gewonnene Cerenkovzähleramplitude ist in Abb. 5.6 als Funktion von $\sin^2 \sigma_c$ bzw. vom Impuls p des Hadrons aufgetragen. Die Pionen mit ihrer linear in $\sin^2 \sigma_c$ ansteigenden Amplitude sind bei ausreichend großem Impuls (> 1.5 GeV) gut von den Protonen, die kein Signal zeigen, getrennt.

Der in Abb. 5.6 eingetragene Schnitt zur Trennung von Protonen und Pionen wird festgelegt anhand der "missing-mass"-Verteilungen für akzeptierte Trajektorien mit Cerenkovamplituden oberhalb und unterhalb des Schnitts. Abb. 5.7 zeigt die entsprechenden Spektren für Protonen bzw. Pionen, die durch enge Flugzeitschnitte definiert wurden. Dabei sind die Hadronimpulse - wie bei der weiteren Benutzung

Abb. 5.7: Verteilung der fehlenden Masse m_{χ} bzw. m_{χ}^2 für Ereignisse mit Cerenkovzähleramplituden oberhalb (a), d)) und unterhalb (b), c)) des Schnitts in Abb. 5.6.

- 44 -

der Cerenkovzählerinformation in der Auswertung -auf den Bereich \ge 1.5 GeV beschränkt.

Für Protonen ergibt sich ein kleiner Verlust von 1.5 %, sichtbar am π^0 -Peak in Abb. 5.7 b. Dieser Verlust rührt vermutlich von zufälligem Untergrund im Cerenkovzähler, da es bei den Testmessungen mit elastischen Protonen, die bei großen Winkeln des Hadronspektrometers mit wesentlich geringerem Untergrund durchgeführt worden sind, praktisch keine Protonen mit Amplituden oberhalb des Schnitts gibt.

Bei den Pionen haben 6.2 % der Ereignisse eine Cerenkovamplitude unterhalb des Schnitts, wie der Vergleich der Neutron-missing-mass-peaks in Abb. 5.7 c und d zeigt. Die Untersuchung der Amplituden dieser Ereignisse unterhalb des Schnitts zeigt, daß es sich nicht um einen Ausläufer der Amplitudenverteilung für nachgewiesene Pionen handelt; diese Ereignisse haben praktisch alle die Amplitude 0.

Die Erklärung liegt in der relativ großen Materiebelegung des Cerenkovzählers: Pionen müssen 1,2 cm Aluminium (Behälterwand) und 0,8 cm Plexiglas (Spiegel) durchqueren, bevor sie in das aktive Gasvolumen gelangen. Geht man davon aus, daß ein in dem 1 cm dicken Triggerzähler in H2 absorbiertes Pion noch zum Ansprechen des Triggerzählers und damit zur Messung des Pions führt, so liegen 1,8 cm Plexiglas und 1,2 cm Aluminium entsprechend 0.06 Absorbtionslängen ([PDG]) vor dem Cerenkovzähler, so daß 5.8 % der Pionen vor dem Cerenkovzähler absorbiert werden.

Einen kleineren Verlustbeitrag liefert auch der π^+ -Zerfall (im Hadronarm zerfallen im Impulsbereich 1.5 bis 2 GeV 8 % bis 6 % der π^+ vor Erreichen von H2 und dem Cerenkovzähler). Die Zerfalls- μ^+ fliegen im Laborsystem praktisch in gleicher Richtung weiter, so daß diese Ereignisse meist trotz des Zerfalls als τ^+ rekonstruiert werden. Jedoch reicht die Verlangsamung der in der extremen Rückwärtsrichtung emittierten μ^+ aus, daß bis zu π^+ -Impulsen von 1.6 GeV die Zerfalls- μ^+ unterhalb der Nachweisschwelle des Cerenkovzählers liegen.

Der nach dem Schnitt in der Flugzeit noch im Protonbereich verbliebene Rest von Pionen wird also im Bereich des Cerenkovzählers mit ≈ 94 % Wahrscheinlichkeit unterdrückt. Das reicht aus, um die Pionen praktisch quantitativ zu eliminieren, wie Abb. 5.8 b zeigt, in der die nach den obigen Schnitten verbliebenen Protonen

als Pionen ausgewertet werden: in der missing-mass-Verteilung ist im Bereich der Neutronmasse keine Überhöhung mehr feststellbar.

5.3.2 Subtraktion des Mehrfachpion-Untergrundes

Unter den Ereignissen mit identifiziertem Proton im Hadronspektrometer zeichnen sich die hadronischen Endzustände p + 1 Meson durch einen definierten Wert der "missing mass" m_x = Mesonmasse aus. Durch die endliche apparative Auflösung wird m_x² jedoch gaussverschmiert und die Strahlung am ein- und auslaufenden Elektron bewirkt eine Verschiebung zu höheren gemessenen m_x² hin, den Strahlungsschwanz.

Abb. 5.8 a zeigt das gemessene m_x^2 - Spektrum für eine der experimentellen Setzungen ($Q^2 = 2 \text{ GeV}^2$). Man findet klare Signale bei $m_{-\gamma}^2 \sigma$, $m_{\nu_{-}}^2$ und $m_{-\nu_{-}}^2$.

Wegen $m_{\eta} > m_{\eta} + + m_{\pi} - > 2 m_{\phi}$ liegt das η -Signal jedoch auf einem erheblichen Mehrfachpionuntergrund, der nur statistisch subtrahiert werden kann, da das fehlende System X ja nicht nachgewiesen wird.

Bei der π^0 -Produktion ist zwar m_X = m_πo um eine Pion-Masse von der Mehrfachpionschwelle getrennt, jedoch bewirken apparative Auflösung und Strahlungsschwanz auch hier ein Ineinanderlaufen der beiden Anteile, so daß auch hier eine Subtraktion des Mehrfachpionanteils durchgeführt werden muß.

Die Subtraktion wird für jedes W-cose^{*}-o-Bin getrennt durchgeführt, indem Funktionen, die die Beiträge zum m²_x-Spektrum im Bereich m²_x = m²_no bzw. m²₁ gut beschreiben, an die experimentelle m²_x - Verteilung im jeweiligen Bin angepaßt werden.

Im Falle der π^0 -Produktion wird folgender Ansatz benutzt:

- Der durch die interne und externe Strahlung verursachte Strahlungsschwanz des r^0 -Peaks zu höherem m_{χ}^2 hin wird durch die Wahrscheinlichkeitsdichte S (Δm_{χ}^2) für eine Verschiebung um Δm_{χ}^2 beschrieben. S (Δm_{χ}^2) wird aus der Monte-Carlo-Simulation der π^0 -Produktion unter Einschluß von interner und externer Strahlung an den Elektronlinien, jedoch Ausschluß der apparativen Auflösung als diskrete Verteilung gewonnen.

. .

- Die endliche apparative Auflösung wird durch Faltung mit einer Gaussfunktion berücksichtigt.
- Der Ausläufer des Mehrfachpion-Spektrums in dem Bereich der π^0 -Masse wird durch Faltung eines Polynoms f mit derselben Gaussfunktion dargestellt.

Man erhält für den "⁰-peak:

$$p(x) = \frac{1}{\sigma\sqrt{\pi}} \int S((x^{+} - x_{0}) \cdot exp\left(-\frac{(x^{+} - x)^{2}}{\sigma^{2}}\right) dx^{+}$$
$$x_{0} = m^{2} \sigma^{0} , \quad x = m^{2} \chi$$

und für den Mehrfachpion-Untergrund

$$u(x) = \int_{x_{s}}^{x_{max}} f(x^{*}) \cdot exp\left(-\frac{(x^{*}-x)^{2}}{\sigma^{2}}\right) dx^{*}$$
$$x_{s} = (2m_{r})^{2} - 2\pi - Schwelle$$

x_{max} obere Grenze des Spektrums

n

f(x) ist ein Polynom mit Nullstelle in
$$x_s$$
: f(x) = $\sum_{i=1}^{n} a_i \cdot (x - x_s)^i$

und damit u (x) =
$$\sum_{i=1}^{n} a_i u_i (x)$$
; $u_i (x) = \int_{x_s}^{x_{max}} (x^i - x_s)^i \exp\left(-\frac{(x^i - x_s)^2}{\sigma^2}\right) dx^i$

Die Integrale u, lassen sich auf einfache Ausdrücke mit dem Fehlerintegral $\phi(x) = \int_{0}^{x} e^{-u^2} du zurückführen, das in FORTRAN -Programmen als Funktion zur Verfügung steht. Die Integration in p (x) wird numerisch durchgeführt.$

Insgesamt wird

$$v(x) = a_0 \cdot p(x) + \epsilon a_i \cdot u_i(x) , n \le 4$$

i=1

n

mit der Methode der kleinsten Fehlerquadrate an das experimentelle m_X^2 -Spektrum angepaßt, a_o ist dann die gesuchte p r^0 -Zählrate.

Die m_x^2 -Auflösung σ und die Lage x_0 des π^0 -peaks werden aus Varianz bzw. Mittelwert des π^0 -Signals unter Berücksichtigung des Strahlungsschwanzes bestimmt, das ganze Fit-Verfahren wird mehrmals iteriert, bis keine Verbesserung in χ^2 mehr erreicht wird.

- 47 -

Um zu vermeiden, daß die Fläche unter dem Peak systematisch zu klein gemessen wird (da die Ereigniszahlen in den Bins des m_{χ}^2 -Spektrums poissonverteilt sind und nicht gaussverteilt, wie die Methode der kleinsten Fehlerquadrate voraussetzt), werden nach dem 1. Iterationsschritt die Fehler der Ereigniszahlen im einzelnen m_{χ}^2 -Bin nicht als \sqrt{n} sondern als $\sqrt{n_{Fit}}$ des vorausgegangenen Fits berechnet. Dies Verfahren liefert vergleichbare Ergebnisse wie ein korrekter maximum-likelihood-Fit mit Poisson-Statistik.

Da der subtrahierte Mehrfachpion-Untergrund im wesentlichen durch den Ausläufer (bestimmt durch σ) unterhalb x_s gegeben ist, und σ aus der Breite des π^0 -Signals gut gemessen wird, ist die Subtraktion des Mehrfachpion-Untergrundes recht zuverlässig.

Für die Bestimmung der n-Zählrate in einem W- $\cos \Theta_n^* \to \Phi_n$ -Bin ist der Ansatz für den n-Peak derselbe wie beim π^0 , der Mehrfachpionanteil wird wie folgt beschrieben:

Es werden Monte-Carlo-Ereignisse mit m_X^2 -Verteilungen entsprechend 2π - und 3π -Phasenraumverteilungen erzeugt und die Messung dieser Ereignisse simuliert. Die W-Abhängigkeit der 2π - und 3π -Ereignisse wird nach totalen $p\pi\pi$ - und $p\pi\pi\pi$ -Querschnitten festgelegt (siehe [WAC] und [BEN]). An die rekonstruierten m_X^2 -Verteilungen wird ein Polynom f_{MC} (x) angepaßt, das die Verteilung gut beschreibt. Als Ansatz für die experimentelle Verteilung wird dann

$$u(x) = f(x) \cdot f_{MC}(x)$$

$$f(x) = \sum_{i=0}^{n} a_{i} \cdot (x - x_{0})^{i} \quad x_{0} = m_{n}^{2}$$

gewählt. Das zusätzliche Polynom f trägt der Tatsache Rechnung, daß die 2π - bzw. 3π Verteilungen sicherlich keine reinen Phasenraumverteilungen sind (in [WAC] werden z. 8. erhebliche Beiträge über die A-Resonanz im S-Kanal nachgewiesen). In den Fits wurde n \leq 2 benutzt. Die Abb. 5.9 und 5.10 zeigen Beispiele für m_{χ}^2 -Spektren und zugehörige Fits. Darin sind die Spektren und ihre Fits in den einzelnen $\cos 0^* - \phi$ -W-Bins aufsummiert über alle $\cos 0^*$ - und alle ϕ -Bins.

Als Binbreiten sind in der Auswertung gewählt

d

für pn :
$$\Delta W = 30 \text{ MeV}$$
, $\Delta \cos \circ^* = 0.2$, $\Delta \phi = 30^\circ$
für pr : $\Delta W = 30 \text{ MeV}$, $\Delta \cos \circ^* = 0.2$, $\Delta \phi = 30^\circ$
jedoch für Q² = 3 GeV²: $\Delta \cos \circ^* = 0.4$, $\Delta \phi = 45^\circ$

Für die Vorwärts- und Rückwärtsrichtung ($\cos \sigma^* = \pm 1$) wird nur die halbe Binbreite in $\cos \sigma^*$ genommen und alle ϕ zusammengefaßt, da hier ϕ nicht mehr gut definiert ist.

5.4 Berechnung strahlungskorrigierter differentieller Wirkungsquerschnitte

Der 5-fach differentielle Wirkungsquerschnitt läßt sich aus den experimentellen Zählraten $N_{\rm m}$ der betrachteten Reaktion berechnen gemäß

$$\frac{d^{5}\sigma}{E_{e^{1}} d\Omega_{e^{1}} d\Omega_{m}^{*}} = \frac{1}{N_{e} \cdot N_{p}} \cdot \frac{N_{m} (E_{e^{1}}, \cos \Theta_{e^{1}}, \phi_{e^{1}}, \cos \Theta_{m}^{*}, \phi_{m})}{A(E_{e^{1}}, \cos \Theta_{e^{1}}, \phi_{e^{1}}, \cos \Theta_{m}^{*}, \phi_{m})} \cdot S$$
mit N_{e} = Zahl der einlaufenden Elektronen N_{p} = Zahl der Targetprotonen / cm²
 A = Akzeptanz für das betrachtete Bin
 S = Strahlungskorrektur

Die Berechnung der Akzeptanz erfolgt mit Hilfe einer Monte-Carlo-Simulation des gesamten Experiments unter Berücksichtigung aller die Akzeptanz beeinflussenden Effekte wie Targetausdehnung, Vielfachstreuung, Hodoskopauflösungen, apparativer und kinematischer Schnitte usw. Die Simulation liefert Streuereignisse in Form von getroffenen Zählern; diese 'Monte-Carlo-Ereignisse' werden dann mit den gleichen Programmen,wie für die experimentellen Ereignisse benutzt, analysiert. Der Vergleich der auf $N_e \cdot N_p$ normierten Zählraten von Experiment und MC-Simulation liefert dann gemäß

Abb. 5.9: Missing-Mass-Spektrum im Bereich der n-Masse und Fits an n-Signal und Mehrfachpionuntergrund. $0^2 = 2 - \left[GeV^2 \right]$

den gesuchten experimentellen Querschnitt σ_{exp} , σ_{MC} bezeichnet den in der MC-Simulation angenommenen Verlauf des Wirkungsquerschnitts (mit Stranlung) für den betrachteten Proze3 eN + eN+m.

In die Erzeugung der MC-Ereignisse wird der Prozeß der γ -Emission an ein- und auslaufendem Elektron eingeschlossen; γ -Emission am Proton wird dagegen vernachlässigt. Externe und interne Bremsstrahlung werden in Peaking-Approximation berücksichtigt ([MOT]).

Da diese Bremsstrahlung zu einer Änderung der Vertexkinematik gegenüber der im Experiment gemessenen führt, geht hier der relative Verlauf des angenommenen Wirkungsquerschnitts σ_{MC} ein. Ausgehend vom W- und Q²-Verlauf älterer Messungen der π^0 - und n-Elektroproduktion wird der totale Querschnitt $\sigma_{\pi 0}$ bzw. σ_{r_i} geeignet parametrisiert und damit nach dem oben skizzierten Verfahren der experimentelle Wirkungsquerschnitt berechnet. In einem 2. Iterationsschritt wird dann dieser strahlungskorrigierte experimentelle Querschnitt für die Monte-Carlo-Simulation benutzt. Weitere Iterationen führen, wie sich in früheren Untersuchungen zeigte, zu vernachlässigbaren Änderungen in den Querschnitten. Ebenso wird auf eine von einer Gleichverteilung abweichende Winkelverteilung des Protons in der Simulation verzichtet, da die Auswirkung auf die differentiellen Querschnitte ebenfalls klein ist. Eine ausführliche Erläuterung der benutzten Monte-Carlo-Simulation der Strahlungseffekte findet sich in [MAY]

Die so erhaltenen experimentellen Wirkungsquerschnitte sind noch mit einer Strahlungskorrektur S zu multiplizieren, die das Verhältnis von physikalischem Wirkungsquerschnitt (ohne Strahlung) zu gemessenem Wirkungsquerschnitt (unter Einschluß von interner und externer Strahlung) angibt. Diese Strahlungskorrektur wird analytisch in Peaking-Approximation nach [MOT] aus dem zugrundegelegten MC-Wirkungsquerschnitt berechnet. Sie variiert mit W zwischen 1.12 und 1.39 im Falle der m⁰-Produktion, für die n-Produktion ergeben sich Werte zwischen 0.95 und 1.54. Diese große Variation rührt von der starken Änderung des totalen Querschnitts im Bereich der 1. Resonanz (π^0) bzw. der S₁₁ und der n-Schwelle.

n .
Nicht berücksichtigt wird dagegen der Strahlungsschwanz der elastischen Streuung ep+e'p'+y. Die Missing-Mass-Auflösung reicht nicht aus, um diesen Beitrag zum Querschnitt mit $m_X^2 = 0$ von der Ein-Pion-Produktion mit $m_X^2 = m_\pi^2$ zu trennen. Da die Photonen in einem schmalen Vorwärtskegel um die Richtung des ein- und auslaufenden Elektrons emittiert werden, liefern nur diese Richtungen einen merklichen Beitrag zum Querschnitt.

- 50 -

Nur in einer Setzung ($Q^2 = 3 \text{ GeV}^2$, $\mathbb{G}_p = 35^\circ$) wurden diese Richtungen akzeptiert. Abb. 5.11 zeigt die Verteilung des fehlenden Impulses \vec{p}_{miss} (berechnet aus den Impulsen von ein- und auslaufendem Elektron und Proton) relativ zur Richtung $\vec{p}_{e'}$ des auslaufenden Elektrons für Ereignisse mit $\operatorname{Im} \frac{2}{N} \lesssim 0.07 \text{ GeV}^2$ (Darstellung in Polarkoordinaten r, ϕ mit $r = \Theta$; $G, \phi = Azimut$ und Polarwinkel von \vec{p}_{miss}). Deutlich ist eine Häufung in Richtung von $\vec{p}_{e'}$ zu erkennen und eine zweite Häufung um $\Theta = -18.4^\circ$, die zur Richtung des einlaufenden Elektrons korrespondiert. Die unterschiedliche Ausdehnung in horizontaler und vertikaler Richtung rührt von der unterschiedlichen horizontalen und vertikalen Auflösung im Hadronspektrometer.

Mit den in Abb. 5.11 eingetragenen Schnitten wird dieser Beitrag vom elastischen Strahlungsschwanz abgetrennt. Randbins, die den Überwiegenden Teil ihrer Akzeptanz innerhalb des Schnitts haben, werden ebenfalls von der weiteren Analyse ausgeschlossen.

Im folgenden werden die 5-fach differentiellen Wirkungsquerschnitte durch Abspaltung des Photonflußfaktors Γ_{t} nach Gl. (2.1) als 2-fach differentielle Wirkungsquerschnitte $d\sigma/d\Omega_{m}^{*}$ für virtuelle Photoproduktion angegeben. Ober das jeweilige akzeptierte ΔQ^{2} und ΔW wird nicht gemittelt, sondern es wird - entsprechend der Q^{2} -Abhängigkeit des verwendeten MC-Querschnitts - der Wirkungsquerschnitt an der Stelle ($\overline{Q^{2}}, \overline{W}$) (= mittleres akzeptiertes (Q^{2}, W)) berechnet, was wegen der starken Variation sinnvoll ist.

5.5 Korrekturen und systematische Fehler

Außer den bereits im vorhergehenden behandelten Verlusten sind noch einige weitere Effekte, die zur Verfälschung der Zählrate der betrachteten Reaktion beitragen, durch entsprechende Korrekturen zu berücksichtigen.

Der von der Streuung an der Targetwand und der umgebenden Materie rührende Anteil am Querschnitt wird durch Abzug einer Leertargetrate von 0.5 %berücksichtigt, die in früheren Messungen mit leerer Targetzelle bestimmt worden ist.

<u>Kernabsorption</u> im Target und im Hadronspektrometer führt zu einem Verlust von 1.5%.

Die bereits erwähnten <u>Totzeitverluste</u> in der Proportionaldrahtkammer lassen sich durch zwei Methoden abschätzen:

 - Das Flugzeitspektrum der Ereignisse, die wegen Nichtansprechen der Proportionaldrahtkammer keine Rekonstruktion der Hadrontrajektorie erlaubten, zeigt an der Stelle, an der die voll rekonstruierten Koinzidenzereignisse zeitlich liegen, eine geringe Oberhöhung, die auf Verluste von ~ 1 % schließen läßt. Dieser Mittelwert über die Proportionaldrahtkammer stellt allerdings eine obere Grenze dar, da auch Ereignisse außerhalb der Akzeptanz (z.B. Treffer auf die Magnetwand) durch Sekundärteilchen einen Ort - 52 -

in H2 mit der richtigen Flugzeit erzeugen können.

 Aus dem Verhältnis R der Ereignisse mit nur zwei angesprochenen Kammer-Ebenen zu den Ereignissen mit drei Ebenen erhält man den Verlust V wegen Nichtansprechen von mehr als einer Ebene;

 $V = 3 \left(\frac{R}{3+R}\right)^2 - 2 \left(\frac{R}{3+R}\right)^3$

(unter der Annahme gleicher Verluste in jeder einzelnen Ebene). In dem Bereich der Kammer ohne direkte Sicht auf das Target ist R klein (einige 5) und damit V praktisch O, im Bereich direkter Sicht werden bis zu 20 – 2-Ebenen-Ereignisse erreicht, was auf Verluste von $\lesssim 1.1\%$ führt.

Neben dem statistischen Fehler ist bei der Betrachtung der Ergebnisse noch ein systematischer Fehler zu berücksichtigen, der durch quadratische Addition der folgenden Fehler abgeschätzt wird.

Fehlerquelle	Fehle	•					
Targetdichte und -länge	1	14					
Leertargetkorrektur	0.5	<u>ç</u>					
Ladungsmessung	2	2					
Mehrfachtrajektorien im Hadron- spektrometer	1	<i>4</i> .					
2-Ebenen-Ereignisse in Hl	1	4					
Flugzeitschnitte	0.5	6					
Mehrfachereignisse im Elektronspektrometer	- 1	%					
Akzeptanz des Elektronspektrometers	1	2) /:					
Akzeptanz des Hadronspektrometers	1	2					
Subtraktion des Mehrfach-Pionenuntergrunde	es 2	$\mathcal{C}'_{\mathcal{K}}$	(pπ	٥),	6	2	(pa
Strahlungskorrekturen	4	8					
systematischer Fehler 5.5 ½ ((p:1 ⁰)	-			8	%	(pn

ſ

6. Ergebnisse

6.1 Wirkungsquerschnitte für die Reaktion $r_{\rm o} p \, \star \, p_{\rm B}$

Die nach den Ausführungen des vorhergehenden Kapitels bestimmten differentiellen Wirkungsquerschnitte de sind in Anhang B tabellarisch aufgeführt.

 $\frac{d_n^*}{n}$ Die angegebenen Fehler schließen die statistischen Fehler der Zählnaten und der m $_X^2$ - Fits ein, systemutische Fehler sind nicht berücksichtigt.

Für die Beschreibung und Interpretation der Daten ist ein Fit an die Winkelverteilungen geeignet mit einem Ansatz, der die Drehimpulse der zum $p_{\rm e}$ – Zustand beitragenden Nukleonresonanzen berücksichtigt. Im gemessenen W-Bereich haben ein merkliches Verzweigungsverhältnis in den Kanal $p_{\rm e}$ nur die S $_{11}(1535)$ (65 t) und die P $_{11}(1470)$ (\approx 18 k), zu hohem W hin kommen noch die P $_{11}(1780)$ (2 - 20) und die P $_{13}(1810)$ (< 5 \times) infrage ([PDG]).

Daher sind als Ansatz für W \leq 1.735 GeV in Gl.(2.5) nur Terme für S-Wellen und P-Wellen zum Gesamtdrehimpuls J = $\frac{1}{2}$ zu berücksichtigen und man erhält:

$$\frac{d\sigma}{d\varepsilon_{r}^{*}} = A_{0} + A_{1} \cdot \cos\varepsilon_{r}^{*} + D_{0} \cdot \sqrt{\varepsilon \cdot (\varepsilon+1)} \cdot \sin\varepsilon_{r}^{*} \cdot \cos\varepsilon_{r}$$

Jedoch wird bei den im folgenden gezeigten Anpassungen der D_o-Term vernachlässigt. In den Messungen zu Q² = 2 GeV² trägt er ohnehin wegen seiner $\cos_{\phi_{-}}$ - Abhängigkeit kaum zum Querschnitt bei, da im wesentlichen um ϕ_{-} = 90⁰ gemessen wurde. Für W ≤ 1.735 GeV (Q² = 2 GeV²) bzw. W > 1.625 GeV (Q²¹ = 3 GeV²) wird \overline{A}_{O} unter der Annahme einer isotropen Winkelverteilung bestimmt, da die Zählraten für eine Analyse in einzelnen $\cos_{\phi_{-}}^{*}$ - Bins nicht mehr ausreichen.

Abb. 6.1 und 6.2 zeigen für $Q^2 = 2 \text{ GeV}^2$ und 3 GeV^2 Beispiele von Winkelverteilungen und Fits mit \overline{A}_0 und \overline{A}_1 als Parameter in einzelnen W-Bins. Die Daten werden durch diesen Ansatz gut wiedergegeben, ein Beitrag von D-Termen ist im Rahmen der Meßgenauigkeit nicht feststellbar.

Der Wirkungsquerschnitt ist vom \overline{A}_0 - Term dominiert, außerdem ist ein kleiner,

Abb. 6.1: Winkelvertcilung der Reaktion .v^p

aber bei $Q^2 = 2 \text{ GeV}^2$ deutlich sichtbarer \overline{A}_1 - Beitrag vorhanden. Bei den Messungen zu $Q^2 = 3 \text{ GeV}^2$ ist diese Asymmetrie in der $\cos \alpha_n^*$ - Verteilung ebenfalls vorhanden, allerdings entsprechend den größeren Fehlerbalken statistisch nicht so signifikant wie bei $Q^2 = 2 \text{ GeV}^2$. Die W-Abhängigkeit dieser Koeffizienten (Tab. 6.1) ist in Abb. 6.3 dargestellt. Mit $4\pi \overline{A}_0 = \sigma_{\text{tot}} (\gamma_v p + p_n)$ ist damit auch gleichzeitig der totale r-Produktionsquerschnitt gegeben.

 \overline{A}_{o} zeigt eine ausgeprägte Resonanzstruktur mit wenig (wenn überhaupt) nichtresonantem Untergrund, während \overline{A}_{1} das Verhalten einer S-P-Welleninterferenz mit sich rasch ändernder Phasendifferenz aufweist. Die naheliegende Interpretation ist, die resonante Struktur in \overline{A}_{o} der S₁₁(1535) - Resonanz zuzuschreiben und die Interferenzstruktur in \overline{A}_{1} auf einen kleineren P-Wellenbeitrag zurückzuführen. Die P₁₁(1470) ist sicherlich ein guter Kandidat für die P-Welle.

Die umgekehrte Interpretation einer resonanten P-Welle mit J = $\frac{1}{2}$ (z. B. P₁₁) als Hauptbeitrag zu \overline{A}_0 und nur ein kleiner S-Wellenbeitrag von der S₁₁ wäre zwar von der Struktur des Querschnitts her ebenso möglich (man betrachte etwa in Gl.(2.5) nur M₁₋ und E₀₊). Der Verlauf des zugehörigen Einarmquerschnitts schließt aber diese Möglichkeit für die P₁₁ sofort aus: Da die P₁₁ nur zu ≈18 % in pn zerfällt ([PDG]), würde dies für Q² = 3 GeV² einen Beitrag von 25 µb im totalen Einarmquerschnitt bei W = 1.535 GeV bedeuten

Daher wird das resonante Signal in \overline{A}_0 voll der S₁₁(1535) zugeschrieben. Der Beitrag der im Asymmetrieterm sichtbaren P-Welle zum totalen Querschnitt beträgt nur 1.6 % (Q² = 2 GeV²) bzw. 0.8 % (Q² = 3 GeV²) und wird im folgenden vernachlässigt. In diesem Fall läßt sich der totale Querschnitt durch eine Breit-Wigner-Funktion mit einem Schwellenfaktor darstellen

$$\sigma_{\text{tot}} (\gamma_{v} p \rightarrow p_{n}) = \frac{\sigma_{p} * \sigma_{v} \cdot W}{m_{p} * K} = \frac{A}{(W - W_{\text{Res}})^{2} + \Gamma(W)^{2}/4}$$

Hier ist A = const. gesetzt entsprechend dem Schwellenverhalten des Multipols $\rm E_{0+}~(S_{0+})$ (siehe Gl.(2.5) und (2.6)).

Die W-Abhängigkeit der Breite I wird entsprechend den Verzweigungsverhältnissen der S₁₁ in Nn (65 %), N π (30 %), N $\pi\pi$ (5 %) ([PDG]) parametrisiert:

- E

Q ² [GeV ²]	Ę	W [GeV]	Ā _o ["b/sr]	Ā₁ [ub/sr]
2.02	.915	1.505	.240 ± .018	.0 ± .029
2.00	.912	1.535	.521 ± .029	.129 + .045
1.99	.910	1.565	.288 ± .019	016 ± .030
1.97	.907	1.595	.210 ± .017	054 ± .028
1.95	.904	1.625	.130 + .014	066 ± .021
1.93	.901	1.655	.099 + .023	$030 \pm .034$
1.91	.8 9 8	1.685	.077 ± .021	.004 ± .029
1,89	,894	1.715	.067 ± .012	
1.87	.891	1.745	.081 ± .012	
1.85	.887	1.775	.061 ± .015	
2.99	.869	1.505	.249 ± .027	-,013 ± .065
2.97	.866	1.535	.354 ± .019	.064 ± .041
2.94	.864	1.565	.187 ± .013	$.020 \pm .028$
2,92	.862	1.595	.096 ± .011	029 ± .026
2.89	.866	1.625	.059 ± .011	
2.87	.865	1.655	.031 ± .012	
2.84	,861	1.685	.030 ± .013	
2.82	.858	1.715	.054 ± .015	
2.79	.854	1.745	.038 ± .016	
2.76	.851	1.775	.046 ± .016	

<u>Tabelle 6.1</u>: Winkelverteilungskoeffizienten der Reaktion $y_{i,p} \rightarrow p_{\eta}$

Q ² [GeV ²]	A[µb-GeV ²]	W _{Res} [GeV]	г _о [GeV]	В [µb·GeV ^{-1/2}]
0.23	0.146 ± 0.009	1.529 ± 0.004	0.120 (fest)	
0.4 ,	0.257 ± 0.047	1.534 ± 0.003	0.166 ± 0.020	
0.6	0.137 ± 0.020	1.538 ± 0.003	0.123 ± 0.012	
0.6	0.153 ± 0.024	1.534 ± 0.002	0.130 ± 0.013	
1.	0.116 ± 0.010	1.536 ± 0.002	0.122 ± 0.006	
1.	0.111 ± 0.016	1.536 ± 0.002	0.124 ± 0.012	
2.	0.0185± 0.0063	1.536 ± 0.003	0.069 ± 0.014	1.58 ± 0.87
3.	0.0158± 0.0022	1.528 ± 0.002	0.068 ± 0.007	
Tabelle 6.	2 : Parameter dem (Ref. [ALD] ,	Breit-Wigner-Fon [BRA2] ,[BRE])	π für σ _{tot} (γ _v p → p	٦)

• • 55 -

$$= \Gamma_{0} \cdot (0.65 \cdot \frac{|\vec{p}_{1}^{*}|}{|\vec{p}_{1}^{*}|}_{\text{Res}} + 0.3 \cdot \frac{|\vec{p}_{1}^{*}|}{|\vec{p}_{1}^{*}|}_{\text{Res}} + 0.05)$$
(6.1)

Der Index "Res" bezeichnet den Wert der entsprechenden Größe bei W = W_{Res}. Zusätzlich wird ein nichtresonanter S-Wellenbeitrag mit einer W-Abhängigkeit B · $\sqrt{W - W_{Schwelle}}$, W_{Schwelle} = $m_p + m_n$, zugelassen.

In Abb. 6.3 ist das Ergebnis einer solchen Anpassung an die Daten bis W = 1.685 GeV mit den freien Parametern A, W_{Res} , T_0 und B gezeigt. Die Daten werden durch den Ansatz gut wiedergegeben. Während für $Q^2 = 2 \text{ GeV}^2$ die Kinzunahme des nichtresonanten Untergrundes den Fit signifikant verbessert, ist das Ergebnis für $Q^2 = 3 \text{ GeV}^2$ gut mit B = 0 verträglich und dieser Term wurde hier weggelassen. Allerdings ist auch bei $Q^2 = 3 \text{ GeV}^2$ für W > 1.715 GeV ein höherer Querschnitt sichtbar als dem Breit-Wigner-Ansatz entspricht. Statt von nichtresonantem Untergrund könnte dies auch von kleineren Beiträgen höherer Nukleonresonanzen stammen oder auch einfach von der Bevorzugung der Rückwärtsrichtung in der Akzeptanz zusammen mit einem negativen $\overline{A_1}$ – Beitrag. In jedem Falle läßt sich jedoch aussagen, daß der nichtresonante Querschnittsbeitrag bei W = 1.535 GeV für beide Impulsüberträge klein ist gegenüber dem resonanten Beitrag.

In Tab. 6.2 sind die Ergebnisse für die Fitparameter zusammen mit den Ergebnissen älterer Messungen bei kleineren Impulsüberträgen aufgelistet. Die Lage der Resonanz stimmt für alle Messungen gut überein, auffällig ist die erhebliche Verringerung der Breite Γ_{0} bei beiden Werten von Q² des vorliegenden Experiments, die jedoch noch in gutem Einklang mit der in [PDG] angegebenen Breite der S₁₁ von 50 bis 150 MeV steht. Interessant ist in diesem Zusammenhang das Ergebnis einer neueren energieunabhängigen Partialwellen-Analyse der verfügbaren Pion-Photoproduktionsdaten [BER], in der für die Breite der S₁₁ 57 MeV gefunden werden. Auch im totalen ep-Querschnitt verkleinert sich die Breite der 2. Resonanz mit wachsendem Q² und ist gut mit der hier gefundenen Breite von 70 MeV verträglich ([STE] und Kap. 8.2).

6.2 Wirkungsquerschnitte für die Reaktion $\gamma_{\rm u} p \rightarrow p \pi^0$

Die differentiellen Wirkungsquerschnitte $\frac{d\sigma}{dg_{\pi}^*\sigma}$ der Reaktion $\gamma_V p \neq p_{\pi}^0$ sind in Anhang C tabelliert.

Da das Gebiet der 1. Resonanz durch die Nukleonresonanz P₃₃(1232) beherrscht wird, ist auch hier als Ansatz für die Beschreibung der Winkelverteilung Gl.(2.2) geeignet, weil in ihm S- und P-Wellen berücksichtigt sind. An weiteren Nukleonresonanzen werden in diesem Ansatz damit auch die P₁₁(1470) und im Bereich der 2. Resonanz die S₁₁(1535) erfaßt. Dagegen erfordert die D₁₃(1520) den Einschluß der D-Wellen-Terme nach Gl.(2.2) . Im Bereich der

3. Resonanz müssen wegen der $\rm F_{15}(1688)$ schließlich noch die entsprechenden F-Wellenterme ihre Berücksichtigung finden.

Die Qualität der Daten (überdeckter Winkelbereich und Fehler der einzelnen Meßpunkte) lassen eine solche Zahl von freien Parametern für Fits an die gemessenen Winkelverteilungen nicht zu. Um die Zahl der Parameter sinnvoll einzuschränken, sind die folgenden Überlegungen nützlich.

Aus den gemessenen Querschnitten der n-Produktion bei Q² = 2 GeV² und 3 GeV² läßt sich über das bekannte Verzweigungsverhältnis der S₁₁ in pn von 65 % ([PDG]) der Beitrag der S₁₁ zum totalen Querschnitt σ_{tot} ($\gamma_V p \rightarrow X$) errechnen. Subtrahiert man diesen Anteil vom "peak"-Querschnitt bei W=1.53 GeV, so erhält man eine Abschätzung des Beitrags der D₁₃ zum totalen Querschnitt. Als "peak"-Querschnitt wird dabei der resonante Anteil im Gebiet der 2. Resonanz bezeichnet, den man nach Subtraktion eines glatten Untergrunds vom totalen Querschnitt erhält ([STE] , [BRD]). Aus den ebenfalls bekannten Verzweigungsverhältnissen von S₁₁ und D₁₃ in Nr (30 % bzw. 55 %) und dem entsprechenden Clebsch-Gordan-Koeffizienten für den Isospin I = $\frac{1}{2}$ kann dann auch der Anteil im Kanal pr⁰ errechnet werden. Tab. 6.3 gibt die resultierenden Querschnitte an.

Q ²	^o peak	Beitrag zum	totalen WQ _{Yv} p	Beitrag zum totalen WQ $\gamma_{v}^{} p \rightarrow p_{\pi}$			
[GeV ⁴]	[µb]	s ₁₁	D ₁₃	s ₁₁	0 ₁₃	S ₁₁	
		[µb]	[µb]	[ub]	[µb]	D ₁₃	
2	15. ±1.	10.07±0.56	5. ±1.2	1.01 ±0.06	0.92±0.2	1.1	
3	7.73±1.1	6.85±0.37	0.88±1.2	0.685±0.037	0.16±0.2	≈4.	

Tabelle 6.3: Abschätzung der resonanten Beiträge zum totalen Wirkungs-

.

- 4

Man sieht, daß im Kanal $p\pi^0$ oberhalb 2 GeV²die D₁₃ rasch an Bedeutung verliert, während sie in der Photoproduktion nahezu den gesamten Beitrag liefert.

Für die Beschreibung der Winkelverteilung bei $Q^2 = 3 \text{ GeV}^2$ und die Bestimmung des totalen Wirkungsquerschnitts $\gamma_{VP} \rightarrow p\pi^0$ sollten die Terme \overline{A}_0 , \overline{A}_1 , \overline{A}_2 , C_0 , D_0 , D_1 ausreichen. Zum \overline{A}_3 - Term tragen nur Interferenzterme Re ($M_{2-} \rightarrow M_{1+}^*$), Re ($M_{2-} E_{1+}^*$), Re ($E_{2-} E_{1+}^*$) und Re ($S_{2-} S_{1+}^*$) bei. Altere Messungen bei $Q^2 =$ 1 GeV² [MER] mit guter ϕ -Akzeptanz, die die Separation von C- und D-Termen erlaubte, zeigen kleine Beiträge dieser Terme im Bereich der 2. Resonanz.

Wegen der Vielzahl der beitragenden Multipolterme im Bereich der 2. und erst recht der 3. Resonanz ist hier jedoch ein Rückschluß von den einzelnen Koeffizienten auf die beteiligten Multipole nicht mehr möglich. Einen Ausweg bietet die Analyse mit Hilfe von Dispersionsrelationen bei festem t. Auf die Ergebnisse solch einer Analyse wird im Kap. 7 näher eingegangen.

Einzig im Bereich der 1. Resonanz ist mit einschränkenden Annahmen eine Multipolanalyse möglich.

6.2.1 Bestimmung der Winkelverteilungskoeffizienten \overline{A}_0 , \overline{A}_1 , \overline{A}_2 , C_0 , D_0 , D_1 für $Q^2 = 3 \text{ GeV}^2$

Die 6 Koeffizienten werden im Bereich 1.145 GeV $\leq W \leq 1.595$ durch Fits an die gemessenen Winkelverteilungen nach der Methode der kleinsten Fehlerquadrate bestimmt. Abb. 6.4 zeigt das Ergebnis dieser Fits, Abb. 6.5 den daraus resultierenden totalen Querschnitt σ_{tot} ($\gamma_v p \Rightarrow p \pi^0$).

Dabei wurde σ_{tot} mit dem zugehörigen Fehler aus der Parametrisierung

$$\overline{A}_{0} = \frac{\sigma_{\text{tot}}}{4\pi} - \frac{\overline{A}_{2}}{3}$$
 (6.2)

bestimmt. Beispiele von gemessenen Winkelverteilungen und zugehörigen Fitkurven sind für einige Werte von W im Bereich der 1. und 2. Resonanz in Abb. 5.6 gegeben.

noch Abb. 6.6

noch Abb. 6.6

- 58 -

In den Koeffizienten \overline{A}_0 , \overline{A}_2 , C_0 und D_1 ist im Bereich der 1. Resonanz eine klare Resonanzstruktur erkennbar, die auf die P_{33} zurückzuführen ist. Eine rein magnetische Anregung dieser Resonanz (nur über den Multipol M_{1+}) würde sich als \overline{A}_0 : \overline{A}_2 : $C_0 = 5: -3: -3$, $\overline{A}_1 = D_0 = D_1 = 0$, niederschlagen (siehe Gl. (2.5)). Der Vergleich mit den Ergebnissen weist auf einen dominanten M_{1+} , aber auch auf erhebliche Beiträge weiterer Multipole in diesem Bereich hin, ebenso der große \overline{A}_1 - und D_1 - Beitrag und die Verzerrungen in \overline{A}_2 .

$$\begin{split} \text{Diese Beiträge lassen sich etwas besser beurteilen, wenn man die Linearkombinationen } \overline{A}_2 + C_0 & \text{und } \overline{A}_2 - C_0 & \text{mit ihrer Multipolentwicklung nach G1. (2.5) betrachtet:} \\ \overline{A}_2 + C_0 &= \frac{\left|\vec{p}_{\pi}^*\right| \cdot W}{M \cdot K} \left\{ -3 \quad \left|M_{1+}\right|^2 + 9 \quad \left|E_{1+}\right|^2 + 6 \text{ Re } \left(M_{1+} \cdot E_{1+}^*\right) - 6 \text{ Re } \left(E_{1+} \cdot M_{1-}^*\right) \\ &- 6 \text{ Re } \left(M_{1+} M_{1-}^*\right) + \varepsilon \cdot \frac{\left|q^2\right|}{q^* 2} \cdot \left(12\left|S_{1+}\right|^2 + 12 \text{ Re } \left(S_{1+} S_{1-}^*\right)\right) \right\} \\ \overline{A}_2 - C_0 &= \frac{\left|\vec{p}_{\pi}^*\right| \cdot W}{M \cdot K} \cdot \left\{ 12 \text{ Re } \left(M_{1+} E_{1+}^*\right) - 12 \text{ Re } \left(E_{1+} M_{1-}^*\right) \\ &+ \varepsilon \cdot \frac{\left|q^2\right|}{\delta^* 2} \cdot \left(12\left|S_{1+}\right|^2 + 12 \text{ Re } \left(S_{1+} S_{1-}^*\right)\right) \right\} \end{split}$$

Berücksichtigt man für die 2. Resonanz noch die transversalen Multipole der D_{13} (M_{2-} und E_{2-}), so kommen in $\overline{A}_2 + C_0$ die Terme – 12 · Re (E_{0+} M_{2-}^*) – 12 · Re (E_{2-} M_{2-}^*) hinzu. $\overline{A}_2 + C_0$ ist durch die Daten so gut bestimmt, daß bei seiner Bestimmung die Terme \overline{A}_3 und C_1 in Gl. 2.2 in die Anpassung eingeschlossen werden können (\overline{A}_3 und C_1 enthalten Interferenzbeiträge der D_{13} mit M_{1+} , der Term D_2 jedoch nur Interferenzterme mit E_{1+} und S_{1+}).

Abb. 6.7 gibt die Fitergebnisse für die beiden Linearkombinationen wieder. Aus der geringen Struktur von $\overline{\Lambda}_2$ - C_0 im Bereich der 1. Resonanz kann man größere resonante wie nichtresonante E_{1+} - Beiträge, die hier mit 12 · Re (M_{1+} E_{1+}^*) eingehen würden, schon ausschließen. Die starke Struktur in $\overline{\Lambda}_2$ + C_0 um W = 1.235 GeV und der Sprung in $\overline{\Lambda}_2$ an dieser Stelle zeigen erhebliche Abweichungen von einem rein resonanten Verlauf mit $|M_{1+}|^2$ an, die mit einem erheblichen Interferenzbeitrag Re (M_{1+} M_{1-}^*) erklärt werden könnten.

Der durchgehend positive A_1 - Beitrag zeigt einen erheblichen E_{0+} (oder S_{0+}) - Beitrag an.

Im Gebiet der 2. Resonanz weisen im Rahmen der Fehler (die hier wegen der kleineren ϕ -Akzeptanz erheblich größer sind) nur die Ä-Terme signifikant von O verschiedene Werte auf in Übereinstimmung mit früheren Messungen bei Q² = 1 GeV². Die ausgezogenen Kurven stellen Ergebnisse der fixed-t-Dispersionsrelationen-Analyse dar, aus deren Ergebnissen die entsprechenden Koeffizienten ermittelt wurden (vgl. Kap. 7).

6.2.2 Bestimmung der Winkelverteilungskoeffizienten A_0 , A_1 , A_2 , \overline{A}_3 für Q^2 = 2 GeV²

Für die gemessenen differentiellen Querschnitte beim Impulsübertrag Q² = 2 GeV² zeigt Abb. 6.8 die Ergebnisse von Fits mit den Winkelverteilungskoeffizienten \overline{A}_{0} , \overline{A}_{1} , \overline{A}_{2} , \overline{A}_{3} . D-Term-Beiträge mit ihrer $\cos\phi_{\pi}o$ - Abhängigkeit können vernachlässigt werden, da im wesentlichen um $\phi_{\pi}o$ = 90° gemessen wurde. Wegen der geringen ϕ - Akzeptanz können die C-Terme nicht bestimmt werden, daher sind die Ergebnisse des Fits nur richtig für kleine Beiträge der C-Terme (bei Q² = 1 GeV² sind die C-Termbeiträge klein, siehe [MER]). Auch der aus den Koeffizienten \overline{A}_{0} und \overline{A}_{2} in der Parametrisierung nach Gl. 6.2 ermittelte totale π^{0} -Produktionsquerschnitt $\sigma_{\text{tot}} (\gamma_{V} p \rightarrow p\pi^{0}) = 4\pi (\overline{A}_{0} + \frac{1}{3}\overline{A}_{2})$

(Abb. 6.9) gilt nur unter dieser Einschränkung.

In Gebiet der 3. Resonanz müßte noch wegen des zu erwartenden Beitrags der F₁₅ (1688) der \overline{A}_4 - Term berücksichtigt werden. Fits unter Einschluß dieses Terms verbessern jedoch χ^2 /Freiheitsgrad nicht, und im Gebiet der F₁₅ ist dieser Koeffizient (mit größeren Fehlern) verträglich mit 0. In σ_{tot} geht er nur mit $\frac{1}{5}$ \overline{A}_4 ein und ändert die ermittelten totalen Querschnitte praktisch nicht.

Abb. 6.11 zeigt die Beschreibung der differentiellen Querschnitte durch die Fits. Mit eingetragen sind die Ergebnisse der Analyse mit fixed-t-Dispersionsrelationen. Beide Kurven geben den Verlauf des Wirkungsquerschnitts gut wieder, jedoch treten in den Rückwärtsquerschnitten gewisse Diskrepanzen bei der Beschreibung mit Dispersionsrelationen auf (diese Diskrepanz tritt auch bei der Beschreibung der π^+n- Winkelverteilungen in Vorwärtsrichtung auf), wie Abb. 6.10 zeigt.

Der totale Wirkungsquerschnitt weist eine deutliche Resonanzstruktur in der 2. und der 3. Resonanz auf. Aus dem Vergleich mit den Abschätzungen der Tabelle 6.3 wird jedoch auch deutlich, daß im Gebiet der 2. Resonanz (W = 1.535 GeV) den Beiträgen von S₁₁ und D₁₃ von etwa 1 µb bzw. 0.9 µb ein erheblicher nichtresonanter Untergrund von ≈ 5.7 µb gegenübersteht. Dieser Untergrund fällt jedoch mit wachsendem W rasch ab im Gegensatz zum nichtresonanten Untergrund im Einarmquerschnitt $\gamma_v p \neq X$.

Interessant ist der π^0 p-Rückwärtsquerschnitt (Abb. 6.10),da aus Drehimpulserhaltungsgründen hier nur die Helizität $\frac{1}{2}$ des einlaufenden $\gamma_{\rm M}$ p-Systems beitragen

.

•

<u>Abb. 6.11</u> : Differentielle Wirkungsquerschnitte $\nabla_{V} P \Rightarrow p_{\pi}^{0}$ und Beschreibung durch die Winkelverteilungskoeffizienten $\overline{A}_{0}, \overline{A}_{1}, \overline{A}_{2}, \overline{A}_{3}$ (------) sowie das Ergebnis der Dispersionsanalyse (-----). $Q^{2} = 2 [GeV^{2}]$

nech Abb. 6.11

kann. Man sieht ein kräftiges resonantes Signal bei W = 1.685 GeV, das sich auch im Winkelverteilungskoeffizienten \overline{A}_1 wiederfindet. Dies kann ein Hinweis auf eine starke Helizität - $\frac{1}{2}$ - Anregung der F₁₅ sein. Im Bereich der 2. Resonanz zeigt der Rückwärtsquerschnitt keine Struktur. Hieraus kann man jedoch nicht auf ein Fehlen einer Helizität - $\frac{1}{2}$ - Anregung schließen (die S₁₁ wird z. B. nur mit Helizität $\frac{1}{2}$ angeregt!), da auch Interferenzeffekte für dieses Fehlen einer Struktur verantwortlich sein können. In der Tat ergibt die Dispersionsrelationsanalyse Helizität - $\frac{1}{2}$ - Dominanz auch für die D₁₃.

In den Winkelverteilungskoeffizienten findet man eine resonante Struktur im Gebiet der 2. Resonanz vornehmlich in \overline{A}_0 und \overline{A}_2 , im Gebiet der 3. Resonanz vor allem in \overline{A}_1 .

6.2.3 Multipolanalyse im Bereich der 1. Resonanz

Da der Bereich der 1. Resonanz, wie aus Abschnitt 6.2.1 und den entsprechenden Einarmquerschnitten ersichtlich, auch beim Impulsübertrag $Q^2 = 3 \text{ GeV}^2$ noch von der P₃₃ dominiert wird, wird hier eine Multipolanalyse versucht. Ziel ist die Oberprüfung der rein magnetischen Anregung der P₃₃, die nur bis $Q^2 = 1 \text{ GeV}^2$ experimentell als gesichert gelten kann, und Abschätzungen zusätzlicher Multipolbeiträge.

Der schon in den Einarmspektren und auch in der Analyse der Winkelkoeffizienten sichtbare beträchtliche nichtresonante Untergrund erfordert eine möglichst gute Berücksichtigung nichtresonanter Multipole. Eine Analyse unter Einschluß aller S- und P-Wellenmultipole (7 komplexe Amplituden, d. h. 13 freie Parameter) ist jedoch nicht möglich, da die Winkelverteilung bereits durch 6 Parameter beschrieben wird. Es sind also zusätzliche Annahmen nötig, um die Zahl der freien Parameter zu reduzieren. Ausgehend von der Dominanz der M_{1+} - Amplitude, wie sie der Verlauf der Koeffizienten \overline{A}_0 , \overline{A}_2 und C_0 nahelegt, werden die Beiträge weiterer Multipole durch ihre Interferenz mit M_{1+} bestimmt. Amplituden, die nicht mit M_{1+} interferieren (das ist bei S_{1-} der Fall), werden vernachlässigt. Damit erhält man

$$\begin{array}{c} M_{1+} & 2 & , \mbox{ Re } (M_{1-} & M_{1+}^{*}) \ / \ M_{1+} \|_{2}^{2} & , \mbox{ Re } (E_{1+} & M_{1+}^{*}) \ / \ M_{1+} \|_{2}^{2} & , \mbox{ Re } (E_{0+} & M_{1+}^{*}) \ / \ M_{1+} \|_{2}^{2} & , \mbox{ Re } (S_{0+} & M_{1+}^{*}) \ / \ M_{1+} \|_{2}^{2} & , \mbox{ Re$$

als freie Parameter.

- 61 -

Folgende Näherungen werden gemacht, um weitere Beiträge abzuschätzen: Betragsquadrate können aufgrund von Ungleichungen der Form

z. B.
$$|E_{1+}|^2 \ge \frac{\text{Re} (E_{1+} M_{1+}^*)^2}{|M_{1+}|^2}$$

abgeschätzt werden, indem man das Gleichheitszeichen annimmt, was umso besser erfüllt ist, je näher die Phasen der beiden Multipole beieinanderliegen. Schlecht wird diese Abschätzung, wenn die Phasendifferenz zwischen den beiden Multipolen sich 90⁰ nähert.

Die resonante Struktur des Koeffizienten D $_1$ legt die Vermutung nahe, daß S $_{1+}$ und M $_{1+}$ näherungsweise in Phase sind, also

$$S_{1+} \approx \frac{\text{Re}(S_{1+} M_{1+}^{*})}{M_{1+}^{2}} M_{1+}$$

Damit lassen sich weitere Interferenzterme von S $_{1+}$ mit E $_{0+}$, E $_{1+}$, M $_{1-}$ und S $_{0+}$ ausdrücken durch ihre Projektionen auf M $_{1+}$ in der Form

Re
$$(E_{0+} S_{1+}^{*}) \approx \frac{\text{Re } (E_{0+} M_{1+}^{*}) \cdot \text{Re } (S_{1+} M_{1+}^{*})}{|M_{1+}|^2}$$

u.s.₩.

Mit diesen Näherungen werden in den Winkelkoeffizienten A_0 , \overline{A}_1 , \overline{A}_2 , C_0 , D_0 , D_1 folgende Terme berücksichtigt:

$$\begin{split} \overline{A}_{0} &= \frac{\left|\left|\overline{p}_{1}^{*}\right|^{2} W}{MK}\right| \left|\left|E_{0+}\right|^{2} + \left|M_{1-}\right|^{2} + \frac{5}{2}\right|\left|M_{1+}\right|^{2} + \frac{9}{2}\left|E_{1+}\right|^{2} \\ &= 3 \left|\operatorname{Re}(M_{1+}E_{1+}^{*})\right| + \left|\operatorname{Re}(M_{1+}M_{1-}^{*})\right| + \left|\frac{1}{q^{*}}\frac{q^{2}}{2}\right| \left|\left|S_{0+}\right|^{2} + 4\left|S_{1+}\right|^{2}\right| \\ A_{1} &= \frac{\left|\overline{p}_{1+}^{*}\right|^{2} W}{MK} - 2 \left|\left|\operatorname{Re}(M_{1+}E_{0+}^{*})\right| + \left|\frac{1}{q^{*}}\frac{q^{2}}{2}\right| \left|\operatorname{Re}(4S_{1+}S_{0+}^{*})\right| \left|\left|\overline{A}_{2}\right| = \frac{\overline{p}_{1+}^{*}}{MK} - \frac{3}{2} \left|\left|M_{1+}\right|^{2} + \frac{9}{2}\left|E_{1+}\right|^{2} + 9 \left|\operatorname{Re}(M_{1+}E_{1+}^{*})\right| \end{split}$$

$$\begin{array}{c} -3 \ \operatorname{Re}(\mathsf{M}_{1+}\mathsf{M}_{1-}^{*}) + 12 \ \varepsilon \ \frac{-q^{2}}{q^{*}} 2 \ \mathsf{S}_{1+}|^{2} \ \left\langle \right. \\ \\ \left. \mathsf{C}_{o} = \frac{\vec{p}_{\tau}^{*}| \ \mathsf{W}}{\mathsf{MK}} \left. \right\rangle - \frac{3}{2} \ \mathsf{M}_{1+}|^{2} + \frac{9}{2}|\mathsf{E}_{1+}|^{2} + 3\operatorname{Re}(\mathsf{M}_{1+}\mathsf{E}_{1+}^{*}) - 3\operatorname{Re}(\mathsf{M}_{1+}\mathsf{M}_{1-}^{*}) \ \left\langle \right. \\ \\ \left. \mathsf{D}_{o} = \frac{|\vec{p}_{\pi}^{*}| \ \mathsf{W}}{\mathsf{MK}} - \sqrt{2} \ \left. \sqrt{\frac{-q^{2}}{q^{*}}} \right. \right\rangle \operatorname{Re}(\mathsf{M}_{1+} \ \mathsf{S}_{0+}^{*}) + 2 \ \operatorname{Re}(\mathsf{S}_{1+}\mathsf{E}_{0+}^{*}) \ \left\langle \right. \\ \\ \\ \left. \mathsf{D}_{1} = -\frac{\vec{p}_{\pi}^{*}| \ \mathsf{W}}{\mathsf{MK}} - \mathsf{G}(\mathsf{F}_{2} + \sqrt{\frac{-q^{2}}{q^{*}}} \right) - \operatorname{Re}(\mathsf{M}_{1+}\mathsf{S}_{1+}^{*}) + \operatorname{Re}(\mathsf{S}_{1+}\mathsf{E}_{1+}^{*}) + \operatorname{Re}(\mathsf{S}_{1+}\mathsf{M}_{1-}^{*}) \ \left\langle \right. \\ \end{array}$$

Abb. 6.12 zeigt das Ergebnis der Anpassung nach der Methode der kleinsten Fehlerquadrate in obigen 6 Parametern. Die Ergebnisse lassen sich folgendermaßen deuten:

- $\rm M_{1+}$ zeigt ein klares Resonanzsignal bei W \approx 1.235 GeV, das der $\rm P_{33}(1232)$ zuzu- ordnen ist.
- S_{1+} zeigt ebenfalls deutlich resonantes Verhalten, erkenntlich an der Konstanz von Re $(S_{1+} M_{1+}^*) / |M_{1+}|^2$. Man liest eine relative Stärke $S_{1+} \approx -0.12 \cdot M_{1+}$ ab.
- = E_{1+} zeigt keine resonante Struktur; Re $(E_{1+} M_{1+}^*)$ ist im Bereich der 1. Resonanz mit O verträglich (* 5 :).
- M_{1-} und E_{0+} weisen erhebliche nichtresonante Anteile auf. Beide Amplituden haben jedoch keinen Nulldurchgang in der Nähe der Resonanz.
- S_{n+} liefert ebenfalls einen merklichen nichtresonanten beitrag.

Die nahezu rein magnetische Anregung der P₃₃(1232) bleibt also bis zum Impulsübertrag Q² = 3.2 GeV² voll erhalten. Die Ergebnisse für die resonanten Amplituden unterscheiden sich praktisch nicht von den in älteren Messungen bei Q² = 0.6 und 1 GeV² [ALD1] gefundenen: Auch dort ist der elektrische Beitrag zur P₃₃-Anregung sehr gering ($|E_{1+}| \neq |M_{1+}| < 5 <$), und der skalare Beitrag hat das gleiche Vorzeichen und etwa gleiche Stärke (S₁₊ = -(0.05 + 0.1)·M₁₊).

Erheblich zugenommen haben dagegen die nichtresonanten Beiträge von den Multipolen M_{1-} und E_{0+} . Der fehlende Nulldurchgang von Re $(M_{1-} \cdot M_{1+}^*)$ bei $Q^2 = 3.2 \text{ GeV}^2$ doutet sich in den Daten zu $Q^2 = 1 \text{ GeV}^2$ schon an.

<u>Abb. 6.12:</u> $|M_{1+}|^2$ und die Interferenzterme mit E_{1+} , S_{1+} , M_{1-} , E_{0+} und S_{0+} bei $Q^2 = 3.19 \text{ GeV}^2$. — Dispersionsanalyse

7. Dispersionsrelationsanalyse

Die Anwendung von Dispersionsrelationen zu festem Impulsübertrag t ("fixed-t-Dispersionsrelationen") in der Elektroproduktion von Nukleonresonanzen gestattet es, die verfügbare Information aus der Photoproduktion und der πN -Streuung sowie die Kenntnis der Nukleon- und Pionformfaktoren in konsistenter Weise einzusetzen zur Bestimmung der Resonanzformfaktoren aus differentiellen Wirkungsquerschnitten der Reaktionen $v_v N \to \pi N$. Die in dieser Arbeit vorgestellten $\pi^0 p$ -Daten wurden zusammen mit den entsprechenden π^+n -Daten (siehe [GER]) einer Dispersionsrelationsanalyse unterzogen, die von Devenish und Lyth entwickelt und zur Analyse von Photo- und Elektroproduktionsdaten benutzt wurde.

Im folgenden soll das Prinzip dieser Analyse nur kurz erläutert werden, eine ausführliche Darstellung findet sich in den Veröffentlichungen [DEV1], [DEV2] der Autoren. Eine detaillierte Diskussion der Ergebnisse dieser Analyse im Gebiet der 2. und 3. Resonanz findet sich in der Arbeit von V. Gerhardt [GER].

Devenish und Lyth verwenden zur Beschreibung der 1-Pion-Elektroproduktion invariante Ball-Amplituden B_i , i = 1, ..., 8 ([BAL]), die frei von kinematischen Singularitäten angenommen werden (was für den Fall der Photoproduktion gezeigt wurde). Durch die Bedingung der Stromerhaltung werden die Amplituden auf 6 unabhängige reduziert. Die Annahme der Analytizität dieser Amplituden führt zu Dispersionsrelationen. Da die einzelnen Amplituden jedoch nicht eichinvariant sind, müssen Subtraktionsterme eingeführt werden und man erhält schließlich Dispersionsrelationen der Form:

Re
$$B_i$$
 (s, t, q^2) = $\frac{1}{\pi} - \int_{m_p+m_\pi}^{\infty} ds'$ Im B_i (s', t, q^2). $\left(\frac{1}{s'-s} \pm \frac{1}{s'-u}\right)$
+ Bornterme

In niedrigster Ordnung tragen außer dem interessierenden Prozeß der Resonanzbildung (Abb. 7.1 a) auch noch die Borntermgraphen (Abb. 7.1 b, c, d: Nukleonaustausch im s- und u-Kanal und Pionaustausch im t-Kanal) zum Realteil der Amplitude bei.

- 64 -

Die grundlegende Annahme ist nun die Sättigung des Imaginärteils der B_i durch die Nukleonresonanzen. Mit einem entsprechenden Ansatz hierfür und der Kenntnis der Nukleon- und Pionformfaktoren für die Berechnung der Bormtermdiagramme ist dann Re B_i vollständig gegeben.

Devenish und Lyth stellen Im B_i durch resonante Multipolamplituden dar. Der Beitrag eines resonanten Multipols j zu B_i wird (unter der Annahme einer Faktorisierung der W- und q²-Abhängigkeit) wie folgt angesetzt:

Im
$$B_{ij}$$
 (s, t, q^2) = K_{ij} (s, t, q^2) · G_j (q^2) · Im f_j (W, W_{Resj} , ...)

 K_{ij} (s, t, q²) sind bef f_j (W, W_{Res,j}, ...) beschre

 $G_i (q^2)$

sind bekannte kinematische Faktoren

Resj, ...) beschreibt den Zerfall der Resonanz in den πN-Zustand; als Ansatz wird eine Breit-Wigner-Form mit einem Schwellenfaktor gewählt.

ist der elektromagnetische Formfaktor des Multipols. Er wird durch ein Produkt von Polen auf der reellen q²-Achse zwischen $2m_{\pi}^2$ und $(m_p+m_{\pi})^2$ dargestellt, deren Lage durch 2 Parameter gegeben ist.

Für Details der Parametrisierung sei auf [DEV1] verwiesen.

Die Beiträge der einzelnen Multipole werden durch Anpassen des aus den B_j errechneten differentiellen π N-Querschnitts an die Daten mittels Variation der Formfaktorparameter bestimmt; die Resonanzparameter (Masse, Breite) und der Beitrag bei q² = 0 werden nicht variiert, sondern aus einer vorhergehenden Photoproduktionsanalyse mit diesem Dispersionsansatz von Devenish, Lyth, Rankin [DLR] übernommen. Die Nukleonformfaktoren sind dem Polmodell-Fit von R. Felst [FEL] entnommen, als Pionformfaktor wird der p-Propagator mit m²_p = 0.5 GeV² verwendet.

Zusätzlich wird verlangt, daß die Resonanzbeiträge zur 2. bzw. 3. Nukleonresonanz aufaddiert gerade den aus Einarmmessungen bekannten Peakquerschnitt (= Querschnitt nach Subtraktion eines glatten Untergrundes, vgl. Kap. 8.2) ergeben. Außerdem wird der aus der n-Produktion bekannte S_{11} -Querschnitt (vgl. Kap. 6) bei der Anpassung berücksichtigt. Um das q²-Verhalten der Multipole nicht zu sehr durch die gewählte Parametrisierung festzulegen, wird jeweils nur an Daten zu einem q² angepaßt. Es erwies sich jedoch als notwendig, für einige Resonanzen die q²-Parametrisierung noch flexibler zu gestalten. Nach einem Vorschlag von Devenish wird als Ansatz

$$G_n(q^2) = a + b \cdot q^2 \cdot (1 - \frac{q^2}{0.71 \text{ GeV}^2})^{-2}$$

mit den freien Parametern a und b gewählt. Damit wird z. B. der Vorzeichenwechsel des Multipols E_{2-} der Resonanz D₁₃ ermöglicht. Es ergeben sich dadurch signifikante Verbesserungen der Fits.

Die Beschreibung der P₃₃ im Gebiet der 1. Resonanz um W = 1.235 GeV beim Impulsübertrag Q² = 3.2 GeV² ist recht unbefriedigend, wie die in Abb. 6.4, 6.6 und 6.7 eingetragenen Ergebnisse der Dispersionsanalyse für die differentiellen Wirkungsquerschnitte $\gamma_V p \rightarrow p \pi^0$ und die Koeffizienten der Winkelverteilungen zeigen. Die resonante Form von $\overline{A_0}$ ist nur unvollkommen wiedergegeben, oberhalb der Resonanzmasse W = 1.235 GeV liegen die experimentellen Werte erheblich höher. Die in den übrigen Koeffizienten beobachteten Strukturen werden ebenfalls nur unzureichend wiedergegeben.

Dementsprechend schlecht ist die Übereinstimmung mit den Ergebnissen der Multipolanalyse im Kap. 6.2.3, wie Abb. 6.12 zeigt. Die Resonanzform des M₁₊ weicht stark ab von der in der Dispersionsanalyse benutzten Breit-Wigner-Form mit einer Breite entsprechend dem Verlauf der P₃₃-Streuphase in der π N-Streuung [CAR] (vgl. auch Kap. 8.1). Diese Abweichungen sind im Ansatz auch schon in der Analyse der Daten $\gamma_v p \rightarrow p\pi^0$ bei Q² = 1 GeV² ([MAY] , [ALD1]) sichtbar, wie in [DEV1] untersucht.

Die resonante skalare Anregung ist in den gezeigten Anpassungen entsprechend den Ergebnissen der Multipolanalyse in Kap. 6.2.3 auf

$$S_{1+} = -0.12 \cdot M_{1+}$$

fixiert, da bei freier Variation dieser Multipol in Korrelation mit dem skalaren Multipol S₁₋ der Roperresonanz P₁₁ unsinnige Werte annimmt. Ursache ist die teilweise Kompensation der schlechten Beschreibung der P₃₃ zu hohen W durch die P₁₁, so daß über den Beitrag der P₁₁ in dieser Analyse keine Aussage gemacht werden kann. Gut wiedergegeben wird dagegen die Struktur der differentiellen Querschnitte $\gamma_v p \rightarrow p \pi^0$ im Bereich der 2. Resonanz um W = 1.5 GeV beim Impulsübertrag $Q^2 = 2 \text{ GeV}^2$, wie die Abb. 6.10 und 6.8 zeigen. Durch die Einbeziehung der totalen S_{11} – Querschnitte aus der r-Produktion und des Peak-Querschnitts der zweiten Resonanz aus den totalen $\gamma_v p$ – Querschnitten, der die Summe der totalen Querschnitte von S₁₁ und D₁₃ darstellt, in die Analyse wird die Bestimmung der Multipole von S₁₁ und D₁₃ recht sicher.

Auch beim Impulsübertrag $Q^2 = 3 \text{ GeV}^2$ werden die differentiellen Querschnitte im Bereich der 2. Resonanz brauchbar beschrieben. Allerdings ist hier der D₁₃-Beitrag schon recht klein geworden, wie die Abschätzung in Tabelle 6.3 zeigt. Der Multipol M₂₋ dürfte trotzdem noch recht gut bestimmt sein, da er mit 12 · Re $(M_{2-} E_{0+}^*)$ in den experimentell gut bestimmten Term $\overline{A}_2 + C_0$ eingeht (Gl. 6.3). Diese Projektion auf den im Bereich der 2. Resonanz dominanten E_{0+} der S₁₁, dessen Größe durch die Ergebnisse des Kanals pn festgelegt ist (vgl. Kap. 6.1), ist der dominante Beitrag zu $\overline{A}_2 + C_0$ in diesem W-Bereich. Die Dispersionsanalyse beschreibt hier die experimentellen Werte von $\overline{A}_2 + C_0$ recht gut (Abb. 6.7).

Tabelle 7.1 gibt die in der Dispersionsanalyse erhaltenen Multipolbeiträge von S_{11} und D_{13} für $Q^2 = 0.$, 0.6, 1., 2. und 3. GeV² an. Dabei stammen die Werte für $Q^2 = 0.6$ und 1. GeV² aus der entsprechenden Analyse (siehe [GER]) der $p\pi^0$ -, π^+n - und pn - Daten eines früheren Experiments ([ALD], [MER], [BRA2]). Die Werte für $Q^2 = 0$ sind der Photoproduktionsanalyse von Devenish, Lyth und Rankin [DLR] entnommen.

	S ₁₁ (. [μb	1535) 1/2]	D ₁₃ (1520) [ub ^{1/2}]				
Q ^Z [GeV ^Z]	Е ₀₊	S ₀₊	E ₂₋	M ₂ -	^S 2-		
0.	0.505	-	0.721	0.269	-		
0.6	0.373	- 0.211	0.092	0.335	0.045		
1.	0.359	0.002	- 0.030	0.249	0		
2.	0.278	- 0.080	- 0.081	0.118	0		
3.	0.229	- 0.068	- 0.070				

<u>Tabelle 7.1:</u> Multipolamplituden der Nukleonresonanzen S₁₁(1535) und D₁₃(1520) für den Kanal $p_{\mu}p \neq p\pi^0$ aus der Dispersionsanalyse 8. Q²-Verhalten der Nukleonresonanzen

8.1 Q²-Verhalten der P₃₃

Der Beitrag des magnetischen Dipols zum totalen virtuellen Photonabsorptionsquerschnitt in der 1. Resonanz wird in der Literatur meist als Übergangsformfaktor G^*_{M} (q²) für den Vertex _{YNA} angegeben. Die Beziehung zwischen M₁₊ und G^*_{M} ist gegeben durch ([ASH])

$$G_{M}^{*} \stackrel{2}{=} (q^{2}) = \frac{|\vec{p}_{\pi}^{*}| \cdot W}{M \cdot K} \cdot |M_{1+}|^{2} \cdot \frac{3}{\alpha} \cdot \frac{W}{\sin^{2} \delta_{33}} \cdot \frac{(W^{2} - M^{2}) \cdot W}{|\vec{q}|^{2}}$$

Mit r = 0.12 GeV und δ_{33} = 90° sowie dem in Kap. 6.2 bestimmten Wert von $|M_{1+}|^2$ bei W = 1.235 GeV erhält man für q² = - 3.19 GeV²

$$\frac{G_{M}^{*}(q^{2})}{G_{M}^{*}(0) \cdot G_{D}} = 0.534 \approx 0.03, \quad \text{mit } G_{M}^{*}(0) = 3,$$

$$G_{D} = (1 + \frac{|q^{2}|}{0.71 \text{ GeV}^{2}})^{-2}$$

Dies Ergebnis ist in Abb. 8.1 mit den bisher gemessenen Werten für G_M^* eingetragen. Es fügt sich gut in den Trend der bisher bekannten Werte bei kleinerem Q^2 ein. Das ist insofern bemerkenswert, als die meisten Meßpunkte aus Einarmmessungen stammen, bei denen $|M_{1+}|^2$ nur aus der W-Abhängigkeit des totalen ep-Querschnitts unter Annahme der M_{1+} -Dominanz und einer Breit-Wigner-Form bestimmt wurde. Die aus Koinzidenzmessungen gewonnenen Werte bei kleinerem Q^2 stimmen ebenfalls gut mit den entsprechenden Einarmwerten überein.

Daher scheint es sinnvoll, auch aus den Einarmspektren bei höherem Q^2 bis 5 GeV² mit einem entsprechenden Ansatz einen Übergangsformfaktor G_M^* durch Fits an die W-Spektren zu extrahieren. Die in Kap. 8.2 beschriebenen Fits liefern ein G_M^* , das in Abb. 8.1 ebenfalls eingetragen ist und bei $Q^2 = 3$ in guter Übereinstimmung mit dem aus der $p\pi^0$ -Winkelverteilung gewonnenen ist.

Der bei kleinerem Q² beobachtete Abfall schneller als der Dipolformfaktor setzt sich auch zu höherem Q² hin fort. Im Gegensatz hierzu würde man beim Vorliegen von SU(6)-Symmetrie erwarten, daß der $\gamma N\Delta$ -Dbergangsformfaktor und der Nukleonformfaktor proportional verlaufen, da Nukleon und Δ (1232) zum selben SU(6)-Multiplett (<u>56</u>, 0⁺) gehören.

Jedoch ist die oben gegebene Definition von G_M^* nicht eindeutig. Jones und Scadron haben dies Problem der Definition eines vNA-Übergangsformfaktors eingehend untersucht ([JON1]). Sie erhalten eine kovariante Multipolzerlegung und einen magnetischen Dipolformfaktor G_M^* mit

$$\tilde{G}_{M}^{*}$$
 (q²) = G_{M}^{*} (q²) • (1 + $\frac{|q^{2}|}{4M_{+}^{2}}$) ^{1/2} $M_{+} = \frac{1}{2} (m_{p} + m_{\Delta})$

Mit diesem \tilde{G}_M^* ist die experimentelle Abweichung vom Dipolformfaktor etwas weniger stark, aber dennoch deutlich vorhanden:

$$\frac{\widetilde{G}_{M}^{*}(q^{2})}{G_{M}^{*}(0) - G_{D}(q^{2})} = 0.692 \pm 0.04 \text{ für } q^{2} = -3.19 \text{ GeV}$$

Um zu überprüfen, wieweit die W-Abhängigkeit vom ${\rm M}_{1+}$ durch eine Breit-Wigner-Form wiedergegeben wird, wird der Ansatz

$$\frac{\left|\hat{p}_{n}^{*}\right| \cdot W}{M \cdot K} \left|M_{1+}\right|^{2} = \frac{2}{3} \cdot \frac{\alpha}{16} \cdot \frac{K}{M \cdot W} \cdot \frac{\vec{q}^{2}}{K^{2}} \cdot \frac{r(W)}{(W - W_{Res})^{2} + \frac{1}{4} r(W)^{2}} \cdot \frac{G_{M}^{*2}(q^{2})}{r(W)^{2}}$$

mit $\frac{1}{2} r(W) = (W_{Res} - W) \cdot \tan \delta_{33}$

an die Daten angepaßt. Die Streuphase δ_{33} ist der π^+p -Streudatenanalyse von Carter [CAR] entnommen, $W_{Reg} = 1.232$ GeV. G_M^* wird als einziger freier Parameter variiert, die geringe Q²-Variation mit W - bedingt durch die Messung bei festem Streuwinkel - wird durch Annahme eines Dipolverhaltens von G_M^* korrigiert. Abb. 8.2 zeigt zu hohem W hin deutlich über der Breit-Wigner-Kurve liegende Meßwerte von M₁₊.

Dieser Effekt zeigt sich - allerdings weniger stark betont - auch schon bei kleineren Werten von Q^2 . Zusammen mit der Photoproduktion ergibt sich folgendes Bild: Bei $Q^2 = 0$ sind die Meßwerte von M₁₊ unterhalb der Resonanzmasse angehoben und oberhalb abgesenkt gegenüber obiger Breit-Wigner-Form. Mit wachsendem Q^2 kehrt sich dieser Effekt um und bewirkt eine Verschiebung des peaks zu höherem W (Abb. 8.2).

dieses Experiment

Gutbrod erklärt in seinem Modell für die Elektroproduktion der P_{33} [GUT] diese Änderung der Form des M_{1+} mit Q² durch eine Interferenz zwischen der Bornamplitude und dem Resonanzpol, die unterhalb der Resonanzmasse konstruktiv und oberhalb destruktiv ist. Mit wachsendem Q² fällt der Bornterm schneller als die resonante Amplitude, so daß der peak zu höherem W wandert. Solch ein Effekt ist hier bei Q² = 3.2 GeV² deutlich sichtbar. Dadurch wird jedoch die Bestimmung von G_M modellabhängig: Der nach GL(8.1) bestimmte Wert von G^{*}_M variiert etwas mit W.

8.2 Q^2 -Verhalten der S₁₁(1535) und D₁₃(1520)

Unter der Annahme, daß die n-Produktion vollständig von der $S_{11}(1535)$ dominiert wird, ist ihr Q²-Verhalten direkt durch den totalen n-Produktionsquerschnitt bei W = 1.535 GeV gegeben. Abb. 8.3 zeigt die experimentellen Werte dieses Experiments zusammen mit den Ergebnissen verschiedener älterer Messungen als Funktion von Q². Die Meßpunkte stammen alle aus Messungen bei großem Polarisationsgrad $\epsilon > 0.7$. Der Photoproduktionswert ist ein gewichtetes Mittel über die Ergebnisse mehrerer Experimente [PHO].

Der schwache Abfall mit Q^2 setzt sich auch zu größerem Q^2 hin fort. Die Meßpunkte von Kummer et al. [KUM] sind zu hohem Q^2 hin offenbar signifikant zu klein.

Die Frage, ob der leichte Anstieg bis $Q^2 = 0.6 \text{ GeV}^2$ und der weitere langsame Abfall in Q^2 von einer großen longitudinalen Anregung der S₁₁ herrühren, wurde in einem Experiment am Bonner Synchrotron ([BRE]) und einem vorhergehenden Experiment mit der hier beschriebenen Apparatur ([BRA2] und [WRI]) geklärt. Durch Messungen bei zwei Werten von ε wurden die transversalen und longitudinalen Beiträge zum totalen η -Produktionsquerschnitt getrennt. Abb. 8.4 zeigt das Ergebnis als Verhältnis R = $\sigma_{\rm L}/\sigma_{\rm T}$. Der longitudinale Beitrag bleibt für $Q^2 \leq 1$ GeV² klein (≈ 20 %). Die eingetragene Kurve ist das Ergebnis einer Modellrechnung von Ravndal [RAV], in der das relativistische symmetrische Quarkmodell von Feynman, Kislinger und Ravndal [FEY] auf die Elektroproduktion erweitert wurde. Zwar stimmen die Voraussagen für $c_{\rm tot}$ der S₁₁ und der D₁₃ nicht mit den Ergebnissen dieses Experiments überein (s. u.), die berechnete Kurve für das Verhältnis R jedoch beschreibt die Daten recht gut.

<u>Abb. 8.3</u> : $\sigma_{tot}(\gamma_v p \Rightarrow p_n)$ für W = 1.535 [GeV] als Funktion von Q²

Das Ergebnis dieses Experiments zeigt, daß die Anregung der S₁₁ bei Q² = 3 GeV² bereits nahezu den gesamten resonanten Einarmpeak in der 2. Resonanz erklärt. In Abb. 8.5 ist der Einarmquerschnitt aus [BRA1] für Q² = 3 GeV² und der aus den n-Produktionswerten folgende Anteil der S₁₁ gezeigt. (Diese Einarmquerschnitte stellen das Ergebnis eines Fits an die bisher gemessenen Einarmquerschnitte verschiedener Experimente im Resonanzgebiet dar mit einem phänomenologischen Ansatz für das Q²-Verhalten des totalen ep-Wirkungsquerschnitts. Dieser Fit wurde für jedes W-Bin unabhängig durchgeführt.)

Es ist naheliegend, für $Q^2 > 3 \text{ GeV}^2$ den gesamten resonanten Querschnitt in der 2. Resonanz der S₁₁ zuzuschreiben,zumindest aber stellt er eine obere Grenze für σ_{tot} ($\gamma_v p + S_{11}$) dar.

Unterstützt wird diese Annahme durch die Andeutung der n-Schwelle im totalen $\gamma_{\rm up}$ - Wirkungsquerschnitt oberhalb Q^2 = 3 GeV² (Abb. 8.5).

Daher wird für numerische Resultate oberhalb 3 GeV² in einem Fit an die Einarmquerschnitte der 2. Resonanzpeak entsprechend einem alleinigen S_{11} -Beitrag parametrisiert (vgl. Kap. 6.1):

$$\sigma_{\text{peak2}} = \frac{W}{m_{p} \cdot K} \cdot \frac{\Gamma_{2}(W)}{4} \cdot \frac{A_{2}}{(W - W_{2})^{2} + \frac{\Gamma_{2}^{2}}{4}} \Gamma_{02} \cdot \left(\frac{m_{p} \cdot K}{W}\right)_{W} = W_{2}$$

mit Γ_{2} (W) = Γ (W) aus Gl. (6.1)

Zur besseren Beschreibung des Spektrums werden geeignete Ansätze zur Beschreibung der 1. und der 3. Resonanz sowie eines nichtresonanten Untergrunds in den Fit eingeschlossen. Außerdem erweist es sich für $Q^2 > 3 \text{ GeV}^2$ als notwendig, einen weiteren resonanten Beitrag um W = 1.4 GeV in den Fit einzuschließen, der auf einen möglichen Beitrag der P₁₁(1470) hinweist.

Als Ansatz wird gewählt:

- Für die 1. Resonanz ein P_{33} -Beitrag in der häufig benutzten Form (z. B. [BAR])

.- 70 -

noch Abb. 8.5

nĩcht res. Unter- grund	P11.	3. Res.	2. Res	l.Res.	
$\begin{array}{c} C_0 \left[\mu b \cdot Ge \sqrt{\frac{2}{3}} \right] \\ C_1 \left[\mu b \cdot Ge \sqrt{\frac{2}{3}} \right] \\ C_2 \left[\mu b \cdot Ge \sqrt{\frac{2}{3}} \right] \\ C_3 \left[\mu b \cdot Ge \sqrt{\frac{2}{3}} \right] \end{array}$	W ₄ [GeV] - ₀₄ [GeV] A ₄ [ub]	W ₃ [GeV] · Γ ₀ 3 [GeV] A ₃ [μb]	W ₂ [GeV] . Γ ₀₂ [GeV] A ₂ [μb]	M ₁ [GeV] - ₀ 1 [GeV] GM	Parameter
11.1± 1.7 62.±29. -183.±84. 156.±64.	1.40 0.2 0.36 ± 0.90	1.710 0.106 ± 0.012 6.78 ± 0.64	1.5073 ± 0.0015 0.070 8.23 ± 0.59	1.2396 ± 0.0027 0.125 0.0616 ± 0.0059	$q^2 = 3 \text{ Gev}^2$
6.6 + 1.4 31. +26. -98. ±74. 88. ±57.	1.40 0.2 0.94 + 0.78	1.720 0.133 ± 0.022 3.68 ± 0.54	1.5080 ± 0.0021 0.070 4.83 ± 0.51	1,2460 ± 0.0053 0.125 0.0322 ± 0.0066	$q^2 = 4 \text{ GeV}^2$
4.21 ± 0.99 18. ± 18. -59. ÷ 54. 54. ± 42.	1.40 0.2 1.02 ± 0.63	1.725 0.148 ± 0.040 1.96 ± 0.44	1.5082 ± 0.0029 0.070 2.92 ± 0.44	1.250 0.125 0.0179 † 0.0059	= 0.96 $q^2 = 5 \text{ Gev}^2$
2.92 ± 0.78 7.8 ± 13.9 -27. ± 39. 26. ± 29.	1.40 0.2 1.03 ± 0.52	1.730 0.12 0.95 ± 0.35	1.5087 ± 0.0041 0.070 1.76 ± 0.35	1.250 0.125 0.0105 ± 0.0057	$q^2 = 6 \text{ Gev}^2$
19.1 ± 3.3 -27. ± 60.0 35. ± 174. 0.3 + 134.	1.40 0.2 1.1 ÷ 1.7	1.710 0.080 ± 0.024 5.5 ± 1.4	1.5194 ± 0.0041 0.070 8.92 ± 1.14	1.2453 ± 0.0057 0.125 0.0646 ± 0.0117	$q^2 = 3 \text{ GeV}^2$
7.15 ½ 1.71 -10.5 ± 30. 22. ± 91. 0.5 ± 72.	1.40 0.2 1.7 * 0.6	1.720 0.112± 0.039 2.5 ± 1.2	1.522 ± 0.006 0.070 5.39 ± 0.98	1.244 · 0.009 0.125 0.0384± 0.0077	$\varepsilon = 0.46$ $Q^2 = 4 \text{ GeV}^2$

Tabelle 8.1: Ergebnisse der Fits an $au_{ t tot}$ (Yyp) im Resonanzbereich

$$\sigma_{\text{peakl}} = \frac{\pi \alpha \cdot \dot{q}^2}{2KW m_p} \cdot \frac{\Gamma_1 (W)}{(W - W_1)^2 + \Gamma_1^2 (W)/4} G_M^* (q^2)$$

mit $\Gamma_1 (W) = \Gamma_{01} \cdot \frac{(0.85 \cdot |\vec{p}_{\pi}^*|/m_{\pi})^3}{1 + (0.85 \cdot |\vec{p}_{\pi}^*|/m_{\pi})^2}$

- für die 3. Resonanz und für W = 1.4 GeV Beiträge entsprechend $\rm F_{15}$ und $\rm P_{11}$ in der Parametrisierung nach Walker ([WAL])

•

$$= A_{i} \cdot \frac{|\vec{q}_{R}| \cdot |\vec{p}_{\pi,R}|}{|\vec{q}^{*}| \cdot |\vec{p}_{\pi}^{*}|} \cdot W_{i}^{2} \frac{r_{i} \cdot r_{\gamma,i}}{(W^{2} - W_{i}^{2})^{2} + W_{i}^{2} r_{i}^{2}}$$
mit $r_{i} = r_{oi} \left(\frac{|\vec{p}_{\pi}^{*}|}{|\vec{p}_{\pi,R}^{*}|}\right)^{2k+1} \cdot \left(\frac{\vec{p}_{r,R}^{2} + X_{i}^{2}}{\vec{p}_{\pi}^{2} + X_{i}^{2}}\right)^{2}$
und $r_{\gamma,i} = r_{oi} \cdot \left(\frac{|\vec{q}^{*}|}{|\vec{q}_{R}^{*}|}\right)^{2j\gamma} \cdot \left(\frac{\vec{q}_{R}^{2} + X_{i}^{2}}{\vec{q}_{\pi}^{2} + X_{i}^{2}}\right)^{j\gamma}$

- für den nichtresonanten Untergrund (vgl. [BAR])

αi

Die Ergebnisse der Fits für $Q^2 = 3, 4, 5, 6 \text{ GeV}^2$ mit $\varepsilon > 0.9$ und $Q^2 = 3, 4 \text{ GeV}^2$ mit $\varepsilon < 0.5$ sind in Tabelle 8.1 angegeben und als Kurven in Abb. 8.5 eingetragen. Wegen der großen Zahl der Parameter war es nicht möglich, alle Resonanzmassen und Breiten zu variieren. Fehlende Fehlerangaben in Tabelle 8.1 zeigen festgehaltene Parameter an. Insbesondere sind die Breite der S₁₁ mit r₀₂ = 70 MeV entsprechend den Ergebnissen von Kap. 6.1 und die Lage der "3. Resonanz" nicht variiert worden; als Breite der 1. Resonanz wurde das Fitergebnis bei $Q^2 = 3 \text{ GeV}^2$ und als Resonanzmasse das Fitergebnis bei $Q^2 = 5 \text{ GeV}^2$ für die größeren Q^2 als fester Parameter benutzt. Die Spektren werden durch diesen Ansatz recht gut wiedergegeben. Bei der Benutzung der Ergebnisse ist zu beachten, daß die Resultate bei den einzelnen Impulsüberträgen nicht völlig unabhängig voneinander sind, da die einzelnen Punkte der Spektren jeweils das Ergebnis eines Fits an verschiedene experimentelle Messungen mit einem ausreichend flexiblen Ansatz für die Q²-Abhängigkeit bei festem W sind.

Ein größerer skalarer Beitrag zur zweiten Resonanz ist nicht festzustellen, wie die nahezu gleichen Querschnitte A_2 für $\varepsilon > 0.9$ und $\varepsilon < 0.5$ bei Q² = 3 und 4 GeV² zeigen.

Zusammen mit den n-Produktionsdaten und dem Verzweigungsverhältnis der S_{11} in pn läßt sich somit unter obigen Annahmen ein totaler S_{11} -Produktionsquerschnitt bis zum Impulsübertrag Q² = 6 GeV² angeben. In Abb. 8.6 ist der transversale Anteil σ_T ($\gamma_V p \neq S_{11}$) als Funktion von Q² aufgetragen, der aus σ_{tot} berechnet wurde mit R = σ_L/σ_T nach [RAV]. Für Q² \geq 3 GeV² wurde R = 0 angenommen.

Die halblogarithmische Darstellung zeigt ein bemerkenswert einfaches Q²-Verhalten: Der transversale Wirkungsquerschnitt fällt exponentiell ab, ein entsprechender Fit mit

$$\sigma_{T} (\gamma_{V} p + S_{11}) = C_{0} \cdot e^{-C_{1} \cdot Q^{2}}$$

liefert

$$C_0 = 21.56 \pm 0.36 \ \mu b$$

 $C_1 = 0.385 \pm 0.013 \ GeV^{-2}$

Den totalen Elektroproduktionsquerschnitt der D₁₃ erhält man unter der Annahme, daß der 2. Resonanzpeak nur von der S₁₁ und D₁₃ herrührt, als Differenz zwischen der Höhe des 2. Resonanzpeaks und dem totalen S₁₁ – Produktionsquerschnitt. Die entsprechenden totalen Resonanzpeak-Querschnitte sind aus Stein et al. [STE] entnommen, die bis zum Impulsübertrag Q² = 1.8 GeV² sehr präzise Einarmspektren gemessen haben, und den 2. Resonanzpeak mit einem Ansatz entsprechend einem D₁₃-Beitrag beschreiben. Da in diesen Einarmdaten die Polarisation des virtuellen Photons e = 0.99 ist, werden die aus der n-Produktion berechneten totalen S₁₁-Querschnitte unter Benutzung des R nach Ravndal auf dies e umgerechnet. Die entsprechenden Resonanzpeak-Querschnitte beim jeweiligen Q² sind durch lineare Interpolation von $\ln \sigma_{\rm peak2}$ zwischen benachbarten Q²-Werten aus [STE] berechnet.

Das Ergebnis $\sigma_{tot} (\gamma_v p + D_{13}) = \sigma_{peak2} - \sigma_{tot} (\gamma_v p + S_{11})$ (Abb. 8.6) zeigt ebenfalls einen exponentiellen Abfall in Q², der jedoch erheblich steiler ist als bei der S₁₁:

$$C_0 = 127.4 \pm 3.0 \mu b$$

 $C_1 = 1.596 \pm 0.054 \text{ GeV}^{-2}$.

Die Multipolanalyse der 1-Pion-Elektroproduktion (vgl. Kap. 7) zeigen bei keinem der untersuchten Q^2 von 0.6 bis 3 GeV² einen longitudinalen Beitrag zur Anregung der D₁₃, so daß σ_{tot} ($\gamma_v p \rightarrow D_{13}$) = σ_T ($\gamma_v p \rightarrow D_{13}$) angenommen werden kann. Damit ergibt sich das Verhältnis der Exponentialkoeffizienten C₁ in $\sigma_T = C_0 \cdot e^{-C_1 \cdot Q^2}$ für D₁₃ und S₁₁ zu C₁ (D₁₃)/ C₁ (S₁₁) = 4.15 = 0.20

9. Quarkmodelle

Nach den großen Erfolgen, die das naive Quarkmodell bei der Klassifizierung von Mesonen, Baryonen und deren Resonanzen sowie bei der Berechnung ihrer magnetischen Momente hatte, lag es nahe, dieses Modell auch auf die Photoproduktion von Nukleonresonanzen mit reellen und virtuellen Photonen anzuwenden.

- 74 -

Die $P_{33}(1232)$ mit $J^P = \frac{3}{2}^+$ wird im Quarkmodell als Zustand mit Gesamtspin der Quarks $S_q = \frac{3}{2}$ und Bahndrehimpuls $L_q = 0$ klassifiziert. Diese Klassifizierung erlaubt eine allgemeine Aussage zur Struktur des Übergangs $\gamma p \rightarrow P_{33}$ (Becchi und Morpurgo [BEM]): Da im Proton $S_q = \frac{1}{2}$ und $L_q = 0$ ist, muß die Strahlungsanregung $\frac{1}{2}^+ \rightarrow \frac{3}{2}^+$ notwendig den Spinoperator enthalten (magnetischer Übergang); der elektrische Übergang, der proportional zum Ladungsoperator ist, verschwindet wegen der Orthogonalität der Quarkspin – Wellenfunktionen zum Spin $\frac{1}{2}$ und $\frac{3}{2}$. Dieses Argument ist unabhängig vom Impuls des Photons. Das naive Quarkmodell erklärt also die beobachtete unverändert magnetische Anregung der P_{33} von $Q^2 = 0$ bis 3.2 GeV².

Die Anregung der ${\rm S}_{11}$ und ${\rm D}_{13}$ soll im folgenden im harmonischen Oszillatormodell betrachtet werden.

9.1 Harmonischer Oszillator

Copley, Karl und Obryk [COP] geben die einfachste Version eines expliziten Quarkmodells an: Drei gleichschwere Quarks werden durch harmonische Kräfte zwischen je zwei Quarks gebunden; diese Kräfte werden flavour- und spinunabhängig angenommen, die Behandlung des Problems ist nichtrelativistisch.

Nach Abseparation der Schwerpunktsbewegung R = $\frac{1}{\sqrt{3}}$ ($\vec{r}_1 + \vec{r}_2 + \vec{r}_3$) erhalten sie zwei unabhängige harmonische Oszillatoren in den Koordinaten

$$\rho = \frac{1}{\sqrt{2}} (\vec{r}_1 - \vec{r}_2)$$

und $\lambda = \frac{1}{\sqrt{6}} (\vec{r}_1 + \vec{r}_2 - 2\vec{r}_3)$

die aufgrund der oben gemachten Annahmen entartet sind.

Mit den zugehörigen Wellenfunktionen des harmonischen Oszillators werden die Übergangsmatrixelemente für die elektromagnetische Anregung durch ein Photon berechnet:

wobei \vec{A} das elektromagnetische Feld eines Photons mit Impuls \vec{K} ist, das mit einem Quark der Ladung e-q, gyromagnetischem Verhältnis g, Spin \vec{s} Impuls \vec{p} und Masse n_{a} wechselwirkt.

Für die Resonanzen S₁₁ und D₁₃ (mit der Zuordnung ² S_q⁺¹ SU(3)_J = ²8_{1/2} bzw. ²8_{3/2}) ergibt sich für die Helizitätsamplituden A_{1/2} und A_{3/2} (Absorption eines Photons mit Helizität 1/2 bzw. 3/2 des γ p-Systems):

$$S_{11} : A_{1/2} = \sqrt{2} F \cdot \frac{1}{\sqrt{K_0}} \cdot \left[\frac{1}{2} K^2 + \frac{\alpha^2}{g} \right] \cdot \exp\left(-\frac{1}{6\alpha} 2 \cdot K^2\right)$$

$$D_{13} : A_{1/2} = F \cdot \frac{1}{\sqrt{K_0}} \cdot \left[K^2 - \frac{\alpha^2}{g} \right] \cdot \exp\left(-\frac{1}{6\alpha} 2 \cdot K^2\right)$$

$$A_{3/2} = -\sqrt{3} F \cdot \frac{1}{\sqrt{K_0}} \cdot \frac{\alpha^2}{g} \cdot \exp\left(-\frac{1}{6\alpha} 2 \cdot K^2\right)$$
wobei $F = i \cdot \frac{2}{3} \cdot \sqrt{\pi} \cdot \frac{1}{\alpha} \cdot \mu$

$$K = |\vec{K}|, K_0 = K (Q^2 = 0)$$

$$\mu = \frac{e \cdot g}{2m_q}$$

$$\alpha = 0 \text{szillatorkonstante}$$

Die Terme ~ K² · exp ($-\frac{1}{6\alpha^2}$ K²) rühren von der Wechselwirkung des Photons mit dem Spin, die Terme ~ exp ($-\frac{1}{6\alpha^2}$ K²) von der Wechselwirkung mit dem Bahndrehimpuls der Quarks.

Die in mehreren Analysen der 1-Pion-Photoproduktion nachgewiesene Dominanz der $A_{3/2}$ - Amplitude der D_{13} und auch der F_{15} ([PPA]) wird im harmonischen Oszillatormodell durch eine "zufällige" gegenseitige Auslöschung der Spin- und Bahnterme $\left[K^2 - \frac{\alpha^2}{g}\right]$ in $A_{1/2}$ erklärt. Für die F_{15} lautet der entsprechende Term $\left[2 \ K^2 - \frac{\alpha^2}{g}\right]$; bei Berechnen der 3-Impulse K für beide Resonanzen im Schwerpunktsystem zeigt es sich, daß beide Terme gleichzeitig durch eine geeignete Wahl von $\frac{\alpha^2}{g}$ nahezu zum Verschwinden gebracht werden können. Copley et al. erhalten $\frac{\alpha^2}{g} = 0.17 \text{ GeV}^2$ als geeigneten Wert; mit der Wahl von g und der Quarkmasse m_{α} ist dann alles festgelegt.

Die Elektroproduktion der Nukleonresonanzen ist nun ideal geeignet, diese Ideen zu testen, da in ihr wegen q² \ddagger 0 \vec{q} bei festem W variiert werden kann und damit sowohl die relativen Gewichte des Spin- und des Bahnterms als auch die explizite q²-Abhängigkeit des Formfaktors zu überprüfen ist.

Aus der $A_{3/2}$ -Dominanz bei der Photoproduktion der D_{13} und F_{15} sollte wegen des Spinterms ~K² in $A_{1/2}$ und $K^2 > Q^2$ mit wachsendem Impulsübertrag Q^2 rasch eine Dominanz der $A_{1/2}$ -Amplitude werden (Close und Gilman [CLO]). Aus der Multipolanalyse (Kap. 7) der Meßergebnisse dieses Experiments (und vorhergehender Messungen bei $Q^2 = 0.6$ und 1 GeV²) läßt sich die Helizitätsasymmetrie

$$A = \frac{|A_{1/2}|^2 - |A_{3/2}|^2}{|A_{1/2}|^2 + |A_{3/2}|^2} = \frac{x^2 - 1}{x^2 + 1}$$
(9.1)

mit
$$x = \frac{|A_{1/2}|}{|A_{3/2}|} = (K^2 - \frac{\alpha^2}{g}) / (\sqrt[3]{3} \cdot \frac{\alpha^2}{g})$$

berechnen. Diese Größe hat den Vorteil, daß in ihr nur die relativen Stärken der Spin- und Bahnterme eingehen, nicht aber der explizite Formfaktor.

Abb. 9.1 zeigt für die D_{13} die erhaltenen Werte (vgl. [GER]) und den Vergleich mit obigen Quarkmodellvorhersagen. Außerdem sind Kurven nach Ono [ONO], Ravndal [RAV] und Körner et al. [KOE] angegeben. Ono berechnet A in obigem nichtrelativistischen Quarkmodell, jedoch in einem anderen Referenzsystem und mit einer anderen Oszillatorkonstanten $\alpha^2 = 0.364 \text{ GeV}^2$ (s. u.). Die Kurve nach Ravndal ist in einer Erweiterung des relativistischen harmonischen Oszillatormodells nach Feynman et al. [FEY] berechnet. Die Ergebnisse dieser relativistischen Rechnung unterscheiden sich nicht wesentlich von der nichtrelativistischen.

Die aus den Ergebnissen der Dispersionsanalyse berechnete Helizitätsasymmetrie der D_{13} ist in guter Übereinstimmung mit obigen Quarkmodellrechnungen im harmonischen Oszillatorpotential. Für die F_{15} erhält man ebenfalls ähnliche Ergebnisse (vgl. [GER]), jedoch ist hier die experimentelle Situation wegen der größeren Zahl der beitragenden Resonanzen im Bereich der 3. Resonanz sehr viel schwieriger, so daß die Multipole hier sicherlich nicht so gut bestimmt sind

<u>Abb. 9.1</u> : Helizitätsasymmetrie A für $D_{13}(1520)$ als Funktion von Q^2

• •

wie in der 2. Resonanz.

Mit diesem Ergebnis kann man jetzt die explizite q^2 - Abhängigkeit der Formfaktoren im harmonischen Oszillatormodell überprüfen ([COP]):

$$\sigma_{T} (\gamma_{V} p + S_{11}) = \frac{m_{p}}{m_{S11}} \cdot \frac{1}{\Gamma_{S11} \cdot K_{o}} \cdot 4 F^{2} \left[\frac{1}{2}K^{2} + \frac{\alpha^{2}}{9}\right]^{2} \cdot \exp(-\frac{1}{3}\alpha^{2}K^{2})$$
und
(9.2)

und

$$\sigma_{T} (\gamma_{v} p + D_{13}) = \frac{m_{p}}{m_{D13}} \cdot \frac{1}{\tilde{r}_{D13} + K_{o}} \cdot 6 F^{2} \cdot \left(\frac{\alpha^{2}}{9}\right)^{2} \cdot (1 + x^{2})$$
$$\cdot \exp \left(-\frac{1}{3\pi^{2}}K^{2}\right)$$

Die Forderung nach verschwindender Amplitude $\Lambda_{1/2}$ (D $_{13},~q^2$ – 0) verlangt (G1. (9.1)):

$$x^2 (q^2 = 0) = 0 \qquad \Rightarrow \qquad K_0^2 = \frac{\alpha^2}{g}$$
 (9.3)

Ein Problem, das bei dieser nichtrelativistischen Behandlung auftritt, ist die Wahl des Bezugssystems, in dem K² ausgerechnet werden soll. Diese Frage ist von verschiedenen Autoren behandelt worden ([YAO] , [ABD] , [HIR] , [ONO]): Für eine nichtrelativistische Rechnung sollte man ein System wählen, in dem die Quark- und Hadrongeschwindigkeiten so klein wie möglich sind. Geeignete Systeme sind etwa das hadronische Breitsystem (\dot{p}_p = - \dot{p}_{Res}) oder das EVF ("equal velocity frame" \dot{v}_p = - \dot{v}_{Res}), das in [ONO] benutzt wird.

In diesen Systemen ist $K^2 \sim \ \ensuremath{\mathbb{Q}}^2$ für große $\ensuremath{\mathbb{Q}}^2$

$$\begin{split} \kappa_{\text{Breit}}^{2} &= Q^{2} + \frac{(W^{2} - m_{p}^{2})^{2}}{2(W^{2} + m_{p}^{2}) + Q^{2}} \\ \kappa_{\text{EVF}}^{2} &= Q^{2} \cdot \frac{(W + m_{p})^{2}}{4 m_{p} W} + \frac{(W^{2} - m_{p}^{2})^{2}}{4 m_{p} W} \end{split}$$

während im hadronischen Schwerpunktsystem $K^{*2} \sim Q^4$ ist; womit sehr schnell die Grenzen einer nichtrelativistischen Behandlung erreicht werden.

Bis zu welchem Q^2 eine nichtrelativistische Beschreibung etwa im Breitsystem brauchbar ist, ist unklar; im folgenden werden daher Anpassungen jeweils bis $Q^2 = 1 \text{ GeV}^2$ und $Q^2 = 2 \text{ bzw. } 3 \text{ GeV}^2$ gesondert untersucht.

Paßt man entsprechend Gl. (9.1), (9.2) und (9.3)

$$\sigma_{T} (D_{13}) = C_{D_{13}} \cdot (1+x^{2}) \cdot \exp((-\frac{1}{3\alpha^{2}} (K^{2} - K_{0}^{2})))$$
, $x^{2} = \frac{1}{3} (\frac{K^{2}}{K_{0}^{2}} - 1)^{2}$

mit den freien Parameters C_{D} und a an die totalen D_{13} - Elektroproduktionsquerschnitte (Kap. 8) an, so¹³ erhält man eine gute Beschreibung bis Q² - 2 GeV² im Breitsystem (χ^2 / Freiheitsgrad = 1.25); die Beschreibung im EVF ist davon praktisch nicht zu unterscheiden. Die Anpassung mit K im hadronischen Schwerpunktsystem ist dagegen nicht so gut (χ^2 / Freiheitsgrad = 5.1), wie Abb. 9.2 zeigt. Anpassungen nur bis Q² = 1 GeV² liefern praktisch identische Parameter.

Tabelle 9.1 gibt die Ergebnisse des Fits bis Q² = 2 GeV² im Breitsystem an. Der für die Beschreibung des steilen Abfalls in Q² benötigte Wert $a^2 = 0.101 \text{ GeV}^2$ ergibt nur eine Auslöschung des A_{1/2} - Beitrags bei Q² = 0 entsprechend Gl. (9.3) für g $\approx \frac{1}{3}$, was mit $u_p = v_q = \frac{e \cdot 9}{2m}$ zu recht großen Quarkmassen m_q ≈ 1 GeV führt. Man würde hier g = 1 entsprechend einem Diracquark vorziehen, was allgemein akzeptierte Quarkmassen von ≈ 0.34 GeV für u- und d-Quarks ergibt.

Versucht man unter Beibehaltung von Gl. (9.3) eine Beschreibung des totalen S_{11}^{-1} Querschnitts bis Q² = 3 GeV² entsprechend Gl. (9.2):

$$\sigma_{T} (S_{11}) = C_{S_{11}} \cdot \frac{4}{9} \cdot (\frac{1}{2} \cdot \frac{\kappa^{2}}{\kappa^{2}_{0}} + 1)^{2} \cdot \exp((-\frac{1}{3}\kappa^{2} \cdot (\kappa^{2} - \kappa^{2}_{0})),$$

so ist das Ergebnis im Breitsystem und erst recht im hadronischen Schwerpunktsystem unbefriedigend (χ^2 / Freiheitsgrad = 5.7 bzw. 17.3); erst ein Aufgeben von Gl. (9.3) durch Einführen eines weiteren Parameters d in Gl. (9.3)

$$K_0^2 + d = \frac{\alpha^2}{g}$$
 (9.4)

führt zu einer guten Beschreibung der S $_{11}$ -Querschnitte (Abb. 9.2). Tabelle 9.1 gibt die erhaltenen Parameterwerte für die Fits im Breitsystem an.

	D ₁₃		s ₁₁		
_	Q ² ≤ 2 GeV ²	$Q^2 \le 3 \text{ GeV}^2$	Q ² ≤ 3 GeV ²	$Q^2 \le 1 \text{ GeV}^2$	$Q^2 \le 1 \text{ GeV}^2$
C [µb]	157 <u>-</u> 3	15.9 - 0.3	20.0 ± 0.8	18.2 ± 0.5	19.5 ± 0.9
$\alpha^2 \ [GeV^2]$.101 ± .001	.252 ± .005	.38 ± .05	.209 ± .007	.31 ± .11
d	= 1	= 1	3.8 = 1.4	= 1	2.3 ± 1.6
χ^2/F	1.25	5.72	1.16	1.40	1.11
g	0.32	0.75	0.30	0.62	0,39
σ _T (Q ² =0) [μb]	164	156	978	171	494

Der Wert von d ist signifikant von 1 verschieden, d. h. der angenommene Auslöschungsmechanismus zwischen Spin- und Bahnterm in A_{1/2} in der Photoproduktion der D₁₃ bestätigt sich nicht. Die Ergebnisse für α^2 und d ergeben in Gl. (9.4) ebenfalls g $\approx \frac{1}{3}$.

Diese Ergebnisse sind allerdings wesentlich durch die Querschnitte bei großem Q^2 bestimmt; eine Anpassung nur bis $Q^2 = 1 \text{ GeV}^2$ liefert ein noch mit 1 verträgliches d und etwas kleinere Werte von α^2 , die aber immer noch erheblich größer sind als bei der D₁₃ (Tabelle 9.1).

Das diskutierte Quarkmodell gibt jedoch nicht nur die relative Q²-Abhängigkeit des Querschnitts an, sondern liefert nach Bestimmung von α^2 und der Bestimmung der relativen Stärken von Spin- und Bahntermbeitrag (hier durch die Bestimmung von d; das ist äquivalent einer Festlegung von g) eine absolute Vorhersage des Wirkungsquerschnitts.

Beim Vergleich mit dem gemessenen Wert muß man jedoch noch das Problem der Mischung von ${}^{28}_{1/2}$ mit ${}^{48}_{1/2}$ in den physikalischen Zuständen S $_{11}(1535)$ und S $_{11}(1700)$ und ${}^{28}_{3/2}$ mit ${}^{48}_{3/2}$ in den Zuständen D $_{13}(1520)$ und D $_{13}(1700)$

$$\begin{split} |S_{11}(1535)\rangle &= -\sin\theta_{\rm S} \cdot |^{4}8_{1/2}\rangle + \cos\theta_{\rm S} \cdot |^{2}8_{1/2}\rangle \\ |D_{13}(1520)\rangle &= -\sin\theta_{\rm D} \cdot |^{4}8_{3/2}\rangle + \cos\theta_{\rm D} \cdot |^{2}8_{3/2}\rangle \end{split}$$

entsprechend berücksichtigen, da nach der Moorhouse-Auswahlregel ([MOR]) am Proton nur der ²8-, nicht aber der ⁴8- Zustand photoproduziert werden kann. Diese Aussage folgt aus der Symmetrie der Wellenfunktionen, gilt also unabhängig von dem speziellen Modell des harmonischen Oszillators.

In ihrer $SU(6)_W$ - Analyse (vgl. Kap. 9.3) der Nukleonresonanzzerfälle in pseudoskalare Mesonen erhalten Litchfield, Cashmore and Hey [LIT] folgende Mischungswinkel

$$S_{11}$$
 : $O_S = -38^\circ$
 D_{13} : $O_D = 10^\circ$

Diese Werte erhalten zusätzliche Unterstützung durch eine Rechnung von Isgur und Karl [ISG] . In ihr wird eine Spin-Spin-Wechselwirkung der Quarks im Hamiltopoperator eingeführt, die entsprechend den Ideen der Quantenchromodynamik vom 1-Gluon-Austausch herrührt (analog zum 1-Photon-Austausch in der Quantenelektrodynamik). Man erhält in einer nichtrelativistischen Reduktion einen Kontakt- und einen Tensorterm (de Rujula et al. [RUJ]), von denen der Tensorterm ein nichtverschwindendes Matrixelement $<^2 8_{1/2}$ | $H_{\rm T}$ | $^4 8_{1/2}$ > besitzt und so eine Mischung dieser Zustände verursacht (analog für $8_{3/2}$). Isgur und Karl erhalten mit harmonischen Oszillator-Wellenfunktionen

$$S_{\rm D} = -31.7^{\rm O}$$

 $S_{\rm D} = -6.3^{\rm O}$

in guter Obereinstimmung mit der ${\rm SU}(6)_{W}$ - Analyse.

Unter Berücksichtigung dieser Mischung nach [LIT] ergeben sich aus den erhaltenen Werten von α^2 und d und mit $\mu = \mu_p = 0.13 \text{ GeV}^{-1}$, $\Gamma_{\text{S11}} = 0.1 \text{ GeV}$, $\Gamma_{\text{D13}} = 0.125 \text{ GeV}$ nach Gl. (9.2) die in Tabelle 9.1 angegebenen totalen Querschnitte $\sigma_{\text{T}} (Q^2 = 0) = \cos^2 \odot \cdot \sigma_{\text{T}} (Q^2 = 0, \frac{28}{1/2} \text{ bzw}, \frac{3}{2})$ im harmonischen Oszillatormodell, die mit dem Wert von C zu vergleichen sind.

Während die Vorhersage für die D₁₃ ausgezeichnet den experimentellen Wert wiedergibt, sind die Ergebnisse für die S₁₁ um einen Faktor > 9 zu groß. Diese Diskrepanz und die um einen Faktor 2 - 4 größeren Werte von α^2 für die S₁₁ lassen eine - 81 -

- 82 -

gleichzeitige Beschreibung von S $_{11}$ und D $_{13}$ im harmonischen Oszillatormodell nur mit Spin- und Bahnübergängen nicht zu.

Da S₁₁ und D₁₃ sich in dem bisner benutzten Bild nur in der relativen Orientierung von Bahndrehimpuls und Quarkspin unterscheiden, liegt es nahe, an eine Spin-Bahn-Wechselwirkung der Quarks zu denken. Diese Frage soll unter einem allgemeinen Zugang im folgenden Abschnitt untersucht werden. Der große Unterschied der beiden Resonanzen im Abfall mit Q² läßt jedoch auch an eine erheblich unterschiedliche räumliche Anordnung der Quarks denken.

9.2 Stromalgebra

Um die Eigenschaften eines physikalischen Systems zu studieren, ist es für die Konstruktion expliziter Modelle sehr nützlich zu untersuchen, welche Eigenschaften des Systems allein schon aus zugrundegelegten Symmetrien folgen, und diese Eigenschaften dann im Experiment zu Lesten. Im folgenden soll dargestellt werden, welche Konsequenzen eine SU(6)_w-Symmetrie der Quarks und der Quarkströme für die Photoproduktionsamplituden (unter gewissen Voraussetzungen) hat. Die Anwendung dieser Folgerungen auf die vorliegenden Daten liefert eine Aussage über die Spin-Bahn-Anregung von Quarks im Nukleon durch Photonen.

Die quantenmechanischen Zustände von 3 Quarks mit Spin 1/2 und relativem Drehimpuls werden in der Algebra SU(6) (\otimes G(3) klassifiziert. Diese Klassifikation bezeichnet man als Konstituenten-Algebra, die Quarks als Konstituenten-Quarks. Beschreibt man den Prozeß Hadron \rightarrow Hadron $+ \gamma$ und Hadron + Hadron + Heson als Quark-Strom-Wechselwirkung, so findet man, daß die Ströme

$$\frac{1}{q} r + \frac{\chi^{a}}{2} q$$
 $r = Dirac-Kovarianten$
 $\chi^{a} = SU(3)-Matrizen$

eine Untermenge von "guten" (d. h. mit physikalisch vernünftigen Eigenschaften) Strömen enthalten, die ebenfalls eine SU(6) -Algebra bilden, die SU(6)_W-Algebra der Ströme (Dashen und Gell-Mann [DAS]). Die Quarkfelder werden entsprechend als Stromquarks bezeichnet. Der Einschluß des Drehimpulses führt dann zur SU(6)_W \bigotimes O(3)-Algebra der Ströme. Der Index W kennzeichnet hierbei die Verwendung des W-Spins zur Klassifikation, einer nötigen Verallgemeinerung des Spins, der sich auch als Symmetrie für kollineare Zerfälle (hier 2-Körper-Zerfälle) verwenden läßt:

$$W_{x,y} = \frac{1}{2} \beta \cdot \sigma_{x,y}$$
, $W_{z} = \frac{1}{2} \sigma_{z}$ mit $\beta = (\begin{array}{c} 1 & 0 \\ 0 & -1 \end{array})$

Für Quarks ist $\vec{W}_q = \vec{S}_q$, für Antiquarks jedoch $W_z = S_z$, $W_{x,y} = -S_{x,y}$. Daher ist für Baryonen der W-Spin gleich dem Spin.Dieser W-Spin läßt sich ebenso in der Konstituenten-Algebra verwenden.

Diese beiden SU(6)_w der Konstituenten- und der Stromquarks sind nicht identisch. Melosh hat in seiner Arbeit [MEL] für freie Quarks eine unitäre Transformation V hergeleitet, die diese beiden Darstellungen in der Konstituenten- bzw. Stromquarkbasis miteinander verknüpft:

$$\Psi_{\text{Konstituent}} = V | \Psi_{\text{Strom}}$$

Für den elektromagnetischen Strom erhält er unter der Annahme, daß nur Wechselwirkungen des Photons mit einem Quark auftreten, nach Ausführen der Transformation in die Konstituentenbasis als allgemeinsten Ausdruck für die $SU(6)_W \otimes O(3)$ -Struktur

$$J_{\pm}^{em} = A \cdot \left\{ \frac{35}{25}, W = 0, W_{z} = 0, L_{z} = \pm 1 \right\}$$
Bahn-Anregung
+ B · $\left\{ \frac{35}{25}, W = 1, W_{z} = \pm 1, L_{z} = 0 \right\}$ Spinflip-Anregung
+ C · $\left\{ \frac{35}{25}, W = 1, W_{z} = 0, L_{z} = \pm 1 \right\}$ Spin-Bahn-Anregung
+ D · $\left\{ \frac{35}{25}, W = 1, W_{z} = \mp 1, L_{z} = \pm 2 \right\}$ Spin-Bahn-Anregung
mit $AL = 2$

(Außerdem steckt in der Herleitung dieser Zerlegung die Annahme, daß die algebraischen Eigenschaften der Transformation beim Übergang von freien Quarks zu wechselwirkenden Quarks erhalten bleiben).

Die Gewichte A ... D der einzelnen Terme sind $SU(6)_w$ -Skalare, so daß für elektromagnetische Übergänge von einem $SU(6)_w$ -Multiplett in ein anderes sich alle Übergangsamplituden durch diese Funktionen A ... D mit den entsprechenden $SU(6)_w$ -Clebsch-Gordan-Koeffizienten ausdrücken lassen.

²⁵⁺¹ SU(3)) _J Target	A _{3/2}	A _{1/2}
2.	р	-	$+\frac{1}{6}A + \frac{1}{6}B - \frac{1}{6}C$
°1/3	n n	-	$-\frac{1}{6}A - \frac{1}{18}B + \frac{1}{18}C$
	p	-	Ũ
^{- 18} 1/2	n n	-	$-\frac{1}{18} + \frac{1}{18} $ C
2.	p	$+\frac{1}{2}\sqrt{\frac{1}{6}} + \frac{1}{2}\sqrt{\frac{1}{6}} c$	+ $\frac{1}{6}\sqrt{\frac{1}{2}}$ A- $\frac{1}{3}\sqrt{\frac{1}{2}}$ B- $\frac{1}{6}\sqrt{\frac{1}{2}}$ C
°3/2	2n		$-\frac{1}{6}\sqrt{\frac{1}{2}} + \frac{1}{9}\sqrt{\frac{1}{2}} + \frac{1}{18}\sqrt{\frac{1}{2}} $
	P	Q	o
⁻⁸ 3/2	n	$-\frac{1}{6}\sqrt{\frac{3}{5}}B+\frac{1}{3}\sqrt{\frac{1}{15}}C$	$-\frac{1}{18}\sqrt{\frac{1}{5}}\theta + \frac{2}{9}\sqrt{\frac{1}{5}}c$
4	P	٥	0
⁸ 5/2	n	$+\frac{1}{6}\sqrt{\frac{2}{5}} B + \frac{1}{6}\sqrt{\frac{2}{5}} c$	+ $\frac{1}{6}\sqrt{\frac{1}{5}}B + \frac{1}{6}\sqrt{\frac{1}{5}}C$
² 10 _{1/}	/2 p/n	-	$+\frac{1}{6}A - \frac{1}{18}B + \frac{1}{18}C$
2 tū 3/	/2 p/n	$+\frac{1}{2}\sqrt{\frac{1}{5}}A - \frac{1}{5}\sqrt{\frac{1}{5}}C$	+ $\frac{1}{6}\sqrt{\frac{1}{2}}$ A+ $\frac{1}{9}\sqrt{\frac{1}{2}}$ B+ $\frac{1}{18}\sqrt{\frac{1}{2}}$ C

<u>Tabelle 9.2</u> : Beziehung zwischen Helizitätsamplituden $A_{3/2}$, $A_{1/2}$ und SU(6)_W-Amplituden A , B , C für Übergänge $\{\underline{70}\} \Rightarrow \{\underline{56}\} + \gamma$ (vgl. Hey [HEY]) - 83 -

Für die hier betrachteten Obergänge N^{*} \rightarrow N_Y: $\frac{1}{70}$, $L^{P} = 1^{-1}$, $\frac{1}{56}$, $L^{P} = 0^{+1}$, ist in Tabelle 9.2 die Beziehung zwischen den Helizitätsamplituden A_{1/2}, A_{3/2} und den Amplituden A, B, C angegeben (vgl. z. B. Hey [HEY]). Der D-Term trägt hier nicht bei, da wegen L_{quark} = 1 AL = \pm 2 - Obergänge nicht möglich sind.

Für die Multipole E_{0+} , M_{2-} , E_{2-} gilt entsprechend dem Zusammenhang mit den Helizitätsamplituden $A_{1/2}$, $A_{3/2}$ (vgl. Anhang A)

$$E_{0+} = C_{S} \cdot \frac{1}{6} \frac{1}{6} A + \frac{1}{6} B - \frac{1}{6} C',$$

$$M_{2-} = C_{D} \cdot \frac{\sqrt{2}}{12} B + \frac{\sqrt{2}}{12} C',$$

$$E_{2-} = C_{D} \cdot \frac{\sqrt{2}}{6} A - \frac{\sqrt{2}}{12} B + \frac{\sqrt{2}}{12} C',$$
(9.5)

Diese aus den experimentellen Daten erhaltenen Multipole (Kap. 7) erlauben somit für festes Q^2 die Bestimmung der Funktionswerte A, B, C (nach einem Vorschlag von Foster [FOS]).

Allerdings ist hierbei die Mischung der S₁₁ aus 28 _{1/2} und 48 _{1/2} zu berücksichtigen, da wie bereits erwähnt wegen der Moorhouse-Auswahlregel $\langle\gamma\rho|{}^{48}$ _{1/2} = 0 gilt: $\langle\gamma\rho|{}^{28}$ _{1/2} = $\frac{1}{\cos 0}$. $\langle\gamma\rho|S_{11}\rangle$. Analoges gilt für die D₁₃. Als Mischungswinkel werden für die folgende Rechnung die Werte der SU(6)_w-Analyse [LIT] benutzt: $\Theta_{s} = -38^{\circ}$, $\Theta_{D} = 10^{\circ}$.

Abb. 9.3 zeigt die errechneten Werte (Tab. 9.3) für $Q^2 = 0, 0.6, 1., 2., 3. \text{ GeV}^2$. Die Multipolamplituden für $Q^2 = 0$ stammen aus [DLR].

Der C-Term ist klar = 0, d. h. die Annahme einer vernachlässigbaren Spin-Bahn-Anregung ist sicherlich nicht richtig. Bei großen Q^2 dominiert der Spinflip-Term B.

Algebraische Modelle machen natürlich keine Aussage über die Q²-Abhängigkeit der Funktionen A-D. Sie kann nur aus einem expliziten Modell, z. B. einem Quarkmodell, das die zugrundegelegte Symmetrie realisiert, entnommen werden. Die algebraische Struktur des harmonischen Oszillatormodells von Copley et al. (Abschn. 8.1) entspricht C = D = O; nur Bahndrehimpuls- und Spinflip-Anregung werden berücksichtigt. Daß damit S₁₁ und D₁₃ nicht simultan beschrieben werden können, liegt also schon in der zugrundegelegten Struktur der Wechselwirkung zwischen Photon und Quark begründet.

$Q^2 [GeV^2]$	Α	В	C [1	1/2
0.	9.53	3.91	2.78	
0.6	3.39	6.41	1,92	
1.	2.28	5.75	0.44	
2.	1.29	3.77	-0.82	
3.	1.03	2,45	-1.35	

Tabelle 9.3: SU(6)_w - Amplituden A, B, C

Aus dem Vergleich kann man entnehmen, daß im nichtrelativistischen harmonischen Oszillatormodell

$$A = A_{0} \cdot e^{-\frac{1}{6\alpha^{2}}} (K^{2} - K_{0}^{2}) \qquad B = B_{0} \cdot \frac{K^{2}}{K_{0}^{2}} \cdot e^{-\frac{1}{6\alpha^{2}}} (K^{2} - K_{0}^{2})$$

ist. Die aus den Ergebnissen der Multipolanalyse bestimmten Werte von A und B lassen sich durch diesen Ansatz recht gut beschreiben, jedoch nur mit einem um den Faktor 1.5 unterschiedlichen α^2 , wie ein Fit mit obigem Ansatz zeigt:

$$A_o = 9.37 \text{ ub} \frac{1/2}{2}, \quad \alpha_A^2 = 0.110 \text{ GeV}^2$$

 $B_o = 4.00 \text{ µb} \frac{1/2}{2}, \quad \alpha_B^2 = 0.168 \text{ GeV}^2$

Ein Fit mit einem Dipolformfaktor $(1 + Q^2/M^2)^{-2}$ anstelle des Exponentialformfaktors liefert für den Bahnterm A eine etwas bessere Beschreibung bei großem Q^2 , der Spinterm B wird jedoch nur schlecht wiedergegeben. Für die Parameter erhält man hier:

$$A_{0} = 9.49 \ \mu b \ ^{1/2}, \ M_{A}^{2} = 0.975 \ GeV^{2}$$

 $B_{0} = 4.70 \ \mu b \ ^{1/2}, \ M_{B}^{2} = 1.14 \ GeV^{2}$

Der Dreierimpuls wurde im hadronischen Breitsystem berechnet.

Es ist jedoch schwierig zu beurteilen, wie signifikant diese Bevorzugung eines Dipolformfaktors in A ist, da die verwendeten Multipolamplituden einer Dispersionsanalyse entstammen und die Fehler dieser Amplituden schlecht anzugeben sind.

Auffallend ist der Vorzeichenwechsel des Spin-Bahn-Terms C mit einem Nulldurchgang ungefähr bei $Q^2 = 1.2 \text{ GeV}^2$. Dieser Vorzeichenwechsel hängt nicht so sehr von den Ergebnissen der Multipolanalyse ab, sondern ist eine Folge des schwachen Abfalls des S₁₁-Querschnitts mit wachsendem Q² im Vergleich zum D₁₃-Querschnitt :

$$C = \frac{3 \cdot \sqrt{2}}{C_D} M_{2-} + \frac{\sqrt{2}}{C_D} E_{2-} - \frac{2}{C_S} E_{0+}$$

Selbst im Fall $E_{2-} = 0$, der bei festem σ_T den größten Wert für C liefert, erhält man aus den Werten für σ_T von D_{13} und S_{11} nach Kap. 8.2 und Anhang A noch

C (Q² = 2 GeV²) = -0.63
$$\mu b$$
 $^{1/2}$ C (Q² = 3 GeV²) = -0.93 μb $^{1/2}$

Eine solche Spin-Bahn-Anregung stammt möglicherweise von einem Spin-Bahn-Anteil

[∨]_{SB} • נ゚ • รี = ∨_{SB} • (יֿ × דָ) ₀ รี

im Quarkpotential, der über die Ersetzung $\vec{p} \rightarrow \vec{p}$ – e•q \vec{A} ebenfalls einen Beitrag zu den Elektromagnetischen Übergängen liefert.

Im Rahmen der Quantenchromodynamik (QCD) erwartet man nun Beiträge zum Spin-Bahn-Potential, die für kleine Entfernungen durch den 1-Gluon-Austausch gegeben sind, für große Entfernungen aber durch das Quarkconfinement-Potential.

In Analogie zur Quantenelektrodynamik erhält man in nichtrelativistischer Näherung als Korrekturterm für die Spin-Bahnenergie zweier gleichschwerer Quarks in ihrem Schwerpunktsystem bei einem kugelsymmetrischen statischen Potential, das von einem Vektoraustausch rührt (z. B. Gromes [GRO]):

$$H_{SB}^{V} = \frac{3}{2m^2} \cdot \frac{V_V'(r)}{r} \cdot \vec{L} \cdot \vec{S}$$

Nimmt man für den langreichweitigen Anteil des Quarkpotentials anstelle eines Vektoraustauschs einen Skalaraustausch an, so erhält man als Beitrag zum Spin-Bahn-Potential ([GRO]):

$$H_{SB}^{L} = -\frac{1}{2m^{2}} \frac{V_{S}^{\prime}(r)}{r} \vec{L} \cdot \vec{S} = -\frac{1}{3} H_{SB}^{V}$$

Wichtig ist hierbei, daß man das umgekehrte Vorzeichen wie beim Vektoraustausch erhält und somit die Möglichkeit der Auslöschung der beiden Beiträge besteht, die die anscheinend geringe Rolle der Spin-Bahn-Beiträge in der Meson- und Baryonspektroskopie erklären könnte ([ISG], [BAP]).

Ein Argument, das gegen einen Vektoraustausch im Confinementpotential spricht, ist die Aufspaltung der ${}^{3p}_{0,1,2}$ - Zustände im Charmonium, die für Vektoraustausch falsch wiedergegeben ist (Schnitzer [SCH]), dagegen gut mit einem Skalaraustausch beschrieben werden kann (Henriques, Kellett, Moorhouse [HEN]).

Der gemessene Verlauf des Spin-Bahn-Terms C in diesem Experiment zeigt nun gerade einen solchen Auslöschungsmechanismus: Mit wachsendem Q² (~ $\frac{1}{r^{7}}$) kehrt sich sein Vorzeichen um,

14

Schwierig ist jedoch eine quantitative Aussage über den Verlauf des Spin-Bahn-Terms, da das langreichweitige Confinement-Potential in der QCD nicht störungstheoretisch behandelt werden kann. Für kleine Abstände dagegen sollte der 1-Gluon-Austausch den Hauptbeitrag zum Potential liefern, die QCD liefert dafür [GRO] :

$$V_{g} = \underbrace{\sum_{a=1}^{8} \frac{\lambda_{i}^{a}}{2} - \frac{\lambda_{j}^{a}}{2}}_{F} \cdot \alpha_{s} \cdot \frac{1}{r_{ij}}}_{F}$$

: SU(3)_{Color}- Matrizen, angewandt auf Quark i

r_{ij} = Abstand zwischen Quark i und j

Für ein Paar qq in einem q q q - Colorsinglettzustand erhält man als Color-Faktor [LIP] F = $-\frac{2}{3}$

Der Spin-Bahn-Beitrag wird damit

λ^ai

un

$$t_{SB}^{V} = \frac{1}{m^2} \cdot \frac{\alpha_s}{r^3} \vec{L} \cdot \vec{S} .$$

Gittereichtheorien legen für den langreichweitigen Teil des Potentials einen linearen Verlauf nahe, auch die Lage der S- und P-Niveaus im Charmonium unterstützt diese Wahl:

$$V_{S} = \lambda \cdot r \quad \text{für q}\overline{q} \text{ in Mesonen}$$

$$V_{S} = \frac{1}{2} \lambda \cdot r \quad \text{für qq in Baryonen, da für q}\overline{q} F = -\frac{4}{3} \text{ ist}$$

$$d \text{ damit } H_{SB}^{L} = -\frac{1}{4m^{2}} - \frac{\lambda}{r} \quad \vec{L} \cdot \vec{S}$$

- 88 -

- 87 -

Insgesamt wird
$$H_{SB} = \frac{1}{4m^2} \left[\frac{4\alpha_s}{r^3} - \frac{\lambda}{r} \right] \vec{L} \cdot \vec{S}$$
,
aus $H_{SB} = 0$ folgt $\frac{1}{r_0^2} = \frac{\lambda}{4\alpha_5}$.

Aus einer Analyse experimentell bekannter Charmoniumniveaus erhalten Pignon und Piketti [PIG] mit obigem Potential V_g + V_s = $-\frac{4}{3} \alpha_s \cdot \frac{1}{r} + \lambda r + const$ für cc die Parameter

$$\alpha_{\rm s} = 0.45$$
 $\lambda = 0.25 \, {\rm GeV}^2$.

Unter der Annahme, daß die Spin-Bahn-Wechselwirkung im Baryon durch die gleichen (bis auf Colorfaktoren) 2-Quark-Wechselwirkungen wie im Charmonium-Meson gegeben ist, erhält man für den Nulldurchgang des Spin-Bahn-Potentials mit obigen Parametern

$$\frac{1}{r_0^2} = 0.14 \text{ GeV}^2$$

Eichten et al. [EIC] schlagen in einer neueren kritischen Analyse der verfügbaren Charmoniumdaten als Parameterwerte (in der hier verwendeten Notation) vor :

$$\alpha_{\rm S} = 0.39$$
 , $\lambda = 0.18 \, {\rm GeV}^2$; daraus folgt $\frac{1}{r_0} = 0.12 \, {\rm GeV}^2$

Ein direkter Schluß hieraus auf den Nulldurchgang Q_0^2 des Spin-Bahn-Terms C ist jedoch ohne weiteres nicht möglich. Bei der Berechnung des Matrixelements für C tritt die Integration des Potentials über alle r (Fouriertransformation vom Orts- in den Impulsraum) auf. 1-Gluon-Austausch und skalares lineares Potential sind aber Näherungen für große bzw. kleine Q^2 ; im Bereich des Nulldurchgangs sind vermutlich beide Näherungen schlecht. Der obige Wert von α_s aus der Charmoniumanalyse ist mehr als ein effektiver Wert für den mittleren Abstand der beiden c-Quarks im Charmonium zu betrachten, der nicht unbedingt die Kopplungskonstante der QCD für kleine Abstände repräsentiert [EIC]. Für sehr kleine r müßte α_s noch entsprechend der asymptotischen Freiheit der QCD modifiziert werden.

Die Frage nach der Gültigkeit der SU(6) $_W$ -Symmetrie, auf der die obige Analyse der Anregung von Nukleonresonanzen fußt, läßt sich experimentell beantworten durch die Messung weiterer Übergangsamplituden aus

$$\vee$$
 + {56, 0⁺} + {70, 1⁻} ,

die ja mit der Kenntnis der Amplituden A, B, C völlig bestimmt sind. Speziell der Vergleich von $v_{\rm v}p$ mit $v_{\rm v}n$ dürfte sehr aufschlußreich sein.

Erste Resultate [MOS] von Messungen der Reaktion $\gamma_v n \neq \pi^- p$ bei $Q^2 = 0.5 \text{ GeV}^2$ an Deuterium, die in Form des Verhältnisses

$$\mathsf{R}(\frac{\pi^{-}}{\pi^{+}}) = \frac{\mathrm{d}\sigma(\gamma_{\mathbf{v}}\mathbf{n} + \pi^{-}\mathbf{p})}{\mathrm{d}\sigma(\gamma_{\mathbf{v}}\mathbf{p} + \pi^{+}\mathbf{n})}$$

in Vorwärtsrichtung des nachgewiesenen Pions angegeben werden, ergeben in einer Analyse mit dem Dispersionsanalysen-Programm von Devenish und Lyth Werte von E_{2-}^n und M_{2-}^n der D₁₃, die in ungefährer Obereinstimmung mit den Vorhersagen der SU(6)_{L1} nach Tab. 9.2 sind.

10. Zusammenfassung

In dieser Arbeit werden Ergebnisse eines Experiments zur Elektroproduktion von Nukleonresonanzen bei Impulsüberträgen von 2 und 3 GeV² vorgestellt. Es werden differentielle Querschnitte für die Reaktionen $\gamma_v p \Rightarrow p\pi^0$ und $\gamma_v p \Rightarrow p\eta$ im Resonanzbereich angegeben, die sich vom Bereich der 1. Resonanz (nur Q² = 3 GeV², $\gamma_v p \Rightarrow p\pi^0$) bis zum Bereich der 3. Resonanz erstrecken.

Eine Multipolanalyse der Wirkungsquerschnitte von $\gamma_v p + p\pi^0$ im Bereich der 1. Resonanz zeigt, daß auch noch bei $Q^2 = 3 \text{ GeV}^2$ die Nukleonresonanz P₃₃ im wesentlichen über die magnetische Multipolamplitude M₁₊ angeregt wird. Die resonante elektrische Multipolamplitude E₁₊ ist mit 0 verträglich; aus der Interferenz mit M₁₊ läßt sich jedoch eine kleine resonante skalare Amplitude S₁₊ \approx -0.12·M₁₊ bestimmen. Der ermittelte Übergangsformfaktor G^{*}_M ist in guter Übereinstimmung mit älteren Ergebnissen aus Einarmquerschnitten und fällt schneller als der Dipolformfaktor ab.

Aus den differentiellen Wirkungsquerschnitten der n-Produktion wird der totale Wirkungsquerschnitt für die virtuelle Photoproduktion der Nukleonresonanz S₁₁: $\gamma_v p \rightarrow S_{11}$ für Q² = 2 und 3 GeV² bestimmt. Die Differenz zu dem resonanten Einammquerschnitt ep \rightarrow e + X der 2. Resonanz liefert den totalen D₁₃-Querschnitt $\gamma_v p \rightarrow D_{13}$. Zusammen mit älteren Messungen bei kleineren Q² ergibt sich folgendes Q²-Verhalten der beiden Nukleonresonanzen, die Mitglieder des gleichen SU(6)-Multipletts $\frac{17}{20}$, L^P = 1⁻² sind:

Beide zeigen einen exponentiellen Abfall ~ $e^{-C \cdot Q^2}$, die D₁₃ fällt jedoch mit einem um einen Faktor 4 größeren Exponentialkoeffizienten ab. Bei $Q^2 = 3 \text{ GeV}^2$ ist die 2. Resonanz nahezu vollständig von der S₁₁ dominiert.

Eine Analyse der totalen virtuellen Photoproduktionsquerschnitte von S₁₁ und D₁₃, die dem (nichtrelativistischen) harmonischen Oszillatormodell von Copley, Karl und Obryk folgt, ergibt für die S₁₁ eine um einen Faktor 3 größere Oszillatorkonstante α^2 als für die D₁₃. Der totale S₁₁-Querschnitt wird um einen Faktor >9 zu groß angegeben.

die gleichen SU(6)_W-Amplituden A, B, C für den Obergang $\{\underline{56}, 0^+\} + \gamma + \{\underline{70}, 1^-\}$, deren algebraiscne Struktur durch eine SU(6)_W & O(3) - Symmetrie der Quark-Konstituenten und der Quark-Ströme festgelegt ist. Die Kenntnis der zur Produktion der D₁₃ beitragenden Multipolamplituden E₂₋ und M₂₋ sowie der zur S₁₁ beitragenden E₀₊ ermöglichen die Bestimmung dieser SU(6)_W-Amplituden A (Bahndrehimpulsanregung eines Quarks), B (Spinflip) und C (Spin-Bahn-Anregung) bei festem Q². Die obigen Multipolamplituden werden einer Dispersionsanalyse der hier vorgestellten Daten sowie der gleichzeitig gemessenen $\gamma_V p \rightarrow n\pi^+$ - Querschnitte entnommen.

Zusammen mit den entsprechenden Ergebnissen aus der Photoproduktion und einem vorhergehenden Experiment zur Elektroproduktion bei $Q^2 = 0.6$ und 1 GeV² ergibt sich folgender Verlauf der SU(6)_{ur}-Amplituden mit Q^2 :

- Die <u>Spinflipamplitude B</u> fällt $\sim K^2 \cdot exp$ (-c·K²) (K = 3 - Impuls des virtuellen Photons im Breitsystem) in Übereinstimmung mit Quarkmodellrechnungen im harmonischen Oszillatorpotential.
- Die <u>Bahndrehimpulsanregungsamplitude</u> A läßt sich entsprechend dem harmonischen Oszillatormodell mit exp (-c·K²) beschreiben, jedoch mit einem um den Faktor 1.5 größeren c. Ein Dipolformfaktor (1 + q^2/m_D^2)⁻² mit $m_D^2 \approx 1$ GeV² beschreibt den Verlauf bei großem Q² etwas besser.
- Die <u>Spin-Bahn-Anregungsamplitude C</u> liefert einen erheblichen Beitrag und wechselt bei $Q^2 \approx 1.2 \text{ GeV}^2$ ihr Vorzeichen. Dieser Vorzeichenwechsel ist in gualitativer Übereinstimmung mit Vorstellungen über die Spin-Bahn-Kopplung zwischen Quarks, die von der Wirkung eines 1-Gluon-Austauschs für große Q^2 und eines skalaren linearen Confinementpotentials für kleine Q^2 herrührt.

Untersucht wird die Beschreibung der Übergänge $\gamma_v p \rightarrow S_{11}$ und $\gamma_v p \neq D_{13}$ durch

Anhang A

Umrechnung der Multipolamplituden E_{0+} , M_{2-} und E_{2-} in die entsprechenden Helizitätsamplituden A_{1/2}, A_{3/2}.

- 1-

Die Multipolamplituden ${\rm E}^{}_{0+},~{\rm M}^{}_{2-}$ und ${\rm E}^{}_{2-}$ beschreiben den Prozeß $v^{}_VN$ \rightarrow $\pi N.$ Der Zusammenhang mit den Helizitäts-Partialwellenamplituden A_{n+} , B_{n+} , wie sie von Walker [WAL] benutzt werden, ist (vgl. z. B. Jones [JON]):

$$\begin{split} S_{11} & \text{Helizität } 1/2 : A_{0+} &= E_{0+} \\ D_{13} & \text{Helizität } 1/2 : A_{2-} &= \frac{1}{2} (3 M_{2-} - E_{2-}) \\ & \text{Helizität } 3/2 : B_{2-} &= M_{2-} + E_{2-} \end{split}$$
 (A.1)

Die Helizitätsamplituden $A_{1/2}$, $A_{3/2}$ dagegen beschreiben den Photoproduktionsprozeß $Y_{U}N \rightarrow N^{*}$. In ihm tritt daher das Vorzeichen der N^{*} -Amplitude explizit auf, während es in obige Multipolamplituden bzw. Helizitäts-Partialwellenamplituden für $\gamma_{i,N} \rightarrow N^{*} \rightarrow \pi N$ zweimal eingeht und sich somit heraushebt. Dies Vorzeichen muß einer Analyse des Vertex N * \rightarrow N $_T$ entnommen werden, hier der SU(6), -Analyse von Hey et al. [HEY1], die die Zerfälle $\frac{70}{1}$, 1^{+} + $\frac{56}{56}$, 0^{+} + π mit 2 Parametern S und D beschreibt.

Laut [HEY1] gilt

$$\begin{array}{c} A_{n+} \\ A_{(n+1)-} \end{array} \left\{ \begin{array}{c} = -\sqrt{2}\alpha \ A_{1/2} \cdot g_{1/2}^{N} \\ \end{array} \right. \\ \left. \begin{array}{c} B_{n+} \\ B_{(n+1)-} \end{array} \right\} \left\{ \begin{array}{c} = -2 \cdot \sqrt{\frac{2}{n(n+2)}} \ \alpha \cdot (-1)^{J} - \frac{3}{2} \ A_{3/2} \cdot g_{1/2}^{N} \end{array} \right.$$

mit n = J - $\frac{1}{2}$, α ist ein Faktor, der die unterschiedliche Konstruktion der Zustände in Tab. 9.2 und in [HEY1] berücksichtigt. $g_{1/2}^N$ ist das Helizität – $\frac{1}{2}$ – Matrixelement für den Zerfall N^{*} → N_T. Hier ist

Mit dem Ergebnis der Analyse [HEY1] für $(70, 1^{-1})$: S = 3.9, D = - 18.2 erhält man nach Vergleich der von den Autoren angegebenen Vorhersagen für den Kanał [#]n:

$$S_{11} : A_{0+} = -0.53 \cdot A_{3/2}$$

$$D_{13} : A_{2-} = -0.495 \cdot A_{1/2}$$

$$B_{2-} = -0.495 \cdot \frac{2}{\sqrt{3}} \cdot A_{3/2}$$
(A.2)

und durch Einsetzen der entsprechenden Amplituden aus Tab. 9.2 sowie Gl. (A.1) ergibt sich die Beziehung (9.5) mit

$$C_{S}^{\tau+}$$
 = -0.53 und $C_{D}^{\pi+}$ = -0.495

Aus einer Reanalyse unter Einschluß einiger neuer Daten erhalten die Autoren in [LIT] etwas geänderte Werte : S = 3.5 , D = -19.4 ; daraus ergibt sich

$$C_{S}^{\pi^{+}} = -0.48$$
 und $C_{D}^{\pi^{+}} = -0.52$

Für die Multipolamplituden des Endzustands $\pi^0 p$, die in Kap. 9 benutzt werden. sind die Konstanten noch mit dem Verhältnis der entsprechenden Clebsch-Gordan-Koeffizienten - $\frac{1}{\sqrt{2}}$ zu multiplizieren.

Benutzt man aus obigen Beziehungen nur das Vorzeichen und entnimmt die nötige Information über den Vertex $N^* \rightarrow N_{\pi}$ direkt den experimentellen Werten für Elastizität x und totale Breite r der betrachteten Resonanz, so erhält man aus der Beziehung (Metcalf und Walker [MET]):

mit den Werten [PDG]

das Ergebnis

$$C_S^{\pi^+} = -0.54$$
 $C_D^{\pi^+} = -0.47$.

Als Werte in Kap. 9 werden schließlich

$$C_{S}^{\pi^{\circ}} = 0.51 \cdot \frac{1}{\sqrt{2}}$$
 $C_{D}^{\pi^{\circ}} = 0.49 \cdot \frac{1}{\sqrt{2}}$

zugrundegelegt.

Anhang B \rightarrow Differentielle Wirkungsquerschnitte der Reaktion $\gamma_{\rm V}p$ \Rightarrow ηp

Q*	*2 = -2.02	1EV**2	0.81	12 = =1.C3	65.47 × 2	a -		
W = 1.575	CEV <u>6</u> P	SIL'IN = C.SI	W = 1.025	GEV -	STL IN = C.SC	W = 1.535		91LCN = 0.07
THETA*	2 H (D STG MA/DDMEGA*	THETAN	2412222 144	D ST GH A/COME(A*	The TAR	2 CONTRACTOR S	USIGNA/CONECAN
GRAD	3640	NU B/SF	GPAJ	GRAD	HI- 9755			
161-57	1.51.51	1-22 += 1.04	161					MU 8754
143.31	92.65	2.23 +- 0.07	143.53	104.21	J.12 +- 0.02	122.73	-35.18	3. 34 +- 2.14
127.19	92.05	0.27 +- C.07 0.27 +- 0.10	127.04	35.73	1-25 +- 2.04	131.37	-4.59	2.40 +- 2.35
101-73	93.41).30 +-).09	101.35	93.29	2-17 +- 0.04	53.52	0.02	0.36 +- 0.07
7 4	94.51	0.20 +- 0.10	72.33	53.10	0.19 +- 0.05 0.12 +- 0.05	127.64	47.25	3.49 +- 3.11
66.67 52.59	43.52 94.93	0.21 +- 0.07 0.19 +- 0.07	60.3)	33.49	2.34 +- 0.33	78.23	40.31	0.37 1- 0.00
37.24	96.01	0.24 +- 1.12		/4000	5.07 += 5.04	151.25	41.31 53.14	J.4C +- C.C7 J.18 +- 0.C7
143.23	120.64	2.21 +- 3.06	W = 1.655	GEV 2.2	96V**2 S(LJN = 5.95	127-41	36.63	2.24 +- 7.02
127.00	120.77).22 +- 0.09	**************************************			78.07	94.29	0.31 +- 0.09
102.43	118.94	30 +- 5.09			J SIGMA/DDWEGA*	25.23	30.56	0.34 +- 0.11
78.94	120.84	1.20 +- 1.09 1.24 +- 1.08	GRAD	JPAD	ML EZSO	011	2 = -3.54	12Vx #2
67.13	121-23	2-23 +- 2-67	162.55	110-07	2.12 +- 2.02			
33.91	122.93	1.24 +- 0.11	127.43	47.79	0.16 +- 0.03 0.09 +- 0.03	THETA#	2HI	DSIGM4/DOMESA*
143.51	150.13)-18 +-)-07	113.75	38.41	0.08 +- 0.03	GRAD	GRAD	MU B/SR
114.07	149.43	0.28 +- C.C7	73.00	H8.94	3.39 +- 0.04	121.30	-32.66).21 +- (.1)
127.71	177.64	0.25 +- 0.10 0.25 +- 0.29	Q **	2 = -1.51	SEV# *2	100.71	-36-18	-22 +- :
		15.00 - 0	W = 1.685	GEV EP	SILCN = 0.50	123.05	-0.45	0.20 +- 0.04
W = 1.535	"čev"	SILCN = 0.91	THETA*	Pri	DSIGMA/DCMEGA*	101-61	-0.42	0.20 - 0.03
ABAUT2222	TEPRASTEAS		GRAD	GRAD		52.73	2.32).18 +- 5.54
						124.54	41.93).16 ++).34
GRAD	JRAU	MU 8/SR	144.39	97.84 79.51	0-10 +- C-02	74-29	+3.46	2.17 +- 2.04
161.55	145.38	1.38 +- 0.06	127.40	64.58	0.09 +- 0.03	154.31	41.33	2.20 +- 2.54
142.01	91.72	0.47 +- C.11 0.33 +- 0.10	101.53	85.79	0.07 +- 0.04 0.05 +- 0.03	51.94	91.57	0.23 += 0.09
113.65	12.67	0.40 +- C.11	71.27	86.40).12 +- 0.04	0**	2 = -2.92	EV**2
\$0.12	3.77	J.50 +- (.13	3	54.27	0.09 +- 1.06		CEA 252	1LJN = C.Fe ====================================
78.42	93.81	2.26 1- 2.13	Q**	2 = -1.39 GEV EP	30V**2 STL 3N = 0.85	THETA*	PHI	D SIGNA/DE 4F JA*
\$2.77	93.70	3-35 +- 5-14				GP Ai)	GRAD	¥U 5/39
37.21	12040).01 +-].13			OSIGPA/CCMECA*	123.44	1 . CA	2.12 4
126.80	120.74	2.39 +- C.10	GPAD	SEAD	MU EZSP	161.75	6.41	0.11 +- 0.07
101.69	120.73	J.47 +- J.10 J.54 +- C.11	110.80	80.26	0.07 +- 0.01	23.26	14.38	0.10 +- 0.02
89.83	120-41).62 +- 0.13	C**	2 = -1.67	0FV##2		2 = -2 42 4	
53.51	123.40	2.66 +- 2.15	₩ = 1.745	CEV EP	SILON = 0.84	W = 1.025	Gev ZP	SILCN = C.97
33.52	121.04).6P ++).16	THETAX	241	DSIGMA/DENEGA*	THEIAN	2122222222	3516844008661
126.71	149.23	3.53 +- 3.11	GRAD					5310F37C1 46C14
142.94	174.99).41 +- 0.12			46 6734	5 4 4 6	JF 4C	ML 2/SP
W = 1.565	*2 = -(.9) GEV FP	CEV**2 TU ON = C.SI	109.53	75.19)+38 +- 1+01	95.27	77.10	0.06 +- 0.01
*********			Q**	2 = -1.45	GEV**2	Q * #	2 = -2.87	F /**2
		.) 51 G W A / D D VE C A*	W = 1.775	GEV 20	SILCN = 0.39	₩ = 1.6€5	GFV EPC	ILON = C. 66
GP 4D	3840	ML B/SA	THETA#	PHI	DSIGNA/CCMECA*	THE TA#	2122222222 7H (DSIGMA/CCHEGA*
161.27	139.43).31 +-).04	GRAD	GRAD	MU 3/SR	6240		
143.03	12.24	1.36 +- 1.06	112.50	71.60) 06 4- 0 02			10 67 34
113.73	93-22	0.34 +- 0.07			0.00 +- 0.02	102.22	91.52	0.07 +- 0.01
99.72	92.25	2.22 ++ 2.06				G**	2 = -2.84 0	£V**2
79.23	33.54	3-28 +- 3-67				w = 1.000	667 Fb4	ILIN # 3.66 References
52.73	93.25	3.36 +- 3.39				THETA*	P F (DSIGMA/DEMEGA*
37.21	95.22	1.25 +- 1.03				GRAD	3R40	ML E/SF
125.65	121.41	2.25 +- 2.05				1.22.74	35.26	
101.23	120.56	2.35 +- 0.29					10.00	0.03 4- 0.01
8.9.70	117-22	0.24 +- 0.09				Q**	2 = -2.82	E/x *2
142.34	151.09	0.23 +- 0.07					**********	2242222222222222
	· · · · · · · · ·	Evered.				THETA*	PH[DSIGMA/OCHEGA*
W = 1.595	ĞEV İP.	JILCN = 0.91	G** ₩ = 1.505	2 = -2.97 GEV ED-	SEV* *2	GRAC	GRAD	ML a/s'
THETAN						104.45	83.00	1.05 +- 1.51
CU 42		751004004004			DSIGNA/CCVECA*	0.8.8	2 = -2 7 4 7	511.53
GRAC	CARE	MU 3/5P	GPAD	GRAD	MU B/SF	W = 1.745	SFV TPS	1LCN = 0.65
162.99	135.17	1.25 +- 2.07	119.74	-0.15).23 +- 0.10	THETAX		
126.79	13.72	0.31 +- 0.06	101.76	C-59 2.59	1.25 +- 1.06			
113.36	33.29	0.26 += 1.15	55.37	0.53	1.22 +- 1.37			4U EZSP
89.79	94.13	0.22 +- 0.0A	57.25	40.87	J-21 +- 1.11	106.50	77.33	2.34 +- 1.23
66.37	92.54 92.54	1.23 +- 0.06 1.17 +- 0.05	127.16	90.51	2.27 +- 2.15	Q**	8 = -8.75 J	EV**2
5.2.97	93.4	7.13 +- 2.05	79-16	38.23	3.27 +- 3.12	¥ = 1.775	GEV	ILCN = 0.85
125.61	123.32	0.25 +- 0.06 0.25 +- 0.06	25.34	61.13).29 +- C.11	THETAX	PHI	D 3I GN A/CONECA*
112.21	117.45	2+17 +- 2+36				GRAL	5940	ML 5755
89.19	116-75	0.25 +- 1.10				106 15		
52.9)	115.37	0.29 +- 0.11				103-13	12.02	2.35 +- 2.32

3

Anhang C

18

Q** W = 1.475	*2 = -2.J4 (GEV EP	5EV**2 SILCN = 0.53	دەن w = 1.625	2 = -1.95 CEV EP	5EV**2 SILON = 0.90	.0≇ ₩ ≈ 1.145	*2 = -3+25 GEV EP	EV##2
THETAM	PHI	DSIGNA/DCHEGA*	THETAN	PHI	DSIGNA/DCMEGA*	THETAN	PHI	DSIGMA/DENEGA*
GRAC	GRAD	MU 3/SR	GRAD	GRAI)	4L E/S7	SPAD	GRAD	MU B/SF
125.48	130.20	2.61 +- 2.27	146.56	73.30).25 +-).08	107.83	-32.36	0.21 +- 0.12
113.25	99.35	1.03 ← 3.36 3.85 +- 3.23	143.06	92.29	0.25 +- 0.04 0.25 +- 0.04	77.13	-32.49	0.17 +- 0.11
90.02	95.03	1.00 +- 0.33	113.53	91.53	0.23 +- 0.04 0.30 +- 0.05	54.37 35.64	-33.59	0.12 +- 3.38
66.23	96.36 96.46	0.45 +- 0.20 0.52 +- 0.19	99.69 78.59	92.19 92.02	0.47 +- 0.08 0.58 +- 0.09	33.63	-5.50	0.27 +- 0.15
37.30	26.73	0.52 +- 0.22	66.26	91.29	0.59 +- 0.09 0.40 +- 0.08	122.23	27.94	0.20 +- 0.34
126.32	120.66	0.56 +- 0.17	37.01	91.71	0.35 +- 0.07	01.13	26.74	3.13 +- 0.08
100.72	115-11	0.45 +- 0.20 0.88 +- 0.37	144.25	116.45	3.24 +- 3.07	38.42	27.74	0.41 +- 0.19 0.12 +- 0.17
77.25	115.36	1.53 +- 0.77	ددن 1.655 = ۲	2 = -1.93 GEV EP	SEV##2 SILCN = 0.90	137.31	64.84	0.17 +- 0.11
37.37	116.34	0.53 +- 0.27	THETAM	PH(DSIGMA/DCMEGA*	31.04	62.38	0.12 +- 0.06
142.38	150.39	0.60 +- 0.19	GRAD	GRAD	40 9/SR	32. Ja	58.49	0.22 +- C.10
2** W = 1.505	2 = -2.02 (SEV##2 SILON = C.51	145.55	75.64	0.36 +- 0.08	17.97	65.90	0.51 +- 2.09
THE TA*	PH(DSIGNA/DCHEGA*	129.91	73.07).21 +-).11 0.26 +-).04	144.17	23.60	6.27 +- C.16 0.15 +- 0.09
GRAD	GRAD	MU EZSR	126.92	91.42	0.15 +- C.03	31.15	92.74	2.24 +- 0.11
142.45	99.08	3.30 t- 3.09	101-63	96.33	0.35 +- 0.06 0.36 +- 0.07	30.43	72.40	J.31 +- C.14
127.09	97-54	0.42 +- 0.11	78.43	90.30	3.54 +- 3.09	137.13	122.36	0.13 +- 0.08
101.57	26.68	0.87 +- 0.17	53.35	90.91	0.50 +- 0.09	138.33	121.43	0.14 +- 0.16
78.30	96.65	0.92 +- 0.17	163.26	106.69	0.21 +- J.C3	51.45	119.58	0.27 +- 0.12
52.26	97.06	2.78 +- 2.16	1421/0			40.47	160.19	0.21 +- 0.12
143.27	122.45	2.43 +- 2.09	W = 1.665	GEV ZP	SILON = 0.90	0*	*2 = -3.23	EV**2
112.93	115.19	3.75 +- 0.19	THE TA#	PHI	DSIGMA/DCMEGA*	7 = 1.175	SEV EP	SILCN = C.SC
89-07	129.89	0.60 +- 0.22	GRAD	GRAD	MU E/SR	T IETA*	PHI	D3IGNA/CCMEGA*
65.58	110.60	1.16 +- 3.39	145.34	66.07	0.20 +- 0.05	JF A D	GRAD	MU B/SF
37 15	113.84	2.47 +- 2.19	163.49	93.41	0.03	12 . 29	-36.54	0.29 +- 0.03
144.49	149-11	0.5C +- 0.13	125.76	90.12	0.22 +- 0.04	34.97	-34.11	0.17 +- C.06 2.21 +- C.08
04	*2 = -2.02	GEV**2	101.03	86.57	0.21 +- 0.05	*5.33	-31.50	0.19 +- C.08 0.22 +- C.07
			79.03	88.59	2.49 +- 0.08	51.09	-32.94	0.18 +- 0.06 0.41 +- 0.11
		75134470CHE-544	53.42	85.ća	0.61 +- 0.12	87.JJ 35.55	J.45 -2.28	0.12 +- 0.37 0.18 +- 0.09
142 57			37.13	59.93	7.59 +- 0.10	7)1	-0.89	J.23 +- C.09 J.47 +- C.15
127.07	55.55	0.42 +- 0.09	W = 1.715	CEV EP	SILCN = C.89	31.27	3.16	2.14 +- 2.06 2.25 +- 0.07
101.76	96.13	2.69 +- 2.12	THETAR	PHI	DSIGMA/DCHECA*	111.53	32.24	0.34 +- 0.09 0.15 +- 0.05
73.74	15.91	2+81 +- 2-13	GRAC	GRAD	MU D/SR	30.39	33.32	0-18 +- C-07 U-27 +- C-09
53.11	25.53	0.05 +- 0.12	144.56	65.04	3.12 +- 0.03	53.30	33.25	0.43 +- 0.16
142.32	121.44	0.33 +- 0.05	143.47	90.93	0.13 +- 0.03	35.03 157.95	32.76	0.55 +- C.13 0.21 +- C.03
113.72	112.79	2.55 +- 2.13	113.64	96.74	0.14 +- 0.04 0.16 +- 0.04	142.75	63.J2 65.97	0.13 +- 0.35 0.10 +- 0.04
89.31	129-81	1.83 +- 3.27	89.91	88.09	0.29 +- 0.06	110.75	69.58	0.24 +- 0.07
67.41	138.28	3.8C +- 3.37	65.76	87.87	0.35 +- 0.09 0.35 +- 0.09	39.41 78.14	59.59	0.35 +- 0.10
30.09	110.35	0.29 +- 0.16	53.56 36.45	88.86 87.91	0.52 +- 0.13 0.53 +- 0.10	56.51	63.47	0.28 +- 0.07
145.24	145.05).20 +-).03	نە ([.]	*2 = -1.87	JEV**2	17.53	60.84	0.34 +- 0.08
G #1	*2 = -1.99	:EV+ #2	# = 1.745	GEV EP	SILCN = 0.89	143.29	95.37	0.09 +- 0.04
W = 1.365	GEV EP	SILCN = 0.91	THETA#	PHI	DSIGMA/DCHEGA*	115.11	92.25	C.17 +- C.06
THETA#	PH1	DSIGNA/ECHEGA*	GRAD	GRAD	4U 8/57	21.33	39.62	0.24 +- 0.08
GR AD	5RAD	MU 3752	163.15	72.71	0.15 +- 0.02 0.07 +- 0.02	uC 54	90.06	2.34 +- C.09
143.53	93.C8 75.66	0.13 +- 0.04 0.29 +- 0.06	129.18	59.75 87.93	0.09 4- 0.04	17.26	93.70	2.39 +- 0.09
113.27	34.93 94.43).22 +-).35	127.03	36.55	0.08 +- 0.03	121. 3	113.97	J.25 +- G.11
89.91 78.49	95.51 94.63	0.61 +- 0.09 0.72 +- 0.11	101.08	95.03	0.11 += 0.04 0.19 += 0.05	130.74	114.14	3.41 +- 3.15
66.67	74.75 74.43	2.63 ↔ 2.12 2.42 ↔ 2.38	73.06	50-20 17-00	2.12 +- 2.35	76.29	115.71).29 +- C.19
37.13	34.32 120.93	0.27 +- 0.06 0.22 +- 0.05	53.50	88.43	2.43 +- 2.14	32.02	119.37).33 +- C.19
126.52	112.66	0.42 +- 0.09 0.39 +- 0.13	C**	2 = -1.85	GEV * * 2	17.62	129.79	3.62 +- 3.27
101-16	113.40	0.51 +- 0.19 0.49 +- 1.21	¥ = 1.775	SEV EP	SILON = C.RS	9-11	149.25	0.39 +- 3.20
161.20	139.64	0.17 +- 0.02	THE TA*	PH1	DSIGMA/DCMECA*	35. 72	271.28	0.52 +- 0.31
3.	*2 = -1.37	JF V ** * ?	GRAD	GRAD	MU B/SR	41.60	205.56	1.96 +- 1.31
₩ ≈ 1.555 ¥========	ČEV EP	SILON = 0.91	162.43	60.25 63.20	2.13 +- 2.23			
THETA*	241	DSIGMA/DENEGA*	121.23	56.22 86.62	0.05 +- 0.13			
GRAD	GRAD	ML 8796	127.31	95.43).10 +- 0.04 1.10 +- 0.04			
145.68	75.09	0.36 += 0.16	101.51 90.47	84.75 84.75	0.09 += 0.04 0.12 += 0.05			
126.34	43.23	1.22 +- 1.24	79.37	85.54 84.89	2.12 ← 2.05 2.34 +- 1.12			
101.01	93.66	41 +- 2.27	34.14	4e.70	1.42 +- 1.12			
74.42	13.68	1.50 +- 2.09	4 = 1.465	(2 = −1+33 7e y	55V×=2 311 00 = 0 00			
27-11	13.33	2.41 +- 2.34	ThC74#					
162.42	127.76	20.0 -+ 71.0	GH A ;	GRAC				
127.58	112.12	1.17 +- 0.19	161.01					
		•••••	1 + 4 + 1 2	01.42	:.39 +- J.34			

SRAD

GRAD

MU B/SF

)**2 = -3. W = 1.265 3EV TACTA* PHI SEAU GRAD

- VI -

]** ₩ = 1.205	2 = -3.17 SEV EP	SEV**2 SILON = 0.85	u*: W = 1.325	*2 = -3.13 GEV EF	GEV**2 SILON = C.88
THETA*	PHI	DSIGNA/CCNEGA*	TISTA*	PHI	OSIGMA/DEMEGA*
36.50	GRAD	MU B/SF	;F40	GRAD	MU D/SR
142.07	-33.67	0.41 + 0.07 0.33 + 0.07	125.82	-34.87	0.25 += 0.06 0.14 += 0.04
112.61	-31.14	0.64 +- 0.15 0.42 +- 0.10	1+3.55	36.50	0.15 +- 0.05
11.11	-32.60	J.46 +- C.19	114.21	34.36	C.22 +- C.35
35.01	-).09	0.31 +- 0.10	97.7)	40.72	0.13 +- 0.05 0.17 +- 0.09
144.35	31.16	0.26 +- 0.04 C.29 +- C.06	62.49	+2.J8 41.71	0.21 +- 3.13 9.18 +- 0.11
100.56	32.28	0.49 +- 0.12 C.48 +- 0.13	34. 31	32.49).32 +- 0.09).27 +- 0.05
26.55	36.47 36.96	0.37 +- 3.10 9.38 +- 0.11	143.04	00.75 04.71	0.10 +- 0.03 0.36 +- 0.08
33.79 31.26	36.68	3.51 +- 3.13 0.41 +- 9.13	113.01	63.35	0.28 +- C.07
15.49	32.35	0.47 +- 0.10	32.23	62.44	0.25 +- 0.06
143.58	63.39	0.43 +- 0.10	57.44	61.77	0.34 +- 0.38
115. 79	63.18	0.47 +- 0.10	35.35	62.33	0.24 +- 0.09
17.25	61.41	2.55 +- 0.08	142.49	92.23	J.14 +- 3.05
50.00	60.59	0.64 +- 0.13	117.42	84.77	0.32 +- 0.39 0.33 +- 0.10
36.37	61.99	C.+7 +- C.11	39.29	89.98 36.65	0.35 +- 0.08 0.45 +- 0.09
142.20	99.04 89.39	0.22 +- 0.07 0.25 +- 0.07	77.39	87.96 86.69	0.44 +- 0.11
125+ 51 113+ 43	89.81 87.70	0.42 +- 0.07 2.68 +- 0.11	52.71	85.99	0.47 +- 0.11 0.22 +- 0.29
130.71	87.79	0.83 +- 0.12	142.28	122.69	0.31 +- 0.10
78.27	87.05	0.87 +- 0.15	111.74	120-43	C.44 +- C.13
32.37	86.90	0.70 +- 0.14	33.22	117.58	0.52 +- 0.26
1+1.47	122.27	0.36 +- 2.14	55.43	114.18	0.42 +- 0.25
113.21	121.04	C.42 +- J.16	33.00	119.50	0.48 +- 0.26
36.74	122.47	$0.51 \leftarrow 0.19$	147.73	106.40	C.42 +- C.12 J.18 +- 0.98
56.55	120.63	0.90 +- 0.24	141.03	148.55	0.30 +- 0.13
17.59	120.50	0.39 + 0.11	2*° ₩ = 1.355	*2 = -3.11 JEV EF	GEV**2 SILON = C.28
125.35	150.79	0.51 + 0.21 0.25 + 0.11	T IET A *	PHI	DSIGMA/DCNEGA*
100+73	144.73	0.57 +- 0.30			
			SF:A D	GRAD	MU B/SF
)** W = 1.295	42 = -3.15 GEV EP	GEV##2 SILON = 0.65	126-20	-32.61	MU B/SF
)** W = 1.295 T ICTA*	42 = -3.15 GEV EP PHI	GEV##2 SILON = 0.85 DSIGMA/DCMEGA#	3640 126.20 110.12 100.16	-32.61 -33.23 -37.87	MU B/SF 0.26 +- 0.05 0.27 +- 0.07 0.23 +- 0.09 0.16 +- 0.04
W = 1.235	42 = -3.15 GEV EP PHI GRAD	GEV**2 SILON = 0.65 DSIGMA/D(MEGA* MU B/SR	3RAD 126-20 117-12 100-16 130-36 30-36 140-36	GRAD -32.61 -33.23 -37.87 1.21 -1.83 34.70	MU E/SF 3.26 +- 3.35 3.27 +- 3.37 3.23 +- 3.09 3.16 +- 3.04 3.27 +- 3.11 3.13 +- 5.04
)** W = 1.275 T KTA* JRAD 143.)3 126.35	<pre>42 = -3.15 GEV EP PHI GRAD -35.34 -33.86</pre>	GEV**2 SILON = 0.85 DSIGMA/CCMEGA* MU B/SR 0.21 +- 0.05 0.43 +- 0.09	37:40 126-20 117-12 100-16 130-36 142-26 142-26 144-31	GRAD -32.61 -33.23 -37.87 1.21 -1.83 34.70 32.64 33.17	$\begin{array}{c} \text{MU B/SF} \\ \hline \\ \text{J}_{26} + - 0.35 \\ \text{J}_{27} + - 0.37 \\ \text{J}_{16} + - 0.09 \\ \text{J}_{16} + - 0.04 \\ \text{J}_{27} + - 0.11 \\ \text{J}_{13} + - 0.04 \\ \text{J}_{24} + - 0.05 \\ \text{J}_{24} + - 0.05 \\ \text{J}_{24} + - 0.05 \end{array}$
)** W = 1.235 T KITA* JRAD 143.) 3 126.35 112.76	<pre></pre>	GE V# # 2 SILDN = 0.65 DSIGMA/DC(MEGA# NU 8/SR 0.43 +- 0.03 0.37 +- 0.03 0.37 +- 0.03 0.37 +- 0.03	37:40 126-20 117-12 100-16 100-36 140-36 140-36 140-36 140-36 140-36 114-31 101-33	GRAD -32.61 -33.23 -37.87 1.21 -1.83 34.70 32.64 33.12 38.22 4.1.91	HU B/SF 3.26 + 0.35 3.21 + 0.07 3.23 + 0.09 3.16 + 0.06 3.27 + 0.11 3.24 + 0.35 3.24 + 0.35 3.24 + 0.35 3.24 + 0.35 3.27 + 0.08
)*** W = 1.295 T ETA* JRAD 143.13 126.35 112.76 107.46 33.33 51.34	2 = -3.15 GEV EP PHI -35.34 -32.43 -32.43 -38.64 -38.64	GEV##2 SILDN = 0.65 DSIGMA/CLMEGA# MU B/SF 0.21 += 0.035 0.37 += 0.08 0.37 += 0.08 0.19 += 0.16 0.19 += 0.17	37.4 D 126.20 117.12 127.12 130.36 140.36 140.36 140.36 141.31 111.33 39.30 34.55	GRAD -32.61 -33.23 -37.87 1.21 -1.83 34.70 32.64 33.12 38.22 41.91 33.12 33.12	MU B/SF 3.26 +- 0.35 3.27 +- 0.97 3.16 + 0.09 3.16 + 0.09 3.27 +- 3.01 3.27 +- 3.05 3.24 +- 3.05 3.26 +- 3.05 3.20 +- 3
)*** W = 1.295 T KTA* JRAD 143.13 126.35 112.76 107.46 33.33 51.34 34.47	2 = -3.15 GEV EP PHI GRAD -35.34 -32.43 -34.84 -38.66 -31.49	GEV#*2 SILDN = 0.65 DSIGMA/CCMEGA# NU 8/56 0.21+-0.05 0.37+-0.06 0.37+-0.16 0.19+-0.16 0.19+-0.16 0.19+-0.12 0.22+-0.23 0.26+-0.23	37:4 D 126.20 117.12 126.20 117.12 127.60 147.760 127.60 127.60 127.60 127.60 14.31 101.33 39.30 34.55 147.30 147.30	GRAD -32.61 -33.23 -37.87 1.21 -1.83 34.70 32.64 33.12 36.22 41.91 33.10 183.00 65.653	HU B255 3.26 +- 0.35 3.27 +- 0.77 3.23 +- 0.09 3.16 +- 3.04 3.24 +- 3.05 3.24 +- 3.05 3.24 +- 3.05 3.20 +- 0.07 3.23 +- 0.07 3.23 +- 0.07 3.23 +- 0.5 3.24 +- 3.05 3.25 +- 0.5 3.25 +- 0.5 +- 0.5 +- 0.
J** W = 1.235 T KCTA* JRAD J143.33 126.35 127.63 J31.34 J34.47 J34.34	2 = -3.15 GEV EP PHI GRAD -35.34 -35.34 -32.43 -34.84 -35.63 -35.64 1.02 -0.34		364 D 126.20 126.22 126.16 1060.366 162.60 111.36 162.60 111.36 162.60 111.36 142.55 142.5	GRAD -32.61 -33.23 -37.37 -1.83 -1.83 -1.43 32.64 337.47 -1.43	MU B/SF
143 H = 1 2235 T KTA* JRAJ 143. 11 126. 35 112. 76 17. 46 57. 33 34. 47 101.49 13. 34 147. 01 117. 43	-2 = -3.15 GEV EP PHI -35.34 -33.86 -22.43 -34.84 -38.68 -35.66 -31.49 1.02 -0.34 1.02 -0.34 2.30	GEV#*2 SILON = 0.65 = 0.65 = 0.65 = 0.65 = 0.65 0.61 + 0.05 0.61 + 0.05 0.61 + 0.05 0.62 + 0.05 0.62 + 0.05 0.62 + 0.05 0.65 0.55 0.65 0.55 0	37.4 2 125.22 125.12 135.36 135.36 142.36 142.30 14.31 14.33 34.55 14.53 14.53 14.53 14.53 14.53 14.53 14.53 14.53 14.53 14.53 14.53 14.53 14.53 14.53 14.53 14.53 14.55 14.53 14.55 14.53 14.55 14.53 14.55 15.53 15.53 15.53 15.55 15	GRAD -32.61 -33.23 -37.87 -1.83 36.70 32.64 33.12 36.22 41.91 18.30 65.53 62.63 62.63 62.23	$\begin{array}{c c} MU & B/SF \\ MU & B/SF \\ 2,2,6 & \leftarrow & 0,3,3 \\ 2,2,6 & \leftarrow & 0,3,7 \\ 3,2,2,1,4 & \leftarrow & 0,3,7 \\ 3,1,3 & \leftarrow & 1,3,1,3 \\ 3,2,3,4 & \leftarrow & 3,3,3 \\ 3,2,3,4 & \leftarrow & 3,3,3 \\ 3,2,3,4 & \leftarrow & 3,3,3 \\ 3,3,3 & \leftarrow & 3,3,3 \\ 3,3,4,5,3,3,5,5,3,3,5,5,3,3,5,5,3,3,5,5,3,3,5,5,3,3,5,5,3,3,5,5,3,3,5,5,3,3,5,5,3,3,5,5,3,3,5,5,3,3,5,5,3,3,5,5,3,3,5,5,3,3,5,5,3,5,3,5,5,5,3,5,5,5,5,5,5,5,5$
14. W = 1.235 T ETA* 143.33 126.35 127.63 12.78 13.43 14.47 101.49 13.34 143.83 14.47 13.34 143.83 14.47 13.34 15.99 13.34 15.99 11.34 15.99 11.34 15.99 11.34 15.99 11.34 15.99 11.34 15.99 11.34 15.99 11.34 15.99 11.34 15.99 11.34 15.99 11.34 15.99 11.34 15.99 11.34 15.99 11.34 15.99 11.34 15.99	*2 = -3.15 SEV EP PHI GRAD -35.34 -32.43 -34.63 -34.63 -34.63 -34.63 -34.63 -34.63 -35.66 -31.49 -0.34 -0	CE Y**2 SILON = 0.65 DSIGMA/CC MEGA* 	37.4 0 126.20 117.12 107.16 107.16 107.16 107.16 107.16 114.31 114.31 114.31 147.50 127.50 127.50 127.50 127.55 107.72 25.55	GRAD -32.61 -33.23 -37.87 1.21 -1.83 34.70 32.64 33.12 34.70 32.64 33.12 36.55 62.65 62.65 62.65 62.65 62.65 61.31 62.23 61.602	$\begin{array}{c c} WU & B/SE \\ WU & B/SE \\ 2.267 & + & 0.395 \\ 2.27 & + & 0.495 \\ 2.27 & + & 0.495 \\ 2.23 & + & - & 0.495 \\ 2.24 & + & - & 0.45 \\ 2.24 & + & - & 0.45 \\ 2.24 & + & - & 0.45 \\ 2.27 & + & - & 0.45 \\ 2.24 & + & 0.45 \\ 2.24 & + & 0.45 \\ $
W = 1.275 T (CTA* T (CTA* 143.)) 126.35 112.76 1)7.463 51.34 12.76 1)7.463 33.34 143.63 117.43 14.47 101.47 103.01 117.43 10.01 10.01 10.01 10.01 10.01 10.00 10.01 10.00 10.0	<pre>/2 = -3.15 GEV EP PHI GRAD -55.34 -32.86 -32.43 -35.666 -33.49 -35.666 -33.49 -33.49 -35.666 -33.49 -33.49</pre>	CE 1/# +2 = 0.45 SILON = 0.45 DSIGMA/CHEGA# -21 +- 0.05 0.43 +- 0.09 0.37 +- 3.08 0.61 +- 0.16 0.52 +- 0.25 0.25 +- 0.35 0.25 +- 0.35	364 2 1266.22 1267.16 1267.16 1207.16 1207.16 120.76 121.16 120.76 121.16 120.76 121.16 120.76 121.16 120.76 121.16 120.76 121.16 120.77 120.77 10	GRAD -32.61 -33.237 -37.221 -1.813 -1.813 -32.64 33.12 -33.22	MU B/25F 3267
)** # = 1.235 T (CTA* J702 143.31 143.31 143.31 143.31 143.31 143.31 143.33 112.76 13.34 143.33 143.34 143.35 143.34 143.35 143.34 143.35 143.35 143.36 143.35 143.	<pre>/2 = -3.15 SEV EP PHI -55.34 -32.86 -32.86 -31.86 -31.86 -31.92 -31</pre>	CE 1992 SILDN = 0.65 SILDN = 0.65 MU 8/SR 0.43 + 0.63 0.43 + 0.63 0.43 + 0.63 0.43 + 0.63 0.43 + 0.63 0.42 + 0.45 0.22 + 0.35 0.22 + 0.30 0.22 + 0.30 0.23 + 0.40 0.23 + 0.40 0.20 + 0.40	364 2 126.23 127.16	GRAD -32.61 -33.23 -7.82 -37.82 -1.1.813 -1.813 -1.813 -1.813 -1.813 -3.12	MU B/SF 226 +- 0.35 226 +- 0.40 1.22 +- 0.40 1.27 +- 1.41 1.27 +- 1.41 1.24 +- 6.46 1.24 +- 6.46 1.24 +- 6.46 1.24 +- 6.46 1.24 +- 6.46 1.24 +- 6.46 1.24 +- 6.45 1.25 +- 6.45 1.24 +- 6.45 1.24 +- 6.45 1.24 +- 6.45 1.24 +- 6.45 1.24 +- 6.45 1.24 +- 6.45 1.24 +- 6.45 1.24 +- 6.45 1.24 +- 6.45 1.24 +- 6.45 1.24 +- 6.45
W = 1 - 2 - 2 - 5 T III - 2 - 5 T III - 2 - 5 - 2 5 - 5 - 5 - 5 - 5 - 5 - 5	2 = -3.15 GCV 9 HI 9 HI -25.346 -32.43 -34.84 -35.660 -31.402 -31.402 -32.30 -32.30 -32.43 -34.64 -35.660 -31.402 -32.30 -31.402 -34.64 -35.660 -31.402 -34.64 -35.660 -34.64 -35.660 -34.64 -35.660 -34.640 -35.660 -34.640 -35.660 -34.640 -35.660 -36.600 -36.6000 -36.60000 -36.60000 -36.60000 -36.60000 -36.60000 -36.60000 -36.60000 -36.60000 -36.60000 -36.60000 -36.600000 -36.60000000 -36.600000000000000000000000000000000000	CE /**2 SILON = 0.65 SILON = 0.65 MU 9/58 	40 101010000000000000000000000000000000	GRAD 	$\begin{array}{c c} \textbf{H} \textbf{U} = \boldsymbol{b}_{1}^{2} \boldsymbol{\delta}_{1}^{2} \\ \textbf{M} \textbf{U} = \boldsymbol{b}_{2}^{2} \boldsymbol{\delta}_{1}^{2} \\ \textbf{M} \textbf{U} = \boldsymbol{b}_{2}^{2} \boldsymbol{\delta}_{1}^{2} \\ \textbf{L} = \boldsymbol{b}_{1}^{2} \boldsymbol{\delta}_{2}^{2} \\ \textbf{L} = \boldsymbol{b}_{2}^{2} \boldsymbol{\delta}_{1}^{2} \\ \textbf{L} = \boldsymbol{b}_{1}^{2} \boldsymbol{\delta}_{1$
$\begin{array}{c} 34^{*}\\ &=&1:23^{*}\\ \hline T:TA^{*}\\ &=&1:23^{*}\\ \hline T:TA^{*}\\ &=&123^{*}\\ \hline$	<pre>// = -3.15 GEV EP // EP // GRAD // -35.34 // -35.35</pre>	$\begin{array}{c} {\rm CE} Y^{\bullet \pm 2} \\ {\rm SLLON} = 0.465 \\ {\rm SLLON} = 0.475 \\ {\rm MU} = 0.755 \\ {\rm MU} =$	364 0 1216 (2426 0 1216 (2426 0 1216 (2426 0 1216 (2426 0 1217 (242	GRAD -32.64 -32.64 -32.64 -32.64 -34.70 32.44 -34.70 -34.70 -34.70 -34.70 -4.71 -4.75 -4.75 -4.75 -4.75 -4.75 -4.75 -4.75 -4.75 -4.75 -4.75 -4.75 -4.75 -4.75 -5.75 -	$\begin{array}{c c} WU & B / SF \\ WU & B / SF \\ WU & B / SF \\ S & SF$
1235 T ET 427 1255 12	2 = -3.1 EP GRV PHI GRAD -35.34 -35.34 -35.34 -35.46 -22.43 -35.46 -22.43 -35.46 -22.43 -35.46 -22.43 -35.46 -22.43 -35.46 -22.43 -35.46 -22.43 -35.46 -22.43 -35.46 -22.43 -35.46 -22.43 -35.46 -22.43 -35.46 -22.43 -35.46 -22.43 -23.46 -24.46 -24.46 -25.4	CE 10#2 SILON = 0.45 SILON = 0.45 SILON = 0.45 MU 8/5R 1.21 +- 0.55 0.21 +- 0.69 0.27 +- 0.69 0.27 +- 0.69 0.23 +- 0.61 0.22 +- 0.25 0.22 +- 0.35 0.22 +- 0.35 0.22 +- 0.35 0.23 +- 0.95 0.23 +- 0.95 0.24 +- 0.95 0.24 +- 0.95 0.24 +- 0.95 0.24 +- 0.95 0.25 +- 0.05 0.24 +- 0.95 0.25 +- 0.05 0.25 +- 0.05 0.24 +- 0.05 0.25 +- 0.05 0.24 +- 0.05 0.24 +- 0.05 0.25 +- 0.05 0.24 +- 0.05 0.25 +- 0.05 0.24 +- 0.05 0.25 +- 0.05 0.24 +- 0.05 0.25 +- 0.05	40 40 40 40 40 40 40 40 40 40	GRAD - 323 (216) - 323 (217) - 323 (217)	HU B/25 32,27 4 5,39 32,27 4 5,49 32,27 4 5,49 32,27 4 5,49 32,27 4 5,49 32,27 4 5,40 32,27 4 5,30 32,20 4 5,40 32,20 4 5,40 32,20 4 5,40 32,20 4 5,40 34,20 4 5,40 34,20 4 5,40 34,20 4 5,40 34,20 4 5,40 34,20 4 5,40 34,20 4 5,40 34,20 4 5,40 34,20 4 4,40 34,20 4 4,40 34,20 4 4,40 34,40 4,40 4,40 34,40 4,40 4,40 34,40 4,40 4,
1 EIL 235 T EIL 235 1 T EIL 245 1 425 - 256 1 456 - 256 1 425 - 2	2	CE 1/# = 2 SILON = 0.65 SILON = 0.65 DSIGMA/CK MEGA= 		GRAD - 312 - 245 - 312 - 247 - 312 - 312 - 312 - 312 - 312 - 31	$\begin{array}{c c} \textbf{HU} & \textbf{B}_{2} \neq \boldsymbol{\xi} \in \boldsymbol{\xi} \\ \textbf{HU} & \textbf{B}_{2} \neq \boldsymbol{\xi} \in \boldsymbol{\xi} \\ \textbf{A}_{2} = \boldsymbol{\xi} \\ \textbf{A}_{2} = \boldsymbol{\xi} = \boldsymbol{\xi} = \boldsymbol{\xi} = \boldsymbol{\xi} = \boldsymbol{\xi} = \boldsymbol{\xi} \\ \textbf{A}_{2} = \boldsymbol{\xi} = \boldsymbol{\xi} = \boldsymbol{\xi} = \boldsymbol{\xi} = \boldsymbol{\xi} \\ \textbf{A}_{2} = \boldsymbol{\xi} = \boldsymbol{\xi} = \boldsymbol{\xi} = \boldsymbol{\xi} \\ \textbf{A}_{2} = \boldsymbol{\xi} = \boldsymbol{\xi} = \boldsymbol{\xi} = \boldsymbol{\xi} \\ \textbf{A}_{2} = \boldsymbol{\xi} \\ $
1 2225 T 12225 T 12225 3 235 1 2225 1 2225 1 2225 1 2225 1 2225 1 2225 1 2225 1 2225 1 2255 1 225	2	$\begin{array}{c} {\rm (E')} **2 \\ {\rm (SILOP \ 2} \ {$		GRAD - 121	$\begin{array}{c c} WU & B / SF \\ WU & B / SF \\ WU & B / SF \\ S & S & S & S & S \\ S & S & S & S & S$
1235 1225 12555 1255 1255 1255 1255 1255 1255 1255 1255 1255 1255	2 = -3.1 EP GCV PHI -55.34 -35.346 -35.366 -35.460 -35.4000 -35.4000 -35.4000 -35.4000 -35.4000 -35.4000 -35.4000 -	$\begin{array}{c} {\rm (CF)} = 2 \\ {\rm SLDN} = 0.45 \\ {\rm (DN)} = {\rm (DN)} {\rm (SLN)} {\rm (CF)} {\rm (CF)} {\rm (SLN)} {\rm (CF)} {\rm (SLN)} {\rm (CF)} {\rm (SLN)} $	0 0 0 0 0 0 0 0 0 0 0 0 0 0	GRAD - 322.61 - 322.62 - 322.62	$\begin{array}{c c} MU & B_{\mathcal{A}} SF_{\mathcal{A}} \\ MU & B_{\mathcal{A}} SF_{\mathcal{A}} \\ SF_{\mathcal{A}} SF_{\mathcal{A}} SF_{\mathcal{A}} SF_{\mathcal{A}} \\ SF_{\mathcal{A}} SF_{\mathcal{A}} SF_{\mathcal{A}} \\ SF_{\mathcal{A}} SF_{\mathcal{A}} SF_{\mathcal{A}} \\ SF_{\mathcal{A}} SF_{\mathcal{A}} SF_{\mathcal{A}} SF_{\mathcal{A}} \\ SF_{\mathcal{A}} SF_{\mathcal{A}} SF_{\mathcal{A}} \\ SF_{\mathcal{A}} SF_{\mathcal{A}} SF_{\mathcal{A}} SF_{\mathcal{A}} \\ SF_{\mathcal{A}} SF_{\mathcal{A}} SF_{\mathcal{A}} SF_{\mathcal{A}} \\ SF_{\mathcal{A}} SF_{\mathcal{A}} SF_{\mathcal{A}} \\ SF_{\mathcal{A}} SF_{\mathcal{A}} SF_{\mathcal{A}} \\ SF_{\mathcal{A}} SF_{\mathcal{A}} SF_{\mathcal{A}} SF_{\mathcal{A}} \\ SF_{\mathcal{A}} SF_{\mathcal{A}} SF_{\mathcal{A}} \\ SF_{\mathcal{A}} SF_{\mathcal{A}} SF_{\mathcal{A}} \\ SF_{\mathcal{A}} SF_{\mathcal{A}} SF_{\mathcal{A}} SF_{\mathcal{A}} \\ SF_{\mathcal{A}} \\ SF_{\mathcal{A}} SF_{\mathcal{A}} \\ SF_{\mathcal{A}} SF_{\mathcal{A}} \\ SF_{$
1235 T ET 457 145.7.15 145.7.15 145.7.5 145.7.5 145.7.5 145.7.5 145.7.5 145.7.5 145.7.5 145.7.5 145.7.5 145.7.5 145.7.5 145.7.5 145.7.5 157	2 = -3.1 EP GCV PHI GRAD -35.34 -35.346 -22.433 -35.464 -22.433 -35.464 -22.433 -35.464 -22.433 -35.464 -23.434 -35.449 -35.344 -35.4444 -35.4444 -35.4444 -35.4444 -35.4444 -35.4444 -35.4444 -35.4444 -35.4444 -35.4444 -35.4444 -35.4444 -35.4444 -35.4444 -35.4444 -35.4444 -35.4444 -35.44444 -35.44444 -35.444444 -35.44444 -35.4444444444 -35.444444444	$\begin{array}{c} {{\mathbb E}} {{\mathbb F}}^{{\mathbb E}} {{\mathbb F}}^{{\mathbb E}} {{\mathbb S}}^{{\mathbb S}} {{\mathbb S}}^{{\mathbb E}} {{\mathbb S}}^{{\mathbb S}} {{\mathbb S}} {{\mathbb S}}^{{\mathbb S}} {{\mathbb S}}^{{\mathbb S}} {{\mathbb S}}$	20 20 20 20 20 20 20 20 20 20 20 20 20 2	GRAD - 312 4.61 - 312 4.62 - 313 4.62 - 314 4.62	MU B/25F 3.267 4.40 3.597 3.267 4.40 3.797 3.267 4.40 3.797 3.267 4.40 3.797 3.267 4.40 3.797 3.267 4.40 3.797 3.267 4.40 3.797 3.267 4.40 3.797 3.267 4.40 3.797 3.267 4.40 3.797 3.267 4.40 3.797 3.263 4.40 3.797 3.263 4.40 3.797 3.263 4.40 3.797 3.263 4.40 4.797 3.263 4.40 4.11 3.263 4.40 4.127 3.263 4.40 4.41 3.263 4.40 4.41 3.263 4.40 4.41 3.263 4.40 4.41 3.265 4.40 4.40 3.265 4.40 4.40
1 T ET 435 1 T ET 455 1 T ET	2	$\begin{array}{c} {\rm GE} y = 2 \\ {\rm SILON} = 0.65 \\ {\rm IDSIGHAZCK MEGA*} \\ {\rm $	0 0 0 0 0 0 0 0 0 0 0 0 0 0	GRAD GRAD - 332 4.237 - 323 4.237 - 323 4.237 - 323 4.247 - 447 -	HU B/255 3226 525 3217 526 3217 526 3217 527 3217 527 3217 527 3217 527 3217 527 3217 527 3217 527 3217 527 3232 527 3232 527 3232 527 3233 526 3233 526 3233 526 3233 526 3333 527 3333 527 3333 527 3333 527 3333 527 3333 527 3333 527 3333 527 3333 527 3333 527 3333 527 3333 527 3433 527 34333 527
1 2255 T 2255 T 2255 T 2255 T 2255 T 255 T 25	2	$\begin{array}{c} {\rm EF} {\rm V} = 2 \\ {\rm SILON} = 0.65 \\ {\rm SILON} = 0.65 \\ {\rm VI} = 0.75 $		GRAD GRAD	$\begin{array}{c c c c c c c c c c c c c c c c c c c $
1235 1225 1255	2 = -3.1 EP GGLV -3 - 1 EP PHI -3 - 2 - 3 - 4 -3 - 2 - 2 - 3 -3 - 2 - 2 - 2 -3 - 2 - 2 - 2 - 2 2 2 2 2 2 2 2 	$\begin{array}{c} {\rm (CF)} = 2 \\ {\rm SLDN} = 0.45 \\ {\rm (SLDN} =$	0 0 0 0 0 0 0 0 0 0 0 0 0 0	GRAD - 322.61 - 322.62 - 322.62	$\begin{array}{c c c c c c c c c c c c c c c c c c c $
17 EIL 1 A 24 1 T EIL 1 A 25 1 T EIL 1 A 25 1 A	2	$\begin{array}{c} {\rm GE} \gamma = 2 \\ {\rm SILDN} = 0.45 \\ \hline {\rm SILDN} = 0.464 \\ {\rm SILDN} = 0.464 \\ {\rm SILDN} = 0.475 \\ {\rm $		GRAAD - 313 - 416 - 1 - 313 - 428 - 2 - 313 - 40 - 1 - 1 - 40 - 1 - 2 - 40 - 40 - 1 - 2 - 40 - 40 - 1 - 2 - 40 - 40 - 40 - 40 - 40 - 40 - 40 -	HU B/255 3266 539 3216 549 3216 549 3216 549 3216 549 3217 541 3217 541 3217 541 3217 541 3217 541 3217 541 3217 541 3217 541 3217 541 3217 541 3217 541 3217 541 3217 541 3217 541 3217 541 3217 541 3217 541 3217 541 3217 541 3218 541 3218 541 3219 541 3219 541 3210 541 3211 541 3212 541 32131 541
12255 12555 125555 125555 12555 125555 125555 125555 125555 125555 12	2	$\begin{array}{c} {\rm GE} y = 2 \\ {\rm SILDN} = 0.65 \\ {\rm SILDN}$		GRAD - 323 - 237 - 323 - 247 - 323 - 247	$\begin{array}{c c} \textbf{HU} & \textbf{B}_{2} \neq \textbf{SE} \\ \textbf{HU} & \textbf{B}_{2} \neq \textbf{SE} \\ \textbf{A}_{2} = A$
12255 12255 T UIL 2275 T UIL 2275 T UIL 2275 12255 T UIL 2275 12255 T UIL 2275 12575	2 = -3.1 SP 3 CL -3 C	$\begin{array}{c} {\rm EF} {\rm V} = 2 \\ {\rm SLDN} = 0.453 \\ {\rm SLDN} = 0.453 \\ {\rm V} = 0.454 $		GRAD - 322.4.13 - 322.4.23 - 322.4.23	MU B/255 3.266
1235 1225 1225 1225 1225 1225 1225 1225 1225 1225 1225 1225 1225 1225 1225 1225 1225 1225 1225 1255	2 4 4 5 4 5 5 6 6 4 5 7 8 4 5	EE 1/4 = 2 0.65 SILED SIGNA/CK MEGA* SILED SIGNA/CK MEGA* AU 2/55		GRAD - 312 - 216 1 - 312 - 217 - 1 - 217 -	$\begin{array}{c c} \textbf{H} \cup \textbf{B}_{2} \neq \textbf{SE} \\ \hline \textbf{H} \cup \textbf{B}_{2} \neq \textbf{SE} \\ \hline \textbf{A} = $
1955 1955	2 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	$\begin{array}{c} {\rm GE} \gamma = 2 \\ {\rm SILDN} = 0.65 \\ {\rm SILDN} $	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	GRAD - 323 - 237 - 323 - 247 - 323 - 247	HU B/255 3246 5399 3246 5499 3247 5416 3247 5416 3247 5416 3247 5416 3247 5416 3247 5416 3247 5416 3247 5416 3247 5416 3247 5416 3247 5416 3247 5416 3247 5416 3247 5416 3247 5416 3247 5416 3247 5416 3247 5416 3247 5416 3242 5416 3242 5416 32433 5466 32433 5466 32433 5466 32433 5467 32433 5467 32433 5467 32433 5467 32433 54673 <td< td=""></td<>
1255 12555 1255 1255 1255 1255 1255 1255 1255 1255 1255 1255	2 3 1 5 5 5 1 5 1 5 1 5 1 5 1 5 1 5 1 5 1	$\begin{array}{c} {\rm GE} y = 2 \\ {\rm GE}		GRAD - 323 - 237 - 323 - 247 - 433 - 447 - 433 - 447 - 447	$\begin{array}{c c} MU & B_{2}/SF \\ \hline MU & B_{2}/SF \\ \hline A_{2}/SF & A_{2}/A_{2}/SF \\ \hline A_{2}/A$

noch Anhang C

Q**2 = -3.09 GEV**2 ₩ = 1.385 GEV EPSILON = 0.88			0**2 = -3.03 CEV**2 J = 1.475 JEV EPSILON = 0.87			0**2 = -3.04 GEV**2 W = 1.565 JEV EPSILON = 3.68		
T'ICTA*	PHI	DSIGMA/DCHEGA*	TICTA*	PHI	DSIGMA/CCMEGA*	T 10" A*	PHI	DSIGMA/DCHEGA#
GPAD	GRAD	MU B/SF	JEAD	GRAD	MU BZSR	3642	GRAD	MU DZŚE
127.48	-33.52).19 +- C.05	128.21	-33.79	J.18 +- 0.04	116.13	-3).43	0.23 ++ 0.11
113.75	-33.34	0.25 +- 0.06 0.11 +- 0.04	137.44	2.1c -1.39	0.14 +- C.03 J.13 +- 0.04	152.33	43.42	0.10 +- 0.05
144.75	-4.32 35.36	0.06 +- 0.03 0.08 +- 0.03	129.36	-0.67	0.20 +- 0.05 0.16 +- 0.04	114.01	34.57	0.18 +- 0.05
128.11 113.73	34.12 33.19	0.24 +- 0.05 0.16 +- 0.04	114.51	33.73	0.19 +- 0.05	144.2	50.47	0.11 +- 0.04
101.06	37.77	0.17 +- 0.05 2.15 +- 0.37	10.12	32.13	0.18 +- C.04 0.10 +- 0.04	113. 19	53.31	3.13 +- 0.36
73.00	46.21	0.14 +- 0.00	142.72	61.19	0.10 +- 0.03	20.21	59.95	0.16 +- 1.05
17.)7	23.40	0.27 +- 0.05 0.06 +- 0.03	113.37	59.00	0.21 + 0.05 0.26 + 0.05	56.20	61.81	3.24 +- 3.37
126. 34	62.61 62.40	0.20 +- 0.04 0.20 +- 0.05	27.57	61.40	0.27 +- 0.03 0.34 +- 3.00	36.00	59.45	0.16 +- 0.05
100.90	61.15	0.26 +- 0.05	65.77	61.74 61.26	0.20 +- 0.04 0.20 +- 0.04	126.64	103-10	0.07 +- 0.03
77.56	62.74	0.25 +- 0.05	36.44	61.19	0.21 +- 0.05	101.31	89.92	0.20 +- 0.36
31.89	62.72	0.27 +- C.36	113.32	82.16	0.35 +- 0.10	78.32	89.91	0.27 +- 0.08
159.43	91.34	0.06 +- 0.03	39.42	89.04	0.49 +- 0.13 0.35 +- 0.11	52.72	79.66	5.17 + 0.11
124.00	91.33	0.25 +- 0.07	65.34	90.29	0.43 +- C.12	143.35	114.31	0.13 +- 0.03
100.73	23.33	0.38 +- 0.11	35.70	81.83	0.20 +- 0.08 0.17 +- 0.03		2 = -3.10	EV**2
77.30	94.3C	0.37 +- 0.13	141.33	131.38	0.07 +- 0.05			
52.01	95.98	3.30 +- C.11	111.24	110.56	0.23 +- C.15	116.14*	PH1	DELEMAZELVEGA
16.07	94.99	0.25 +- 0.09		100107	5.25 +- 5.15	GP4.5	GRAD	MU EZSA
Q*:	±2 = -3.06 0	SEV**2	Q** W = 1.505	K2 = -3.02 GEV EP	GEV##2 SILON = 0.67	123.45	-30.98	0.21 +- 0.11
			T 15.7 A *	PHI	DSIGMA/DEMEGA*	145.03	3.72	0.14 +- 0.05
	FR1	DIGMATLIAEGAA	JEAD	GRAD	MU B/SF	12- 32	32.37	0.08 +- 0.00
	GRAD	AU 073F	143.10	-34.70	0.12 +- 0.04	113.55	57.90	0.17 +- C.11
100.35	-37.75	0.19 +- 0.11	145.53	-1.32 32.24	0.11 +- 0.03	90.62	59.83	0.20 +- 0.30 0.16 +- 0.10
140-14	-1+25	0.04 +- 0.02	120.15	32.34 33.57	0.11 +- 0.03	79.32 55.37	61.31	0.20 += 0.11 J.17 += 0.09
127.13	34.33	2.14 +- 0.04	107.11	39.04	0.21 +- 0.06 0.17 +- 0.08	142.52	104.59	C.08 +- C.03
120-98	41.15	C.2C +- C.00	32.35	36.38 33.35	0.16 +- 0.06 0.19 +- 0.05	113.13	96.10	0.08 +- 0.03 0.20 +- 0.06
18.4)	25.10).23 +- C.03	161 77	54.44	0.10 +- C.05 0.12 +- G.04	79.15	95.04	0.30 +- 0.39
126-85	6.1.39	0.10 +- 0.04 0.13 +- C.04	126.46	61.28 58.67	0.14 +- 0.04	52.13	94.10	0.22 +- 0.37
100.11	62.69	3.24 +- 3.35	101-28	59.09 60.53	0.25 +- 0.05	151.42	106.37	0.08 +- 0.03
77.62	02.83	0.34 +- 0.07	78.21	60.31 61.35	0.46 +- 0.37	Q**	2 = -3.15 EV EP	CEV**2 SILON = 0.90
32.42	02.57	2.23 +- 0.35	52.36 35.71	61.47	0.18 +- C.04 2.20 +- 0.04	T'ICTA*	PHI	DSIGMA/DENEGA#
158-24	93.09	3.05 +- C.03	11 3.27	85.34 91.50	0.19 +- 0.06 0.33 +- 0.08	10.19	GRAD	MU BZSB
125.43	81.00	2.17 +- 2.06	30.73	39.70 88.13	0.22 +- 0.37	151.51	95.79	0.10 t= 0.03
100.22	\$1.21	0.36 +- 0.12	65.93 52.76	92.34	C.39 +- 0.10 0.26 +- 0.03	145.79	99.57	C.11 +- C.03 2.07 +- 2.03
77.41	91.34	0.25 +- 0.10	37.21	100.11	0.24 +- C.11 0.07 +- 0.04	113.76	93.48	U.11 +- C.04
52.36	90.19 87.23	0.23 +- 0.10	142.56	125.03	0.21 +- 0.06	39.33	91.50	0.25 +- 3.38
10 10	91.94	1.22 +- 3.09			(5)(5+0)	50.14	92.45	0.23 +- 0.03
Q* W = 1.445	#2 = -3.04 JEV EP	GEV##2 S1LJN = 0.68	W = 1.535	JEV EP	SILON = J.E7	10.33	92.38	0.20 +- 0.07
THETA*	PHI	USIGNA/CENEGA*	T IETA*	PHI	DSIGMA/DCMEGA*	0**	2 = -3.13	
JEAD	GRAD	HU BZER	JRAD	GRAD	MU E/SR			
127.90	-34.39	3.17 +- 0.04	142.13	-33.25	3.14 +- 0.04			WILL DASE
158.33	-0.71	0.04 +- 0.03 0.04 +- 0.02	11 + 07	-31.30	0.15 +- 0.05	102.15		
128.30	- 0.35 34.12	0.09 +- 0.05 0.10 +- 0.03	122.41	-1.08	0.13 +- 0.04	144.13	22.50	2.13 +- 2.03
123.35	35.17 33.28	0.13 +- 0.03	129.50	33.34	0.15 +- 0.04	113.55	11.05	0.06 +- 0.03
37.73	39.58	0.17 +- 0.05 0.28 +- 0.10	132.37	37.98	0.15 +- 0.05	10.51	96.65	0.21 +- 0.03
19.73	29.00	0.19 +- 0.06 0.21 +- 0.05	12-49	35.11	0.14 +- 0.05	25.27	92.48	3-26 +- 0.39
142.30	64.35).C8 +-).03 0.13 +- 0.03	144.24	52.11	0.14 +- 0.04	0.00	2 3 11	
113.29	60.29 59.40	0.15 +- 0.05 0.19 +- 0.05	117.73	57.95	3.19 +- 0.05	# = 1.035	GEV EP	SILUN = 0.89
39.35	63.68 52.21	0.21 +- 0.35	19.75	58.49	C.23 +- C.05	THOMAN	PHI	OSIGMA/DEMEGA*
55.43	62.36	0.24 +- 3.05 0.34 +- 5.07	54.35	61.28	0.26 +- 0.06	3815	GRAD	MU B/SR
36.41	60.40	0.13 +- 0.04 0.23 +- 0.03	10.00	53.30	0.17 +- 0.34	152. 14	84.51	2.12 +- 0.03
112.29	83.68	0.33 +- 0.10	11 1.66	67.95	0.21 +- 5.06	12-43	18.55	0.03
38. 11	97.3C 66.52	0.29 +- 0.10	30.44	92.97).42 +- 0.10	101-42	88.57	0.11 +- 0.05
78.J3 65.J3	60.47 65.31	0.31 +- 0.11 0.30 +- 0.11	56.21	92.69	0.26 +- 0.08	60.57	19.27	J.19 +- C.03
32.11	35.41	0.26 +- C.11	30.14	98.78	0.38 +- 0.09 0.25 +- 0.10	د و جربو	66.59	0.24 +- 3.09
			143.42	119.65	0.10 +- 0.04 0.17 +- 0.05	0*1	×2 = -3.09	(EV**2 STUDN - 3 26
						1. 15 		DILUN - J.CS
							CR40	
						1.40 	5KAU	MU H/SH
						12	84.71	0.10 +- 0.03 0.18 +- 0.03
						32.71	87.20	3.30 +- 3.64
						20.5	37.38	5.28 +- C.J9
						5r . 3 3	87.42).14 +- 0.06

Literaturverzeichnis

AB D	T. Abdullah, F.E. Close; Phys. Rev. D5 (1972) 2332
AKE	C. W. Akerlof et al.; Phys. Rev. 163 (1967) 1482
ALD	J.C. Alder et al.; Nucl. Phys. B91 (1975) 386
ALD1	J. C. Alder et al.; Nucl. Phys. B46 (1972) 573
AMA	E. Amaldi, S. Fubini, G. Furlan; Electroproduction at Low Energy and
	Hadron Form Factors, Springer Tracts in Modern Physics
ASH	W. W. Ash et al.; Phys. Lett. 24B (1967) 165
BAL	J. S. Ball; Phys. Rev. 124 (1961) 2014
BAP	I. M. Barbour, D. K. Ponting; The Baryon and the Three Body Problem,
	Preprint Univ. of Glasgow
BAR	W. Bartel et al.; Phys. Lett. 28B (1968) 148
BEC	U. Beck et al.; Phys. Lett. 51B (1974) 103
BEM	C. Becchi, G. Morpurgo; Phys.Lett. 17 (1965) 352
BEN	C. Benz; Diplomarbeit, Univ. Hamburg
BER	F. A. Berends, A. Donnachie; Preprint MC/T/77/17
BJO	J. D. Bjorken, S. D. Drell; Relativistische Quantenmechanik
	(BI , Mannheim 1966)
BRA1	F. W. Brasse et al.; Nucl. Phys. B110 (1976) 413
BRA2	F. W. Brasse et al.; Nucl. Phys. B139 (1978) 37
BRD	M. Breidenbach; M.I.T Report LNS-MIT 2098-635 (1970)
BRE	H. Breuker et al.; Phys.Lett. 74B (1978) 409
CAR	A. A. Carter et al.; Nucl. Phys. B26 (1971) 445
CGL	G. F. Chew, M. L. Goldberger, F. E. Low, Y. Nambu; Phys. Rev. 106 (1957) 1345
CLO	F. E. Close, F. J. Gilman; Phys. Lett. 38B (1972) 541
COP	L. A. Copley, G. Karl, E. Obryk; Nucl. Phys. B13 (1969) 303
DAS	R. Dashen, M. Gell-Mann; Phys. Lett. 17 (1965) 142
DEN	P. Dennery; Phys. Rev. 124 (1961) 2000
DEV1	R. C. E. Devenish, D. H. Lyth; Nucl. Phys. B43 (1972) 228
	und Phys. Rev. D5 (1972) 47
DEV2	R. C. E. Devenish, D. H. Lyth; DESY 75/04 (1975)
	und Nucl. Phys. B93 (1975) 109
DLR	R. C. E. Devenish, D. H. Lyth, W. A. Rankin; Phys. Lett. 52B (1974) 277
DOW	Fa. Dow Corning, Firmeninformation
EIC	E. Eichten et al.; Preprint,Laboratory of Nuclear Studies, Cornell
	Univ. CLNS-425 (1979)

.

4

- VIII -
Danksagung

Die vorliegende Arbeit entstand im Rahmen eines Experiments, das am Deutschen Elektronen-Synchrotron DESY in Hamburg von der Gruppe F21 durchgeführt wurde.

Dem DESY-Direktorium, insbesondere Herrn Prof. Dr. H. Schopper und Herrn Prof. Dr. G. Weber, danke ich dafür, daß es diese Arbeit ermöglicht und wohlwollend gefördert hat.

Herrn Dr. F. Brasse danke ich für die Förderung mit Rat und Kritik bei der Durchführung dieser Arbeit.

Herrn Dr. J. Gayler, der dem Experiment die entscheidenden Impulse gab, danke ich für die vielen Diskussionen, Rat und Hilfe im Verlauf der Auswertung.

Meinem Mit-Doktoranden Herrn Dipl. Phys. V. Gernardt danke ich für die ausgezeichnete und freundschaftliche Zusammenarbeit.

Einen großen Anteil am Gelingen des Experiments haben die Herren J. Koll, G. Singer, K. Thiele und H. Weiß mit sorgfältigen technischen Arbeiten und ihrer stetigen Hilfsbereitschaft. Besonders danke ich J. Koll und G. Singer für die tatkräftige Mitarbeit und Unterstützung beim Bau und Test des Cerenkovzählers im Hadronspektrometer.

Dank schulde ich auch Herrn Dr. R. C. E. Devenish für die Überlassung seines Dispersionsanalysen-Programms und seine Unterstützung bei der Benutzung.

Allen Mitgliedern der Gruppe F21 sei für stetige Anregung, fachliche Diskussion und die im Verlauf des Experiments geleistete Arbeit gedankt.

Frau H. Klement möchte ich für die sehr schnelle und sehr sorgfältige Schreibarbeit danken.

Schließlich geht mein Dank an alle Mitarbeiter von DESY, die direkt oder indirekt zu diesem Experiment beigetragen haben, sei es im Hallendienst, am Synchrotron, bei der digitalen Datenerfassung oder im Rechenzentrum.

MIS C. Mistretta et al.; Phys. Rev. 184 (1969) 1487 MOR R. G. Moorhouse; Phys. Rev. Lett. 16 (1966) 772 MOS J. V. Morris et al.; Phys. Lett. 73B (1978) 495 L. W. Mo, Y. S. Tsai; Rev. Mod. Phys. 41 (1969) 205 MOT ONO S. Ono; Nucl. Phys. B107 (1976) 522 PDG Particle Data Group; Phys. Lett. 75B (1978) 1 PHO R. Prepost et al.; Phys. Rev. Lett. 18 (1967)82 Cambridge Bubble Chamber Group; Phys. Rev. 169 (1968) 1081 C. Bacci et al.; Phys. Rev. Lett. 20 (1968) 571 ABBHHM-Collaboration; Phys. Rev. 175 (1968) 1669 E. D. Bloom et al.; Phys. Rev. Lett. 21 (1968) 1100 B. Delcourt et al.; Phys. Lett. 298 (1969) 75 E. Lehmann; Diplomarbeit Univ. Hamburg 1977 PIG D. Pignon, C. A. Piketti; Nucl. Phys. B137 (1978) 340 PPA. [MET], [DLR] und G. Knies, R. G. Moorhouse, H.Oberlack; Phys. Rev. D9 (1974) 2680 J. M. Barbour, R. L. Crawford; Nucl. Phys. B111 (1976) 358 RAV F. Ravndal; Phys. Rev. D4 (1971) 1466 A. De Ruiula, H. Georgi, S. Glashow; Phys. Rev. D12 (1975) 147 RUJ H. J. Schnitzer; Phys. Rev. Lett. 35 (1975) 1540 SCH SID R. Siddle et al.; Nucl. Phys. B35 (1971) 93 S. Stein et al.; Phys. Rev. D12 (1975) 1884 STE WAC WAG W, Wagner; Diplomarbeit, Univ. Hamburg 1973 WAL R. L. Walker; Phys. Rev. 182 (1969) 1729 WAT K. M. Watson; Phys. Rev 95 (1954) 228 WIN H. Wriedt; Dissertation, Univ. Hamburg 1978 und DESY F21 - 78/01 WRI YA0 A. Le Yaouanc, L. Oliver, O. Pene, J. C. Raynal; Nucl. Phys. B37 (1972) 552 ZAG N. Zagury; Nuovo Cimento 52A (1967) 506

4

.

- K. Wacker; Dissertation, Univ. Hamburg 1976 und DESY F1 76/04 (1976)
- R. Winston; Journal of the Optical Society of America 60 (1970) 2, 245

- W. Fehrenbach; Diplomarbeit, Univ. Hamburg 1970 FEH
- FEL R. Felst: DESY 73/56 (1973)
- R. P. Feynman, M. Kislinger, F. Ravndal; Phys. Rev. D3 (1971) 2706 FEY
- FOS F. Foster; Electroproduction of Pions from Proton and Neutron Targets and $SU(6)_W$ Symmetry ; Beitrag zum 1977 International Symposium on Lepton and Photon Interactions at High Energies, Hamburg
- FRA K. H. Frank; DESY F21 - 72/2 (1972)
- GAL S. Galster et al.; Phys. Rev. D5 (1972) 519
- GAY J. Gayler; Dissertation, Univ. Hamburg (1971) und DESY F21 - 71/2 (1971)
- GEH G. v. Gehlen; Nucl. Phys. 89 (1969) 17 und Nucl. Phys. B20 (1970) 102
- GER V. Gerhard Dissertation, Univ. Hamburg (1979) und DESY F21 - 79/02 (1979)
- GLO G. Glöe; Diplomarbeit, Univ. Hamburg 1973
- GRO D. Gromes; Nucl.Phys. B130 (1977) 18 und Herbstschule Maria Laach 1978 HD - THEP - 78 - 18
- GUIT F. Gutbrod; DESY 69/22 (1969)
- HAT R. Haidan; Diplomarbeit, Univ. Hamburg 1974
- HEN A. B. Henriques, B. H. Kellet, R. G. Moorhouse; Phys. Lett. 64B (1976) 85
- HEY A. J. G. Hey : The Status of $SU(6)_{ij}$; Proc. of the Oxford Baryon Conference 1976
- HEY1 A. J. G. Hey, P. J. Litchfield, R. J. Cashmore; Nucl. Phys. B95 (1975)516
- M. Hirano, K. Iwata, T. Matsuda, T. Murota; Progr. Theor. Phys. 46 HIR (1973) 934
- I RP P. Irps; Diplomarbeit, Univ. Hamburg 1974
- ISG N. Isqur, G. Karl; Phys. Lett. 72B (1977) 109 und Phys. Rev. D18 (1978) 4187
- JON H. F. Jones; Nuovo Cimento 40A (1965) 1018
- JON1 H. F. Jones, M. D. Scadron; Ann. Phys. 81 (1973) 1
- J. G. Körner, I. Bender, A. Actor; DESY 75/57 (1975)
- KUM P. S. Kummer et al.; Phys. Rev. Lett. 30 (1973) 873
- LIP H. J. Lipkin; Phys. Lett. 45B (1973) 267
- LIT P. J. Litchfield, R. J. Cashmore, A. J. G. Hey : $SU(6)_{W}$ and Decays of Baryon Resonances - An Update; in Proc. of the Oxford Baryon Conference 1976
- MAY J. May; Dissertation, Univ. Hamburg 1971 und DESY F21 - 71/3 (1971)
- MEL H.J. Melosh; Phys. Rev. D9 (1974) 1095
- MER M. Merkwitz; Dissertation, Univ. Hamburg 1976 , DESY F21 - 76/01 (1976) s. auch Nucl. Phys. B105 (1976) 253

16

(me

MET W. J. Metcalf, R. L. Walker; Nucl. Phys. B76 (1974) 253

KOE