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Abstract

This work is based on a study of e*e™ collisions in the energy region of YT(15) and Y(2S5)
resonances. Using the data taken by the Crystal Ball Detector in the continuum below T(18S)
we have determined the value of R, the ratio of the hadronic cross section to the Born cross

section of y pair production, at c.m. energy W' = 9.39 GeV to be
R=2348400412014.

This is the most precise measurement of R below the T(1S) threshold. Resonance scan data
were used to determine the leptonic partial widths I, of T(1S) and Y(25). We find

Tee(T(15))
e (T(25))

(1.34  0.03 + 0.06) keV
(0.56 + 0.03 + 0.02) keV .

The method of obtaining T, from the measured excitation curve is not unique. Our results
are ~10% higher than those already published mainly because we used an internally consistent
treatment of the radiative corrections. We discuss the effect of applying different theoretical
prescriptions for the radiative corrections on ...

Both results presented here require the knowledge of the absolute cross sections to a high
precision. Uncertainties in the corrections to the cross section due to detector efficiency
constitute the main source of the systematic error. To minimize these uncertainties substan-
tia] modifications of the detector simulation program GHEISHA were necessary to obtain
a satisfactory description of the data. The modifications may be of importance for other

calorimetric experiments.

Streszczenie

Prezentowana rozprawa zostata wykonana w oparciu o dane e*¢” w okolicach energii od-
powiadajacej masie rezonanséw T(1S)i Y(2S). Uzywajac danych wspdlpracy Crystal Ball ze-
branych w kontinuum ponizej rezonansu T(1S) wyznaczono wartoé¢ R, t.). stosunek hadrono-
wego przekroju czynnego do Bornowskiego przekroju czynnego na produkeje par mionowych,

przy energii ukladu érodka masy W = 9.39 GeV otrzymujac:
R =348+0041+0.14.

Jest to najbardziej dokladny z dotychczas opublikowanych pomiar R ponizej progu Y(1S}).
Dane ze skanu resonansu zostaly wykorzystane do wyznaczenia czastkowe] szerokosci lep-

tonowej I, rezonansow T(15}1 Y(2S). Zmierzono:

Ul

T (T(1S))
Te(Y(28))

(1.34 2 0.03 = 0.06) keV

1]

{(0.56 £ 0.03 + 0.02) keV'.

Metoda wyznaczenia I',. ze zmierzone] krzywej rezonansowej nie jest jedyna. Nasze rezuitaty
sg ~10% wryisze od dotychczas publikowanych glownie z powodu odmiennego traktowania
poprawek radiacyjnych. Przedyskutowano wplvw roznych uzywanych metod na mierzong
wartos$é T',,.

Oba przedstawione tutaj rezultaty wymagajs znajomosci absolutnego przekroju ezynnego
z duzg dokladnoécig. Niepewnos¢ wyznaczenia poprawek aparaturowych do przekroju czyn-
nego stanowi gléwne zrédlo bledow systematycznych. Aby zminimalizowaé tg niepewnosé
konieczne byly znaczne zmiany programu symulacyjnego GHEISHA. Przedstawipne mody-

fikacje mogg by¢ réwniez istotne dla innych eksperymentéw kalorymetrycznych.
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1. Introduction

Ever since the discovery of the T resonances in 1977 [1] measurements of their leptonic
partial decay widths T, have been of great interest. The measured values support the
interpretation of the T family as bound states of charge |¢} = 1/3 particles and serve as tests
for potential models, which describe the T(nS) as the 135, states of a bb system. Moreover,
the total widths ' are usually derived from the measured I, widths via the relation I,y =
I../B,,, where B,, is the Y(nS) branching ratio to n pairs. (Hereafter we assume lepton
universality.)

In this thesis we report on a precision measurement of T, for the Y{1S) and T(2S)
resonances performed with the Crystal Ball detector operating at the DORIS-II €* ¢~ storage
ring at DESY. T, is determined by measuring the cross section for the process e*e” —
hadrons as & function of the ¢ e~ center-of-mass (c.m.) energy in the region of the resonance.
We use four scans of the T(15) and one of the T(2S). From the T(1S) scans and the continuum
data below the resonance we also obtain a value for R, the ratio of non-resonant hadronic
cross section to the Born cross section of ¢ pair production, at c.m. energy W =939GeV. It
is worth mentioning here that the measurement of R was one of the first cases where radiative
corrections were necessary to explain the MARK [ data (2]. The author was participating in
the LENA scan experiment with the main aim of finding exotic phenomena in the continuum
below Y{15). Consequent application of the radiative corrections allows explanation of the
data without any exotic physies [3].

Extracting Ty from T../B,, requires consistent application of radietive corrections in
the separate determinations of T, and B,,. which has not been the case for previously
quoted values of Ty for the T resonances. In this thesis the radiative corrections are done
in such a way that our T, can be used with previous determinations of B,,. We compare
our result to previous I',. measurements by re-normalizing them to correspond to the same
radiative corrections,

The hadron production in the continuum and definition of R are discussed in sections 2.1
and 2.2. T.. and in turn T, strongly depend on the parametrization used for the visible cross
section @(1'). The different theoretical formulations for it are in some detail discussed in
section 2.4. Section 3.2 gives a short description of the Crystal Ball detector. The hadronic
event selection criteria and selection efficiencies are shown in sections 4.1 and 4.2, respectively.
Section 4.3 is devoted to the backgrounds in the hadronic data sample. In section 5.1 we
discuss our procedure to determine T',, and present our results. The effect on T, of different
theoretical formulations for 3(W ) is discussed in section 5.2. The measurement of R is given

in section 6, which is followed by section 7 containing the final conclusions. The apparatus

response was simulated by the EGS for ¢* and 1. aud by GHEISHA for all other particles.
Since the changes applied to the GHEISHA Monte Carlo simulation program can be useful
for other experiments they are presented in more detail in appendix A. The luminosity
determination is discussed in appendix B.

The results of this analysis have been published {4.



2. Basic Concepts

We believe that all known particles are composed of two types of fermions, the quarks
and the leptons. There also exist intermediate bosons that mediate the forces between the
fermions. Basic properties of the fermions arranged in generations are shown in table 2.1.
Quarks carry an additional quantum number—color (red, blue, green). Free quarks are
not observed in the experiment. All experimentally observed final states are color singlets
and we do not observe states with a fractional charge. This experimental fact is called
“confinement”. The mesons are constructed as quark-antiquark states while baryons are
three quark conglomerates such that the final objects are colorless. No experimental evidence
has been found that leptons and querks have any internal substructure. The question of
generation number is not resolved at the present leve] of theory. Leptons carry their lepton
family quantum number. This number is conserved in all known types of interactions.

There are basically five electromagnetic processes leading to particle production at e*e”
storage ring at c.m. energies around 10 GeV. These are: a) one photon annihilation leading
to fermion pair production in the final state, b} one photon annihilation leading to resonance
production in the final state, c) elastic scattering, d) and e) annihilation into two photons,
and f) 77 interactions. Fig. 2.1 shows the corresponding graphs in the lowest order QED.
Processes e*e~ — e*e” and e*e” — vy (graphs (a), {c}, {d), and (e), respectively) are
used for the normalization of the experimental data. They are discussed more explicitly in
appendix B. Process (f) contributes to the experimental background. More details about
it will be given in section 4.3.2. In the following sections processes of type (a) and (b) are
discussed.

In the pext sections we will be dealing with so-called “radiative corrections™. The name
“radiative corrections” is very often used to describe various things. In our case by radiative

corrections we will refer to the fact that any process including charged particles implies some

Table 2.1: Basic properties of quarks and leptons

fermions i
particles i properties
type | gemeration | electric . color |
1| 2| 3] charge JI
quarks | u | ¢ [ t?| +2/3 jrbg!
d|s|b]| -1/3 {rbg

leptons | ve | ¥ | ¥y 0 0
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Figure 2.1: Lowest order processes contributing to particle production in e*¢” collisions.
a) One photon annihilation leading to fermion peir production in the final state; b} One
photon annihilation leading to resonance production in the final state; ¢) Elastic scattering;
d) and e) Annihilation into two photons, and f) 44 interactions.

rearrangement of the electromagnetic current when going from the initial state to the final
one. This implies that some charge acceleration takes place and as the effect photons are
radiated. The name “radiative corrections” is sometimes by analogy extended to the higher

order QCD or electroweak corrections.

2.1 Particle Production in the Continuum

Particle production in the continuum much below Z° is dominated by one photon anni-
hilation {graph 2.1a). The following discussion will not hold for the process e*¢™ — ¢te”
as in this case we have to consider also elastic scattering (graph 2.1¢). In the c.m. system
the following expression is obtained in lowest order QED for the fermion-antifermion pair
angular distribution

da o 2 2 2} ;2
- mﬂ,q][(1+cos 0)-+ (I—/3!)sm 9] , (2.1}
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where o is the electromagnetic coupling constant, 3, the velocity of particles within the
produced pair in speed of light units, E,.... beam energy, # the angle with respect to beam
axis, W = 2E,..m the c.m. energy and gy the charge of produced fermions in electron charge
units. If 8; =~ 1 eq. 2.1 reduces to

do 2

a3 3
0 = mq’ (1 + cos 0) . (2.2)
Integration over the full solid angle leads to
o - 4r o’
olete” = ff) = ?Wﬂ;- (2.3)

Hereafter, by the superscript ° we mark the fact that the calculation is done in lowest order
QED/QCD. This convention will be kept throughout this thesis. In case of quark-antiquark

pair production we have to account for the number of colors. Thus eq. 2.3 reads

2

o°(e*e” — guark-antiguark) = %}q? . (2.4)
Due to confinement we do not observe free quarks but multihadron final states. The produc-
tion of quarks is independent of the hadronization because of asymptotic freedom, i.e. the
confinement plays an essential role at large distances between quarks while the production
of quarks is believed to be pointlike. Thus the expression for the lowest order QCD hadronic
cross section can be written as follows

nt

2
o°(e*e” — hadrons) = 41%— ¢ (2.5)
“ 1

where ny is the number of opened quark thresholds. It is worth to note here the 1/W? energy

dependence of the cross section. It is a typical feature of one photon annihilation.

2.2 Definition of R

R is defined as the ratio of the non-resonant hadronic cross section to the Born cross
section of y pair production
o°(e*e” — hadrons) :t)\nk:‘::_

R = —5—"7F=—v -
o°(ete” = pty) < gt

(2.6)

The lowest order p pair production cross section at fixed c.m. energy W is given by eq. 2.3

5!

o 4 - _ 4r o’ 86.9 N
olete mptpT) = TS ﬁqnbce\'?. (2.7)
In lowest order QCD the theoretical prediction for R is given by:
it np=4
R=3% ¢ "= 3/ (2.8)
=1

g

€ q
a) b)
¢ q
c) d)
e) { f)

f

Figure 2.2: Representative set of Feynman diagrams which contribute to O(c’®)inete — ¢q.
To this order the graphs c-f contribute only through their interference with the lowest order
graph a.

where g are quark charges and ny is the number of opened gquark thresholds. The factor
of 3 accounts for the number of colors. Historieally, R was one of those quantities where we
explicitly needed to account for the color degree of freedom. Such a definition of R makes its
experimental determination sensitive to any effects leading to hadrons in the final state.
The first order cross section, as employed in the definition of R. has to be calculated from
the measured cross-section by applying radiative corrections. The representative set of the
Feynman graphs for the process e’ ¢” — g is shown in fig. 2.2. We have also to consider
the graph 2.2b representing the initial state bremsstrahlung, since experimentally we cannot
distinguish radiative from non-radiative events, at Jeast not for low photon energies. In fact
the cross-section for graph 2.2b diverges for low photon energies; however, this divergence
is cancelled by the interference term resulting from the lowest order graph 2.2a and the
vertex correction graph 2.2¢ {Kinoshita-Lee-Nauenberg theorem}. Generally, we can write

the following expression for a hadronic cross section at given c.m. energy W’
kmar -
o(W) = / (W, kdk (2.9)
(]

where H;I = k = 2E hoton /W is the fraction of the beam energy carried by the radiated photon
and o{ W} E) is the true differential cross-section. The maximum momentum konor carried away
by a photon is limited by the requirement that at least one 7 pair can be produced and yields
2

4my
. (2.10)

km“':I__ll'_’
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The emission of the photons can influence selection efficiencies by changing the multiplicity
and topology of 8 produced final state. As an example we can consider a high energy photon
staying undetected in the beam pipe. It will influence both, the energy deposited in the
detector and the topology of the whole event due to the boost of the center of mass of the
remaining g system. All those effects are taken into account automatically in the efficiency
calculation by the Monte Carlo method described below.

Evaluation of the graphs in fig. 2.2 yields a rather complicated expression for the differen-
tial cross-section oW, I_c‘) which is best dealt with in form of a Monte Carlo event generation
program. However, when integrated over the photon energies and emission directions the

expression becomes relatively simple:
(W)= o (W)(1 + ég) (2.11)

The factor (1 + éz) accounts for the radiative corrections. The term $g contains the following
contributions
6}1 = 5‘ + 61« +& + équ«rht + 5)\474 (212)

where &4 originates from soft photon bremsstrahlung (graph b), vertex correction (graph c),
correction of the electron propagator (graph d), and electron vacuum polarization {graph ¢
of fig. 2.2):

2713 W 1, 14
ﬁj—ilnkm,n+—;[?lnm—e+éw —;l (213}
with ) w
t:—u(2ln--——1) (2.14)
- m,

the so-called equivalent radiator thickness. The photon energy cutoff k.. is an arbitrarily
gelected value such that photons below the kmin do not change the selection efficiency. The
terms &, 6., and éguark, Bccount for the leptonic and hadronic vacuum polarization corre-
sponding to graph 2.2e. Term é, contains the electron vacuum polarization (see eq. 2.15).
It is customary to write the vertex correction and the soft photon contribution as one term
since an infrared divergence in the initia} state radiation is cancelled by including the vertex
correction. For the vacuum polarization due to e, 1, 7 the correction depends only on lepton
mass and is approximately given by

> W 5
epr = 2—"( no-— - ) ) (2.15)
”

3 meur 9

The correction fquark, has to be evaluated numerically {6}.
The term &yq.q is responsible for the hard photon emission where by “hard photon™ we

mean a photon of energy above kmin. In the parametrization according to ref. [7] it yields

kmoz 1- krm:x
6Mrrf = %! [219 —In (——‘__) - “\'mur - kmln)] . (216)

kmun (1 - kmm)
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Figure 2.3: The ¢ ¢ total cross section: a) the energy region Y(1S) through Y(4S): b} The
energy region Y(45) through T(6S) (from ref. [8]}.

The acceptance of the apparatus is normally found by the Monte Carlo method since the
integration is not easy (or impossible) to perforin analvtically due to the complicated shape
of the apparatus acceptance function. Note that in the acceptance we have to include not
only the geometrical effects but also reconstruction and selection efficiencies etc., i.e. effects
difficult to express in terms of analytical functions. Technically we generate the events with
or without the radiative photon depending on the generated k value (photons with energy
below km,. are not produced). The apparatus acceptance is then found as the ratio of the
number of Monte Carlo events passing the selection criteria, Neceepted. to the total number of

generated events, Noercrated:

fire a(WR)E(R)dE _ Noceepred

£ = — - . 2.17
Jlmer o (W, k)dk Noenerated (217)
where #(k) is the apparatus acceptance function.
From eq. 2.11 we finally get

_ ) 2.18
T {1+ ép)e (2:18)

Combining 2.6 with 2.18 we obtain the following expression for R

Rob-
R=- ——

1~ Fme {2.19)

where R®' = o (e*e -2 gglio{ete s pp). Figure 2.3 shows the behavior of the total

cross section in the T energy region.
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Figure 2.4: A lowest order QCD diagram of
- the leptonic decay of a vector meson.

2.3 Resonance Production and Decays

In one photon annihilation we can directly produce resonances carrying the photon quan-
tum numbers, i.e. JP¢ = 17~ (vector mesons). The decay of the resonances leads, in general,
to multiparticle final states. The partial width for the decay of the vector meson V' to a
lepton pair (fig. 2.4) is given by the Van Royen-Weisskopf formula 9]

16ma’q’
M

NV -1r')= l(0)|* (2.20)
where ¢} is the squared sum of the charges of the quarks in the meson. A comparison with
¢q. 2.4 reveals the similarities. The decay of the vector meson is naturally the time-reversed
ptocess of its formation. So the expressions should be equal apart from phase space factors.
The amplitude of the quark-antiquark wave function at the origin is denoted by y:(0). The
factor |p(0)|? reflects the pointlike production of the resonance.

The formation and decay of the resonance with mass M of angular momentum J in the

collision of the particles with spins s, and s, are described by a Breit-Wigner formula

4n (2J + 1)}
W3 (25, + 1)(28 + 1) (M - W) + T%,/4)

ga(W) = (2.21)
where [y, is the total width and W the c.m. energy. The subscript el refers to the fact that
this formula is valid for elastic processes a + b — resonance — a + b. Generally the term T,
in eq. 2.21 should be replaced by I'.T';, where T, and I'; are the partial widths corresponding
to the initial and the final state.

It is useful to define the decay branching ratio B, for the process i as

T,

B, = .
Teor

(2.22)

The total width of any of T{1S), T(2S), and Y(3S) is in the range 30-50 keV. The
process involving the annihilation of the quarks of an intermediate resonant state (like the
one in fig. 2.4) is suppressed with respect to the situation when the quarks survive its decay.
In case of the first three members of the T family the situation that the b quarks survive is
kinematically impossible and this is reflected in the small values of their total widths. The

13

Table 2.2: T(1S) branching ratios [5]. Note that the first three branching ratios carry the
uncertainty of B, and o measurements.

Decay FBranching Ratiu]
T(1S} = 3¢ \ TT95%
Y(1S) — q¢ 9.2%

"Y(1S) — 490 i 2.5% I
T(1S) = e~ | (284 0.3)% ‘
Y(1S) — utp (2.840.2)%
T(1S) — 7*7° (32+04)% |

production of open beauty is possible in the case of Y(45) and this is reflected by its total
width of ~19 MeV.

The decays of the lower members of the T family can proceed via the following channels:

1. T — 3g (decay to three gluons):

2. T = 7993

3. YT — +* — ff where ff is a fermion pair;

4. T - yyy.
Process No. 4 has a negligible cross section. The width for the dominant decay T — 3¢ is
given by 110}

160 a3(m? -

9
(Y —3g) = H*—)LF—)WWO]‘? . (2.23)
Y

The ratio

T(Y - 3¢) 5 asiQ)

is one of the best quantities that can be used to measure the strong coupling constant [11}.

DY ~a99) _36% o |, "3—1:’:-)<2.2: 06)4 - (2.24)

The strong coupling constant used is the one found within the MS renormalization scheme
with Q* = 0.157My, wherein to similar structures of the amplitudes cause the large QCD
corrections to cancel almost completely. @* is the so-called optimal scale [11], speciﬁc' for a
given process.

Table 2.2 shows the T(1S} decay branching ratios. The direct decay oY = ete” isa
background to our luminosity sample (see sect. B); the Juminosity has to he corrected for this

contribution.

2.4 Radiative Corrections and Definition of I,

The measured excitation curve o{ ") of the resonance in the process ¢* ¢ — T — hadrons

is used to obtain [,.. Without QED radiative corrections the cross section for the formation

14



of the T in ¢* ¢~ annihilation has a Breit-Wigner form of width Ty (eq. 2.21). For the T(1S)

and Y(25) Teo is sbout two orders of magnitude smalles than the r.m.s. spread A caused

by synchrotron radiation in the c.m. energy of the storage ring. For DORIS-II A =~ 8 MeV.

Thus the Breit-Wignet can be safely approximated by a delta function, ogw = A° W —M),

with A° the area of the Breit-Wigner and M the mass of the resonance:

. n?
=7

where B.q is the resonance branching ratio into hadrons. Convoluting this é-function with

A I';, Bhad (2.25)
the Gaussian distribution of the beam energy gives the effective lowest-order cross section:

exp(—22/2) Ww-M
AVar A

The °'s in these equations indicate that the quantities are to lowest order in QED. corre-

n
]

(W)= A° . (2.26)

sponding to the Feynman graph of fig. 2.5a. The ¢°(W) must then be multiplied by the
efficiency for detecting hadronic events in order to get the observed cross section; this factor
is discussed in section 5.1.1. Here we are concerned with the QED radiative corrections to
the production cross section o°(W). They change both its shape and its normalization. The

relevant Feynman diagrams to O(a’} are shown in fig. 2.5a-¢.

Radiative corrections were initially calculated by Yennie et al. [12| and Bonneau and
Martin [6]. Several other theoretical calculations have appeared since then ;13-17]. Generally,
the result is & convolution between the lowest order cross section ¢°(W') and & photon energy
distribution function which mainly reflects a bremsstrahlung energy spectrum. The result is

of the form
exp(-2/4)

AvV2r

Most previous measurements of T',, have used the functional forms for N{z) as obtained by

o(W) = A° N(z). (2.27)

Jackson and Scharre [13] or by Greco et al. {14], respectively:

Nislz) = (%,é): P +1) Do=2) + (bo+Mexp(=2'/a), (a) 0,
Neps(z) = (3) T +1) Daf-2) x (146 +1). ()

Here T' denotes the gamma function and D_, is Webet’s parabolic cylinder function [18].
Note that in the limit  — 0, D_,(—z) — exp(~z?/4) and the Gaussian shape of the machine
resolution is recovered.

In the above formule é, = %r + ’7“{"—; - }) stems from the vertex correction (fig. 2.5d),
where t is the equivalent radiator thickness. II is the vacuum polarization correction from
the diagram of fig. 2.5b. It includes the eflect of all the lepton and quark loops in 2.5b:
I =6, + 6,4+ b + buars,. The electron loop contributes §, ~ 0.014 at energies W’ near the
Y resonances. Muon and tau loops are calculated with their corresponding masses [15]. The
quark loop contributions have been estimated by Berends and Komen |19] from the measured

o(e*e” — hadrons) to be fpuaps, = 0.017. Summing all fermion loop contributions yields
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Production Decay
a) >-mmc“l‘:w-< f)
b) >~©~4: T:MQ< 8)
c) }v«: TD% h)
d) %«:Y:w~< i)
¢) %: T:-< i)

Figure 2.5: Feynman diagrams which contribute to ({a*) to ¢*e” - T and T — ete .
To this order the graphs b,c,d and g,h,i contribute only through their interference with the
lowest order graphs a and {.

I = 0.038 at our energy. In their original papers, Jackson and Scharre and Greco et al.
ignored the u, 7, and quark contributions. In eq. 2.28 we have corrected this by replacing &,
by II in their formulee.

Both forms of N{z) take into account the effect of the emission of many soft photons via
“soft photon exponentiation”, which leads to the (2A/W)' factors in eq. 2.28. Jackson and
Scharre apply it only to a part of the cross section, whereas Greco et al. correct the entire
O(a?) expression. The diflerence is of ({a*), so that a definitive decision on which treatment
is more accurate can only be made on the basis of & complete calculation to that order.”Such
a calculation has recently been done by Berends et al. {17}, indicating good agreement with
the form Ngps(=).

Thus N¢ps(z) is suitable for use in connection with eq. 2.25 and 2.27 to measure I';, Bias.
However, we are interested in the physical T,. corresponding to a calculation to all orders
in a. T.. is defined as the partial width of the decay T — ¢*¢ . In QED, T — e'e”
is always accompanied by an infinite number of low energy photons. To avoid specifying a
photon energy cut-off in measurements of B, (or B,,, ), it is conventional to include all decays
with extra photons ¥ — e*¢ nq in the definition of I'... In order to relate T',, to T¢,, we

assume that the (o) calculation is a good approximation to I'.,. The full set of diagrams
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contributing to the decay to O(a®) is shown in fig. 2.58-j. T¢, corresponds to the lowest order
diagram 2.5f only. By the Kinoshita-Lee-Nauenberg theorem [20], the mass singularities
from the vertex correction and the bremsstrahlung graphs (i.e. the terms proportional to
10-‘:’7) cancel to each order in @, leaving a finite part which is negligible (15]. Thus the
only radiative correction which makes a net O(a®) contribution to the decay comes from the
vacuum polarization graph 2.5g interfering with the lowest order graph 2.5{. This leads to
an increase of the partial width:

lr..=(1+-mM7rg,. (2.29)
Lepton universality for I} implies T, = T, = T'r to good approximation. Since 146,411 =
(1 + 6,)(1 + ) to this order in a, we can remove the II from N(z) eq. 2.28b and introduce
N'(z) = N(z)/(1 + IT). This yields

exp(—27/4)

)= A N' 2.30
(W) A\,/i;r (z) ( )
with
6r? 3
A= 1‘—4‘2 Fee Bhag - (2.31)

More recent calculations of the radiative corrections use this convention. Tsai [15] and Kuraev
and Fadin [16) find, respectively:

Nz(z)
Nir(2)

The N} p(2) is exactly Ngps(z) with the II removed. In the expression of Tsai T = tAlIn( 25)
is the equivalent radiator thickness corrected for pair production, which at W = Myqs) differs
from t by 0.32%. Some of the higher order corrections have also been calculated by Kuraev
and Fadin, and differ from the renormalization group result of Tsai. However, the results
agree to O(a®). The above formula for Nk p(z) omits the higher order terms.

Our results presented in section 5.1 are based on the formalism of Kuraev and Fadin {16},
using eq. 2.30, 2.31, and 2.32b to obtain Le Bhrad directly. One could equally well use
eq. 2.25,2.27, and 2.28b to obtain I';, Bras and then apply eq. 2.29 to get T, Bh,g. However,
most previous measurements have used the formalism of Jackson and Scharre with 11 = &,

(%%)T T(1+7T) D.g(~z) x (1-'/0)%"  (a)

(2.32)
(%xAr)‘ T{(1+¢) D_(-2) x (1+&). (b)

resulting in something which is neither T, nor I';,. A comparison with the results obtained
using the various formalisms is presented in section 5.2 to demonstrate the differences.

To obtain T, from I',, Bhas we need the hadronic branching ratio Buad- With the assump-
tion that the resonance only decays into hadrons and lepton pairs we can use the relation
Bpad + 3B,, = 1. It is important to note that B, is measured including all extra photons in
the decay and contains the vacuum polarization term from graph g of fig. 2.5; otherwise the
above equality would not hold. Also a determination of [t = Lee/ B, requires the vacuum
polarization term to be included in the leptonic width {21). All above requirements are sat-
isfied by the ansatz of Kuraev and Fadin [16]. and this fact is the basis of the motivation of

our choice.
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3. Experimental Layout

The design of the Crystal Ball detector started in 1974. The detector went into operation
at SPEAR at the end of 1978 taking data on the J/v and 4’ resonances. The operation at
SPEAR ended in 1981. 4 x 10° hadronic events having recorded.

In the beginning of 1982 the Crystal Ball detector was moved to the DORIS-1I e* ¢ storage
ring to perform studies of the bb quarkonium. At DESY the Crystal Ball detector took data
unti] summer 1986 with an accumulation of 1.5 x 10° hadronic events. The detector was
shipped back to SLAC in September 1987.

The DORIS-II storage ring is described here only very briefly. Given details help in better

understanding of the experimental problems that influence strongly our final results.

3.1 DORIS-II

The DORIS-II e* e~ storage ring system at DESY is shown in fig. 3.1. Electrons are
produced in hot filaments at the entries to the two linear accelerators. Electrons from the
LINAC-II are directed onto a tungsten target to create positrons (a high Z target is needed
due to the Z2-dependence of the cross section for pair production). The positron beam is
accumulated in the small intermediate storage ring PIA (Positron Intensity Accumulator) te
increase its intensity and cool down the beam.! Electrons from LINAC-I and positrons from
PIA, accelerated up to about 450 MeV. are injected to the DESY synchrotron {Deutsches
Elektronen SYnchrotron). which boosts their energy up to about 5 GeV'. The electron and
positron beams are then injected to the DORIS storage ring. DESY also serves as injector
for the PETRA storage ring. The Crystal Ball and ARGUS detectors occupied the two
interaction regions.

DORIS has been in operation since 1974, It was initially designed for a maximum beam
energy of 3.5 GeV, with a double ring structure (DOppel Rlng Speicher) and multibunch
operation [22]. After the discovery of T resonancesin 1978 DORIS was upgraded to reach the
energy of the T(15) and T(2S), namely 5.1 GeV per beam (DORIS-T storage ring) 23]. The
two rings were combined into one ring, with single-bunch operation. The maximum luminosity
(for the definition see Appendix B) was only 1> 10™ em 2sec™! with high power consumption
of 10.8 MW at 5.1 GeV'. DORIS was upgraded again in 1982 /241, The bending power of the
magnets was increased allowing a maximal energy of 5.6 GeV'. Several improvements brought

the power consumption down to half of that of DORIS-1. High luminosity £ > 103" em™*sec™!

'As synchrotron radiation occurs the beam momentum spread becomes smaller. In analogy to thermody-
namics this process is called cooling
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Figure 3.1: DORIS-II e*e™ storage ring at DESY.
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Figure 3.2: The integrated luminosity collected by the Crystal Ball detector at DORIS-IL.
The doubly hatched area represents the data taken around T{1S), hatched area Y(2S) and
hollow Y(4S) data, respectively.
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around a 5 GeV region was obtained by the installation of mini-beta quadrupoles close to the
interaction region’. Mini-beta quadrupoles improve beam focussing at the interaction points
(see eq. B.2). The vacuum system of DORIS-II gives an average pressure of 2-8x10® mbar
depending on the beam current. Typical operation involves beams with lifetimes of 2-3 h,
injected with currents of 2 > 30 mA, resulting in an integrated luminosity delivered by the
machine of roughly 600 nb~" per day. A record accumulation of more than 1000 nb~! per day
was achieved. Figure 3.2 shows integrated luminosity per month accumulated for different
resonances.

The longitudinal size of the electron (positron) bunches causes a spread of the interaction
point along the beam axis. The spread is approximately Gaussian with ¢ of about 1.7 em.
The corresponding spread in the plane transverse to the beam axis is much smaller (high
luminosity requirement) i.e. ~1 mm vertically and ~0.1 mm horizontally.

Electrons and positrons in the DORIS-II storage ring become polarized as a result of emis-
sion of synchrotron radiation according to the Sokolov-Ternov effect [25]. The beam energy
measurement by depolarization techniques is the most precise one. The accurate measure-
ment of the beam energy is crucial for the determination of I',, and resonance masses. The
polarization direction is parallel to the magnetic field of bending magnets, thus transverse
to the beam direction. The maximum achievable polarization due to this mechanism is
~92%. Beam polarization is limited by the synchrotron radiation itself. Sudden energy loss
by photon emission causes a change of the particle orbit, which destroys the correlation be-
tween orbital and spin motion. Also, unavoidable vertical misalignment of the storage ring
components causes beam particles to be influenced by the depolarizing radial field of the
quadrupoles. Similarly. beam-beam forces at the interaction point cause depolarization. Fi-
nally, the solenoid field of the ARGUS magnet, which is only partially compensated (87%),
acts to destroy the polarization. As a result of these depolarization effects, the beam polar-
ization does not reach the theoretical limit. At certain beam energies, where depolarizing
machine resonances occur, the beam polarization can be destroyed completely. Theoretical
calculations for DORIS-II have shown that beam polarization at the T(25) energy may be
rather high. In fact, we measured an average beam polarization of (781 7)% for the T(2S)

data using the process e*e™ — p*pu~ [26],

3.2 The Crystal Ball Detector

The Crystal Ball detector |27|is & non-magnetic calorimeter designed to measure precisely
the energies and directions of electromagnetically interacting particles. We describe here only

those features that are important for the data selection. The experimental setup is shown

2The installation of the mini-beta magnets had a serious drawback. The endcaps as they were designed for
SPEAR no longer fit because of space limitations. The Crystal Ball endcaps have been completely redesigned
for DORIS-11 but the fine granularity of this detector part was Jost.
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Nal(T1) endcaps
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luminosity monitor

A mini-3-quadrupole ravsomer

Figure 3.3: View of the Crystal Ball detector (as installed at DORIS-II)

in fig. 3.3. The main detector is a spherical shell of 672 optically isolated Nal{Tl) crystals
covering 93% of the total solid angle. The remaining 7% are left free to allow room for
the beam pipe. Each crystal, of truncated pyramidal shape, is ~15.7 radiation lengths deep
(corresponding to about 1 nuclear interaction length), points to the interaction point and is
read out by its own photomultiplier (see fig. 3.4). The 60 crystals immediately surrounding
the beam pipe are called “tunnel crystals”. They cover the angular region of approximately
0.85 < |cosf| < 0.93, where 8 is the angle with respect to the beam axis. Nal(Tl) endcaps
increase the angular coverage to 98% of 4=, but are not used in this analysis.

The measured energy resolution for electromagnetically showering particles is 0g/E =
(2.7 ¢ 0.2)%/\‘/fE/Ge\’. The Nal(T1) energy scale is set for each ~3 pb~! of accumulated
luminosity using large angle Bhabha scattering events. Minimum-ionizing particles deposit
about 210 MeV. Approximately two thirds of the hadrons are expected to undergo nuclear
interactions while traversing the Nal(Tl); the rest are minimum-ionizing if charged. The
directions of electromagnetically showering particles are measured in the Nal(Tl) to an ac-
curacy of oy = 1° to 2°, depending on their energy. For minimum-ionizing particles we have
s ~ 3°. One can improve the angular resolution by use of the proportional tube chambers,

which directly surround the beam pipe (see fig. 3.5). The shape of the chambers is dictated
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40.8 2" photomultiplier

25.6
/ 0 10 ¢m

Figure 3.4: The size and shape of a single crystal. The interaction point is marked by a eross.
The distances are given in centimeters.
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Figure 3.5: Tube chambers setup: a) 3 layers b) 4 layers. The Monte Carlo geometry was
used to produce this drawing.

by the limited space between the beam pipe and the spherical inner detector shell. The con-
figuration of this part of the apparatus depends on the data-taking period. Initially, it was a
three double-layered setup flushed with magic gas (i.e. working in the streamer mode), which
were later partially replaced by tubes flushed with Ar + CO; + C H, working in proportional
mode (design as shown in fig. 3.58). Eventually. it was upgraded to four double-layers as
shown in fig. 3.5b. For our purposes we find it sufficient to use only the direction information
deduced from the energy deposition in the crystals. Because this analysis spans various data
taking periods, it was difficult to formulate common hadronic-event-selection-criteria for all
chamber setups—thus the chamber information was not used in this analysts.

To measure Bhabha scattering e* e (7) = ¢* ¢~ at small angles there are 4 shower coun-
ters located at 8 ~ 8°—see fig. 3.3. The method of the luminosity determination is discussed

in detail in Appendix B.



3.3 Organization of the Data Acquisition

The interesting e*e” interactions have to be separated from a large background. We
discuss here shortly the trigger design and our data quality monitoring system. A simple,
stable in time trigger, and supported by a well designed data monitoring system, enabled us to
reduce the systematic errors. The scheme of the Crystal Ball data acquisition system is shown
in fig. 3.6. The signals from apparatus components after preamplification are carried to the
electronics in the control room. The analog signals are stored temporarily on the capacitors
inside so-called “I1&H" (Integrate and Hold) modules. The various trigger conditions select
the interesting class of events by simple “hard wired" criteria consisting mainly of the topology
of the energy depositions and/or energy thresholds in the main ball within a 300 ns bunch
crossing gate delivered by the DORIS control. The rate of the events to be registered ranges
from kHz down to a few Hz. The data used in this analysis satisfy our total energy trigger
which is fully efficient for events depositing at least 1.9 GeV in the Nal(Th crystals which
lie within [cos@ < 0.85. Our selected hadronic events (see section 4) have a minimum
total energy of ~2.1 GeV. Fulfillment of any trigger condition freezes the information inside
the 1&H modules and starts the readout. Up to this moment we have dealt with analog
information. The analog information is digitized sequentially by two ADC’s and afterwards
sent via CAMAC to a PDP-11. This process is controlled by a special processor called
NEMO [28]. Collected data are stored on the 300 MB PDP-11 disc and sent to the DESY
IBM via a link where they are stored on the disc buffer. Both discs are used as circular
buffers. When the buffer at the IBM is 2/3 full a special job automatically starts (DUMP
job) that copies the contents of the IBM disc to tape. Together with the DUMP job, selection
and production jobs are initiated so that the preliminary data are immediately available for
the analysis. More extensive checks of the data quality were done on the IBM.

The apparatus performance is monitored online by special programs. This routine check-

up includes:
o linearity control of the energy readout system;

e temperature, crate voltages, humidity and pressure inside dry house, DORIS vacuum,
beam currents etc. (Monitor ONline records that will be used in 2 section devoted to

the background determination belong to this class):
o trigger logic.

This information is stored together with the data as special data records, so that it can be

used afterwards to pinpoint the problems in the apparatus.
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Figure 3.6: Organization of the data acquisition system.



N
Figure 3.7: Principle of the cluster algo- Figure 3.8: The geometry which deter-
rithm. Particles created at the interaction mines angular resolution of the Crystal Ball

point {marked by a cross) enter the ball de-
positing energy in crystals (visible triangles).
The illuminated crystals cluster around the
direction of the incident particle. The clus-
ters created by two particles can merge into
a single one.

calorimeter. The triangle represents a small
crystal facet. The small circle corresponds
to +3°, the large to £6°. The area ratio of
the crystal surface and the inscribed circle is
about 0.8 thus compatible with one standard
deviation level (sec text).

3.4 Interpretation of the Energy
Deposited in the Crystals

Particles crented at the interaction point traverse the chambers and enter the ball. The
raw data then contain the information about the energy deposited in the Nal(Tl) crystals
and the chamber hits. Our aim is to measure energy and momenta of created particles. Since
the Crystal Ball is a non-magnetic detector we approximate momentum p of a particle by its
measured energy E:

r= En (3.1)

where # is & unit vector representing the direction of the particle. The choice of E and n
is not unique. In the following we will try to discuss some of the possibilities. In the first
step of data reconstruction crystals are grouped into clusters. The cluster is defined as a
group of adjacent crystals each having at least 10 MeV deposited energy {see fig. 3.7). As
the next step inside the clusters local maxima are found. The third step correlates the hits
inside the chambers with the energy deposited in the ball. For the purpose of this analysis
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Figure 3.9: Direction reconstruction for electromagnetically showering particles. The electro-
magnetically showering particle hits the ball. The energy is deposited in a cluster of crystals
with a visible maximum (marked by asterisk). For circles see text.

we will discuss the first two steps of the data reconstruction wherein no chamber information
has been used.

The short edge of the erystal covers 12°. This implies that, using only the information from
the crystals, we are able to reconstruct the directions of incident particles with a precision of
at least 16°; in practice it is reconstructed two times more precisely, i.e. 13°, by assuming
that the probability of hitting a particular point is constant over a crystal surface (see fig. 3.8).

For the electromagnetically showering particles {e*, e™, v) the lateral energy distribution
is well-determined by the Monte Carlo studies. The characteristic energy pattern can be used
for selecting €, 7 and for getting their directions with better precision than determined by
the geometric calorimeter resolution alone. The idea of the showering track reconstruction
technique is shown in fig. 3.9. The deposited energy is shared among a symmetric group
of 13 neighboring crystals. On average a photon, hitting the central crystal along its axis,
deposits 70% of its energy in one crystal with ~2% outside the group of 13 neighboring
crystals. This can be understood since the crystal size was chosen such that the citcumscribed
circle has a radius of one Moliére unit. Sometimes more particles enter the same cluster, for
example, a decay of a fast m* (energy E,« 2500 MeV) into photons creates such a situation.
Of course, there is a probability that shower fluctuation can create a second local maximum.
The ecriteria allowing discrimination between local maxima of the energy deposition and
shower energy fluctuations are also well defined and can be found by Monte Carlo studies
(for details see [26]). As the first appreximation for the direction of electromagnetically

showering particles we use a local energy maximum within the cluster (direction 7 is then
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found as the crystal axis of the crystal with maximum energy deposition). This direction
is then corrected using the known lateral shower distribution. The energy contained in 13
neighboring crystals serves as a reliable energy estimate for these particles.

In case of hadronically interacting particles we do not have such a straightforward direction
and energy definition. The discrimination function is not known; it depends on the type of the
showering particle. There are basically two methods that can be used to estimate the energy
and direction for showering hadrons. In the first method we use the crystal energy and crystal
axis, i.c. we assume that every illuminated crystal was hit by a particle carrying energy equal
to deposited energy and in the direction of the erystal axis. This is physically equivalent
to the replacement of incident particles by 2 beam of particles. Experience shows that such
an approximation works well. The other possibility is to use energy clusters and correlate
them directly to particles. The energy E is then the total energy of the cluster (referred to
afterwards as Eciuuer) while the direction might be estimated as the energy-weighted average

of the crystal axis #; involved in the cluster:

n=
E:Iuﬁ"

(3.2)

As will be discussed later, experience shows that the first method carries information not

only about the created particles but also about their interactions in the calorimeter.
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4. Selection of Hadronic Events

The subtle effects we would like to measure require high experimental accuracy. We
are primarily interested in suppressing the systematic error. The detailed analysis of our
aim. i.e. the measurement of R and the determination of I, shows that the systematic
errors of the final results will be fully dominated by the errors on: i) the selection efficiency,
ii) the background subtraction, and iii) the luminosity determination. Good design of the
cuts for data selection can reduce the first two contributions. For the determination of T,
and B we have to select the hadronic events originating from ¢ ¢° — ¢§ and/jor ¢*¢” — 3g
alone. As background we have to consider botl, the hadronic events coming from the other
processes and misidentified non-hadronic events. Background events originate from: 1) QED
processes, 2) two photon interactions, and 3} collisions of beam particles with residual gas
and the vacuum beam pipe. Since 1978 the selection of the hadronic events was a subject of
& continuous development. We start with the motivation for the experimental cuts. In the
following sections we will discuss the efficiency resulting from our selection criteria and give

the estimate of accepted backgrounds.

4.1 Selection Criteria

There are two extreme different approaches to the data selection problem. The first
way is to select the interesting events without loss of efficiency by accepting a rather high
background. This method is applicable when we are not dependent on the sbsolute nor-
malization or when the background source is known theoretically and/or we are able to
subtract it withont increasing the sytematic errors. A typical example for application of this
method is searching for P-states in the inclusive hadronic spectra where the background is
subtracted afterwards with help of a polynomial fit. The second method of approaching the
selection problem is to lose some selection efficiency {in a manner which could be checked
by Monte Catlo calculation) by suppressing background of unknown origin as much as pos-
sible. Both methods were used in the Crystal Ball Collaboration to select hadronic events.
A selection program using the first philosophy was written at SLAC by W. Lockman [29]
(referred to from now on as the “BILL" selector). Quiet running conditions at SPEAR allow
for laose selection criteria. The other independent selection program was written at DESY
by H.J. Trost (referred to as “HAJO"selector). The reason was that the running conditions
at DORIS were completely different, for instance the beam-gas background was significantly
higher. The quick scan through the background processes shows that there is a substantial

background arising from 47 interactions. As it will be shown later the cross sections for



Table 4.1: Initial background studics for the hadronic data sample. The number of sin-
gle-beam or separated-beam events accepted as hadronic measures the beam-gas background.
The last column gives the relative selection efficiency in the case of the continuum e*e” — ¢¢
data (for Monte Carlo simulation). Also given is the number of cuts used for the data selec-
tion.

Selector Accepted | Number | Relative
background | of cuts | efficiency
HAJO 151 8 1.08
BILL 608 7 1.23
HAJO & BILL 43 15 1.07
This work 34 6 1.00

inclusive hadron production in these processes are sometimes not known theoretically better
than +100%. Because in case of both, I'.. and R, we are interested in the absolute nor-
malization of our measurements, we decided to apply the second philosophy: to suppress
uncalculable background as much as possible without excessive loss of efficiency.

It became customary to request that hadronic events pass both selection criteria in order
to obtain a relatively background-free data sample. This in practice means that afterwards
we have to determine the efficiency for about fifteen cuts, some of which are correlated. The
idea of this analysis was to reduce the number of cuts to the minimum so that we rely on a
small number of well-designed cuts. This also means that the systematic effects are easier to
estimate,

The BILL selection criteria are described in detail in {29]. We started the analysis by
running the two selectors on single beam and separated beam data samples. The number of
the events nccepted as hadronic from single and/or separated beam data is a measure of the
background rejection. The background accepted by the HAJO selector was about four times
smaller than the one accepted by the BILL selector (see table 4.1). Requiring that the events
should satisfy both selection criteria reduced the background further by a factor of ~3.5 with
respect to the one accepted by the HAJO selector. After that exercise the natural choice
was to take the HAJO selector as a basis for further studies. This choice is justified by the
fact that for the BILL selector information on the particle charge is required. As during the
experiment our charge detector has been modified several times (see fig. 3.5) the selection
efficiency will be time dependent. Data used in this analysis span two setups of the tube
chambers. For the background studies, data (unless explicitly stated) span all three setups.
To keep efficiency stable we rely solely on the most accurate and efficient part of the detector:
the 672 Nal(TI]) crystals of the main ball.

The typical hadronic event is shown in fig. 4.1. The picture shows the main ball in the
Mercator-like projection. The dots show the places where the energy is deposited. Solid
contours show the cluster borders. Plots underneath show the tracks in Crystal Ball tube
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Figure 4.1: Typical hadronic event.
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Figure 4.2: Single beam data passing the BILL selector on (3, z..) plane. The continuous
line shows the HAJO original cut, the broken one the suggested modification.

rest frame. The relatively high acceptance of 7¥7~ events for hadronic selection criteria
can be understood as a result of T leptons having relatively large hadronic branching ratios.
Events with both r’s decaying hadronically will have a two jet topology, indistinguishable
from the hadron production in the continuum. The low acceptance for the hadrons produced
in two photon collisions can be explained by their low transverse momentum with respect
to the beam axis. The high transverse momentum cut suppresses this class of events almost
completely. This is shown in figs. 4.10 and 4.11, where we show the correlation discussed
enrlier for e*e~(v) — 7+~ and two-photon badronic Monte Carlo events.

Cut 1 and 6 were designed to suppress QED and cosmic type events. Cut 1 is a moderately
weak cut on multiplicity. Cut 6 from this group turned out to be 100% correlated with the
other cuts and thus was not used.

Cuts 7 and 8 are designed to further suppress Bhabha events. Fig. 4.12 shows the distri-
bution of the visible energy for unselected Bhabha Monte Carlo events while fig. 4.13 gives
the same events on the (3, 2, ) plane. The large number of produced Bhabha events although
not rejected by our main selection cut (cut 4), is rejected by the combination of a typical high
energy deposition correlated with low multiplicity. To reduce further the background from
the Bhabha events and achieve agreement between this cut and the requirements for Bhabha
candidates, the threshold on cluster energy was lowered to Equuer > 0.35W. Fig. 4.14 shows
the correlation between visible energy deposited in the ball and cluster energy for Bhabha
Monte Carlo events. The strong correlation {indicated by the arrow) occurs when we have
measured only one electron and thus Egan = Ecuue. For comparison the same correlation
for T(1S) — 3¢ Monte Carlo is shown in fig. 4.15.
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Figure 4.3: Visible energy distribution for the raw data. The doubly-peaked structure at the
low energy end of the spectrum reflects our trigger setting.
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Figure 4.7: (8, 7,) plane for unselected e*e” — qf Monte Carlo events.
corner, separated from the rejected events by the solid line. For the arrow see text.
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35 36



E
-~ Tir
E £ 1.2 SR RES A A Aaanas T N RS
- . |
£ g ]
& - | 1o r .
: E A ]
z 0.8 oo ]
B : g 0.6 ]
. 0.4
. B |3
:.u;:o- E 02
§ b s
- . gu 2 : oo
:.Jgﬂ_.:‘ 00 NESREEIrE I S Ui i IR
eciiee, B 0.0 0.2 0.4 0.6 0.8 1.0
Qe - © “ /3
; R =
£ SR §
- ; . ; Figure 4.10: {3,z,,) plane for unselected 7* 7~ Monte Carlo events. The high acceptance for
; ; ‘ this class of events is due to the high 7 hadronic branching ratio.
s : : - = T4
- = 1.0 ™ v T — —
IR : |
L3 0.8 - s
ronigfocRE fEERESE [ J
ey IR L i 06 | ]
8852’ 3 E~3 s b i
oedcf  "gok kgl . ]
l:?ugi’s-'g ggg;;*%gz’
§sle8F o BEE38EB3F) 0.4 .
e RN ‘
. S B LT ]
ltaﬁ{ N‘gq_s- g"g ng
. _pena' &8 27 =% 0.2 i
.uusuae 48 838 gz
$sliza~g 3 H ° sg
..-.._'E:'a? H £ =
'3 0.0 e

Figure 4.9: A typical event from the rim indicated by arrow in fig. 4.5. For details see text. Figure 4.11: {8, ) plane for unselected two-photon Monte Carlo events. Low pr is a typical

feature of two photon processes; This bmits the acceptance for this class of the events.

37 38




arbitrary units
1.0

1.2 MRS
Ecluller/Ebtam
0.8 1.0 -
0.8 o
0.6 s ]
06 .
0.4 i ]
04 | :
0.2 :
0.2 - .
0.0 * : 0.0 L.“....l.........i.........1.u...“.l..“...“:
0.0 05 £D w 0.0 0.2 0.4 06 0.8 1.0
BALL Epari/W
Figure 4.12: The distribution of the visible energy for unselected Bhabha Monte Carlo events. Figure 4.14: Bhabha Monte Carlo events. The dotted line shows the original cut, the contin-
z uous one show the modification suggested (see text).
ir
1.2 — . ——y . . —_— 1.2 A Sy B S0 00 0 s B ) LIS S
Eclluter /Ebcam j
1.0 1.0 - B
0.8 08 | ]
0.6 06 ]
0.4 04 T .
0.2 02 .
00 0.0 e l..x.-....l..u“-.Al...LLM
0.0 0.2 04 0.6 0.8 1.0
Epart/W
Figure 4.13: (8,7¢) plane for mixture of unselected Monte Catlo Bhabha and ete™ — 77 Figure 4.15: T(1S) — 3g Monte Carlo events. The dotted line shows the original cut, th

events. continuous one suggested modification.

39 40



Let us summarize our final selection criteria:
i 0.2W < Epan <1.2W;
ii. Eunnets/ EBatt < 0.5,
ii. 7, >0.23,8 < 0.7and z,, >0.58+ 0.1}
iv. there should be at least 3 energy clusters with an energy Eeiyser > 100 MeV each;
v. events should not have more than one energy cluster with E. ., > 0.35W,
vi. events should not have any energy cluster with E j,r > 0.35W if Egay > 0.75W'.

The selection presented sbove allows us to select a relatively background free hadronic data
sample using a minimal number of well-tuned cuts. The conversion of the number of observed
hadronic events into the number of produced hadronic events still requires determination of
our selection efficiency and estimation of the background remaining in our hadronic data

sample.

4.2 Efficiency Determination

The detection efficiencies for hadronic events from Y(1S) and T(2S) decays, continuum
¢ production events and background events are calculated using the Monte Carlo tech-
nique. Hadronic events from Y(1S) and Y(2S) decays and from continuum ¢ production
are generated with the standard LUND string fragmentation program version 6.2 [30]. As
an alternative hadronization scheme we use the coherent parton shower model offered in the
same program. This scheme is based on the QCD cascade model by Marchesini and Webber
[31], and has only been implemented for 7 states, not for 3 gluon states. In sections 5.1 and
6 we estimate our sensitivity to the hadronization scheme from the difference in the efficiency
for e* €~ — qg obtained with the two models.

The generated events are passed through a complete detector simulation. This simulation

includes the following steps:

1. Electromagnetically interacting particles are handled by the electromagnetic shower

development program EGS {32].

2. The interactions of hadrons are simulated with the GHEISHA 6 program (33,. To
achieve a reasonable description of the experimental data we have modified the original

GHEISHA program as discussed in appendix A.

3. Extra energy deposited in the crystals by beam-related background is taken into account
by adding special background events to the Monte Carlo events. These background

events are obtained by triggering on every 10’th beam crossing, with no other condition.
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Table 4.2: Summary of various hadronic detection efficiencies. The errors are the Monte Carlo
statistical errors only. Superscripts R denote resonance efficiencies: €. continuum efficiencies.

\eﬁic;enrs Process oW < Comments
symbol | [GeV; 1o i '
[ T T(1S) T T
t 3 Y(15) — 3g.799 | 9.46 191.0 = 0.1 | LUND string
el ms) — g7 9.46 | 78.9 +0.4 | LUND string
R T(1S) — 771 9.46 ’15.8 +0.5 |
£ THS) — hadfom 9.46 ' 831 0.1 |
- —re - .
T("S} - hadroncT_O 02 1854 +0.2 | 80% beam pol
"Continuum T
! T( (_.:_qq T |I 939 .72.7 +0.2 |LUND string
‘_Ef'( — 9§ 939 713 = 0.2 ' coherent shawer !

4. The events are then reconstructed using our standard software and subjected to the

same cuts as the data.

The efficiency calculations are described in more detail in sections 4.3, 5.1, and 6. For

completeness we give the expression for calculating the efficiency of the process T — hadrons
p=el{1 - (R+3)BL)+ e RB.. 4 ¢ B (4.1)

where ({ are e"¢ , p*p~ and 7°7°. Table 4.2 summarizes our hadronic efficiencies. The

typical Monte Carlo sample consists of 50k events.

4.3 Background

The estimates of the background magnitudes are obtained with use of Monte Carlo tech-
niques and single beam data. The specific method used depends on the origin of the back-
ground events as will now be discussed. The resulting background estimates will be used in
sections 5.1 and 6 in the determination of T',, and R. respectively. and in the estimate of the

systematic error.

4.3.1 QED Processes

To estimate the background from the QED processes « ¢~ — ¢ ¢ (v), v9{7), ¢ 5" (7},
and ¢~ ¢ — 77(7) from the continuum, we generate events of these types with the programs
of refs. |34] and [35]. The symbol (1) indicates that photon emission and other QED processes

to O(a®) are included. The production cross sections and their products with the efficiencies
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Table 4.3: Summary of Monte Carlo generated continuum QED and two photon cross sections
o and observed cross sections eo. The errors in eo originate from Monte Carlo statistics.

Process W [GeV] | & [nb] £a [pb]
ete” —ete(v) $.39 [103.9 146 + 4.1
ete” — vv(1) 9.39 | 313 13403
ctem = ptu(y) 9.39 1.4 <1
ctem —rrr(y)| 939 | 11 [171.3+4.3
v — hadrons 9.39 71 198+ 5.8

to pass our hadronic selection cuts, determined as described in section 4.2, are presented in
table 4.3. The largest source of background, as can be expected, is the ete” — 77(v) channel
because the events with both 7's decaying hadronically are physically indistinguishable from
the continuum 2-jet hadron production. The values of o¢ listed in table 4.3 are to be compared
to ge ~ 3000 pb for e* ¢~ — hadrons at W = 9.46 GeV.

4.3.2 Two-Photon Collisions

According to ref. [36] a good description of the total cross section data of the process vy —
hadrons is obtained by adding the predictions of the Generalized Vector-Meson Dominance
Model (GVDM) and the Quark Parton Model (QPM). The appropriate lowest order Feynman
diagrams for these processes are shown in fig. 4.16. Since we expect only small background
contributions from two photon interactions we follow the procedure suggested by ref. [36].
Fot the QPM part we generate gg pairs with & Monte Carlo program following ref. [37) with
subsequent hadronization by the standard LUND program version 6.2 [30]. The cross section

at given c.m.s. energy W and quark composition was generated according to

oW) =3 3 a(Wmg! (4.2)

i=ud,ec

where o, are the partial cross sections and ¢, denote the charges for a given quark flavor. The
quark masses m, are those used in the LUND fragmentation scheme. Eq. 4.2 stems form the
diagram in fig. 4.16a and is valid only to this order. Two photon events with a GVDM cross

section, parametrized according to ref. [36] as
iy — hadrons) = (240  29) + (394 4 110)GeV /W) nb (4.3)

are generated by a Monte Carlo program using the Equivalent Photon Approximation {38].
The sum of the generated QPM and GVDM cross sections and the resulting visible cross
section are presented in table 4.3. The smell acceptance for this class of hadronic events is
fully understandable. Our main selection cut is the cut on 7, —we reject events with small

pri such restricted pr range is one of the most characteristic features of events originating
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Figure 4.16: The lowest order Feynman diagrams leading to hadron production in 7y inter-
action: a) and b) pointlike interaction (graph (a) is dominating (b}), ¢) VDM mechanism.

from two photon interactions. The above method to estimate the two-photon contribution to
the total cross section is very crude: for example the QCD corrections to graphs a) and b) in
fig. 4.16 might be very large [36]. Therefore we set a 100% sytematic error on the two-photon

contribution to the total hadronic cross section.

4.3.3 Beam-gas Background

Events from collisions of beam particles with residual gas or with the vacuum pipe can
be misidentified as hadronic by the selection procedure. They are referred to as “beam-
gas” events. The contamination from beam-gas events in our hadronic sample is determined
from single-beam runs taken close in time to our energy scans. We assume that all of the
single-beam data are beam-gas cvents. The following quantities may serve (for normalization
purposes) for the ratio of the time spent with single or separated-beam running conditions
compared to that with colliding beams:

1. [ Idi—current integral, to account for the beam lifetimes.

2. [ pldt—current-pressure product integral. This method accounts not only for beam
lifetimes but also for different vacuum conditions. Intuitively the beam-gas collision
rate should be proportional to the gas density, i.e. to the pressure read in the vacuum

monitors.

3. The actual data—the idea is to subtract the theoretical predictions from data.

The differences between background estimates obtained using these quantities will serve as
the measure of the systematic effects.

The number of beam-gas events in the colliding beam sample is calculated in two indepen-
dent ways. In the first approach we normalize the single-beam data to the colliding-beam data
by integrating the product of the total beam current and the gas pressure (or current only}

over the running time. This method is model-independent, but sensitive to any difference in

44



pI [mA torr x 107°]
10.0

8.0

6.0

4.0

20

| s n " N

0.0 E—

0.0 50.0 100.0 t [min] 150.0

Figure 4.17: The principle of finding the pldt (or Idf) normalization factors. Shaded area
is the one obtained directly from experimental points. Three records at the end of the
run# 18886 were missing. The arrow indicates the end of run. Extrapolation results in big
correction (hollow area under the fitted curve).

beam optics between single beam and colliding beam runs. We have not measured either Idt
nor pldt directly. We did record so-called “MON events” (Monitor ONline), approximately
every 10 min. These events contain, among other informations, time, beam currents, and
pressure near the interaction region. As a result, the application of methods 1 and 2 was

possible. We used:
1. Start of run records—for the start time of a run;
2. MON records—for current and pressure readout; for the time within a run;
3. end of run records—for the end time of a run.

The resulting data are thus composed of discrete points rather than the continuous infor-
mation we are interested in. We now have to find the analytic approximation of the data,
allowing us to extrapolate outside beyond the measured points (i.e. to the beginning and the

end of run). The following procedure was used:
1. take the runs with at least 4 MON records;

2. assume the accuracy of 0.1 mA for current readout and 1% for vacuum readout:’

UThe 1% errot is by far too small if one uses the absolute vacuum readout. For the fit purposes we will be
interested in telative errors.
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3. fit the time dependence of the data (I(t) or pI{t)) to

-t
t)= N exp —
ity = N -exp ——

where N, o and b are free fit parameters (a is small). Such a choice of the fit function

(4.4)

was dictated by its fiexibility. The parameter a accounts for the change of the beam

lifetime due to the beams getting “cooled down".
g

4. if a is compatible with 0, set ¢ = 0 and repeat the fit with o fixed (i.e. two parameter
fit);

5. if two runs are on the same DORIS fil, fit the runs together.?

The principle of this method is shown in fig. 4.17. In this case the extrapolation stability
can be checked since we have continued running with the old beams. The stability was found
to be good at a level of ~0.7%. Figs. 4.18 and 4.19 show the data points with the fitted
curves. Despite the small experimental errors generally the 37 of all fits was reasonable,
giving typically a value of \?, Npor ~ 1. Now, to estimate the background in the hadronic
sample. we ran the selector program on the single- or separated-beam runs. finding Ngg
events passing our selection criteria and {f p/df)sp for these runs. Repeating this procedure
for colliding heam data, we find Nyagron, and ([ pIdt)ga,, respectively. For any run the
fraction of background events due to beam-gas interactions, fpe, can be found as:

fac - ;pxa] Lt ] .

single beamn odrons | gaga

Due to limited statistics of single beam runs taken in the Y(1S) mass region the statistical

AVS B

(4.5)

errors of this method are large and dominated by the statistics of Nsp = 577 (this figure
corresponds to ~10 hours of single beam rurning). For the discussion of asymmetrnc errors
see appendix C. Table 4.4 gives the values of different normalization factors using the above-
mentioned methods. Double entry for current integrals is caused by the fact that we record
the ¢* and e~ current reading, and their sum measured by a different meter, while for the
pressure we get the vacuum read at both sides of the interaction region. The beam-gas
background reaching the experiment is always produced upstream. Taking this into account
we can create only one pJ product. Values of the fg factors found for the data taken close in
time to single beam runs are given in a separate row. A systematic uncertainty of +10% for
the fpe stems from the maximal difference between fg values found in this manner. This
niethod is quite general and the nonmalization factors can be applied to any selection.

The second method makes use of Monte Carlo simulations. For a given hadronic event
selector

Nhadrons = £ e, 4 Npg. (4.6}

2]t sometimes happened, for technical reason. that DORIS was not able to get a new injection. The beams
then were not dumped and the new runp was starled with the same beams
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Figure 4.18: The total current for runs# 18886 and 18887 as a function of time. For the line
see text.
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Figure 4.19: Current pressure pl product for runs# 18886 and 18887 as a function of time.

The arrow indicates end of run# 18886. For the line see text.
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Table 4.4: Normalization and fpg factors obtained by using different methods

!——“ o Different normalization factors

l Fit result

l f1dt | frar | fpldt

| Run# | imAmin! | [mAmin] ! imAmintorr 10"11 Nsp

[ 18881 | 37720 | 37300 j 743.6 3|

| 18882 | 14453 14412 | 405.8 1

{18885 | 44295 4367.1 685.3 1

188861 | 40147 | 39845 892.8 0

188871 | 34759 | 3422.2 4873 o
tSame DORIS run - see text

. fsgfactors bt |

| foc!%) 077 | o084 | 087 | 1288 |

where Niagrone is the number of accepted hadronic events. Npc the number of beam-gas
events, L the integrated luminosity, o; and &; cross sectjons and corresponding efficiencies
for processes leading to hadrons in the final state. The latter two are determined by Monte
Carlo simulations of the relevant processes. By varying our cuts we can obhtain a substantially
larger fraction of beam-gas events in our hadronic data sample without dramatic changes in

the efficiencies. For the modified selection criteria then

Niadeone = c‘,_:ﬂsf: <+ ¢Npg - {4.7)

The factor c is the relative acceptance of the two sets of cuts for beam-gas events, and is

determined using single-beam data. Subtracting eq. 4.6 from 4.7 we get

AONnatrons = LY 0.8, + (¢~ 1)Npg . (4.8)

Since ¢ = 21 and the efficiencies are not very different, Ae, < 1 {typically ~ 5%), A Nhadrona 15
{airly insensitive to the cross sections used. Solving eq. 4.8 for Npg gives the desired number
of beam-gas events,

Both methods gave similar results. The fpc factor as a function of run number is shown
in fig. 4.20. As we have already shown, finding fas with use of Idt or pldt suffers from
small statistics. The background nsed was found following the second method (using data).
A systematic error of 10% was found as the maxitmal variation of the mean values given by
different methods. Taking the luminosity-weighted average we find that heam-gas background
contributes only a very small fraction to our hadronic scan data sample compared to the

continuum ¢* ¢ - » hadrons:”
fsc = NpBG/ Nhadeoms = (0.60 % 0.01 + 0.06)7 . (4.9)
" 3We do not ﬁn-\i ;n;—;e_son_a;l’ l’;n?kgroun'd hehavior
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Fig. 4.20 supports the hypothesis that background is machine-condition-dependent and thus
we cannot include the other single beam runs (not taken closely in time to our data-taking pe-
riod) for the background calculation within the first method. The lines show the background
variation over three scan periods. The continuous solid line shows the average background
for all scan data used in the analysis. The continuum data at W = 9.39 GeV used for the
R determination were taken soon before and after the May'86 scan and have a background

level compatible with it:

fec = Npc/Nhadrone = (0.30 + 0.01 £ 0.03)% . (4.10)
fre |%]
8.0 —— — Y
60 + a
January’86 March'8é May’86 g
Continuum & Scan
4.0 i
20
0.0
,2_0‘AAJAL..A...J...-....AI.

18000 18500 19000

run#
Figure 4.20: The fg¢ factor obtained from data &s a function of the run number. The fact that
for different run periods we obtain different background levels reflects the fact that background
is connected with the machine conditions. The open point shows the measurement obtained
by [ pldf method {the small error bars are systematical, large statistical). For the lines see
text.
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5. Determination of I'ee

5.1 T.. Measurements

As outlined in section 2.4, the resonance parameters Af and I',, are determined by fitting
the following function to the observed hadronic cross section:
2
o™ (W) = A% %ﬂ Nipl(z) + 1? , (5.1)
The first term accounts for the decays Y — hadrons. A®* = Ae}} is the area of the Breit-
Wigner multiplied by our hadronic detection efficiency for resonance decays. The resonance
mass M enters through the variable : = (W - M)/A. Radiative corrections are treated
according to the prescription of Kuraev and Fadin [16]. using N p(2) from eq. 2.32b. The
second term reflects hadron production from the continuum, which to lowest order scales as
1/W?. Over the narrow energy region used in the fits, the C/W? continuum part of o (W)
will include nearly alt contributions from the background sources discussed in section 4.3.
The data samples of hadronic events used for our I',, determinations are summarized in
table 5.1. We have performed four scans over the T(1S) resonance and one scan over the
T(2S). Each scan has approximately 100nb-! per point. The value of ., determined from
the scans is insensitive to small overall changes {of the order of £10 MeV) in the absolute

energy scale. It is, however, sensitive to the point-to-point error of the energy measurement.

The most precise beam energy measurement at €* ¢~ storage rings can be made by us-

Table 5.1: Data samples for the Y(1S) and T(2S) scans and continuum data: energy range,
number of hadronic events, total luminosity with statistical error, and number of data points.

t ScanT w ra-n?(-}“e\_’j .Iﬁ‘ hadrons | T Linb i_i % -[70?1{;-

IilS] scans ) ‘

1 ‘ 9.388-9.506 | 12195 . 220412 21
I 2 9.445-9.477 ‘ 6032 ‘ 690+ 7 . 9
3 | 94369481 4008 , 567+ 6 | 71
| 4 | oasa9419 | 5139 | 670+ 7 | 8
ot EE IS SN
L XSjsam
_ 996610039 4367 | 994% 9 | 10
[_ Continuum data —l
i ] e3s T 25825 [ 7135 T2 1 -
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Figure 5.1: Scan #1: visible cross section vs. energy.
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Figure 5.2: Scan #2: visible cross section vs. energy.
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Figure 5.3: Scan #3: visible cross section vs. energy.
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Figure 5.4: Scan #4: visible cross section vs. energy.
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ing the depolarization technique (39}, if the beams are polarized. Due to the emission of
svnchrotron radiation electron and positron beams become polarized via the Sokolov-Ternov
effect [25]. DORIS-II provides a beam polarization of up to 80% in the T(2S) energy region
thus allowing & very precise energy determination for our Y(2S) scan data: og/E ~ 2 x107°.
Details of this measurement can be found in [40].

In the Y(15) energy region the beam polarization is destroyed completely by storage ring
resonances specific to the DORIS-11 machine configuration. Here the most precise measure of
the relntive beam energy comes from the determination of the magnetic field B at the beam
position of s storage ring bending magnet using the nuclear-magnetic-resonance effect. The
accuracy achieved here is 0p/B ~ 5 x 1075,

The determination of the beam energy from the magnetic field measurement depends
on the machine parameters, which change with time, and on the degree of saturation of
the magnets, which depends on the history of energy changes. We observe shifts of order
10 MeV between different run periods and smaller shifts between successive scans. In order
to achieve as much stability as possible during a scan we always scanned with monotonically
increasing beam energy and completed each scan within a period of a few days. during
which the machine parameters were held as constant as possible. The point-to-point error
on the c.m. energy is taken from op/B = § x 10-% to be 0.5 MeV'. Although T, is nearly
unaffected by small uncertainties in the absolute energy scale {of order +10 MeV), we avoid
any systematic influence from this effect by choosing the normalization factor between energy
and magnetic field so that the fitted resonance mass is equal to the nominal mass My sy, =
(9460.0 + 0.2) MeV [5]. For the limited energy range of our scans the beam energy is a linear
function of the magnetic field B.

5.1.1 T, of the Y(1S)

We first fit each scan individually to the function eq. 5.1 with four free parameters: A%,
A. M, and C. Only scan number 1 covers a wide enough W range for a good determination
of the continuum constant C. Then we fit scans 2 to 4 with C fixed to the result obtained
from scan 1. This results in the A% values labeled “fixed” in table 5.2. They agree within
errots, but are not statistically independent and cannot simply be averaged to improve the
statistical accuracy.

For our final result we fit the four scans simultaneously, allowing relative energy shifts
between them as three additional free parameters. This makes maximum use of the continuum
information and gives a statistically correct average of A The result of this fit, with the
data of each scan corrected for its relative energy shift, is shown in fig. 5.5. The 37 of 45.4
for 37 degtees of freedom corresponds to & confidence level of 16.1%. The parameter values
are: A% = (286 + 6) nbMeV, A = (7.8 £0.2) MeV, and C = (300 = 6) nbGeV?. Scans 2,3
and 4 are shifted in nominal c.m. energy from scan 1 by (-4.0 £ 0.4) MeV, (-8.6 £ 0.4) MeV',
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Table 5.2: Results of fits to T{15) scans. Errors are statistical only. CL is the confidence
leve] of the particular fit.

[Scan A% [nb MeV] | A [MeV] | C inb GeV?] FoLiv]
1 ° 2898 |7.7+403] 300=6 | 142 :
Co2 269232 | 7.2406 t 327448 . 743
3 ¢ 312+19 83405 | 280 + 20 4.0 ‘
4, 221421 (683068 37431, 329
2 | 2881 9 |7.5%031 fixedat 300 | 816 ‘
3 | 208211 1794031/ fixedat300 | 62 .
4 | 2019 180%03] fixedat 300 | 128 |
Trig [an
14.0 T
12.0 -
10.0 2
8.0 -
6.0 -
4.0 - o
19} o
20 A L L L 1 2 N I " i 1 n A "
37 9. . .
9.3 42 947y |Gey] 952

Figure 5.5: Observed cross section vs. c.n. energy W for the four T(1S) scens. Circles
represent scan 1, squares scan 2, triangles scan 3, and diamonds scan 4. The full line is the
fit result; the dotted line shows the fitted background.

(—7.8 4 0.4) MeV", respectively. The machine resolution A is compatible with the expected
value of 7.6 MeV.

I.. Bhag is calculated from eq. 2.31 and 4 = A® /R where eﬁ is the probability that &
resonance decay is accepted in our hadronic sample. To obtain e8! we use the Monte Carlo
techniques described in section 4.2. With the standard LUND program version 6.2 |30] we
generate the following T(1S) decay modes with branching ratios according to the Particle

Data Group values [5]: a) decays into 3 gluons and ygg: b) direct decays to gg; c) decays



Table 5.3: Compilation of B,,, values (in%) for T(1S) and T(2S).

Reaction | B [%) | Experiment J
(15) T
) 22120 | PLUTO [41] ‘
T o opp 143 DESY-Heid. [42]
T = pp 3241303 DASP II [43]

T = pp 38+1510.2 LENA |44]

T — pp 27+03+03 | CLEO [53]

Y — up 27403201 | CUSB [45]

T — ee 51+£3.0 PLUTO {46]

T(2S) =T, T — ptu,ete” | 2.841£0.18+0.20 CLEO |47}
Y(25) =+ mta T, T — ptu,ee | 23940124014 | ARGUS [48]

T—rr 34+041+04 CLEO |49}
2.63 £0.12 average

T(2S) R
Y(2S) — pup 1.84+08+05 CLEOQ [50]
T(28) = up 14+03+0.2 CUSB [45]
T(2S) — pu 1.0+ 06 £0.5° ARGUS [51]
T(28) — 77 1.7+1.5+08 CLEO {50}

i 14103 average

*The ARGUS T(25) value s scaled from the average T(15) value with B,,,(2S) =
1.57 4 0.59 + 0.53 + 2.1(B,,(1S) — 2.9) (in %) [51).

into two leptons. Typical detection efficiencies for the T resonances are a) ¢, = 90%,
b) €], = 80%, c) eX,._ = 15%, whereas ¢, . and ez.u- are negligibly small. We get as total

detection efficiency 5;115) = (83.1% 0.1 4 24)% (see table 4.2). The first error results from

Monte Carlo statistics, whereas the second systematic error originates from the hadronization
model used and the detector response. We find a 1.4% difference in the efficiency using the
standard LUND string fragmentation and a coherent parton shower model. In addition
we estimate & 2.5% systematic error to account for uncertainties in modeling the detector
response.

L(ISJ we obtain

Using the measured value of A% and ¢
Tee Bhoe = (1.23 £ 0.02 £ 0.05) keV. {5.2)

The 4.1% systematic error is explained in section 5.1.3. Division by Bh,e = 1 - 3B, using
the world average of B,,(Y(15)) = (2.63 + 0.12)% from table 5.3 yields

I'.. = (1.34 + 0.03 £ 0.06) keV'. (5.3)
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Figure 5.6: Observed cross section vs. c.m. energy W for the T(28) scan. The full line is the
fit result, the dotted line shows the fitted background.

5.1.2 T, of the T(25)

For the scan over the Y(2S) we have the og = 0.2 MeV energy determination for each
scan point from depolarization measurements. Fitting our data as a function of energy to the
expression of eq. 5.1 gives the following results for the parameters: M = (10023.5+ 0.4) MeV;
in agreement with our published value |40} and that of ref. [5]: A% = (110 £ 8) nbMeV:
A = (8.2 £ 0.5) MeV, which agrees with the expected machine resolution of 8.5 MeV at
Myasy; € = (296 £12) nb GeV?, compatible with the value found at the T(15). The fit has
a 37 of 12.5 for five degrees of freedom corresponding to a 2.8% confidence level. The data
and the resulting fit curve are shown in fig. 5.6. ]

The Monte Carlo event sample used to determine the hadronic detection efficiency for
the Y{25) includes (in addition to the decay channels considered for the T(1S)) the following
decay modes: d} radiative decays to the three 3P, states. which in turn either decay
radiatively to the T(1S) or via 2 gluons (*Py P2} or 3 gluons (*Py): e} m*n” and 7%n®
transitions to the T{1S). The events were generated with a beam polarization of 80% as
observed in our data. We obtain a detection efficiency (see table 4.2) of E;r’m) = (854+£024
2.5) % with statistical and systematic errors as diseussed for the T(1S) in section 5.1.1. Using
this value, the measured value of A and B, = (1.4 14 0.3)% from table 5.3, we obtain

T.. Bhoa = (0.54 7 0.04 + 0.02) keV (5.4)
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and
T.. = (0.56 £ 0.04 + 0.02) keV, (5.5)

The formula for rescaling the ARGUS B,,,(25) value used in the table 5.3 contains a factor
stemming from the luminosity, number of observed events, acceptances etc. and thus is not
generally valid. The term 2.8 is the world average B,.(25) at the time when the ARGUS

publication was written.

5.1.3 Systematic errors for [,

One of the largest contributions to the systematic error comes from the 2.5% uncertainty
in the luminosity determination.

A 2.8% systematic error on the detection efficiencies for the T(15) and the Y(2S) is the
quadratic sum of the contributions already discussed in section 5.1.1.

We allow a 1.5% error for the dependence on cuts, found by varying them within acceptable
limits and by using an alternative hadron selection method described in ref. [29].

Next we consider the effect of backgroundsin our data sample. Background contributions
from the continuum QED processes e e~ — e*e™, yy,utu”,and v 77 are already suppressed
by our event selection. Moreover, the lowest order cross sections for these processes all
scale like 1/W2 so that events of this type are mostly included in the C/W? term. The
determination of the area A® under the resonance curve is not affected by background
contributions. In section 4.3.3 we estimate the beam-gas contamination to be 0.6%. This
background has a flat distribution as a function of energy and is almost completely absorbed in
the continuum term C/W? of eq. 5.1. Two photon reactions have & cross section proportional
to In W2, as do higher-order corrections to the continuum QED background. To check for any
such background we also perform fits to the data adding a second background term € In W?
to eq. 5.1. These fits give C' = (0 + 3)nb, C = (300 + 10) nb GeV?. The latter value is the
same as obtained in section 5.1 without the In W2 term. Also al} other fitted parameters are
completely unaffected by adding such a term. Over the scanned energy range. the value found
for €7, which is highly anticorrelated with C, would result in & 0.3% change (at the 1 S.D.
level} of the background, if there were contributions from processes with energy dependence
proportional to In W7,

To test for possible c.m. energy shifts within each individual scan, we make several addi-
tional fits to them. Between any two scan points we split each scan into two periods, allowing
as an additional fit parameter an energy shift in one period with respect to the other. Within
errors the fitted single shifts are always compatible with zero. The probahility that all shifts
together are zero is as high as 31%. Again within errors the fitted A% does not deviate from
the values given in section 5.1 obtained without any shift.

Combining the errors quadratically we obtain 8 4.1% systematic error on our e Bhad

values. Dividing by 1 - 3B,,, to obtain T introduces an additional systematic error of 0.4%
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Table 5.4: Measurements of I'e, Biyq (in keV), The type of radiative correction that was used
in each published value is listed, and the rescaled value is given. KF: Kuraev and Fadin,
JS: Jackson and Scharre, GPS: Greco et al.

| Published T.. Bhaa : Rad. corr. i Rescaled value [ Experiment
T{15)
1.00 +£0.23 | IS ' 1.0910.25 | DESY-Heidelberg {42]
1.10 £ 0.07 + 0.11 GPS§ 1131013 LENA [44]
1.12 £ 0.07 £ 0.04 JS 1.23 = 0.09 DASP II 43
1.17 £ 005+ 0.08 | JS, full I 1.37 = 0.11 | CLEO 52"
10440054000 , IS 117+ 0.1 | CUSB [54' (unpub.)
; 1322 0.0 prev. average i
I KF | 123+ 0.02 % 0.05 |‘ this experiment
; 1.23 £ 0.04 ' new average
Y8y )
10372016 : JS " 0.41+0.18 | DESY-Heidelherg [42]
| 0.53 0072000 | 0.54 = 0.12 LENA [44]
[ 0.55 + 0.11 = 0.06 ‘ 0.60 +0.14 DASP I [43]
0.49 +£ 0.03 £ 0.04 \ JS, l'ul] 1 ’ 0.58 £ 0.06 CLEO 52
0.53 £ 0.03 + 0.05 ' 0.59 + 0.06 CUSB [54] (unpnb.)
) 0.57 = 0.04 prev. average
KF 0.54 + 0.04 1+ 0.02 1his experiment |
0.56 = 0 03 03 - new average H

for the T(1S) and of 1.3% for the T(2S).

5.2 Discussion of I, Results

Previous measurements of T, of the Y’s used either the Jackson-Scharre or the Greco
et al. formulation of radiative corrections, which differ from the Kuraev-Fadin form we used,
as discussed in section 2.4. However, all of the forms in eqs. 2.28 and 2.32 give very similar
shapes with differences appearing in the normalization. Thus previous measurements can
be renormalized to correspond to the Kuraev-Fadin formulation by comparing the values of
N{z = 0) in eqs. 2.28 and 2.32. This is done in table 5.4 and the rescaled measurements are
compared to our values. Here we compare [, Byog rather than I, to remove the dependence
on B,,. which was not very well known at the time of the earliest I',, measurements. Adding
the statistical and systematic errors in quadrature shows our result to be the most precise
single measuremnent for the T(15) as well as for the T{25). Agreement with the world averages.
which were calculated without our values, is excellent.

Based on our data we give a comparison of I, values for the T(1S) obtained applying

the four different radiative corrections according to eqs. 2.28 and 2.32 in fig. 5.7, the errors




Table 5.5: Rescaling factors for I',.. Ratios of N(z = 0) compared to I',, ratios from fits to
our Y(1S) scans using different prescriptions for radiative corrections. The smallness of the
errors on the measured ratios arises from the positive correlation of individual I, values.
KF: Kursev and Fadin, JS: Jackson and Scharre, GPS: Greco et al., T: Tsai.

Radiative corrections | Ratio from I, Ratio from N{z = 0)

KF/JS 1.08655 + 0.00010 1.09340
KF/GPS 1.02600 + 0.00002 1.02600

KF/T 0.99955 + 0.00003 0.99911
Kuraev, Fadin S
Jackson, Scharre —0—
Greco et al. 00—
Tsai —0——
Berends et al. ——O——

1.20 1.25 1.30 1.35 1.40

T, [keV]

Figure 5.7: Compilation of our T, results for the Y(15) obtained using different radiative
corrections: Kuraev and Fadin |16], Jackson and Scharre [13], Greco et al. [14], Tsai {15], full
O(a') calculation by Berends et al. [17]. The errors are statistical only.

Fee/(‘))z
15.0 r
S w ¢ J/ T(1S)
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130 | {
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10.0 F

Figure 5.8: The ratio of T to the square mean of quark charge for vector mesons. The
result for T(15) agrees with the value expected from the Van Royen- Weisskopf formula if one
assumes & charge ¢ = 1/3 for b-quarks.
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shown are statistical only. Although Tsai's ansatz [15° has been criticized by Kuraev and
Fadin, both prescriptions give nearly the same T result, since they are equal to the order
of corrections considered here. The point marked as “Berends et al.” shows the result using
their @(a*) calculation [17). Using the expressions of Jackson and Scharre 13, eq. 2.28 8, and
of Greco et al. 114]. eq. 2.28 b, the [, values are lower than all others due to the inclusion
of &,. the electronic vacuum polarization contribution. In table 5.5 we compare ratios of
N(: = 0} to the corresponding ratios of I'. values extracted from our Y{1S) scans using
the various prescriptions. The agreement to better than 1% supports the applicability of the
rescaling procedure.

We thus arrive at one of the most precise experimental results on I (Y(15)) and T (T(25)).

T.. and B, together with the relations

Byoa+ 3B, = 1

5.6
rtol = r:t/"Buu ( )

deterniine the basic resonance decay parameters. However. egs. 5.6 require a consistent
treatment of the radiative corrections.

With this drastically changed value of [, (data from ref. 155] have to be compared with [5])
and a substantial reduction in the experimental errors it is inferesting to reinspect the im-
plications of the van Royen-Weisskopf formula 2.20. Figure 5.8 shows the ratio of T, to
the square mean of quark charge for vector mesons using the data from {65]. The result for
T(1S) agrees with the value expected from the Van Roven-Weisskopf formula if one assumes

a charge ¢ = 1/3 for b-quarks.
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6. Determination of R at W = 9.39 GeV

6.1 Measurement of R

We have ~7.1pb~! of data (see table 5.1) taken in the continuum below the T(1S) at

obs

c.m. energy W = 9.39 GeV. The observed hadronic cross section ¢®* is given by Niggeon,

the number of selected hadronic events, and the luminosity £:

\J
o = A""C""’“'. (6.1)

To compare with the continuum contribution found in our T(1S) scans we again use the

quantity C (see ¢g. 5.1):

C = o™ W2, (6.2)
C was determined run by run (see fig. 6.1). Taking the weighted average we obtain C =
(300,38 + 2.86)nb GeV?. Combining eq. 2.7 with eq. 6.2 gives the observed R**:

C
P ————— . 6.3
R 86.9nb GeV?2 (6.3)

The method to obtain R from R®* is discussed in detail in refs. [2' and [7]. Combining

eq. 2.11 with eq. 6.3 we obtain the following formula:

R*(1 - fpg) — ARgep — AR,

R = < (14 n)

(6.4)

§r sccounts for the initial state radiative corrections, ép = 0.29 [7] at W = 9.39 GeV.
Here a cut-off at 1% of the beam energy has been applied for the energy of bremsstrahl-
photons in the Monte Carlo program. fpg = 0.3% is the percentage beam-gas contamination
(see section 4.3.3). ARggp = 0.187 % 0.005 is the background at W = 9.39 GeV from
the continuum QED processes ete™ — €%¢™, 17, ptu~, and 747" vyhich pass our hadron
selection criteria. AR., = 0.020 % 0.006 is the background from two-photon collisions. The
AR are calculated from €0 of table 4.3 as AR = ¢o W?/(86.9n0bGeV?). 556 is the detection
efficiency for continuum hadron production. We use the average of the e* ¢~ — ¢ efficiencies
obfained with the standard LUND string fragmentation and the coherent parton shower

model (labelled as “LUND string” and “coherent shower™ in table 4.2).

8.2 Systematic Error on R

The systematic error on R receives contributions from the following sources: The 1.4%

difference of the efficiencies for the “LUND string” and the “coherent shower” models is
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Figure 6.1: C value as a function of run number. The line shows the average value of
C =(300.38 £ 2.86)nbGeV?.

taken as systematic uncertainty resulting from the hadronization model used. The error on
the luminosity determination is 2.5%. The backgrounds which have to be subtracted are
already small because of our selection cuts. The systematic error on the beam-gas fraction is
Afpa/fee = 10%. If we conservatively allow for a 5% systematic uncertainty in ARggp. and
if we assume that for two-photon background the cross sections of both, the GVDM and QPM
contributions, are known only within a factor of 2, then the background subtraction affects
our R by less than 0.6%. The dependence on hadron selection is determined as described
in section 5.1.3 and contributes 2.5%. Finally, according to ref. 7], ég is known to 1%.
The factor (1 + &g)~! thus gives another 0.1% systematic uncertainty. Adding the different
contributions quadratically we assign a 3.9% systematic error to the measured R value. We

then obtain
R = 3491 0.0410.14

at 11" = 9.39 GeV', where the errors are statistical and systematic, respectively.
As a cross check of this result we also determine R from the continuum contribution in
our scan data by the same method as discussed above. Here C i< the value of the continuum

parameter C found in the fit to our Y(1S) scans. We obtain
R = 3472007+ 014

at 1" = 9.46 GeV. Both R values agree within statistical errors. The statistical error on

the latter value is larger, a consequence of the smaller data sample used in finding it. The
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Figure 6.2: Compilation of R values. The small error bars represent statistical, the large
etror bars systematic errors, separately. The quoted values are measured at the following
c.m. energies: Crystal Ball (this work) W = 9.38 GeV; CLEO {52, W' = 10.4 GeV; CUSB i56]
W = 10.4 GeV; LENA [3] W = 9.30 GeV; DESY-Heidelberg {42] W = 9.45 GeV; DASP II i57]
W = 9.5 GeV; PLUTO [58] W = 9.4 GeV. For the lines see text.

systematic error is the same as discussed above.

The expected change in R when changing W from 9.39 GeV to 9.46 GeV, assuming
a commonly used value for the QCD scale parameter A = 300 MeV, is of the order of
AR/R ~ 10-1 and is thus not observable within our accuracy (the entire effect is caused by
the running of as as can be seen from egs. 6.3 and 6.6). So taking the weighted average of

the two measurements we obtain

R = 348310.0310.14.

6.3 Discussion of the Results on R

A compilation of R values in the energy range W = 9.3 to 10.4 GeV is given in fig. 6.2. In
this energy range no flavor threshold is crossed and changesin R due to the energy dependence
of the strong coupling constant are unobservable within present statistics. Our result agrees
with most of the published values within statistical errors. OQur systematic uncertainty is
considerably smaller than for the other measurements. The broken line shows the QCb
prediction, assuming ag = 0, while dotted ones indicate the error-weighted average of R

(including our point) and its error. We find for this average value of R

(R) = 3.554 0.10 . (6.5)
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The value of R is commonly thought to be a number from which QCD effects might be
ideally deducted. The QCD corrections to the R value can be expanded as follows

2 3
R=R°(1+A$+B"‘—§sc%*m) (6.6)
" "
where we keep the convention that R° is the lowest order QCD prediction. The size of the
QCD effect egep is then

R
fQ(‘D:(E;—l):A$+B

2
s

al

W2+CW—:+~~~ {6.7)
Unluckily the effect is very small. Using our R value we get ¢qcp = 4.4%, while our systematic
error is 3.9%. The effect is then on the limit of experimental sensitivity.

Unlike QED. QCD does not have a unique energy scale. The definition of the QCD scale
depends on the renornialization scheme. In the following we will discuss the theoretical results
calculated in the so-called MS scheme. In this scheme the coeflicient A of the expansion 6.6
is 1. In the lowest order ag in the MS scheme is given by

S e 6.8
A7 {337 2n, ) InWI/AL (6.8)

with Agg being a scale parameter. The choice of this parameter is not trivial. Note that
in eq. 6.8 ny is taken differently than for R (see eq. 2.8): in R the step in ny occurs at
@ = s = 4m}, where mg is the quatk mass, while in the MS scheme the step occurs at
Q= m:. Thus for the following calculations we have to take ny = 5. .
Ref. [11] suggests a procedure for scale fixing, such that the best convergence for a given
process is achieved. The authors give a value of B = 0.08. Using their expansion for as in
Ofa?) we get
as(Q° = 0.71My) = 0138 + 0.037 £ 0.131. (6.9)

Higher order corrections O(a}) have been calculated [59] and turned out to be large. As
given in [60 the coefficients B and C for ny = 5 are
B - 1411 (6.10)
C = 64.86. < (6.11)

Inserting those values into eq. 6.6 we obtain
as(Q? = M}) = 0120100330005 - (6.12)

As stated befare both results in egs. 6.9 and 6.12 are completely dominated hy the systematics
although our measureinent is the most precise one. Joining of data from different experiments
diminishes the statistical errors. however. the systematic error estimation still remains &

problem. Inserting eq. 6.5 into O(a3) formula we obtain

as(Q? = M2) = 01637000 (6.13)

-0.064 °
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e a) g € b) q

Figure 6.3: At high enough energies we will observe interference of diagrams (a) and (b).

The above result, although obtained by combining the data from several experiments, carries
very large errors.

Recently, the precise measurement of R has become of interest [60,61). The “desert™
found st PETRA and TRISTAN triggered physicists to search for prompt signals of parti-
cles predicted by cleciroweak theory. As we mentioned. R will be sensitive to any process
leading to observed hadrons in the final state, i.e. any new particles coupling to hadrons
will change the R value. At energics sufficiently large, the e*e” annihilation may lead to
2° production, with subsequent coupling to a quark pair as shown in fig. 6.3. Already at
PETRA energies the electro-weak corrections to the total hadronic cross section caused by
Z° exchange and/or due to production of the new particles should be observable, under the
constraint that we are able to reduce the systematic errors. Recently two ideas have appeared
which are of help in overcoming systematic problems. W. de Boer suggested that correlations
between the experiments be included by means of off-diagonal elements in the correlation
matrix [61). A 1% correlation between different experiments was allowed. This is supposed
to account, for example, for correlated systematics inferred by using the same prescription
for radiative corrections etc.. The systematic and statistical errors were added in quadrature.
The result is shown in fig. 6.4. Recently an update of this analysis appeared quoting a value
of as(Q? = (34 GeV)?) = 0.169 + 0.020 [62]. A completely different procedure was used
by R. Marshall [60]. The normalization of the experiments was allowed to change within
their systematic ersors, giving the fit function another degree of freedom. The result of this

prescription is shown in fig. 6.5. Our result on R was included in both compilations.

1Both PETRA and TRISTAN were built with the main purpose of finding and studying the toponium
resonance. Instcad the broad continuum with slowly-varying cross section was found.
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Figure 6.4: The ratio R measured at CESR, DORIS, PEP, PETRA and TRISTAN as a func-
tion of W . The errors shown include statistical and correlated normalization errors. The areas
under theoretical curves correspond to using Quark Parton Model, QCD only and QCD plus
electroweak effects (EW). The best fit to the data gives as(Q? = (34 GeV)?) = 0.14540.017
for an assumed value sin’ §y = 0.23. (from ref. [61]).
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Figure 6.5: The ratio R measured at ADONE, CESR, DORIS, PEP, PETRA, SPEAR and
TRISTAN as a function of W. The best fit gives a4(Q* = {34 GeV)?) = 0.135+ 0.012+0.010
(from ref. [60]).
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7. Summary

Using the data taken by the Crystal Ball Collaboration in the continuwm below Y(1S),
we have determined the value of R—the ratio of the hadronic cross section to the Born cross

section of p pair production—at the c.m. energy W = 9.39 GeV, and find
R=2348100420.14.

Our value of R agrees within statistical errors with published results, and has the smallest
systematic uncertainty. In spite of this precise result, we are not able to totally exclude
the hypothesis ag = 0. The single experimental measurements of R are not able to deliver
useful information about as. The results of such measurements are completely dominated
by sytematic effects given the smallness of the predicted QCD correction. The best way to
determine ae from measured R values is not yet agreed upon, resulting in a large spread of
published ay values; however, the simultaneous fit of the available R measurements allows
the observation of the tail of the Z¢ in the total hadronic cross section at the highest PETRA
and TRISTAN energies.

We also measured the leptonic partial widths I',, of the Y(1S) and T(2S) resonances.

Using the prescription of Kuraev and Fadin [16] to correct for initial state radiation we find

I..(T(15))
Fee(T(25)

1.34 + 0.03 £ 0.06 keV,
0.56 + 0.04 * 0.02 keV'.

These values are the most precise single measurements yet obtained, and agree well with
the averages of previous measurements rescaled to the radiative corrections of Kuraev and
Fadin. Our results are ~10% higher than those already published mainly due to an internally
consistent treatment of the radiative corrections. With these corrections the new world

averages are

T.(T(1S)) = 1.34£0.05keV,
T {T(25)) 0.58 + 0.03 keV'.

To compare with theoretical predictions, the experimental T, values should be divided by 1.07
to factor out vacuuin polarization. Using the current world averages for B, {see table 5.3)

we obtain the total widths

Tl T(1S)) 51 + 4 keV,
rlol(T(zs)) = 40+ 9 keV.
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Appendices

A. Monte Carlo Techniques

We measure physical processes only in & limited sensitive volume of the detector and only
with some finite accuracy and efficiency. To get an apparatus-independent cross section ¢
(differential or total) we have to correct our measured results & for the apparatus effects.
These measured results can be expressed as the convolution of ¢ with the apparatus function

G which depends on the arbitrary set of the observables = (w;, ... wn}
i- o0& GA). (A.1)

The particutar choice of G and € is of course problem-dependent. In principle it is possible
to calculate the analvtical formula for the function G; however, in practice the complication
of such an approach makes it unreasonable. A different approach to calculate the convolution
integral is based on the Monte Carlo technique. We know the basic processes, for example
phenomena leading to energy deposition, particle production and their corresponding prob-
abilities. The Monte Carlo program uses this input to simulate the complex processes by

selecting the basic processes with their given probabilities.

A.1 Event Simulation

The organization of the Crystal Ball Monte Carlo is shown in fig. A.1. We subdivide the
process of the event generation into two steps: modeling of the physical process (referred
to as STEP1) and simulation of the detector response (referred to as STEP2). The models
used for the simulation of physical processes are described already in sect. 4.2. A convenient
feature is the compatibility of STEP1 and STEP2 files—the output of the STEP2 contains
still STEP1 information and can be used again as input in case one wants to test different
assumptions for the detector response.

The detector response for the electromagnetically showering particles is simulated l;y the
EGS 3 code 132 while the hadronic interactions are simulated with use of the GHEISHA 6 [33]
program. The author was involved in the initial implementation of GHEISHA into the frame-
work of the Crystal Ball Monte Carlo [63]: later he became responsible for this simulation.
It is worth mentioning here that we use a common geometry for EGS and GHEISHA. We
have rewritten the GHEISHA geometry routines in order to use the EGS style geometry for

reasons discussed later in section A.3.1.
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Physics Models Detector simulation
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Figure A.1: The organization chart of Crystal Ball Monte Carlo.

A.2 On Monte Carlo Testing Techniques

The testing of the detector Monte Carlo for most experiments causes difficulties because
of the complexity and usually large size of the simulation program. An additional problem
comes from the computer time needed for the simulation. The time necessary to simulate
a single event is large, approaching several seconds of CPU time on an IBM series 3000
processor.

Let us start from the detector geometry, i.e. the part of the code supplied normally by
the user. It helps to start with a simple check such as plotting the input geometry. This
is & reassuring method with which one can find inconsistencies. Means for this purpose are
available in the GEANT |64] apparatus Monte Carlo program, in the form of the ZEBRA
graphic package. The GHEISHA program alone, however, does not support this feature. The
author has written a simple program allowing for 3-D images. The plots like 3.3, 3.5 or A.2
were produced using this program with geometry input of the Monte Carlo.

1t is worthwhile to mention here two other ideas which can be useful.

The first one is the application of computer graphics in debugging the geometry code.
Both GHEISHA and EGS are based on a stepping principle. The step size is limited to a
certain percentage of radiation or interaction lengths in order to guarantee a proper simulation
of the secondary processes. Additionally, one has to reduce the step size so that the step
does not pass the boundary of the medium. Plotting the points where the program asks
grometry routines for new input should then provide a clear image of the apparatus. This is
demonstrated in figs. A.2 and A.3. The example of a debugging output is shown in fig. A.4.

Points outside the images of the crystals or places appeaning particularly “dirty” indicate the
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Figure A.2: 3-D view of the 4z endcaps. Figure A.3: The projection of fig. A.2. For

the details see text.
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Figure A.4: Debugging example. The picture shows exactly the same part of apparatus
as A.3. Points leaking outside the shape of crystals or places appearing particularly dirty
indicate the problems in the geometry routines.
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problems in the geometry routines. The regular structure reflects the step size limitations.
The boundaries produced directly by GHEISHA will be fuzzy, reflecting the effects of the
way multiple scattering is simulated (see section A.3.3).

The second idea is also presented in fig. A.3. It was produced without EGS/GHEISHA,
just using a “stepping simulator”. The idea is to have a small program that simulates stepping,
i.e. offers step size and direction to the geometry routine which is to be tested. The program
is very fast and allows working with large samples, thus allowing the detection of even subtle
effects in & reasonable amount of time.

Because the Crystal Ball does not have a particle identification system, we can petform
only a few tests of simulation of particle interactions. Luckily, nature offers us one well suited
tool for detector tests—muons. They have an easily distinguishable experimental signature,
deposit their energy mainly by pure ionization loss and, moreover, are generally available as
a main component of cosmic rays. Due to the saturation effects in the energy deposition for
highly relativistic particles (i.e. for 8250 the dE/dz changes very slowly) we were able to
use cosmic u's sample for the early tests. In the following we have used muons produced in
the process ete” — p*p~(v). We also obtained results from test measurements performed
on pion beams {(both =* and »~) at CERN, done with a test setup built of exactly the same
Nal(TI1} crystals as the Crystal Ball detector [65]. With help of these measurements we were
able to trace differences observed in varinbles deseribing multihadronic events globally back

to problems in the simulation of hadronic interactions.

A.3 Changes of the GHEISHA Code

The standard version of the GHEISHA code fails to describe our data (63,66]. Figs. A.5-
A.8 show the most striking disagreements. Fig. A.5 shows the simulated detector response to
monoenergetic 5 GeV muons. The shape of the energy deposition is purely Gaussian although
the Landau shape of the energy deposition in each step was used in simulation. Let us now

define the momentum tensor Q%
N A
Q=3 560 - p7p (A.2)
i=1

where § = (p*.p* p’) is the momentum vector found as the product of the energy deposited
in the crystal and the unit vector of the erystal axis. The sum runs over all illuminated
ball crystals {N). For discussion of this procedure see sect. 3.4. The smallest eigenvalue
obtained by diagonalizing the tensor @ is called in our plots p¥_je- The Monte Carlo
prediction for p}_,, is shown in fig. A.6 together with the one found for the hadronic data
taken in the continuum at W = 9.39 GeV. We also present the input distribution calculated
after fragmentation using the momenta of generated particles. We started by investigating

the input pr distribution, used for the event generation, that seems to be most naturally

72

correlated with our definition of p}_ .. In order to obtain agreement with the data we would
have to shift the input width o of p2 (202 = (p%)) used in the LUND fragmentation scheme
from 400 MeV to 150 MeV. To get a similar agreement for the T(15) resonance data we have
to make an even more dramatic change—to the level of 50 MeV. Such dramatic disagreement
suggests severe problems.

Fig. A.7 shows the distribution of the cluster energy of multihadronic events at W =
9.39 GeV. The Monte Carlo distribution is shifted towards higher energies.

These two facts suggest that the energy deposited away from the jet axis is overestimated.
Fig. A.8 gives a hint where the main problem lies. It shows the distribution of the cluster
energy, subject to the condition that the negative pions are not allowed to interact strongly
after stopping. A much better agreement between the data and the Monte Carlo is observed.

To obtain agreement with the data we have inspected and modified the GHEISHA code.
The Crystal Ball calorimeter is somehow special, consisting only of an active medium. The
inspection of the particle spectra generated by the physical models shows that it is very
important for us to treat stopping particles correctly: this was not the case in the standard
GHEISHA. Below we will inspect the changes made to the standard GHEISHA. The sections
on dE/dzr and multiple scattering modifications are given here to complete the overview. The

recent work on these subjects was done by M. Kobel [67).

A.3.1 Geometry Routines

Let us start by considering the requirements our geometry program should fulfill. The
Crystal Ball measures the energy deposited in the calorimeter down to (1 MeV) (crystals
with energy ahove 0.35 MeV are used in the analysis). The minimum-ionizing particles
deposit typically ~5 MeV cm in Nal. From this it follows that for a single minimum-ionizing
track a precision (in finding the step size) of ¢ ~ 1-2 mn of the geometry program will suffice.
The situation changes dramatically if the particle showers and, or the energy loss becomes
large. If an average of (n,,) particles in a shower are produced, the precision should be
increased by (n,.) 1.e.

€

(A3)

Fe
{m,n)

Note that in case of large variation of n,, one has to pursue the maximum possible number
of shower branches in order to avoid trouble with the energy resolution. An increase of the
precision should be considered also in case of heavily ionizing particles or those which traverse
dense media. The geometrical precision gains additional importance for finely segmented
calorimeters. It will be very convenient and elegant to have the same geometry input for all
kinds of particles. Al this reinforces the requirement that the speed of the geometry routines
must be as high as possible since this part of code is most heavily used—small inefficiencies

produce big waste of CPU time. Summanzing. we can formulate our requirements as follows:

73



dN/5 MeV
¥ M 1 T v
1500 4
100.0 - -
500 | _
0.0 Dt o am ) U SO S
0.0 100.0 300.0 400.0

EBALL [I\‘i?v\"’}

Figure A.5: The total energy spectrum of 5 GeV/c u~ generated by the default Monte Carlo
simulation. The shape of the energy deposition is purely Gaussian (to be compared
with A.11}.
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Figure A.6: The PIT-;er distribution for the continuum data. Continuous curve shows the
data, the dotted one the input distribution after fragmentation, and the dashed line marks
the default Monte Carlo prediction.
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crosses are the result of the Monte Carlo simulation. The peak at ~200 MeV is due to the
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1. the geometry routines should be as precise as possible to avoid systematic problems;
2. the geometry input should be common for EGS and GHEISHA;

3. these parts of the code should be as fast as possible and the information delivered by
the geometry routines should be handled very efficiently.

Let us now show how in practice the coordinates inside the calorimeter are mapped into
symbolic “calorimeter cells”. The geometry routines of GHEISHA deliver the number of the
“calorimeter cell” or find the number of the “neighboring cell”, using the actual coordinates
as a starting point. This essentially “hit or miss” information is then used to find using the
Newton method “how far we can go” i.e. how far the particle can be transported without
crossing the medium boundary. EGS requests more detailed information since we have not
only to answer “how far we can go” but also what is the distance to the closest medium
boundary (“cell"). Our experiences with the simple geometry in the GHEISHA treatment
revealed a large computing inefficiency in this approach. We gain a factor of ~2 in the CPU
time by using the EGS style geometry. This can be understood from the fact that the typical
step sizes requested by the EGS are ~2.5 em (in our case the total time of the simulation is
dominated by the time spent inside the EGS). Requiring an accuracy of only ¢ = 0.01 cm, we
have to make ~8 iterations in order to achieve the desired accuracy. An extra inefficiency is
imposed by multiple scattering because we have to repeat the iteration process once again.
This inefficiency is connected with the discontinuous approximation of the multiple scattering.
After these experiences we have rewritten the GHEISHA geometry routine so that we can
use the EGS style geometry interface. (This also saved much manpower as we already had
the geometry interface to EGS.) Our changes essentially agree with the recommendation of
the authors of the EGS, i.e. use of the geometry input should be reduced as much as possible.

After making sure that the geometry routines are working correctly we can start further tests.

A.3.2 Checking of the dE/dr Constants

The jonization losses are taken into account using the Bethe-Bloch formula with the

Sternheimer density correction [68]. The mean value of the dE/dz energy loss is given by

dE 2ret , 1 2 Wengsr 3? al )
-—— = |- — |ln ——— — 28" ¢ A4
- ( i~ ) nZhm (ln T (A4)
2 ‘maz
- D [ln (-’-T'—;;——B’q’) o - 5] (A5)

where 1mas i5 the maximum kinetic energy for é-rays, Z.me the charge of the incident particle,
I the mean ionization potential of the material traversed, and & the density effect correction
as described later. The wpmqq is given by [55]

2m. 3y’

Wmes = 7 + 2yme [ Mne + (Me/Minc)?

(A.6)

76

where Mype 18 1[1@ T11ASS Of the mmdent projec tile. Ihe electron deﬂS”V n1s d(’ﬁﬂ(’d as
1= ]\A % ("L‘
A )

with N4 being the Avogadro number, p. Z and A the density, the charge and atomic number

of the traversed medium. This correction § was expressed by Sternheimer [69] as follows

§=0 X <X,
& = In(B2y*) + C + a(X, - X)” Xo< X <X, (A8)
§=1In(B*9) +C X, < X

with X = log %47 and C, a. m, Xo, X, the Sternheimer parameters. The number of pa-
rameters can be reduced. The parameters a, m. X,. and X, can be expressed as a function
of C and the state of the medium [68]. The parameter C can be calculated from the experi-
mentally measured value of I. The parameter a can be found using the boundary conditions
from eq. A.B.

In practice we measure the energy deposition in some material layer. Traversing thickness
t we expect that the most probable energy loss dE will be:
2m, Dt

I?

The above formula is valid for dE <« E. Fig. A.9 shows the theoretical predictions for the

_dE = Dt lln( Bt - 57 0198 - 4] (A9)

most probable energy deposition in the Ball erystal in case when a muon traverses a Nal{T1)
crystal along its long axis (see fig. 3.4). Muons with 3523 will range out and deposit their
total kinetic energy {solid curve in the first region of fig. A.9). Within the 300 ns Crystal Bell
trigger gate we also see the energy from muon decay in ~13% of the cases, and in case of
negatively charged muons the absorption on a nucleus followed by soft 7 emission. In the
second region we start to punch through the ball. The formula A.9 is not valid in this region
(dashed-dotted line). We can use the formula A .4 instead. In this case the mean energy loss
{dashed line) will be a good approximation to the most probable energy loss because the
Uomese Value is very low. Thus no high-energy tail will be present in the dE distribution. In
the third region the formula A.9 can be safely used. ’

The application of eq. A.9 directly in the simulation leads to problems. The energy in
the Monte Carlo is deposited in many small steps. The central limit theorem tells us that
this will lead to a Gaussian shape of the energy deposits as the final simulation result {for a
large enough number of steps). The long high-energy tail of the dE :d> distribution is caused
by é-ray production. Use of Landau distribution in each step might give a correct numerical
value but will not reproduce the lateral behavior of energy deposition. The problem was
resolved as follows: We used the restricted energy loss according to the formula:

- dE/dz = D {1,) ('M—};.‘i‘:‘,g?f) 3 a] (A.10)
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Figure A.9: The theoretical prediction for the energy deposited by muonsin Nal{T]} assuming
that the muon passes through the crystal along its axis. For the detailed description see text.

valid for w.y < Wmas. The b-rays are produced when dE ~ weu. The ejection angle of the
§-ray is given by:

_ (Eine + mNEe —m.) 1m, \1 w,
cosé = — =1+ 3 o B u_—u-, o . (A.11})

Io this formula w and E are kinetic and total energy, respectively. The subscripts ‘e’ refer
to the &-rays and ‘ine’ to the incoming projectile. Standard GHEISHA uses the following
formula:

cos = \ We (A.12)
UWmar
with:
Wpnar = 2m 577} (A.13)

rather than the value according to A.6. With the substitution of A.13, A.12 approaches the
exact value A.11 in the non-relativistic limit.

Our strategy was to check the thearetical predictions using data. The initial GHEISHA 6
code produces an energy deposition of essentially Gaussian shape because of the already
mentioned limitations imposed by the central limit theorem. The é-rays were produced only
for liquid argon and not for Nal. The code was changed so that it produces the é-rays for all
media and the material constants were replaced by the published Sternheimer values. The
comparison of the selected muon data sample with the default and the improved Monte Carle
code is shown in figs. A.10 and A.11, respectively. The best agreement between data and
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Monte Carlo is achieved when we use the value of the Sternheimer parameter C = —6.057 as

given in ref. [70,.

A.3.3 Multiple Scattering

Muons can also serve as test data for the optimization of multiple scattering parame-
ters, just as they did for the Sternheimer parameters. The fine detector granularity allows
measurement of the lateral energy distribution. This energy pattern is sensitive to multiple
scattering, but unluckily, also to é-ray production.

There are two important observations: (a) it is not necessary to simulate single scattering
in order to describe the data; (b} the particular method of simulating multiple scattering is
a source of large CPU inefficiencies in GHEISHA. The simulation of the multiple scattering
by imposing an angular spread of the particle momentum and the displacement in plane per-
pendicular to the particle momentum is not well suited for the Monte Carlo simulation. This
creates a discontinuous particle path. EGS uses a continuous approach to this problem :32).
To our knowledge, a similar approach for the particles other than electrons has not been
developed. For completeness let us here review briefly the formulas as used in the GHEISHA
program.

Multiple scattering is usually deseribed by the scattering angle projected on two per-
pendicular planes {each referred to as projected angle) and the positional shift in the plane
perpendicular to the particle momentum. The root mean square projected scattering angle
for the particle with momentum p traversing the path ¢ in the medium with the radiation
length X, is {55!

4. V/ 1
! 1:}’;" -rfz,m\(/—i (v1+ élog(!/X,;)) [radians). (A.14}

The multiple scattering probability is Gaussian in the reduced projected angle a = /8, thus

o

given by
1
pla)de = —/—§—.r_°7/2da. (A.15)
\2n

Additionally, in order to obtain a better description of the data, we have simulated a single
scattering (not simulated in standard GHEISHA) with the probability given by 171]

1 da

das — ..
plodda = 210z 17)

(A.16)

The displacement in the plane perpendicular to the momentum of the incident particle is also

Gaussian with the spread y. 155,

. = —=18.. A7
Yo = 5 { )

Ref. [55' gives the following formulas. under the assumption that =, and z; are independent

Gaussian rapdom variables with mean zero and unit variance, used to obtain the actunl values
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Figure A.10: The comparison of the energy deposited in the Ball by u’s produced in the
reaction ete — ptp~(7). The crosses represent the data, and the histogram the default
Monte Carlo (here: width and peak position adjusted to fit the data), normalized to the
number of data entries.
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Figure A.11: The comparison of the energy deposited in the Ball by s's produced in the
reaction ete~ — p*p (7). The crosses represent the data, and the histogram the corrected
Monte Carlo normalized to the number of data entries.
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Figure A.12: Muon identification probability as a function of the acceptance cut
rew > 7 = Ey/Eia. The crosses show the data, the dotted line shows the st andard GHEISHA
simulation and the continuous line the effect of our changes.

of scattering angle # and the displacement y:

§ = 2;0(, (A.]B)
= lae - e A10
y = 521 :*Tﬁq o (A.19)

GHEISHA does not account properly for the correlation between the generated scattering
angle and the displacement because the second term of A.19 is onvtted in the generation.
The effect of the changes on the lateral energy pattern is shown in fig. A.12. There we
show the reduction in the efficiency for finding 2 muon when the cut on energy ratio Ey/Eyy is
tightened (see section 3.4). The agreement between data and Monte Carlo has improved with
our modifications, stemming mainly from the proper simulation of é-rays. Multiple scattering

has only & weak influence on the lateral energy pattern.

A.3.4 Absorption of Negatively Charged Particles

Positively charged particles stopping iu matter simply decay because the Coulomb bar-
rier between the particle and the nucleus prevents nuclear interactions. For slow negatively
charged particles (n~, K . I, ... etc.) the dominant process is the absorption by nuclei.

The Crystal Ball detector response simulation is particularly sensitive to the pion and kaon
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absorption, as these are the most frequently produced particles. We expect to find on aver-
age sbout eight charged pions and one charged kaon in a multibadron event at c.m. energies
around 10 GeV.

Data from & test setup [65] built of exactly the same Nal crystals as the Crystal Ball
detector were used for a companson with the GHEISHA simulstion. The test module was
exposed to 200 MeV/c positively and negatively charged pions which stop in the detector.
The experimental data of figs. A.13 and A.14 show a large disagreement with the GHEISHA
simulation (figs. A.15 and A.16) for negative pions while the positive pions agree reasonably.
Although the scales differ (MeV and “ADC channels”), the comparison contains an important
message: For m* and 7~ the measured energy depositions peak at the kinetic energy of the
incident particles, whereas the Monte Carlo predicts for stopping 7~ mesons a peak at the
total energy of the incident particle. This indicates a serious shortcoming in the simulation
code. For a proper simulation we need precise experimental data including not only the
measurement of the total energy deposition but also of particle multiplicities and energy
specira in 7~ absorption processes. Such a measurement was done in connection with a
recent cancer therapy study (72) at SIN in Switzerland. The experimental results can be

summarized as follows:

1. only ~75% of the pion mass is available for the kinetic energy of the particles emitted

after the absorption process. The rest goes into binding energy.
2. most of the energy is carried away by neutrons (see table A.1).

3. the momentum spectra can be parametrized approximately by an exponential function:
~ exp(—pc/200MeV).

An important number is the ratio 5 : 1 between the number of neutrons and protons. The
GHEISHA parametrization assumes this ratio to be ~1: 1. Additionally, the ratio of protons
to heavy fragments was overestimated and the entire mass of the 7~ was assumed to be
available for the kinetic energy of the produced particles.

This allows for a qualitative understanding of the discrepancies between our data and the
GHEISHA predictions for the p}_,,, distributions. Particles with large p} usually have lower
energy and are stopping. GHEISHA releases a too large fraction of their energy to too many
charged secondary particles. This overestimates our measured {p}_,,,) in the Monte Carlo
simulation. The effect is enhanced by the missing simulation of light quenching in Nal (see
sect. A.3.5 below).

The ebsorption routine PIMABS was completely rewritten using the measured experimental
input. Due to the hermetic structure of the GHEISHA program, allowing for production of
fragments heavier than He, is not trivial. We decided to generate all fragments as given in
table A.1 but afterwards to exclude fragments heavier than He from further tracking. This
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Figure A.13: The pulse height spectrum for 200 MeV/c n* in a Nal(Tl) crystal test setup as
measured by (65].
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Figure A.14: The pulse height spectrum for 200 MeV/c 7” ina Nal(Tl) erystal test setup as
measured by [65).

83



arbitrary units

0.15 .—,ﬁ,,4

0.10 I~ default GHEISHA

0.05 -

[P VIS G U U S G S

00 100.0 200.0

0.0

300.0
chu ster (hie\" )

Figure A.15: Default Monte Carlo prediction for the energy distribution of all clusters created
by 200 MeV/c #* stopping in the Crystal Ball. One pion may give more than one entry.
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Figure A.18: Default Monte Carlo prediction for the energy distribution of all clusters created
by 200 MeV/c 7~ stopping in the Crystal Ball, One pion may give more than one entry.
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Table A.1: Features of particle production in the process of #* absorption on ¢ according
to ref. |72

Particle type Av;‘rage multiplicity | Average released kinetic
: per m~ stop . energy per 7~ stop 'MeV|
n 2.5 ‘ 76.0 !
P 0.485 | 10.4 \
d 0.356 ! 6.3
t 0.249 ‘ 3.0
He | 0.84 | 6.2
: Li¢ i 0.12 ; 0.8
Lou ! o2 | 08

decision is motivated by the low abundances of the heavy fragments and the observation that
the measured energy deposition of heavy fragments will be suppressed by light quenching in
the scintillator. To our knowledge the dependence of the absorption process on the mass of
the nucleus was studied neither experimentally nor theoretically. We decided to use directly
the results on 2C 172].

The comparison of the visible energy spectrum obtained with the modified 7~ absorption
routine with the test measurement (65 is shown in fig. A.17. The distribntions have been
normalized to each other to agree in peak height. The energy scale of the test data has
been set with the help of the =* peak positions. The continuous line shows the shape of the
experimental distribution (the same as in fig. A.14), while the crosses indicate the results of
the simulation. It now gives the peak in the 7~ spectrum at the expected position.

However, we still observe clear differences above and below the peak region. As will be
discussed in more detail in sect. A.3.6. the simulated range of neutronsis underestimated, and
the photons emitted in neutron capture are too energetic in GHEISHA. Thus the neutrons
contribute more energy to the 7~ clusters than in reality. In addition those neutrons, which
leave the 7~ cluster region. may create additional low energy clusters when they are captured
further away. Those additional clusters clearly show up as a peak at low cluster energies
in figs. A.16 and A.17. As a first test of this assumptions we excluded the neutrons from
tracking, which results in fig. A.18. Now also the energy depositions above the peak are well
described. The broad enhancement below the peak in the measured distribution cannot be
explained. 1t might well be due to beam impurities since muons from the decay of 200 MeV /¢
pions have a kinetic energy of several 10 MeV'.

Similar problems occur in the treatment of stopping R . Negative kaons can form hy-
pernuclei or produce other strange particles. The assumption of GHEISHA, to perform only
K-p - An" and K~ p — Ay in K~ absorption, is again too crude. Table A.2 (from (73})

shows the complexity of the processes following negative kaon absorption. We used these
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Figure A.17: Comparison of the simulated cluster energy spectrum for stopping 7~ (crosses),
obtained with the modified absorption routinc PINABS and default neutron tracking, with the
measured one from [65] (solid curve).
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Figure A.18: Comparison of the simulated cluster energy spectrum for stopping 7~ (crosses),
obtained with the modified absorption routine PIMABS and neutrons excluded from tracking,
with the measured one from [65] (solid curve).
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Table A.2: Elementary processes for pion and hyperon production from K~ absorption [73].

| Initial state | Final state | Braﬁing rati;:-"‘

in %

Production | K~ ~p T4 22

‘ Toan |28
T4+ n” 44 |

A+ . 6
K Tm o Tean 30

T+ 30

i A4 Z\" L 40
K- +NN (&°+N | 33 B

T N 33

[T+ N 33

rﬁéa_\f Free T e k as

| p4n° 52 )
! Free ©° Aty + 100 1
j Free T~ n+ " 60 !

’ absorption 40
’ Free A n+n° 36 AH]
! 'p+nm” 64 l

probabilities to simulate negative kaon absorption in the routine KMABS. assuming that the
absorption process takes place as on free p, n. and two-nucleon aggregates (NN). The
numbers are normalized such that the branching ratios for K~ p. K-NN,and K n add up
to 100% each. The process of K~ absorption on two-nucleon aggregates has a probability
rather independent of the target used and contributes about 20% to the total absorption rate
for targets heavier than deuterium |73]. The relative probability for the absorption taking
place on a single neutron or proton within the nucleus is taken to be equal to the (A — Z)/Z
ratio. Formation of hypernuclei was not simulated. . :

The main result of this treatment is that not only neutral but also charged pions are
directly produced in A - absorption. and that the pion energies now vary from about 170 MeV
for the processes involving A production to about 500 MeV” in those cases where the ahsorption
takes place on two-nucleon aggregates. As an example let us mention. that the mean visible
energy for 400 MeV', ¢ stopping K™ in the Crystal Ball is reduced from 500 MeV to 380 MeV

through our changes and that the visible energy distribution is broadened.
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Figure A.19: The pi_,,, distribution for the continuum data before accounting for light
quenching (dotted) and after all changes (dashed-dotted) compared to the data (solid).

A.3.5 Light Saturation Problem

The standard GHEISHA code does not account for light saturation (light quenching) in
the scintillator. The only way this can be effected is an explicit change in the GHEISHA
code. With the parametrization used in GEEISHA, the effect of light saturation is described
by (74]

AFE

AE,ee Az
= AR, (A.20)

1+ e—

Ar

where E,cens E.o. are the observed and calculated energy depositions, ¢ is the quenching
factor, and Ar the path length inside the scintillator. The above formula is valid only for
particles of unit charge. GREISHA uses for particles with charge Q greater than unity:

§ = 0.8¢0Q. (A.21)

The formula A.20 is the expansion of the formula A.22 given in {75) in case of small edE/dr.

We decided to use the original formula

AFE
AE.un In (1*2! E)_
Ar 2¢

because we encounter large :dE /dr values. The ¢ values were measured for BGO and some
scintillators. We assumed scaling by the density relative to Nal [33]. The effect of light
saturation is in our case non-negligible. For minimum ionizing particles assuming 5 MeV/em
as the average energy loss the change is of the order of 3%.

Because we are using the energy depositions from the crystals to define the p}._,, variable,
quenching changes the p}._; , distribution dramatically. as it lowers the observed “off jet-axis”
energy depositions emerging mainly from the nuclear interactions in the calorimeter. The
energy deposited “on jet-axis” is much less affected by the light quenching effect because
the particles produced close to the jet-axis are usually energetic. After accounting for light
quenching the simulated p}_ _, distribution of multihadron events in the Crystal Ball nicely

agrees with the data (see figure A.19).

A.3.6 Neutron Transport

As was noticed by various authors '76.77 neutron absorption and transport is extremely
difficult to simulate correctly. Compared to neutron energies in the MeV’ range, the cross
section for capture is large for neutron energies of several keV, but very large for energies
below the eV level and for thermal neutrons. In our case the energies of secondary pro-
duced neutrons are of the order of MeV. The GHEISHA 6 code treats them as thermal as
soon as their energies fall below a cutoff value of 1 MeV. In this way we get only a very
crude picture of neutron interactions: As they lose their energy slowly—mainly by elastic
scattering—neutrons with few MeV can travel far inside the detector before being captured
by nuclei. The neutron absorption process can be described as & (n,7)-reaction where the
4 quantum has a well-defined energy typical for the nucleus in which the absorption takes
place. GHEISHA 6,7 assumes that the absorption leads to emission of gamuna quanta with a
total energy of 8 MeV, a typical nucleon binding energy. The energy is emitted in two bursts:
one gamma is generated with its energy taken from a Gaussian distribution with a mean of
6.5 MeV and 1 MeV spread. then a second gamuna is generated to reach the 8 MeV deexcita-
tion energy. This approximation is only sufficient for applications where high accuracy down
to deposited energies of a few MeV is not required. Because of the 10 MeV threshold for
the Crystal Ball cluster energy we have to simulate the absorption process with more care,
as can be seen in figs. A.7 and A.8. In fact. the mean energy released in the capture process
of neutrons in Nal is much lower than 8 MeV !78!, We have modified the GHEISHA routine
CAPTUR so that ~ lines with a total energy of about 3 MeV' are emitted for Nal. whereas we use
the default GHEISHA procedure for the other inactive materials in the Crystal Ball detector.
These changes were necessary to describe the data just above the threshold of Eyye. as can
be seen in figs. A.7 and A.8.

The cutoff value for the neutron transport was not changed. An improvement is readily

available through the routine NSLDOW in GHEISHA 7. which simulates the moderation down
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to thermal energies. However. our studies of neutron simulation were done with GHEISHA 6
only.

A.4 General Remarks on Monte Carlo Techniques

The growing sizes of the Monte Carlo programs require a new look at the entire technique
of simulating high energy physics experiments. A scan through the available publications
on Monte Carlo shows that no one is really happy with the present state-of-the-art. Huge
programs like GHEISHA 33, GEANT [64], FLUKA |79] or HERMES [80] are consuming
much of computer time and delivering results of uncertain accuracy. Programs are rather
complicated and very hard to debug, Nonetheless, with a large investment of time study-
ing and modifying the Monte Carlo simulation, we are able to report improvement in the
description of data, though not complete agreement with measurement.

Because the geometrical routines are the most heavily-used parts of code in the Monte
Carlo programs, we spent some time on this subject. It seems that somehow physicists
are just now discovering techniques that have been invented for application in CAD/CAM'
systems. A first step in that direction was done in GEANT, where the graphics interface was
made an integral part of the whole package. This saved much time making the debugging
of the geometry very much faster. The authors of HERMES report a speed-up factor of 8
as a result of the special geometry package and simultaneous vectorization of the code. The
author would like to suggest that the progress referred to in the area of computer graphics
should also apply to the problems we are faced with in the Monte Carlo simulation. Moreover
the progress in this field is very rapid and gratifvingly there are certain standards which can
also be used for physical applications. The “ray tracing” technigue is a common method
of obtaining high-quality computer graphics with an almost natural appearance. The idea
hidden behind this name is purely physical: backtracing of the rays from the eye of the
observer to the object in question, subject to all rules of optics. Our Monte Carlo method
has a one-to-one correspondence to the case of transparent solids—the progress made in this
field can be measured as a reduction from hours of computer time for a single picture down
to real time of plotting. The progress in this field is also connected to the progress in storage
of the geometrical input and its minimization.

In this respect we must make a few observations. The geometrical interface of the
GHEISHA program is particularly ineffective. The geometry routines were previously com-
pletely user-contributed. GEANT was a real break through as it requires only the description
of the detector as a set of solids. i.e. creates a lattice in space. while the movements inside
the lattice are rather done by GEANT itself rather than a users routine. Further progress is

made in HERMES where the entire geometry code is prepared using a preprocessor. Another

TComputer Aided Design, Computer Aided Machining

90

problem is the flexibility of the program as for example in the decay routines of GHEISHA.
All the decays are written as separate routines, so changes require intervention of the users in
the source code of the program. Again there is a readily available modification—the decays
done as in the LUND Monte Carlo; in such a code new particle decay data can be easily
incorporated.

Finally, we would like to discuss the meaning of Monte Carlo accuracy. As already men-
tioned, the complexity of the strong interactions causes the troubles. In EGS one can choose
the simulation accuracy by a momentum cut-off value. An attempt to apply a similar method
to the hadronic Monte Carlo will produce unpredictable results as for example in the case of
x~ absorption. We would like to note here also the implication of “rare” particle decay modes.
In case of high statistics Monte Carlo data sets these can make an important contribution.

Concluding we can say that there are many things that can and have to be done in the
field of the modeling of the detector response for hadronic showers. The performance of
the Monte Carlo code depends both, on high- and Jow-energy shower modeling. There is no
universal Monte Carlo for all detectors—the particular application of the existing programs

has to be done with care.
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B. Luminosity Measurement

The luminosity £ is the proportionality factor between the number of events produced
per unit time and the cross section for a given process
dN
— =Lo . B.1
i (B.1)

For storage rings the luminosity in one interaction region can be found from the formulae
= v Nounan (B.2)
octa-
where n*, n~ are the numbers of particles per bunch, v the revolution frequency, Nyuncs the
number of bunches per beam, ¢*, ¢~ the crossing areas of beams. Eq. B.2 does not have
practical application since the quantities used in it for luminosity evaluation are difficult to
measure. The luminosity can be found directly from B.1 in the case when we are able to
calculate theoretically the cross section for some process having reasonably high counting
rate. In the case of e*e” storage rings we normally use Bhabha scattering c¢¥e” — ete ()
to determine the luminosity. Because of the absence of reliable charge information, we have
also had to include the process e*e” — vy(7) into the calculation of the Juminosity. This
leads to ~10% increase in the counting rate of the luminosity events (within our selection
cuts).

The Crystal Ball measured luminosity at small and large angles with respect to the beam
direction. The luminosity measurement at small scattering angles profits from higher statis-
tics. but suffers from systemetic uncertainties caused by the extreme sensitivity to small
detector misalignments and radiation damage. The small angle luminosity monitor is shown
in fig. 3.3, while fig. B.1 shows it in more detail. Tt consists of four counters located at 8 ~ 8°.
The measurement at large scattering angles results in smaller statistics, but systematic effects
pre much less pronounced.

The luminosity is measured from the e*e- — ete (y)andete” — y7(7) events observed
in the main Nal{Tl) detector. The corresponding graphs (in lowest order QED) are shown in
fig. B.2. The measurement at small angles was used for a fast luminosity determination and
also as a cross check for large angle luminosity determination. Events with exactly two energy
clusters with Eciuser > 0351 inside |cosf, < 0.75 are selected as luminosity events {81].

The integrated luminosity L is calculated from the number of luminosity events Npumi using
/ Ldt =L = Niumi W/n (B.3)

where W is the center-of-mass energy. The explicit factor W? removes the leading 1/W?

cross section dependence, allowing use of a constant conversion factor  within our limited
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Figure B.1: Small angle luminosity monitor. €, P are scintillation counters, § the
lead-scintillator sandwich shower counters. The cross marks the interaction point. The
luminosity event is triggered by back-to-back coincidence (1-3, 2-4) CP counters and high
energy shower in the corresponding S counters.
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Figure B.2: The lowest order Feynman diagrams for: a) and b) Bhabha scattering, ¢} and
dyete  — y7.

W range. The value of 7 is determined by generating a sample of ¢* e (v) and yy(v) Monte
Carlo events with the program of Berends and Kleiss [34] and passing them through the full
detector simulation as described in section 4.2. The luminosity is corrected for the direct
decays T — e*e” which contribute to Npymi. R

A 2.5% systematic error on the luminosity was obtained by adding contributions from
the following sources in quadrature: 1.0% from Monte Carlo statistics, 1.0% from 4" order
QED corrections {82], 1.9% from the dependence on the cuts, 0.7% from the correction
for direct decays T — ete . 0.2% from hadronic and beam-gas background, 0.1% from
the non-leading energy dependence of the conversion factor 1. It is worth mentioning that
the luminosity found by the author i83] applyving different selection criteria and of course &
different normalization constant n agreed within the 0.5% with the values presented here,

thus bringing additional confidence to the estimation of our systematics.
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C. Asymmetric Errors of Poisson Dis-

] *
tribution
For small counting rates the probability of observing n events is given by the Poisson
distribution: A" exp(— A
exp(-

where ) is a real number. It is both, mean value and variance of the distribution. As this is
s discrete distribution we can try to estimate the errors by assuming that our measurement
n is the fluctuation st the level of (1 — CL) from the distribution with a mean value X,
smaller than n (sce fig. C.1)

a-cn=% A_r———h""“:f’)“‘“") : (C.2)

=0 :
Similarly we can assume that our observed number is the effect of the fluctuation at the
level of CL from the distribution with the mean value of Mhigh- This approach changes the
problem from discrete to continuous one. Thus the asymmetric errors can be calculated from
the differences n — Aiow, dnigh — n. The value of A can be found solving eq. C.2 numerically.
Taking CL of 16.5% we get the error estimate equivalent to one standard deviation in Gaussian

distribution.
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Figure C.1: The calculation of asymmetric errors of Poison distribution.
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