Interner Bericht DESY F22-74/2 März 1974

DESY- Million 22. APR. 1974

0

×.

Untersuchungen zur Meßgenauigkeit eines Monitorsystems am e⁺e⁻-Speicherring DORIS

von

K. Sauerberg

Untersuchungen zur Meßgenauigkeit

eines Monitorsystems

am e⁺e⁻-Speicherring DORIS

von Klaus Sauerberg

Hamburg 1974

.

Überblick

In der vorliegenden Arbeit wird die Meßgenauigkeit eines Zählersystems diskutiert, mit dem die Luminosität des DESY-Speicherringes bestimmt wird. Mit diesem Monitorsystem wird die Kleinwinkel-Elektron-Positron-Streuung vermessen und daraus die Luminosität berechnet. Es werden die von der Abstrahlung harter reeller Photonen herrührenden Effekte mit Hilfe einer Monte-Carlo-Rechnung untersucht.

Inhalt slibersich.

I. Einleitan;	S. 1
11. Theory Givenhe Graphilland.	s. 4
11.1 Die etastische Elektron-Positron-Streuung (Bhabhestreuung)	S. 4
11.1.1 Feynmanystephes 11.1.2 Der differentzeile Wirkungsquerschnitt $\frac{d\sigma_{\Omega}}{d\Omega}$	s. 4 s. 5
11.2 Discutated on the result of a	S. 8
11.2.4 bie Berechnung des Strahlungskorrekturen 11.2.2 bie Erth de van kessler	8. 8 5.13
117. Der Brading it <u>Bir</u> anden	S.19
111.1 Speichervingeigeaschaften	S.19
III.2 – D – Megarinzip and der Aufbau des Jusinowitätsschitors	5.21
III.5 Discuss associations, and Zühler	S.24
III.3.1 bis Smintillationszähler SZ; 111.3.2 bis Szimtilsetissszähler N; 111.3.3 bis Szimtill terszühler G; 111.3.4 bis Schmerzühler S;	8.24 8.24 8.20 8.29
IV. Dec Parte-Carla-Sizulation der Bhabhastreanes	S.31
IV. F. Dar Kocher program	8.51
JV.2 Prüfung des Honte-Carlo-Programmes	s. 37
IV.3 Die I. fektivität des Programmes	5.37
1V.4 Fehlerabschätzung und Rechenzeitbedart	s.45
V. Ergebalose	S.47
V.1 Normission und Chreblungskom ekturen	S.66
V.1.1 Normierung mit der Maister-Yennie-Formel V.1.2 Nordierung mit der Kessler-Formel V.1.3 Vergleich der Leiden Versahren	S167 S171 S172
V.2 Der Einfluß von Zählerparametern auf die Strahlungskorrekturen	S.74
VI. Zusauronfadaun;	S.78

*

Verzeichnis der Abbildungen und Tabellen

1

Abb.l	S. 4	Feynmandiagramme zur Bhabhastreuung
АЪЪ.2	S. 6	Die Anteile S,I,P zu den Wirkungsquerschnitten (II.2) und (II.4)
АЪЪ.З	s. 9	Feynmandiagramme zu den inelastischen Strahlungskorrek- turen in der Ordnung α ³
Abb.4	s. 9	Feynmandiagramme zu den elastischen Strahlungskorrekturen in der Ordnung α^4
Abb.5	S.11	Die Strahlungskorrekturen nach Meister und Yennie
Abb.6	S.14	Vergleich zwischen Daten und Rechnung des ADONE-Experi- mentes
АЪЪ.7	S.13	Feynmandiagramme zur Berechnung des Photonenspektrums P(\$) P(k ₀)
Abb.8	S.18	Unterschied $F(\Delta E_f)$ zwischen Vielfachemission und Ein-Photon-Abstrahlung
Abb.9	s.20	Prinzip des Speicherringes
Abb.10	S.21	Strahldivergenz und Kreuzungswinkel
Abb.11	S.22	Aufbau des Luminositätsmonitors am Wechselwirkungspunkt WI
Abb.12	S.23	Strahlschwankung ∆0
Abb.13	S.26	Abbildung der Strahldivergenz auf die Szintillationszähler
Abb.14	s.32	Die Koordinatensysteme Ki, K2, K
АЪЪ.15	s.38	Strahldivergenz N ^S (X ₁ ,Y ₁ ,205)
Abb.16	s.39	Die Verteilung $P(k_0) \cdot f(k_0)$ bzw. N'(k ₀)
Abb.17	S.40	Die Energieverteilung P(k _o) bzw. N(ko)
Abb.18	S.41	Die Winkelverteilung P(φ) bzw. N(φ)
АЪЪ.19	S.42	Die Streuwinkelverteilung $\frac{dOO}{d\Omega}$ bzw. N ² (Θ)
Abb.20	S.44	Bhabhastreuwinkel $N_{W2}^{\kappa}(\theta)$
Abb.21	s.50	Durchstoßpunkte $N^{0}(X_{1}, Y_{1}, 205)$
Abb.22	S.51	Durchstoßpunkte $N^{M}(X_{1}, Y_{1}, 205)$
Abb.23	S.52	Durchstoßpunkte N ¹ , $(X_1, Y_1, 205)$
АЪЪ.24	s.53	Durchstoßpunkte N', $(X_2, Y_2, 205)$
Abb.25	S.5 4	Durchstoßpunkte $N_{-W2}^{1,2}(X_1,Y_1,205)$
Abb.26	s.55	Durchstoßpunkte $N_{W2}^{1,2}(X_2, Y_2, 205)$
Abb.27	S.56	Bhabhastreuwinkel $N_{-W2}^{+,2}(\Theta)$

;

АБЬ.28	s.57	Durchstoßpunkte $N_{-EN}^{1,2}(X_1,Y_1,205)$
АБЪ.29	s.58	Durchstofpunkte $N_{-EN}^{1,2}(X_2,Y_2,205)$
Abb.30	s.59	Durchstoßpunkte $N_{-W2}^{3,4}(X_1,Y_1,205)$
Abb.31	S.60	Durchstobponkte $N_{-W2}^{3,4}(\mathbb{Z}_2,\mathbb{Y}_2,205)$
АЪЪ.32	s.61	DurchstoBpunkte $N_{-EX}^{3,4}(X_1,Y_1,205)$
АЪБ.33	S.62	Durchstofpunkte $N_{-EN}^{3,4}(X_2,Y_2,205)$
Abb.34	S.67	Die Encryleverteilungen eines auslanfenden Elektrons (qualitativ) mach Meister und Yennie bzw. nach der Monte-Carlo-Pechnung
Abb.35	s.75	Die Strablussakorrektusen in Abhängigheit von der Breite (x-Richtung) der großen Szintillationszähler G ₁
АЪЪ.36	5.76	Die Strahla gekorrekturen in Abhängigkeit von der Energiegebwelle der Schauerzähler

Tabel1cn

TABELLE	I	S.2	Vor- und Nachteile der Monitorreaktionen
TABELLU	11	S.25	Zählraten im Honiter und im DASP
TABELTE	111	s.30	Dimensionen der Zähler
TABELLE	14	S.48	Verzeichnis von Abbildungen aus der Monte-Carlo-Rechnung

.

Literaturverzeichnis

- BJ 66 J.D. Bjorken, S.D. Drell; Relativistische Quantenmechanik;
 Bibliographisches Institut, Mannheim 1966
- 2. BL 37 F. Bloch, S.D. Nordsieck; Phys. Rev. 52;54 (1937)
- 3. CA 72 E. Calva-Tellezm P. Kessler; Acoplanarity and radiative Corrections in Bhabhascattering; Laboratoire de Physique atomique, Collége de France; Paris, submitted to Nuovo Cim, Letters; 1972
- DE 67 Vorschlag zum Bau eines 3 GeV Elektron-Positron-Doppelspeicherringes für das Deutsche Elektronen-Synchrotron; Hamburg, 1967
- 5. GA 65 R. Gatto; Proceedings of the International Symposium on Electron and Photon Interactions; Hamburg, 1965
- 6. GA 73 E. Gadermann; Diplomarbeit; Hamburg 1973
- 7. KE 60 P. Kessler; Sur une méthode simplifiée de calcul pour les processus relativistes en électrodynamique; Nuovo Cim.; Vol. XVII; Nr. 6; S. 809; 1960
- HA 71 D. Harms; Die elektromagnetischen Protonformfaktoren bei Impulsüberträgen zwischen 0,6 und 3,0 (GeV/c)²; Interner Bericht; DESY F22 - 71/2
- 9. MY 63 N. Meister, D.R. Yennie; Radiative Corrections to High-Energy Scattering Processes; Phys. Rev.; Vol. 130; Nr. 3; Seite 1210; 1963
- 10. RA 68 E. Raubold; Experimentelle Prüfung des Ein-Pion-Austausch-Modells mit Dürr-Pilkuhn Formfaktoren an Reaktionen mit vier auslaufenden Teilchen; Dissertation; Hamburg; 1968

ż

11.	RO	73	A.A. Rosenfeld et al.; Particle Properties from "Review of Particle Properties"; Phys. Letters; April 1973
12.	SA	70	M. Sands; The Physics of Electron Storage Rings; An intro- duction; SLAC Report No. 121; April 1973
13.	MU	65	H. Muirhead; Hr. Physics of Elementary Particles; Pergamon Prest; Oxford; 1965; 8.520
14.	ST	73	K. Strauch; Electron Storage Ring Experiments, International Symposium on Electron and Emoton Interactions at High Emergics; Bonn; August 1973
15.	МЕ	34	G.F. v. Weizslicher; Ausstrahlung bei Stößen sehr schneller Erektronen; Zeits. Phys.; 88; S. 162; 4934
16.	W I	30	F.J. Williams; Applications of the method of Impact Parameter in Collisions; Proc. Roy. Soc.; Vol. A 139; 8 (1933)
17.	WT	35	E.J. Williams; Correlation of cortain Collision problems with radiation theory; Kgl. Dansk. vid. Gelsh.; Vol. 13; S. 4; 1935

I. Einleitung

Beim Deutschen Elektronen-Synchrotron (DESY) entsteht zur Zeit ein Elektron-Positron-Doppelspeicherring (DORIS) mit einer maximalen Schwerpunktenergie \sqrt{s} = 8,5 [GeV].

- 1 -

Mit dem Speicherring kann man die Elektron-Positron-Streuung und andere rein elektromagnetische Prozesse bei wesentlich höheren Schwerpunktenergien als am Synchrotron untersuchen. Außerdem bietet der Speicherring die Möglichkeit, die am Synchrotron durchgeführten Untersuchungen zur Elektron-Nukleon-Streuung in den Bereich zeitartiger Impulsüberträge auszudehnen und auf andere Hadronen zu übertragen.

In zwei unabhängigen, übereinander angeordneten Ringen laufen zwei Strahlen von Elektronen bzw. Positronen um, die sich in zwei Wechselwirkungspunkten durchkreuzen. Infolge des periodischen Beschleunigungsfeldes sind die Teilchen über den Ring nicht gleichverteilt, sondern zu Paketen gebündelt, den sogenannten "Bunchen". Über den Strahlquerschnitt, der sich in den Wechselwirkungszonen zu den Wechselwirkungspunkten hin verengt, sind die Teilchen normalverteilt.

Neben der Energie ist die Luminosität L charakteristisch für einen Speicherring. Zur laufenden Kontrolle des Speicherringes und zur Normierung von Meßzählraten muß sie ständig genau gemessen werden. Man definiert sie durch

(I.1) $N = L \cdot \sigma$ N Ereignisrate einer Reaktion σ Wirkungsquerschnitt dieser Reaktion

Die apparativen Eigenschaften des Speicherringes bestimmen die Luminosität. Näherungsweise gilt

(I.2)
$$L = \frac{f}{4} \frac{N_1 N_2}{S}$$
(SA 70)
f Umlauffrequenz der Teilchenpakete
N₁,N₂ Teilchenzahlen in den beiden Strahlen
S Wechselwirkungsfläche – senkrechte Schnitt-
fläche zweier im Wechselwirkungspunkt sich
durchdringender Teilchenpakete.

Es ist schwierig, den sehr kleinen Strahlquerschnitt bei einem Speicherring wie DORIS zu messen, um S zu bestimmen. Die Luminosität wird daher entsprechend (I.1) mit Hilfe eines geeigneten Teilchenprozesses gemessen.

Die Monitorreaktion muß zwei Voraussetzungen erfüllen:

- a) Sie muß zuverlässig berechenbar sein.
- b) Um schnell zu Ergebnissen zu kommen, benötigt man hohe Zählraten (σ groß).

Da die Gültigkeit der Quantenelektrodynamik bei kleinen Impulsüberträgen als gesichert gilt, kommen unter diesen Gesichtspunkten nur die in TABELLE I aufgeführten elektromagnetischen Reaktionen in Frage.

TABELLE	I ((DE	67)
---------	-----	-----	-----

Reaktion	Vorteile	Nachteile
Einfache Bremsstrahlung e ⁺ e ⁻ + e ⁺ e ⁻ γ	hohe Zählrate	Untergrund von d. Bremsstrahlung am Restgas, keine Koinzidenz
Doppelbremsstrahlung e ⁺ e ⁻ → e ⁺ e ⁻ γγ	Koinzidenz (γγ)	Untergrund von d. Paarvernichtung, zufällige Koinzi- denzen von der ein- fachen Bremsstrah- lung
Paarvernichtung e ⁺ e ⁻ γγ	Koinzidenz (γγ), gut definierte Energie der Photonen	Untergrund von der Doppelbremsstrah- lung, niedrige Zählrate
Elastische Streuung e ⁺ e ⁻ e ⁺ e ⁻	hohe Zählrate, Koinzidenz (e ⁺ e ⁻)	starke Winkelab- hängigkeit des Wir- kungsquerschnittes

- 2 -

Wegen der hohen Zählrate und der Möglichkeit, die gestreuten Teilchen in Koinzidenz nachzuweisen, wurde die elastische Elektron-Positron-Streuung als Monitorreaktion gewählt.

Der Wirkungsquerschnitt für die elastische Elektron-Positron-Streuung wird nach den Regeln der Quantenelektrodynamik berechnet. Das Übergangsmatrixelement, dessen Absolutquadrat dem differentiellen Wirkungsquerschnitt proportional ist, wird nach Potenzen der Feinstrukturkonstanten

(I.3)
$$\alpha = \frac{e^2}{4\pi\hbar c} \simeq \frac{1}{137}$$

$$e \quad \text{Elementarla}$$

$$\overline{F} \quad \text{Plenckoches}$$

e Elementarladung ħ Plancksches Wirkungsquantum/2π c Lichtgeschwindigkeit

entwickelt. Im allgemeinen wird nur das erste nichtverschwindende Glied dieser Reihe berücksichtigt. Alle weiteren Glieder führen zu Zusatztermen im Wirkungsquerschnitt und werden als Strahlungskorrekturen bezeichnet. Die Feinstrukturkonstante α ist klein gegen 1, so daß man eine rasche Konvergenz der Reihe annimmt. Im folgenden sollen daher unter Strahlungskorrekturen nur Terme der nächsthöheren Ordnung in α verstanden werden.

Für die praktische Auslegung des Luminositätsmonitors sind nur die sogenannten "harten inelastischen" Strahlungskorrekturen von Bedeutung. Die Kinematik des Streuprozesses kann durch die Abstrahlung harter reeller Photonen so verändert werden, daß Teilchen falsch eingeordnet werden.

In dieser Arbeit wird der Einfluß der Strahlungsprozesse bei der Monitorreaktion

untersucht. Die Geometrie der Meßanordnung wird so gewählt, daß Korrekturen auf Grund der endlichen Strahldivergenz und der Abstrahlung harter reeller Photonen klein sind.

- 3 -

11. Theoretische Grundlagen

Zunächst wird der differentielle Wirkungsquerschnitt $\frac{d\sigma_0}{d\Omega}$ der elastischen Elektron-Positron-Streuung und seine Gültigkeit im Rahmen der Quantenelektrodynamik kurz diskutiert. Anschließend wird auf die Strahlungskorrekturen eingegangen.

11.1 Die elastische Elektron-Positron-Streuung (Bhabhastreuung)

II.1.1 Feynmangraphen

In niedrigster störungstheoretischer Näherung wird die elastische Elektron-Positron-Streuung durch die beiden Feynmandiagramme in Abb.1 beschrieben.

Im relativistischen Fall (E >> Elektronmasse m) sind die Impulsüberträge bei gleichen Strahlenergien E₊ = E₋ = E durch

(II.1)

$$q_{r}^{2} \approx -4E^{2}\sin^{2} \theta/2$$

$$\theta = \Rightarrow (p_{1}, p_{1}') \text{ Streuwinkel}$$

$$q_{z}^{2} \approx 4E^{2}$$

gegeben. Der Graph (a) liefert einen raumartigen $(q_r^2 < 0)$, der Graph (b) einen zeitartigen Anteil $(q_z^2 > 0)$ zum Wirkungsquerschnitt.

II.1.2 Der differentielle Wirkungsquerschnitt $\frac{d\sigma_0}{d\Omega}$

Der differentielle Wirkungsquerschnitt für die elastische Elektron-Positron-Streuung kann nach den Feynmanregeln aus den Diagrammen der Abb.l berechnet werden. Im Schwerpunktsystem (kollineare Ströme) erhält man für relativistische Teilchen (E >> m):

(II.2)
$$\frac{\mathrm{d}\sigma_{\mathrm{O}}}{\mathrm{d}\Omega} = \frac{\alpha^2}{2\mathrm{E}^2} \left\{ \frac{1+\cos^4\theta/2}{4\sin^4\theta/2} - \frac{\cos^4\theta/2}{2\sin^2\theta/2} + \frac{1+\cos^2\theta}{8} \right\} .$$

Der erste Summand in (II.2) beschreibt die direkte Streuung (S), Graph (a) in Abb.1, der zweite die Interferenz (I) zwischen den Graphen (a) und (b) und der dritte die Paarvernichtung (P), Graph (b). Der Verlauf der Anteile ist in Abb.2 wiedergegeben.

Eine häufig angewendete Methode, hypothetische Abweichungen von der Quantenelektrodynamik zu beschreiben, besteht darin, die einzelnen Terme in (II.2) mit einer Funktion der Impulsüberträge (II.1)

(II.3)
$$F(q^2) = \frac{1}{1 - q^2/\Lambda^2}$$

zu multiplizieren (GA 65):

(II.4)
$$\frac{d\sigma_{0}}{d\Omega} = \frac{\alpha^{2}}{2E^{2}} \left\{ \frac{1 + \cos^{4} \theta/2}{4\sin^{4} \theta/2} |F(q_{r}^{2})|^{2} - \frac{\cos^{4} \theta/2}{2\sin^{2} \theta/2} \operatorname{Re}(F(q_{r}^{2}) \cdot F^{+}(q_{z}^{2})) + \frac{1 + \cos^{2} \theta}{8} |F(q_{z}^{2})|^{2} \right\}.$$

2

Für kleine Impulsüberträge gilt (MU 65):

$$F(q^{2}) \approx 1 + \frac{q^{2}}{\Lambda^{2}} = 1 - q^{2} \cdot \frac{\langle r_{e}^{2} \rangle}{6}$$

$$\langle r_{e}^{2} \rangle = \frac{\int \rho(r) r^{2} d^{3} r}{\int \rho(r) d^{3} r} \quad \text{mittlerer quadratischer}$$

$$P(r) \quad \text{Ladungsverteilung des Elektrons.}$$

Die Faktoren F(q²) berücksichtigen eine mögliche räumliche Ladungsverteilung des Elektrons (Positrons) bzw. eine Änderung des Photonpropagators (Abweichungen vom Coulombgesetz bei kleinen Abständen). In der Quantenelektrodynamik wird eine punktförmige Ladungsverteilung und die Gültigkeit des Coulombgesetzes zu beliebig kleinen Abständen vorausgesetzt, d.h.

$$F(q^2) = 1$$

Nach den bisherigen Experimenten gilt für den Abschneideparameter

$$|\Lambda| > 10 [GeV]$$
 (ST 73),
also $r_e < 4,85 \ 10^{-15} [cm]$.

Die Elektronen bzw. Positronen werden unter einem mittleren Streuwinkel

$$\theta = 8^{\circ}$$
 (vgl. Abb.20)

im Luminositätsmonitor nachgewiesen. Bei einer Strahlenergie von E = 3 [GeV] überwiegt dann im Bhabhawirkungsquerschnitt (II.4) der Anteil der direkten Streuung (S); näherungsweise gilt:

(II.5)
$$\frac{d\sigma_o}{d\Omega} \approx \frac{\alpha^2 8}{2E^2 \theta^4}$$

In Abb.2 wird deutlich, daß in dem vom Luminositätsmonitor erfaßten Streuwinkelbereich (schraffiert) Interferenz(I)- und Paarvernichtungs(P)-Term mit weniger als 1% zum Wirkungsquerschnitt beitragen. Mögliche Abweichungen von der Quantenelektrodynamik sind vernachlässigbar, da die geforderte Meßgenauigkeit des Monitorsystems nicht besser als 1% ist.

II.2 Die Strahlungskorrekturen

Zur Beschreibung des experimentell gemessenen Wirkungsquerschnittes reichen die Diagramme in Abb.l nicht aus. Einerseits ist die Streuung geladener Teilchen stets mit der Abstrahlung <u>reeller</u> Photonen verbunden (Bloch-Nordsieck, BL 37), zum anderen muß man bei einer vollständigen Behandlung der Strahlungskorrekturen auch den Beitrag der Diagramme mit mehr als einem virtuellen Photon berücksichtigen.

In nächsthöherer Ordnung in α tragen sowohl die in Abb.3 gezeigten inelastischen Graphen als auch Interferenzen zwischen dem Grundgraphen (Abb.1) und den elastischen Diagrammen der Abb.4 zum meßbaren Wirkungsquerschnitt bei.

Die elastischen und inelastischen Strahlungskorrekturen sind - jede für sich genommen - infrarotdivergent, d.h. sie liefern einen unendlichen Beitrag zum Wirkungsquerschnitt. Ein endliches und physikalisch sinnvolles Ergebnis liefert erst die Summe der Streuamplituden beider Strahlungsprozesse.

Wegen der unterschiedlichen experimentellen Auswirkung ist es zweckmäßig, die inelastischen Strahlungskorrekturen – abhängig von der Photonenergie – in harte und weiche zu unterteilen.

Die weichen Korrekturen werden ebenso wie die elastischen unabhängig von der speziellen Geometrie der Nachweisapparatur berechnet. Dagegen führt die Abstrah-Lung harter, d.h. energiereicher Photonen, zu merklichen kinematischen Änderungen des Streuprozesses, so daß die entsprechenden Korrekturen von der Meßanordnung abhängen. Zudem ändert sich die Streuamplitude, wenn große Energiebeträge im Anfangszustand abgestrahlt werden. Der Bhabhawirkungsquerschnitt (II.2) steigt wegen der abfallenden Schwerpunktenergie mit zunehmender Photonenergie an.

II.2.1 Die Berechnung der Strahlungskorrekturen

Streng genommen kommt der ideale elastische Prozess e⁺e⁻ — e⁺e⁻ nicht vor (BL 37), denn es werden immer Photonen abgestrahlt. Man definiert

in der Ordnung α^4

-- --

- l Zweiphotonenaustausch
- 2 Vakuumpolarisation
- 3 Vertexkorrektur

(II.6)
$$\frac{d\sigma}{d\Omega}\Big|_{\exp}(E_{f},\theta) = \frac{\int_{f}^{E} f}{E_{f}^{-\Delta E} \int_{f}^{d\Omega} dE_{f}}\Big|_{\exp} dE_{f}$$

$$E_{f} \quad ist \ die \ Energie \ des \ beobachteten \ Teilchens \ f$$

$$\Delta E_{f} \quad ist \ sein \ maximaler \ Energieverlust, \ bis \ zu \ dem \ die \ Meßapparatur \ über \ unbeobachtet \ abgestrahlte \ Photonen \ integriert.$$

Unter der Voraussetzung, daß der Streuquerschnitt (II.2) der Grundgraphen (Abb.1) vom Strahlungsprozeß unabhängig ist, d.h. i. allg. kinematische Änderungen des Streuprozesses sind auf Grund der Abstrahlung des Photons vernachlässigbar, gilt

(11.7)
$$\frac{d\sigma}{d\Omega}\Big|_{\exp}(E_{f},\theta) = (1+\delta(E_{f},\theta,\Delta E_{f})) \frac{d\sigma_{0}}{d\Omega}(E_{f},\theta)$$

Meister und Yennie (MY 63) haben die Strahlungskorrekturen für bestimmte Streuexperimente berechnet. Für die Bhabhastreuung sind sie im Schwerpunktsystem – bei Nachweis eines gestreuten Teilchens f – durch den Ausdruck

(11.8)
$$\delta = \frac{\alpha}{\pi} \left\{ \left(\ln\left(\frac{-q_{r}^{2}}{m^{2}}\right) - 1 \right) \left(3 \cdot \ln\left(\frac{\Delta E_{f}}{E_{f}}\right) - \ln\left(-q_{r}^{2}\right) \right) - \frac{1}{2} \cdot \ln^{2}\left(\frac{t^{2} \Delta E_{f}}{-q_{r}^{2} E_{f}}\right) + \frac{11}{3} \cdot \ln\left(\frac{-q_{r}^{2}}{2m^{2}}\right) + \frac{3}{4} \cdot \ln\left(\frac{q_{z}^{2}}{2m^{2} E_{f}}\right) \right\}$$

$$q_{r}^{2}, q_{z}^{2} \text{ sind die Impulsüberträge (II.1)}$$

$$t^{2} = (p_{1} + p_{2}^{2})^{2} \approx 4E_{f}^{2} \cos^{2} \theta / 2$$

gegeben (MY 63). Der Fehler dieser Formel wird mit 2% angegeben.

Berechnet man δ gemäß (II.8), so ist die Abstrahlung von mehr als einem reellen Photon in (II.7) nicht berücksichtigt. Dies kommt in der Divergenz des Wirkungsquerschnittes $\frac{d\sigma}{d\Omega}\Big|_{exp}$ für $\Delta E_f \rightarrow 0$ zum Ausdruck. Nach dem Bloch-Nordsieck-Theorem (BL 37) wird aber der Streuprozeß geladener Teilchen immer von der Emission unendlich vieler weicher reeller Photonen begleitet. Nach Meister und Yennie (MY 63) muß man die doppeltlogarithmischen Terme δ' in (II.8) exponentieren, um die Vielfachemission zu berücksichtigen. Wenn also (II.7) durch

(II.9)
$$\frac{d\sigma}{d\Omega}\Big|_{\exp} = e^{\delta'} (1+\delta-\delta') \frac{d\sigma_0}{d\Omega}$$

ersetzt wird, zeigt der Wirkungsquerschnitt das erwartete Verhalten für $\Delta E_{f} \Rightarrow 0$:

$$\lim_{\Delta E_f \to 0} \frac{d\sigma}{d\Omega}\Big|_{\exp} = 0$$

Die Formel von Meister und Yennie (II.8) und die Exponentiation (II.9) wurden durch die Messung des elastischen Strahlungsschwanzes der Elektron-Proton-Streuung in einem Experiment bei DESY (HA 71) sehr gut bestätigt.

In Abb.5 sind die Verläufe von 1+ δ und $e^{\delta'}(1+\delta-\delta')$ als Funktion von $\Delta E_f = 3$ [GeV] und $\theta = 8^{\circ}$ gezeigt. Der Winkel θ ist der mittlere Streuwinkel, unter dem das Teilchen f im Luminositätsmonitor in der Monte-Carlo-Rechnung nachge-wiesen wird (vgl. Abb.20).

Die Formel (11.8) ist nur für Werte $\frac{\Delta E_{f}}{E_{f}} \leq 0,05$ gültig. Da die Energieauflösung des Monitorsystems bei $E_{f} = 3$ [GeV] jedoch nicht besser als 0,17 ist (GA 73), kann die Formel von Meister und Yennie nicht direkt angewendet werden. Man muß über einen wesentlich größeren Energiebereich ΔE_{f} integrieren, d.h. die Abstrahlung hochenergetischer Photonen mit berücksichtigen.

Die exakte Berechnung dieser Prozesse ist numerisch sehr umfangreich. Einen einfacheren Weg bietet ein von P.Kessler entwickeltes Näherungsverfahren, das im nächsten Abschnitt kurz beschrieben wird.

Die Abstrahlung energiereicher reeller Photonen - insbesondere die Abhängigkeit dieser inelastischen Strahlungsprozesse von der Zählergeometrie - wurden mit Hilfe der Methode von Kessler in einer Monte-Carlo-Rechnung untersucht. Die Methode von Kessler wurde bereits erfolgreich auf die elastische Elektron-Positron-Streuung angewendet (CA 72). In einem Experiment am Speicherring ADONE (Frascati) gab es eine große Zahl sogenannter acoplanarer Ereignisse, deren Winkel $|\phi|$ zwischen den Ebenen Strahlachseauslaufendes Elektron und Strahlachse-auslaufendes Positron größer als 5° war. Die Strahlungskorrekturen wurden näherungsweise – nach der Methode von Kessler – und exakt berechnet. Es zeigte sich, daß beide Rechnungen für $1^{\circ} \le \phi \le 20^{\circ}$ sehr gut übereinstimmten und der genannte Effekt auf die Abstrahlung harter reeller Photonen zurückzuführen war (Abb.6).

Das Näherungsverfahren von Kessler ist eine quantenfeldtheoretische Verallgemeinerung der Weizsäcker-Williams-Methode (WE 34, WI 33, WI 35) und gilt für extrem relativistische Fermionen:

(II.10) $E >> m, E' = E - k_{0} >> m$.

<u>Abb.7</u> Feynmandiagramme zur Berechnung des Photonenspektrums $P(\Psi) \cdot P(k_0)$

> $p = (E, \vec{p})$ Viererimpuls des reellen Fermions $p_1 = (E', \vec{p}_1)$ Viererimpuls des virtuellen Fermions $k = (k_0, \vec{k})$ Viererimpuls des reellen Photons

Unter der Voraussetzung

(II.11) $\left| \overrightarrow{p}_{1} \right|^{2} \simeq E^{2}$ bzw. $\varphi \simeq \frac{m}{E} << 1$

<u>Abb.6</u> Vergleich zwischen Daten (----) und Rechnung (----) des ADONE-Experimentes

ist das virtuelle Fermion p₁ in Abb.7(a) als "quasireelles" dem reellen p₁ in Abb.7(b) äquivalent. Entsprechendes gilt, wenn eines der drei anderen Fermionen ein reelles Photon abstrahlt.

Der Wirkungsquerschnitt $\sigma_{(a)}^{i}$ für den Graphen (a) wird dann durch Integration über das entkoppelte Photonenspektrum P(Ψ) P(k_{0}) – P(Ψ) ist die Winkelverteilung, P(k_{0}) das Energiespektrum des abgestrahlten Photons –

(II.12)
$$\sigma_{(a)}^{i} = \int_{0}^{\varphi_{max}} P(\varphi) d\varphi \int_{k_{min}}^{k_{max}} P(k_{o}) \cdot \sigma_{(b)}(k_{o}) dk_{o}$$

aus dem Wirkungsquerschnitt σ_(b) für den Graphen (b) gewonnen.

Wenn ein reelles Photon im Anfangszustand abgestrahlt wird, ändert sich die Schwerpunktenergie der beiden einlaufenden Teilchen. Im Falle der Bhabhastreuung erhält man die Abhängigkeit des Wirkungsquerschnittes $\sigma_{(b)}(k_0)$ von der Photonenergie k_0 durch die Transformation

$$\frac{1}{E^2} \rightarrow \frac{E}{E^{-k_0}} \frac{1}{E^2} = f(k_0) \cdot \frac{1}{E^2}$$
 (vg1. (II.2))

Die Funktion $f(k_0)$ wird im Photonenspektrum berücksichtigt. Es gilt bei Abstrahlung im Anfangszustand i

(II.12a)
$$\begin{aligned} \varphi_{\max} & k_{\max} \\ \sigma_{(a)}^{i} &= \int P(\varphi) d\varphi \int P(k_{o}) \cdot f(k_{o}) dk_{o} \cdot \sigma(b) \\ \sigma_{(a)}^{i} &= \int P(\varphi) d\varphi \int P(k_{o}) \cdot f(k_{o}) dk_{o} \cdot \sigma(b) \\ \phi_{\min} & \phi_{\min} & \phi_{\max} & \phi_{$$

Bei Abstrahlung im Endzustand f gilt

(II.13)
$$\sigma_{(a)}^{f} = \int_{0}^{\varphi_{max}} P(\varphi) d\varphi \int_{0}^{k_{max}} P(k_{0}) dk_{0} \sigma_{(b)};$$

Für die Bhabhastreuung ist $\sigma_{(b)}$ der durch (II.2) gegebene Wirkungsquerschnitt.

Energie- und Winkelverteilung des Photons sind durch

(II.14)
$$P(\psi) d\psi \cdot P(k_0) \cdot f(k_0) dk_0 = \frac{\alpha}{2\pi} \frac{\psi^3 d\Psi}{(\psi^2 + \frac{m^2}{E^2})^2} \frac{dk_0}{k_0} (1 - \frac{k_0}{E} + \frac{k_0^2}{2E^2}) \cdot \frac{E}{E - k_0}$$

gegeben. Aus dem Impulssatz läßt sich der Zusammenhang zwischen dem Winkel φ , unter dem das Photon abgestrehlt wird, und der Richtungsänderung ϑ des strahlenden Fermions ableiten. Näherungsweise gilt

(11.15)
$$\boldsymbol{\varphi} = \frac{E - k_0}{k_0} \boldsymbol{v}^{*}.$$

Die Integrationsgrenzen in (II.12a) bzw. (I1.13) wurden wie folgt festgelegt:

a) Wegen der Bedingung (11.11) beträgt der maximale Winkel $\frac{\varphi}{\max}$, unter dem das Photon abgestrahlt werden darf

(11.16)
$$\Psi_{\text{max}} = 0, 1 \text{ [rad]}$$
.

Dieser Wert ist zwar recht willkürlich gewählt, aber Winkel dieser Größenordnung tragen zur Integration der Verteilung P(%) in (11.12a) bzw. (11.13) nur wenig bei.

b) Bei der Anwendung von (11.15) wird der Energiesatz verletzt. Die Verletzung soll kleiner als 0,02E = $2\Psi_{\rm max}^2$ E sein. Die maximale Photonenergie beträgt dann

$$k_{max} \simeq 2E (\sqrt{2} - 1)$$

oder für E = 3 [GeV]

(II.17)
$$k_{max} \simeq 2,5 [CeV]$$
.

.

In übrigen ist das Integral über k_0 in (II.12a) bzw. (II.13) gegen Änderungen von k_{max} im Bereich (1,5[GeV] $\leq k_{max} \leq 2,5$ [GeV]) relativ unempfindlich. c) Die minimale Photonenergie k_{\min} muß einerseits so niedrig sein, daß kinematische Änderungen des Streuprozesses vernachlässigbar sind $(k_{\min} \ll E)$; auf der anderen Seite darf sie aber nicht zu klein gewählt werden, weil die Methode von Kessler nur für die Abstrahlung eines einzigen reellen Photons gilt. Eine untere Grenze ergibt sich aus dem Verlauf der Strahlungskorrekturen von Meister und Yennie. In Abb.8 ist der Unterschied $F(\Delta E_f)$ zwischen Vielfachemission – f' $(\Delta E_f) = e^{\delta'}(1+\delta-\delta')$ – und Ein-Photon-Abstrahlung – $f(\Delta E_f) = 1+\delta$ – aufgetragen. Für E = 3 [GeV] und $\theta = 8^{\circ}$ (vgl. Bemerkung zu Abb.5 in II.2.1) zeigt sich, daß die Differenz bei $\Delta E_f = 0.03$ [GeV] vernachlässigbar klein (<0.04) und

$$(II.18)$$
 $k_{min} = 0.03 [GeV]$

ein annehmbarer Wert ist.

Bevor die Formeln dieses Abschnittes angewendet werden, sollen im folgenden Kapitel zunächst einige charakteristische Eigenschaften des Speicherringes beschrieben werden. Anschließend wird die Geometrie des Luminositätsmonitors auf Grund einer Abschätzung festgelegt.

ŗ

III. Der Luminositätsmonitor

III.l Speicherringeigenschaften

Das Prinzip des Speicherringes ist in Abb.9 dargestellt. Die Teilchen werden im Linearbeschleuniger vorbeschleunigt und können dann entweder direkt oder nach einer weiteren Beschleunigung im Synchrotron in den Speicherring eingespeist werden. Die übereinanderlaufenden Teilchenströme aus Elektronen und Positronen mit einer maximalen Energie von je 4,2 GeV werden durch Quadrupole fokussiert und in den Krümmungen des Speicherringes durch Doppelablenkmagnete auf einer Kreisbahn gehalten.

Die Teilchen führen bei ihren Umläufen Schwingungen aus, die sogenannten "Betatron"- und "Synchrotron"-Schwingungen. Sie erzeugen sowohl in horizontaler (Abb.10: x-Koordinate) als auch in vertikaler (Abb.10: y-Koordinate) Richtung eine Strahlausdehnung, die jeweils einer Normalverteilung genügt.

Die Strahloptik ist so gewählt, daß in den Wechselwirkungszonen W beide Teilchenstrahlen eine Taille haben. In dieser Arbeit wurde die resultierende Strahldivergenz im Wechselwirkungspunkt W1 durch die Standardabweichungen

(III.1)
$$SIGMAH(\sigma_{horizontal}) = 4,5 [mrad] (vgl. Abb.10)$$
$$SIGMAV(\sigma_{vertikal}) = 1,5 [mrad]$$

festgelegt. Unter dem vertikalen Kreuzungswinkel

(III.2)
$$THEKR1 = 12,0 [mrad]$$
 (vgl. Abb.10)

treffen die Ströme im Wechselwirkungspunkt Wl aufeinander.

Abb.10 Strahldivergenz und Kreuzungswinkel

III.2 Das Meßprinzip und der Aufbau des Luminositätsmonitors

Die Luminosität wird entsprechend (I.1) aus der Koinzidenzzählrate pro Zeiteinheit im Monitor und dem über die Akzeptanz der Nachweisapparatur integrierten Bhabhawirkungsquerschnitt (II.2) ermittelt.

Die Meßanordnung ist in Abb.11 dargestellt. Die gestreuten Elektronen bzw. Positronen verlassen das Strahlrohr durch die Fenster F und werden mit Hilfe der Szintillationszähler SZ₁, K₁, G₁ und der Schauerzähler S₁ (i = 1,..,4) in den Koinzidenzen

nachgewiesen. Aus der Summe der vier Zählraten N_i ergibt sich die gesamte Koinzidenzzählrate N_{LUM}.

-

(a) AUFSICHT

Z-ACHSE

Wegen der starken Winkelabhängigkeit des Bhabhawirkungsquerschnittes bei kleineren Streuwinkeln

(II.5)
$$\frac{d\sigma_0}{d\Omega} \sim \frac{1}{\theta^4} , \theta \ll 1$$

führen bereits geringe Strahlschwankungen ∆0 (Abb.12) zu großen Fehlern.

Abb.12 Strahlschwankung $\Delta \Theta$

Um die Messung gegen diesen Einfluß relativ unempfindlich zu machen, wurde der symmetrische Aufbau (Abb.11) gewählt. In erster Näherung ($\Delta \theta \ll \theta$) gilt dann

$$\left.\begin{array}{c} N_{1}(\theta) \sim \frac{1}{\theta^{4}} \\ N_{2}(\theta) \sim \frac{1}{\theta^{4}} \end{array}\right\} \implies N_{1}(\theta) + N_{2}(\theta) \sim \frac{2}{\theta^{4}}$$

$$\mathbb{N}_{1}(\Theta + \Delta \Theta) \sim \frac{1}{(\Theta + \Delta \Theta)^{4}} = \frac{1}{\Theta^{4}(1 + \frac{\Delta \Theta}{\Theta})^{4}} \simeq \frac{1}{\Theta^{4}}(1 - \frac{4\Delta \Theta}{\Theta})$$

$$\mathbb{N}_{2}(\Theta - \Delta \Theta) \sim \frac{1}{(\Theta - \Delta \Theta)^{4}} = \frac{1}{\Theta^{4}(1 - \frac{\Delta \Theta}{\Theta})^{4}} \simeq \frac{1}{\Theta^{4}}(1 + \frac{4\Delta \Theta}{\Theta})$$

$$\longrightarrow \mathbb{N}_{1}(\Theta + \Delta \Theta) + \mathbb{N}_{2}(\Theta - \Delta \Theta) \sim \frac{2}{\Theta^{4}}$$

d.h. $N_1(\Theta) + N_2(\Theta) \simeq N_1(\Theta + \Delta \Theta) + N_2(\Theta - \Delta \Theta)$.

Die optimale Koinzidenzzählrate für einen festen Polarwinkel Θ = THETAZ relativ zur Strahlrohrachse erhält man, wenn die Zählermitten um den Kreuzungswinkel THEKRI unterhalb der (x,z)-Ebene liegen (Abb.11(b)).

1

111.3 Die Dimensionierung der Zähler

III.3.1 Die Szintillationszähler SZ;

Um gegen Sekundärprozesse im Strahlrohrmaterial nahe den Fenstern F zu diskriminieren, sollten die Zähler SZ_i eingesetzt werden. Sie dürfen die Raumwinkel der nachfolgenden Zähler nicht beschneiden.

Die genaue Geometrie der SZ, ist noch nicht festgelegt. Für spätere Rechnungen wurde lediglich eine Dicke von 3 [mm] und ein Abstand von ca. 140 [cm] vom Wechselwirkungspunkt angenommen.

III.3.2 Die Szintillationszähler K.

Die Größe und der Polarwinkel THETAZ - relativ zur Strahlrohrachse - der Szintillationszähler K, wurden durch folgende Bedingungen bestimmt:

- a) Einerseits muß der Streuwinkel θ klein sein, um eine hohe Zählrate zu erhalten. Auf der anderen Seite werden damit aber die relativen Unsicherheiten im Streuwinkel und folglich die des Bhabhawirkungsquerschnittes größer (siche Seite 23).
- b) Um den statistischen Fehler klein zu halten, ist eine Koinzidenzzählrate N_{LUM} im Luminositätsmonitor mit

$$N_{LUM} \ge 5 N_{DASP}$$

zu verlangen. N_{DASP} ist die entsprechende e⁺e⁻-Zählrate in der geplanten Experimentieranordnung am Wechselwirkungspunkt WI – dem <u>DoppelArmSPektro-</u> meter. Das DASP erfaßt in dem Koordinatensystem der Abb.II den folgenden Raumwinkel

> Polarwinkelbereich : $48^{\circ} \le \theta \le 132^{\circ}$ Azimutalwinkelbereich: $-9^{\circ} \le \varphi \le 9^{\circ}$, $171^{\circ} \le \varphi \le 189^{\circ}$.

Bei E = 3 [GeV] und der Luminosität L = 10^{32} [cm⁻²sec⁻¹] erwartet man im DASP eine e⁺e⁻-Zählrate/Stunde von

$$N_{\text{DASP}}/h = 711.$$

Für 4 X 6 $\left[\text{cm}^2\right]$ große Szintillationszähler K_i ergeben sich bei verschiedenen Streuwinkeln θ durch Integration des Wirkungsquerschnittes (II.2) die in TABELLE II aufgeführten Zählraten.

TABELLE II

۲

Luminosität L =
$$10^{32}$$
 [cm⁻²sec⁻¹]
Energie E = 3 [GeV]

		σ.		N I	N Ì
0	rad	$\left[\frac{\mathrm{cm}^2}{\mathrm{GeV}^2}\right]$	h h	<u>NLUM</u> NDASP	<u>DASP</u> <u>h</u>
+		1,8 10 ⁻³²			711
6.0	0,105	8,0 10 ⁻³¹	32001	45,0	
6.2	0,108	7,0 10 ⁻³¹	28031	39,4	
6.4	0,112	6,2 10 ⁻³¹	24656	34,7	
6.6	0,115	5,4 10 ⁻³¹	21773	30,6	
6.8	0,119	4,8 10 ⁻³¹	19300	27,1	ł
7.0	0,122	4,3 10 ⁻³¹	17166	24,1	ł
7.2	0,126	3,8 10 ⁻³¹	15320	21,6	
7.4	0,129	3,4 10 ⁻³¹	13713	19,3	1
7.6	0.133	3,1 10 ⁻³¹	12311	17,3	
7.8	0,136	2,8 10 ⁻³¹	11084	15,6	
8.0	0,140	$2,5 10^{-31}$	10006	14,1	ļ
8.2	0.143	2,3 10 ⁻³¹	9054	12,7	
8.4	0,147	$2,1 10^{-31}$	8214	11,6	
8.6	0,150	1,9 10 ⁻³¹	7468	10,5	1
8.8	0,154	1,7 10 ⁻³¹	6804	9,6	1
9,0	0,157	1,6 10 ⁻³¹	6211	8,7	

Die Strahlrohrkonstruktion erlaubt

(III.4) THETAZ = 8°

als kleinsten Winkel. Dieser Wert wird den gestellten Forderungen gerecht.

III.3.3 Die Szintillationszähler G

Damit die Akzeptanz der Koinzidenzanordnung nicht kritisch von der Strahldivergenz, den Strahlungsprozessen und der Vielfachstreuung abhängt, fordert man Koinzidenzen zwischen einem kleinen und dem gegenüberliegenden großen Zähler. Bei der Dimensionierung des großen Zählers wurden die genannten Effekte berücksichtigt:

a) Strahldivergenz

Die Strahldivergenz erzeugt eine Aufweitung der Winkelverteilung der auslaufenden Teilchen. Bei festgehaltener Richtung des Elektrons im Anfangs- und Endzustand wird die Divergenz des einlaufenden Positrons auf das auslaufende abgebildet (Abb.13).

<u>Abb.13</u> Abbildung der Strahldivergenz auf die Szintillationszähler

Wenn das gestreute Elektron den Zähler K₁ vertikal (y-Richtung) überstreicht, wird ein Teil der gestreuten Positronen nicht mehr in den Zähler K₄ gelangen. Um keine Verluste in der Koinzidenzzählrate hinzunehmen, wird daher hinter K₄ der Szintillationszähler G₄ aufgebaut. G₄ muß jeweils nach oben (negative y-Richtung) und unten (positive y-Richtung) um mindestens vier Standardabweichungen SIGMAV (III.1) größer sein als K₄, damit möglichst alle Teilchen erfasst werden. Entsprechendes gilt in horizontaler Richtung und für die übrigen Koinzidenzen. Die Aufweitungen betragen

(III.5) vertikal : 2.4 SIGMAV = 12 [mrad]horizontal: 2.4 SIGMAH = 36 [mrad].

b) inelastische Strahlungskorrekturen

Eines der an der Streuung beteiligten Teilchen kann durch Abstrahlung eines harten reellen Photons die Kinematik des Streuprozesses so verändern, daß die Divergenz verstärkt wird.

Wegen (II.15) ist für harte Photonen ($k_0 \approx E-k_0$) der Abstrahlungswinkel Y ungefähr gleich der Richtungsänderung $\sqrt{}$ des strahlenden Teilchens. Berücksichtigt man entsprechend Abb.A2 (Anhang A.1) $60\frac{m}{E} \approx 0,01$ [rad] bei E = 3 [GeV], so ergibt sich für E = 1 [GeV]

(III.6) $\Delta \mathbf{r} = 30 \, [\text{mrad}] \, .$

Die Abschätzung wird hier für
$$\sqrt{s} = 2$$
 [GeV] gemacht, weil der Speicher-
ring auch in diesem Energiebereich betrieben wird.

c) <u>Vielfachstreuung</u>

Nach der Streuung durchlaufen die Elektronen bzw. Positronen auf dem Weg in den Monitor Materie, an deren Atomkernen sie durch Coulomb-
streuung eine Richtungsänderung $\Delta \delta_V$ erfahren. In guter Näherung beschreibt man die resultierende projizierte Winkelverteilung durch eine Normalverteilung mit der Standardabweichung

$$\Delta \delta = \frac{15 \cdot Z}{p \cdot \beta} \sqrt{\frac{x}{X_0}}$$
(RO 73)
Z Ladungszahl des Teilchens
p Teilchenimpulsbetrag in $\frac{\text{MeV}}{c}$

$$\beta = \frac{p}{E}$$
 Teilchengeschwindigkeit
x Länge des Weges durch die Materie
X₀ Strahlungslänge der durchsetzten Materie .

Mit Z = 1,
$$\beta \simeq 1$$
 (E >> m) und p = 1000 $\left[\frac{\text{MeV}}{c}\right]$ gilt
(III.7) $\Delta \delta = 0,015 \sqrt{\frac{x}{X_0}}$.

Nach der bisherigen Planung des Strahlrohres durchlaufen die Teilchen zwischen Wechselwirkungspunkt und den Zählern K_i das 0,2 [mm] dicke V2A-Fenster des Strahlrohres mit $X_{o_{Fe}} = 1,77$ [cm], die 3 [mm] starken Szintillationszähler SZ_i mit $X_{o_{SZ}} = 42$ [cm] und ca. 75 [cm] Luft mit $X_{o_L} = 30870$ [cm] ($X_{o_{Fe}}$, $X_{o_{SZ}}$, X_{o_L} aus RO 73). Nach (III.7) ergibt sich

(III.8)

$$\delta \Delta \delta_{VFe} = 12,7 \text{ [mrad]}$$

$$\delta \Delta \delta_{VSZ} = 9,8 \text{ [mrad]}$$

$$\frac{8 \Delta \delta_{VL}}{8 \Delta \delta_{VL}} = 5,9 \text{ [mrad]}$$

$$\delta \delta_{V} = 17,1 \text{ [mrad]}$$
(quadratisch addiert)

Das Streuzentrum der Vielfachstreuung liegt ungefähr 70 [cm] vor den Zählern. Berücksichtigt man für Strahldivergenz und Strahlungskorrekturen den Abstand

der Zähler vom Wechselwirkungspunkt, so ergeben sich mit (III.5), (III.6) und (III.8) die Vergrößerungen der G_i gegenüber den K_i

vertikal :	ΔV	~	8	[cm]	
horizontal:	ΔН	~	10	[cm]	

was einer Fläche der G, von

$$F_{G_{i}} = 14 \times 14 \left[cm^{2} \right]$$

entspricht.

III.3.4 <u>Die Schauerzähler S</u> (GA 73)

Die Schauerzähler S_i werden benötigt, um gegen niederenergetischen Untergrund zu diskriminieren. Sie legen die niedrigste vom Luminositätsmonitor noch aufgefaßte Energie (Schwelle) fest. Wegen der lateralen Ausdehnung des Schauers sind die S_i breiter und höher als die Szintillationszähler G_i.

Die Schauerzähler bestehen abwechselnd aus Bleiplatten (24 Stück; 25 X 25 X 0,3 [cm³]) und Szintillatorplatten (24 Stück; 24 X 24 X 0,3 [cm³]). Wichtig für den Einbau der Zähler am Wechselwirkungspunkt sind die maximalen äußeren Maße

Nähere Einzelheiten über die Schauerzähler werden in der Diplomarbeit von E. Gadermann (GA 73) aufgeführt.

Abschließend sind in TABELLE III die Dimensionen der verschiedenen Zähler und des DASP aufgeführt.

5

Zähler	Dimensionen [cm ³] (Br X Hö X Ti)	Raumwinkel $\theta = 8^{\circ}$ bei SZ _i ,K _i ,G _i ,S _i [msterad]	e ⁺ e ⁻ -Zähl- raten/Stunde
SZi	? X ? X 0,3	> 5,7	
ĸ,	4 X 6 X 0,3	0,7	10006
G,	14 X 14 X 0,3	5,7	
si	24 X 24 X ¹)	> 5,7	
DASP	$-9^{\circ} \leq \Psi \leq 9^{\circ}$ $171^{\circ} \leq \Psi \leq 189^{\circ}$ $48^{\circ} \leq \theta \leq 132^{\circ}$	841	711

- ? noch nicht festgelegt
- ¹) in dieser Spalte sind für die Schauerzähler Breite und Höhe der Szintillatorplatten eingetragen

IV. Die Monte-Carlo-Simulation der Bhabhastreuung

Die Abschätzungen, die in Kapitel III durchgeführt wurden, werden in diesem Abschnitt verfeinert. Insbesondere werden die Effekte der Abstrahlung harter reeller Photonen eingehender untersucht. Dazu wird die Bhabhastreuung (II.2) unter Berücksichtigung von Strahldivergenz, Kreuzungswinkel und Photonabstrahlung gemäß (II.14) berechnet. Nach einer Diskussion der Normierung werden die Strahlungskorrekturen abgeschätzt und schließlich ihre Abhängigkeit von Zählerparametern erörtert.

Während im folgenden das Rechenprogramm erläutert wird, sind die Ergebnisse gesondert in Kapitel V aufgeführt.

IV.1 Das Rechenprogramm

Aufbau und Arbeitsweise des Rechenprogrammes werden aus dem Flußdiagramm (Seite 34f.) deutlich. Zum besseren Verständnis müssen folgende Bemerkungen berücksichtigt werden:

a) Dateneinlese

Folgende Daten wurden eingelesen:

α) Parameter der Zähler (vgl. Kapitel III)

halbe Breite der $\begin{cases} K_i \\ G_i \end{cases}$	BZ(1) = 2 [cm] BZ(2) = 7 [cm]
halbe Höhe der $\begin{cases} K_i \\ G_i \end{cases}$	HZ(1) = 3 [cm] HZ(2) = 7 [cm]
x-Koordinate der Zählermitten z-Koordinate der Zählermitten	ABSTX = 28,5 [cm] ABSTZ = 203,0 [cm]

β) Parameter der Teilchen und des Speicherringes (vgl. Kapitel III)

Energie des einlaufenden e⁺ bzw. e⁻E = 3[GeV]Elektronmasse $EM = 5,11 \ 10^{-4} \ [GeV]$ KreuzungswinkelTHEKRI = 0,0120 [rad]Standardabwg. der StrahldivergenzNorizontal
vertikalSIGMAH = 0,0045 [rad]

Y)	Parameter der Kessler-Formel (vgl. Kapitel II)						
	minimale Photonenergie (k _{min}) maximale Photonenergie (k _{max})	W1 = 0,03 [GeV] W2 = 2,50 [GeV]					
	maximaler Abstrahlungswinkel (max) PHIPHO = 0,1 $[rad]$					
δ)	Parameter der Bhabhastreuung						
	minimaler Streuwinkel THE maximaler Streuwinkel THE	CMS(1) = zunächst variabel (vgl. IV.3) $CMS(2) = \pi$					
ε)	maximale Photonenergie zur Normier	ung ENORM = 0,15 [GeV]					
	Anfangszufallszahl Zahl der zu berechnenden Streuerei	IX = 1 gnisse ISUM = 500000					

b) Koordinatensysteme

Im Rechenprogramm wurden die Koordinatensysteme K'_1 , K'_2 und K - Abb.14 - benutzt.

<u>Abb.14</u> Die Koordinatensysteme $K'_1(x'_1,y'_1,z'_1), K'_2(x'_2,y'_2,z'_2), K(x,y,z)$

c) Zufallszahlen

Alle in der Monte-Carlo-Rechnung erzeugten Zufallszahlen waren über das Intervall (0,1) gleichverteilt.

Wegen der Energieabhängigkeit des Bhabhawirkungsquerschnittes (II.2) ist die Wahrscheinlichkeit, mit der ein Photon im Anfangszustand abgestrahlt wird größer als für den Endzustand. In der Monte-Carlo-Rechnung strahlte immer eines der vier an der Streuung beteiligten Teilchen ein Phootn ab. Nach (II.12a) und (II.13) erhielt daher die Abstrahlung der einlaufenden Teilchen gegenüber der aller an der Streuung beteiligten Teilchen das Gewicht

$$W^{2}_{f P(k_{0}) \cdot f(k_{0}) dk_{0}} = 0,565$$

$$W^{2}_{f P(k_{0}) \cdot \{f(k_{0})+1\} dk_{0}} = 0,565$$

$$W^{2}_{W1}$$

das durch die Zufallszahl ZABVN - in den ersten vier Rauten des Flußdiagramm - berücksichtigt wurde:

```
0< ZABVN < 0,2825</td>TeilchenITEIL=1strahlt im Anfangszu-0,2825 < ZABVN < 0,565</td>TeilchenITEIL=2stand IVONA=1 ab0,565 < ZABVN < 0,7825</td>TeilchenITEIL=1strahlt im Endzu-0,7825 < ZABVN < 1</td>TeilchenITEIL=2stand IVONA=2 ab.
```

d) Verteilungen

1

Neben den in TABELLE IV (Seite 48) aufgeführten Abbildungen, wurden noch die folgenden Verteilungen gespeichert:

angenäher-((II.12a),(II.14)) $P(k_0) \cdot f(k_0)$ ten Verteidie in der $N'(k_0)$ ((II.13),(II.14)) P(k_o) Monte-Carlolungen N (k_o) ((11.14)) $P(\boldsymbol{\varphi})$ Rechnung N_(Ψ) ((II.2)) doo nach $N^{B}(\theta)$ Seite 43 bzw. Abb.20 $N_{-W2}^{K}(\Theta)$ Erläuterungen hierzu siehe Flußdiagramm Seite 37 bzw. Abb.15 $N^{S}(X_{1}, Y_{1}, 205)$ und

IV.2 Prüfung des Monte-Carlo-Programmes

Die Genauigkeit des Rechenprogrammes ließ sich überprüfen, wenn man die durch das Programm angenäherten und die exakt berechneten Verteilungen verglich:

a) Abb.15 zeigt die Verteilung der Durchstoßpunkte N^S(X₁,Y₁,205) der einlaufenden Elektronen (entsprechendes gilt auch für die Positronen) im Abstand ABSTOZ = 205 [cm] vom Wechselwirkungspunkt. Die eingezeichnete Ellipse gibt ±1 Standardabweichung an

> horizontal: $\sigma_{\rm H} = \pm 0,93 \text{ [cm]}$ (vgl. (III.5)) . vertikal : $\sigma_{\rm V} = \pm 0,31 \text{ [cm]}$

- b) Abb.16 Verteilung P(k₀) · f(k₀) bzw. N'(k₀), Abstrahlung im Anfangszustand (siehe (II.12a) und (II.14)).
- c) Abb.17 Energieverteilung $P(k_0)$ bzw. $N(k_0)$ der abgestrahlten Photonen (siehe (II.13) und (II.14)).
- d) Abb.18 Winkelverteilung P(φ) bzw. N(φ) der abgestrahlten Photonen (siehe (II.12a) bzw. (II.13) und (II.14)).
- e) Abb.19 Streuwinkelverteilung $\frac{d\sigma_0}{d\Omega}$ bzw. N^B(θ) der Teilchen im Schwerpunktsystem (siehe (II.2)).

Der statistische Fehler der Monte-Carlo-Methode wird am Ende dieses Kapitels in IV.4 abgeschätzt.

IV.3 Die Effektivität des Programmes

Die Effektivität der Monte-Carlo-Rechnung wurde durch das Verhältnis IGUT/ISUM definiert. IGUT war die Zahl der unter den im Flußdiagramm aufgeführten Be-

39 -

н

Photonen ·

- 40 -

- 41 -

- 42 -

dingungen im Monitor nachgewiesenen Elektronen bzw. Positronen. ISUM war die Zahl der insgesamt berechneten Streuereignisse. Die Effektivität des Programmes hing wesentlich von dem minimalen Bhabhastreuwinkel Θ_{\min} ab.

Der Bhabhawirkungsquerschnitt (II.2) steigt mit abnehmendem Streuwinkel stark an und ist für $\theta \rightarrow 0$ divergent

(II.5)
$$\frac{d\sigma_0}{d\Omega} \sim \frac{1}{\theta^4}$$
, $\theta \ll 1$

Der Abschneidewinkel θ_{\min} =THECMS(1) mußte einerseits möglichst groß sein, denn je näher er dem vom Monitor erfaßten Streuwinkelbereich

kam, um so effektiver arbeitete das Programm, d.h. IGUT wurde größer. Auf der anderen Seite mußte θ_{\min} jedoch so klein sein, daß seine Wahl die effektive Zählrate nicht beschnitt.

In Abb.20 ist die Bhabhastreuwinkelverteilung Ν^K_{-W2}(Θ) - im Schwerpunktsystem der in Koinzidenz im Monitor nachgewiesenen Elektronen und Positronen aufgetragen. Man erkennt, daß

$$\theta_{\min} = 0, 11 \text{ [rad]}$$

die gestellten Forderungen erfüllt. Dieser Wert gilt auch für die später diskutierte Einarmbedingung (siehe V.1).

Der Abschneidewinkel θ_{\min} ist verhältnismäßig klein – die Zählermitten stehen unter THETAZ = 0,14 [rad]. Wegen der geringen Akzeptanz des Monitors (vgl. TABELLE III) und des steilen Abfalles des Bhabhawirkungsquerschnittes (II.2) im Intervall [θ_{\min} , THETAZ], wurden die meisten Teilchen der berechneten Streuereignisse nicht im Monitor nachgewiesen. Die Effektivität betrug

$$0,003 \leq \frac{\text{IGUT}}{\text{ISUM}} \leq 0,007$$

gie des e⁻ im Intervall. [0,5 [GeV]; 2,97 [GeV]]

- 44 -

ž

IV.4 Fehlerabschätzung (RA 68) und Rechenzeitbedarf

Der statistische Fehler der Monte-Carlo-Methode wird durch die Genauigkeit bestimmt, mit der die Verteilungsfunktionen approximiert werden. Die Verteilung der nach Formel C.3 (Anhang C) berechneten Werte x_i stimmt nur im Grenzfall unendlich vieler Versuche $(i \rightarrow \infty)$ mit der Dichte p(u) überein. Praktisch wird die Rechnung nach endlich vielen Schritten (i = m) abgebrochen und man erhält eine angenäherte Verteilungsdichte.Der Fehler dieses Verfahrens wird dadurch abgeschätzt, daß zunächst das Intervall $\begin{bmatrix} a,b \end{bmatrix} = \begin{bmatrix} a_1,a_{m_0+1} \end{bmatrix}$ in m_0 gleichgroße Teilintervalle $\begin{bmatrix} a_k,a_{k+1} \end{bmatrix}$, wobei $k=1,...,m_0$, aufgespalten wird und alle in dieses Intervall fallenden x_i aufsummiert werden. Die Summe ist proportional dem Integral über p(u) in den Grenzen $\begin{bmatrix} a_k,a_{k+1} \end{bmatrix}$:

$$C_{k} = \frac{\sum_{i} x_{i} (x_{i} \in [a_{k}, a_{k+1}])}{a_{k+1}}$$

$$\int_{j}^{a_{k+1}} p(u) du$$

Wenn m_O groß genug gewählt wird, sind die Proportionalitätskonstanten C_k um den wahrscheinlichsten Wert

$$\overline{C} = \frac{1}{m_0} \sum_{k=1}^{m_0} C_k$$

näherungsweise normalverteilt mit der mittleren quadratischen Abweichung

$$\Delta^{2}(C) = \frac{\sum_{k=1}^{m_{O}} (\overline{C} - C_{k})^{2}}{\frac{k=1}{m_{O}(m_{O}-1)}}$$

Berücksichtigt man, daß M Verteilungen approximiert werden, so ergibt sich der relative Fehler ∆F der Monte-Carlo-Methode

$$\Delta F = \left\{ \sum_{j=1}^{M} \Delta_{j}^{2}(C) \right\}^{1/2}$$

Für M = 8 und ISUM = 500000 ergab sich

$$\Delta F \simeq 4\%$$
.

Die Monte-Carlo-Rechnungen wurden mit Hilfe der IBM 360/65 bzw. 360/75 des DESY-Rechenzentrums durchgeführt. Um eine hinreichend gute Statistik zu erhalten, waren mindestens 250000 Streuereignisse zu berechnen. Die Rechenzeit betrug dann ungefähr 90 Minuten.

V. <u>Ergebnis</u>se

In diesem Kapitel werden die Ergenisse der Rechnungen aufgezeigt. Die vollständige Information über die Kinematik aller berechneten Streuereignisse ist auf Band geschrieben und kann jederzeit abgerufen werden. Um die Ergebnisse anschaulicher darzustellen, werden zunächst die in TABELLE IV verzeichneten Abbildungen diskutiert. Die Bedingungen, für die sie erstellt wurden, sind in der Tabelle noch einmal zusammengefaßt.

Alle zweidimensionalen Verteilungen $N(X_a, Y_a, 205)$ zeigen die Durchstoßpunkte eines auslaufenden Teilchens durch die Oberfläche einer Kugel mit dem Zentrum im Wechselwirkungspunkt und dem Radius ABSTOZ = 205 [cm]. ABSTOZ ist der Abstand des Monitors vom Wechselwirkungspunkt (vgl. Abb.11, Seite 30). In den Abbildungen werden die Projektionen der Durchstoßpunkte (X_a, Y_a) auf die Zeichenebene (x,y) aufgetragen.

Die ungestörten Teilchenstrahlen sind als Ellipsen (= ±1 Standardabweichung) und die von den Zählern K_i bzw. G_i erfaßten Bereiche sind als Rechtecke bzw. Quadrate eingezeichnet.

Während in Abb.21 die Durchstoßpunkte der Elektronen N^O(X₁,Y₁,205) ohne Berücksichtigung der Abstrahlung aufgetragen sind, zeigt die Verteilung N^M(X₁,Y₁,205) in Abb.22 den Einfluß der Strahlungsprozesse.

Entsprechend dem Anstieg des Bhabhawirkungsquerschnittes mit kleineren Streuwinkeln nimmt die Teilchendichte in beiden Abbildungen zu den eingezeichneten Kreisen hin zu. Die Kreise geben die Öffnung der Kegel an, die durch den minimalen Bhabhastreuwinkel $\theta_{\min} = 0,11$ [rad] (vgl. IV.3) erzeugt werden. Im Gegensatz zu Abb.21 fächert die Verteilung der Elektronen in Abb.22 auf Grund der Abstrahlung harter reeller Photonen in den Kegel auf.

Die zugehörigen Verteilungen der Positronen auf der anderen Seite des Wechselwirkungspunktes entsprechen den in den Abb.21 und 22 dargestellten.

TABELLE IV

			7 abl dor		Bedingungen		
Abb.Nr.	Gezeichnete Gößen	Teilchen	Teilchen	Abstrahlung	Teilchen im Energiebereich	Teilchen im Zähler	
21	Durchstoßpunkte N $^{0}(X_{1},Y_{1},205)$	e ⁻		nein			
22	Durchstoßpunkte N ^M (X ₁ ,Y ₁ ,205)	e ⁻	-	ja			
23	Durchstoßpunkte N ^{1,2} (X ₁ ,Y ₁ ,205)	e		nein			
24	Durchstoßpunkte N ^{1,2} (X ₂ ,Y ₂ ,205)	e+	6075	nein			
25	Durchstoßpunkte $N_{-W2}^{1,2}(X_1,Y_1,205)$	e				e ⁻ in K _l	
26	Durchstoßpunkte $N_{-W2}^{1,2}(X_2,Y_2,205)$	e ⁺	2745		e ⁻ in 0,5[GeV];2,97[GeV]	oder e in K ₂	
27	Bhabhastreuwinkel $N_{-W2}^{1,2}(\Theta)$	e-,e+		ja			
28	Durchstoßpunkte $N_{-EN}^{1,2}(X_1,Y_1,205)$	e-					
29	Durchstoßpunkte $N_{-EN}^{1,2}(X_2, Y_2, 205)$	e+	1164		e in 2,85[GeV];2,97[GeV]		
	U	I	n	н			

Fortsetzung von TABELLE IV

٦.

	Bedingungen				en	
Abb Nr	Gezeichnete Größen	von Teilchen	Zahl der Teilchen	Abstrahlung	Teilchen im Energiebereich	Teilchen im Zähler
ADD. NI .						
30	Durchstoßpunkte	e ⁻				e ⁺ in K ₃
31	$N_{-W2}^{3,4}(X_1,Y_1,205)$ Durchstoßpunkte $N_{-W2}^{3,4}(X_2,Y_2,205)$	e ⁺	826	ia	e ⁻ in 0,5[GeV];2,97[GeV]	und e ⁻ nicht in K ₂ oder
32	Durchstoßpunkte	e e				e^+ in K,
33	$N_{-EN}^{3,4}(X_1,Y_1,205)$ Durchstoßpunkte $N_{-EN}^{3,4}(X_2,Y_2,205)$	e+	258		e ⁻ in 2,85 [GeV] ;2.97 [GeV]	und e ⁻ nicht in K _l

- 4**9** -

ч.,

.

[cm]

×

- 50 -

Abb.21

Die Durchstoßpunkte der auslaufenden Elektronen ohne Berücksichtigung der Abstrahlung von Photonen N $^{0}(X_{1},Y_{1},205)$

≍ † 27.2527.71455 430.35454717ac355146F648CCF45CK46CCFF50%K444.316G446G0K711M45G41AAADB6748E6B3796545667745633435453142231 194219449144277441515143545545585893587449034FC9HEFHC2999CCC4A400E40G18A80CGHHCF79494597789484784568375524359311241 32144242121 1942241311645417314455555893588358744035FC9HEFHC2999CCC4A400E40G18A80CGHHCF794945978884784555554359311241 321442421212552 11337115141487455444574659896#4#CB974ERCICCJFA6E9KCAGJBK IUGEILTHFGKGFH JGEEKUCG9FAA9097599EBE3A46C56941523565541432111251 312422223 3444147425694398AS65CAFCFKWAFLEHGSCARHADSAMJFHAKOXJ4TJKKFJLSPLIDJF7HK48JHF98C6AD7986887935744486536571534324 1 27314 964157194 2645759 EEU AECE DEERLTECECAAFAX IAXMUU4 2550M PEVL 04L 02L 04L 02L 04ENGFADH 5FCRED B0 956555716439755 512422 74242532249684345460943566599966 SAU6AAC9601 LCGACLVCV 10FL18<u>LA964756146357757994.LP</u> FL4MTVP IHLETEM1GFM5E76956865577655536433421 145in/ning9n/AA7Annik/wCkN/N/55436253343317421453241321 211 212241152 45 52133134423 343445556944KTIHQEDF1EA1849C4/64657831 4°5446974584819ACHKGUGLLFLPN/N/2352442523 6232433333 13 1211424 12 111121342533123231124553669CN/MJJK1GBGHB7969AR767AR35641 1914.0.0074773946.0.047443412724412224412.04144545512 261422421 314212214 234 51272178964454545454776824737 1414.147446144417144141644644444444745444555124513415441512551341352313445244444444455445154527756877768737 14444744413944547454414144444153153153153153153254122 2561 22 3 121 542112251523 55145444441244453153153254122254 1444344468997454745441944199415544231161354931 1 445124211231 414 51363 1242379854554789496696844556868474661625 14246194675778876733778910786011CN 2704501ND 88834242312 2224241315423333345 43 4 2428884C 40FMMMG JMPFL86HC 6648674568276332465561 14476414464544144654155310785011MFTDCK5CLPTCPV244314693123245 5916441443313533541835961PJUMEGJKFCAACB496CCCAAA94363659856676334 1 1122 1 4 42143223 55616580NTKPKGHEGCEPBC77478615 1112 313232126316662114666KS1S1EFCECEFER0658461547 L1 21 12211135332323 213162413568RØKKAMGETDEGCEAC696F4A665641 11264214557556445567E53376EFE7EJEBCCECCHCMKEE19F7JK4CFACSNCHH98JBAEEHH950M68BABC 70B93454265645744637426223255233 222312313543723344133678NQNLQQCENFCC6CA4885C33C859 D76625554 4315342224423235352 3263338122234131423149MVLN1PKGNLEJDRE9F9A376863464243343 [1145]51545567964345FFIFLUF JGAJMUI NG 76131453154112434 [224313122212112342223 243419555EVPDD5HEBDFC8DA8685A3A88C7887C794 14445 A76A195145A1 7C 40 40 FUF KCONGALCJJK6FALTAA724659524553523231516255451594ABWJHLTSNJNEGGNNACOE899997558554668754314454 IX SL ST FF CDCF EAB6954487587 OSCNOL TEHENCECTTPATRY 1122 3310641141332 5526364 APQ4LL HETGEBCBR268374967 (4 15a a 31 € EU 67 9.355 a 6 9 E0 5 EE EL 1 JULK 9 HO E HU 9 G M C 3 F EC F E J Y F DO BA I I F THIC AMA 70 3 9 7 7 5 8 7 7 4 7 8 4 7 5 2 8 6 5 1 1 5 7 1 4 4 риссясв (664 мз 5 м ноба705) тв69 твт Ссниесоат 5 тв6 в иовенс90 т5 та6 в иовенс90 т5 аат 5 в Е. ие E с 03 F с в 95 ч RIS+INLKGFE77DRE665C68 212121211145647A227456475145456151466ECJFCKHGCKHGKEPPF1H140LHEDULTEQKHYJKFOTEDLHFF9LBHJCHEA&BBA69B56CC757A78466443512284 <u>GEJAFRE</u>GGCCACBS GN JQKKKHBCHTAFCE67566 499 479 19LHE I MKBF BC6A9 1655441 NUNGI K JNFGB654BCB6466 AATAAA 221343134127436425 467491533547466622978AA57679AP85485485484935449195CC6AC8CF83E5A7F38E8B74C58547646422 3 245211 13351147 347342113573134431583546197525344784495644561946074663946074846007487007484600748 865963345715454757632162524111221312 1 21 3121 111 416132323800 N4NGTKJAFG86548C86460 11251 414 5 52 31 1124680 N48501APEICC063ACC4936 FLCTAUPEEP 01998. 24. 000 NPLMHUE 2 1 133 21 3325522 6774 u 12111 342216 1622422640 J 2 323111 81235221325860 J 11 2 21221 41 2436454 VRI 11 116123327231323262666 1 133331222344412 25694 1 122434 66 321361529 2 5341241552311246 11114 4312144 62321434 1 2212 122326232 5152 62 3 312343573432443 34151127132 223 16, 000 ╸╺╼╼╸╡╾╾╾╏╸╾╾╸╏╸╾╸╴╏╸╾╾╴┠╸╾╾╴┠╸╾╸┥╴╴╸╸ 0ATE 39/12/73 12-000 5143434417154125 344373484234678404984767528584858787AC084169525485359999933399 6-000 -0.000 66666 4#7459#047A#79691FKKJVKC4/635232213252 0114614111223 111 7406200605017FFF54ELLC6FY/63543222 121114371414 111 -6.330 9574764A PTSC4ACONGANAAAAAAAAAA272565193 33 23213315332422 K 44 2122612 61441374312 767315212143141321423213 111229212514512564535111 12 2 1152514122511 2 21 [137344341525533223475121] [77 3434215243 21 421 12 [313434162223242424222 1 \$57553512162 33451113 52423 3 11 1112 3212 -12,000 152411231231 22123 21 k5725643 31412 12131 329432241 242221233 43751214431553 152 95251533333314742 95515263 243216 38 C J * -18.900 3757634444919161A590181A59049444 CL151 CE Грагоцинукти Рути Исаночетину и иста Осаночетино и иста Осантик (ситорок са Фатоктинетиноста <u>6546.57478666533845466066</u> 0<mark>726650750467351666010</mark> -24.000 MAP TASE OF CALAGPTED JANE M 1 5 5 4 1 8 7 5 1 5 1 5 0 3 0 7 M 1 M F M P (ылаларын такры с IHC ыл 5AA BY 35F CCADB LA 41 LMK. KASCRUNA HEOFORES 41C PPC रगरत <u>ही के नतमक</u> JON 14 71 PAC GUANATEM - 30. 030 11165 2 111111111 1946E7A 441557 9200055 111 2 4 4 4 4 2430 67 474647 j, - 35. 707 DSIJ 20.050 1 10°°01 -11.007 Surs . 37. 003 29.909 ***** с**.**-С Abb.22 Die Durchstoßpunkte der auslaufenden Elektronen mit Berück-

sichtigung der Abstrahlung $N^{M}(X_{1},Y_{1},205)$

[Cm]

 \geq

E C

- 51

- 54 -

1

85

Т

<u>Abh.29</u>

- 60 -

- 62 -

Den Einfluß der Strahldivergenz zeigen die Abb.23 und 24. Unter der Bedingung

> e in K₁ oder e in K₂ und Keine Abstrahlung von Photonen

sind in Abb.23 die Durchstoßpunkte der Elektronen $N^{1,2}(X_1,Y_1,205)$ aufgetragen. Die zugehörige Verteilung der Positronen – Abb24 – ist auf Grund der Strahldivergenz deutlich aufgeweitet. Dieser Effekt wird durch die Abstrahlung harter reeller Photonen noch verstärkt, wie den folgenden Verteilungen zu entnehmen ist.

Unter der Einarmbedingung

e⁻ in K₁ oder e⁻ in K₂ und E'ε[0,5[GeV];2,97[GeV]]

E' Energie des auslaufenden Elektrons

sind in Abb.25 die Durchstoßpunkte der auslaufenden Elektronen $N_{-W2}^{1,2}(X_1,Y_1,205)$ und in Abb.26 die der auslaufenden Positronen aufgetragen. Die zugehörige Streuwinkelverteilung im Schwerpunktsystem $N_{-W2}^{1,2}$ zeigt Abb.27.

In Abb.26 fällt auf, daß sich die Positronen stärker nach innen zu den Strahlachsen verteilen. Dieser Effekt, der sich in Abb.27 durch den Schwanz bei kleineren Streuwinkeln ausdrückt, ist wie folgt zu erklären.

Der Wirkungsquerschnitt der Elektron-Positron-Streuung wird in dieser Arbeit bezüglich der inelastischen Feynmandiagramme (vgl. Abb.3, Seite 9) bis zur Ordnung α^3 abgeschätzt; d.h. es wird angenommen, daß in einem Streuprozeß nur eines der an der Streuung beteiligten Teilchen entweder im Anfangsoder im Endzustand ein Photon im Energiebereich 0,03 [GeV] $\leq k_0 \leq 2,5$ [GeV] entsprechend der Formel (II.14) abstrahlt. Im wesentlichen werden aber mit ungefähr gleicher Häufigkeit für Anfangs- und Endzustand - die Elektronen abstrahlen, um den für den Nachweis im Intervall [0,5 [GeV];2,97 [GeV]] nötigen Energieverlust zu erleiden. Für die Einarmbedingung führt die Ab-

ş
strahlung reeller Photonen durch die einlaufenden Positronen unter Umständen auch zu den erforderlichen Energieverlusten der auslaufenden Elektronen. Die Wahrscheinlichkeit, mit der ein Positron in dem entsprechenden kinematischen Bereich – Energieverlust ≈ 2.0 [GeV] – 2.5 [GeV], Streuwinkel im Schwerpunktsystem ≈ 0.25 [rad] – 0.30 [rad] – auftritt, ist jedoch klein (≤ 37). Unter der schärferen Koinzidenzbedingung, auf die später eingegangen wird, strahlen nur noch die an der Streuung beteiligten Elektronen ab.

Unter der Vernachlässigung des verhältnismäßig kleinen Kreuzungswinkels und der Strahldivergenz lauten die Elektronen in Richtung der positiven z-Achse und die Positronen in Richtung der negativen z-Achse ein (vgl. Abb.11, Seite 22). Betrachtet man jetzt den Fall, das das Elektron im Anfangszustand abstrahlt, so erhält der Schwerpunkt der beiden Teilchen einen Impuls in Richtung der begativen z-Achse. Mit zunehmendem Energieverlust des Elektrons wird der Streuwinkel θ für die Zähler K₁ und K₂ kleiner. Bei Nachweis des Flektrons in diesen Zählern (Abb.25) wird folglich das zugehörige Positron auf der anderen Seite des Wechselwirkungspunktes zu den Strahlachsen hin verschoben (Abb.26). Für die Zähler K₃ und K₄ wird der Streuwinkel θ größer.

In den Abb.28 und 29 sind die Verteilungen der auslaufenden Elektronen $N_{-EN}^{1,2}(X_1,Y_1,205)$ und Positronen $N_{-EN}^{1,2}(X_2,Y_2,205)$ aufgetragen. Gegenüber behörden der Schutzung gehöhert.

 \mathbb{E}^{+}_{2} , [.,Sy[coV];2,97[coy]].

Der Vergleich zwischen Abb.36 und 29 bestätigt die Energieabhängigkeit der oben beschriebenen Asymmetrie, wegen des geringeren Energieverlastes der Eicktroben ist sie in Ach.29 stark zurückgenangen. Es wird auch deutlich, daß bei den eingezeichneten Zählerermensionen die Zählrate nicht mehr von den Ausmaßen der großen Szintilletionszähler G₁ abhängt. Alle Positronen lieden innerhalb der Gronzen von G₁ und G₂. Für die Bestimmung der Luminosität ist die Koinzidenzbedingung relevant. Sieht man zunächst von der Beschränkung der Koinzidenzzählrate durch die Raumwinkelakzeptanz der großen Szintillationszähler ab, so tragen zu dieser Zählrate neben den Teilchen der Abb.25 (bzw. Abb.26) auch jene Positronen und Elektronen bei, die folgenden Bedingungen genügen:

$$e^{+} \text{ in } K_{3} \text{ und } e^{-} \text{ nicht in } K_{2}$$

$$e^{+} \text{ in } K_{4} \text{ und } e^{-} \text{ nicht in } K_{1}$$

$$und E_{1}^{+} \varepsilon \left[0,5[GeV];2,97[GeV]\right]$$

Abb.30 zeigt die Verteilung der Positronen $N_{-W2}^{3,4}(X_2,Y_2,205)$ und Abb.31 die der Elektronen $N_{-W2}^{3,4}(X_1,Y_1,205)$. Auch in Abb.31 macht sich die bereits beschriebene Asymmetrie bemerkbar. Allerdings streuen die Elektronen – im Gegensatz zu den Positronen in Abb.26 – stärker von den Strahlachsen weg nach außen. Wie bereits erwähnt, liegt die Ursache bei den größeren Streuwinkeln für die Zähler K₃ und K₄, wenn die einlaufenden Elektronen abstrahlen.

In Abb.32 sind die Durchstoßpunkte der Positronen $N_{-EN}^{3,4}(X_2,Y_2,205)$ und in Abb.33 die der Elektronen $N_{-EN}^{3,4}(X_1,Y_1,205)$ für die Bedingungen

e⁺ in
$$K_3$$
 und e⁻ nicht in K_2
oder e⁺ in K_4 und e⁻ nicht in K_1
und E⁺ ϵ [2,85[GeV];2,97[GeV]]

aufgetragen. Aus den unterschiedlichen Verteilungen in den Abb.31 und 33 wird wiederum die Energieabhängigkeit des Asymmetrieeffektes deutlich.

V.1 Normierung und Strahlungskorrekturen

Die bisher in diesem Kapitel gezeigten Abbildungen spiegeln den Einfluß der Strahldivergenz und der Abstrahlung harter reeller Photonen auf die Verteilungen der Elektronen und Positronen wieder. In der Ordnung α^3 , in der der Wirkungsquerschnitt für die Elektron-Positron-Streuung hier für das Monitorsystem abgeschätzt wird, strahlt – wie bereits erwähnt – in einem Streuprozeß immer nur eines der an der Streuung beteiligten Teilchen entweder im Anfangszustand oder im Endzustand ein reelles Photon im Energiebereich 0,03 [GeV] $\leq k_0 \leq 2,5$ [GeV] entsprechend der Formel (II.14) ab. Diese Annahme ist, solange man nur auf die geometrische Optimalisierung der Zähleranordnung auf diese Effekte zielt, gerechtfertigt; sie entspricht jedoch nicht dem natürlichen Sachverhalt, da auch Photonen außerhalb dieses Bereiches abgestrahlt werden. Die Abstrahlung von Photonen mit einer Energie $k_0 \leq 0,03$ [GeV] ist keineswegs vernachlässigbar.

Die Methode von Kessler, die in Kapitel II.2.2 beschrieben und in der Monte-Carlo-Rechnung angewendet wurde, gestattet nur eine Abschätzung der harten inelastischen Strahlungsprozesse. Die Abstrahlung virtueller und weicher reeller Photonen wird – wie in Kapitel II.2.1 diskutiert – z.B. durch die Formel (II.8) von Meister und Yennie beschrieben. Sie ist allerdings nicht für die Anordnung des in dieser Arbeit dargestellten Monitorsystems ausgearbeitet worden. Meister und Yennie gehen davon aus, daß man die Energie eines Teilchens unter definiertem Streuwinkel mißt. Da es jedoch bisher keine Arbeit gibt, die den hier beschriebenen Meßbedingungen näherkommt, wurde die Formel von Meister und Yennie angewendet.

Zunächst wird die Koinzidenzzählrate der Monte-Carlo-Rechnung auf die Formel von Meister und Yennie normiert, um damit die Strahlungskorrekturen für das Monitorsystem abzuschätzen. Anschließend werden die Ergebnisse der Monte-Carlo-Rechnung direkt nach Kessler mit Hilfe der Formel (II.14) normiert. Die Unterschiede beider Methoden g**a**ben einen gewissen Hinweis **au**f die Unsicherheiten der theoretischen Formeln.

V.1.1 Normierung mit der Meister-Yennie-Formel

Die einzelnen Schritte, die zur Abschätzung der Strahlungskorrekturen führ**ten,** werden an Hand der in Abb.34 skizzierten Energieverteilungen erläutert.

Der in dem Energieintervall [2,85[GeV];2,97[GeV]] - schraffierter Bereich in Abb.34 - meßbare Wirkungsquerschnitt ist definiert durch

(V.1)
$$\sigma_{exp}^{E} = \int_{d\Omega_{K_{1},K_{2}}}^{2,97 \text{ GeV}} \frac{d^{2}\sigma}{d\Omega \ dE'} \Big|_{exp} dE' d\Omega \quad (vg1. (II.6))$$

•

In dem angegebenen Energieintervall überlappen sich die Gültigkeitsbereiche der Formeln von Kessler (II.14) und von Meister und Yennie (II.8), so daß man sie dort vergleichen und aufeinander normieren kann.

In der Monte-Carlo-Rechnung wurde die Einarmbedingung unter Anwendung der Verteilung (II.14) und unter der Annahme, daß in jedem Streuprozeß genau ein Teilchen ein Photon abstrahlt, simuliert. Für die Bedingung

ist N^{EN}(2,85;2,97) die Zahl der im Monitor nachgewiesenen Elektronen. Sie ist der schraffierten Fläche unter der gestrichelten Kurve in Abb.34 proportional

(V.2)
$$\sigma_{exp}^{EN} = C_{MC} N_{-}^{EN} (2,85;2,97)$$
$$C_{MC} Normierungskonstante$$

Nach Meister und Yennie läßt sich der über den angegebenen Bereich integrierte Wirkungsquerschnitt (V.1) in der Form

(V.3)
$$\sigma_{\exp}^{\text{EN}} = \{e^{\delta'(0,15)}(1+\delta(0,15)-\delta'(0,15)) - e^{\delta'(0,03)}(1+\delta(0,03)-\delta'(0,03))\} \int_{d\Omega_{K_1},K_2} \frac{d\sigma_0}{d\omega} d\Omega \quad (\text{vgl. (11.9)})$$

faktorisieren. Die Integration erstreckt sich über die kleinen Zähler K₁ und K₂. σ_{exp}^{EN} entspricht der schraffierten Fläche unter der durchgezogenen Kurve in Abb.34. Aus (V.2) und (V.3) **ergibt** sich die Normierungskonstante zu

(V.4)
$$C_{MC} = \frac{\{\ldots\}}{N_{-}^{EN}(2,85;2,97)} \int \frac{d\sigma_0}{d\Omega_{K_1,K_2}} d\Omega_{K_1,K_2}$$

$$e^{-}$$
 in K_1 und e^{+} in G_4
oder e^{-} in K_2 und e^{+} in G_3
oder e^{+} in K_3 und e^{-} in G_2
oder e^{+} in K_4 und e^{-} in G_1
und $E'_{-} \in [2,85 [GeV]; 2,97 [GeV]]$

nimmt die zugehörige Zählrate N^{KN}(2,85;2,97) gegenüber der Einarmzählrate N^{EN}(2,85;2,97) ab. In Abb.34 entspricht die **Ra**te N^{KN}(2,85;2,97) der schraffierten Fläche unter der strichpunktierten Kurve. Der Wirkungsquerschnitt ist durch

(V.5)
$$\sigma_{\exp}^{\text{KN}} = \frac{N^{\text{KN}}(2,85;2,97)}{N^{\text{EN}}(2,85;2,97)} \sigma_{\exp}^{\text{EN}}$$

gegeben. Erstreckt man die Integration über einen größeren Energiebereich, was wegen der schlechten Energieauflösung der Schauerzähler im tatsächlichen Experiment erforderlich sein wird, so steigt die Koinzidenzzählrate an. Wenn man z.B die Grenzen [0,5[GeV];2,97[GeV]] wählt, so ist

(V.6)
$$\sigma_{exp}^{K} = \frac{N^{K}(0,5;2,97)}{N^{KN}(2,85;2,97)} \sigma_{exp}^{KN}$$

$$N^{K}(0,5;2,97) \quad Koinzidenzzählrate für den Energiebereich [0,5[GeV];2,97[GeV]].$$

Setzt man (V.2) in (V.5) und (V.5) in (V.6) ein, so gilt

(V.7)
$$\sigma_{exp}^{K} = C_{MC} N^{K}(0,5;2,97)$$
.

Mit der Normierungskonstanten (V.4) erhält man

(V.8)
$$\sigma_{\exp}^{K} = \frac{N^{K}(0,5;2,97)}{N_{-}^{EN}(2,85;2,97)} \{ \dots \} \int \frac{d\sigma_{0}}{d\Omega_{K_{1}},K_{2}} d\Omega$$

Für die weichen, in der Monte-Carlo-Rechnung nicht berücksichtigten Photonen gilt nach Meister und Yennie

(V.9)
$$\sigma_{\exp}^{\text{EL}} = e^{\delta'(0,03)} (1 + \delta(0,03) - \delta'(0,03)) \int \frac{d\sigma_0}{d\Omega} \frac{d\sigma_0}{d\Omega} d\Omega$$

Für den gesamten Energiebereich [0,5[GeV];3[GeV]] erhält man

$$\sigma_{exp} = \sigma_{exp}^{EL} + \sigma_{exp}^{K}$$

$$\sigma_{exp} = e^{\delta'(0,03)} (1 + \delta(0,03) - \delta'(0,03)) + \frac{N^{K}(0,5;2,97)}{N_{-}^{EN}(2,85;2,97)} \{ \dots \} x$$

$$x \int_{d\Omega_{K_{1},K_{2}}} \frac{d\sigma_{0}}{d\Omega} d\Omega .$$

Aus σ_{exp} ergeben sich die Strahlungskorrekturen $1+\delta_{Monitor}^{MYN}$ für das in dieser Arbeit beschriebene Zählersystem

(V.10)
$$1+\delta_{\text{Monitor}}^{\text{MYN}} = \{\ldots, \} = 0,763 + 0,300 = 1,063$$

Die Zählrate im Luminositätsmonitor ist für die in Abb.11 gezeigte Meßanordnung um 6,3% größer als die aus dem Bhabhawirkungsquerschnitt (II.2) berechnete. Diese Zunahme wird verständlich, wenn man berücksichtigt, daß einerseits die Raumwinkelakzeptanz der Zähler G_i gegenüber der der K_i verhältnismäßig groß ist und andererseits der Wirkungsquerschnitt mit größeren Streuwinkeln stark abfällt, d.h. es werden auf Grund der Abstrahlung harter reeller Photonen mehr Teilchen in die Zähler hinein- als herausgestreut.

V.1.2 Normierung mit der Kessler-Formel

Die Energieverteilung der in Koinzidenz mit den Positronen im Monitor nachgewiesenen Elektronen wurde oben auf die Formel von Meister und Yennie normiert, um die harten inelastischen Strahlungskorrekturen abzuschätzen. Unabhängig von dieser Normierung kann man auch - direkt von der Methode von Kessler ausgehend - den Einfluß dieser Strahlungsprozesse ermitteln.

In dem Energieintervall [2,85[GeV];2,97[GeV]] – schraffierter Bereich in Abb.34 – wird der Wirkungsquerschnitt – σ^{EK} – nach Kessler bestimmt und mit dem bereits nach Meister und Yennie ermittelten – σ^{EN}_{exp} – verglichen. Aus dem Unterschied der beiden Wirkungsquerschnitte gewinnt man Anhaltspunkte über den relativen Fehler der Strahlungskorrekturen.

Fürinsgesamt ISUM berechnete Streuereignisse ergibt sich aus der Monte-Carlo-Rechnung für die Einarmbedingung - wie bereits oben beschrieben -

(V.11)
$$\sigma_{exp}^{EK} = C_{KMC} N_{-}^{EN}(2,85;2,97) \qquad (vgl. (V.2))$$

$$C_{KMC} Proportionalitätskonstante .$$

Der über den gesamten zugelassenen Energie- und Streuwinkelbereich integrierte Wirkungsquerschnitt ergibt sich aus der Summe der Wirkungsquerschnitte für die Abstrahlung im Anfangszustand σ_{TOT}^{i} und für die Abstrahlung im Endzustand σ_{TOT}^{f} . Nach (II.12a) ist die Wahrscheinlichkeit, mit der ein Teilchen ein Photon vor der Streuung abstrahlt, durch

$$\frac{\alpha}{\pi} \int_{0}^{0,1} P(\varphi) d\varphi \int_{0}^{2,5} GeV P(k_0) f(k_0) dk_0 = 0,1338$$

gegeben, d.h. für die beiden einlaufenden Teilchen gilt

$$\sigma_{\text{TOT}}^{i} = 2\frac{\alpha}{\pi} \int_{0}^{0,1} P(\boldsymbol{\psi}) d\boldsymbol{\psi} \int_{0}^{2,5} \text{GeV} P(k_{0}) f(k_{0}) dk_{0} \int_{0}^{2\pi} \frac{\pi}{f} \frac{d\sigma_{0}}{d\Omega} d\Omega$$

$$\frac{2\pi}{f} \int_{0}^{\pi} \frac{d\sigma_{0}}{d\Omega} d\Omega = \int_{0}^{2\pi} \int_{0}^{\pi} \frac{d\sigma_{0}}{d\Omega} d\Omega$$

$$\frac{2\pi}{f} \int_{0}^{\pi} \frac{d\sigma_{0}}{d\Omega} d\Omega = \int_{0}^{2\pi} \int_{0}^{\pi} \frac{d\sigma_{0}}{d\Omega} d\Omega$$

٠

Für den Endzustand erhält man nach (II.13)

$$\frac{\alpha}{\pi} \int_{0}^{0,1} P(\boldsymbol{y}) d\boldsymbol{y} \int_{0}^{1} P(\mathbf{k}_{0}) d\mathbf{k}_{0} = 0,103$$

$$0,03 \text{ GeV}$$

bzw.

$$\sigma_{\text{TOT}}^{f} = 2\frac{\alpha}{\pi} \int_{0}^{0,1} P(\boldsymbol{\varphi}) d\boldsymbol{\varphi} \int_{0,03 \text{ GeV}}^{2,5 \text{ GeV}} P(\mathbf{k}_{0}) d\mathbf{k}_{0} \int_{0,11}^{2\pi} \frac{d\sigma_{0}}{d\Omega} d\Omega$$

Der Wirkungsquerschnitt $\boldsymbol{\sigma}_{\mathrm{TOT}}$ ergibt sich damit zu

(V.12)
$$\sigma_{\text{TOT}} = \sigma_{\text{TOT}}^{i} + \sigma_{\text{TOT}}^{f} = 0,4736 \qquad \begin{array}{c} 2\pi & \pi \\ f & f \\ 0 & 0,11 \end{array} \frac{d\sigma_{0}}{d\Omega} d\Omega$$

Auf der anderen Seite ist σ_{TOT} der berechneten Zahl von Streuereignissen ISUM proportional

$$(V.13)$$
 $\sigma_{TOT} = C_{KMC} ISUM$.

Aus (V.12) und (V.13) wird die Proportionalitätskonstante C_{KMC} bestimmt und in (V.11) eingesetzt

(V.14)
$$\sigma_{exp}^{EK} = \frac{0.4736}{ISUM} \int_{0}^{2\pi} \int_{0}^{\pi} \frac{d\sigma_0}{d\Omega} d\Omega$$
$$= 0.00114 \int_{0}^{2\pi} \int_{0}^{\pi} \frac{d\sigma_0}{d\Omega} d\Omega$$

V.1.3 Vergleich der beiden Verfahren

Der mit (V.14) zu vergleichende, nach Meister und Yennie ermittelte Wirkunksquerschnitt ist durch (V.3) gegeben:

•

(V.3)
$$\sigma_{exp}^{EN} = 0,1075 \qquad f \quad \frac{d\sigma_0}{d\Omega} d\Omega$$
$$\frac{d\Omega_{K_1,K_2}}{d\Omega_{K_1,K_2}}$$

Um die Wirkungsquerschnitte σ_{exp}^{EK} und σ_{exp}^{EN} miteinander in Beziehung setzen zu können, wird das Integral in (V.3) mit Hilfe der Monte-Carlo-Rechnung umgeformt. Es werden wiederum ISUM Streuereignisse berechnet, ohne aber die Abstrahlung reeller Photonen gemäß der Formel von Kessler (II.14) zu berücksichtigen. Es gilt

$$(V.15) \qquad \int \frac{d\sigma_0}{d\Omega} d\Omega = C_{RW} \cdot N_{-}^{OE}$$

$$d\Omega_{K_1,K_2} \qquad N_{-}^{OE} \qquad Zahl der Elektronen, die in den Zählern K_{1} und K_{2} nachgewiesen wurden, eine Energiebedingung wie oben bei den anderen Zählraten entfiel hier, da nur der ideale elastische Prozeß (II.2) berechnet wurde$$

$$(V.16) \qquad \begin{array}{c} 2\pi & \pi \\ \int & \int & \frac{d\sigma_0}{d\Omega} d\Omega = C_{RW} \text{ ISUM } \\ 0 & 0, 11 \end{array}$$

Setzt man (V.16) in (V.15) ein, so ergibt sich das gesuchte Integral, und mit (V.3) erhält man

(V.17)
$$\sigma_{exp}^{EN} = 0,0013 \quad \int_{0}^{2\pi} \int_{0}^{\pi} \frac{d\sigma_0}{d\Omega} d\Omega$$

Der Unterschied der beiden Verfahren nach Kessler und nach Meister und Yennie ergibt sich aus (V.14) und (V.17)

$$\frac{\sigma_{\exp}^{EN} - \sigma_{\exp}^{EK}}{\sigma_{\exp}^{EK}} = 0,145$$

Der mit Hilfe der Monte-Carlo-Rechnung ermittelte Wirkungsquerschnitt **ist** bei Normierung auf die Formel von Kessler um 14,5% kleiner als der nach der Formel von Meister und Yennie berechnete. Es ergeben sich somit folgende Strahlungskorrekturen

$$1+\delta_{\text{Monitor}}^{\text{MY}} = 0,763 + 0,300 = 1,063 \\ 1+\delta_{\text{K}}^{\text{K}} = 0,763 + 0,257 = 1,020$$
 harter Anteil normiert auf d. Formel von Kessler kessler

Die Abweichungen in den harten inelastischen Strahlungskorrekturen setzen sich aus dem statistischen Fehler der Monte-Carlo-Rechnung (= 4,5%), dem systematischen Fehler der Formel von Meister und Yennie und dem systematischen Fehler der Methode von Kessler, der in (KE 60) mit = $\frac{1}{\ln E/m}$ = 11,5% angegeben wird, zusammen.

Zudem erwartet man ein genau gleiches Ergebnis der beiden Verfahren nicht, weil die Näherungsformel von Kessler z.B. - im Gegensatz zu der von Meister und Yennie - keine Interferenzterme zwischen Abstrahlung im Anfangs- und Endzustand berücksichtigt.

V.2 Der Einfluß von Zählerparametern auf die Strahlungskorrekturen

Die Strahlungskorrekturen ändern sich mit dem Raumwinkel der Szintillationszähler G_i . In der Abb.35 sind die Srahlungskorrekturen $I+\delta_{MONitor}^{MY}$ als Funktion der Breite ±d (horizontal) der G_i aufgetragen. Aus den Abb.26 und 30 wird ersichtlich, daß Zählratenverluste in der Nachweisapparatur vernachlässigbar sind, wenn die Zähler G_i in der vertikalen (y-Richtung) um weniger als ±2 [cm] verkleinert werden.

Man erkennt in Abb.35, daß die gewählten Dimensionen der $G_i - \pm d = 7$ [cm] - günstig sind. Die Strahlungskorrekturen nehmen von $\pm d = 11$ [cm] bis $\pm d = 5$ [cm] um 5% ab. In diesem Bereich fällt die Kurve verhältnismäßig schwach ab.

Die Strahlungskorrekturen hängen auch von der Energieschwelle der Schauerzähler ab. Bisher wurde immer eine Schwelle $E_S = [0,5]$ GeV angenommen. Ein Wert $E_S > 0,5$ [GeV] kann bei den Messungen notwendig werden, um gegen niederenergetischen Untergrund zu diskriminieren. Abb.36 zeigt die Strahlungskorrekturen $1+\delta_{MOnitor}^{MY}$ in Abhängigkeit von der Schwelle E_S . Sie ändern sich über einen weiten Bereich der Energie nur schwach und nehmen von $E_S = 0,5$ [GeV] bis $E_S = 2$ [GeV] um 2% ab. Ohne große Zählratenverluste kann man eine relativ hohe Schwelle setzen.

ŝ

Der in Abb.36 gezeigte Verlauf entspricht allerdings nicht ganz dem zu erwartenden, da bei den Rechnungen nicht berücksichtigt wurde, daß unter Umständen auch das abgestrahlte Photon mit dem Elektron in die Schauerzähler gelangen kann. Dieser Effekt würde jedoch die Abhängigkeit der Strahlungskorrekturen von E_S verringern.

ś

VI. Zusammenfassung

Für den Speicherring DORIS wurde eine Luminositätsmonitor entworfen und gebaut. Während E. Gadermann (GA 73) Testmessungen mit dieser Apparatur beschrieben hat, wurde in dieser Arbeit die Meßgenauigkeit des Monitorsystems erörtert.

Die optimalen Dimensionen des Luminositätsmonitors wurden unter Berücksichtigung der Strahldivergenz, der Abstrahlung harter reeller Photonen und der Vielfachstreuung zunächst abgeschätzt.

Danach wurde ein Rechenprogramm entwickelt, in dem mit Hilfe der Monte-Carlo-Methode die Bhabhastreuung simuliert wurde. Die Abstrahlung harter reeller Photonen mit einer Energie 0,03 $[GeV] \leq k_0 \leq 2,5$ [GeV] wurde nach dem von Kessler abgeleitetem Verfahren der äquivalenten Photonen behandelt. Aus den Ergebnissen der Monte-Carlo-Rechnung wurden die Strahlungskorrekturen - verursacht durch die Abstrahlung harter reeller Photonen - abgeschätzt. Bei dieser Abschätzung wurden zwei verschiedene Normierungsverfahren benutzt. Die Abstrahlung weicher und virtueller Photonen wurde nach einer Formel von Meister und Yennie berücksichtigt. Insgesamt ergaben sich folgende Werte für die Strahlungskorrekturen

> $1+\delta_{Monitor}^{MY} = 1,063$ auf d. Formel von Meister u. Yennie normiert $1+\delta_{Monitor}^{K} = 1,020$ auf die Formel von Kessler normiert .

Die Zählrate im Monitor steigt auf Grund der Strahlungsprozesse an. Der Unterschied zwischen $1+\delta_{Monitor}^{MY}$ und $1+\delta_{Monitor}^{K}$ spiegelt die Unsicherheit der hier verwendeten Theorie wieder.

Es ergibt sich

- Bei den gewählten Dimensionen des Luminositätsmonitors sind die Strahlungskorrekturen klein (~ 6%).
- 2) Die theoretischen Unsicherheiten sind größer als die gewünschte Meßgenauigkeit von ~1%. Für diese Meßgenauigkeit müssen die Feynmandiagramme (Abb.3 und 4) speziell für die Geometrie des Monitors exakt ausgewertet werden.

Schließlich sei noch erwähnt, daß mit dem in dieser Arbeit entwickelten Rechenprogramm der Einfluß der Strahlungsprozesse auch auf andere Zählersysteme und Reaktionen untersucht werden kann. So schätzt H. Dehne (DESY-Gruppe H5) mit Hilfe dieses Programmes die Strahlungskorrekturen für einen Monitor am anderen Wechselwirkungspunkt W2 ab, während A. Petersen (DESY-Gruppe F22) unter anderem mit diesem Programm kinematische Untersuchungen zu den Speicherringreaktionen

e+e⁻ ----> e+e⁻, e+e⁻ ---> π+π⁻, e+e⁻ ----> pp

für das Doppelarmspektrometer (DASP) durchführt.

-

;