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Abstract

This work is basrd on a study of e*t~ rolh'sions in the energy region of T(lS) and T(2S)

resonances. Using the data taken by the Crystal Ball Detector in the continuum below T(lS)

we have determined the value of R, the ratio of the hadronic cross eection to the Born cross

lection of p pair production, at c.m. energy M' = 9.39 GeV to be

ff = 3,48 i 0.04 ±0.14.

This is thr most precise measurement of R below the T(1S) threshold. Resonance sran data

were used to determine the leptonic partial widths F„ of T(lS) and T(2S). We find

I*„(T(1S)) - (1.34 ± 0.03 ± 0.06) keV

r„(T(2S)) - (0.56 ± 0.03 ± 0.02) keV .

The method of obtaining F„ from the mcasured excitation rurve is not unique. Our results

are --10% higher than those already published mainly bccause wc used an internally consistent

treatment of the radiative correetions. We discuss the effect of applying different theoretical

prescriptions for the radiative corrections on T,,.

Bot h results presented here require the knowledge of the absolute cross sections to a high

precision. Uncertainties in the corrections to the cross section due to detector efficiency

constitute the main source of the systcmatic errot. To minimize these uncertainties substan-

tiaJ modifications of the detector Simulation program GHEISHA were necessary to obtain

a satisfactory description of the data. Thr modificatious may be of importancc fot other

caloriruetric Experiments.

Streszczenie

Prezentowana rozprawa zostala wykonana w oparciu o dane ("* c w- okolicach energii od-

powiftdajacej masie rezonansow T(lS) i T(2S). Uzywajar danych wspolprary Crysta] Ball ze-

branych w kontinuumponizej rezonansu T(lS) wyznaczono war tose R, t.j. stosunek hadrono-

wego przekroju czynnego do Bornowskipgo przekroju czynnego na produkrj^ par mionowych,

przy energii ukladu srodka masy H' — 9.39 GeV ottzymujsc:

R = 3.48 ± 0.04 ± 0.14 .

Jest to najbardziej dokladny z dotychczas opublikowanych pomiar R ponizej progu T(lS|.

Däne ze skanu resonansu zostaly wykorzystane do wyznaczenia czastkowej szerokosci lep-

tonowej F„ rezonansöw T(lS) i T<2S) , Zmierzono:

r„(T(lS)) ^ (1.34 2 0.03 ± 0.06) keV

r„(T(2S» = (0.56 ± 0.03 ± 0.02) keV .

Metoda wyznaczenia F„ ze zmierzonej krzywej rezonansowej nie jest jedyna. Nasze rezultaty

sä. ^-10% wyzsze öd dotychczas pnblikowanych glownie z powodu odmiennego traktowania

poprawek radiacyjnych. Przedyskutowano wplyw roznych uzywanych nielod na mierzona

wartosc F„.

öba przedstawione tutaj rezultaty wymagaja^ znajomosci absolutnego przekroju czynnego

z duzt) dokladnoscia. Niepewnosc wyznaczenia poprawek aparaturowych do przekroju czyn-

nego stanowi glowne zrodto bl^döw systematycznych. Aby zminimalizowac ta niepewnosc

konieczne byly znaczne zmiany programu symulacyjnego GHEISHA. Przpdstawipne mody-

fikarjr mogq byc rowniez istotne dla innych eksperymentow kaloryrnetrycznych.
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1. Introduction

Ever sincc the discovery of the T resonances in 1977 [1] measurement s of their leptonic

partial decay widths F„ have been of great internst. The measured values suppori the

Interpretation of the T f&mily äs bound states of charge \q\ 1/3 particles and serve äs tests

for potential models, which describe the T(nS) äs the n3S] states of a bo system. Moreover,

the total widths T,0, are usually derived from the measured Tt, widths via thc relation r,D, -

r«c/-BMH, where fl„„ is the T(nS) branching ratio to ^ pairs. (Hereafter wr assumr lepton

universality.)

In this thesis we report on a precision measurement of F„ for the T(lS) and T(2S)

resonances performed with the Crystal Ball detector operating at thc DORIS-II c4 c~ storage

ring at DESY. F„ is determined by measuring the cross section for the process c*e" —*

hadron a äs a function of the e fe" center-of-mass (c.m.) energy in the region of the resonance.

We usefour Scans of the T(lS) andoneof the T(2S). Fromthe T(lS) Scans and thc continuum

data below the rcsonancc we also obtain a value for R, the ratio of non-resonant hadronic

cross section to thc Born cross section of p p&ir production, at c.m. energy M' = 9.39 GeV. It

is worth meationing here that the measurement of R was one of the first cases where radiativc

comctions were necessary to explain the MARK I data [2]. The author was participating in

the LENA scan experiment with the main aim of Unding exotic phenomena in the continuum

below T{lS). Consequent application of the radiativc corrections allows explanation of thc

data without any exotic physics [3j.

Extracting r(0, from Trr/BHU requires consistent application of radiativc corrections in

the separate dcterminations of F„ and B^. which has not been thc casr for previously

quoted values of T,ol for the T resonances. In this thesis thc radiative corrections are done

in such a way that our F„ can be used with previous detcrrainations of Buu. We compare

our result to previous F„ nicasuremcnts by re-normalizing thcm to correspond to thc same

radiative corrections.

The hadron production in the conlinuum and definition of R are discussed in sections 2.1

and 2.2. T,, and in turn T,„- stronply dcpcnd on the paramelrization used for the visiblf cross

section ä(Tl ') . The different theorctical formulalions for it are in somc detail disrussed in

section 2.4. Section 3.2 givcs a sliort dcscription of the Crystal Ball dctcrtor. Thc hadrouic

cvent sclection criteria and selection cfficiencics are shown in sections 4.1 and 4.2, resperlively.

Section 4.3 is devotcd to thc backgrounds in thc hadronic data sample. In section 5.1 we

disruss our procedure to determine F„ and present our results. The effect on F„ of different

theoretkal formulations for ö-(W) is discussed in sertion 5.2. The measurement of R is given

in section 6, which is followed by scction 7 rontaining thc final conclusions. The apparatus

response was simuUted by the EG S for r' and •>, and by GHEISHA for all othcr pariicles.

Since thc changes applied to the GHEISHA Monte Carlo Simulation program can be uscfiil

for other experimcnts they are presented in more detail in appcndix A. The luminosity

dctprnünation is discussed in appendix B.

The results of this analysis have been published j 4 l .



2. Basic Concepts

We believe that all known particles are composed of two types of fermions, the quarks

and the leptons. There also exist intermediate bosons that mediale the forces between the

ferniions. Basic propertirs of the fermions arranged in generations are shown in table 2.1.

Quarks carry an additionnJ quantum number—color (red, blue, green). Free quarks are

not observed in the experiment. All experimentally observed final states are color singlets

and we do not observe 6tates with a fractional charge. This experimenta] fact is called

"confinement". The mesons are constructed äs quark-antiquark states whüe baryons are

three quark conglomerates such that the final objects are colorless. No experimental evjdence

has been found that leptons and quarks have any internal substructure. The qurstion of

generation number is not resolved at the present level of theory. Leptons carry tlieir lepton

family quantum number. This number is conserved in all known types of interactions.

There are basically five electromagnetic processes leading to particle production at e 4 e~

Btorage ring at c.m. energies aronnd 10 GeV. These are: a) one photon annihilatioti leading

to fermion pair production in the final state, b) one photon annihilation leading to resonance

production in the final state, c) elastic scattering, d) and e) annihilation into two photons,

and f) 77 interactions. Fig. 2.1 shows the corresponding graphs in the lowest order QED.

Processes e+e~ —» e + e~ and c+e" -* 77 (graphs (a), je), (d), and (e), respectively) are

used for the normalization of the experimenta] data. They are discussed more explicitly in

appendix B. Process (f) contributes to the experimental background. Morp-details about

it will be given in section 4.3.2. In the following sections processes of type (a) and (b) are

discussed.

In the next sections we will be dealing with so-called "radiative corrections". The name

"radiative corrections" is very often used to describe various things. In our c&se by radiative

corrections we will refer to the fact that any process including charged particles impli« some

Table 2.1: Basic properties of quarks and leptons

fermions
particles

type

quarks

leptons

generation
1

u
d
i/r
e

2

c

E

v*
V

3

t?

b

"t
T

properties
elertric color

chargp
4 2 / 3
-1/3

0
-1

r b g
r bg

0

0

Figure 2.1: Lowest order processes contributing to particle production in e" f collisions.
a) One photon annihiiation leading to fermion pair production in the final state; b) One
photon annihilation leading to resonance production in the final state; c) Elastic scattering;
d) and e) Annihilation into two photons, and f ) 77 interactions.

rearrangement of the electromagnetic currenl when going from the initial state to the final

one. This implies that some charge acceleration takes place end äs the effect photons are

radiated. The name "radiative corrections'' is sometimes by analogy extended to the higher

order QCD or electroweak corrections.

2.1 Particle Production in the Continuum

Particle production in the continuum much below Zr is dominsted by one photon anni-

hilation {grnph 2.1a). The following discussion will not hold for the process r'(~ —> t + (~

äs in t Ins ca«e we have to consider also elastic scattering (graph 2.1c). In the c.m. System

the following expression is obtained in IowesT order QED for the fermion-antifermion pair

angular distribution



Q is the electromagnetic coupling constant, 0f the velocity of particles within the

produced pair in speed of light units, E^,a„ beam energy, 0 the angle with respect to beam

ixis, W = 2£fc,a„ the c.m. energy and g/ the charge of produced fermions in electron charge

units. If 0} K: l eq. 2,1 reduces to

da

Integration over the füll solid angle leads to

4rrl v , ~1 I L l*

ff (t t' -•//) =

(2.2)

(2.3)

Hereafter, by the superscript " we mark the fact that the calculation is done in lowest order

QED/QCD. This convention will be kept throughout this thesis. In case of quark-antiquark

pair production we have to account for the number of colors. Thus eq. 2.3 reads

4JTQ1 j
a°((* e —' quark-antiquark) = (2.4)

Due to confinement we do not observe free quarks but multihadron final states. The produc-

tion of quarks is independent of the hadronization because of asymptotic freedom, i.e. the

confinement plays an esscntial role at latge distances between quarks while the production

of quarks is believed to be pointlike. Thus th« expression for the lowest order QCD hadronic

cross section c&n be written äs follows

ff°(t*e~ -* hadroni) - ~^^'^,<ll (2.5)

where n/ is the number of opened quark thresholds. It is -worth to note here the l/W1 energy

dependence of the cross section. It is a typica] feature of one photon annihilation.

2.2 Definition of R

Ä is defined äs the ratio of the non-resonant hadronic cross section to the Born cross

section of fi pair production

°(t*c~ -» hadroni) jl)—^^;
R (2.6)

The lowest order /j pair production cross section at fixed c.m. energy W is given by eq. 2.3

(2.7)

(2.8)

In lowest order QCD the theoretical prediction for R is given by:

c)

Figure 2.2: Representative set of Feynman diagrams which contribute to ö( o3} in t+ e~ —> qq.
To this order the graphs c-f contribute only through their interference with the lowest order
graph a.

where q, are quark charges and nt is the number of opened quark thresholds. The factor

of 3 accounts for the nutnber of colors. Historirally, R was one of those quantitics where we

explicitly needed to accounl for the coloi degree of freedom. Such a definition of R makes its

experimental determination sensitive to any efferts leading to hadrons in the fin&l state.

The first order cross section, äs employed in the definition of R, has to be calculated from

the measured cross-section by applying radiative corrections. The representative set of the

Feynman graphs for the process e"(' —» qq is shown in fig. 2.2. We have also to consider

the graph 2.2 b representing the initial state bremsstrahlung, since experimentally we cannot

distjnguish radiative from non-radiative events, at least not for low photon energies. In fact

the cross-section for graph 2.2b diverges for low photon energies; however, this divergence

is cancelled by the interference term resulting from the lowest order graph 2,2 a and the

vertex correction graph 2.2c (Kinoshita-Lee-Nauenberg theorem), Generally, we can write

the following expression for a hadronic cross section at given c.m. energy \\'

•\ttl- (2.9)

where \k\ k — 2£phoIon/H- is the fraction of the beam energy carned by the radiated photon

and <r{H". fc) is the true differential rross-section, The maximum niomentum kmar carried away

by a photon is limited by the requirement that at least one T pair can be produced and yields

(2.10)



The emifision of the photons can influence selection efficiencies by changing the multiplicity

and topology of a produced final state. As an example we can consider a high energy photon

staying undetected in the beam pipe. It will influence both, tht energy deposited in the

detector and the topology of tbe whole event due to the boost of the center of rnass of the

remaining qq eystem. All those effects are taken into account automatically in the efficiency

calculation by the Monte Carlo method described below.

Evaluation of the graphs in fig. 2.2 yields a rather compb'cated expression for the differen-

tial cross-section e( W, k) which is best de&lt with in form of a Monte Carlo event generation

program. However, when integrated over the photon energies and emission directions the

expression becomes relatively simple:

The factor (l 4- CR) accounts for the radiative corrections. The term 6n contains the following

contributions

where (SA originales from soft photon bremsstrahlung (graph b), vertex correction (graph c),

correction of the electron propagator (graph d), and electron vacuum polarization (graph e

of fig. 2.2):
•>^ 11 W 1 Irf l

(2.13)
W

9

with
2« / , W

* = — (2ln —
m.

(2.14)

the 6O-called equivalent radiator thickness. The photon energy cutoff fcm,n is an arbitrarily

eelccted value euch that photons below the fcm,n do not change the selection efficiency. The

terms 6„, ÄT , and fvuari,t account for the leptonic and h&dronic vacuum polarization corre-

Eponding to graph 2.2e. Term 64 contains the electron vacuum polarization (see eq. 2.15).

It is customary to write the vertex correction and the soft photon contribution äs one term

since an infrared divergenre in thp initial state radiation is cancelled by including the vertex

correction. For th* vacuum polarization due to f , ^, T the correction depends only on lepton

m n ss and is approximately given by

2o
= — ~ l n

3
(2.15)

The rorrection r^uari,. has to be evaluated numerirally |G'.

The term £f,ord is responsible for the hard photon emission where by "hard photon" we

mean a photon of energy above fcmin. In the parametrization according to ref. [7] it yields

( l -* m „) ,,m iIn (2.16)

n

b. [nh]
C,\J

16

12

6

4

~-r i i — 1( — i nr^ 1 1 1 1 1 r 1 —

- !• T( iS) a) .

" i
' T(2S)

t. T(3S)

i * . : » ; T(4S)
"" ** i"- ' ;•*»' ' •• -i*'»- .-- * .
1 1 11 L 1 11 1 L 1 t L 1 l l

9.45 9.5 10 0 10.05 10 4 10.5 10.6 10.7

3.5

3.0

2.5

i i • 1 • • i •

' 1 T(4S) b) -

|! :
- i i T(5S) -

* . ̂  A i ''•- **V * v * ̂ i j -
1 . 1 * 1 L •

105 10.6 11.1

H~, renter of mass energy [GeV]

Figure 2.3: The ( * c ~ total cross section: a) the energy region T(1S) through T(4S); b| The
energy region T(4S) through T(6S) (from ref. 8)(.

The acceptance of the apparatus is normally found by the Monte Carlo method since the

Integration is not easy (or impossible) to perform analytically due to the romplicaled shape

of the apparatus arceptance function. Note that in the acceptance we have to include not

only the geometrical effects but also reconstruction and selection effiriencies etc., i.e. erTects

difficult to express in terms of analytiral functions. Technically we generate the events with

or without the radiative photon depending on the generated k value (photons with energy

below fcmin are not produced). The apparatus acreptance is then found äs the ratio of the

number of Monte Carlo events passing the seiertion criteria, Arac«pl„j, to the total number of

generated events, !\'9fn,ratr<i'-

(2.17)

where ?(fc) is the apparatus acceptance function.

From eq. 2.11 we finally get

er" =

Combining 2.6 with 2.18 we obtain the following expression for

(2-18)

(2.19)

where K1*' ~ ^'(^ t - - qq\/ff' (c< ( --> f,' /r ). Figure 2.3 shows the behnvior of the total

cross section in the T energy region.
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Figure 2.4: A lowest order QCD diagram of
the leptonic decay of a vector meson.

2.3 Resonance Production and Decays

In one photon annihilation we can directly produce resonances carrying the photon quan-

tum numbers, i.e. Jpc = l" (vector mesons). The decay of the resonances leads, in gener al,

to multiparticle final states. The partial width for the decay of the vector meson V in a

lepton pair (fig. 2.4) is given by the Van Royen-Weisskopf formula |9]

(2.20)

where q1 is the Bquared sum of the charges of the qu&rks in the meson. A comparison with

eq. 2.4 reveals the similarities. The decay of the vector meson is naturally the time-reversed

process of its formation. So the expressions should be equal apart from phase space factors.

The amplitude of the quark-antiquark wave function at the origin is denoted by V'(0)- The

factor |0(0)|J reflects the pointlike production of the resonance.

The formation and decay of the resonance with mass M of angular momentum J in the

collifiion of the particles with spins sa and »t are described by a Breit-Wigner formula

.
'

(2J (2-21)
H'' (2s0 + 1)(2* + 1) [(M - W)' 4 F?o(/4]

where TM is the total width and H' the c.m. energy. The subscript el refers to the fact that

this forrmtla is valid for elastic processes a + b —« reionance —» a 4 b. Generally the term Fj,

in eq. 2.21 should be replaced by T,F/, where F, and F/ are the partial widths corresponding

to the initial and the final state.

It is useful to define the decay branching ratio B, for the process i äs

—r«,- (2.22)

The total width of any of T(lS), T(2S), and T(3S) is in the ränge 30-50 keV. The

process involving the annihilation of the quarks of &n intermediate resonant state (like the

one in fig. 2.4) is suppressed with respect to the Situation when the quarks survive its decay.

In case of the first three members of the T family the Situation that the b quarks survive is

kinematically impossible and this is rrflected in the small values of their total widths. The

13

Table 2.2: T(lS) branching ratios [5l. Note that the first three branching ratios carry the
uncertainty of Bau and o,s measurements.

Decay \g Ratio

T(1S) — 3S

T(lS)-,§

T(lS)-. f* t-

T(1S) -*/iV
T ( l S ) - + T + r -

79,5C/1

fl.2%

(2.8 ±0.3)51

(2.8 ± 0.21%
(3.2 ±0.4)%

production of open beauty is possible in the case of T(4S) and this is reflected by its total

width of-19 MeV.

The decays of the lower members of the T family can proceed via the following channels:

1. T —> 3(j (decay to three gluons);

2. T -. 795;

3. T —> 7" —* // where // is a fermion pair;

4. T —• 777.

Process No. 4 has a negligible cross section. The width for the dominant decay T —» 3g is

given by 110]

(2.23,
81

The ratio

l -' --(2.2 i 0.6) 4 (2.24)
F(T -35) 5 a,(

is one of the best quantities that can be used to rneasure the strong coupling constant [ l l j .

The strong coupling constant used is the one fomid within the \1S renormalization scheme

with Q' = 0.157A/T, wherein to similar structures of the amplitudes cause the large QCD

corrections to cancel almost completely. Q' is the so-called optimal scale |ll], specific for a

given process.

Table 2.2 shows the T( lS) deray braiichinp ratios. The direct decay of T —• r4 r " is a

background t.o our luminosity sample (see sect. B); the limünosity has to be corrected for this

contribution.

2.4 Radiative Corrections and Definition of Tfe

The measured excitation rurve (r(ll') of the resonance in the process c*c~ —* T —* hadront

is used to obtain F,,. Witlmut QED radiative corrections the cross section for the formation

14



of the T in f " * r ~ annihilation has a Breit-Wigner form of width r,n, (eq. 2.21). For the T(1S)

and T(2S) Ttot 's about two orders of magnitude smaller than the r.m.s, spread A caused

by Synchrotron radiation in the c.m. energy of the storage ring. For DOR1S-II A s; 8 MeV.

Thus the Breit-Wigner can be safely approximated by a delta function, a BW — A° 6(W -A/),

with A" the area of the Breit-Wigner and M the mass of the resonance:

Ae = ̂ T°„BM (2.25)

where Ä^j is the resonance branching ratio into hadrons. Convoluting this f-function with

the Gaussian distribution of the beam energy gives the effective lowest-order cross section:

«cp(-2s/2) W-M
= A" (2.26)

The c's in these equations indicate that the quantities are to lowest order in QED, corre-

spondJng to the Feynman graph of fig. 2.5a. The ff"(W) must then be multiplied by the

emciency for detecting hadronic events in order to get the observed cross section; this factor

is discussed in section 5.1.1. Here we are concerned with the QED radiative corrections to

the production cross section <r°(W). They change both its shape and its normalization. The

relevant Feynman diagrams to O(a3} are shown in fig. 2.5a-e.

Radiative corrections were initially calculated by Yennie et al. [12] and Bonneau and

Martin [6]. Severalother theoretical calculations have appeared since then 113-17]. Generally,

the result IE a convolution between the lowest order cross section <7°{W) and a photon energy

distribution function which mainly reflects a bremsstrahlung energy spectrum. The result is

of the form
«P(-^/4),., ,v (W) = Ac (2.27)

Most previous measurements of T„ have used the functional forms for A"(z) äs obtained by

Jackson and Scharre |13) or by Greco et al. [14], respectively:

Njs(*) = (^f)' r ( 1 4 f )

NGPS(*) =
[2.28)

Here T denotes the gamma function and D., is Weber's parabolic cylinder function J18].

Note that in the limit 1 —* 0, D _ ( ( ~ ; ) —' expf - z 2 /4 ) and the Gaussian shape of the machine

resolution is recovered.

In the above formuls? fr = ^t + v f y ~ ;) stems from the vertex correction (fig. 2.5d),

where ( is the equivalent radiator thifkness. II is thp vacuum polarization correction from

the diagram of fig. 2.5b. It includes the effect of all the lepton and quark loops in 2.5b;

E = 6, + d^ + fiT + i,UQ,t,. The electron loop contributes f1, = 0.014 at energies U' near the

T resonances. Muon and tau loops are calculated with their corresponding masses [15]. The

quark loop contributions have been estimated by Berends and Komen [19] from the measured

( r ( e * f ~ —* hadroria) to be 69uatin ~ 0.017. Summing all fermion loop contributions yields
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Production Decay

b)

c)

g)

j)

Figure 2.5: Feynman diaj»rams which contribute to O(o3) to f4e~ —> T and T —> e*e .
To this order the graphs b,c,d and g,h,i contribute only through their interference with the
lowest order graphs a and f.

D ^ 0,038 at our energy. In their original papers, Jackson and Scharre and Greco et al.

jgnored the p, r, and quark contributions. In eq. 2.28 we have corrected this by replacing k,

by D in their formulee.

Both forms of .\(z) take into account the effect of the emissjon of many soft photons via

"soft photon exponentiation". which leads to the (2A/W)1 factors in eq. 2.28. Jackson and

Scharre apply it only to a part of the cross section, whereas Greco et al. correct the entire

Ö(o3) expression. The difference is of O{u*), so that a definitive decision on which treatment

is more accurate can only be made on the basis of a complete calculation to that order."Such

a caJculation has recently been done by Berends et al. i l T j , indicating good agreement with

the form Nc.psi')-

Thus A'cp^f ; ) is suitable for use in connertion with eq. 2.25 and 2.27 to measure Fe Bf,ad-

Howevpr, wc are inlerested in the physical T,,, carresponding to h calculation to all Orders

in «. F„ is defined äs the jiartial wid t l i of the clecay T —> f * i . In QED, T —» f 4 f ~

is alwnys accompanied by an infinite number of low energy photons. To avoid specifying a

photon energy cut -ofTin measurements of B„ (or #„„), i t is conventional to include all decays

with extra photons T -* e"*"(-"" n-j in the definition of P„. In order to relate Trt to T°r, we

assume that the O(a3} calculation is a good approximatiou to Trr. The füll set of diagrams

16



contributing to the decay to ö(as) is shown in fig. 2.5f-j. F°t corresponds to the lowest order

diagram 2.5f only. By the Kinoshita-Lee-Nauenberg theorem [20j, the mass singularities
from the vertex correction and the bremsstrahlung graphs (i.e. the terms proportional to

In — ) cancel to each order in a, leaving a finite pari which is negligible [15]. Thus the
only radiative correction which makes a net O(a3) contribution to the decay comes from the

vaeuum polarization graph 2.5g interfering with tbe lowest order graph 2.5f. This leads to

an increase of the partial width:

r„ = (i + n) r;,. (2.29)
Lepton universality for 1"°, implies T„ ~ Tuu ^ FTT to good approxiraation. Since l 4- 6V 4- u ~
(l 4- £„)(! 4 D) to this order in a, we can remove the H from N ( z ) eq. 2.28b and introduce

ff'(z) = N ( z ) / ( \ U). This yields

exp(-r>/4) „., ,ff(H') = A
A i/

with

A = 175M*

(2.30)

(2.31

Morerecent cajculationsof the r&diative. corrections use this convention. Tsai 15 and Kuraev
and Fadin [16] find, respectively:

Nitr(*) = !>-.(-*) (6)
(2.32)

The N'KF(z) is exactly NGPS(Z) with the H removed. In th« expressionof Tsai T - (^Inf^ )

is the equivalent radiator thickness corrected for pair production, which at \V = A/T(IS) differs
from t by 0.32%. Some of the higher order corrections have also been calculated by Kuraev
and Fadin, and differ from the renormalization group result of Tsai. However, the results

agree to O(o3). The above formula for N'KF(z) omits the higher order terms.

Our results presented in section 5.1 are based on the formalism of Kuraev and Fadin |16],
using eq. 2.30, 2.31, and 2.32b to obtain F„ B^j directly. One could equally well use

eq. 2.25, 2.27, and 2.28b to obtain T°tt Bt^d and then apply eq. 2.29 to get F„ B^j. However,
most previous measurements have used the formalism of Jackson and Scharre with H — f r ,

resulting in somrthing which is neilher T,, nor T°t. A comparison with the results obtained

using the various formalisms is presented in section 5.2 to demonstrate the differences.

To obtain F„ from F„ B^aj we need thp hadronic branching ratio ßw- With the assump-

tion thnt the resonance only decays into hadrons and lepton pairs we can use the relation

Bharf + 3ßuu = 1. K is important to note that Buu is measured including all extra photons in

the decay and contains tlie vacuum polarization term from graph g of fig. 2.5; otherwise the

above equality would not hold. Also a determination of r,0( = TT,/BUI, requires the vacuum

polarization term to be included in the leptonir width (21]. All above requirements are sät-

isfied by the ansatz of Kuraev and Fadin [16], and this f&ct is the basis of the motivation of

our choice.
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3. Experimental Layout

The design of the Crystal Ball detector started in 1974. The detector went into Operation

at SPEAR at the end of 1978 taking data on the J/ 'v and v' resonances. The Operation at

SPEAR ended in 1981. 4 x 106 hadronic evenls having recorded.

In Ihe beginningof 1982 the Crystal Ball detector was moved to the DORIS-II e j c'storage

ring to perform studies of the bb quarkonium. At DESY the Crystal Ball detector took data

until summer 1986 with an accumulation of 1.5 x 106 hadronic events. The detector was

shipped back to SLAC in September 1987.

The DORIS-II storage ring is described here only very briefly. Given details help in better

understanding of the experimenlal problems that influence strongly our final results.

3.1 DORIS-II

The DORIS-II e + c ~ storage ring System at DESY is showii in fig. 3.1. Electrons are

produced in hot filamenls at the entries to the two linear accelerators. Electrons from the

LINAC-II are directed onto a tungsten largel to create positrons (a high Z target is needed

due to the Z'-dependence of the cross section for pair production). The positron beam is

accumulated in the small intermediate storage ring PIA (Positron Intensity Accumulator) to

increase its intensity and cool down the beam.1 Electrons from LINAC-I and positrons from

PIA, accelerated up to about 450 MeV. are injected to the DESY Synchrotron (Deutsches

Elektronen SYnchrotron). which boosts their energy up to about 5 GeV. The electron and

positron beanis are then injected to the DORIS storage ring. DESY also serves äs injector

for the PETRA storage ring. The Crystal Bull and ARGUS detectors occupied the two

interaction regions.

DORIS has been in Operation since 1974. It was initially designed for a maximum beam

energy of 3.5 GeV, with a double ring slructure (DOppel Ring Speicher) and nmltibuneh

Operation [22l. After the discovery of T resonances in 1978 DORIS was upgraded to reach tbe

energy of the T(1S) and T(2S). namely 5.1 GeV per beam (DOR1S-I storage ring) |23]. The

two rings were combined into one ring, with single-bunch Operation. Tbc maximum luminosity

(for the Definition see Appendix B) was only l x 101" cm 5sec~' with high pnwer consumption

of 10.8 MW at 5.1 GeV. DORIS was upgraded again in 1982 ;24'. The bending power of the

magnets was increased allowing a maximal energy of 5.6 GeV. Several improvements brought

the power consumption down to half of thal of DORIS-I. High luminosity C > 1031 cm~)sec"1

'As Synchrotron radiation orrurs thr hram mompnlum sprrad bfcomrs smallft. In analogy lo thtrmody-
namics ihii prorrss is called cooling
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DESY

DORIS

Figure 3.1: DORIS-II f+e" storage ring at DESY.
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Figure 3.2: The integrated luminosity collected by the Crysta! Ball detector at DORIS-II.
The doubly hatched area represents the data taken around T(1S), hatched area T(2S) and
hollow T(4S) data, respectively.
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around a 5 GeV region was obtained by the installation of mini-beta quadrupoles close to the

interartion region3. Mini-beta quadrupoles improve beam focussing at the interaction points

(see eq. B.2). The vacuum system of DORIS-II gives an average pressure of 2-8xlO~B mbar

depending on the beani current. Typical Operation involves beams with lifetimes of 2-3 h,

injected with currents of 2 > 30 niA, resulting in an integrated luminosity delivered by the

machine of roughly 600 nb~ ' per day. A record accumulation of more than 1000 nb~' per day

was achieved. Figure 3.2 shows integrated luminosity per month accumulated for different

resonances.

The longjtudinal size of the electron (positron) bunches causes a spread of the interaction

point along the beam ajtis. The spread is approximately Gaussian with u of about 1.7 cm.

The corresponding spread in the plane transverse to the beam axis is inuch smaller (high

luminosity requirement) i.e. --1 mm vertically and -0.1 min horizontally.

Electrons and positrons in the DORIS-II storage ring berome polarized äs a result of emis-

sion of Synchrotron radiation according to the Sokolov-Ternov cffert [25;. The beam energy

measurement by depolanzation techniques is the niost pren^e one. The acrurate measure-

ment of the beam energy is crucial for the determination of Tr, and resonance masses. The

polarization direction is parallel to the magnetic field of bendiiig mapnets. thus transverse

to the beam direction. The maximum achievable polarization due to tliis mechanism is

^•92%. Beam polarization is limited by the Synchrotron radiation itsolf. Sudden energy loss

by photon emission causes a change of the particle orbit, which destroys the correlation.be-

tween orbital and spin motion. Also, unavoidable vertical misalignment of the storage ring

components causes beam particles to be influenced by the depolarizing radial field of the

quadrupoles. Sinülarly. beam-beam forces at the interaction point cause depolarization. Fi-

nally, the solenoid field of the ARGUS magnet, which is only partially compensated (87%),

acts to destroy the polarization. As a result of these depolarization effects, the beam polar-

ization does not reach the theoretical lirnit. At certain beam energies, where depolarizing

machine resonances occur. the beam polarization can be destroyed completely. Theoretical

ralculations for DORIS-II have sbown that beam polarization at the T(2S) energy may be

rather high. In fact, we measured an average beam polarization of (78±7)% for the T(2S)

data using the process f * f~ —+ \i' fi~ [26],

3.2 The Crystal Ball Detector

The Crystal Ball detector J27 is a non-magnetir caloriuietcr designed to measure precisely

the enprpies and directions of electroinagnetirally interart ing partirles. We describe here only

those features that are important for the data selection. The experimental setup is shown

'The Installation of ihf mini-beta magnsts had a serious drawbafk Tht endcaps a; th fy *ffc dcsign«d for
SPEAR no longei fit brcaus? of sparf l imitations. Thf Ctystal Ball fndcaps havf be^n romplctely redcsign«!
for DORIS-II but thf finf g ranu la r i ty of this d f t fdor pari wa* lost
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Crystal Ball

672 Nal(Tl) crystals

tunnel crystals

Nal(Tl) endcaps

s mall angle
luminoslty monitor

l m

mini-/3-quadrupole

Figurc 3.3: View of the Crystal BaJl detector (äs installed at DORIS-II)

in fig. 3.3. The main detector ie a spherica] ehell of 672 optically isolated Nal(Tl) crystals

covering 93% of the total solid angle. The remainmg 7% are left free to allow room for

the beam pipe. Each crystal, of truncated pyramidal shape, is ~15.7 radiation lengths deep

(rorresponding to about l nuclear interaction length), points to the interaction point and is

read out by its own photomultiplier (see fig, 3.4). The 60 crystals itnmediately surrounding

the beam pipe are ealled "(unnel crystals". They cover the angular region of approximately

0.85 < |cosfl | < 0.93, where 0 is the angle with respect to the beam axis. Nal(Tl) endcaps

inrrease the angular coverage to 98% of 4*, but are not used in this analysis.

The me&sured energy resolution for electromagnetically showering particles is 0£/E =

(2.7 ± 0.2)%/^/£/GeV. The Nal(Tl) energy scale is set for each --3 pb'1 of accumulated

luminosity using large angle Bhabha scattering events. Minimum-ionizing particles deposit

about 210 MeV. Approximately two thirds of thr hadrons are expected to undergo nuclear

Jntcractions while traversing the Nal(Tl); the rest are niinirmim-ionizing if charged. Tlie

directions of electromagnetically showering particles are measured in the Nal(Tl) to an ar-

curacy of <r» — 1° to 2", depending on their energy. For minimuin-ionizing particles we havc

fft ~~ 3°. One can improve the angular resolution by use of the proportional tube chambers,

which directly surrouiid the beam pipe (see fig. 3.5). The shape of the chambers is dictated
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40.6 2" photomultiplier

Figure 3.4: The size and shape of a single crystal. The interaction point is marked by a cross.
The distances are given in centimeters.

a)

beam pipe
50 cm

Figure 3.5: Tube rharnbers setup: n ) 3 layers b) 4 layers. The Monte Carlo geometry was
used to produce this drawing.

by the limited spare between the beam pipe and the spherical inner detector shell. The con-

figuration of this part of the apparatus depends on the data-taking period. Initially, il was a

three double-layered setup flushed wilh magic gas (i.e. working in the streamer mode}, which

were later partially replaced by tubes flushed with Ar + COj + CJit working in proportional

mode (design äs shown in fig. 3.SB). Eventually, it was upgraded to fcmr double-layers äs

shown in fig. 3.5 b. For our purposes we find it sufficienl to use only the dirertion informatiort

cieduced froni the energy deposition in the crystals. Because this analysis spans various d&ta

taking periods, it was difficult to formulate common hadrouic-event-sclection-criteria for all

chamber Setups—thus the chamber Information was not used in this analysis.

To measure Bhabha scattering f * e at s m all angles there are 4 shower coun-

ters located al ö -- 8"—see fig. 3.3. The method of the luminosity deterniination is discussed

in detai) in Appendix B.
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3.3 Organization of the Data Acquisition

The interesting e + e~ interactions have to be separated from a large background. We

discuss here shortly the trigger design and our datR quality monitoring System. A simple,

stable in time trigger, and supported by a well designed data monitoring system, enabled us to

reduce the systematic errors. The seheme of the Crystal Bill data acquisition System is shown

in fig. 3.6. The Signals from appaiatus components after preamplification are carried to the

electronics in the control room. The analog signals are stored temporarily on the capacitors

inside so-called "IfeH" (Integrale and Hold) modules. The various trigger conditions select

the interesting class of events by simple "hard wired" criteria consisliog mainly of the topology

of the energy depositions and/or energy thresholds in the main ball within a 300 ns bunch

crossing gate delivered by the DORIS control. The rate of the events to be registered ranges

from kHz down to a few Hz. The data used in this analysis satisfy our total energy trigger

which is fully efficient for events depositing at least 1.9 GeV in the Nal(Tl) crystals which

lie within | cos B < 0.85. Our selected hadronic events (see section 4) have a minimum

total energy of ~2.1 GeV, Fulfillment of any trigger condition freezrs the Information inside

the I&H modules and starts the readout. Up to this moment we have dealt with analog

Information. The analog information is digitized sequentially by two ADC's and afterwards

Bent via CAMAC to a PDP-11. This proress is controlled by a special processor called

NEMO [28]. Collected data are stored on the 300 MB PDP-11 disc and sent to the DESY

IBM via a link where thry are stored on the disc buffer. Both discs are used äs circular

buffers. When thr buffer at the IBM is 2/3 füll a special Job automatically starts (DUMP

Job) that copies the contents of the IBM disc to tape. Together with the DUMP Job, selection

and production Jobs are initiatrd so that the preliminary data are immediately available for

the analysis. More extensive checks of the data quality were done on the IBM.

The apparatus performance is monitored online by special programs. This routine chrck-

up includes:

• linearity control of the energy readout system;

• temperature, crate voltages, humidity and pressure inside dry house, DORIS vacuum,

beam currents etc. (Monitor ONline records that will be used in a scction devoled to

the background determination belong to this class);

• trigger logjc.

This information is stored together with the data äs special data records, so that it ran be

used afterwards to pinpoint the problems in the apparatus.

Production and Selection Jobs

Fignrc 3.G: Orgünization of tlie data acquisition system.
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Figure 3.7: Principle of the clustfr algo-
rithtn. Particles created at the interaction
point (marked by a cross) enter the ball de-
pogiting energy in crystals (visible triangles).
The illuminated crystals cluster around the
direction of the incident particle. The clus-
ters created by two particles can m«rge into
a single one.

Figure 3.8: The geometry which deter-
mine§ angular resolution of the Crystal Ball
calorimeter. The triangle represents a small
crystal facet. The smaJl circle corresponds
to ±3°, the large to ±6°. Thr area ratio of
the crystal surface and the inscribed circle is
about 0.6 thus compatible with one Standard
deviation level (see text).

3.4 Interpretation of the Energy
Deposited in the Crystals

Particles cre&ted at the interaction point traverse the chambers and enter the ball. The

raw data then contain the Information about the energy deposited in the Nal(Tl) crystals

and the chamber hits. Our aim is to measure energy and moment&of created particles. Since

the Crystal Ball is a non-magnetic detector we approximate momentum p of & particle by its

measured energy E:

p^Efi (3.1)

•wherr f> is a unit vector representing the direction of the particle. The choice of E and n

is no' unique. In the following we will try to discuss some of the possibilities. In the first

step of data reconstmctjon crystals are grouped into clusters. The cluster is defined äs a

group of adjaeent crystals each having at least 10 MeV deposited energy (see fig. 3.7). As

the next step inside the clusters local maxima are found. The third step correlates the hits

inside the chambers with the energy deposited in the ball. For the purpose of this anaJysis
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Figure 3.9: Direction reconstniction for electromagnetically showering particles. The electro-
magnelically showering particle hits the ball. The energy is deposited in a cluster of crystals
with a visible maximum (marked by asterisk). For circles see t ext.

we will disruss the first two steps of the data reconstruction wherein no chamber information

has been used.

The short edge of the crystal rovers 12°. Thisimplies that, usingonly the Information frorn

the crystals, we are able to reconstruct the directions of incident particles with a precision of

at least ±6°; in practice it is reconstructed two times more precisely, i.e. ±3°, by assuming

that the probability of hitting a particular point is constant over a crystal surface (see fig. 3.8).

For the electromagnetically showering particles (e* , e~, T) the lateral energy distribution

is well-determined by the Monte Carlo studies. The characteristic energy pattern can be used

for selecting e, T and for getting their directions with better prerision than determined by

the geometric caJorimeter resolution alone. The idea of the showering track reconstruction

technjque is shown in fig. 3.9. The deposited energy is shared among a Symmetrie group

of 13 neighhoring crystals. On average a photon, hitting the central crystal along its, axis,

deposits 70% of its energy in one crystal with -2% outside the group of 13 neighboring

crystals. This can be understood since the crystal size was chosen such that the circumscribed

circle has a radius of one Moüere uni t . Somelinies more particles enter the same rluster, for

example, a decay of a fast n' (energy E,' ^ 500 MeV) into photons creates such a Situation.

Of course, there is a probability that shower flurtuation can create a second locaj maximum.

The criteria allowing discrimination between local maxima of the energy deposition and

shower energy fluctuations are also well defined and can be found by Monte Carlo studies

(for details see |26|). As the first approximation for the direction of electromagnetically

showering particles we use a local energy maximum within the cluster (direction n is thcn



found äs the crystal axis of the crystal wilh maximum energy deposition). This direction

is then corrected using the known lateral shower distribution. The energy contained in 13

neighboring crystals serves äs a reliable energy estimate for these particles.

In case of hadronically interacting particles we do not have such a straightforward direction

and energy definition. The discrimiDation function is not known; it depends on the type of the

showering particle. There are basic&Uy two methods that can be used to estimate the energy

and direction for showering hadrons. In the first method we use the crystal energy and crystal

axis, i.e. we assume that evcry illuminated crystal was hit by a particle carrying energy equal

to deposited energy and in the direction of the crystal axis. This is physically equivalent

to the replacement of incident particles by a beam of particles. Experience shows that such

an approximation works well. The other possibilJty is to use energy clusters and correlate

them directly to particles. The energy E is then the total energy of the cluster (referred to

afterwards äs E^ult„) while the direction might be rstimated äs the energy-weighted average

of the crystal axis n, involved in the cluster:

" = "r"' ' ' • (3-2)

As will be discussed later, «xperience showg that the first method carries information not

only about the created particles but also about their interactions in the calorimeter.
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4. Selection of Hadronic Events

The subtle effects we would like to measure require high experimental accuracy. We

are primarily interested in suppressing the systematir error. The detailed analysis of our

aim, i.e. the measurement of R and the determination of Tre, shows lhat the systematic

errors of the final results will be fully dominated by the errors on: i) the sclection efficiency,

ii) the background subtraction, and iii) the luminosity determination. Good design of the

cuts for data selection can reduce the first two contributions. For the deternunation of T„

and R we have to select the hadronic events originatinp froin f ' t —> qq and/or r4 e~ —> 3g

alone. As barkpround we have to consider both, the hadronic events roiijing from the other

processes and imsidentified non-hadronic events. Barkpround events originale from: 1) QED

processes, 2) two plioton interactions, and 3| collisiotis of beani particlcs with residual gas

and th>- vacuum beam pipe. Sinre 1978 the selection of tlie hadronic events was a subject of

a continuous development. \Ve start. with the inolivation fnr the experimental cuts. In the

following sections we will discuss the efficiency restilting froin nur selection criteria and give

the estimate of acrepted backgrounds.

4.1 Selection Criteria

There are two extreme different approaches to the data selection problem. The first

way is to select the interesting events without loss of efficiency by acrepting a rather high

background. This method is applicable when we are not dependent on the absolute nor-

malization or when the background source is known theoretirally and/or we are able to

subtrart it without increasing the sytematic errors. A typical example for application of this

method is searching for P-states in the inclusive hadronic spectra where the background is

subtrarted afterwards wi th help of a polyiiomial fit. The second method of approaching the

selection problem is to lose some selection efficiency (in R mamier which could be cbecked

by Monte Carlo calculation) by suppressing backgroimd of unknown origin äs much äs pos-

sible. Both methods were used in the Crystal Ball Collaboration t.o select hadrotiic events.

A selertion propram using the first philosoplw was written at SLAC by W. Lockman [29]

(referred to from now on äs the "BILL" selector). Quiet runninc conditions at SPEAR allow

for loose selection crileria. Tlie other independenl selertion procram wa? writ ten at DESY

by H.J. Trost (referred to es "HA.)O"selector). The reason was that the running conditions

at DORIS were completely different, for instance the beam-gas barkpround was significantly

higher. The quick sran through the background processes shows that there is a substantial

background arisinp from -)-y interactions, As it will be shown later the cross sections for
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Table 4.1: Initial background studies for the hadronic data sample. The number of sin-
gle-beam or separated-beam events accepted äs hadronic measures the beam-gas background.
The last column gives the relative selection efficiency in the case of the continuum c4 e~ —» gq
data (for Monte Carlo Simulation). Also given is the number of cuts used for the data selec-
tion.

Selector

HAJO
BILL

HAJO & BILL
This work

Accepted
background

151

608
43

34

Number
of cuts

8

7
15

6

Relative
efficiency

1.08
1.23
1.07
1.00

inclusive hadron production in these processes are sometimes not known theoretically better

th&n ±100%. Brrause in case of both, T„ and K, we are interested in the absolute nor-

malization of our measurements, we decided to apply the second philosophy: to euppress

uncalculable background a.s much äs possiblc without excessive loss of efficiency.

It became customary to request that hadronic events pass both selection criteria in order

to obtain a relatively hackground-free data Kample. This in prartice means that afterwards

we have to determine tbe efficiency for about fifteen cuts, some of which are correlated. The

idea of this analysis was to reduce the number of cuts to the minimum so that we rely on a

«mall number of well-designed cuts. This also means that the systematic «ffects are easier to

estimate,

The BILL selection criteria are described in det&il in [29], We started the analysis by

running the two selectors on single beam and separated beam data samples. The number of

the events accepted äs hadronic from single and/or separated beam d&ta is a measure of the

background rejection. The background accepted by the HAJO selector was about four times

Bmaller than the one accepted by the BILL selector fsee table 4.1). Requitmg that the events

should satisfy both selection criteria reduced the background further by a factor of ~-3.5 with

respert to the one accepted by the HAJO selector. After that exercise the natural choice

was to taJte the HAJO selector äs a basis for further studies. This choice is justified by the

fact that for the BILL selector Information on the particle charge is required. As during the

experiment our charge detector has been modified several times (see fig. 3.5) the selection

efficienry will be time dependent. Data used in this analysis span two setups of thr tube/

chambers. For the background studies, data (unless explicitty stated) span all three setups.

TO keep efficiency stable we rely solely on the most accurale and cfficient pari of the dptector:

the 672 Nal(Tl) crystals of the main ball.

The typjcal hadronic event is shown in fig. 4.1. The picture shows the main ball in the

Mercator-like projectjon. The dots show the places where thr energy is deposited. Solid

contours show the cluster borders. Plots underneath show thr tracks in Crystal Ball tuhe

r\
M

Figurf 4.1: Typical hadronic event.
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Figure 4.2: Single beam data passing the BILL selector on (0,x,.) plane. The rontinuous
line ehows the HAJO original cut, the broken one the suggested modification.

rest frame. The relatively high acceptance of T 4 r~ events for hadronic selection criteria

can be understood äs a result of T leptons having relatively large hadronic branching ratios.

Events with both T'B decaying hadronically will have a two jet topology, indislinguishable

from the hadron production in the contimmm. The low acceptance for the hadrons produced

in two photon rollisions can be explained by their low transverse momentum with respect

to tbe beam ajds. The high transverse momentum cut suppresses this class of events almost

completely. This is shown in figs. 4.10 and 4.11, where we show the correlation discussed

earlier for e*t~(-j) —» T 4 T~ and two-photon hadronic Monte Carlo events.

Cut l and 6 were designed to suppress QED and cosmic type events. Cut l is a moderately

weak cut on multiplicity. Cut 6 from this group turned out to be 100% correlated with the

other cuts and thus was not used.

Cuts 7 and 8 are designed to further supprrss Bhabha events. Fig. 4.12 shows the distri-

bution of the visible energy for unselected Bhabha Monte Carlo events while fig. 4.13 gives

the same events on the (ß, *,,) plane. The large number of produced Bhabha events although

not rejected by our main selection cut (cut 4 K is rejected by the combination of a typical high

energy deposition correlated with low multiplicity. To reduce furlher the background from

thr Bhrtbha events and achieve agreement between this rut and the rcquirements for Bhabha

candidates, the threshold on cluster energy was lowered tu EcluiltT ~> 0.35W. Fig. 4.14 shows

the correlation between risible energy deposited in the ball and cluster energy for Bhabha

Monte Carlo events. The sttong correlation (indicated by the arrow) oecurs when we have

measured only one electron and thus Egati - Edu,tf F°r comparison the same correlation

for T(1S) -* 3g Monte Carlo is shown in fig. 4.15.
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Figure 4.3: Visible energy distribution for the raw data. The doubly-peaked slructure at the
low energy end of the spectrum reflerts our trigger setting.
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Figure 4.4: Visible energy distribution for the single beam data.
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Figure 4.5: ( ß , x t r ) plane for unselerted data. Thc accepted events arc io the upper left
corner, separated frora the rejected events by the solid line. For tbe arrow B« t«ct.
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Figure 4.7: ( ß , r l r ) plane for unselected e*e —• qq Monte Carlo events.
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Figurp 4.6: (0,i„) plane for unsel^cted single beam data. Figure 4.8: ( ß , x l r ) plane for unselected T(lS) —> 3g Monte Carlo rvents.
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Figure 4.9: A typica] event frora the rim indicated by arrow in fig. 4.5. For details see text.
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Figure 4.10: ( 3 , z l r ) plane for unselected r*r Monte Carlo events. The high acceptance for
this class of events is due to the high r hadronir branching ratio.
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Figure 4.11: (3,xlr) plane for unselected two-photon Monte Carlo events. Low pj- is a typical
fcature of two photon processes; This limits the acceptance for this class of the events.
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Figurc 4.12: The distributionof the visible energy for unseleeted Bhabha Monte Carlo events.
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Figure 4.13: (/3,r(,) plane for mixture of unselected Monte Carlo Bhabha and
pvents.
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Figure 4.14: Bhabha Monte Carlo events. The dotted line shows the original cut, the contin-
uous one show the modification suggested (see text) .
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Figure 4.15: T(1S) —• 3g Monte Carlo events. The dotted line shows the original cut, the
continuous one suggested modJncation.
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Let ÜB summarize our final selection criteria:

i. 0.2 H* < EBa» < 1.21V;

«. Etvnn,i.lEB.u < 0-5;

m. x,, > 0.23,0 < 0.7 *nd *,r > 0.55 + 0.11;

iv. there should be at least 3 energy clusters with an energy Ee^lt,T > 100 MeV each;

v. rvents fihould not have niore than one energy cluster with JEcju„„ > 0.351V;

vi. events should not havr any energy düster with Ectu,t,r > 0.35W if Eßaü > 0.751V.

The Belection presented above allows us to select a relatively background free hadronic data

sample using a minimal numberof well-tuned cuts. The conversion of the number of observed

hadronic events inlo the number of produced hadronic events still requires determination of

our selection efficiency and estimation of thr background remaining in our hadronic data

sample.

4.2 Efficiency Determination

The detection «fficiencies for hedronic events from T(1S) and T(2S) decays, rontinuum

qq production events and background events arr calculated using the Monte Carlo teeh-

nique. Hadronic events from T(1S) and T(2S) decays and from continuum qq production

are generated with the Standard LUND string fragmentation program version 6.2 [30]. As

an alternative hadronization scheine we use the coherent parton shower model offered in the

Eamr program. This Bcheme is based on the QCD cascade model by Marchesini and Webber

[3l], and has only been implemented for qq etates, not for 3 gluon states. In sections 5.1 and

6 we estimate our sensitivity to the hadronization scheine from the difference in the efficiency

for t* c~ —• qq obtained with the two models.

The generated events are passed through a complete detector Simulation. This Simulation

includes the following steps:

1. Electromagnetically interacting particles are handled by the electromagnetic shower

development program EGS |32j.

2 The interactions of hadrons are simulated with the GHE1SHA 6 program [33 . To

achievc a reasonable description of the experimentaj data we have modified the original

GHEISHA program äs discussed in appendix A.

3. Extra energy dcposited in the crystals by benm-related background is taken into accounl

by adding special background events to the Monte Carlo events. These background

events are obtained by triggrringon every 107f/i beam crossing, with no other condition
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Table 4.2: Summary of various liadronir detection effiriencies. The erroi-s are the Monte Carlo
statistical errors only. Superscripts E denote resonance efficiencies: C, continuum efficiencies.

efficiency
Symbol ''

Process IV
[GeV, \K.

Comments

T ( 1 S )

f?, i

c£
*?-r-

*H

T(1S)
T(1S)
T(1S)
TI1S)

- 3s,-)5ff

— W
— • r' T'

— > hatirons

9.46
9. 46

9.40
9.46

91.0 *
78.9 -t
15.8 ±
83.1 ±

0.1

0.4

0.5

LUND string
LUND string

0.1

TI2S)

f H _L T(2S) --. hadron.t \2 85.4 ± 0.2 80% beam pol.

Continuum

r«'( 1
ec
'W

< < < - -

t ' ( ~ -
-• ^g 9.39
- qq 9.39

72.7 +
71.3 r

0.2 LUND st rin g
0.2 coherent shower

4. The events are then reconstructed using our Standard Software and subjected to the

same cuts äs the data.

The efficiency calculations are described in more detail in sections 4.3, 5.1, and 6. For

completeness we give the expression for calculating the efficiency of the process T —» hadron,i

f n = e?,0 - l ^ 4 3)5^} ^ ttfRB^ 4 f^B^ (4.1)

where (i are r ' t , fi'fi~ and T " T ~ . Table 4.2 summarizes our hadronic efficiencies. The

typical Monte Carlo sample consists of 50k events.

4.3 Background

The estimates of the background magtiitudes are obtained with use of Monte Carlo tech-

niques and single beam data. The specific method used depends on the origin of the'back-

ground events äs will now be discussed. The restiltiug background estimates will be used in

sections 5.1 and 6 in the detennination of F,, and /?. respertively. and in the estimate of the

systematic error.

4.3.1 QED Processes

To estimate the barkgrounct from t IIP QED proresses i' t ~ -> ' ' t ( - ) ) , 77(7), fj + fi~(-j),

and c~ f ' —' r f ( i ) from the continuum, we generale events of these types with the programs

of refs. 34 and [35]. The symbol ( i ) indicates that photon eniission and other QED processes

to O(a^) are included. The prc>duction cross sections and tlieir produrts with the efficiencies
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Table 4.3: Summary of Monte Carlo generated continuum QED and two photon cross sections
o and observed cross sections to. The errors in ctr originale from Monte Carlo statistics.

Process
e4 1~ — » e*e~(i)

e+ e- -.77(7)

f+f- -+ flV(-r)

c+f- _ T + T - ( 7 )

77 — « hadrom

W |GeV]
9.39
9.39
9.39
9.39
9.39

ff |nb]

103.9
31.3

1.4

1.1

7.1

ca [pb]
14.6 ±4.1
1.3 ±0.3

< 1
171. 3 ±4 . 3

19.8 ± 5.6

to pass our hadronic selection cuts, determined äs described in section 4.2, are presented in

table 4.3. The largest source of background, äs can be expected, is the c+e~ —i rf (7 ) channel

because the events with both T'S decaying hadronirally are physically indistinguishable from

the continuum 2-Jet hadron production. The values of ac listed in table 4.3 are to be compared

to <TE -• 3000 pb for e4 r -» hadrons at W = 9.46 GeV.

4.3.2 Two-Photon Collisions

According to ref. 36] a good description of the total cross section data of the process 77 —*

hadron» SB obtained by adding the predictions of the GeneraJized Vector-Meson Dominance

Model (GVDM) and the Quark Parton Model (QPM). The appropriate lowesl order Feynman

diagranu for these processes are shown in fig. 4.16. Since we expcct only sm&ll background

contributions from two photon interactions we follow the procedure suggested by ref. 136).

For the QPM part we generate qq pairs with a Monte Carlo program following ref. [37] with

»ubsequent hadronization by the Standard LUND program Version 6.2 [30]. The cross section

at given c.m.s. energy W and quark composition was generated arcording 1o

= 3 (4.2)

where ff, dre the partial cross sections and q, denote the charges for a given quark flavor, The

quark masses m, are those used in the LUND fragmentation seheme. Eq. 4.2 stems form the

diagram in fig. 4.16a and is valid only to this order. Two photon events with a GVDM cross

sertion, parametrized accordinp to ref. (36j äs

= |(240 ± 29) + (394 ± (4.3)

are generated by a Monte Carlo program using the Equivajent Photon Approximation |38).

The sum of the generated QPM and GVDM cross sections and the resulting visible cross

section are presented in table 4.3. The small acceptance for this class of hadronic events is

fully understandable. Our main selection cut is the cut on x,T—we reject events with small

PT\h restrirted pj ränge is one of the most characteristic features of events originating
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Figure 4.16: The lowest order Feynman diagrams leading to hadron production in 77 inter-
action: a) and b) pointlike interaction (graph (a) is dominating ( b ) ) , c) VDM mechanism.

from two photon interactions. The above method to estimate the two-photon contribution to

the total cross section is very crude: for example the QCD corrections to graphs a) and b) in

fig. 4.16 might be very larpe [36]. Therefore we set a lOO^i sytematir error on the two-photon

contribution to the total hadronic cross section.

4.3.3 Beam-gas Background

Events from collisions of beam particles with residual gas or wilh the vacimm pipe can

be misidentified äs hadronic by the selection procedure. They are referred to äs "beam-

gas" events. The contamination from beam-gas evcnts in our hadronic sample is determined

from single-beam runs taken close in time to our energy scans. We assume that all of the

single-beam data are beam-gas events. The following quantities may serve (for normalization

purposes) for the ratio of the time spent with single or separated-beam running conditions

compared to that with colliding beams:

1. / Idl—current integral, to account for the beam lifetimes.

2. fpldt—current-pressure product integral. This method accounts not only for beam

lifetimes but also for different vacuum conditions. Intuitively the bea.m-gas collision

rate should be proportional to the gas density, i.e to the pressure read in the vacuum

monitors.

3. The actual data—the idea is to subtract the theoretical predictions froni data.

The differenres between background estimates obtained using thcse quanti t ies will serve äs

the measure of the systematir efTerts.

The number of beam-gas events in the colliding beam sample is calculated in two indepen-

dent ways. In the first approach we normalize the single-beam data to the rolliding-beam data

by integrating the product of the total hearn current and the gas pressure (or current only)

over the running time. This method is model-independent, bul sensitive to any difference in
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Figure 4.17: The principle of finding the pldt (or I d t ) normalization factors. Shaded area
is the one obtained directly from experimental points. Three rerords at the end of the
run# 18886 wer« missin g. Thc arrow indicates thc end of run. Extrapolation results in big
correction (hollow area under the fitted curve}.

beam opticB between single beam and colliding beam runs. \Vc have not measured either Idt

nor pldt dircctly. We did record so-called "MON events" (Monitor ONline), approximatcly

every 10 min. These events contain, aiuong other informations, time, beam currents, and

pressure ncar the interaction region. As a result, the application of methods l and 2 was

possible. Wc used:

1. Start of run records—for thc Start time of a run;

2. MON records—for current and pressure readout; for the time within a run;

3. end of run records—for the end time of a run.

The resulting data arc thus composed of discrete points rather than the continuous infor-

mation we are inierested in. \Ve now have to find the analytic approximation of the data,

allowing us to extrapolate outside beyond tlie measured points |i.e. to the beginning and the

end of run). The following procedure was used:

1. take the runs with at least 4 MON records;

2. assume the accuracy of 0.1 mA for current readout and 1% for vacuum readout;1

'Tbc 1% mor is by far too smaJl if one us« thf absolut? varuuni t*adout. Fot Ihr fit purposes wr will br
intftfiltd in relative crrori
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3. fit the time dependence of the data ( I ( t ) or p l ( t ) ) lo

a - i -t
(4.4)

where A', a and b are free fit parameters (a is small}. Such a choicc of the fit function

was dictated by its flexibility. The parameter a arcounts for the change of the beam

lifetime due to the beams getting "cooled down".

4. if a is compatible with 0, set o - 0 and repeat the fit with o fixed (i.e. two parameter

fit);

5. if two runs are on the same DORIS fill, fit the runs together.2

The principle of this method is shown in fig. 4.17. In this case the extrapolation stability

can be checked since we have continued running with the old beams. The stability was found

to be good ai a level of — 0.7^. Figs. 4.18 and 4.19 show the data points wi th the fitted

curves. Despite the small experimental errors generally the \ of all fits was reasonable,

giving typically a value of \/A"oor - l- Now, to estimate the backpround in the hadronic

sample, we ran the seiector program on the single- or separated-beam runs, finding N$g

events passing our seleclion criteria and (J pld1)sn for these runs. Repeating this procedure

for colliding beam data , we find A\j and ( / p l d t ) , j a , a , respectively. For any run the

fraction of background events due to beatn-gas interactkms. /scr, can l>e found äs:

4P—\ t'4"5)
-Hod'orujda,0

Due to limited statislics of single beam runs taken in the T(1S| mass region the statistical

errors of this method are äarge and dominated by the statistics of N$B = 5tJ (this figure

corresponds to -~10 hours of single beam running}. For the discussion of asymmetric errors

see appendix C. Table 4.4 gives the values of different normaliz&tion factors using thc above-

mentioned methods. Double entry for current integrals is caused by the fact that we record

the e+ and e~ current reading, and their sum measured by a different meter, while for the

pressure we get the vacuum read at botli sides of the interaction region. The bearn-gas

background reaching the experiment is always produced upstream. Taking this into account

we can creale only one pj product . Values of the fBG factors found for the dala taken close in

time to single beam runs are eiven in a separate row. A systematic uncertainty of ±10% for

the fBf; stein* from the maximal differeuce between /#(, values found in this manner. This

method is qui te general and the nonnalization fartors can be applied tu any selection.

TJje serond method makes use of Montf Carlo simulations, For B given hadronic event

(4.6}

']! sonirtimfs happenrd, for Ifrhnical rfason. that DORIS wa^ nol ablf to gcl B nrw injfdion The beams
then Wf tf not dumptd and thf nr» run was statlcd wi lh Ih? samc branis,
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Figure 4.18: The total current for runs# 18886 and 18887 äs a function of time. For the line
see text.
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Figur« 4.19: Current pressure pl product for runs# 18886 and 18887 äs a function of tirne.
The arrow indicates end of run# 18886. For the line see text.
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Table 4.4: Nornialization and jgr, factors obtained by using different methods

r~

Run#

18881
18882
18885

188S6t
18887t

Different normalization factors

Fit result

JIdi
im Arn i n'

3772.0

1445.3

4429.5
4014.7

3475.9

Sldl
\m A min]

3739.0

1441.2

4367.1

3984.5
3422.2

Ipldi
Im A n i t n forr 10"",

743.6

405.8

685.3

892.8
487.3

A'ss
3

1

1

0

0

tSame DORIS ruti - see text

7flß"!%T
/

0.7 0.84 0.87

where Nhad>imi is *he niiinb« of acrrpted hadronir events. NBG (ne nuniber of beain-gas

events, C the integrated luminosity, n, and f, cross sectinns and correspondinR efficiencies

for processes leading to liadrons in the final state. The latter two are determined by Monte

Carlo simulations of the relevant proresses. By varying our cuts we ran ohtain a substantially

larger fraction of beam-gas events in nur hadronic data sample without dramatic changes in

the efficiencies. For the modified selection criteria tlien

-v;. A'r (4.7)

The factor c is the relative acceptance of the two sets of cuts for beam-gas events, and is

determined using single-beam data. Sublracting eq. 4.6 from 4.7 we get

AAWm. - £^»,AE, 4 (c- l)A' f lC . (4.8)

Sincp c ^ 21 and the efficiencies are not very different, Ac, *' l (typically •- 5%), AA\jron, is

fairly insensitive to the cross sections used. Solving eq. 4.8 for A'sc gives the desired number

of beam-gas events.

Bot h methods gave similar results. The /flG factor äs a function of run nuniber is shown

in fig. 4.20. As we hnve already shown, finding /fl<; with use of Idi tir p/rf' suffers from

sniall statistics. The background used was fonnd following the second inethod (using duta).

A systematic error of 10f"'f WBS found äs the maximnl Variation cif the mean values given by

different mrtliods, Taking the lumiimsity-wcighted HVeragr we find thal )>f am-gas background

contributes, only a very smal) fraction to mir liaflronic scau i lala sample conipared to the

contmiium e~ ( • ' hadronf.

~. (0.60 ± 0.01 i 0.06( (4.9)

B\\ do not find any rfsonsnl barkground
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Fig. 4.20 supports the hypothesis that background is machine-condition-dependent and thus

we eannot mclude the other single beam runs (not taken closely in time to our data-taking pe-

riod) for the background calculation within the first method. The lines show the background

Variation over thr« sean periods. The continuous solid line shows the average background

for all scan data used in the analysis. The continuum data at W = 9.39 GeV used for the

R determination were taken soon before and after the May'86 scan and have & background

level eompatible with it:

!BC = » = (0-30 ± 0.01 ± 0.03)% . (4.10)

8.0

6.0 -

4.0

2.0

0.0

-2,0

January'86 March'86 May'86
Continuum & Scan

16000 18500 19000

Figure4.20: The JBG factor obtained from data äs afunction of the run number. Thefact that
for different run periods we obtain different background levels reflects the fact that background
js connected with the machine conditions. The open point shows the measurement obtaJned
by /p /d i method {the smal) error bars are systematical, large statistical). For the lines see
text.

49

5. Determination of T ee

5.1 Tef Measurements

As outlined in section 2.4, the resonance parameters M and Ftr are determined by fitting

the following function to the observed hadronic cross section:

(5.1)
n -

The first term accounts for (he decays "T —• hadrons. A1*' = A f ̂  is the arc-a of the Breit-

Wigner multiplied by our hadronic detection efficiency for resonance decays. The resonance

mass M enters through the variable ; = (W - M ) / A . Radiative corrections are treated

according to the prescription of Kuraev and Fadin 16], usinR -^'ft-f-l- ' from eq. 2.32b. The

second term reflects hadron production from the continuum, which to lowest order scales äs

l/W3. Over the narrow energy region used in the fit s, the C/IV1 continuum part of v ' ( W )

will include nearly all contributions from the background sources discussed in section 4.3.

The data samples of hadronic events used for our F„ determinations are summarized in

table 5.1. We have performed four scans over the T(1S) resonanre and one scan over.the

T(2S). Each sran has approximately 100nb"1 per point. The value of FF, determined from

(he scans is insensitive to sinall over all rhanges (of the order of ±10 MeV) in the absolute

energy scale. It is, however, sensitive to the point-to-point error of the energy measurement.

The mos( precise beam energy measurement at e*i' storape rings can be made by us-

Table 5.1: Data samples for (he T ( lS ) and TI2S) scans and contimmm data: energy ränge,
number of hadronic events, total luminosity with sintist icaJ error, and number of data points.

Scan IV ränge GeVj -Ü hadrons ^ C ;nb -h points

T(1S) scans

1
2

3
4

To(a!

9.388-9.506
9.445-9.477
9.436-9.481
9.444-9.479

12195
6032
4008
5139

27374

2204 ± 12
690 ± 7

567 ± 6 '

670 ± 7 j
4131 ± 17 •

21
9
i

8

45

T( 25) scan

9.966 - 10.039 4307 994 ± 9 l ,0

Continuum data

9.39 ! 25825 7135 ± 22 !
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Figur? 5.1: Scan #1: visible cross sertion vs. cncrgy.
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Figure 5.2: Scan #2: visible cross seclion vs, energy.
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Figure 5.3: Sran #3: visible cross section vs. energy.
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Figure 5.4: Scan i 4: visiblc cross section vs. enrrgy.
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ing the depolarization technique (39), if the beams are polarized. Due to the emission of

Synchrotron radiation elcctron and positron beams berome polarized via the Sokolov-Ternov

effect [25]. DORIS-II provides a beam polarization of up to 80% in the T(2S) energy rcgion

thus allowing a very precise energy determination for our T(2S) scan data: VE!B "" 2 x 10~s.

Details of this measurement can be found in J40l.

In the T(lS) energy region the beam polarization is destroyed completely by storage ring

resonances specific to the DORIS-II machine configuration. He/re the most precise measure of

the relative beam energy comes from thr determination of the magnetic field B at the beam

Position of a storage ring bending rnagnet using the nuclear-magnetic-resonance effect. The

accuracy achieved here is ffß/B — 5 x 10"5.

The determination of the beam energy from the magnetic field mtasurement depends

on the machine parameters, which change with lime, and on the degree of Saturation of

the magnets, which depends on the history of energy changes. We observe shifts of order

10 MeV between different run periods and smaller shifts between successive scans. In order

to achieve äs much stability äs possible during a scan we always scanned with monotonically

increasing beam energy and completed each scan within a period of a few days. during

which the machine paramettrs were held äs constant äs possible. The point-to-point error

on the c.m. energy is taken frora ag/B = 5 x 10~s to br 0.5 MeV. Although T„ is nearly

unaffected by small uncertainties in the absolute energy srale (of order ±10 MeV), we avoid

any systematic influence from this effect by choosing the normahzalion factor between energy

and magnetic field so that the fitted resonance mass is equal to the nominal mass Af t i i s ) ) —

(9460.0 ± 0.2) MeV [5j. For the limited energy ränge of our scans the beam energy is a linear

function of the magnetic field B.

5.1.1 T„ of theT( lS)

We first fit each scan individually to the function eq. 5.1 with four free parameters: A1*',

A, M, and C". Only scan nuniber l covers a wide enough W ränge for a good determination

of the continuum constant C. Then we fit scans 2 to 4 with C fixed to the result obtained

from scan 1. This results in the A*' values labeled "fixed" in table 5.2. They agree within

errors, but are not statistically independent and cannot simply be averaged to improve the

slatistical accurary.

For our final result we fit the four srans siirmltaiieoiisly. allowing relative energy shifts

between them äs three additional free parameters. This makes inaximuni use of the continuum

Information und Rives a statistically rorrect averftRC of .4 *. The result of this fit, with the

data of each scan corrected for its relative energy shif t , is shown in fig, 5.5. The \* of 45.4

for 37 degrees of freedom corresponds to a confidence level of 16. lSc- The parameter x'alues

are: A<*' = (286 ± 6) nbMeV, A - (7.8 ± 0.2) MeV, and C = (300 ± 6) nbGeV1. Scans 2, 3

and 4 are shifted in nominal c.m. energy from scan l by ( -4.0 ± 0.4} MeV, (-8.6 ± 0.4) MeV,
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Table 5.2: Results of nls to T(lS| scans. Errors are statistical only. CL is the confidence
level of the particular fit.

Scan

1
2

3
4
2

3

4

A*' |nb MeV

289 ± 8
269 - 32

'•• 312 -t 19
221 ±21

! 288 i 9

A [MeVj C inb GfV'l

7.7 ± 0.3 300 r G
7.2 ±0 . G
8.31 0.5
6.8 -t 0.6

327 ± 48
280 ± 20
374 - 31

7.5± 0.3
! 298111 7. 9 ±0.3

fixod at 300
fixed ftt 300

CL\%]

14.2
74.3
4.0

32.9

81.6
C.2

! 271 * 9 8.0 ± 0.3 fixed at 300 \8

ru [nbj

14.0

12.0

10.0

8.0

6.0

4.0

2.0
9.37 9.42

9'47 W [GeV] 9'52

Figvire 5.5: Observed cross section vs. c.m. energy H' for the four T(1S) scans. Circles
represent scan l, squares scan 2, triangles scan 3, and diamonds scan 4. The füll" line is the
fit result; the dolted line shows the fitled beckground.

(-7.8 ± 0.4) MeV. respectively. The mnchine resohltion A is compntible with the expected

value of 7.6 MeV.

T,, ß/w is calculateti from eq. 2.31 and A - >l°*'/f§ where f Jj i-; the probability that R

resonance decay is acrepted in our hadronic sample. To obtain sH we uff the Monte Carlo

techniqups described in section 4.2. With the Standard LUND prngram Version C.2 |30] we

generate the following T ( 1 S ) decay modes with branching ratios nrcording to the Particle

Data Group values [5]: a) derays into 3 gluons and igg', M direct decays to gg; c) decays



Table 5.3: Compilation of BHll values (in%) for T(lS) and T(2S).

Reaction -B-, [%] Experiment

T(1S)
T -* W
T - M

T -» W
"t - M
*f

-f

T - et
T(2S) -• p 4 7r-T, T -• ^ti-^e+e'
T|2S) -» jr4*-T, T -» ^+^-,c+e'
T - TT

2.2 ±2 .0 PLUTO 41]
1.4t*;J
3.2 ±1 .3 ±0 .3
3. 8 ±1.5 ±0.2
2.7 ±0.3 ±0.3
2. 7 ±0.3 ±0.1
5.1 ±3.0
2.84 ± 0.18 ± 0.20
2 . 3 9 ± 0 . 1 2 ± 0 . 1 4
3.4 ± 0.4 ± 0.4

2.6310.12

DESY-Heid. [42]
DASP II [43]
LENA |44]
CLEO [53]
CUSB [45]
PLUTO [46]
CLEO 47]
ARGUS |48]
CLEO |49]
average

T(2S)
T(2S) -. /i/i
T(2S) -» UM
T(2S)- . / i / j
T(2S)^rr

1.8 ±0.8 ±0.5

1.4 ±0.3 ±0.2

1.0 ±0.6 ±0.5'
1.7 ±1 .5 ±0.6
1.4 ±0 .3

CLEO [50]
CUSB 45]
ARGUS (51]
CLEO (50)
average

* The ARGUS T(2S) valuf 11 scaled from th* averag« T( IS ) valu* with ß„
1.57 ± 0.59 ± 0.53+2.1(5^(15)- 2.9) (in %) J51J .

into two leptons. Typical detection efficiencies for the T resonances are a) c^f ~ 90%,

b) fj. = 80%, c) c^+,- = 15%, whereas f ] , T . and e*+ are negligibly small. \Ve get äs total

detection efficiency «JlS) - (83.1 ± 0.1 ± 2.4)% (see table 4.2). The first error results from

Monte Carlo statistics, whereas thc second systematic crror originales from the hadronization

model used and the detector response. We find a 1.4% difference in the efficiency using the

Standard LUND B t ring fragmentation and a cohercnt parton shower model. In addition

we estimate a 2.5% systematic error to account for uncertainties in modeling the detector

response.

Using the measured value of A1** and tw ' we obtain

T,f BW = (1.23 ± 0.02 ± 0.05) keV. (5.2)

The 4.1% systematic crror is explaincd in scction 5.1.3. Division by B^ad - l ~ 3BPU using

thc world average of ßu„(T(15() - (2.63 ± 0.12)% from table 5.3 yields

T„ = (1.34 ± 0.03 ±0.06) keV. (5.3)
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Figure 5.6: Observed cross scction vs. c.m. energy W for the T(2S) scan. The füll line is the
fit result, the dotted line shows the fitted background.

5.1.2 r „ o f t h e T ( 2 S )

For the scan over the T(2S) we have the 0$ ^ 0.2 MeV energy determination for each

scan point from depolarization measurements. Fi t t ing our data äs a function of energy to the

expression of eq. 5.1 gives the following results for the parameters: M = (l0023.5 ±0.4) MeV;

in agreemrnt with our published value |40j and that of ref. [5]; A0*" - (110 + 8) nbMeV;

A = (8.2 ± 0.5) MeV, which agrecs with the expected machine resolution of 8.5 MeV at

JWr(is); C = (296 ± 12) nbGeVJ, compatible with thc value found at the T(1S). The fit has

a \ of 12.5 for five degrccs of freedom coiresponding to a 2.8% confidence level. The data

and the resulting fit curve are shown in fig. 5.6.

The Monte Carlo evcnt sample used to determine thc hadronic detection efficiency for

the T(2S) includes (in addition In the decay channels considered for the T( lS ) ) thc following

deray modes: d) radiative derays 1o thc three 3P0.],; statcs, which in turn eithcr decay

radiatively to the T(lS| or via 1 gluons (*P0? P2\r 3 ghions (3P,): e) ^ f~ and 7r°7r°

transitions tn thc T(1S). The evenls were Rcncralfd w i th fi heam pnlarization of 80% a«

observed in our data. \\ obtaiu a deter t ion efficiency (sce tablf 4.2l of £H' - (85.4 ± 0.2 i

2.5) % with statistical and systematic errors äs discmsed for the T(1S) in scction 5.1.1. Using

this value. the measured value of Aahl and B„ - (1.4 i 0.3)% from table 5.3. we obtain

Bh,i = (0.54 T 0.04 ± 0.02) keV
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and
T,, = (0.56 ± 0.04 ± 0.02) keV. (5.5)

Thc formula for rescating thc ARGUS fl^(2S) vaJuc used in the table 5.3 contajns a factor

stemming from the luminosity, number of observed cvents, acceptances etc. and thus is not

generally valid. Thc term 2.0 is the world avcrage fl^(2S) at thc time when the ARGUS

publication was written.

5.1.3 Systematic errors for Tee

One of the largcst contributions to thc systcmatic error comes from thc 2.5% uncertainty

in thc luminosity determination.

A 2.8% systematic error on the detection efficiencies for the T( lS) and the T(2S) is the

quadratic sum of the contributions already discussed in section 5.1.1.

Wc allow a 1.5% error for thedependence on cuts, found by varying thein within acrcptable

limits and by using an alternative hadron selection method described in ref. [29].

Ncxt we consider the effect of backgrounds in our data sample. Background contributions

from thccontinuum QED processes e4c~ -* e4e~, 77, ^"*' n~, and r"r~ are already suppressed

by our cvcnt selection. Moreover, the lowest order cross scctions for these processes all

scale like l/H'2 , ßo that evcnts of this type are mostly included in the C/M'1 term. Thc

determination of the area A*' under the resonance. curve is not affected by background

contributions. In section 4.3.3 we estimate the bcam-gas contammation to bc 0.6%. This

background has a flat distribution äs a function of energy and is almost completely absorbcd in

the continuum term C/W1 of eq. 5.1. Two photon reactions have a cross section proportional

to In W3, äs do higher-order corrections to the continuum QED backgtound. To check for any

such background wc also perform fits to the data adding & second background term C' In WJ

to cq. 5.1. These fits give C' = (0 ± 3) nb, C = (300 ± 10) nb GeV1. The latter value is the

same äs obtaincd in section 5.1 without the In W2 term. Also all othcr fitted parameters are

completely unaffected by adding such a term. Over the scanned energy ränge, the value found

for C', which is highly anticorrelated with C, would result in a 0.3% change (at the l S.D.

level) of the background, if there were contributions from processes with energy depcndence

proportional to m H'3.

To lest for possible c.m. energy shifts within each individua) scan, we make several addi-

tiona] fits to them. Between any two scan points we split each scan into two periods, allowing

äs an additional fit parameter an energy shift in one perind wi th respect to tlie other. Wilhin

crrors the fitted single shifts are always compatible with zero. The probability that all shifts

togelher are zcro is äs high äs 31%. Again within errors the fitted -4°*' docs nol deviate from

the values given in section 5.1 obtained without any shift.

Combining the errors quadr&tically we obtain a 4.1% systematic error on our F„ BhaJ

valurs. Dividing by l - 38^ to obtain F„ iiitroduces an additional systematic crror of 0.4%

Table 5.4: Measurements of Tr, Bnad ''" keV). The type of radiative correction that was used
in each published value is listed, and the rescaled value is given. KF: Kuraev and Fadin,
JS: Jackson and Scharre. GPS: Greco et al.

Published F„ ß/,flj ; Rad. corr. ; RescaJed value Experiment

T(1S)

1.00 ±0.23
1.10 ±0.07 ±0.11

1.12±0.07±0.04
1.17 ±0.05 ±0.08
1.04 ±0.05 ±0.09

JS

GPS
JS

js, fuii n
JS

KF

1.09 :t 0.25

1.13±0.13
1.23 ±0.09
1.37 ± 0.11

1.17±0.11
1.22 ±0.06

1.23± 0.02 i 0.05

1.23 ±0.04

DESY-Heidelberg 142]

LENA |44]
DASP 11 '43

CLEÜ :52"
CUSB |54; (mipub.)
prev. average
this experimcnt
new averagr

T{2S)
0.37 ± 0.16

0.53 ±0.07:°^
0.55 ±0.11 ±0.00
0 .49±0.03± 0.04
0.53 ± 0.03 ± 0.05

JS
GPS
JS

j s, fuii n
JS

KF

0.41 ±0.18

0.54 ±0.12

0.60 ±0.14

0.58 ± 0.06

0.59 ± 0.06

0.57 ± 0.04

0 . 5 4 ± 0 . 0 4 ± 0.02

DESY- Heidelberg [42]
LENA [44]
DASP 11 [431
CLEO '52'

CUSB [54] (unpub.)
prev. averRgf

this experimeiit
0.56 - 0.03 new average

for the T(1S) and of 1.3% for the T(2S).

5.2 Discussion of Tec Results

Previous measurements of r„ of the T's used either the Jackson-Scharre or the Greco

et al. formulation of radiative corrections, which differ from the Kuraev-Fadin form we used.

äs discussed in section 2.4. However, all of the forms in eqs. 2.28 and 2.32 give very similar

shapes with differences appearing in the nonnalization. Thus previous nicasurements can

be renornialized to correspond to the Kuraev-Fadin formulation by comparing the values of

A*(r = 0) in eqs. 2.28 and 2.32. This is done in table 5.4 and the rescaled measurements are

rompared 1o OUT values. Here we compare F„ Bhad rather than T„ to remove the dependence

on Bu„- which was not very well known at the time of the earliesl F„ meaüiirements, Adding

the statistica] and sys te inat i r errors in quadrature slmws our result t i> tir the meist precise

sinele nieasureinent for t IIP T( IS) äs wrll äs for the T(2S). Agri-finent will) tlic- world averages.

wliich were calculated without our valucs, is excellent.

Based on our data we give a comparisnn of F„ values for tbe T(1S) obtained applying

the four different radiative corrections according to eqs. 2.28 and 2.32 in fig. 5.7, the errors



Table 5.5: Rescaling factors for F„. Ratios of #(1 = 0) compared to F„ ratios from fit6 to
our T(lS) Bcans using different prescriptions for radiative corrections. The smallness of the
errors on the mrasured ratios arises from the positive Korrelation of individual F„ values.
KF: Kuraev and Fadin, JS: Jackson and Scharre, GPS: Greco et al., T: Ts&i.

Radialive corrections

KF/JS
KF/GPS

KF/T

Ratio from F„

1.08655 ±0.00010
1.02600 ± 0.00002
0.99955 ± 0.00003

Ratio from N ( z = 0)

1.09340
1.02600
0.99911

Kuraev, Fadin

Jackson, Scharre
Greco et al.

Tsai
Berends et al.

1.20 1.25 1.30 1.35 1.40

Figure 5.7: Compilation of out F„ results for the T(lS) obtained using different radiative
corrections: Kuraev and Fadin (16], Jackson and Scharre |13], Greco et al. [14], Tsai (15 , füll
Ö(Q') calculation by Berends et al. |17]. The errors are statisticaJ only.

r«/(9>2

J/V T(1S)
15.0

14.0

13.0

12.0

11.0

10.0

Figure 5.8: The ratio of T„ to ihe square mean of quark ch&rge for vector mesons. The
result for T ( lS ) agrees with the value expected from ihe Van Royen-Weisskopf formula if one
assumes a charge q — 1/3 for fc-quarks.
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shown are statistical only. Although Tsai's ansatz 15' has been criticized by Kuraev and

Fadin, both prescriptions give nearly the satue T„ result, since they are equa] to the order

of corrections considered here. The point marked äs "Berends et al." shows the result using

their O(o*} calculation '17l- U sing the expressions of Jackson and Scharre '13 . eq. 2.28 a, and

of Greco et al. 114], eq. 2.28 b, ihe T„ values are lower than all others due to the inclusion

of t,, the electronir vacuuni polnrization contribution. In table 5.5 we compare ratios of

A"(: — 0) to the correspnnding ratios of T„ values extracted from our T( lS( scans using

the various prescriptions. The agreenient to better than l7c Supports the applicability of the

rescaling procedurr.

We thus arrive at one of the niost preciseexperimental results on r„(T(lS)) and r„(T(2S)).

T„ and BUI1 t.ogether with the relations

r,D( = (5.6)

deternüne the basir resonance decay paramelers. However, eqs. 5,6 require a ronsislent

treatment of the radiative corrections.

With this drastically changed value of F,r (data frorn ref. [5.5] have tobe compared with [5])

and a substantial reductinn in the experimental errors it is interesting to reinspect the im-

plications of the van Royen-Weisskopf formula 2.20. Figure 5.8 shows the ratio of F„ to

the square mean of quark charge for vector mesons using the data from |55). The result for

T(lS) agrees with the value expected from the Van Royen-Weisskopf formula if one assumes

a charge q = 1/3 for 6-quarks.
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6. Determination of R at W = 9.39 GeV

6.1 Measurement of R

We have ~7.1pb~J of data (see table 5.1) taken in the continuum below the T( lS) at

r.m. energy H* ~ 9.39 GeV. The observed h&dronic cross section tr'*' is givcn by A'hajtffn,,

the number of selected hadronic events, and the lummosity C:

' . (6.1)
L.

To compare with the continuum contribution found in our T(lS) scans we again use the

quantity C (see eq. 5.1):

C = (T°*'U' J . (6.2)

C was determined run by run (see fig. 6.1). Taking the weighted average we obtain C -

(300.38 ± 2.86)nbGeVJ. Combining eq. 2.7 with eq. 6,2 gives the observed R0*":

R*' ~ —— - . (6.3)
86.9 nb GeV

The method to obtain R from R1*' is discussed in detail in refs. 2' and [7]. Combinmg

eq. 2.11 with eq. 6.3 we obtain the following formula;

r*'(i - fna) -K = (6.4)

f>K accounts for the initial state radiatjve rorrections, f>K = 0.29 |7j at H' = 9.39 GeV.

Here a cut-off at 1% of the beam energy has been applied for the energy of bremsstrahi-

photons in the Monte Carlo program, fsc - 0.3% is the percentage beam-gas contamination

(see section 4.3.3). AÄ(jED = 0.187 ± 0.005 is the background ai H* = 9.39 GeV from

the continuum QED processes e + e ~ -+ fff~, 11, M 4 M ~ , and T + T" which pass our hadron

selection criteria. A/?,, = 0.020 ± 0.006 is the background from two-photon collisions. The

AR are calcul&ted from c<r of table 4.3 äs AÄ =• fff H'7/(86.9nbGeV :). t j j is the detection

emciency for continuum hadron production. We use the averape of the e* f ~ —> qq efficieucies

obtained with the Standard LUND slring frapmentation and the coherent parton shower

model (labe)led äs "LUND string" and ''coherent slmwer" in table 4.2).

6.2 Systematic Error on R

The systematic error on R receives contributions from the following sources: The 1.41?»

difference of the efnciencies for the "LUND string" and the "roheren! shower" niodels is
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Figure 6.1: C value äs a function of nm number. The line shows llif average value of
C -(300.38 ± 2.86)nbGeV.

taken äs systematic uncertainty resulting from the hadronization inodel used. The error on

the himinosity determination is 2.5%. The backgrounds which have to be subtracted are

already small becausp of our selection ciils. The sjTsteinatic error on the beam-gas fraction is

^fsc/fsc - 10^{. Ifwe conservatively allow for a 5% systematir uncertainty in AJ?p£D, and

if we assume that for two-photon background the cross sections of both, the G VOM and QPM

contributions, are known only within a factor of 2. then the background subtraction afferts

our P by less than 0.6%. The dependence on hadron selection is determined äs described

in section 5.1.3 and contributes 2.5%. FinaJly, arcording to ref. (71, &R is known to 1%.

The factor (l -t- £«)' ' thus gives another 0.1% systematic uncertainty. Adding the different

contributions quadratically we assign a 3.9% systematic error to the measured R value. We

then obtain

R - 3.491 0.04 i 0.14

at H' = 9.39 GeV, where the errors are stalistical and systematic, respectiveiy.

As a cross check of Ibis result we also determine /? fiom the ront inuum cnntribution in

our scan dnta by ihe same method äs discussed above. Here C i^ the value of the continuum

parameter C found in ihe fit to nur T ( l S ) scnns. We obtain

R - 3.47- 0.0710.14

at U' = 9.46 GeV. Both P values agree within s tat is t ical errors. The statistiral error on

the latter value is larger, a consequence of the sinailer data sample used in finding it. The
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Figure 6.2: Compilation of R v&lues. The small error bars represent statistiral, thr large
error bars systernatic errors, sep&rately. The quoted values are measured at the following
c.m. energies: Crystal Ball (this work) H' = 9.39 GeV; CLEO [52; H' = 10.4 GrV; CUSB !56j
W = 10.4 GeV; LENA 3] H' = 9.30 GeV; DESY-H«delb«g |42j H' - 9.45 GeV; DASP II J57]
H' = 9.5 GeV; PLUTO 58] W = 9.4 GeV. For the ünes see text.

Bystematic error is the same äs discussed above.

The expected change in R when changing H' from 9.39 GeV to 9.46 GeV, assuming

a commonly used value for the QCD scale parameter A = 300 MeV, is of the order of

AÄ/R ~- 10"* and is thus not observable within our accuracy (the entire effect is caused by

the running of os äs can be seen from eqs. 6.3 and 6.6). So taking the weighted average of

the two measurements we obtain

R = 3.48 ±0.03 ±0.14.

6.3 Discussion of the Results on R

A compilation of R values in the energy ränge W = 9.3 to 10.4 GeV is given in fig. 6.2. In

this energy ränge no flavor threshold is crossed and changes in R due to the energy dependence

of the strong coupling ronstant &re unobservable within present statistics. Our result agrees

with most of the published ralties within statistical errors, Our systematir uncertainty is

considerably smaller than for thr other measurements. Tlie broken line shows the QCD

prediction, assuming o,, ~ 0, while dotted ones indicate the error-weighted average of P

(including our point) and its error. We find for this average value of R

(R) = 3.55 i 0.10 (6.5)
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The value of R is commonly thought to be B number from wliich QCD effects niighl be

ideally deducted. The QCD corrections to the R value can be expanded äs follows

(6.6)

where we keep the amvention that Rc is the lowest order QCD prediction. The size of the

QCD effect (QCD is then

R
fQCD ~ c- (6.7)

Unluckily theeffect is very small. Usingour R v&lue we get (QCD ~ 4.4%, while our systematir

error is 3.9%. The effect is then on thp limit of experimental sensitivity.

Unlike QED. QCD does not have a unique energy scale. The definition of the QCD scale

depends on the renonnalization scheine. In the following we will disrnss the theoretical results

calculated in the so-called MS scheine. In tliis scheine the coefficient A of tlie expansion 6.6

is 1. In the lowest order ct$ in the MS scheine is given by

12?r l
o, - — 6.8
' (33-2T. , ) lnH T VAjL_ V

with A^5 being a scale parameter. The choice of this parameter is not trivial. Note that

in eq. 6.8 n j is taken differently than for R (see eq. 2.8)-. in R the step in n/ occurs at

Q1 = t = 4m', where m, is the qu&rk mass, while in the MS scheme the step occurs at

Q2 = mj. Thus for the following calculations we have to take TJ/ = 5.

Ref. [ l l j suggests a procedure for scale fixing, such that the best convergence for a given

proress is achieved. The authors give a value of B — 0.08. Using their expansion for a.* in

a.,((?' = 0.71.WT) = °-138 ± 0.037 ± 0.131 . (6.9)

Higher order corrections Ö(o3,) have been calculated (59) and turned out to be large. As

gtven in [60 the coefficients B and C for n / - 5 are

B --- 1.411 (6.10)

C - 64.86. - (6.11)

Inserting those values into eq. 6.6 we obtain

l ril Hfl \ i «in4 0 °25-> O.VV
af(Q - MI) =- 0.12(L0.oi9-on4 (6.12)

As s ta ted before bolh resuhs in eqs. C.9 and 6.12 are completcly doinuiated hy the syslematirs

althoiigh oxir measureinent is the most prerisr one. Joining of data froin diflWent ejperinients

diniinishes the statistical errors. however. tlie systernatic error estimation still remains a

problein. Inserting eq. 6.5 into O ( a ^ ) formula we obtain

oa(Q* = Mj] = 0.163:̂
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e a) q c b) q

Figure 6.3: At high enough energies we -will observe interference of diagrams (a) and (b).

The above result, although obtamed by combining the data from several experiments, carries

very large errors.

Recently, the precise measurement of R has become of interest [60,61]. The "desert"1

found at PETRA and TRISTAN triggered physicists to search for prompt signals of parti-

cles predicted by electroweak theory. As we mentioned, R will be sensitive to any process

leading to observed hadrons in the final state, i.e. any new particles coupling to hadrons

will change the R value. At energies sufficiently large, the e + f ~ annihilation may lead to

Z° production, with subsequent coupling to a quark pait äs shown in fig. 6.3. Already at

PETRA energies the clectro-weak corrections to the total hadronic cross section caused by

7° exchange and/or due to production of the new particles should be observable, under the

constraint that we are able to reduce the systematic errors, Recently two ideas have appeared

which are of help in overcoming systematic problcms. W. de Boer suggested that correlations

between the experiments be included by means of off-diagonal elements in the correlation

matrix [61]. A 1% correlation between different experiments was allowed. This is supposed

to account, for example, for correlated systematics inferred by using the same prescription

for ridiative corrections etc.. The systematic and statistical errors were added in qu&drature.

The result is shown in fig. 6.4. Recently an Update of this analysis appeared quoting a value

of as(Q2 = (34 GeV)1) = 0.169 ± 0.020 [62]. A completely different procedure was used

by R. Marshall [60]. The normalization of the experiments was allowed to change within

their systematic errors, giving the fit function another degree of freedom. The result of this

prescription is shown in fig. 6.5. Our result on R was included in both compilations.

'Both PETRA and TRISTAN werf built with the main purpos* of finding and studying the toponium
resonancr. Inslrad the broad tont i nun m with slowly-vatying cross »Pction was found.
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Figure 6.4: The ratio R measured at CESR, DORIS, PEP, PETRA and TRISTAN äs a func-
tion of W. Tlie errors shown include statistical and correlated normalization errors. The areas
under theoretical curves correspond to using Quark Parton Model, QCD only and QCD plus
electroweak effects (EW). The best fit to the data gives o.,(Q3 = {34 GeV)2) = 0.145 ±0.017
for an assumed value sin2 BW ~ 0.23. (from ref. [6l]).

60

50

5 6 7 a g 10 IGeV]
20

30 -

75 -

20 -

15 -

10

30 40 50 60 70 8090

100

(GeV1)

woo sooo 10000

Figure 6.5: The ratio R measured at ADONE. CESR, DORIS, PEP, PETRA, SPEAR and
TRISTAN äs a function of M p . The best fit gives os(Q2 = (34 GeV) 2 ) = 0,135 ± 0.012 ±0.010
(from ref. [60]).
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7. Summary

Using the data taken by the Crystal Ball Collaboration in the continuum below T(1S),

we have determined the value of R—the ratio of the hadronic cross section to the Born cross

Bection of ^ pair production—at the c.m. enrrgy H' = 9.39 GeV, and find

K = 3.48 ±0.04 ±0.14 .

Our value of R agrees within statistical errors with published results, and has the smallest

lystematir unrertainty. In spite of this precise result, we arp not able to totally exclude

the hypothrsis os — 0, The single experimenta) measutements of R are not able to deliver

uscful information about QJ. The results of such measurements are completely dominated

by Bytematif effects given the smallness of the predicted QCD correction. The best way to

detrrmine a,« from measured R v&lues is not yet agreed upon, resulting in a large spread of

published oj values; however, the simultaneous fit of the available R measurements aJlows

the observation of the tail of the Zc in the total hadronic cross section at the highest PETRA

and TRISTAN energies.

We also measured the leptonic partial widths T„ of the T(lS) and T(2S( resonances.

Using the prescription of Kuraev and Fadin [16] to correct for initial state radiation we find

r„(T(lS)t = 1,34 ± 0.03 i 0.00 keV,

r„(T{25)) = 0.56 ± 0.04 ± 0.02 keV.

These values are the most precisr single measurements yet obtained, and agree well with

thr averages of previous measurements rescaled to the radiative corrections of Kuraev and

Fsdin. Our results are ^10% higher than those already published mainly due to an internally

ronsistent treatment of the radiative corrections. With these corrections the new world

averages are

r„(T(lS)) = 1.34 ± 0.05 keV,

r„(T(2S)) = 0.58 ± 0.03 keV.

To compare with Iheoretical predictions, the experimental Trr values should be divided by l .07

t o f*dor out vaniuin polarization. Using the current world averages for Ba„ (see table 5.3)

we obtain the total widlhs

r,0,(T(lS)) = 51 ±4 keV,

r,0 , (T(2S)} = 40 i 9 keV.
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A. Monte Carlo Techniques

\Ve measure physical prncesses only in a limiled sensitive volume of the detectoi and only

with some finite acruracy and efficiency. To get an apparatus-independent cross section c

(differential or total) we have to correct our measured resuits o for Ihe apparatus effects.

These measured resuits can be expressed äs the convolution of ff with the apparatus function

G which depends 011 the arbitrary set of the observables (7 = ( w j , . . . .w„)

S ^ f f ® G ( n j . (A. l )

The particular choice of G and fi is of course problem-dependent. In principle it is possible

to calculate the analytical formula for the function G; however, in practice Ihe complication

of such an approach makes it unreasonable. A different approach to caiculate the convolution

integral is based 011 the Monte Carlo terhnique. We know the basic processes, for example

phenomena leading to energy deposition, particle production and their corresponding prob-

abilities. The Monte Carlo program uses this input to simulate tlie complex processes by

selecting the basic processes with their given probabilities.

A.l Event Simulation

The organization of the Crystal Ball Monte Carlo is shown in fig. A. l . We subdivide the

process of the event generation into two steps: modeling of the physical process (referred

to äs STEP1) and Simulation of the detector response (referred to äs STEP2). The models

used for the Simulation of physical processes are described already in sect. 4.2. A convenient

feature is the compatibility of STEP1 and STEP2 files—the output of Ihe STEP2 contains

still STEPl Information and can be used again äs input in case one wan(s to test different

assumptions for the detector response,

The detector response for the electromagnetically slmwering purticles is simulated by the

EGS 3 code 132^ while the hadronic interactions are simulated with use of the GHEISHA 6 [33]

propram. The au t hör was involved in the initial i i t iplementation of GHEISHA into theframe-

work of the Cryslal Ball Monte Carlo |63]; later he bccHiii'1 res]>nn=ible for this Simulation.

Ii is worth mentioning here that we use a common geometry for EGS and GHEISHA. We

have r ewr i t t en ihr G H E I S H A gromctry routines in ordcr to use the EGS style peometry for

re«sons discussed later in seclion A.3.1.
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Figure A.l: The orpanization chart of Crystal Ball Monte Carlo.

A.2 On Monte Carlo Testing Techniques

The testing of the detector Monte Carlo for most experiments causes difficulties berause

of the complexity and usually large size of the Simulation program. An additional problem

comes from the Computer time needed for the Simulation. The timc necessary to simulate

a single event is large, approaching several seconds of CPU time on an IBM series 3000

processor.
Let us start from the detector geometry, i.e. the p&rt of the code supplied normaJly by

the user. It helps lo start vrith a simple check such äs plotting the input geometry. This

ift a reassuhng method with which one can find inconsistencies. Means for this purpose are

available in the GEANT |64] apparatus Monte Carlo program, in the form of the ZEBRA

graphk package. The GHEISHA program alone, however, does not support this feature. The

author has written a simple program allowing for 3-D image-s. The plots like 3.3, 3.5 or A.2

were produced using this program with geometry input of the Monte Carlo.

It is worthwhile to mention here two other ideas which can be useful.

The first one is the application of Computer graphics in debugging the geometry rode,

Both GHEISHA and EGS are based on a stepping principle. The slep size is limiled to a

certain percentape of radiation or interaction lengths in order to guarantee a proper Simulation

of the secondary proresses. Additionally, one has to reduce the step si?.e so that the step

does not pass the boundary of the niedium. Plotting the points where the program asks

eeometry routines for new input should then provide a clear image of the apparatus. This is

demonstrated in figs. A.2 and A.3. The example of a debugging output is shown in fig. A.4

Points outside the images of the crystals or plares appearing particularly "dirty" indicate the
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Figure A.2: 3-D view of the -t z endraps.

wo tu" •> a IDOD iwo 1400 iioo

Figure A.3: The projection of fig. A.2. For
the details see text.
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Figure A.4: Debugging example. The picture shows exactly the same part of apparatus
äs A.3. Points leaking outside the shape of crystals or places appearing particularly dirty
indicate the problems in the geometry routines.



Problems in the geometry routines. The regulär strueture reflects the step size limitations.

The boundaries produced directly by GHEISHA will be fuzzy, reflecting the effects of the

way multiple scattering is simulated (see section A.3.3).

The second idea is also presented in fig. A.3. It was produced without EGS/GHEISHA,

just u sing a "stepping Simulator". The idea is to have a small program that simulates stepping,

i.e.. offers step size and direction to the geometry routine which is to be tested. The program

is very fast and allows working with large samples, thus allowing the detection of even subtle

effects in a reasonable amount of time.

Because the Cryst&l Ball does not have a particle identification System, we can perform

only a few tests of Simulation of particle interactions. Luckily, nature offers us one well suited

tool for detector tests—muons. They have an easily distinguishable experimental signature,

deposit their energy mainly by pure ionization loss and, moreover, are generally available äs

a main component of cosmic rays. Due to the Saturation effects in the energy deposition for

hlghly relativistic particles (i.e. for $f£50 the dE/dr changes very slowly) we were able to

use cosmic ^'s sample for the early tests. In the following we have used muons produced in

the procesB e+e" —* p* ti~(f)- We also obtained results from test measurements performed

on pion beams (both ir4 and ir~) at CERN, done with a test setup built of exactly the same

Nal(Tl) crystals äs the Crystal Ball detector |65j. With help of these measurements we were

able to trace differenc.es observed in variables describing multihadronic events globally back

to problems in the Simulation of badronic interactions.

A.3 Changes of the GHEISHA Code

The Standard version of the GHEISHA code fajls to describe our data [63,66]. Figs. A.5-

A.8 show the most striking disagreements. Fig. A.5 shows the simulated detector response to

monoenergetic 5 GeV muons. The shape of the energy deposition is purely Gaussian although

the Land au shape of the energy deposition in each step was used in Simulation. Let us now

define the momentum tensor Qaä

N

Q — /_.P< $ — P°P, (A.2)
1=1

where p = (p1.p",p"") is the momentum vector found äs the product of the energy deposited

in the crystal and the unit vrctor of the crystal axis. The sum runs over all illuminated

ball crystals (A T ) . For discussion of this procedure see sect. 3.4. The smallest eigenvalue

obtained by diagonalizing the tensor Qaä is called in our plots PJ--J,,- The Monte Carlo

prediction for p\^.tt is shown in fig- A.6 together with the one found for the hadronic data

taken in the continuum at IV = 9-39 GeV. We also present the input distribution calculated

after fragmentation using the momenta of generated particles. We started by investigating

the input pj- distribution, used for the event generation, that seems to be most naturally
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correlated with our definition of p\_3tt. In order to obtain agreement with the data we would

have to shifl the input width rr of pj- (2fr2 = (pp)) used in the LUND fragmentation scheme

from 400 MeV to 150 MeV. To get a similar agreement for the T(1S) resonance data we have

1o make an even more dramatic change—to the level of 50 MeV. Such dramatic disagreement

suggests severe problems.

Fig. A.7 shows the distribution of the cluster energy of multihadronic events at W =

9.39 GeV. The Monte Carlo distribution is shifted towards higher energies.

These t wo facts suggest that the energy deposited awny from the jet axis is overestimated.

Fig. A.8 gives a hint where the main problem lies. It shows the distribution of the cluster

energy, subject to the condition that the negative pions are not aJlowed to int.eract strongly

after stopping. A much better agreement between the data anci the Monte Carlo is observed.

To obtain agreement with the data we have inspected and modified the GHEISHA code.

The Crystal Ball calorimeter is somehow special, consisting only of an artivr medium. The

inspection of the particle spectra penerated by the pliysical models shows that it is very

important for us to Ireat stopping particles correctly: this was not the rase in the Standard

GHEISHA. Below we will inspect the changes made to the Standard GHEISHA. The sections

on dEjdi and multiple scattering modifications are given here to complete the overview. The

recent work on these subjects was done by M. Kobel 67].

A.3.l Geometry Routines

Lei us start by considering the requirements our geometry program should fulfill. The

Crystal Ball measures the energy deposiled in the calorimeter down to ö(\) (crystals

with energy above 0.35 MeV are used in the analysis). The minimum-ionizing particles

deposit typically —5 MeV/cm in NaI. From this it follows thal for a stngle minimum-ionizing

track a precision (in finding the step siae) of t ~- 1-2 mm of the geometry program will suffice.

The Situation changes dramatically if the particle showers and,or the energy loss becomes

large. If an average of (n,h) particles in a shower are produced, the precision should be

increased by (1,1,) i-e.

? =<^7 ' '(A '3)
Note that in case of large Variation of n,t, one has to pursue the maximum possible number

of shower branches in order to avoid troiible with the energy resolution. An increase of the

precision should be consider^d also in case of heavily ionizing particles or those which traverse

dense media. The Reometrical precision gains additional importance for finely segmented

caloriineters, II will he very convenien! and elegant to have the same geometry input for all

kinds of particles. All this reinforces the requirement that the speed of the geometry routines

must he äs high äs possible since this pari of code is most heavily used—small inefficiencies

produce big waste of CPU time. Summarizing. we can fonnulale our requirements äs follows:
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Figure A.5: The total energy spectrum of 5 GeV/c n~ generated by the default Monte Carlo
Simulation. The shape of the energy deposition is purely Gaussian (to be compared
with A.11).
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Figure A.6: The pj-_.„ distribution for the eontinuum data. Continuous curve shows the
data, the dotted one the input distribution after fragnientation, and the dashed line marks
the default Monte Carlo prcdiction.
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Figure. A.7: The distribution of Eriu,ttr. The data are represented by the hislogram. The
crosses are the result of the Monte Carlo Simulation. The pealt at --200 MeV is du^ to the
purely ioniiing particles. For the arrow see text.
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strongly after RtoppinR.
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1. the geometry routines should be &s precise äs possible to avoid systematic problems;

2. the geometry input should be common for EGS and GHEISHA;

3. these parts of the code should be äs fast äs possible and the information delivered by

the geometry routines should be handied very efficiently.

Let us now show how in practice the coordinates inside the calorimeter are mapped into

symbolic "calorimeter cells". The geometry routines of GHEISHA deliver the number of the

"c&lorimeter cell" or find the number of tbe "neighboring cell", using the actual coordinates

äs a starting point. This essentially "hit or miss" information is then used to find using the

Newton method "how far we can go" i.e. how far the particle can be transported without

crossing the medium boundary. EGS requests more detailed information since we have not

only to answer "how far we can go" but also what is the distance to the closest medium

boundary ("cell"). Our experiences with the simple geometry in the GHEISHA treatment

revealed a large Computing inefficiency in this approach. WTe gain a factor of —2 in the CPU

time by using the EGS style geometry. This can be understood from the fact that the typical

Bt*p sizes requested by the EGS are -~2.5 cm (in our case the total time of the Simulation is

dominated by the time spent inside the EGS). Requiring an accuracy of only r = 0.01 cm, we

have. to make —8 iterations in order to achieve the desired accuracy. An extra inefficiency is

imposed by multiple scattering because we have to repeat the iteration process once again.

This inefficiency is connected with the discontinuous approximation of the multiple scattering.

After these experiences we have rewritten the GHEISHA geometry routine so that we can

use the EGS style geometry Interface. (This also saved much manpower äs we already had

the geometry interface to EGS.) Our changes essentially agree with the recommendation of

the authors of the EGS, i.e. use of the geometry input should be reduced äs much äs possible.

After making sure that the geometry routines are working correctly we can start further tests.

A.3.2 Checking of the dE/dx Constants

The ionization losses are taken into account using the Bethe-Bloch formula with the

Sternheimer density correction [68]. The mean value of the dE/dx energy loss is given by

dE t £.ni \ t i, *-"<r"moi . , '• nal ,1 ( A 4 )

di
In

1 - f l *
- 23* -

(A.5)

where irm„ is the maximum kinetic energy for f-rays, Zmc the charge of the incident particle,

/ the mean ionization potential of the matrrial traversed, and l- the density effeot correction

äs described later. The u'„ai is given by 155]

(A.6)
l + 2im,/m,nr + (m,/m,,,,)
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where m,nf is the niftss of the incident projectile. The electron density n is defined äs

.. Z
(A.7)

with NJ being tlie Avogadro number, p. Z and A the density, the charge and atomjc number

of the traversed medium. This correction t was expressed by Sternheimer [69] äs follows

t -0 A' < A'0

A'o < A' < Xl

A-, < A'

(A.8)

with A' — log#!73 and C, a, m, A'o, A'i the Sternheimer parameters. The number of pa-

rameters can be reduced. The parameters a, m. A'o. and A'| can be expressed äs a function

of C and the state of the medium [68;. The parameler C can be cakulated from the experi-

mentally measured value of /. The parameler a can be found using ihe boundary conditions

from eq. A.8.

In practice we measure the energy depositioii in some mnterial layer. Traversing thickiiess

t we expect that the most probable energy loss dE will be:

- dE = Dt lln (A.9)

The above formula is valid for dE <£' E. Fig. A.9 shows the theoretica! predictions for the

most probable energy deposition in the Ball crystal in case when H muon traverses a Nal(Tl)

crystal along its long axis (see fig, 3.4). Muons with ß~i l 3 will ränge out and deposit their

total kinetic energy (solid curve in the nrst region of fig. A.9). Within the 300 ns Crystal Ball

trigger gate we also see the energy from muon decay in — 13^1 of the cases, and in case of

negatively charged muons the absorption on a nucleus followed by soft f emissioii. In the

second region we start to punch through the ball. Tlie formula A.9 is not valid in this region

(dashed-dotted l ine) . We can use the formula A.4 instead. In this case the mean energy loss

(dashed line) will be a good approximation to the most probable energy loss because the

it'mo, value is very low. Thus no high-energy tail will be present in the dE distribution. In

the third region the formula A.9 can be safely used.

The application of eq A.9 directly in tlie Simulation Ifads to problems. The energy in

tlie Monte Carlo is deposited in many srnall steps. The cfntral limit ilicorem teils us that

this will lead to a Gaussian shape of the energy deposits a? Ihe final siirmlntion result (for a

large enough number of steps). The long high-energy tail of llie dE dx distribution is caused

by ^-ray production. Use of Landau distribution in eacli step miplit give a correcl numerical

value but will not reproduce the lateral behavior of energy deposition. Tlie problem was

resolved äs follows: We used the restricted energy loss according to the formula:

(A.10)
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Figur* A.9: The theoretical prediction for the energy depositedby muonsin Nal(Tl) assuming
that the muon passes through the crystal along its axis. For the detailed description see text.

valid for wn, < u>m„. The f-rays are produced when dE ^ «'„,. The ejection angle of the

i-ray is given by:

M,,(&-+*.xjE^ = (1+ij^urj;i:. (A.„,
P.nrj>, \ mtne) ßy u; -t- 2m,3

In this formula w and E are kinetic and total energy, respectively. The subscripts V refer

to the £-rays and 'ine' to the incoming projectile. Standard GHEISHA uses the following

formula:

COS0 = (A.I2)

with:

r&ther than the value according to A.6. With the Substitution of A.13, A.12 approaches the

exact vtüue A.11 in the non-relativistic limit.

Our strategy was to check the theoretical predictions using data. The initial GHEISHA 6

code produces an energy deposition of essentially Gaussian shape because of the already

mentioned limitations imposed by the central limit theorem. The r-rays were produced only

for liquid argen and not for NaI. The code was changed so that it produces the r-rays for all

media and the material constants were replaced by the published Sternheimer values. The

comparison of the selected muon data sample with the default and the improved Monte Carlo

eode is shown in figs. A.10 and A.11, respectively. The best agreement between data and
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Monte Carlo is achieved when we use the value of the Sternheinier paramcter C — —6.057 äs

given in ref. [70,.

A.3.3 Multiple Scattering

Muons can als<> serve äs lest dala for ihe opliraization of multiple srattering parame-

ters, just äs they dici for the Sternheimpr parameters, The fine detector granularity allows

rneasurement of the lateral energy distribution. This energy pattern is sensitive to multiple

scattering, but unluckily, also to f - r ay production.

There are two important observations: (a) it is not necessary to simulate single scattering

in order to describe the data; (b( the particular method of simulating multiple srattering is

a soutre of large CPU inefficiencies in GHEISHA. The Simulation of the multiple scattering

by imposing an angular spread of the particle momentum and the displacement in plane per-

pendicular to the particle momenlum is not well suited for the Monte Carlo Simulation. This

creates a disrontinuous particle path. EGS uses a contiimous approach to this problem '32 .

To our knowledge, a similar approach for the particles othcr than electrons has not been

developed. For completeness let us here review briefly the formulas äs used in the GHEISHA

program.

Multiple scattering is usually described by the scattering angle projected on two per-

pendicular planes (each referred to äs projerted angle) and the positional shifl in the plane

perpendicular to the particle momentum. The root mean square projected scattering angle

for the particle with momentum p traversing the path t in the medium with the radiation

length X0 is !55

14.1
Iradians]. (A.14)

The multiple scattering probability is Gaussian in the redured projected angle a -• 0/80 thus

given by

Additionally, in order to obtain a better description of the data, we have simulated a single

scattering (not simulated in Standard GHEISHA) with the probability given by 171]

l da
:;; -;• (A-16)

The displarement in the plane prrpendicular to the momentum of thr incident particle is also

Gaussian wi th the spread t/- i55, •

yo = -^f»c . (A.17)

Ref. [55: gives the following formulas. under the assumption thal zj and r2 are independent

Gaussian random variables with mean zero and unit variance, used to obtain the actunl values
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Figure A.10: Tbe comparison of the energy deposited in the Ball by j/s produced in the
reaction e 4 e ~ —> ^ 4 ^ ~ ( f ) . Th* crosses represent the data, and the histogram the default
Monte Carlo (here: width and peak position adjusted to fit the data), normalized to the
number of data entries.
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Figure A.11: The comparison of the eneigy deposited in the Ball by /i's produced in the
reaction e 4«" —« p*fi~(f). The crosses represent the data, and the histogram the corrected
Montr Carlo normalized to the number of data entries.
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Figure A.12: Muon identification probability äs a funftion of the acceptance rut
TCUI > f — Ej/E\T,. The crosses show the data, the dotted line shows the Standard GHEISHA
Simulation and the continuous Hne the effect of our rlianges.

of scattering angle ff and the displacement y:

* - 2l »t, (A.18)

(A.19)

GHEISHA does not account properly for the correlation between the generated scattering

angle and the di^plarement hecause the second term of A.19 is omitted in the generation.

The effect of the rhanges on the lateral energy pattern is shown in fig. A.12. There we

show the reduction in the efficiency for finding a muon when the cut on energy ratio E\/Ei$ is

tightened (see seclion 3.4). The agreement between data and Monte Carlo has improvedwith

our modifications, stemniing mainly from the proper Simulation of ^-rays. Multiple scattering

has only a wpak influence on the lateral energy patteru.

A.3.4 Absorption of Negatively Charged Particles

Positivclt/ rhargzd particles stopping in matter simply decay berause the Coulumb bar-

rier between the particle and the nucleus prevents nuclear interactions. For slow negattvely

charged particles ( T T ~ . A" . D" . . . . etc.) the dominant process is the absorption by nuclei.

The Crystal Ball detector response Simulation is partirularly sensitive to the pion and kaon
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fcbsorption, äs these are the most frequently produced particles. We expect to find on aver-

age about eight eharged pions and one eharged kaon in a multihadron event at c.m. energies

around 10 GeV.

Data from B lest setup J65] built of exactly the same NaI crystals äs the Crystal Ball

detector were used for a comparison with the GHEISHA Simulation. The test module was

exposed to 200 MeV/c positively and negatively ch&rged pions which stop in the detector.

The expcrimental data of figs. A.13 and A.14 show a large disagreement with the GHEISHA

Simulation (figs. A.15 and A.16) for negative pions while the positive pions agree reasonably.

Although the scales differ (MeV and "ADC channels"), the comparison contains an important

message: For TT* and -n~ the measured energy depositions peak at the kinetic energy of the

incident particles, whereas the Monte Carlo predicts for stopping TT~ mesons a peak at the

total energy of the incident particle. This indicates a serious shortcoming in the Simulation

code. For a proper Simulation we need precise experimental data including not only the

measurement of the total energy deposition but also of particle rnultiplicities and energy

spectra in j r~ absorption proresses. Such a measuremenl was done in ronnection with a

recent cancer therapy study (72] at SIN in Switzerland. The experimental rrsults can be

«ummarized äs follows:

1. only —75% of the pion mass is available for the kinetic energy of the particles emitted

after the absorption process. The rest goes into binding energy.

2. most of the energy is carried away by neutrons (see lable A . l ) .

3. the momentum spectra ean be parametrized approximately by an exponential function:

-exp(-pc/200MeV).

An important number is the ratio 5 : l between the number of neutrons and protons. The

GHEISHA parametrization assumes this ratio to br —l : 1. A ddit ionall y, the ratio of protons

lo heavy fragments was overestiraated and the entire mass of the TT" was assumed to be

available for the kinetic energy of the produced particles.

This allows for a qualitative understanding of the discrepancies between our data and the

GHEISHA predictions for the p1T_ t distributions. Particles with large p\y have lower

energy and are stoppinp. GHEISHA releases a too large fraction of their energy to too many

rharged serondary particles. This overestimates our measured {p\_,el} in the Monte Carln

Simulation. The effect is enhancrd by the missing Simulation of light quenching in NaI (see

sect. A.3.5 below).

The absorption routine PIHABS was rompletely rewritten using the measured experimental

input. Due to the hermetic structure of the GHEISHA program, allowing for production of

fragments heavier than He, is not trivial. We decided to generate all fragments äs given in

table A.l but afterwards to exclude fragments heavier than He from further tracking. This
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Figure A.13: The pulse height spectrurn for 200 MeV/c ?r+ in a Nal(Tl) crystal test setup äs
measured by [65].
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Figure A.14: The pulse heigh* spectrum for 200 MeV/c T' in a Nal(Tl) crystal test setup
measured bv [65i.
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Figure A.15: Default Monte Carlo prediction for the energy distribution of all clusters created
by 200 MeV/c ** stopping in the Crystal Ball. One pion may give more than one entry.
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Figure A. 16: Default Monte Carlo prediction for the energy distribution of all clusters created
by 200 MeV/c ff~ stopping in the Crystal Ball. One pion may give more than one entry.
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Table A.l: Features of particle production i» the process of JT" absorption on 1}C according
tore f . 172:.

Particle type

n

P
d
t

He

Lie

L L;r

Average multiplicity
per ir~ stop

2.5
0.485
0.356

Average released kinetic
energy per TT~ stop 'MeV

76.0
10.4
6.3

0.249 3.0
0.84
0.12

6.2

0.8
0.12 | 0.8

decision is rootival.ed by the low abundaiires of the lieavy frapments and the observation that

the measured energy deposition of heavy fragments will be suppressed by light quenching in

the srintillator, To oiir knowledge the depeiidence of the absorption prncess on the mass of

the nucleus was studied neither experimentally nor theoretically. We decided to use directly

the results on UC ;72].

The comparison of the vjsible energy spectrum obtained with the modified ff~ absorption

routine with the Lest measurement [65) is shown in fig. A.17. The distribntions have been

normalized to each other to agree in peak height. The energy scale of the test data has

been set with the help of the TT" peak positions. The continuous line shows the shape of the

experimental distribution ( the same äs in fig. A.14), while the crosses indicate the results of

the Simulation. It now gives the peak in the TT" spectrum at the expected position.

However, we still observe clear difTerences above and below the peak region. As will be

disciissed in more detail in sect. A.3.6. the simulated ränge of neutrons is underestimated, and

the photons emitted in neutron capture are too energetic in GHEISHA. Thus the neutrons

contribute more energy to the TT~ rlusters than in reality. In addition those neutrons, which

leave the TT~ cluster region. may create additional low energy rlusters when they are captured

further away. Those additional clust.ers clearly show up äs a peak at low cluster energies

in figs. A.16 and A.17. As a first test of this assumptions we excluded the neutrons from

tracking, which results in fig, A.18, Now also the energy depositions above the peak are well

described. The broad enhancement below the peak in the inrasured distribution cannot be

explained. 1t niight well be due to beam inipurities since muons froni ihr derny of 200 MeV/c

pions have a kinetic energy of several 10 Me\".

Similar problems occur in the treatnient of stopping A . Negative kaons ran form hy-

pernuclei or produce other strangp particles. The assumption of GHEISHA, to perform only

K~j' —i Äff" and h'p —* A7 in K~ absorption, is again t<>o crude. Table A.2 (from 173])

shows the complexity of the processes following negative knon absorption. We used these
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Figur? A. 17: Comparison of the simulated cluster energy spectrum for stopping ir~ (crosses),
obtained with the modified Absorption routine PIHABS and default neutron tracking, with the
measured one from [65] (solid curve).
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Figure A.18: Comparison ofthe simulated cluster energy spectrum for slopping TT (crosses),
obtained with the modified absorption routine PIHABS and neutrons excluded from tracking,
with the measured one from [65] (solid curve).
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Table A.2: Elementary processes for pion and hypercm production from A" absorption '73],

Production

Decav

Inilial state

A * p

Final state Branching ratio
: in (,"t

E' 4 TT~ 22

E' + 7Tf 28
, v- 4 n-- 44

A -t- rt' , G

A" -t- r» ! Er -t jr ' 30

E 4 n1 30

A -t 7T- , 40

A'' 4 ArA E" + A' ! 33

Ec -i- A" 33

E- 4 Ar

Free E" n 4 TT"*

l
1 Free E°

Free E-

P 4 irn

A4 7
n -i- TT~

absorption
Free A n J- 7rD

p u - i r -

33

4S
52

100

60

40

36
64

probabilities to simulate negative kaon absorption in the routine KMABS. assuminR that the

absorption process takes place äs 011 free p, n. and two-nucleon aggrepates (NN). The

numbers are normalized such that the branching ratios for K ~ p , A"~A"A, and K' n add up

to 100% each. The proress of A'" absorption on two-nucleon Aggregates has a probability

rathcr independent of the target used and contrihutes about 20T( to the total absorption rate
for targets heavier than deuterium |73]. The relative probability for the absorption taking

place on a single neutron or proton within ihe nucleus is taken to be equal 1o the (A — Z)/Z

ratio. Formation of hypernuclei was not simulated.

The main result of this treatment is that not only neutral but also chargeo1 pions are

directly produced in A"" absorplion. and that the pion energies now vary fr (»in aboul 170 MC V

for the processes involving A production tt> aboul 500 MeV in thosr rases where the absorption

takes place on two-nurleon aggreg&tes. As an example let us inention. t h a t t l ie niean visütlf

encrgy for 400 MeV, r siopping A'" in the C'rystal Ball is reduced from 5(1(1 MeV to 380 MeV

through our rhanges and that the visible energy distribution is broadened.
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Figure A. 19: The Pr_.„ distribution for the continuum data before accounting for light
quenching (dotted) and after all changes (dashed-dotted) compared to the data (solid).

A. 3. 5 Light Saturation Problem

The Standard GHEISHA code docs not account for light Saturation (light quenching) in

the scintillator. The only way this can be effected is an explicit change in the GHEISHA

code. With the parametrization used in GHEISHA, the effect of light Saturation is described

by|74]

AE 1

Ax

(A.20)

where E,„„, Era\, are the observed and calculated energy depositions, c is the quenching

fartor, and Ar the path length insidr the scintillator. The above formula is valid only for

particles of unit charge. GHEISHA uses for particles with charge Q greater than unity:

f = 0.8 E Q. (A.21)

The fornmlft A.20 is the expansion of the formula A.22 given in J75] in case of sinall cdEIdr.

We decided to use the original formula

AF'

(A.22)
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because we encounter large tdE'dr values. The r values were measured for BGO and some

scintillntors. We assumed scaling by the density relative to NaI 133]. The effect of light

Saturation is in our case non-negligible. For mininmm ionizing particles assuming 5 MeV/cm

äs the average energy loss the change is of the order of 31/!.

Because we are using tlie energy depositions freu n the crystals 1o define ihe pj._ irl variable,

quenchinp changes the j^-_ i i ( distribulion dramatically. äs it lowers the observed "offjet-ajus"

energy depositions emergir.g niainly from the nuclear interactions in the cajorimeter. The

energy ileposited "011 jet-axis" is niuch less affected by tlie light quenching effect because

the particles produced close to the jet-axis are usually energetjc. After accounting for light

quenching the simulated Pj-_ ;, r distribution of multihadron evenls in the Crystal Ball nicely

agrees with the data Isee figure A.19).

A.3.6 Neutron Transport

As was noticed by various nuthurs '76.77 neutron absorption and transport is extremely

difficult to simulate correctly. Conipared to neutron energies in the MeY ränge, the cross

section for capture is large for neutron energies of several keV, bul very Inrge for energies

below the eV level and for tliernial neutrons. In our case tlie energies of serondary pro-

duced neutrons are of the order of MeV. The GHEISHA 6 code treats them äs thermal äs

soon äs their energies fall below a ruf off value of l MeV. In this way we get only B very

crude picture of neutron interertions: As they lose their energy slowly—niainly by elastic

scattering-^neutrons with few MeV can travel far inside the detertor before being captured

by nuclei. The neutron absorption process can be described äs a ( n , - j )-reartion where the

T quantum has a well-defined energy typical for the nucleus in which the absorption takes

place, GHEISHA 6/7 assumes that the absorption leads to emission of gamma quanta with a

total energy of 8 MeV, B typical nucleon binding pnergy. The energy is emitted in two bursts:

one gamma is generated with its energy taken frorn a Gaussian distribution with a niean of

6.5 MeV and l MeV spread, then a second gaiiuna is generated to reach the 8 MeV deexcita-

tion energy. This approximation is only sufficient for applicatii>ns where high accuracy down

to deposited energies of a few MeV is not required. Because of the 10 MeV threshold for

the Crystal Ball cluster energy we have to simulate the absorption process with more care,

äs can be seen in figs, A.7 and A,8. In fart . the mean energy released in the capture process

of neutrons in NaI is much lower l l iau 8 Me\ '78' . We have nuidified tlie GHEISHA routine

CAPTUR so that -j lines with a total energy of about 3 MeV are emitted for NaI. whereas we use

tlie default GHEISHA procedure for tlie nther inactive inatcriaU in the Crystal Ball detector.

These changes were necessary to desrribe the data just above tlie t.hreshold of Eci^„er äs can

be seen in figs. A.7 and A.8.

The cutoff value for the neutron transport was not changed. An improvement is readily

available through the routine NSLDOU in GHEISHA 7, which simulates the rnoderation down
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to thermal energies. However. oui studics of neutron Simulation were done with GHEISHA 6

only.

A.4 General Remarks on Monte Carlo Techniques

The growing sizes of (he Monte Carlo programs require a new look at thc entire technique

of simulating high energy physics experiments. A scan through the availeble publications

on Monte Carlo shows that no one is really happy with the present state-of-the-art. Huge

programs like GHEISHA 133], GEANT 64], FLUKA [79] or HERMES [80] are consuming

much of Computer time and delivering results of uncertain accuracy. Prograins are rather

complicated and vrry hard to debug. Nonetheless, with a large Investment of time study-

ing and modifying the Monte Carlo Simulation, we are able to report improvement in the

description of data, thouph not complete agreement with measurement.

Because the geometrical routines are the most heavily-used parts of code in the Monte

Carlo prograras, we spent some time on this subject. It seems that somehow physicists

are just now discovering techniques that have been invented for applieation in CAD/CAM1

Systems. A first step in that direction was done in GEANT, where the graphics interface was

made an integral part of thc whole package. This saved much time making the debugging

of the geometry very much faster. The authois of HERMES report & specd-up factor of 8

äs a result of the sperial geometry package and simultaneous vectorization of the code. The

author would like to suggest that the progress referred to in the area of Computer graphics

should also apply to the problems we are faced with in the Monte Carlo Simulation. Moreover

the progress in this field is very rapid and gratifyingly there are certain Standards which can

also be used for physiral applications. The 'Tay tracing" technique is a common method

of obtaining high-qu&lity Computer graphics with an almost natur&l appearance. The idea

hidden behind this name is purely physical: backtracing of the rays from the eye of the

observer to the object in question, subject to all mies of optics. Our Monte Carlo method

has a one-to-one correspondence to the case of transparent solids—the progress made in this

field can be measured äs a reduction from hours of Computer time for & single picture down

to real time of plotting. The progress in this field is also connected to the progress in storage

of the geometrical input and its minimization.

In this respect we must make a few observations. The geometrical interface of tlie

GHEISHA program is particularly ineffective. The geometry routines were previously com-

pletely user-contrihuted. GEANT was a real break through äs it reqiiires only the description

of the detector äs a sei of solids. i.e. creates a la t t ice in spare, while the niovements inside

the lattice are rather done by GEANT itself rather than a users routine. Further progress is

made in HERMES where the entire geometry code is prepared using a preprocessor. Another

'CompuUi Aidfd Design, C'ompulrr Aidrd Machining
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problera is the flexibility of the program äs for example in the decay routines of GHEISHA.

All the decays are written äs separate routines, so changes require Intervention of the users in

the source code of the program. Again there is » readily available modifiration—the decays

done äs in the LUND Monte Carlo; in such a rode nev particle decay data can be easily

incorporated.

Finally, we would like to discuss the meaning of Monte Carlo accuracy. As already men-

tioned, the complexity of the strong interactions causes the troubles. In EGS one can choose

the Simulation accuracy by s momentum cut-off value. An «ttempt t o apply a slmilar method

to the hadronic Monte Carlo will produce unprediclable results äs fot example in the case of

T~ absorption. We would like to note liere also the implication of "rare'' particle decay modes.

In case of hipli s ta t i s t ics Monte Carlo data sets these can make an important contribution.

Concluding we can say lhat ihere are many things that can and have to be done in the

field of the modeling of the detector response for hadronic showers. The performance of

the Monte Carlo code depends both, on high- and low-energy shower modeling. There is no

universal Monte Carlo for all detectors—tlie particular applieation of ihe existing programs

has to be done with care.
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B. Luminosity Measurement

The luminosity C is the proportionality fartor between the number of events produced

per unit time and the cross section for a given prooess

dN

For storage rings the luminosity in one interaction region can be found from the formulae

(B.2)

where n4 , n are the numbers of particles per bunch, v the revolution frequency, A'bunfi, the

number of bunches per beam, a* ^ o~ the crossing areas of beams. Eq. B.2 does not have

practical application since the quantities used in it for luminosity evaluation are difficult to

measure. The luminosity can be found directly from B.l in the case when we are able to

c&lculate theotetically the cross Beetion for some process having reasonably high counting

rate. In the case of e*e~ storage rings we normally use Bhabha scattering r+e~" —> e + e~(7)

to determine the luminosity, Because of the absence of reliable Charge Information, we have

also had to include the process e+e~ —t 77(7) into the calculation of the luminosity. This

leads to --10% increase in the counting rate of the luminosity events (within our selection

cuts).

The Crystal Ball me&sured luminosity at small and large angles with respect to the beam

direction. The luminosity measurement at small scattering angles profits from higher statis-

tics. but suffers from systematic uncertainties caused by the extreme sensitivity to small

detectoi misalignments and radiation damage. The small angle luminosity monitor is shown

in fig. 3.3, while fig. B.l shows it in more detail. It consists of four counters located at 8 — 8°.

The measurement at large scattering angles results in smaller statistics, but systematic effects

are much less pronounced.

The luminosity is measured from the e A f ~ —> e+e~(-y) and e+c~ —* 77(7) events observed

in the main Nal(Tl) detector. Th« corresponding graphs (in lowest order QED) are shown in

fig. B.2, The measurement at small angles was used for a fast luminosity determination and

also äs a cross check for large angle luminosity determination. Events with exactly two energy

clusters with Eciu„tT > 0.351V inside cos0, < 0.75 are selected äs luminosity events |8l].

The integrated luminosity C is calculated from the number of luminosily events A:tumi using

= C = NLum. W'/r, (B.3)

where H' is the Center-of-mass energy. The explicit factor Wn removes the Jeading l/W2

cross section dependence. allowing use of a constant conversion factor TJ within our limited
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5, C, P, S,

Figure B.l: Small angle luminosity monitor. C, P are scintülation counters, 5 the
lead-scintillator sandwich shower counters. The cross marks the interaction point. The
luminosity event is ttiggered by back-to-back coincidence (1-3, 2-4) CP counters and high
energy shower in the corresponding S counters.

Figure B.2: The lowest order Feynman diagrams for: a) and b) Bhabha scatteriiig, c) and
d) e4 e~ —> 77.

H' ränge. The value of T? is detennined by generating a sample of e ' e ' f f ) and 77(7) Monte

Carlo events with the program of Berends and Kleiss [34] and passing them through the füll

detector Simulation äs described in section 4.2. The luminosity is corrected for the direct

decays T —* £ 4 e ~ which conlribute to A"Lumi,

A 2.5% systematic error on the luminosity was obtained by adding contribütions from

the following sourres in quadrature: 1.0% from Monte Carlo statistics, 1.0% from 4"1 order

QED corrections 82], 1.9% froni ihe dependenre on the cuts, 0.7% from the correction

for direct decays T —• c^t~ . 0.2/J from hadrunic and bram-gac background, 0.1%) from

the non-Jeading energy dependence of the conversion factor r;. It is wortli mentioning that

the luminosity found by the author ]83] applyiiig differcnt selection criteria and of course a

different normalization ronstant r? agreed within the 0.5%- with the values presented here,

thus bringing additional confidence to the estimation of our systematics.
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C, Asymmetric Errors of Poisson Dis-
tribution

For s m all counting rat« the probability of observing n events is given by the Poisson

distribution:
_ , A"exp(-A) „ ,
P(«) = T ' t0 '1*n!

where \s a real number. It is both, mean value and variance of the distribution. As this is

a discrete distribution we can try to e/stimate the errors by assuming that our measurement

n ie ihe fluctuation at the level of (l - CL) from thr distribution with a mean value A|„,

s maller than n (see fig. C.l)

(l - CI) = (C.2)

Similarly we can assume that our observed number is the effect of the fluctuation at the

level of CL from the distribution with the mean value of Ah, f lh. This approach changes the

problem from discrete to continuous one. Thus the asymmetric errors can be caloulated from

the differences n - \, ̂ h,sh - "• The value of A c&n be found eolving eq. C.2 numerieally.

Taking CL of 16.5% we get the error estimate equivalent to one Standard deviation in Gaussi an

distribution.

arbitrary scale
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005 -

0.0

n

Pigure C.l: The calculation of asymmetric errors of Poison distribution.
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