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Siehst Du den Mond dort stehen?
ET ist nur halb zu sehen,
Und ist doch rund und schön.
So ist's mit manchen Sachen,
Die wir getrost belachen,

Weil uns're Augen sie nicht seh'n.
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Gaby

und

Pascal



Zusammenfassung

Mit dem Crystal Ball Detektor wurde am e4 e Speicherriiig DORIS II das Verzweigungs-
Verhältnis B^ für den Zerfall der Y ( l S ) und Y ( 2 S ) Resonanzen in M von-Paare sowie zum
ersten Mal das Produkt aus ihrer myonischen Breite Y f l l l und ihrem Verzweigungsverhältnis
in Elektron-Paare. 5ce. gemessen. Es ergaben sich Werte von

r^ M ( lS) -ß«( lS) - (31.2 x 1.6 d 1.7) oV

und
# M ( J (2S) = (1.22- 0.28- 0.19) CA

rw i(2S)-ßw(2S) = ( C . 5 ± 1 . 5 ± 1 . 0 ) e V ,

wobei die beiden Fehler jeweils die statistische und die systematische Unsicherheit der Mes-
sung angeben. Unter Benützung des derzeitigen Weltmittelwertes von B„(1S) = (2.52 n
0.17) % konnte zum ersten Mal die myonische Partialbreite

F^(IS) ~- (1.24 ± O . O G n 0.11) keV

gemessen werden. Darüberhinaus konnte in der Abhängigkeit des Wirkungsquerschnittes
von der e^ e" Schwerpunktsenergie erstmals die erwartete Interferenz zwischen Myon-Paar
Erzeugung im Kontinuum und in Resonanzzerfallen beobachtet werden.

Aus dem Ergebnis für ß^(lS) erhält man den SkalenparaiiK'ter A der Starken Wech-
selwirkung. indem man für das T( lS) das Verhältnis von B^u und der Zerfallsrate 5RKR in
drei Gluonen auswertet. Renormiert man die Quant en-Chromo- Dynamik mit Hilfe des MS
Schemas für vier "navors". so findet man

Ap -- (210 ± 25:^°} MeV.

Diese Zahl entspricht einer Starken Kopplungskonstanten von

a^1s(^ = 5 GeV) = 0.184 T

Die ersten Fehler an diesen Resultaten geben die jeweiligen experimentellen, und die zweiten

Fehler die theoretischen Unsicherheiten an. Da letztere beim derzeitigen Stand der Theo-
rie eigentlich prinzipiell nicht bestimmbar sind, sollten sie nur als ungefähre Schätzungen
betrachtet werden.



Abstract

Usiiig the Crystal Ball detector at the e4e storage ring DORIS II we liave measured tlie
branching fraction Butt to muon pairs of the T(1S) and T(2S) resonances and for the first
time the product of the niuonic partial width FM;J and the branching fraction Bff to electrons
for both resonances. We ob tarn

= (2.31 ± 0.12 ± 0.10) %
= (31.2 ± 1.6 ± 1.7) eV

and
B^(2S) = (1.22 ± 0.28 ± 0.19) %

= (6.5 ± 1.5 ± 1.0) eV,

where the errors given are the statistical and systematic uncertaiiities, respectively, Inserting
the present world average value of -ßec(lS) — (2.52 ± 0.17) % we measure for the first time
the niuonic partial width

FMM(1S) - (1.24 i 0.06* 0.11) keV.

In addition we present the first evidence for the expected interference between ^-pair pro-
duction in the continuum and in T(1S) decays.

Using our result on .B^(IS) we derive a value for the scale parameler A of the strong
interaction from exploiting the ratio of B^ to the braiiching fraction BKffi of the T(1S) to
three gluons. In the MS reiiorinalization schenie for the theory of Quantum Chromo Dynamics
(QCD) we find for four flavors

Ap = (210±25!JJ°) MeV.

We convert, this number into a measurement of the strong coupling coiistant

ap(^-5 GeV) = 0.184 ±

In both results the experimental and the theoretical errors are listed, respectively. The values
for the theoretical uiicertainties should be taken äs an educated guess. Given today's state
of the art in QCD, they are iii principle unkuowii.

111
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Chapter l

Introduction

In. the p äs t 35 years substantial progress has been achieved in understanding strongly inter-
acting matter. Milestones in the experimental fiiidings were the discovery that the proton is
not point-like [l], the observation of structure inside the nucleon [2], the discovery of quarks
with the new flavors charm [3! and beauty 4], and the proof of the existence of gluons [5].

The possible mass ränge for the presumably last missing element in the zoo of strongly in-
teracting elementary particles, the top quark, has by now been considerably narrowed by
indirect methods [6], indicating its possible detection in the near future.

Parallel to the experimental progress the theoretical development led from the concept
of quarks [7] and partons [8] to a neld theory of stroiig interaction, the Quantum Chroino
Dynamics (QCD) [9], Its basic approach of an underlying local gauge symmetry was taken
from the successful "theory of light and matter7', the Quantum Electro Dynamics (QED) 10j.

and its later unification with the theory of weak interactions to the Electroweak Theory [11 i.
The proof oftheir renormalixabihty [12] ensured that predictions for physical processes could
be obtained from these theories with the help of perturbation expansions. However, two facts
reu der perturbative calculatioiis in QCD much harder and less accurate than in QED. In the
GeV energy ränge the st roiig coupling constant as is more than 20 tiines larger than the

electromagnetic coupling arnj, and there is a self-interaction between the mediating bosons,
the gluons, which is abseilt in the case of photons.

The cleanest way to study strong interactions is the investigation of t wo-quark Systems.
Among these the spectroscopy of quarkonia yields the richest harvest of Information. Quarko-
ma are bound states of a quark and its antiquark and their energy level Scheines are similar to
the positronium levels in QED. In Figure 1.1 we have plotted the level schemes for the heavy
quarkonia bottomonium (bb) and charmonium (cc). A similar level scheme can be plotted
for the lighter slrangeonium (ss). Its lowest lying states are the 1S0 r/(958), the 35j <^(1020).
the 'P, h',(1380), and the 3P/ states /£(- 1525), /i(1510)_, /J(1525). However, all these states
are more or less infiuenced by SU(3)// mixing with uü+dd and are therefore no pure ss states.
The absence of SU(3)// mixing effects for the heavy quarkonia facilitates the understanding
of level spacings, and the occurreiice of states below the respective opeii meson (DD, BB)
threshold opens the possibility to study a variety of decay channels and various transitions
within the quarkonia Systems. Relativistic effects and non-perturbative QCD effects. which
are still large for charmonium, decrease with increasing quark masses. This would suggest
ideal conditions for the bound top-quark System. However, given a top-quark mass of more
than 89 GeV 14j, the top-quark decays on-shell into a W-Boson and a b-quark. Thus the
weak decay of the topoiiium O ( t t ) —»W4 \Y~BB dominates and strong decay channels 01
cascade decays will hardly be observed. In addition, the © widths may even be larger than
the distaiice between successive topoiiium states 15°. Therefore the tf spectroscopy does not
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Figure 1.1: Energy level s ehernes for cJiarmonimJi, and bof fomonium /13/. States with dushed
lines h&ve not yct been obscrved. The nrrows indicate measured radiafive transitions. The

numbers in parenthese.s give the mass in MeV. The spectroscopic notation n 2**lLj lists the
radjaJ quantum numbern, the spin muhiplet 2s + 1. the anguJnr momentum L. and the total
spin J. Above the opeu meson threshold considernble mixing between 35j and *D^ states
mny occur via coupled channel cffects.

look very promisiug, and the bb syst.em appoars to Ise the "Hyclrogen atom of QCD". wliere
the strong interaction can be studied with the least distortions.

The bb states with the quantum numbers of the photon, Jpc — 1~~ , are called T reso-
nances, and can be directly produced in e4 e~-annihilation into one virtual photon (Fig. 1.2).

Figure 1.2: TJie production of T-resoiiaiices in e4 e~-annihilation.

Figure 1.3 shows the total cross sertion of e"*e^—> hadrous in the ceuter-of-mass (c.iu.)
energy region aronnd 10 GeV. The data was taken by the CLEO detector at the CESR e+e~
storage ring in Cornell (USA) |]Gl. The production of the T(1S) to T(CS) states shows up äs
resonances in the e^e~ cross sertion.

The apparent widths of the T(1S) to T(3S) resonances in Figure 1.3 are governed by the
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Figure 1.3: Total observed cross section of e+e~—> h&drons versus the e+e~ center-of-mass
energy äs measured at CESR.

c.m. energy resolution of CESR, being about 4 MeV. Their true widths are only a few 10
keV. On the other hand, the T(4S) to T(6S) resonances are inuch broader than the storage
ring resolution. Their widths ränge from 24 MeV to 110 MeV, siiice their masses lie above
the energy threshold for open bottom production (Fig. 1.4a). This is an exainple for the
Okubo-Zweig-Iizuka (OZI) rule [17], claiming that decays without qq annihilation are largely
preferred.1 The main decay modes of the T-resonances are listed below, roughly ordered
according to their partial decay widths.

• Decay to two B-mesons above the threshold for open bottom production (Fig. 1.4a).

• Hadronic or electrornagnetic transitions to lower lying T-states (Fig. 1.4b and c)

• Annihilation to 3 gluons or 2 gluons plus a photon (Fig. 1.4d and e)

• Annihilation to l virtual photon (Fig. 1.4f and g)

Decays to one gluoii are forbidden by color coiiservatioii since a single gluon is not a color
singlet. A two-gluon or two-photon final state is not possible due to the Landau-Yang theo-
rem [18]. The decay into three photons is negligibly small, äs it is proportional to o^m.

Those decay modes, which involve quark-antiquark annihilation to gluons, can in principle
be calculated in QCD and compared to the experimental values. However, the mean binding
radius of the quarks is still too large to neglect confinement, and thus non-perturbative effects.
These eifects are usually factorized into the wave function leaving a perturbatively calculable
pari, Predictions for partial decay widths thus depend on model calculations for the wave
functioiis (e.g. non-rclativistic potential models), and on the validity of perturbative QCD.

In ratios of two partial widths of the same resonance the dependence on the wave function
cancels, and the ratio can be expressed in a power series of the stroiig coupling constant Q3 .
Such a ratio is formed by the expressioiis for the 3-gluon width rggg of the T-states and
their leptonic width IV, which can be measured äs the ratio of the corresponding branching
fractions ßggg and Btf. Since the 3 gluon decay leads to a large variety of final states,
the corresponding branching fraction can only be measured by subtracting the sum of all

'The OZI rule is meanwhile understood äs originating froni the running of the strong coupling constant a,,

since diagrams without quark annihilation involve only soft gluons.
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gluon exchange.

other branching fractions from unity. The calculation of this l alt er sum also relies on the
knowledge of B K. The measurement of the electroinagnetic decay T —* t f. thus leads to
an experimental result, which can be compared to perturbative QCD predictions. If the
perturbative expansion is well behaved, the stroug coupling constant os can be extracted
from this measurement. Apart from the strong coupling constant, fundamental parameters
of the T-resonances, namely their total widths and some branching ratios for cascade decays,
are determined with the help of the T decay to lepton pairs.

Since the total widths of the three lowest T(nS) states, n—1,2,3, are about two orders
of magnitude sinaller than the energy resolution of today's e+e~-colliders. these total widths
can only be obtained from the ratio of a partial decay width to the correspouding branching
fraction. The only channel where both partial width and branching fraction can be measured,
is the leptonic decay. The knowledge of the total width is in turn mandatory to convert
theoretical predictions for partial widths in t o values for measurable branching fractions,

Furthermore. a precise knowledge of the leptonic braiichiug ratio is needed to detcrniine
branching ratios for cascade decays between the Y-resouances, since such decays are usually
measured in exclusive final states. where the lower lying resonance decays to a lepton pair.



In this work we present a measurement of the decay to muon pairs for the T(lS) and the
T(2S). The data was collected from the e+e~ storage ring DORIS II at DESY during the
years 1983 through 1986 using the Crystal Ball detector.

We measure the branching fraction to muons by analyzing the excess of //-pairs on reso-
nance compared to the continuum //-pair production. A value for the product of the muonic
width and the branching fraction to electrons is obtained by fitting the observed /i-pair cross-
section äs a function of the c.m. energy in the region of the respective resonance.

The outline of this thesis is äs follows. In Chapter 2 we review the underlying theory. Sec-
tion 2.1 presents the basic ideas of today's "Standard Model" of elementary particle physics.
The problern of renormalization is addressed for QED and QCD in Section 2.2. As an ex-
ample for renormalization scheine dependence of QCD predictions the above mentioned ratio
of Tggg/r« of the T states will be discussed. Section 2.3 deals with the process ee—> y^i.
We study radiative corrections to this process äs well äs interference effects between the
resonance production and the continuum process. In addition we discuss their modeling by
Monte Carlo event generators and describe special modifications of the event generator used
in our analysis. Finally, Section 2.4 treats the process e+e~ —* e+e~, which is used for the
luminosity measurement.

Chapter 3 describes the experimental setup and its Simulation by Monte Carlo (MC) tech-
niques. Details of the MC Simulation, however, which we have developed to precisely model
the response of the tracking chamber and the calorimeter, are presented in the appendix.

Chapter 4 treats the data selection, the luminosity measurement, and the beam energy
determination. It is shown, why the interference between continuum and resonance requires
a precise knowledge of the c.m. energy. Details of the determination of this energy scale with
the help of the multihadronic cross-section are again given in the appendix. We describe the
selection of luminosity events, multihadronic events, and fi-paii events.

The continuum background in our ^-pair sample is studied and subtracted in Chapter 5 to
obtain the observed cross-section for resonance decays to muons. We thoroughly investigate a
bunch of systematic error sources connected with this subtraction, since tiie analysis heavily
relies on a correct reproduction of acceptance changes between on- and off-resonance data.

The method of extracting J?MM and T^^Bff frorn the measured event numbers aiid cross-
sections is explained in Chapter 6 and the results are given. It is studied, whether we need
the interference term in the cross-section to describe the measured data.

Finally, Chapter 7 contains the discussion of our results and compares them to those of
other experiments. We check whether the B^li value for the T(1S) is consistent with that
of the T(2S) and whether it can be scaled to the J/i/'- A value for the muonic width of the
T(1S) is obtained and compared to the electronic width. The total widths of the T(1S) and
T(2S) resonances are deternained. At the end of this chapter we derive values for the QCD
scale parameter A and the strong coupling constant aa from our result on B^ of the T(1S).
The dependence of these numbers on the renormalization schenie is discussed.

In Chapter 8 the results are summarized and conclusions are presented.



Chapter 2

Theoretical Fundamentals

2.1 The Standard Model of Elementary Particle Physics

"So when some fooJ physicist givcs a lecture at UCLA in 1983
and says lThis is the way it works, and look how wonderfully
simiJar the theories are', it's not because Nature is really simiJar;
it's because the physicists have only been able to think
of the same damn thing, over and over again."

R.P. Feynman [I9](page 149) giving one possible reason
why the theories of different forces are similar.

A comprehensive pjcture of elementary particle physics has emerged froin the experimental
and theoretical work of the 60'% 70'% and 80". It is widely accepted and thoroughly tested
and therefore called the "Standard Model" (SM). We will outline its basic ideas below1.

2.1.1 The Building Blocks of Matter

Table 2.1: Periodic System of fJie building blocks of matter.

Particles
(m/GeV)
Leptons

Quarks

Generations
I II III

^(<10- 8 ) ^ (< ; 0 5 _<) i / T < < 0 . 0 3 )
e (5 x 10~4) p (0.1) r (1.8)
u (5 x 10~3) c (1.3) t (140)
d (9 x IG'3) s (0.2) b (5)

Q
(Qrm/0

0
-1
2/3
-1/3

Forces
Grav. Weak Emag. Strong

x x
X X X

X X X X

X X X X

The building blocks of matter are spiii-1/2 fermioiis wliich are point-like down to a scale
of 10~18m. They can be ordered in a "periodic system"", horizontally in groups of equal
electromagnetic charge Qern — Q • e, and vertically in generations (Table 2.1). The higher
generatious essentially iterate the properties of the first geiieration at higher partirle masses.
The number of generations is not predicted in the SM. It has been sliown recently [2l] that
the ixumber of light neutriiio generations (m^ < 45 GeV) is exactly three.

Neutrinos are the particles of lowest mass in each geiieration, and it js still an open
question, if they are in fact massless. The properties of the r-neutrino are inferred from r

'Section 2.1 follows. in parts, the synopsis given by W. Majcrotto )20l.
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decays. Up to the present no reaction induced by a i/T has been observed. Together with the
three charged particles e, //, and r the neutrinos build up the family of leptons, which does
not participate in the strong interaction.

The family of quarks consists of the 6 flavors up, down, stränge, charm, bottom, and top.
There exists only indirect evidence for the top quark constraining its mass with a precisioii
of about 35 GeV [6]. The symmetry between quarks and leptons, and the mass pattern, also
shown in Table 2.1, cannot be explained in the framework of the SM.

2.1.2 The Forces

As indicated in Table 2,1, four types of forces act between the fundamental particles: gravi-
tation, the weak, the electromagnetic, and the strong interaction. The gravitation cannot yet
be included in the SM, since a consistent quantum theory of gravitation is missing. Unified
models including gravitation, like Supergravity or Superstring Theories, are beyond the scope
of present experiments.

Formally, the remaining three forces arise from requiring local gauge syrnmetry of the un-
derlying Lagrangian, namely the symmetry under the gauge group SU(3)C xSU(2)j ,xU(l)y
(see Table 2.2). The local gauge invariance of the Lagrangian is achieved by addiiig a "min-
imal Substitution" term in the covariant derivative, which consists of a product of coupling
strength, group generators, and gauge fields.

Table 2.2: Gauge symmetry structure of the forces.
The left-right arrow indicates the mixing in the GSW-Model. The term in square bracJcets
is vaJici for the Z°, only.

Local Gauge
Symmetry

GSW- f SU(2)L

Model \r

QCD SU(3)C

Minimal
Subst.

\rW»
ttYB»

^G?

Coupling
Constant

°" a.2 tvl^4"

Vector
Bosons

w+wz°
7

gl» •-- , g8

Force

weak
elmag.

strong

The symmetry group SU(2)/,xU(l)y describes the electroweak interaction (Glashow-
Salam-Weinberg (GSW) Model). The group SU(2)i, denotes transformations in the space of
the weak isospin Iw of lefthanded (L) fermion doublets and has three generators, e.g. the Pauli
matrices r^ i —1,2,3. The corresponding quanta of the gauge fields introduced by requiring
local gauge invariance of the Lagrangian are the three vector bosons W+, W~, and W°. The
U(l)y group describes phase transformations with the weak hypercharge, Yw — 2(Q - I™),
acting äs a generator. This implies one gauge boson B. The SU(2)^ bosons W only cou-
ple to left-handed fermions, whereas the B boson couples to the weak hypercharge, i.e. all
fermions (except hypothetical right-handed neutrinos). The observed neutral vector bosons,
the photon 7 and the neutral weak boson Z°, are linear conibinations of B and W°, such that
the photon does not couple to neutrinos. The mixing angle is called Weinberg angle 6w It
relates the coupling strengths g and g' and thereby defines the electromagnetic coupling e via

e ~ g sin w — 9 cos (2.1)

Its value is sin2 6\y — 0.226 ± 0.005 [22]. Due to this mixing, only the charged weak currents
(W + ,W~) maintain the V-A coupling, i.e. the coupling to left-handed fermions, only. The
coupling of the neutral weak currerit (Z°) depends on the charge aud weak isospin of the
fermions.
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The group SU(3)C is the symmetry of Quantum Chromo Dynamics (QCD) describing

the strong interaction. It has 8 generators, e.g. the Gell-Mann matrices A,, i —l, . . . ,8 and is

embedded in the space of the three quark colors (C): red (r), blue (b), and green ( g } . Agaiii,

the quest for local gauge invariance gives rise to 8 gauge bosons, the gluons.

The algebrae SU(2) and SU(3) are non-abelian. To maintain gauge invariance, the field

strength tensor must include terms which lead to a self-coupling among 3 or 4 gauge bosons.

Thus, the gauge bosons themselves carry the charge of the corresponding interaction. The

U(l) group is abelian, and therefore the photon does not couple to itself. Since both, the

photon and the Z°, have Yw = Ig = 0, neither 7-Z°, nor Z°-Z° couplings exist.

The ränge r of the forces is related to the mass m of the mediating bosons via r ~ l/m

(ft=c=l). Therefore the weak interaction with m — 100 GeV has a very short ränge of less
than 10~2 fm, whereas the electromagnetic force (m—0) is of infinite ränge. In principle, also

the strong force should have infinite ränge because the gluons are massless. However, all free

particles are SU(3)c- singlets due to the confinement mechanism (see below). Since the gluons

axe SU(3)c octet bosons, they do not couple to SU(3)c singlet states. Thus, the ränge of

the strong force is restricted to the dimensions of strongly bound Systems, which is typically

l fm.

2.1.3 The SU(2)xU(l)xSU(3) Structure of Fermions

Table 2.3: MuJtipJet structure and cJiarges with respect to the gauge group

SU(2)L x U(1)Y x SU(3)C for the first famiJy of fermions.

The square brackets jndicate, that right-handed neutrinos rnay not exist.

Multiplets

SU(2)L Doublets

SU(2)L Singlets

SU(2)L Singlets

SU(3)C Singl.

V e /L

["«*]L fn)

«ft

SU(3)C Triplets

/ \  / \  (  \9
/ u \ u 1 l u 1

r b 9

d r Jf> J9
R <!R Q»JT jl /t

TW

+ 1/2

-1/2

0

0

~\ w
1 Singlet

-1

[0]

-2

-* friplct

+ 1/3

+ 4/3

-2/3

Each fermion generation has the same multiplet Ktructure with respect to the gauge groups.

The properties of the first generation are shown in Table 2.3. the subscripts L and R denote

the left- and right-handed component of the fermion spinors i/' — V'L + 4'R-, where V'L =

(l — 75)V'/2 a.nd V'R = (l + 7s)V'/2- Right-handed neutrinos would only exist if neutrinos are

massive. Grouping left-handed fermions to doublets creates the V-A (~ 7M(1 — 7 s ) ) structure

of the charged weak current and implies the parity violation of the weak interaction.

The left-handed weak isospin doublets define the weak eigenstates d', s\d b'. The

observed mass eigenstates d, s, and b froru Table 2.1 are superpositions of these states. Their

relation is given by an uiiitary matrix, the Cabibbo-Kobayashi-Maskawa matrix A/CKM |23]

= A/CKM

This matrix can be parametrized with the help of three aiigles cosÖ,_,, describing the mixiiig

of the ?' ' with tlie j' generation, and one phase ^rp, which is (if a non-integer multiple
of TT) responsible for CP-violation. If the weak and the mass eigenstates were identical, no

transitions between different quark fiavors would be possible.
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2.1.4 The Masses

Exact local gauge invariance would require all gauge bosons to be massless. Additionally.
exact SU(2)i symmetry is only possible for massless fermions. On the other hand, for the
SU(3)c symmetry of the strong interactiou the fermion masses do not cause problems. Thus,
the fermion and weak gauge boson niasses have to be accommodated within the electroweak
SU(2)^xU(l)y theory. The Standard way is to introduce a spontaneous symmetry breaking
of the ground state (vacuum), termed Higgs-mechanism [24], in a formalism extended to
non-abelian groups by Kibble [25]. The minimal Higgs model introduces one complex isospin
doublet, of scalar Higgs fields. Three of its components create mass terms for the W+, W~,
and Z°, whereas the 411' component shows up äs a massive scalar, the Higgs particle. It has
not yet been found, and its mass is highly uncertain. Recent work [26,6] has managed to
constrain its mass to 44 GeV < T?IH < 1000 GeV.

The fermion masses arise from their Yukawa couplings to the Higgs field. Since this
coupling has to be proportional to the fermion mass. there are äs many coupling constants
äs different quark and lepton masses exist.

2.1.5 Open Questions

"Wha.t is the connection between physics and life?"

Most urgent question in physics, äs feit by approximately every
fifth Student, but by not a single one of about 200 "grown-up"

theorists and experimentalists, in a survey at CERN [27].

In the SM, there is no relationship between the SU(3)C symmetry and the SU(2)j ,xU(l)y
symmetry, between their gauge bosons, or between their coupling constants, i.e. there is
yet no "unification" of these forces. In addition, the weak and electromagnetic forces are
only partially unified. There are still two separate interactions, expressed in two coupling
constants. They are related to each other via the Weinberg angle (cf. Eq. 2.1). whose value
is not predicted by the SM. Thus, a real unification of the forces (even without gravitation)
is still a pending problem.

W W W W W W W

+ + N, l + N

T T Z
Figure 2.1: THaiigJe graphs in fjie GSW-Model.

It can be inferred from renormalization arguments. that there may be links between QCD

and the GSW-Model. respectively between quarks and leptons. Triangle graphs like those in
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Figure 2.1 would lead to non-renormalizable divergencies unless Squarks.ieptons Q — 0- Given
identical numbers of lepton and quark generatioiis, this leads to Nc(Qu + Qd) = — Qe, i-e-
NC ~ 3. Thus, electric quark charge and the number of colors Nc may be linked through a
yet undiscovered symmetry. On the other hand, given 3 colors, the above equation requires
identjcal numbers of quark and lepton families, wliich may also be a hint to new symnaetries.

A unified theory should also reduce the large number of free parameters in the SM.
Whereas the SU(3)C part has only one free parameter, namely the coupling constant as, the
electroweak part has 2 coupling constants, 2 free parameters in a minimal Higgs sector, 6
corresponding Yukawa couplings of the quarks to the Higgs field (the quark masses), and
4 CKM mixing parameters. If neutrinos have a Dirac mass, analogously 6 lepton Yukawa
couplings and 4 lepton mixing parameters will enter the theory. For massless neutrinos, as
assumed in the minimal Standard model, no neutrino mixing is possible, and the Yukawa
couplings of the 3 charged leptons are left. Thus there are at least 18 free parameters in the
SM, which are listed in Table 2.4.

Table 2.4: The 18 free parameters of the minimal Standard model. The quarks masses and
the value of &CP &re typical numbers given in the literature. All other parameters have beeil
taten from Ref. [22].

tt«
( M = 5 G e V )

0.19
±0.03

m«.
(keV)

510.9991
±0.0002

«£
( l« l = o)

137.035990
±0.000006

m^
(MeV)

105.65839
±0.00003

GF

(TeV~2)
11.6637
±0.0002

mr

(GeV)
1.784

±0.003

m-i
(GeV)
91.16
±0.03

md

(MeV)
9

±2

TOH

(GeV)
> 44

< 1000
m„

(MeV)
5

±1

sin #12

0.220
±0.003

ms

(GeV)
0.19

±0.02

sin Ö23

0.046
±0.016

mc

(GeV)
1.3

±0.1

sin Öi3

0.004
±0.003

mb

(GeV)

4.8
±0.3

&CP

90°
±40°

mt

(TeV)
0.14

±0.04

Due to relations between a«,m ,<?,<;', G/- (the Fermi constant), #u/ ,n?Ziro\v 5 and {^}„ac (the
Higgs field vacuum expectation value) there is sonie freedom to chose 3 of these parameters,
besides the Higgs mass m,n, in order to cover the electroweak coupling constants and the Higgs
sector. We list that set of parameters, which has been most precisely measured, namely aem,
Gp , and A/z- It is (on tree level) connected to the more fundamental set <?, g1 ', and ($} v a

Q,

(2.3)

The values of the 18 parameters cannot be derived from the SM. Especially the wide spread
of the mass values covering 6 Orders of magnitude (even more than 11 Orders, if neutrinos are
massive) is not understood. The iteration of leptons and quarks in 3 generations remains a
mystery.

Thus, in spite of its tremendous success, the SM leaves some important questions open.
Today's high energy physics research has t wo goals. First to further test the SM and pin
down its parameters more precisely (especially aa , n?,, m-H , sinö,j, and 6cp), and secoiid, to
search for physics beyoiid the SM to obtain a deeper insight into its origin. In this thesis we
can make a small contribution to the nrst item, namely the measurement of a,.
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2.2 Renormalization of Gauge Theories

"The shell game thaf we pJay to find m0 and e0 is
technically called 'renormalization '. But no matter how
clever the word, it is what I would call a dippy process/"

R.P. Feynman [19] (page 128).

A crucial feature of any gauge theory is its renormalizability. The absorption of di-
vergencies occuring in the calculation of physical processes is mandatory for perturbative
expansions. The other mandatory condition is the smallness of the expansion parameter to
guarantee convergence. After Feynman, Tomoiioga, and Schwinger [28] the calculations in
modern gauge theories are expansions in terms of the coupling constant. Each subprocess of
a given couphng constant power can be illustrated äs a Feynman diagram, which is evaluated
following certain rules.

The basic idea of renormalization is the Interpretation of mass, c.ouplings, and fields
in the Lagrangian äs to be "bare" quantities. These bare quantities are not measurable
and can be infinite. They are hidden through higher order processes resulting in efFective
masses and coupUngs, which are the physically measurable quantities. A renormalization
procedure defines, how to modify the Langrangian through local counterterms to obtain finite
values for certain divergent Feynman diagrams. After the renormalization, the remaining
diagrams are free from serious divergencies order by order in perturbation theory. To maintain
the predictive power of the theory, the renormalization scheine must be a "systematic and
unambiguously fixed algorithm" (29], which satisfies the fundamental properties of locality,
causality, and unitarity.

In the following we will discuss the renormalization of the coupling constants in QED and
QCD.

2.2.1 Renormalization in QED

In the following we will discuss the renormalization of the electromagnetic photon-electron
coupling, which is shown in Figure 2.2 together with its one-loop corrections.

The Feynman rules demand to integrate each loop over the inner 4-momentum vector fc,

-l- \ -^

Photon vac. pol. Vertex correction Electron seif energy

Figure 2.2: The photon-electron coupling and its 1-loop corrections. Loop contributions to
external particles on their mass shell receive an extra farfor 1/2 in the summation, which is
not explicitely listed here.

which is not fixed by momeiitum conservation (see Fig. 2.3). These Integrals are logaritli-
mically divergent for \k\* oc (UV divergence), and have to be renormalized. The vertex
correction and the electron seif energy in addition diverge for kQ —» 0 (IR divergence). If all
external particles are 011 their mass shell, both divergencies from the vertex correction and
the electron seif energy cancel due to the QED Ward identities [30;. In this case we are left
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q + k

\i) ( p ) \) ( v

k
Figure 2.3: The ßow of 4-momenta in a loop diagram.

with the divergence of the photon vacuum polarization diagram. The amplitude M^ for this
diagram can be evaluated from the Feynman rules äs [3l]

f
AV = — - - O~T- = DW(-iV)DWt (2.4)

/ 'f

ßwhere the tree level photon propagator Daß is defined in the Fejrnman gauge (omitting the
usual +i6 term in the denominator) äs

(o )_

with gaß being the metric tensor. The tensor integral S^ is given by

- zS^ — (-l)Tr / — iQf€jp-l iOte-y0. (2.6)
x / i / O \ J i U * f J **

v ( ̂  7l J (7 ~| /C —~ 7Tc f /C f it /

where m/ is the mass of the fermion inside the loop, and Qj its electric charge in units of e.

The renormalization procedure now comprises three steps.

1. The regularization, i.e. the redefinition of the integrals, such that they become mathe-
matically well defined objects.

2. The renormalization prescription, i.e. a strategy, how to remove the now well-defined
divergencies.

3. The momentum scale, at which the renormalization is performed.

A choice of a Renormalization Scheine (RS) is defined by a choice for each of the three items.
Following Duke and Roberts [32] we will call a Renormalization Convention (RC) to be a
choice of a RS up to, but not including a choice of scale. Hence, a RS is made up by a RC
plus a choice of scale.

Regularization

The most widely used regularization procedure is that of dimensional regularization [33]. The
Feynman integrals are evaluated in a space-time dimension D ~ 4 — f slightly less than 4.
To keep tlie multiplying (bare) coupling constant dimeiisionless, an arbitrary (positive) scale
parameter p h äs to be introduced via

/£L _„./£:£-.
At the end of the calculation, the limit f —» 0 is performed.
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Applying dimensional regularizatioii, the tensor integral S^ from Eq. (2.6) can be de-
composed [3l] into a scalar integral S and a Lorentz tensor part a SL according to

vy ^""E-rsYSL- (2.7)

Since the latter term is oc (fqa ', it does not contribute to physical matrix elements due to
current couservation, and the photon propagator on the one-loop level can be written äs

'2.8'

The quantity Ü0(g2)= — S(<?2)/<?2 is called uurenormalized photon vacuum polarization. In
the two physically most important limits it can be written äs

"

J

(2.9)
Here 72 is the Euler constant and ö is the Heaviside function. The expression for n0(g2)
diverges for e —> 0, and depends on the arbitrary parameter p..

Renormalization Prescriptions

All renormalization prescriptions interprete e in the Lagrange density äs a bare charge e0.
This bare charge is defined such that in the sum of all diagrams up to a given loop level the
divergencies are cancelled through an (infinite) counterterm £e, i.e.

c0 = f + bt. (2.10)

E.g. the divergence of Eq. (2.9) is cancelled in a l-loop renormalization of the photon propa-
gator by those terms in the tree level amplitude, which contain the counterterm £e. It is the
definition of this counterterm, where the various renormalization prescriptions differ.

Minimal Subtraction The Minimal Subtraction (MS) prescription [33] defines the coun-
terterm be such that only the 2/f pole in Eq. (2.9) is removed after renormalization.

Modified Minimal Subtraction In principle, any other finite terms can be subtracted
in addition to the 2/f pole. Thus, there are an infinite number of modified minimal
subtraction prescriptious. The most widely used, the so called MS-prescription [34],
subtracts in addition the quantity 7^ — In47r, which is an artefact of dimensional regu-
larization. This term arises £rom the analytic continuation of tlie 4-dimensional integral
to 4 — € dimensions with the help of F-functions. The MS prescription generally leads
to perturbation expansions which behave better for physical processes than the MS-
prescription.

Momentum Subtraction Momentum-space subtraction (MOM prescription) [35] absorbs
a complete set of radiative corrections to a given vertex at a typical 4-momeiitum qü
into the definition of the counterterms. The choice of the type of vertex and of the
4-momerituni depends on the process under study.
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The Standard renormalization prescription applied in QED is the MOM mass-shell sub-
traction. Here, the radiative corrections to the electron-photon vertex are required to vamsh
for particles on their niass shell. In this prescription, the low-energy liinit of Thomson scat-
tering is equal to the Born term through all Orders of perturbatioii theory. and its coupling
constant is given by2 a = e2/4?r = (137.035990(6))~1.

In the followiug we denote a RS by the superscript "RC,scale", e.g. the MOM-subtraction
äs "MOM,<?o". The 1-loop counterterm for the renorinalization of the photon vacuum polar -
ization reads in the MOM mass-shell subtraction (gj = 0)

^ _ e l l o ( o) . (2.11)
£*

This can, for example, be verified for the renormalized amplitude for the annihilation process
of two charged leptons

M =

«07 (P4), (2.12)

where q = p1 -f p2 — p3 + P4 and u, v and ü,v are the fermion spinors and their adjoints,
respectively. Inserting Eq. (2.9) for the photon propagator yields a factor e§(l 4- n0(g2)) in
the resulting amplitude. The recipe is, to formally perform a perturbative expansion also in
6e 01 equivalently in Ü0, yielding with Eqs. (2.10) and (2.11)

The quantity
(2.14)

is called renormalized photon vacuum polarization. As can be seen from Eq. (2.9) il is iiow
finite and for q% ~ 0 given by3

MOM.o
1„ for n,

By construction, nMOMl°(0) — 0, i.e. it vanishes for real photons. For light fermions (m2 <".
|g2 |) inside the loop it logarithmicly increases with q2 . Heavy fermions are suppressed by
q2/T7Jy. At a given §2, the complete vacuum polarization contributiou at the 1-loop level is
to a good approximation obtained by s u mini n g over all fermions with m^ <^ \)

2Throughout thf theory chapter we use the natural units £o ~ h - c =
3The complete formula for all values of g2 can e.g. t»e found in Ref. j . tO i .
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Usually, the leading logarithmic terms to all Orders of a are included in the renormaliza-
tion, corresponding to the summatioii

D^

IM«/2) 4- n2(<?2) + n*(92) - f . . . ) (2.17)

The vacuum polarization can either be considered äs a correction to the photon propagator
(Eq. (2.17)) or to the electric charge. The latter point of view involves the concept of a
"running coupling constant"

~MOM/A\/ _2\m \)

(q ) -
(l-?ReIIMOM 'V))

(2.18)

i.e. the charge, respectively the coupling constant, increases with rising q1. The running cou-
pling constant <x^M(q2) is related by this formula to a^pM at the renormalization scale
<7o — 0. This reference value <*„,fM(0) is used äs the expansion parameter, although a
given process may involve vertices of large q2. The Thomson Hmit mentioned above infers
QNmOM (0) = a.

The behaviour of afm(q2) can be understood froni the idea of a cloud of virtual fermion
pairs surrounding a charged particle. These pairs are polarized in the electric field and thus
screen its bare charge (Fig. 2.4). If the test charge is far away (q2= 0, Thomson limit), we
will measure o.frn— a. At closer distanc.es. i.e. higher g2, the test charge penetrates a part of
the cloud and feels a larger charge. The infinite bare charge is not measurable at finite (f.

Figure 2.4: The screenuig of the bare charge.

Renormalization Scale

Equation (2.9) for the unrenorinalized vacuum polarization Ü0(q2) contains the arbitrary
scale parameter p. which was introduced to keep the coupling dimensionless. The "art of
choosijig //'' is aiiother delicate task in the renormalization procedure. Since the number of
higher order processes rapidly increases, theoretical calculations of Feynmaii amplitudes can
cover merely a few low Orders completely, However, only if the renormalization procedure is
carried out to all orders. the answer of different RS:s to a given problem will be identical. At
any finite order of perturbation theory difTeren! RS's will yield different results. The "art of
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choosing //" is, to keep the (unknown) higher order corrections small, so that the finite order
result only weakly depends on the RS.

In the MOM prescription the ambiguity of p is transferred to the freedom of choosing a
physical q%, where the higher order corrections (calculated up to a finite order) are absorbed
e.g. into a reference value of the coupling constant. In QED there is a salient 4-momentum
transfer g2, = 0, the Thomson limit, which is used äs a reference scale, and where the coupling
constant is finite and precisely measurable. We will see, however, that this is not the case
in QCD. In the MS and MS prescriptions the scale parameter v is basicly arbitrary, but
generally chosen to be equal to a typical (large) momentum in the process under study. The
MS and MS conventions can thus be more easily transferred to QCD.

Process independent arguments in favor or against various RS's have been extensively dis-
cussed in literature [37]. A disadvantage of the MS prescriptions is e.g., that they are bound to
dimensional regularization, which is not fully consistent4. Also, there is no physical meaning
of the scale parameter //, in contrast to q% being the square of a physical 4-momentum.
On the other hand, the MOM prescription can be used with any regularization procedure,
but is generally more difficult to handle. Not only ql but also the vertex, for which the
higher order corrections are removed by renormalization, is not fixed. Frequent choices in
QCD are e.g. the quark-gluon vertex or alternatively the triple-gluon vertex. MOM off-shell
subtraction in addition does not preserve the Ward identities and leads to gauge dependent
coupling constants. We will not discuss all these subtleties, but simply summarize, that there
is nothing like a correct RS. There may be, however, a RS best suited for a given process.
This question will be further addressed in the case of QCD renormalization.

As we will see below, the scales v? for RC=MS,MS and <ftj for RC—MOM enter the running
of Q^(q2) exactly in the same way. We thus use in the following ̂  for both scale variables
fj.2 and go, keeping in mind, however, the difference in their physical meaning. Having chosen
a scale //2 (or ql), the coupling constant a^(/z2) serves äs expansion parameter and thus äs
a reference value for the running coupling constant a^(g2) according to

_ R C / 2 \_ afm(tj J /

^ 11^' / . , A \^ ' . ( 2 . 2 0 )

(Setting in Eq. (2.19) RC=MOM and M2=^=0 recovers Eq. (2.18) for the case of MOM
mass-shell subtraction, since Eq. (2.14) implies IIMOM-q°(^) = 0.)

The 1-loop scaling fuiiction for the running coupling constant

does, in leading order of Qern, not depend on the RC. For the simple case, where only elec-
tron loops contribute to the photon propagator, the identity nMOM '9o(g2) - nMOM'go(^) =
nMS-"a(92) - H™'S(fi2) for ql = v2 can be verified with the help of Eqs. (2.14), (2.9), and
Eq. (2.22) below. It. illustrates the above mentioned equivalence of //2 and q% for the definition
of the ruiining coupling constant.

Another interesting equivalence is the coiiicidence of iiext-to-leading-order expansion coef-
ficients of a^(p2 ) for difFerent RC's at a suitable choice of scale. For the process ofEq. (2.12),

the expansion coefficients of the Feynman amplitude AI (Eq.( 2.13)) in terins of o^(^i2) are

4Since 75 cannot be analytically rontinued into 4 — f dimensions, problems with chirality arise in dimensional

regularization.
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determined by II lM (g2) . Comparing the electron-loop contribution to the photon vacuum
polarization renormalized in the MS scheine

TTi * rt* A . 1 T<: m~.
(2.22)^ ___ 2 - v /

to the corresponding expressions for MOM mass-shell reiiormalization (Eq. (2.15)), and to

the analog MS expression (not listed explicitely), we find the identity

jjMOM.O, 2j __ JjMSX/«2) _ nMS,m2«p(TE)/47r, 2j /2 ̂

This shows, that the next-to-leading-order coefficients are identical in different RC's for all
vahies of <?2, if the respective renormalization is performed at a suitable scale. Having the
same coefficients for an expansion in the parameter aem(/^2) leads to the same results for the
coupling constant, i.e.

MOMa«u„(0) = QM» ( j n , ) = Q-(m;exp(7£)/4„), (2.24)

however, at different scales q2— //2. In spite of different values of a^(q3) in different RC's
(cf. Eq. (2.20)) we thus obtain identical predictions for a given process, if we chose the
renormalization scale according to Eq. (2.23). All the above mentioned facts will become
more transparent with the explicit QCD examples in the next section.

In the MOM mass-shell renormalization, generally applied in QED, all expansions are
performed in termsof o — a^PM(0), i.e. at the same scale p2=0 for all processes. The runuing
of a is hidden in the expansion coefficients, and the same coupling constant a is measured in
all processes, regardless of their <?2. If each process on the other hand is renormalized at its
own p2, äs in QCD, the running of the coupling constant as(fj2} can be explicitely measured.

2.2.2 Renormalization in QCD

The 1-loop renormalization of the gluon propagator in QCD works similar to the 1-loop
renormalization of the photon propagator in QED. The only difference are additional gluon
loops.

= Q O Q O o o o o o + AJULfl/ >UUUJL -+ AJUÄf ftUULÄ +. . . (2.25)

i^, VfrTS^

The renormalization of the gluon vacuum polarization leads to a 1-loop scaling function for
the running of a. (cf. Eq. (2.21))

where the first terin comes from the quark loops and the second one arises from the gluon
loops, Tif denotes the nurnber ofquark flavors with T7jq < p (by convention not 2njy < f.i !), and

fi is the arbitrary renormalization scale. The quark loop term leads to a color charge screening

just like the fermion loops in QED leads to a screening of the electromagnetic charge. The
gluon loop contribution, however, has the opposite sign, indicating. that a given color charge

is increased by the color field of the virtual gluon loops. AnalogousJy to QED (Eq. (2.20)}
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the strong coupling constant aR C(g2) can now be expressed in 1-loop renormalization with
respect to a reference scale /i2

Q i 11 l_ - \* Jr\\-, / * \ v r* /

a = i~n^(~^\)

where ß0 = 11 ~ \nF. Equation (2.26) only liolds, if no flavor threshold is opened between
p2 and g2, that means for constant nF. If ß0 > 0, i.e. nF < 16.5, the gluon loops dominate
over the quark loops. Assuming the number of quark generations to be three (äs indicated
by the number of light neutrino generations), we have nF < 6 for all g2. Thus, in contrast to
QED, the QCD coupling constant increases with decreasing g2, i.e. increasing distances. For
small q2 approaching a value A2 given by

ARCWexpf~ ** V (2.27)
V A«?C(M2)/

Eq. (2.26) even leads to a infinite value of aa. On the other band, aa decreases logarithmically
at small distances, i.e. a,(g2—» oo) — 0. Thus, quarks and gluons can move essentially freely
within a bound state of small enough radius (assymptotic freedom), but they cannot be
separated from each other and observed äs single free particles (confinement). At very low g2

a perturbative approach to QCD is not possible, since the coupling constant diverges. This
renders the choice of the renormalization scale /i2 much more ambiguous t h an in QED, since
a mass-shell renormalization for gluons is not applicable. The MOM renormalization has to
be performed at some arbitrary off-shell 4-momentum /j2 — go, which must be chosen such,
that (again unknown) higher order contributions are kept. small. Likewise, there is no natural
scale //2 = /z2,, which can act äs a reference scale in Eq. (2.26), and which may be used äs
renormalization scale in the MS and MS prescriptions.

Due to this ambiguity, any RC and any scale fj2 — /i2, can be used to define the one
fundamental parameter of QCD. This parameter aRC(//o) can then be used in Eq. (2.26) to
calculate the running of QR C(g 2) . Instead of relating a^c(g2) to an arbitrary reference point
fj.Q, the running of a, can altematively expressed by rewriting Eq. (2.27) äs

RC

A In
/o oG'i(2-28)

A R C -

A c then acts äs the one fundamental parameter of QCD, replacing Q^°(/XQ), Again, ARC

depends on the RC, but not on the renorrnalization scale.

Additional complications arise from the dependence of ßo on the number n? of quark

flavors with p > m,, (i = l,... ,»F), where T??, is the m äs s of the quark with the ith flavor. To

retain a,(^2) äs a smooth function, threshold terms [38] must be added in Eq. (2.26), which

again depend on //2. Altematively, distinct parameters Aj^c for each rtp can be introduced in

Eq. (2.28), so that at a fiavor threshold

m?,
(2.29)

holds. Thus, there is also no unique QCD scale parameter ARC even for a given RC. Since all

Anf, are related to each other, only one of them has to be given. The Standard one is A^s,

because it is currently best detemiined.
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Both 1-loop parametrizations of the running coupling constant afc, that from Eq. (2.26)
extended by additional threshold terms, and that from Eq. (2.28) with distinct parameters
Ajjc, are equivalent. However, the consistency of measurements of ofc at different f—v?
can be more conveniently checked by comparing their corresponding A parameters. Thus,
the determination of this QCD scale parameter has become a Standard, although A has no
physical meaning and could be completely omitted in QCD.

The running of at is still perceptibly modified by corrections beyond 1-loop order, e.g. by

graphs like

(LOQOJUL , J U U U T j U U L , or AAAJLteJ jdUUUU . (2.30)

In order to compare results on A obtained from a, measurements at different /j2, the functional
dependence as(/x2) must be evaluated at least at the 2-loop level,

This is done by exploiting the fact, that the value of an observable P(g2 ,aa(/i2),/i2) must
not depend on the arbitrary renormalization scale /J2, i.e.

dP dP da, dP
- + : - = 0. (2.31)

dfJ,2 Ü/J2 O(J? OOLf

The partial derivative öaa/c?//2 defines the renormalization /?-function via the Renormaliza-
tion Group Equation

0~ = - ^jß(am). (2.32)

ß(aa) can be expanded in a power series of a',, where i + l corresponds to the loop-level of
renormalization, according to

/»M = r5>(ry- <2-33)47T £^ V47T )

The coefficients ß± are obtained by renormalization group techniques [39] äs

ßo 11 - -nF
o

38
ßl - 102-—n F (2.34)

2857 5033 325/Jj'i-j t,

2 ^8^ F' ~54~ F'

ßo and ßl are independent of the RC, whereas ß2 was calculated in the MS prescription.
QÄ(//2) is evaluated frorn integrating the Renormalization Group Equation (2.32)

/

S d^2 r<**(v2) da,

^ ~^ *J*.(4) a^(ftl)'

The freedom in choosing the lower Integration limit represents the freedom in denniiig the one
fundamental QCD parameter. Selecting a certain MO on *ne left-haiid side of Eq. (2.35) would
cause a,(/IQ) to become this fundamental parameter. Again, the role of Qf(f^o) is geiierally
transferred to A by choosing /ij such that a((/ij — A2) = oo (cf. the discussioii above). Solving
the integral with the latter choice leads at the 1-loop level (ß(a,) = /?0aa/47r) to Eq. (2.28).
The result of the 2-loop level is

M2 47T Ä , / /5047T\n 7 ---^rln 1 + - . (2.36)

A2 2
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For aa = 0.2 and np ~ 4 the 2-loop correction to ln(^f2 /A2) due to the second terrn on the right-
hand side of Eq. (2.36) is 24%, and thus A itself changes by a factor of exp(0.24 - 27t/ß0a,) =
2.5 !

Rewriting Eq. (2.36) äs

47T

ßl<*t
(2.37)

and expanding in terms of ln(ln(/^2/A2))/ln(^2/A2) for y? > A2 leads to a functional form
for a, [22,40]

47T
l -

A

/v (2.38)

Results for oa and A obtained from this formula deviate from those of Eq. (2.36) typically
by only 1-2% and 3-6%, respectively. A formula for at on the 3-loop level can be found in
Ref. [381.

2.2.3 Renormalization Scheme Dependence of QCD Predictions

In the following we discuss, how the perturbative calculation of an observable P in QCD
depends on the RS. Perturbative corrections to processes of leading order p are expressed in
a power series of the form

p = l
7̂T

W j _ / «3

*!— +B2 —
7T \

(2.39,

As already discussed in Section 2.2.1, various ultraviolet divergencies in calculating B,
have to be removed with the help of a RS, i.e. the choice of a RC and a scale //. The
application of the renormalization procedure changes the infinite bare coupling constant to a
renormalized value ORC(//), which is then taken äs expansion parameter5

P =
TT

RC

7T
[2-40)

Thus, the expansion coefficients äs well äs the expansion parameter, the coupling constant,
depend on the choice of RS. The renormalizability of QCD [12] ensures that the prediction
for P does not depend on the RS chosen, if the calculation is caxried out to all Orders in the
perturbation series. As all calculations, however, have to stop at finite order r, the quantity

pRS _ 1 + EB-(,)(^) (2.41

will explicitely depend on the RS.
In practical calculations it is obvious to chose that RS, in which the calculatious can be

most easily perfonned, which is in QCD the MS prescription together with an appropriate
choice of scale. However, äs soon äs theoretical calculations PrRS are to be compared to
experimental results pm*»s, which intrinsically contain all higher order corrections, one would
like to find a best renonualization scheine RSop,, where

pRSopi ^_ rjmcas
r r "̂  * i

'In the following we wri te all equatlons in ternis of fi radier thari of /i2 in order to keep them readable
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i.e. where the sum of all corrections of order larger than r vanishes, or is
the experimental error on P. Since the higher order corrections are not
to find RSopt involves some guesswork.

In order to discuss some of these "guessworks", we first study, how Pr

the RS. Since most of the available QCD predictions are calculated at
the following can be generalized easily to higher orders [32], we will
r = 1. We start from a quantity P of leading order p in as, which has
prescription RC äs '

7T 7T

at least smaller than
known, any strategy

changes, if we change
the 1-loop level, and
restrict ourselves to
been calculated in a

(2.43)

I£ we change the RS by keeping RC, but changing the scale to /j,', we find from the running
of a, according to Eq. (2.26)

(2.44)
7T 7T

7T

7T

7T 7T
(2.45)

Inserting Eq. (2.45) into Eq. (2.43) yields in next-to-leading order

FW ln^
7T

and thus

(2.46)

(2.47)

Note, that £*°(M') = -B?CUO for p = 0. This is a special case of the rule, that all RS's
have the same coefficient. in leading order of as. (Comparing leading-order predictions with
experimental results thus yields a value for as which does not run with the chosen scale (.1.)

If the RS is changed by going from one RC to another convention RC', while keeping the
scale fi unchanged, a relation between UR C ( /J) and as ( / j ) has to be determined. It can be
written as

7T 7T

RC'

7T
+ rRc^RC<

RC'

7T
(2.48)

where the r, do not depend on fj. The first order coefficients vi read [4l]

ßo.MS — MS

MS —MOM{qqg}

MS — MOM(3g)
'l

.RC —RC'

(ln47T - -]E] = 5.373 - 0.3256nF
4
85 47 5

J ßo = -4.179 + 0.2778nf
144 48 12P

— J - (- -f ~J)ß0 = -6.623 + 0.8542nF
1 6 2 3

(2.49)

— —i

where J is defined as

J = = 2.344,
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and MOM(qqg) and MOM(3g) denotes MOM subtraction for the quark-gluon vertex and the
3-gluon vertex6, respectively, both performed in Landau gauge. (The expressions for other
gauges can be fouiid in Ref. (4l]-)

By inserting Eq. (2.48) into Eq. (2.43) we obtain

B?c\,i) = B™(n)+pv?c-«c'. "(2.50)

Combining both Eqs. (2.47) and (2.50) the relatioii between the first order coefficients becomes
for a change of RC äs well äs a change of scale

RC' - ln^. (2.51)

This transformation has still the form of Eq. (2.47). Thus, a change of RS from (RC,/i) to
any (RC',//) is äquivalent to keeping RC and changing only the scale from ^ to £, given by

i„ ^ _ 2 „RC^RC' (In— - ---Vj . (
H Po

"Equivalent" meansin this context that all numbers in the perturbativeexpansion of Eq. (2.43)
are equal, namely

B?CV) = B?c(ß) and (2.53)

(2.54)

Since // / /T, the latter equality again shows, that difFerent RC's lead to different running
coupling constants QRO, i.e. to difFereut QCD scale parameters ARC. As can be seen from
Eqs. (2.28) and (2.52), the latter are related to each other by the Celmaster-GonsaJves relation

^'r-RC'). (2.55)

Note, that this 1-loop relatioii is exact to all Orders of perturbation theory [4l], i.e. it has no
higher order corrections depending on ?',, i > 1. Special cases of Eq. (2.55) are

MOM(3K)

MOM(qqg)

A

A q q g = 2 _ 6 6 A _ (257)

We now return to our problem, of how to compare a measured quantity pmeas to its
perturbative QCD prediction P, ''** . The usual way is to calculate values for QRC(^/) and/or
ARC from setting

pmcas j_ pRC.Mr — .T!

If QCD is the correct theory of strong interactions, all measurements, whose predictions
are calculable by perturbative QCD, have to lead to coiisistent values of a^c(;/) and AKC,
respectively. For each process, an optimal RS has to be found in order to limit the higher

order corrections ~ [aRC(^)(lu ^ + • • • ) ', where q is the typical 4-momeiitum trausfer of the

process under study. As discussed above, the RS ambiguity can be reduced to the ambiguity

of the scale p for any given RC (cf. also the discussion in Section 2.2.1). An optimum scale

'To be precisc, the synunetric point 3-gluon vertex, where all gluons have ihe sanic q ~ .
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/iopt Hmits the higher order corrections and thus has to lirnit aRC(//) äs well äs ln(^2///2).
This leads to the conditions

Mopt > ARC and (2.58)

Mopt \q\. (2.59)

However, the choice of //— <jj/5 may be äs appropriate äs, say, ^— 2\q\. Many refined
procedures have been invexited in order to shed more light on the question, how to "guess"
Mopt- We will outline below the basic ideas of some procedures, whicli are most widely applied.

1) Natural scale (NAT) Choosing the "natural scale" means choosing/i2—q2 for the renor-
malization scale, where q is the typical 4-momentuin of the process under study. This
choice is widely used in the MOM prescriptions, where higher order corrections to a

basic vertex are absorbed in the renormalization at q% — fj2. Choosing q% ~ q2 should
lower the higher order corrections to the calculations [42]. In the MS prescriptions the
renormalization scale is less directly related to physical momenta.

2) Grunberg's method of Fastest Apparent Convergence (FAC) Formally, the value
of aa can cover the füll ränge from a,(oo) = 0 to a a (A) — oc. Thus, it is possible to
find a scale /itfl- for any observable P, so that

) , (2.60)
7T

i.e. the sum of all higher order corrections vanishes ("effective charge"). Again, the
value for ^K can only be obtained from calculating to T = oo. If P is calculated to
finite order r, the Grunberg's method of Fastest Apparent Convergence [43] uses the
equality

/^RC/.-RC \\

7T

t=i
E R RC/ RC \ FAC (r> ß0,-0, (MFAC)| - ~— - °i (2.62)

to calculate /Jp^c as an rth order approximation to fj,eff. Equation (2.62) does not
necessarily imply that the corrections of orders larger than T are small, and that
is a good approximation of

3) Stevenson's Principle of Minimal Sensitivity (PMS) The calculation of a quantity
P to all orders does not depend 011 the RS. Stevenson's Principle of Minimal Sensitiv-
ity [44] imposes tliis condition on the calculatioii to finite order

ÖPRS

°' (2'63)

i.e., it mimics a feature of the füll result already at finite order r. For r — l it yields
approximately (for a, <gC 4Trß0/ßi % 2, which is always fulfilled in perturbative QCD)

__
p+14/30 TT l

The first order coefHcient B^C(//p£s) varies between -0.5 and -2 depeiiding on nF and
p. Thus, the PMS choice of scale is not too different from the FAC choice, where

#?C(/*FAC) = °- Tnis is true *dso at higher orders [32]. Note, that in the PMS method
the coefncient B\s independent from the RC, and moreover identical for all processes

of given Tjf and p.
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4) Brodsky, Lepage, and Mackenzie's Absorption of Vacuum Polarization (AVP)

Brodsky, Lepage, and Mackenzie [45] have proposed to absorb all vacuum polariza-
tion corrections into the running coupling constant, äs it. is doiie in the case of QED. In
QCD, the fermion vacuum polarization corrections manifest themselves äs a dependence
of the perturbation expansion coefficients on Tip. For the 1-loop coefficient

RC RC (2.65)

the np dependence is contained in /30» which also includes the gluon loops. The vacuum
polarization corrections are absorbed on the 1-loop level by defining the scale p.j^p such,
that

= 0. (2.66)

In the AVP method the difierence between the 1-loop coefficients in diflferent RC's is
the same for all processes of identical lowest order p, and is given by the ß0 independent
part of pufc~*RC' (cf. Eqs. (2.49) and (2.50)). An especially large difierence is obtained
between the AVP method applied in the MS and in the MOM(3g) prescription

RMOM(3g), MOM(3gK _
&\P ) -

MS

yielding e.g. for p = 3 a difference of 22.4 ! The 3-gluon vertex, however, has a dif-
ferent structure of fermion loop corrections, which are partially process-dependent and
should thus not be completely absorbed. The applicability of the AVP method is
thus restricted to those perturbation expansions, which do not contain higher order
corrections to gluon-gluon vertices. This excludes 1-loop AVP renormalization for the
MOM(3g) convention, and for processes with gluon-gluon vertices in lowest order. Since
gluon-gluon vertices appear on 1-loop level at the latest, the AVP method cannot be
applied beyond the 1-loop level.

The above considerations will be illustrated in the following with the help of the ratio of
leptonic and gluonic width of the T resonance. The leptonic width F// of the T states is
given by the Van-Royen-Weisskopf formula [46], corrected to first order QCD [47] äs

(2.67)
7T

where Qb — —1/3 is the charge of the b-quark in units of e, V'(0) is its wave function at the
origin, and aem is the electromagnetic coupling constant, which has to be evaluated at m?
to absorb the QED vacuum polarization corrections7. The first order QCD correction to the
lowest order diagram in Figure 2.5(a) corresponds to the 1-gluon exchange diagram, shown
in Figure 2.5(b).

The calculation of the 3-gluon width rggg(T) has been performed in the MS renormaliza-
tion prescription at fj — rnj and yields the result [48]

160
~iT

MS,

T7?:

aMS

7T
0- 19.4{±0.5}) !2.68)

7We chose this form in order 1o disentangle the QED froin the QCD corrections- If other QED corrections,

such äs final state Bremsstrahlung, are to he included, we would have to relurn to the Standard QED expansion
in terms of a-a,m(0).
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T T

Figure 2.5: a) lowest order dia.gra.rn for T — » £C. b) nrst order QCD correction.

Thisfirst order QCD correction sums the contribution of 315 Feynman diagramsin 14 difFerent
classes. The error given corresponds to the 2-sigma error of the numerical Integration.

As can be seen, both partial widths (2.67) and (2.68) can be factorized into a (noii-
perturbative and non-relativistic) wave function and a perturbation series in a,. This factor-
ization is feasible, because the annihilation of the heavy quarks is only possible at distances
of O(l/mb) = 0.04 fm, much less than the radius of the T. which is ~~ 0.2 im for the T(lS),
and ~ 0.5 fm for the T(2S) [49]. Thus, the non-perturbative long-distance structure of the T
enters only in the wave function V'(^)- Forrning the ratio of Tggg/r« the wave function drops
out, and the quantity

P(T - tf) ̂ = 6 x (2.69)
ff «

has the Standard form of a perturbative expansion, namely

3
..MS (M)

7T

aMS

7T
(2.78- -In—)/3„- 14.1 ',2.70)

We will noiv study the scheme dependence of the above expansion by keeping (for sim-
plicity) the MS prescription äs a basis and varying the scale /j. The appropriate scales p,
as_recommended by the methods discussed above, and the resulting expansion parameters

are collected in Table 2.5.

Table 2.5: The 1-Joop expansion paramefer B^ for P (T —» Ci) äs function of different RS's.
The RS ambiguity has been converted to the choice of scale /7 iu the MS prescription.

/J
B

RC

V
-MS/mr

p^MSj

MS

^NAT

1

+ 9.1

MS
„MS
PFAC

0.48

0.0

MOM(3g)

uuMNAT
0.46

-0.6

MS
„MS
MPMS

0.44

-1.2

MS

MNAT

0.333

-4.7

MS
„MS
MAVP

0.157

-14.1

MOM(3g)
3g

0.154

-14.3

In fact. there are two "natural scales " involved in this ratio. The appropriate scale for
the 3-gluoii decay is probably sornething like the average gluon energy, ^N^AT — "^T/3. Oii
the other side. the perturbative correction of the leptoiiic width (Fig. 2.5(b)) arises from
hard gluon momenta, suggesting Hjfftf ~ m-y. (The effect of soft gluons is a Coulomb-
like attraction, which is already contained in the potential and thus in the wave function
V'(0).) Since the 1-loop a., correction for Tff is the leading order in a.,, i.e. p=0, its first
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order coefficient does not depend on fj (cf. Eq. (2.47)). Nevertheless we list both choices of
MNAT for the MS prescription and for the MOM(3g) prescription, which was again calculated

in_the Landau gauge. The corresponding MOM-scale ^MOM(3ß> is converted to a /7MS by
77MS = MMOM<38>/2.1C äs inferred from Eq, (2.52). The scales of FACT PMS, and AVP are
calculated following Eqs. (2.G2), (2.G4), and (2.GG). respectively. It may be interesting to

(MOM(3g),NAT(W))
(MOM(3g),NAT(3g)).

note, that difierent RS's can lead to similar results, c.g. (MS,FAC)
Not all of these coincidences occur^ (MS,PMS), and (MS,AVP)

by mere accident, äs already indicated above in the discussioii of the PMS and FAC scales.

a,
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Figure2ß: a) Q( vs. the scale fi at which it is evaluated. b) The same for A^~. The solid curves

are from an evaluation of the T(lS) leptonic branchJng ratio, the dashed curves are from ß^, the

decay of the T(1S) inlo a photon plus hadrons. Also indicated are the specific scales discussed

in the text.

The main point of Table 2.5, however. is that the nrst order coefficient depends very
strongly on //, i.e. on the RS, The Variation of B l ( { j ) is in fact not consistent with the
running of a,(p). This can be seen from Figs. 2.G(a) and (b) [50], where the Solutions for

Aj15 are plotted versus the scale /J,MS. The solid curves were derived from

C() = Pmeas(T(lS) -> W) = (1.87 ± 0.12) x 10-4 (2.71)

by inserting Eqs. (2.70) and (2.38). There is no solution fo^Aj15 (and for c^is) if the scale v is
chosentofi % 0.16mT, äs recommended by the schemes (MS,AVP^and (MOM(3g),NAT(3g)).

The reason for this divergence is, that for a typical value of a^s(0.lGmT) ^ 0.25 the term

(l -14ap(j/)/7r) becomes negative. Since the RS's (MS,AVP) and (MOM(3g),NAT(3g)) both
have sotne physical motivation (at least, there are no physical arguments against them), this
failure and the (too) strong scale dependence has cast doubt on the reliability of extracting ös

from Fggg/r/c in the T System, and has even called in question the possibility of a perturbative
analysis for this ratio [45,32].

Wo postpone the discussion. whethcr such a conclusion can really be drawn, to Sec-
tion 7.4.1. First wc want to present our measurenient of B(f, which will Update the value of
Pm"s(T —> £?). We therefore contimie with a discussion of the theoretical fundamentals for
this measurenient.
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2.3 The Process e + e ~ ^ / ~ at ^s ~ 10 GeV

+

e/ N n e
Figure 2.7: Lowest order elektroweak diagrams for e4e~ —» /i"1"//" .

The lowest order electroweak Feynman diagrams describe the process e+e~ —» // + /i~ by
annihilation in a virtual photon or a Z° (Fig. 2.7). At c.m. energies >/s around 10 GeV the
phase space suppression of muons is negligible, and the difTerential continuum cross-section
(i.e. without T-production) is given to lowest order by [51,52]

coszfl) + Z2(,)cos0 , (2.72)
!

where cosö is the angle of the outgoing (i+ with respect to the incoming e4 direction (= +z~
direction). The influence of the Z-propagator is included by the terms Z - i ( s ) and ^t5), which
both are composed froin a 7 —Z° interference term and a Z° resonance term. They read for

2'"* 2 2^1 "Z (2-73)
mz mz

The axial and vector couplings of the Z to charged leptons are o( — — (2sin2öir)~1 — —0.59S±
0.004 and vf = a^(4sin2 Q\\- - 1) = 0.05S ± 0.012, where the errors come from the uncertainty
of sin ßw. At T/S % 10 GeV the 7 — Z interference terms oc A/m| dominate. At tlicse
c.m. energies the Z-contribution to the 6- Symmetrie part of the cross-section is negligible,
since Z\ (0.7 ± 0.4) x 10~4, whereas Z2 = -2 x 10~2 is the souree of a small forward-
backward asymmetry in cos 8. This asymmetry, however, does not contribute to the total
cross-section. If one does not discriminate between fj+ ancl fi~ in the final state, it will
not even alter the differential cross-section. Tims, we will neglect both, Zi and Z2, in the
following discussion and regard the Born cross-section äs coming exclusively from onc-photon
annihilation yielding a total cross-section of

, , f rfo-Bor» ,rt 4?r a2 80.85 nb
CTBorJs) = / dÜ =r —— = -. 2.74)IjuriH, / l Jf\ l/~t tTZ ' 'J du 3 .s s /Gev

2.3.1 First Order Corrections

In the following we will discuss corrections to the process e+e~ —> fi* fj~ from resonance pro-
duetion and from o3 terms, which arise from the interference of the Born diagram with 1-loop
diagrams of identical initial and final state. Other O(o.3) corrections are the Bremsstrahlung
diagrams, which have one additioiial photon in the final state. The coiitributing diagrams caii
be grouped in C classes äs shown in Figure 2.S. We will assume Standard QED on-shell MOM
renormalization of the lepton-photon vertex for on-shell leptons and q~~0. The corrections
to the photon propagator, i.e. Diagrams (a)-(c) in Fig. 2.8 will be treated first.
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a) Box Diagrams

b) Vacuum Polarization

c) Resonance Production

d) Self-Energy

e) Vertex Correction

f) Bremsstrahlung

Figure 2.8: Diagrams (a), (b), (d), and (e) Jead to first order corrections for e+e —* p.+ n
through their interference with the Born diagram, Diagram (c) shows resonance production
in lowest order, whereas Diagrams (f) are the lowest order radiative proresses e+e~ —» / i + H ~ ~ y -

The Box Diagrams

The contribution of the box diagrams with two photons (Fig. 2.8(a)) to the total cross-section
is zero [52]. They merely cause an additional forward- back ward asymmetry, which suppresses
the asymmetry effect of the weak interactions. We neglect them in the following.

Vacuurn Polarization

As already deduced in Section 2.2.1, the aiuplitude -MBoni for the lowest order diagram is
changed by adding the chain sum over the vacuum polarizations to

M VP

(2.75)

n^ contains all fermion loop contributions far away from hadronic resonances and can be
obtained from Eq. (2.16) for * — q* ^> rn2T äs

- n, nT (2.76)

where U/, t ~ e,/j,r is the real part of tlie leptoii vacuum polarization, given by

a / . f 5n,- In (2.77)
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The real part Hhad of the hadronic vacuum polarization could in principle be obtained anal-
ogously from

q=U,d,s,c \ /

However, due to the uncertainty in the quark inasses and the presence of hadronic resonances,
the hadronic contribution can be more accurately determined from the visible hadronic cross-
section. The imaginary part of H-y is connected with the total cross-section 0-""*^ for the

production of fermion-antifermion pairs via

4?ra = ? E (2.79)

From this follows a dispersion relation for the real part of 11̂  [53], which reads for Tl

Q
(2.80)

Table 2.6: Vacuum polarization corrections in the energy region of the T resonances. All
numbers for H are given in percent.

v/^/GeV
9.46

10.58

ne HM nT8 n^ (54]
1.39 0.57 0.11 1.52±0.07
1.41 0.58 0.13 1.58±0.07

Seü-f ^srnH-y
3.59±0.07 1.54
3.70±0.07 1.62

a^l(-)
132.1±0.1
131.9±0.1

FromEqs. (2.76), (2.77), and (2.80) we find at s % (10 GeV)2 the values listed in Table 2.6.
Replacing in the Born cross-section (Eq. (2.74)) Q = acm(0) = 1/137 by aem(10 GeV) = 1/132
(cf. Eq. (2.20)) would be the simplest way to account for the photon vacuum polarization.
However, since other corrections, like Bremsstrahlung, couple due to on-shell renormalization
with acrT](0)=ö: exactly, it is more convenient to write

V P

i -n , 2
2.81

in order to avoid the use of aem at different q2 in one and the sanie formula. From Ta-
ble 2.6 we find corrections to the Born cross-section ranging from l/(l-5ReIL,,)2 = 1/0.929 at
v/^=9.46 GeV to 1/0.927 at v^lO-58 GeV. The influence of 5mH7 is negligible.

Note, t hat lihad only contains the eiFects of hadronic resonances with mass M2 <C 5, but
no contributions from the T resonances. These are discussed in the following.

Resonance Production

A special case of vacuum polarization occurs, when the c.m. energy is near the tnass of
a narrow hadronic resonance. Since the photon is a vector particle, only resonances with
Jpc — \~~ can be produced in e"^e^ annihilation to one virtual photon. At s ~ (10 GeV)2,
resonances with M2 <C. Ä , i.e. iiarrow resonances below and including the ^'-family, are already
contained in the hadronic vacuum polarization Hha(i. The effect of the T-family has to be
treated separatelj', since it may alter the cross-section o~ee~**'t'(s) by Orders of magnitude. The

bThese values havc been obtained from the exact formula of Ref. [36]. The application of Eq. (2.77), valid
in the limit 771^ <: s, would enlarge the results only b.v 0.02.
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Feynman diagrams for the production of a resonance with mass M and total width T lead to
the amplitude

(2.82)B

where the resonance amplitude B(s) is given in units of the Born amplitude A4 Born by the
relativistic Breit-Wigner (55)

B(s) =
r* ee

(2.83)
aM s - M2 + i

Note that, in this case. a chain sum B + B2 + B3 - - • must not be formed. The "coupling

constant" v/aF^r^/aM in front of the Breit-Wigner, which replaces the electromagnetic

coupling o, already includes implicitely all chain terms, since F« (£=e,/j) is a measured
quantity and thus contains all higher order corrections.

Thecross-sectionofe~*"e~ —» ^ + /i~ including a resonance is thus given by o-J" =
yielding

35
1 + -M:

(s -M2)
+

(2.84)

[2.86)
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Figure 2.9: Resonance ferm fr (solid line) aiid inferference ferm fr (dashed hne) for the
T(1S) (a) and the Y(2S) ( b ) in units of the Born cioss-section for e+e~ —» /^4 fj~ .

The h'rst term in the parentheses denotes the continuum cross-section (C) , the last term
the resonant ^-pair production (R), and the second term is the interference (I) between
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both. The energy dependence of \B(s)\ = frR/ffßoTn and 25Re.B(,s) = er1 /<rBorn is plotted in
Figs. 2.9(a) and (b) for the T(1S) and the T(2S) resonance, respectively. The PDG values [22]
for the T resonance parameters were used for these plots. The interference term has maximum

values of
/ ^7Ta l~ö—n~~

J Q -—- \J \ l J.K/ J_ x j j _*_ _ „ \j J~* f^f-^ "̂ *̂  £^ 1 \" /

whereas the peak value of the resonance term is

197T
(2.88)

The ratio of these two maxima is thus |/0/-^o = «/y^-B^-B«, yielding about 1/10 for the

T(1S) and about 1/5 for the T(2S), äs can be seen from Figs. 2.9(a) and (b). The values of
both maxima are much larger than the Born cross-section.

Plotting in Fig. 2.10 the complete cross-section of Eq. (2.85), we find a modification of the
Born cross-section by up to a factor -~ 100 due to the presence of the narrow T resonances and
their interference with the continuum. However, this large effect will be considerably reduced
by corrections due to initial state photon radiation and due to the c.m. energy spread at e+e~
colliders (see Section 2.3.5).
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Figure 2.10: The Born cross-section for e4e —• v+H (dotted line) is strongly modified
(solid line) by including the resonance tcrms of the T(1S) (a) and the T(2S) (b) and their
interference with the continuum.

For broad resonances, like the T(4S), the Situation changes. Siiice F(4S) — 23.8 MeV
> rw(4S) = 0.24 keV, the leptonic branchiiig ratio .ß„(4S)= 10~5 and thus the ratio of
the maxima of inlerference and resonance is about 250. Hence, the interference term is the
dominant term, but its maximum amounts to only 0.4% of the Born cross-section (Fig. 2.11).
Being s mall er than tlie width of the T(4S). the c.m. energy spread does not strongly alter its
resonance aiid interference terms.
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0.005

0.004

0.003

0.002

0.001

0.0

-0.001 r..

-0.002 -

-0.003 -

-0.004 -

-0.005

(x 100)

10.50 10.54 10.58 10.62 10.66
/ GeV

Figure 2.11: fiesonance term (solid line) and interference term (dashcd line) for the ~T(4S)
resonance in units of the Born cross-section for e+e~ — > //+^~ • The resonance has been blown
up by a factor of 100. The dotted line shows the result of a convolution of the interference

term with a c.m. energy spread of 8.5 MeV.

The Total Correction to the Photon Propagator

The amplitude for e+e~ — > fj + fi~ including the summed corrections of the vacuum polarization
and all T resonauces to the photon propagator is derived from combining Eqs. (2.75) and
(2.82) to

i-n. E ßn i
n=l

(2-89)

where Bn denotes the Breit-Wigner amplitudes from Eq. (2.83) for the T(nS) resonances.
Evaluating fr0 = AloA^o an(l neglecting the interference terms 25?e{B,5*} between different
T states, since their mass differences are much larger than their widths, we find

H- 2(1 -
(2.90)

Neglecting (Sniü^)2 in the denoniinator of the above equation, we find the form

(l - +l - SeH-, (l - »eil,)2
(2-91)

with somewhat simpler terms for continuum, interference and resonance. By comparing
Eq. (2.91) to Eq. (2.84) we see, that the continuum term acquires its usual vacuum polar-

ization correction l / t l -Keü^) 2 , the interference terms are corrected by l/(l-3?en^), and the
resonance terms are iiicreased by an additive correction ~ ^inü^^mB. The latter two cor-
rectioiis arjse from the interference between vacuum polarization and resonance production.
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Compared to \B\ the term ^inü^&mB is suppressed by ~ a2/B«. Thus, for the T(1S)
through T(3S) resonances having BU= O(10~2) it only introduces a marginal correction to
|5|2, even though its maximum value is (9(0.1). For the T(4S) and higher T states with BU =
C9(10~5) on the other hand, it exceeds the resonance proper |Bj2 by a factor of more than 10,
but its maximum value is only C9(10~4).
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9.5 10.0 10.5 11.0

GeV
Figure 2.12: Modification of the vacuum poJarizah'on correction &a/(TBorn by the T resonanres.
The dashed line shows the logarithmic increase of (l — II^s))"2. The solid line contains in
addition the T Breit-Wigners and their interference terms. The dots are explained in the
text.

The depeudence of <r0/^Born on ,/s is plotted in Fig. 2.12. The maxima of the interference
and resonance terms in the vicinity of the iiarrow T resonances are far outside this plot, äs
can be seen from Figs. 2.9 and 2.10. However, even between the T-resonances a distinct
rnodification of the smooth increase of (l — U-, )~2 (dashed line) is observed, It is mainly
caused by their interfereuce terms with the continuum, since the purely resouant terms are
negligibly small between the T-resonances.

A precise knowledge of <70/o~Qoin is important, when data takeu at different beain energies
are subtracted from each other. If we e.g. want to subtract the continuum contribution
measured off- resonance from data takeu on-resoiiance, we have to know the ratio of the
respective continuum cross-sections. The continuum cross-section under a given resonance
T(nS) includiug the modifications of <TO induced by all other T resonances, can be obtained
by omitting the Bn terrn of this resonance in Eq. (2.90). In Fig. 2.12 we have iudicated
these continuum cross-sections by dots. The Variation of the dots with the radial quantum
number n describes the deviation of the continuum cross-section at -^/s — "JT(nS) from an
l/ s behaviour. From the T(lS) at 9.46 GeV to the T(4S) at 10.58 GeV this deviation is
0.5%. It has about equal contributions from the photon vacuum polarization (l — Ü-J"2 and
from the summed effect of the interference terms of all T-resonaiices other than Y(j?S). i.e.
V

r, r: l, 2. 3, T., 6 - 10.58 GeV) - 32^2>3i4i5|62^eJ3ri(9.4G GeV).
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The cross-section <70 from Eq. (2.90) contains all next-to-leading order corrections to the
photon propagator äs well äs the leading logarithms of higher order corrections, and the T
resonance terms. By adding corrections to the external lepton lines, the photon propagator is
generally not influenced. We thus adopt <TO äs the new basic cross-section to which corrections
from the lepton lines are applied. As we will see. the only exception is Bremsstrahlung down
to a resonauce, i.e. diagrams like

where the value of <TO strongly depends on the emitted photon energy. Thus, the formulae in
the next paragraphs are not valid at c.m. energies close to a resonance. Our final result in
Section 2.3.2, however, will not have such a restriction on its validity.

Electron and Muon Self-Energy

Due to on-shell renormalization the contributions of the diagrams in Fig. 2.8(d) vanish, since
the initial and final state particles are on their mass shell.

Vertex Correction

For a vertex with </2=0 the diagrams in Fig. 2.8(e) would vanish, likewise, after on-shell
renormalization. For q2 ^ 0 their UV divergencies still cancel with those of the electron and
muon self-energy due to the Ward identities. However, an infrared divergence remains. The
interference of the Born diagram with each of the vertex correction diagrams results in an
O(a) correction 6VC which modifies our reference cross-section «TO to <7 given by

<rvc = <r,(l + *.yc + #c), (2.92)

where 6^c refers to the left-hand diagram, and £jc to the right-haiid diagram in Fig. 2.8(e).
The infrared divergence of 6VC is regularized with the help of a fictitious s mall photon mass A.
The result reads [5l]

= — l + - + - In -r - ~ In -l l n^" :)h lTj -» (M i \ I s\) '

where ( = e,^. In the limit A — » 0 the terms 6VC make the cross-section avc negative9 and
divergent to — oo. This divergence is a Standard phenomenon in QED and can in principle
be remedied by calculating to all Orders of a.

However, if this were possible, one would find that the cross-section

.

L> - <C
f

identically vamshes. This — on the first vie\ — surprising result conies from the Bloch-
Nordsieck Theorem discussed below.

9This is possible, since we truncated the expansion of the rross-section at (P(a3). i.e. al tlie leve] of interference
between vertex correction and Born diagrani. This truncation differs from takingan absolute square of the sum
of the corresponding Feynman amplitudes, which would guarantee for positiveness.
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The Bloch-Nordsieck and the Kinoshita-Lee-Nauenberg theorems

The essential work for the linderst an ding of the infrared divergente problern was done in 1937
by Bloch and Nordsieck [56]. The Bloch-Nordsieck Theorem says, that the probability to
emit zero or any finite number of photons from the scattering of charged particles is precisely
zero. Each process involving charged particles is accompanied by the emission of an infinite
number of photons with arbitrary small energies. In the language of Feynman diagrams,
their theorem relates the process e+e~ —» ^}i~ without photon emission (Fig. 2.8(a)) to
the process e+e~ —> p*v~-\~m~j (Fig. 2.8(f) for m = l), which has a different final state. The
Bloch-Nordsieck Theorem claims, that not only tr**^w = 0, but also <r«-w+m-> = o for any
finite number m, The only process occuring in nature is e+e~ —> ^4^

Figure 2.13: The process e~*"e —» p+ p is always accompanied by an infinite number of
radiated photons.

Thus, we would have to calculate the type of Feynman diagrams in Fig. 2.13, which cannot
even be drawn in a finite arnount of time. However, Bloch and Nordsieck already showed,
that generally the observed cross-section measured in a given detector is very close to the
cross-section that would have been obtained, if all radiative corrections are ignored.

The basic proof for this, which restores the ability to calculate e+e~ —» n*n~ and any
other QED process in a perturbation series in an, is the theorem of Kinoshita, Lee, and
Nauenberg [57], They showed. that a cancellation of mass singularities occurs in all Orders of
the perturbation expansion, if one sums over all states of the same energy. Mass singularities
are logarithmic terms contaiiiing the photon mass A or any other particle mass m, which
diverge for A, m —» 0. In our case the infrared (IR) divergences frorn the virtual photons in
the vertex correction are cancelled in each order of a by the infrared divergences frorn the
real photons emitted in the Brems Strahlung diagrams, if we suni over the degenerate states

with E E» + E E-, = v^.
The usual illustration of this principle stresses the fact that any experiment can detect

photons only up to a minimum energy E-, — E0. The IR divergencies from the emission of
virtual (vertex correction) and real (Bremsstrahlung) photons, which occur in any calculation
to finite order in a, are restricted to the ränge E^ < EQ for any finite EQ. Thus. any experi-
ment observes a finite cross-section with zero photons, i.e. with £^( < E0 for all photons 7,.
In addition, it finds a finite cross-section of events, where photons from Bremsstrahlung with
E^t > E0 are detected. Hence, the infrared divergence is absent in experiment al measure-
nients.

This argument, however, neglects the fact that events witli Bremsstrahluiig below EQ and
events without Bremsstrahluiig could in principle be distinguished. If the threshold E0 for
an experiment is low enough. the calculations to any finite order of perturbatiou theory can
no longer describe the observed cross-sections, äs we will show below (Section 2.3.2). Thus
physically there is no escape frorn calculating to all Orders in a. The cancellation of IR diver-
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gencies to finite order in a does not occur in a quantum mechanical sense by the cancellation
of amplitudes. It emerges from a mathematical relation such that in a perturbation expan-
sion for processes with different final states the respective IR divergencies of cross-sections
"happeii to'1 cancel in each order of perturbation theory. Without the knowledge of this can-
cellation, expressed in the Kinoshita-Lee-Nauenberg Theorem, the summation of divergent
cross-sections for processes with different final states would be physically not meaningful.

When the Kinoshita-Lee-Nauenberg Theorem is fully applicable, all terms oc ln(s/T772)
or oc Int^/s/A) vanish in the (unrenormalized)10 total cross-section. Then the higher order
corrections of a perturbative series are really O((a/?r)n) and do not contain large logarithms.
In those cases the Born cross-section (corrected for vacuum polarization) is a very good
approximation to the exact cross-section, even if the Born process itself does not at all occur
in nature. As we will see below, the final state radiation in the process e+e~ —* M+^ *s

an example for the Kinoshita-Lee-Nauenberg Theorem, whereas in the initial state radiative
corrections only the In A terms cancel, leaving large corrections ~ aln(s/ml)\n(s/7n^),

Bremsstrahlung

The differential cross-section for initial or final state photon radiation is given to order a, i.e.
for the emission of one photon arcording to Diagrams 2.8(f) by [51,52]

\ T

+ (1 ~X* \, (2.94)

where t — e,^* again denotes initial and final state radiation, respectively. The radiation
spectrum, valid for any electromagnetic scattering process, is expressed in terms of the photon
energy fraction x = k0/E, where k° is the photon energy and E deuotes the electron beain
energy. The difference between the initial and final state radiation comes from the values of
st and ß(. The effective c.m. energy st is the squared 4-momentum traiisfer q2 of the virtual
annihilatioii photon, which is given for one-photon Bremsstrahlung diagrams äs11

*„ = s (2-95)

s = s(l -x) (2.9C)jf — &\ *^ / • \ /

The final state radiation does not change the squared c.m. energy Ä, whereas initial photon
radiation reduces s by a factor (l — x).

The factors ßt are the "effective radiator thicknesses"

(2.97)
TT \

and act äs an effective couplingconstant for Bremsstrahlung. Around >/s ^ 10 GeV this effec-

tive coupling coiistauts are much larger than o due to the largo logarithms ln((10 Ge\ /mf} —
19.8 and hi((10 GeV)2/™*} = 9.1. We find ßf = 0.087 and ß„ = 0.038 at s = (10 GeV)2.

10The renormalization of the charge re-introduces large, but not divergent terms oc l n ( s / n t 2 ) for the vacuum

polarization, äs we have seen in Section 2.2.
11 For iiiulti-pholon radiation se would read se = $(I - r) •+ n^ = «(] - r -i ^ t>J- *t*jO - rosö,- j) /2) , wlirr t-

now r = V r,lE is the sum of all radiated photon energy fractions and m; is the invariant mass of the radiated

photons.
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To get a qualitative Impression of the initial and final state photon spectra we approximate

~ CTBoril in Eq. (2.94) and use the relation (TBom(s(I - x)) = o"Bom(s)/(l - x) yielding

2(1-*)
(2.98)

(2.99)

Both differeiitial cross-sections are divergent for x —* 0. For x <C l their ratio is given
by ßt/ßp. E.g., for \/s = 10 GeV the probability for emission of low-energy photons from

the initial state is (only) 0.087/0.038 = 2.3 times larger than for final state radiation (see
Fig. 2.14). For high-energy photons, however, the initial state radiation largely dominates.
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Figure 2.14: First order radiation spectra fron] initj'aJ (dashed) and final (dashed-dotted)

state radiation and the.ir sum (solid line).

This is due to the additional factor 1/(1 — x), introduced by the scaling of the Born cross-

section. In fact, there would be a divergence for x —+ l, if the energy of the initial state
radiation were not limited by xmax = l — 4m^/5, since sc,m,-„ — s(\ Zmax) — 4r77^.

In order to regularize the divergence for x —> 0. again a small photon mass A is introduced.

The soft photon spectrum is then integrated up to an arbitrary hard-soft limit x0, yielding
the total cross-section for the diagrams with one-photon Bremsstrahlung äs

_BS
= f'0 (4^ + -T^)dx4 r™" \-T:L + ~T^}Jo \ dx l Jx0 \ dx I\ v \

:Sofi

dx

where with f ~ e, / / [51

cSofi 2<
7T

-— -(- -In
G 2

i 2
- 7 1U —4 r?7

In

d

l In

;2.100)

2.101)
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It is jmportant to note, that this value of 6Soft has been calculated under the assumption, that
the cross-section <TO does not vary much in the ränge from s to 5(1 — x0)- It is thus only valid
far from resonances, which introduce large fluctuations for small changes of s (cf. Fig. 2.12).

Just like the (9(a3) cross-section <rvc for e+e~ — » //4 //~ without real photoii radiation
(Eq. (2.92)), the total O(a3) cross-section <jvc for e4e~ — * ^,+/x~7 is divergent. Comparing
6foft (Eq. (2.101)) and 6vc(Eq. (2.93)) it is evident, that both divergencies cancel, resulting
in a finite summed cross-section <TI to order a3

ffl = avc + aBS

" \-~^ + -~}dx (2-102)
\ dx J

where the residual correction ä^/ is given from Eqs. (2.93) and (2.101) äs

;4 TT 6

The philosophy of the summation of divergent cross-sections a and «r , belonging to
different final states, has already been discussed in the previous paragraph.

To estimate, hoTV much the cross-section is changed through the inclusion of vertex cor-
rection and Bremsstrahlung, we rewrite Eq. (2.102) äs

(2.104)

If we again use for a moment the approximation <TO Ä; 0"Born> we find *ne respective corrections

•dx £ = e, ji. (2.105)
""Born CTBor

Inserting the approximated final state spectrum from Eq. (2.99) and evaluating the integral
yields

- -A* (2.106

2a /7T2

= V U ~
This is a very small correction of O(Q/TT), äs expected from the Kinoshita-Lee-Naueiiberg
Theorem. All logarithmic mass terms contained in /3M have cancelled12. On the other hand,
the initial state correction is given from Eqs. (2.98) and (2.105) approximately äs

l . l _ 4T7!2 _
, Inxo — pr In x0 pf — -pf In (2.10* )

2 2 s
l / s 1\t lu + ~ = 0.36 for ^ = (10 GeV)2.

4m l 1)

!The exact result of this correction is the fainous value 3o/47r - 0.0017.
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This large correction arises from the product of large logarithmic mass terms ~ ln(s/m^) x
ln(.s/m2), which are not cancelled here, since the initial state radiation spectrum acquires
a singularity oc 1/(1 - x) in contrast to the final state spectrum. The correction comes
from events with initial state photons of high energy, which change the invariant mass of
the virtual annihilation photon to se = (l - x)s. Thereby the annihilation cross-section is
increased oc l/se. In the language of the Kinoshita-Lee-Nauenberg Theorem we do not expect
a cancellation of the lepton mass terms, because we are not summing over all degenerate initial
states. The machine preselects the electron and the positron to have energy E each and no
other degenerate states participate in the interaction. In contrast to the lepton mass terms,
the photon mass terms cancel for both, the initial and the final state radiation. This ensures

the total cross-section to O(a3) to be finite.
Altogether, we find from the non-resonant Diagrams 2.8(a), (b), and (d-f ) corrections to

the Born cross-section, which are at ,/s^lO GeV about 7.8% from the vacmim polarization

(Eq. (2.81)), about 36% from the initial state radiation (Eq. (2.107)), and about 0.2% from
the final state radiation (Eq. (2.106)). The total non-resonant O(a3) correction is thus 44%.
From these numbers one may conclude, that corrections due to initial state radiation are
large, whereas that of final state radiation are small. However, this is only true, if the total
cross-section for e+ e~ — * p+ \L~ is calculated. Performing a measurement of this process, the
prediction for the observed cross-section obtained with a given detector and set of selection
cuts is relevant. The effect of Bremsstrahlung is twofold. First, there are additional photons
in the event, and second, the acollinearity of the final state muons differs from 180°. Thus,
typical selection cuts will reject most of the events containing high-energy photons. This will
reduce the large correction from initial state radiation. In the low-energy photon region initial
state radiation at ^/s=1G GeV is only a factor of 2.3 more frequent than final state radiation.
Moreover, it is very much peaked in beam direction where the photons remain unobserved.
The final state radiation, on the contrary, prefers the direction of the outgoing muons. When
both muons are observed, then also the final state photons enter the detector. If a detector
is sensitive to low-energetic photons, this may further enhance the the influence of final
state radiation. Compared to the pure Born prediction, the inclusiou of final state radiation
will always lower the observed //-pair cross-section. The sign of the initial state correction
depends on the selection cuts applied. Typically, both initial and final state corrections
to the predictions for the observed cross-section amount up to ~ 10%, in contrast to the
corresponding corrections on the total cross-section derived above.

How a realistic Simulation of Brems Strahlung can be achieved with the help of Monte
Carlo event generators will be discussed in Section 2.3.3. It is already clear from the above
discussion, that both, initial and final state radiation, have to be implemented äs completely
äs possible to supply a precise prediction for the observed cross-section for the process e+e~ — *
H + fi~ . We will thus first discuss the effects of higher order Bremsstrahlung correctioas.

2.3.2 Higher Order Bremsstrahlung and Exponentiation

Thr Separation of the total cross-section CTI for e+e~ — » ^^"(7) iiito a soft and a hard
photon part (see Eq. (2.102)) leads to the introduction of au arbitrary hard-soft limit x0.
The corrections Aajy/ffßon» (Eq. (2.105)), and thus the analytic calculation of the total cross-
section <TI, do not depend on XQ, äs long äs XQ < 10~2. Then the approximations in the
derivation of Eqs. (2.106) and (2.107) are justified.

Any Monte Carlo (MC) Simulation, based on Eq. (2.102), on the other hand, follows the
differential cross-sectiou dai/dr (Eq. (2.94)) to geiierate radiative eveuts e^e" — > p+fi~j
in ihe hard photon region. In the soft photon region a MC produces non-radiative Born-
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like events. However, the soft photon cross-section crfofl in Eq. (2.102) is positive only for13

x0 > 10~4 at v -̂10 GeV, and for x0 > 10"3 at y^lOO GeV. A MC Simulation down to
arbitrary low photon energies is thus not possible with Eq. (2.102), since the hard photou
cross-section above XQ is obviously too large. Precision measurements, however, require a
correct Simulation of the photon spectra at least down to x0 = 10~3. It is therefore neeessary
to incorporate higher order Brems Strahlung corrections.

To investigate the behaviour of those higher order corrections, it is sufficient to restrict
ourselves to initial state radiation. Calculating the real Bremsstrahlung and virtual vertex
corrections up to C9(a2) yields for x0 < l [52,58]

" , (2.108)• ~ i,c ' *"*,*: i \  '  v  1,̂  /r^c *'— "'u i — "c " J t 12 / Jio dx

where

dx
(2.109)

and £2,c = 0.0035 at v/s —10 GeV emerges analogously to £i,e äs residual term frorn the
cancellation of the infrared divergencies for real and virtual photons. Its value is slightly
dependent on the t reatmen t of real and virtual pair production (cf. footnote 12 in Ref. [52]).
The photon energy variable x is now denoting the total energy radiated by both photons.

We see, however, that the x0 problem has not vanished, Only its sign has changed. For
XQ —» 0 the soft photon cross-section now diverges to +00, whereas the hard photon cross-
section, given by the integral in Eq. (2.108), diverges to — oo. The sum of both, i.e. <T2, is
again finite. If we add the corresponding terms for final state radiation (e —t //), we even
notice, that unphysical negative cross-sections occur below precisely the same lower limit of
XQ äs they did in the first order radiative cross-section of Eq. (2.102). The x0 problem actually
cannot be overcome by going to any finite higher order. The only way out is the so-called
exponentiation procedure going to fully infinite order in a. For that Eq. (2.108) is rewritten
äs

flma' ^dx, (2.110)

with

l
X

O (2.111)

which is identical to Eqs. (2.108) and (2.109) up to second order radiative corrections. We
recognize the expansion of an exponential

OO -i

x = exp (ßf Inx) — Y^ — (ßelnx)"1 (2.112)
n TO'm—U

in the soft photon cross-section äs well äs in the hard photon spectruni. That all terms of
this expansion are realized äs leading logarithms in the perturbation series has beeil proveu

in the classic paper by Yeiinie, Frautschi, and Suura [59].

13Actually, throiigh the interference between initial and final state radiation, which we have neglected, the
soft photon cross-section depends on the muon angle 6. Requiring rf(j^oft(ö)/rfI7 > 0 for all B further increases

the lower bounds of the allowed region for the hard-soft l imit by a factor of 10.
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The exponentiated cross-section, exact to second order, then reads

>*™« dffl*?+ t^)4e + f
Jx0

with1

dx 7T

where the 62 term is usually added in do-^ /dx to ensure

JQ dx
.Soft
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Figure 2.15: Initial state r&diation spectra. The dashed line is the first order Eq. (2.98), the
dashed-dotted line the second order Eq. (2.109), and the solid line describes the exponentiated
spectrum of Eq. (2.114). Note, that the dashed line in this figure (dvl<f/dlux ) describes the
same spectrum äs the dashed line (do\#/dx) in Fig. 2.14.

The soft photon cross-section in Eq. (2.115) is now positive for arbitrary low values of x0-
Moreover, comparing Eqs. (2.115) and (2.113) it is obvious, that the hard-soft limit XQ has
become unnecessary, and the differential cross-section of Eq. (2.114) is valid over the füll
energy ränge, i.e.

f
exP I-2 = /

JQ dx
/ft it f\)

14 Since exponentiation is only rigorous in the limit a- — 0, often onty the soft photon part is exponentiated.
The term 1/x1"0' then appears not äs a factor, but rather äs the first term in a sum (cf. Eqs. (2.98) and (2.99)).
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The main effect of exponentiation is the modification of the low-energy photon spectrum
from l/z to l/z1"*3*. Thereby the cross-section without photon emission is made to vanish
exactly (Eq. (2.116)), äs required by the Bloch-Nordsieck Theorem.

We have plotted the initial state spectra d(Te/d\nx = x • da^jdx for the first order
(Eq. (2.98)), the second order (Eq. (2.109)), and the second order exponentiated spectrum
(Eq. (2.114)) in Fig. 2.15 for yfe 10 GeV. In the latter two spectra, the small terms de-
noted by O(a2/?r2) have been omitted. The approximation OoUe) ^ <*Boni(s)/(l — x) has
been applied for all spectra. For small x these spectra exhibit considerable differences. In
applications, where a proper Simulation of photons below x = 0.1 is needed, the use of the
exponentiated spectrum is mandatory (cf. Section 2.3.5).

Eq. (2.113) holds only far from resonances, where the cross-section o~o(sf) is approximately
constant for se in the ränge between s and s(l — x0). In contrast to that, Eq. (2.116) is even
valid near narrow resonances. It does no longer contain a term, derived from integrating
the soft photon cross section under the assumption of a constant oo(s*)- The differential
spectrum of Eq. (2.114) properly accounts for resonances in <T0(se), accessible by photon
radiation. Combining Eqs. (2.116), (2.114), and (2.90) we have a complete treatment of the
process e+e~ —» /i+/J~ in the 10 GeV ränge. It covers exponentiated initial state radiation
exact to second order, and includes all diagrams depicted in Fig. 2.8(a-e). The final state
Bremsstrahlung can be exponentiated and included analogously.

2.3.3 MC Methods for Generating Radiative jx-Pair Events

As already discussed in Section 2.3.1, the prediction for the observed cross-section of the
process e+e~ —* //+^~ for a given detector and data selection is the essential quautity for
experimental measurements. These predictions can only be obtained by means of MC event
generation and Simulation of the detector response. There are basically three methods of
generatingradiative^-pairevents, which canbe distinguishede.g. by the number of generated
photons. A more detailed discussion of methods and generators can be found in Ref. 60],

The classic one-photon approach is applied in the generators BKMUON |61], MMG1 [51],
and MUSTRAAL [62] written by Berends, Kleiss, and Jadach. It creates events with
zero or one photon, basically followiiig the cross-section <T] from Eq. (2.102). In the
soft photon region, iion-radiative Born-like events are produced, whereas events with
one photon are generated for photon energy fractions above the hard-soft limit x0. The
photon is attributed to initial or final state Bremsstrahlung accordiüg to their respec-
tive differential cross-sections. These differential cross-sections may be exponentiated
(äs in BKMUON) or not (äs in MMGl and MUSTRAAL). Even if the spectra are
exponentiated, the hard-soft limit can not be pushed to arbitrary low values. Since
only one photon is emitted, the initial state radiation would fill for x0 — 0 the complete
cross-sectiou. leaving no room for final state radiatiou (and vice versa).

The exclusive exponentiation is the rigorous exponentiatiou procedurefor the rnultibody
Lorentz-invariaiit phase spare, äs derived in the classic work of Yennie, Frautschi, and
Suura [59]. It is utilized in the YFS2 Monte Carlo [63] by Jadach and Ward. In the
usual inclusivc ("ad hoc") exponentiation, discussed in Section 2.3.2, the continuation
of the soft photon exponentiatiou into the hard photon region is somewhat ambiguous
(see footnote 14 on page 41). The deeper reason for that is, that the higher order
corrections correspond to the emission of maiiy photons, but are exponentiated into
a energy spectrum of a single photon. In the exclusive exponentiation, on the other
hand, there is no need for inventiiig an intcrpolation between a soft and a hard photon
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region [64]. Instead, an arbitrary large number of photons is explicitely generated over
the entire phase space. An energy cutoff x0 limits this number in practical apphcations,
but can in principle be set arbitrarily low.

The explicit generation of many photons has t wo additional advantages. First, the
prediction for the observed cross-section improves, since the photons may be seen in the
detector. Second, the initial state photons may require a non-zero invariant mass (see
footnote 11 on page 36), and can thus model muon kinematics, which are not accessible
by one photon, only.

The YFS2 generator is based on the exclusive exponentiation of the initial state radi-
ation spectrum, exact to O(a2). Alas, it generates no final state radiation. This weak
point is overcome in the KORALZ generator [65], based on the YFS2 program. A
disadvantage of both programs is the length and complexity of their codes, rendering
extensions or modifications very difficult for the user.

The structure function approach is a sort of compromise between the one-photon ap-
proach and the exclusive Yennie-Frautschi-Suura (YFS) exponentiation. Based on a
resurnmation technique of Gribov and Lipatov [66], Kuraiev and Fadin [67] have calcu-
lated the probability distribution (structure function) Dc(z+/_,s) for the electron (-) or
positron (-(-) to emit an arbitrary number of photons with an energy sum ? + /- = £] k f / E
in an interaction with c.m. energy ^/s = 2E. The electron and the positron are then
left at the interaction vertex with a fraction z+/_ = l — ?+/- of their initial energy.
(An analogous structure function, the evolution of the quark distribution in the pro-
ton with In g2 [68], has been used already for a long time to describe QCD Drell-Yan
processes [69].)

The structure functions Df (and D^) for initial (and final) state radiation are normally
exploited to generate one photon per particle, i.e. at most 4 photons for the process
e+e~ —» ji+//~. Then, however, the Information about the emissiou angle is lost, since
each generated photon carries the summed energy of all photons emitted from the
respective lepton line. Without a reinstallation of a photon angular distribution, a
structure function MC is little useful for experiments with photon detection. However,
äs soon äs an aiigular distribution for photon radiation is attached, it clearly improves
over the one-photon approach by two reasons. First, including exponentiation and
generating rnore than one photon in a single event opens the possibility to set the XQ

parameter arbitrarily low. Second, the two initial state photons acquire an invariant
mass-distribution which is very close to t hat from the rigorous YFS exponentiation.

In fact, the strurture function approach has even one advantage compared to the YFS
expouentiation. The radiative corrections are explicitly decoupled from the amühilation
process, so that the functional dependences of the annihilation cross-section &a(sf) can
be easily modified. An introduction of a finite c.m. energy spread u> creates no severe
problems, likewise. For this reasons we have choseii the structure function generator
DYMU2 [70] äs the basis for our Simulation of e+e~ —> n*p" events. This generator,
our changes, and the application of our modified generator are described below.
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2.3.4 The DYMU2 Generator

In their DYMU2 generator, Campagne and Zitoun apply the structure function approach
to generate two initial state photons and one final state photon according to a differential
cross-section of

da
D^l-y,s^ (2.117)

where y = 2fc°/v/s7 denotes the final state photon energy fraction in the 7 f j . f i c.m. systexn.
Initial state radiation is described by the exponentiated structure functions Z>e, which are
exact to order a . Final state radiation is given by the exponentiated structure function DM,
which is exact only to order a and thus attached to only one of the outgoing muons. The
most important terms of De can be motivated from the squared bracket in Eq. (2.114) äs
follows.

First, the efFective Brems Strahlung coupling constant ßf has to be replaced by /3e/2 to
distribute the photons over two electrons. Second, only the terms oc ß* are kept in £jie =
djßi + Kj, where d^ = 3/4 and A^ = 2a/7r(7r2/6 - 1/4) can be directly read off Eq. (2.103).
(The terms Kj explicitely appear in a so-called K-factor in Eq. (2.117) to guarantee for the
normalization of Df}. Finally, the exponentiation is performed for the soft photon part oc l/z
only, yielding

A f l /, , ,ß< . , ,A,2\ . xl , „(a
2

The proper derivation of this expression for De, including the O(a2 /7r2) terms, has beeil
performed in Ref. [67]. Campagne and Zitoun refined this structure function [7l] such, that
its double appearance in Eq. (2.117) leads to a total cross-section, which is precisely equal to

the exact O(a2) result of Ref. [72].

The final state structure function is given to O(a) äs

(l (2.119)

which has to be compared to Eq. (2.99). The emission of photons under finite angles to the
radiating particles has to be attached "by hand" to a structure function MC. In DYMU2

the first order distribution from Ref. [5l] is used for emission of both, initial and final state
photons.

All radiative corrections are decoupled from the annihilation cross-section OQ, which has
to be evaluated after initial state radiation at the c.m. energy sf of the electrons, which is

given by

s< = s(l ~ x + - x- + a^z- l l - cos0 + _] /2) (2.120)

= 5(1 - 7J), (2.121)

where &+_ is the angle betweeii the two initial state photons. As the DYMU2 generator —
like most of the other generators discussed above -— was written for the Z° peak, it uses the
identity [73]

/*>
/ \ /̂ r 2 * * / i 2 / 1 / o i oo \em(mz) = — GfT77zsin OWCOK 0U (2.122)
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to include the vacuum polarization via [7l]

(2.123)

( \0(S) = - - - (l + Z (s))

3s

JTTS

where Z(^) denotes the 7 — Z interference and pure Z terms in the cross-section (cf. Eq. (2.72)).
In this work we utilize the DYMU2 generator äs a very efficient and flexible tool for

generating e+ e~ — » fj.+ //~ events in the c.m. energy region of the T resonances, äs well äs for
obtaining predictions for cross-sections separately for resonance production, continuum, and
for their interference. For this purpose we have introduced two modifications.

First, the scheme of Eq. (2.122) for covering the vacuum polarization at the Z° resonance
is not valid at \/s = 10 GeV. We replace the annihilation cross-section <70 of Eq. (2.123) by
Eq. (2.90), which covers explicitely the vacuum polarization li-y(s) äs well äs all T resonances
and their interference tenns with the continuum15. The calculation of the leptonic part of
the vacuum polarization is performed according to Eq. (2.77), whereas for the hadronic part
we use the routine PIHINT [61,51,62], which interpolates the results of Ref. [74].

Second, to generate a correct prediction for shape and magnitude of the resonance cross-
sections, we include the spread of the DORIS c.m. energy. It is Gaussian distributed around
a mean energy W according to

, (2.124)

At DORIS II, the width of this distribution is w = 7.9 MeV and w = 8.2 MeV for W in the
region of the T(1S) and T(2S) resonances, respectively. (These values will be determined
in Section 6.2.1.) We select a new c.m. energy for each event following the probability
distribution of Eq. (2.124).

The total generated cross-section is thus simulated by the double convolution

/

oo
G ( v / I - T V ) x (2.125)

_

r r™ V D*(l - x+^)^e(l - x _ , Ä ) f f 0 ( * ( l ~ "))^(1 - ZM(1 - v))dydv(x+tX-)d^,
JQ Jo

where r is defined in Eq. (2.121). Photons are explicitely generated above x+, x^ ,y > x0. The
limit x0 was chosen to XQ = 10~5, which is muchless than w/ E ^ 1.6x 10~3, to obtain a precise
predictiou for the resonance shape (see below). The final state photons were generated up to
their kinematic limit of ymax = l — 4mJ/s(l — v). The kinematic limit ofvma, = l — 477? ̂ /Ä for
initial state radiation, which ranges from 0.9995 at y<s=9.46 GeV to 0.9996 at ^=10.58 GeV,
cannot be reached with a reasonable amount of CPU time consumption. This restriction does
not härm, since the acceptance of Standard /^-pair selections is negligibly s m all for r — * 1. We
run the DYMU2 generator with an upper limit ofjU! — 0,99, i.e. with a niinimum c.m. energy

after initial state radiation of ^/s^,min ~ v/5(l ~ vi) — 0.1-^/5.
To give an impression about the abundance of radiated photons, we list in Table 2.7 the

percentage of generated events with 0, l, 2, or 3 photons above XQ — 10~5 for c.m. energies
in the continuum below the T(1S). We also give the corresponding numbers for subsequently
imposing the conditions, that the photons are not collinear to the beams and not collinear

15Since for the T resonances T/E ^10 5 is very s m all, it is essential to perform the Computer calrulations
of s,, and <To(*r) in double precision.
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to the outgoing muons. (The cuts on the collinearity are chosen typical for the detection
capabilities of the Crystal Ball detector, which is in principle sensitive to energy depositions
down to x — 7 x 10~5.) From the decrease of the event fractions with increasing number
of photons we deduce, that the restriction to at most three explicitely generated photons is
well justified. Note, that also those photons, which are emitted collinear to the leptons, may
perceptibly influence the event signature via the muon acollinearity (initial state photons) or
the lateral spread of the muoriic energy deposition in the detector (final state photons).

Table 2.7: The percentage of e+e —* ^n
or 3 photons fulfilling the listed conditions.

events from the DYMV2 generator with 0, 1,2,

number of photons
x > 1CT5

and not col. to beams within 21°
and not col. to muons within 14°

0 1 2 3
28.4 44.4 23.2 4.0
60.9 35.2 3.8 0.1
74.6 23.4 1.9 0.03

sum
100
100
100

The modified DYMU2 generator is extensively used throughout this work for calculations
of cross-sections and Simulation of the detector acceptance for various ucomponents" of the
total cross-section cr""1^. The following components are modeled by optionally selecting or
dropping certain terms in <TO from Eq. (2.90).

a) Continuum Under a Given Resonance: For simulating continuum events in the c.m.
region of the T(1S) and T(2S) resonances, the corresponding resonaiice term and its
interference with the continuum are removed from the cross-section. This is achieved
by setting Bn = 0 for n — l and n — 2 in Eq. (2.90), respectively. The resulting event
sample models the continuum cross-section below the given T resonance. It includes
all effects induced by the other T resonances, e.g. their summed interference effects
(cf. Fig. 2.12) and their radiative tails (not included in Fig. 2.12). Accounting for
these effects is important, because they modify the l/ s dependence of the continuum
cross-section.

b) Pure Resonance Excitation: By setting <TO - TBor
pure resonance excitation ee+ ~ (77)T

|-ßnl2 for n — 1,2 we simulate the
(j.~ (-)). The generator then auto-

matically creates initial state photon energies, which lead to a c.m. energy se s
Event samples generated in this mode at different mean c.m. energies W in the re-
gion of the T resonances are the basis for calculating the /j-pair selection efficiency for
T —•» f* + n~ äs a function of W.

c) Cross-section for T —* ̂  p~ äs a function of W: In addition to creating event sam-
ples for acceptance and efficiency calculations, äs in (a) and (b), we use the DYMU2
generator äs a tool to perform the convolution of non-radiative cross-section <TO, radia-
tion spectrum, and c.m. energy spread. In this mode of application we are not interested
in the generated events, but only in the total cross-section. We run DYMU2 with the
füll expression for rr0 at different mean c.m. energies W', and subtract point by point
the predicted continuum cross-section, obtained according to (a). The result, displayed
äs dots in Fig. 2.16, is the sum of the T resonance excitation curve and its interference
with the continuum. since both terms have been dropped in (a). Analogously we caii
obtain the T excitation curve without interference (solid lines in Fig. 2.16) by starting
with an expression for <TO, where the interference terms are omitted. Finally, by sub-
tracting the two curves from each other, we extract the interfereiice contributioii äs a
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function of W (dashed lines in Fig. 2.16). In our data analysis the latter curve is used
to correct the measured /i-pair cross-section for the interference effect (see Section 6.2).
The H^-dependence of the measured cross-section is ntted with the help of the former
two curves (see Section 6.3).
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Figure2.16: T.he resonance excitation curve aR (solid line) its interference with the continuum

(71 (dashed line), and the sum ofboth (dots) for the 1(1S) (a) and the f(2S) (b) äs predicted
by the DYMU2 generator for the DORIS c.m. energy spread. AU curves are plotted in units

ofthe Born cross-section for the continuum process e+e~ —* /J 4M - ^e "se^ *^e ~T Parameters
from Ref. [22].

2.3.5 Eflfects of Bremsstrahlung and C.M. Energy Spread on Res-
onance Production

The double convolution with the DORIS c.m. energy spread and the spectrum for initial
state radiation drastically clianges the shape and magnitude of the T resonance peaks. The
peak cross-sections at v/s —m T , originally amountingto 7?0(lS) = lll<7Born an^ Äo(2S) = 32<7Bo™
(cf. Fig. 2.9), are now reduced to #(lS)=0.28(7Bor,i and .R(2S)=0.064<7Bor„ a"d slightly shifted
to Wp^ = m-f -f (1.0 ± 0.1) MeV (solid lines in Fig. 2.16). This meaiis, that oiily a relatively
small excess of ^-pairs fcom T resonance decays can be observed above the continuum cross-
section, in contrast to what might be expected from Fig. 2.9. In addition, the width of
the peak is now of the order of the c.m. energy spread, exhibiting a distinct tail to higher
c.m. eiiergies.

An approximate analytical expression for the magnitude of the peak reduction can be
obtained fromestiniatiiig the effect s of successively convoluting the non-radiative cross-section
<70 with G(^/s — W) and the Brenisstrahlung spectrum. Convoluting first with the Gaussian
distribution G(\/s - W] of Eq. (2.124), the area .4 under the iion-radiative Breit-Wigiier will
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not change. This area is given äs

6 T
(2'126)

where we have iuserted the peak cross-section RQ frorn Eq. (2.88). Since T -c w we can assume
that the resonance shape is a Gaussiaii of width w after this convolution. This corresponds
to an approximation of the resonance Breit- Wigner by a 6-functiou. We then have

A = V27rwR0, (2.127)

where ÄQ denotes the peak cross-section after the convolution. From Eqs. (2.126) and (2.127)
follows that

*° = A/I^-*0' (2'128>V 2 2w

Inserting w(lS)=7.9 MeV, u>(2S)=8.2 MeV, and T from Ref. [22], we find a reduction by
factors of 240 and 300 for the T(1S) and the T(2S), respectively.

The radiative corrections now modify the Gaussian resonance shape and further reduce
the peak cross-section to a value R. The amount of this reduction can be estimated äs [75]

R = ( — } ' Ä> - 0.57tf0. (2.129)
\M J

Thus, even after folding with the relatively large c.m. energy spread16, the initial state ra-
diation reduces the peak cross-section by about 43%. This reduction is due to initial state
photons of energy fractions x Z w/ E, which reduce the c.m. energy to sc = s(l — x) i (\/s — w)2.
To obtain a precise prediction for shape and magnitude of the resonance curves, a correct
modeling of the photon spectrum well below x = 10~3 is thus mandatory. Photon spectra to
first or second Order in a, which are not exponentiated, do not meet this requirement, äs can
be concluded from Fig. 2.15.

The decrease of the peak cross-section from combining c.m. energy spread and Brems-
strahlung is given approximately from Eqs. (2.129) and (2.128) by

*°-
The values #(lS) = 0.26<TBorn and fi(2S) = 0.060crBom, obtained by this analytical estimation,
deviate by less thau 10% from those of Fig. 2.16. Note, that Fig. 2.16 describes the total

resonant cross-section aR normalized to the Born cross-section UBO™- The observed resonance
enhancement normalized to the observed continuum cross-section, however, depends on the
applied selection cuts, and may thus differ from the curves in Fig. 2.16 by some 10%.

The ratio \ j R\f the maxima of the interference and resonance cross-sections, which
is - 1/10 for the T(1S) and -^ 1/5 for the T(2S), is not affected by the selection cuts,
because it refers to the same event topologies, and has thus identical selection efficiencies.
We note, that this ratio has not chaiiged much compared to the corresponding ratio \Io/Ro
(Eqs. (2.87) aiid (2.88)), wliich does not include corrections from Bremsstrahlung and beam
energy spread. Since R/Ro ex F (Eq. (2.130)), this approximate invariance can oiily hold, if
7//o oc T, likewise.

16If Ihe correction from initial state radiation is applied before including the c.m. energy spread we would
have to replace 2u- by the total width T in Eq. (2.129). The reduction of the peak cross-section would then
be 65%.



2.4. THE PROCESS e^e~ ->e4e^ 49

The latter relation is not obvious, but can be illustrated by the following arguments. For
any A" > F/2 we can write the tails of the interference term rr; in Eq. (2.86) äs

47TQ T ,
A')') = — ^ ^ : = / O J , . (2.131)

where we have used s - M2 % 2A"M > TM and inserted 70 from Eq. (2.87). After convo-

luting a1 with the c.m. energy spread we find the extrema I of the resulting cross-section a1

in Fig. 2.16 to be located at about W % M ± l.bw. At this value of W, the resulting cross-

section a-1 emerges from sampling the original cross-section a1 along the tail and over the
resonance region weighting with a Gaussi an of width w centered at W. Since the interference
term <rl is asymmetric with respect to M, and the Gaussian weight does not change inuch
across the narrow resonance region (F <C u > ) ? tne ne* contribution from the resonance region
will be iiegligible. The main contributions to / will arise from the tail region, where a1 is
proportional to F, äs shown in Eq. (2.131). We thus find from these qualitative arguments the
extreme value of the convoluted interference cross-section / oc F/o acquiring the same F de-
pendence äs R (Eq. (2.130)). The additioual convolution with the Bremsstrahlung spectrum
has no influence on this reasoning. We conclude, that the ratio \I/R , and thus the shape
of the summed cross-section from resonance and interference, does not depend on F äs long
äs F <C w. A more quantitative analytic discussion of the interference term, similar to our
discussion of the resonance term, is not possible, because here a zero-width approximation is
not possible.

2.4 The Process e+e~ —»e+e"

At the end of the theory chapter we deal with the Bhabha scattering process e+e~ —» e4e~,
which is the basis of the lumiiiosity measurement of most experiments at e~* e~ colliders. It
is well suited for this purpose, since energetic electron pairs are easily to detect without

prominent background, and since its cross-section is large. The large cross-sectioii arises

from the existence of a f-channel scattering graph (Fig. 2.17(b)) in addition to the 5-channel
annihilation diagram analogously to e^e" —* / J 4 / J ~ (Fig. 2.17(a)).

a)
e

Figure 2.17: Diagrams for tjie Bhabha scattering process. a) s-channel annihilation b)
t-channel scattering.

The Born-term differential cross-section is very much peaked in beam direction and
reads 76]

o.2 /3-s- . ."
(2.132)

4s l - c
do-lT1, da,
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4s

10 3 F

Figure 2.18: Contributions to tjie differential Bhabha cross-section (solid line). The dotted
line describes the s~channel, the dashed line is the t-channel, and the dashed-dotted line

shows their (negative) interference term.

where c = cosÖ is the cosine of the angle of the outgoing e+ with respect to the e+ beam
direction. The differential cross-section can be split up in the contributions of the *-cliaimel,
the s-channel, and their interference according to

da

a2 10 + 4c + 2c2

4^ (l - c)2

Q 2 2( l+c ) 2

45 l — C
(2.133)

These angular distributions are plotted in Fig. 2.18.
In the energy region of the T resonances, the cross-section for e+e~ —* e+e~ is modified

by resonance contributions from the process e+e~ —» T —> e+ e~. Before the observed nuniber
of e+e~ events can be used for luminosity detennination, these contributions have to be
subtracted.

Adding the resouance amplitudeof Fig. 2.19 to the twolowest order amplitudes of Fig. 2.17
yields [55]

ReB.) B. (2.134)

where the resonance Breit-Wigner Bt is given by Eq. (2.83), if Tutl is replaced by rrr (which
makes no differeiice if lepton universality is assumed).

In contrast to the process e4e" —> ;̂  + ̂ ~ , we have in this case tliree diflerent angular distri-
butions, naniely dcr,/d$l, d<jint/dn, and dos/d$l. To each of these distributious the resonance
tenn Br\. and the interference term "ReBf are attached with different coefficients. Tlieir
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Figure 2.19: Resonance contribution to fneprocess e4e~ e e

respective contribution to the total cross-section depends on the selection cut for Bhabha
events at c < c0. E.g., the s-channel contribution ^(da a / dü)dü / Jc_°Co(dae^ef / dÜ)dÜ
ranges from 2.1% for c0 = 0.90 to 8.7% for c0 = 0.50. At c0 = 0.75, which is applied in
the Crystal Ball Bhabha selection, we find the lowest order cross-section to be composed of
5% s-channel, -19% s-t interference, and 114% f-channel contributions. As estimated from
Eq. (2.130), the resonance decays T —> IC amount after correctious for initial state radiation
and the DORIS c.m. energy spread to a fraction of about 0.26 and 0.06 of the 5-cliannel Born
term for the T(1S) and the T(2S), respectively. The total observed Bhabha cross-section is
thus increased by about 0.26x5% = 1.3% and 0.06x5% - 0.3% due to T(lS)-»e+e' and
T(2S)—*e+e~, respectively. The fractional error on this estimate is roughly (10-20)%. It
uncertainties arise from the precision of Eq. (2.130), from the errors on the T resonance
Parameters, and from neglecting radiative corrections to the f-channel cross-section.

The interference between continuum and resonance enters the observed cross-section
/f°co <*n(dff"-*"/<f£l) äs S-0C, dtt(2KeBf{d<Ta/da + Q.5d<Tint/dSl]). These terins arise from the
product of the resonance diagram with the s-channel and the /-channel diagram, respec-
tively. The corresponding interference term in the muonic final state was simply 29?e<7Born
(cf. Eq. (2.84)). The presence of the <-channel diagram can thus be expressed by an ad-
ditional factor (l + / d£l(dcrtnt/dSl)/2 J dtl(dcrs/dn)). The value of this factor ranges from
-1.8 at c0 = 0.9 to -0.3 for c0 = 0.5. We see, that the negative sign of the f-channel in-
terference dominates. For c0 = 0.75, we find by inserting the above numbers a value of
(l + (—19%)/2 x 5%) = —0.9. Relative to the respective 5-channel cross-sections, the mag-
nitude of the interference between resonance decays to e+e~ and e+e~ continuum production
for a cut at CQ — 0.75 is thus comparable to the effect in the /i/i final state. Its sign, however,
i s reverse.

Fig. 2.20 shows the behaviour of the Bhabha cross-section in the region of the T(lS)
and T(2S) resonance, which enters our luminosity calculation (Section 4.4). Note, that the
interference contribution is iiow positive below, and negative above the resonances.
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1.02 1.02

1.01 - 1.01
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9.42 9.44 9.46 9.48 9.509.98 10.00 10.02 10.04 10.06
W l GeV W l GeV

Figure 2.20: TJie contribution of (a) the T (IS) and (b) the T(2Sj resonance (soJicf Jines) to
the continuum Bhabhft cross-sectiou (dashed lines). The cross-sections were normalized to
ff(m-f) — l. As calculated for a cut at c0 = 0.75, the resonance enhancements at mT are 3.3%
and 0.35% for the 1(1S) and the T(2S) respectively. The 2S enhancement is slightly larger
than given in the text since it was calculated from an older value of ßMM.



Chapter 3

The Experimental Setup and its
Simulation

"The thing that is importa.nt
is the thing th&t is not seen . . ."

A. de Saint-Exupery, "The Little Prince"

3.1 The Crystal Ball Detector

The Crystal Ball detector was operated in the years 1982-1986 at the DORIS II e+e" storage
ring in Hainburg at center of mass energies in the region of the T resonances. Before that,
it had been successfully employed for charmonium physics at the SPEAR e+e~ storage ring
in Stanford [77]. It is basically designed for precisely measuring the energies and directions
of electromagiietically showering particles over a wide energy ränge. The energy or momenta
of o t her particles cannot be measured, since there is no magnetic field in the detector. A
limited particle identification is possible via the recognition of difFerent types of interactions
in the detector.

The experimental setup is showii in Fig. 3.1. It is described elsewhere [78], and its proper-
ties are only briefly summarized here. Its iiiain pari is a nomnagnetic calorimeter consisting
of a spherical s h eil of 672 Nal(Tl) crystals covering 93% of 4?r sr. Each crystal is about 16
radiatioii lengths deep, corresponding to about one nuclear interactioii length (Fig. 3.2). The
arrangement is based ou an icosahedron, in which each face, called "Major Triangle", is sub-
divided int.o four siiialler triangles. called "Minor Triangles", which in turn are formed by the
triangulär surfaces of nine individual crystals. A complete sphere would contain 720 crystals.
To allow entry and exit of the beams, 24 crystals are omitted 011 each side. The layers of
30 crystals nearest to the beam pipe on each side are called "Tunnel Regions". The "Main
Ball1', used in the trigger and data analysis, excludes the Tunnel Regions and covers 84%
of the solid angle. The over all solid angle coverage is increased to 98% by Nal(Tl) "Endcap
Crystals".

The large nuniber of crystals provides a fine segmentation of the ball with angles of
"- 7° between the centers of adjaceiit crystals, corresponding to distances of 3 cm at the
inner ball shell, and 8 ein at the outer shell. The minimum energy recorded per crystal is
0.35 MeV. This sniall threshold together with the fine detector segmentation provides an
ideal basis for recogiiizing difFerent types of interactions in the calorimeter by t hei r lateral
energy distributions ("pat terns '") .

53
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672 Nal(Tl) Crystals

Tunnel Region

Nal(Tl) Endcaps

S mall Angle
Luminosity Monitor

l m

Mini-/3-Quadrupole ZJ1S0787

Figure 3.1: View of th? Crystal Ball detector äs installed at DORIS II.

Pure ionization and excitation can be distinguished from electromagnetic showers or high-
energy nuclear interactions by the fact, that, all but few perceiit of the energy deposition is
contained in one or two crystals. The most probable energy loss in the crystals for minimum
ionizing particles with ß-y-4-b is 195-200 MeV, and increases to 217 MeV at ^7 = 45 (see
Section A.2.2 in the appendix). The width of the energy loss distributioii is about 20 MeV.
with some dependence 011 the particle momenta.

Approximately two thirds of the hadrons are expected to undergo nuclear interactions
while traversing the calorimeter. The rest, if charged, loses energy by pure ionization and
excitatiou. Nuclear interactions of high-energy hadrons result in very irregulär patterns.
Patterns from nuclear interactions of low-energy hadrons, on the other hand. can be less
clearly distinguished from pure Coulomb interactions.

Electromagnetic showering particles, i.e. photons and electrons1, are leaviug all their
energy in a very Symmetrie pattern. About 98% of their deposited energy is distributed
aniong a Symmetrie group of 13 crystals (cf. Fig. 3.5). The leakiug oui energy äs well äs
geometric efTects, depending on the position witliin one crystal where the particle enters, are
takeu into account by the application of small corrections [79,80]. Using this defiuiiion, the
measured euergy resolution for electromagiietically showering particles is tr^/E — {2.7 ±

0.2)%/(/£/GeV.

The ceiitral cavity of the detector is equipped with a set of t.ube chambers with charge

'Since the Crystal Ball cannot distinguisll between positive and negative particles, wc generally refor to both

electrons and positrons äs elertrons.



3.1. THE CRYSTAL BALL DETECTOR 55

40.6 cm 2" photomultiplier

25.6 cm

0 10 cm

Figure 3.2: The size and shape of a single crystal. The interaction point is marked by a cross.

Beam pipe

0 50 cm
ZJ250987

Figure 3.3: Tube chamber Setups for (Jie T(2Sj data (a) and for the ~£(1S) and f(4S) da/a

division readout. The T(2S) data used in this analysis were taken with a chamber setup
with a total number of 600 tubes, consisting of two double layers of proportional tubes and
one double layer of streamer tubes (Fig. 3.3(a)). The latter were a remnant of au older
chamber setup exclusively operated in the limited streamer mode. They were filled witli a
mixture of -76% Ar, 20% Isobutane, 4%, Methylal, and 0.25% Freon, called "Magic Gas".
This mixture gives high pulse heights at the anodes, which are almost independent of the
primary ionization. For the T(1S) and T(4S) data the streamer tubes have been replaced by
two additional double layers of proportional tubes, resultiiig in a total iiumber of 800 tubes
grouped in four double layers. (Fig. 3.3(b)). The proportional tubes in both Setups (filled
with 79% Ar, 20% CO2, and 1% CH4) record mean pulse heights for mininmm ioiiizing
particles, which are by a factor of — 20 lower than those of the streamer tubes.

The reconstruction of the ;-position of a hit along the wire has a typical resolution of
about 4% of the wire's half length i, corresponding to 13 mm for the innermost double layer
and 7 mm for the outermost double layer. The resolution depends 011 the particle monieiiluni
and the z-position and is not Gaussiaiily distributed (see Appendix B). The precision in tlui

aximuthal angle 9 for a hit is determined by the tube radius of 3 mm.
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Figure 3.4: The Time of Flight is me&surcd with the help of a "Ball-ToF" anci a "Roof-ToF"
System.

For proper chamber Operation each double layer records at least one hit for a traversing
charged particle with an 4OR'-efriciency of larger than 95%. The performance of the chainbers
was very time dependent, however. E.g., a degradation of the streamer tubes with time
reduced their 1OR' efficiencies to less than 50% for some data taking periods. Details of this
time dependence and its Simulation are discussed in Appendix B.

The Time of Flight (ToF) system of the Crystal Ball detector has two parts, the "Ball-
ToF" and the "Roof-ToF" system, which are shown in Fig. 3.4.

The Ball-ToF system measures the timing of the calorimeter signals with the help of
20 Constant Fraction Discriminators and 20 TDCs, each processing the summed signals of
one Major Tri angle. Note, t hat these signals arise from energy depositions along a path of
40 cm, which is unusually large for a timing measurement. The 20 Major Tri angle timiiigs
are backed up by timing measurement s for the summed signals of the upper and the lower
ball hemisphere, respectively, äs well äs by two timings for the füll ball energy sum. The
discriminator thresholds for the Major Triaiigle and heniisphere timings correspond to energy
depositions of 90 MeV. The eiiergy thresholds for the füll ball timing measurements are higher
and depend 011 the data taking period.

The Roof-ToF system is a set of 94 scintillation counters located on the roof and at the
side walls of the detector hui. It covers 25% of the solid angle but provides timing Information
for about 80% of the triggered cosmic ray events. The position of the hit aloiig the counter is
nieasured in two indepeiident ways from the pulse height ratio and from the timing difTerence
at both ends with a precision of about 10 cm.

The Ball-ToF and Roof-ToF measurements are performed at nie an distances to the in-
teraction point of 0.45 m and 3.5 m, respectively. Both measurements have a resohition of
1.0 ns for high energy muoiis, improving to 0.4 iis for the Ball-ToF mcasuremcnt of high en-
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ergy showering particles. With the help of thc timing difference between the t wo components.

cosmic ray events can be separated by about 14 Standard deviatious from e^e" annihilation
events. A more precise timiiig measurement, whicli would be feasible with the Roof-ToF, is
thus not needed.

3.2 The Triggers

The Crystal Ball hardware triggers are designed to reduce the trigger rate for events wliicli
are not caused by e+e~ interactions. Trigger decisions are commonly based on energy balance

in the ball or on the total amount of deposited energy. The trigger criteria suppress cosmic

ray events, and interactions of beani electrons with rest gas atoms or with the wall of the
beam pipe. A varying set of about 20 different triggers was installed duriug Crystal Ball data

taking at DORIS. The typical trigger rate was about 4 Hz, whicli has to be compared to a
bunch crossing frequency of 106 Hz. Still, most of these trigger holds were not created by

genuine e+e~ interactions.

All triggers used in this analysis are entirely based on the calorimeter Information. The
fundamental quantities for the trigger decisions are the analog energy sum over 9 crystals
in a Minor Triangle, the sum over the 36 crystals in a Major Triangle, and the total energy

deposited in the Main Ball. The Tunnel Regions and Endcap Crystals are not included in

any of this analog energy sums. The energy deposits in the Tunnel Regions are instead used
to veto certain triggers. Thresholds, which are cited below for these analog energy sums,

refer to efficiency levels of about 90% for setting a trigger bit, and of about 10% for setting

a veto bit.

The Triangle Triggers

Muoii pair events are efficieiitly recorded by t wo triggers. One trigger requires two back-

to-back Major Triangles, each having a deposited energy of more than 150 MeV; the other
trigger requires at least 90 MeV in each of two back-to-back Minor Triangles, and a total

energy of at least 220 MeV. Both triggers are vetoed by energy depositions of more than

35 MeV in either Tunnel Region. We will refer to thein in the following äs "Major Triangle

Trigger" and "Minor Triangle Trigger", respectively2.

The Total Energy Trigger

The Total Energy Trigger requires at least 1.8 GeV of energy deposited in the Main Ball.
Bhabha events and multi-hadron events, passing the respective Crystal Ball selection pro-

grams, deposit euergies well above this threshold.

The DBM Trigger

An important trigger for studying beam related background is the Doris Bunch Marker
(DBM) trigger. It collects "Background Events" with a rate of 0.1 Hz by triggering on

every lö'th bunch crossing with no other condition. These Background Events provide a

2ln the Crystal Ball Jargon the latter trigger was called "Quark Pair Trigger" and the former was the

"TOPO 20V" trigger. Actual ly, the requlrements of the TOPO 20V trigger were niuch niore involved. They
are, however. equivalent to the conditions lisled, if there are exactly two energy depositions of more than
150 MeV in the Main Ball. An even more efficient trigger for ^-pairs. called the "Mu Pair Trigger", was not

used. \>ecause ils perfonnanre was unreliahle.
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vahiable Information about the distribution and the frequency of beam-related or spurious

energy depositions and tube hits.

3.3 Calibration and Data Reconstruction

The Nal(Tl) energy scale is set for each —5 pb"1 of accumulated lurninosity using radioactive

sources [8l], a van-de-Graaf generator [82], and large-angle Bhabha scattering events [79].
The z-information of the tube chamber hits is calibrated with the help of large-angle

Bhabha events, likewise |83]. The (p- Information of each hit is set equal to the (p position of
the tube center. These (p values have been "calibrated" by comparing the hits from Bhabha
electrons with the (p positions of their energy depositions in the calorimeter. The measured
pulse heights of the hits are not subjected to a calibration.

Event samples of electron paars, muon pairs, and cosmic rays provide the basis for the ToF
calibration. For the Ball-ToF an optirnum resolution is obtained by assigning and fittiiig delay
constants for each crystal and cable involved in the analog summing of the Major Triangle
energy [84,85]. It is further improved by correcting for tiine dependent drifts in each constant

and for the overall dependence on the amount of deposited energy. After accomplishing the
Ball-ToF calibratioii, the Roof-Tof is calibrated with the help of the timing differeiice of
cosmic ray niuons with respect to the Ball [86].

Data reconstruction is perfonned in several steps. First crystals are grouped into clusters,
where a cluster is defined äs a group of geometrically adjacent crystals, each having at least
10 MeV deposited energy. In a second step the local maximums inside the clusters are de-
termined. They are called particle bumps. The next step correlates hits inside the chambers
with the particle bumps in the ball. A straight line fit through the hits found in this proce-
dure is used for the direction definition of charged particles. Finally the ToF Information is
evaluated and assigned to the energy depositions in the calorimeter.

3.4 Further Treatment of the Reconstructed Data

The output data format of the reconstruction procedure contains not only the results of
the various assignments of direction, deposited energy, and timing for each particle bump.
In addition, all detector information is kept, which was used in the reconstruction, e.g. the
deposited energy in each crystal, pulse heights for each tube hit, and timing information for
each component of the ToF System. It is thus easily possible to modify the definitions of the
particle assignments with respect to the Standard recoiistruction procedure. This freedom is
exploited in most Crystal Ball analyses in Order to adjust the definitions of energy, direction,
and timing to the actual needs. A special sort of Crystal Ball data tapes, the "PACK" tapes,
even contain the "raw" signals from the chamber and ToF system in a compressed format.
They can be retrieved if the tube hits or the timing are to be reproduced with difTerent
calibration constants.

In this work we have recovered some tube hits from the raw data by reducing the pulse
height cut for about one third of the T(4S) data3.

The tube chamber Information is analyzed by the TAGTRK program [S5], written for the
tracking of two particles. An esseiitial feature of this routine is its ability to detect vertices

3The cuts for the four double layers werc rednced from (60,30,30.30) mV lo (40,15,20,20) mV for the runs
16563 - 17667, since it turned out after data reconstruction, that the hit pulse heights were rather low in this

period. The larger cuts, taken froin the preceding period of data. would have led to considerable inefficieiicies
of the tubes.
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Figure 3.5: Definition of deposited energy Ejfp. The shaded area is the group ofthirteen crys-
tfds with the local energy maximum marked by an asterisk. The indicated circles correspond
to one, two and three Moliere radii for electromagnetic showering particles.

off beam axis, which is not possible with the Standard Crystal Ball tracking package (cf. also
Ref. [87]). The location of the event vertex is found by maximizing the number of tube hits
traversed by the fitted tracks. An unmistakable assignment of off-axis vertices is achieved
by imposing additional constraints on the number of traversed hits. One of thein is a cut
in the "on-axis significance" K, describing the fractional excess of hits for the on-axis vertex
assignment relative to the off-axis assignment.

The decision, whether a particle is called "charged" is based on the number of correlated
tube hits. We set the TAGTRK parameters such, that particles originating from the beam-
axis are called charged, if at least one (two) hit(s) in the chamber setup with 3 (4) double
layers is (are) correlated in ^ with their bumps in the ball. An additional hit is required,
if the hi t(s) is (are) found in the iimeruiost double layer, which usually contains a lot of
background hits. Applying this definitioii, charged particles originating from the interaction
region are detected with an efHcieiicy of more than 98% for both Setups.

If at least two hits are found to be correlated with a particle burnp in 9 and 2, the track
direction is determined by fitting a straight line through the tube hits and the particle bump.
The resulting accuracy of the direction measuremeiit is about 2-3° in #, the polar angle with
respect to the beam axis, and better than 1° in p- The direction of a particle with less than
two tube hits is determined from the location of its energy cluster in the ball with respect to

the event vertex.
A particle's deposited energy Edep is denned äs the sum of the energies over a symmet-

ric group of 13 neighboriug crystals including the particle bump at its center (see Fig. 3.5).
The definitioii is motivated from the energy depositions of electromagnetic showers (cf. Sec-
tion 3.1). The lateral pattern are described by the pattern fractions Fi,F2, aud F4. They
represent the probability, that a given fractioii of the deposited energy Edfp was distributed
among l, 2, or 4 crystals. For the FI and F2 fractions the crystals with the highest energy
deposits are used, whereas the 4 crystals include the one with the maximum energy deposit
and i ts three nearest neighbor crystals.

The Ball-ToF mrasurement for each particle is taken from the corresponding Major Trian-
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Figure 3.6: The organization chari of/he Crystal Ball MC,

gle timing. For a few percent of the particles the Major Triangle tiniiiig was not available or
unreliable due to bad hardware. In those cases we used the heniisphere and füll ball timings
äs a backup. Events without any valid tiniing are encountered wilh a frequency of less t h an
IQ"5.

3.5 Monte Carlo Event Simulation

The organization of the Crystal Ball Monte Carlo is shown in Fig. 3.6. The process of the
event generation is subdivided into two steps: generatioii of particle 4-vectors. and Simulation
of the detector response. The Output of the detector Simulation h äs the same format äs real
data and is reconstructed using the same "universal" production routines.

The detector response to electroinagnetically showering particles is simulatedby the EGS 3
code 881 while the iiiteractions of all other particles including muoiis are simulated with
an upgraded Version 89, of the GHEISHA 6 program4 [90 . Among other modifications.
correctioiis in the modeling of energy loss and ^-electrons have been applied. They have been
proven to be important for a realistic Simulation of particle interactions in the Crystal Ball,
wluch is essential for our aiialysis. More details about our GHEISHA modifications are given
in Appendix A. It is worthwhile to mention. that a common treatment of the Crystal Ball
geometry was adopted for EGS and GHEISHA. Replacing the GHEISHA geometry handling
by EGS-like geometry routinrs ,91.92;. both precision and speed of particle tracking have
been improved.

The Crystal Ball geonietry input does not only coiitain the positions and dimeusions of the
calorimeter crystals, but also those of the inner and outer ball shells. of the crystal wrapping
foils. and of the endcap sheathing material. In this analysis we used a special geonietry
version. \vhich also includes the beampipe and the material equivalent of the tube chamber
walls and of their support structure 93,.

The pulse heighl distributkms of the tube chamber hits. their efficiency. and the smearing
of the charge divisioii (iiichuliii£ their respective run-dependenre) are modeled after corre-
sponding data from Bhabha events by a separate tube rhamber Monte Carlo program. This
"Erlangen Tube chamber MC" (E .T .MC) is described in detai] in Appendix B.

Siiice there ib a very irregulär agglomeration of material between tlie Ball and the Roof-
ToF counters (photutnbes. cables. electronics. >u j>e i s t ruc tu re . drylioiise), a realistic Roof-

4Tlir Version i'- of thc ( i H E l S H A packag'' is e ssen t ia l lv i d t -n t i r a l in t h e puhlisht-d vi-rsion T
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ToF Simulation is not possible. The Ball-ToF has been simulated in this work by a Gaussian
distribution with center and width determined from the data.

Extra energy in the crystals and additional hits in the tube chambers originating from
beam-related background are taken into account by adding special Background Events to the
Monte Carlo events. These Background Events are obtained with the DBM trigger described
in Section 3.2 and reproduce the actual detector behaviour specinc for a given period of data
taking.

We have completed the run-dependence of the detector Simulation by implementing vari-
ations in the inean positioii ((x), (y), (z)) and in the length / of the e+e~ intersection region
along the beaui axis. (The Crystal Ball coordinate System is defmed by the z-axis going in
direction of flight of the positrons, the y-axis pointing upward and the x-axis pointing towards
the middle of the DORIS II ring. The origin is set in the center of the ball calorimeter. In
polar coordinates the azimuthal angle ip is measured starting from the x-axis. The polar angle
9 refers to the -j-z direction.) These beam spot parameters have been determined in Ref. [83]
äs the relative positions of event vertices and calorimeter5. We have averaged these results
over appropriate periods äs depicted in Figs. 3.7(a)-(d). Since our aiialysis is less sensitive
to the beam spot position than to its width (cf. Section 5.3.3}, we could afford not to follow
each change in the (x)-position of the vertex.

We have also modeled the systematic influence of a vertex position ({x}, {y}) 7^ (0,0) 011
the (f> calibration of the tubes. This influence is rather involved and could thus be reproduced
only qualitatively.

6Changes in these ( ( x ) , (y) , ( z ) ) positions of the vertex may either be due to beam shifls or t o shifts of the

ball calorimeter. From studies done with the tube chambers, which are mounted on fixed positions around the
beam pipe, we find that the y-posiüon of the beam was constant at about 0.10 cm above the center of the tube
chamber system. The variations in Fig. 3.7(b) do thus reflect a sinking of the calorimeter. This relative shift of
calorimeter and tubes was included in our MC Simulation. The x-variatjons, on the contrary. are also observed

with the tube chambers indicating under lying variations of the beam orbit.
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Chapter 4

Beam Energy, Luminosity, and Data
Selection

"The recitals of explorers are put down first in penciJ.
One waits until the explorer has furnished proofs,
before putting them down in ink."

A. de Saint-Exupery, "The Little Prince"

One of the aims of our nieasurement of the T decay to //-pairs is to extract its branching
ratio Bnft — $(Y —» /x//)/#(T). The total number of resonant //-pairs #(T —> ///x) is propor-
tional to the observed number JVT-tW4 of resonance decays to muons, which is obtained from
subtracting the expected continuum yield ATee~*MM from the observed number JV*^ of
in on-resonance running.

-BM/J ex

(411had

The total number #(T) of produced T resoiiances is determined from the observed number
N * of multihadronic decays, because they constitute the dominant decay mode with
both, branching ratio and detection efficiency larger than 90%. The number A7T~"h&d is in
turn obtained from the number of observed multi-hadron events Arliad in on-resonance running
subtracting the continuum contribution JVec—had.

There are two major problems connected with this measuremeiit, which have to be thor-
oughly studied. First, the resonance peaks of e+e~ —* T —» p* fj~ rise only marginally above
the e+e~ —» M+M~ continuum background (see Section 2.3.5). By subtracting the continuum
measured at a different c.in. energy and at a different time under different experimental con-
ditions introduces large errors, unless we correct for all energy and time dependences (see
Section 5.3).

Second, due to the interference between ^-pairs from resonance decays and from con-
tinuum productiou, the result for B^^ depends 011 the c.m. energy, where the on-resonance
data is taken (see Section 4.2). The data taking at DORIS, however, is not accompanied by a
reliable online measurement of the beam energy. We thus exploit the observed hadronic cross-
section together with measurements of the magnetic fleld in a storage ring beiiding magnet
to determiiie the c.m. energy Hr a posteriori, äs detailed in Appendix C. Besides reducing
coiisiderably the systematic error of the B[lfl measuremeiit (Section 6.2), the determination

63
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Mod ]

Figure 4.1: TypicaJ example for a multi-hadron evenf in the Crystal Ball dett-ctoi. The
upper pari of the event display is a mercator-like projection of the calorimeter ivhere the
Minor Triangle.s and the boundaries of the energy clusters are indicated. The sizes of the
dots are a measure of the deposited energy in each crystal. The Joiver part shows three
different views of (Jie chambers (x-y, z-R, 3-D). Hits used for track fitting are displayed äs
squares.

of W enables us to fit the muonic cross-section in the region of the resoiiance äs a function
of W. From this fit we derive results on the product of the hranchiiig ratio Ber to electrons
and the niuonic width FMM of the T resonances (Section 6.3).

Altogether three types of eveut saruples enter the analysis, namely multihadronic events
to derive the number of produced T resonances and to determiue the c.m. energy W7, Bhabha
events for the luminosity deterinination, and finally //-pair events. We describe the selection
of these event samples and the determination of c.m. energy and luminosity in turn.

4.1 The Selection of Multihadronic Events

For the determination of the c.ru. energy and for the calculatioii of the nuuiber of produced
T resonances we select multihadronic events witli the Standard Crystal Ball inulti-hadron
cuts [94]. The selection criteria are suited to suppress background from beam-pas and beain-
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wall reactions, two-photon collisions, and QED processes like electron- and tau-pair produc-
tion. The most important selectiou cuts exploit the fact, that the latter background has a
small average multiplicity and that the former has a large total momentum along the beam

axis.
The selectiou efficiencies for hadroiiic T decays are high. e.g. about 94% for-the 3-gluon

decay, and about 81% for the qq decay. In terms of the observed continuum cross-section
from ee —> qq the remaining background comprises about 3% frorn tau-pair events, and 0.5%
each from (radiative) Bhabha events, from two-photon iiiduced hadronic events, and from

beam-gas/wall reactions [92].
The resultingsamples comprise447xl03 and 253 xlO3 multi-hadron events from the T(1S)

and the T(2S) data, respectively. A typical multihadronic event is shown in Fig. 4.1.

4.2 Center of Mass Energy Determination

If the shape of the resonance excitation curves crCf^r~'^tJ(W) and fr""**""1""^ W) were identi-
cal, we would find the same value for BßfJ from Eq. (4.1), regardless at which (on-resonance)
c.m. energy W our data is taken. This would be the case if there was 110 iuterference be-
tween resonance decays and coiitiiiuum, or if the hadronic and the muonic decay chaimel
interfered in the very same way with the continuum. However, only T decays to fermion
pairs, namely T —» qq and T —» ti interfere with their corresponding nonresonant contin-

uum production according to Eq. (2.84), whereas for all other T decays, like T —* ggg or
T(2S)—>X+T(1S) —»X+hadrons, there is no or negligible interference with the continuum.
The maximum interference contribution for T —* ff is 10% and 20% of the resonance peak
height for the T(1S) and the T(2S), respectively (see Section 2.3.1 on page 31). In contrast to

that it is only 1% for T(1S,2S)—»hadrons, since the decay T —* qq forins oiily a small fraction
of the hadronic T decay modes. We thus find the "true" value for Z?MP = #(T —» / i / /)/#(T)
only at W — H'0, where the iiiterference contribution vanishes. From Fig. 2.16 we find for a
c.m. energy spread of w ~ 8 MeV

WG =- T77T + (1-3 ± 0.2) MeV, (4.2)

which is very near the (radiatively corrected) peak of the non-interfering T cross-section at

Wj„ak = 777T 4- (1.0 ± 0.1) MeV. (4.3)

Since the interfereiice contribution to the hadronic cross-section is small, Wpe^ equals in good

approximatioii the c.m. eiiergy, where the maximum of the hadronic cross-section is observed.
Any strategy for on-resonance running tries to find this niaximiim hadronic cross-section

by scanning over the resonance. All on-resonance data is then taken at W =^ H7^^ — \V0,
if the beam energy remains stable. The stability of the DORIS beam energy is monitored
in two ways. First, the Crystal Ball experiment records the observed hadronic cross-section
Vwin* duriiig data taking.

Second, the magnetic field at the beam position in a storage ring bending magiiet is
measured usiiig the uuclear magnetic resonance (NMR) effect. This bending magnet is located
outside of the storage ring, but connected in senes \vitli all storage ring magnet s so that is has
exactly the same current1. The magnetic field B of this niagnet is thus — for a fixed orbit —
proportional to forlnt B(l)dl around the storage ring, which is directly relaied to W = 2E^arr>

via a coiistaut oorb,,
TV = c^B. (4.4)

'Für the first 8 pb 'of our data sample the NMR reading did not yet exist.
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The combination of bot h methods does still not guarantee. that W can be kept stable

during data taking. The measurement of ^^fint 's uncertain due to statistics, and due to
slightly varying acceptance and beam-gas/wall background for both the hadronic and lu-
minosity events counted online. The varyiiig acceptance is due to the lack of up-to-date
detector calibration constant s at the time of data taking. The varying beam-related baok-
ground comes in due t o a simplified online event selection with larger background thaxi in our
offline selection.

The NMR measurement suffers from changes in the beani orbit with respect to the scan
period, where B^^. = B(Wpe&) was deterinined. These changes may occur after any break
in the storage ring Operation when both beams have been lost completely (e.g. after failures

in the e4 e" supply from the LINACs or in the case of power failures). Changes in the orbit
manifest themselves in a modification of cor(,ir. so that miming at Bpe^ will no longer mean
running at Wpe&k. Changes of W by, say, w/3 ^ 2.7 MeV. which reduce (r^fint by only 4% on
the T(1S) and by 3% on the T(2S), may remaiii unnoticed during on-resonance data taking.
However. such a change would affect the measurement of B^- From Fig. 2.16 we derive,

that a shift in the c.m. energy away from TV0 changes the measured value of B^ (Eq. 4.1)
approximately linearly to

Bw(W) = Bttll(W0) l -t- « — , (4.5)
V w /

if \W - HO <w. Wefinda( lS) = 15% and o(2S) = 30% resulting in errors of 5%. for B^(lS)
and 10% for B^(2S) for our example of a shift by w/3. The systematic error on Bfll, from
the uncertainty in W can only be reduced by precisely determining the c.m. energy for our
on-resonance data. For that we have to find data taking periods with a constant beani orbit
and measure their parameters (?„,.(,;,. Details of this procedure are given in Appendix C.

In principle we plot the observed hadronic cross-section äs a function of the measured
magnetic field B for short enough periods in time, so that the conversion factor cor^ betweeii
B and W can be regarded äs a constant within each period. In these plots we fit the B-
position of the T resonances above the hadronic continuum. Periods adjacent in time were
combined if they could be consistently described by a common fit. The conversion factors
for the combined periods are theii determined by inserting the values of the T masses from
Ref. [22 for the corresponding positions of the T resonances in B. The T(2S) data can be
consistently fitted with a single conversion factor, whereas we get a set of 5 difFerent conversion

factors for the T(lS) data. They correspond to shifts ranging from 6.5 MeV to 44.2 MeV
compared to those c.m. energy values, which would have beeil obtained by utilizmg the T(2S)
conversion factor. From the errors of the fit s and from the Variation of the results within the

sets of combined subperiods. we derive an error of ATV — 0.5 MeV on our determiiiation of
W.

A subset of 8 pb"1 of the T(2S) data was collected before a regulär NMR reading ex-
isted at DORIS. Their c.m. eiiergies were determined by exploiting resonaiice depolarization
measurements [95.90^ with a resulting precision AW ranging from 0.5 MeV to 2.0 MeV.

A precise determination of 1T' for the T(4S) data is not necessary. since the interference

with muons froni T(4S) decays changes the observed continuum cross-section by at most
0.30% (äs oblained from correcting the dotted curve in Fig. 2.11 for initial state radiation).
Compared to this, the interference teriii in the energy region of the T(2S) and the T( lS)
is 4 and 9 times larger, respectively (c f . dashed lines in Fig. 2. IC) . The c.m. energy of the
T(4S) resonance data was instead sei equal to the T(4S) mass from Ref. 22,. acconiitinp for
possible öffnet s by an error of AH" - 15 MeV. The c.m. eiiergies of the contimium data below
the T (4S) were calculated from their dirFerenre in the noniiiial beam energy to tho T(4S)
resonaiice data. allowing for an error of ATT — 20
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Figure 4.2: TypicaJ exampJe for a (radiative) Bhabha event in the Crystal Ball detector.

For the analysis we assemble data sets of constant c.m. energy W by collecting data with

nearby values of W from all periods and assigiiing to each data set a lunlinosity weighted

average c.m. energy W, = J^ CW2/ Yl £• We end up with 28 data sets of different c.m. en-

ergies around the T(lS), 13 data sets around the T(2S), and 4 data sets on and below the

T(4S).

4*3 The Selection of Bhabha Events

The Standard reactions to measure the luminosity in the Crystal Ball detector are the pro-
cesses e+e~ —> e+e~ and e+e~ —* 77. Events from bot h processes are selected by requiring

exactly two clusters in the calorimeter with a deposited energy of Ed(p > 0.7£bcan,. Both

clusters have to lie within J c o s ö j < 0.75, where the directions are determined not from the

tracks in the chambers, but from the energy depositions in the ball with respect to the origin

(0,0,0). The selected luminosity events are composed of about 11% e^e" —* 77 events and

89% Bhabha events. Background from sources like e+e~ —» T + T" or ee —* qq is below 0.2%.

More details cari be found in Ref. [83]. A typical luminosity event is shoivn in Fig. 4.2.
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4.4 Luminosity Determination

The integrated luminosity for each of our data sets is determined by [83]

W2
(4.6)

where 7V£ is the number of selected luminosity events, cc = 1294.3 ub-GeV2, and W is the

c.m. energy äs determined in Appendix C and Section 4.2 above. The systematic error on

cc is 2.5% [83,96]. It has its main contributions from a Variation of selection cuts within
reasonable limits (1.9%), from 4th order QED corrections (1.0%), and from MC statistics
(1-0%).

For on-resonance data the luminosity has to be corrected for the contribution from T — *

e+e~. The Variation of the T —t e~*"e~ contribution with the c.m.. energy H7, including
interference efFects between T decays and Bhabha scattering, has been taken into account

according to Fig. 2.20. Right on the resonance peaks we subtract (1.30±0.15)% at the T(1S)
and (0.35 ± 0.10)% at the T(2S). The systematic errors on this subtraction arise from the

uncertainty in the T branching ratios to e+e~ , and from radiative corrections to the resonance

peak heights and to the e+e~ continuum2.
We further correct the luminosity for the dependence of the selection efficiency on the

length / of the intersection region of the e4e~ beams along the beam axis. If / varies (cf.
Fig. 3.7(d)), the effective solid angle changes, which is covered by the calorimeter coordinates

of cos#| < 0.75. From studies on 4-vector level, based on the angular distributions for
Bhabha events (Eq. (2.132)) and on those for e+e~ — » 77, we determined the fractional

change of the selection efficiency, which results in a change of

(4.7)
mm

Here A/ is the deviation of the vertex spread from the value of 1.21 cm, which was used

for the determinatiou of c^. Dependiiig on the run number we find from Fig. 3.7 luminosity

corrections ranging from -0.52% to +0.33%.

4.5 The Selection of //-Pair Events

The most prominent features of /j-pair events are their acollinearity and their energy deposi-
tions in the calorimeter. If no high-energy photons are emitted from the initial or final state,
the muons will go iiito opposite directions ("back-to-back") and create exactly t wo energy

clusters in the ball, facing each other. In the very most cases the clusters can be correlated
with hits in the chambers. The path of 5 GeV irmons in the calorimeter intersects typically

only one or two crystals, since deviations from the exact radial direction due to multiple scat-

tering (— 1°) and fiuite size of the e4e~ intersection region (~ 3°) are less thaii the aiigular
distance between two crystals (~- 7°). The energy loss of 5 GeV muons in the calorime-
ter peaks at about 217 MeV (see Appendix A) with a (Gaussian) width of about 22 MeV
and a Landau tail towards higher energy losses. Energy depositions adjacent to the crystals

2Fig. 2.20 shows the fractional contribution to e4e — e 4e , only. We neglected the reduction due to the
presence of e + e~ —• -)••), since it should be partially cancelled by radiative corrections to the t-channel Bhabha
scattering, which were not included in the derivation of Fig. 2.20. After the completion of the analysis we
have performed morr precise estiniates, which yield slightly smaller reductions, but remain within one Standard
deviation of the errors cited.
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Figure 4.3: Typical example for a fi-pair event in the Crystal Ball defecfor.

with the largest energy deposits, which are caused by ^i-electrous or by collinear final state
photons, are in general smaller thaii 10 MeV. Energy depositions away from the two muon
clusters arise from beam-related background and from initial or final state photons emitted
under large angles with respect to the incoming aiid outgoing leptons. The distribution of
this extra energy is peaked at values of ^ 5 MeV, but reveals a long tail extending essentially
up to the beam energy. A typical event is shown in Fig. 4.3.

4.5.1 Possible Background Processes

As discussed in Section 2.3.5 the events from T decays to p + /j~ sit 011 a large continuum
/j4/^" , Events from bot h sources are identical, except the fact, t hatbackground from e+e ~» jj4/

the energy of mi£ta/ state photons from the resonance production is limited to E^ i 10 MeV
by the c.m. energy spread. The background further contains contributioiis from two-photon
reactions e4 e~ —* e4e~A". where X — / ^ 4 / 7 ~ , TT+TT" , or e"*e~, muonic decays of r-pairs from
e4e~ —» r^ r ~, cosmic ray events, and interactions of the beam electrons with the wall of the
beam pipe. (The process e4e~ —» TT^TT" is negligible [85].) We will sketch the inain features
of these backgroimds below.
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Two-Photon Events

The most prominent background to e 4 e~ —> T —> //"*"/j~ from sources other than the con-
tinuum background e4e~ —* /^/r is the two-photon productioii of particle pairs accordiiig
to Diagram 4.4. Since the incident electron pairs generally escape undelected uuder, small
angles with respect to the beam pipe. the resulting event looks like a single pair of particles.
Lacking a magnetic field, the Crystal Ball detector cannot distinguish low-energy particles
from two-phototi iiiteractions from 5 GeV muons 011 the basis of a momentum measurement.

e+

e e

Figure 4.4: Two-photon production of particle pairs.

At -t/s ?z 10 GeV the total cross-section for two-photon processes is huge with respect
to the e+e~ —» //+^i~ annihilation cross-section, namely about 400 nb for e+e~ —» e4e~e+e~,
60 nb for e4e~ —> e4e~^4 / i~, and 6 nb for e+e~ —» e+e'TT^Tr", compared to l nb for e4e~ —»
A< + / J~ . The naively expected suppression of two-photon processes by a2 with respect to
the one-photon annihilation is largely overcompensated by the two photons being emitted
essentially on their mass shell, whereas the annihilation process is suppressed by the oft-
shell propagator of the virtual photon. (The two-photon cross-section increases with powers
of ln(s/77?t), whereas the annihilation cross-section falls like 1/5.) The two photons in the
process 77 —» X have in general different energies and their directions are strongly peaked
along the beam axis. Due to the large total cross-sections, however, the part of the final
state phase space, where the particles are emitted back-to-back with an opening angle of
C ^ 180 degree, and under large enough angles cos 0 < 0.84 to the beam axis, is still
appreciable. The corresponding distributions for the process e+e —> e4 e~/ j + f / ~ , obtaiued

from MC studies, are shown in Fig. 4.5.

Besides exploiting its angular distribution the two-photon background can be reduced by
the energy depositions in the calorimeter. Since 5 GeV muons typically deposit energies in
the ränge of 150 MeV to 400 MeV. all two-photon events with particles of kinetic energy
T < 150 MeV can be rejected. We can further exploit the distribution of the pattern fraction
F2, defined in Section 3.4, to distinguish electrons (Fig. 4.6) from muons (dashed line in
Fig. 4.13(b)), since the lateral energy distributions of electromagnetic showers above 150 MeV
is spread over more than two crystals.

Low energy muons and pions from two-photon processes can be less cfficiently separated
from 5 GeV muons by pattern recognition techniques. After all we showed in Appendix A
that there is some noticeable difference in the J"2 pattern fractioiis between low- and high-
energy muoiis, which can be used to further reduce the two-photon inuon background by
-- 30%. The pattern fraction of charged pions at low energies are very similar to those of
muons of the same energy. in contrast to what is writ ten in Ref. [85j. Tlir energy and rangt*
of hadronic reaction products from strongly interacting pions at low energies are too small
to perceptibly change the pioirs energy depositions or their lateral pattern.
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Figure 4.5: Monte Carlo prediction for acollinearity (a) and cos 0 distribution (b) of muons
from 77 —* /j + ̂ ~.
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Figure 4.7: Cosmic ray events ancf annünlation events are ciearlj' distinguished by the mea-
suremeut of their inverse velocity with the help of the RooF-ToF.

Tau Pair Events

The main background contribution from tau pair events comes from channels, where both
taus decay to one charged particle plus neutrinos, e.g. r~ —> e~Pei/T, r~ —* ^ V^VT, or
r~ —* TT "i/,., which together have a branching ratio of 47% for each tau. Since the charged
particle energies are typically ~ 2 GeV, and thus much higher than in two-photon processes,
the electrons and about two third of the pions, which interact hadronically, can be easily
distinguished from muons by the amount and lateral spread of their energy depositions in
the calorimeter. Cuts on acollinearity further reduce the r+r~ background, siuce the charged
particles are in general not emitted back-to-back due to the presence of 2-4 neutrinos in T+T"

events.

Cosmic Ray Background

A muou pair event can be faked by a single cosmic ray muon, which traverses the ball near
its center. Such a cosmic ray will create two energy depositions, which are roughly facing
each other and thus fulfill the requirements of our /j-pair triggers (cf. Section 3.2). In fact,
most of the trigger holds for the Major and Minor Triangle Trigger are caused by cosmic
ray s. Cosmic ray events can be separated from annihilalion events with the help of timiiig
and vertex Information. Cosmic ray tracks in the chambers passing the beam line with an
impact parameter larger than about l cm are efficiently rejected by the TAGTRK tracking
algorithm [85].

The Roof-ToF counters are intersected for about 80% of the triggered cosmic ray events
and (for unpolarized beams) for 50% of the annihilation jj-pair events. For these events we
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compute the inverse velocity of the particle which traverses the Roof-ToF counters by

(4.8)
Roof TRi*>J ~ TBaU

where THOOJ is the time of flight measured at the roof counters. and Tup is the Ball-ToF mea-
suremenl of the Major Triangle containiiig the energy düster in the upper ball hemisphere.
The distance is measured from '••rsaii half-way inside the crystals to the position TH(>OJ of the
Roof-ToF hit. which has a typical distance of 3.5 m from the ball center. For cosmic rays
we find ( r / r )R u o f centered at -1. whereas for annihilation //-pairs ( f / i ' ) H < . o f is centered at -t l,
both measured with a resolution of 0.15 (see Fig. 4.7). The Separation of the two peaks is
hence about 14 Standard deviations.

Half of the solid angle, accommodating ~ 20% of the cosmic ray inuoiis, is not covered by
the Roof-Tof counters. There we have to put up with the Ball-ToF, only. In order to obtain
a better resolution, we define a meaii inverse velocity averaged over both particles äs

Tvt
-c ^ :— , (4.9)

Ball (\Batl — ?vtx )

where fBaU — 45 cm is again given by the half-way ball radius. Tr(3. is the time-zero of
the beam crossing. defined in the ToF calibration äs Tvtx — —1.5 ns. Smce all TDCs are
started by the beam-crossing signal. (c/t'JßaiJ *s the mean inverse particle velocity for beam-
related particles. only. Cosmic rays are not correlated with the beam-crossing. and have a
flat distribution of Tup and Tdown (^ Tup -»- 3 ns) within the Crystal Ball trigger timing window
of ±1G ns around the bunch crossiiig-signal. Therefore their (c/rjßai] is ill-defined and flatly
distributed. In Fig. 4.8 we observe this flat background below the peak from beam-related
events. As shown in Fig. 4.10(a) below. this peak is actually a superposition of two peaks.
One of them is the (c/v)BM distribution of //-pairs from e^e~ annihilation. centered at l with
a resolution of 0.4G. The other peak arises from eN events.

Background from eN events

A very unwelcome background are eN events from interactions of the beam electrons with

nuclei in the wall of the beam pipe ( "beam-wall"') or with nuclei of rest gas atoms on the beam

axis ("beam-gasv). The amount of eN background depends on the storage ring performance

and is thus very time dependent and in addition hard to estimate. Evidcnce of beam-wall eN

background faking ;j-pair events comes from the x-y vertex distribution of preselected ;/-pair

eventb with off-axis vertices (Fig. 4.9), showing a clear iniage of the beam pipe at a radius of

about G cm.

Cosmic ray events, which also have off-axis "vertices"'1 have been essentially completely

removed from this sample by a cut of ( f /? ' ) R o o f .- 0. For t hat purpose only those events

were collected. where oiie of the niuon candidates poiuted to the Roof-ToF counters. The

very most of the off-axis events do not record a Roof-ToF hit even though this could be

expected from their track directions. This mdicates that the particles are low euergetic and
are stopped in the calorimeter or on their way to the Roof-ToF counters. This is confirmed

by their distribution of ( r / r jß j i . which is peaked at c/v = 2.4 (solid line in Fig. 4 . 1 0 ( a ) ) . i.e.

at velocities clearly lower thau c. (A small background in Fig. 4.10(a). flatly distributed in

( r/ l ' )ß»u. comes from cosmic ray events, which could not be rejected due to inefriciencies in

the Roof-ToF counters.) For a comparison. the on-axis events with a Roof-ToF hit. which

are dominantly genuine e - e~ —» fi~ ft~ events with c / r ^ 1. are also shown äs dashed line in

Fig. 4.10(a).

'The verlex of a cosmic ray irark is defined äs t l ie poinl of dosest distanrr lo the bearn axis.
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Figure 4.8: In the (C/I?)B«U distribution cosmic ray events show up äs a fiat background below
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Figure 4.10: Distribution of (c/rjeaii (&) and (dE/dx) (b) for ^-pair candidate events witJi
one tracfc pointing to the Roof-ToF counters. The solid L'nes are for off-axis events (mainJy
eN) and the dashed lines for on-axis events (mainly e+e~ —» p,+fj.~ ).

Another feature, unique for particles from the eN background, is their average energy loss
(dE/dx) in the proportional chambers. We define this average euergy loss (dE/dx) äs the
truncated mean of the hit pulse heights S, combining both tracks according to

-dx

l ^? 5t(layer, run) sin 0,

N -l £j (5(layer,run)sinÖ)f

Sflayer, run) sin B

(S(layer, run) sin Q)f

for N >2

for N = 1.

(4.10)

The sum runs over all hits i in the proportional chambers4, which have beeil correlated to
either of both muon clusters by the TAGTRK program. To correct for the dependence of the
path length in the tube (cf. Appendix B), the total pulse height S, of each hit is multiplied by
sin#,, where 0; is the polar angle of the corresponding track. If more than one (correlated) hit
in the proportional chambers is found in the event, the hit with the largest product Ssinö is
excluded from the average in order to reduce efFects from Landau fluctuations. Since the mean
pulse height in the chambers depends on the layer and on time (run nutnber) we norrualize
the pulse height of each hit to the average pulse height of 5 GeV electrons, which has been
recorded in exactly the same layer at the same time of data taking. Fig. 4.10(b) shows the
resulting distribution of (dE/dx) for the samples described above. The (dE/dx) of the eN
events (solid line) is 011 an average clearly larger than that frorn genuine e+e~ —* ^ + /J~ events
(dashed line).

By plotting (dE/dx) versus (C/V)BIÜ f°r both samples, their composition em.erges more
clearly. Fig 4.11(a) shows a horizontal band of cosmic ray events below the dominant con-
tribution from eN events. Fig. 4.11(b) reveals a small eN background in the on-axis sample.

Mn our T(2S) data only two of the three double layers were operated in Ihe proportional mode. Thus we
havc 4 layers of proportional tubes for the T(2S) data and 8 layers for the T(1S) and T(4S) data.
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Figure 4.11: Distribution of (dE/dx) versus (r/r Jßaij for the event sample with off-axis vertices
(a, mainly eN) and for the on-axis sample (b, mainly e4e~ — * p* v~ )• The various regions are
explained in Section 4.5.2. The event s have been selected from T(2S) data \vhere only 4 Jayers
of proportional tubes were installed. An even better Separation in (dE/dx) is obtained with
the 8 Jayers of proportional tubes avaiJabJe in (Jie T(1S) and T(4S) data.

Events at (dE/dx} = 0 have no correlated tube hits.

The correlation plot of (dE/dx) versus (C/U)B«II can even lead to a sort of "particle iden-

tification". The basis for that is the functional dependence dE/dl(ß-)) of the most probable
energy loss in a single tube on the incident particle tnoxnentuni shown in Figure B.4 on
page 150. Coiiverting this figure to a dependence on \jß yields Figure 4.12. We have indi-
cated by arrows the expected positions of 5 GeV electroiis, of 5 GeV muous, of muons and
pions with T = 200 MeV (typical for •%-) --+ p* v~ -^~^~}- and of protons and deuteroiis with
T= (150-200) MeV. Besides the elcctrons, which have been used for normalization, all these
particles deposit -^ 200 MeV in the calorimeter and can thus appear in our preselected sample

of /(-pair candidates.

In order to reliably identify from Fig. 4.11 the particle composition of the eN background,
we would have to precisely deterniine the analogoub dependence of the most probable value
of (dE/dx) (Eq. 4.10) on (c/r)Bau (Eq. 4.9). However. for low-energy particles (r/>)Bal] is not
equal to the inverse velocity 1/3 in the tubes. E.g. for two-photon generated muons (stopping
in the ball) we measure (C/I^BJJ^ 1.25 somewhat larger than the value of l /J = 1.05 predicted
from their kinetic energy distribution. This effect reflects most probably the true deceleration

of low-energy particles while penetrating the ball, since the Ball-ToF is extracted from their
total energy dcpositiou in the calorimeter. which is 40 cm deep.

In addition. even if the true velocity :3 could be measured. the functional dependence of

(dE / d x ) ( l / 3 ) would still not be equal to the known dependence dE/dl(l/3) for a single tube
hit. It is modified by averaging over all tube hits. and by excludiuc the largest hit in Eq. 4.10.
A precise prediction for {^f}((J : JBaiJ )• which is mandatory for reliable particle idcntification.
is therefore hampered.
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Figure 4.12: Most probable, energy loss dE/dl, normed to 5 GeV electrons, in a single propor-

tional tube versus l//?. For l/ß £ 1.2 this rurve can be approximated by dE/dl— 0.43(l//3)2.

However, for getting an idea of what particles are involved in eN events, the approximation

dE.
-;-
dx

dE /l
*dl \p

should suffice. According to Fig. 4.12 low-eiiergy inuons and pions should be located around

(l/ß, dE/dl) = (1.05, 0.55). protons with kinetic energy T ranging from 150 MeV to 200 MeV
should lie between (2.0, 1.7) and (1.8. 1.4), and deuterons of the sanie energy should appear
between (2.7, 3.1) to (2.3, 2.3), respectively. The best agreement with the observed peak
value for eN events of ((c/vjßaii , (dE/dx}) = (2.4, 1.4) is obtained for the proton hypothesis.
The agreement even iniproves, if we assume that (C/U)BÄII > ( l / ß ) tut* äs suggested by the
two-photon muons (see above). The most probable assignment for our eN background is
thus production of proton pairs in a reaction eN— >ppX. Our final detenniiiation of the eN
background in Section 5.1.2, however, will not rely on this assignment.

By the studies detailed above we have found two independent criteria to identify eN
events. The first one is an off-axis vertex, if a cosmic ray event can be excluded by a Roof-
ToF measurement . The second criterion is a pair of (dE/dx) and ( r / r JßaU values, bot h larger
t. h an one. These features are inet for most eN events, but rarely occur for other background.
This fact will be exploited in the estimation of the residual eN background in our final sample.
In addition to using the distributions of (dE/dx) and (c/r)B»Ui eN events can be efficiently
rejected by cuts on the ainounl £Vcp °f deposited energy, on the acollinearity. and on the
debris energy .Edebris- The latter is defined äs the energy sum over all crystals in the Main
Ball, besides those 2x13 crystals which are adjacent to the crystal with the largest energy
deposit of either muon candidate. A cut 011 the lateral pattern fractions F? can not reduce
the eN background. Typical distributions of these quantities, agam compared to those of
genuin*' c^e~ — > fi^ ft~ events, arr shown in Fig. 4.13(a)-(d).
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4.5.2 The Selection Criteria

Our selection exploits tlie above discussed event characteristics from the calorimeter, tube
chaniber, and ToF Information to separate tlie background sources from genuine eTe~ —»
H+p~ events. Since we finally want to subtract contimium data from on-resonance data.
the time dependence of tlie selection acceptance should be accurately reproducible, äs is
discussed in more detail in the next chapter. Hence. our selection criteria have to zueet two
requirements. First, they should suppress all background sources well below the level of the
continuum process e+e~ —* ^ fi~. Second. they should introduce time dependences of the
selection acceptance. which are either negligible or can be reproduced by MC methods. We
apply the following set of cuts.

Calorinieter Information

1.) There are two energy depositions in the Main Ball fulfilling the requirements
of both, the Major and the Minor Triangle Trigger with Software thresholds
at 160 MeV and 120 MeV, respectively, and less than 30 MeV in each Tunnel
Region.
The Software thresholds are designed such t hat the hardware trigger efficiency for the
selection cuts is indistinguishable from 100.0%. An energy deposition of 160 MeV is
about 2.5 Standard deviations below the peak value expected for 5 GeV muons.

2.) Both energy depositions are smaller than 400 MeV, and the total energy
deposited in the Main Ball plus Tunnel Regions plus Endcaps is less than
1000 MeV.
This cut rejects oiily few genuine e+e~ —> p*n~ events, e.g. if one muon generates a
high-eiiergy r-electron above Z20Q MeV, or if a high-energy (initial state) photon with
E Z 500 MeV hits the Endcaps.

3.) More than 94.5% of each energy deposition is contained in two crystals.
As can be read off Fig. A.3, this is fulfilled for about 95% of 5 GeV muons, but only
for 74% of low-energy muons from t wo-photon production.

4.) Debris energy in the ball, äs defined above, is less than 30 MeV.
In genuine e^e" —t f.i^ p~ events debris euergy arises from photous radiated off from the
initial and/or final state particles under large enough aiigles. In addition, some energy
deposited by strayod beam-related particles appears in each eveiit.

Roof-ToF Information

5.) For energy clusters associated with a Roof-ToF hit the measured inverse
velocity of the particles, (c/r)R ( > r , f , niust not lie in the ränge between —1.6
and -0.4.
This corresponds to a 4 Standard deviations (s.d.) whidow around (c/r)n0 0f=^l . which
is expected for cosmic rays. Annihilation events are separated from this ränge by about

10 s.d.
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Ball-ToF Information versus Chamber Pulse Heights

6.) The average energy loss (dE/dsc) in the chambers and the inverse particle
velocity (c/tijßaii äs measured by the Ball-ToF have to He in the Region I äs
indicated in Fig. 4.11.
This cut rejects events with both energy depositions regarded by TAGTRK äs to origi-
nate from neutral particles (Region V, where (dE/dx)—0). It is further effective for eN
events mainly located in Region IV, and for cosmic ray events (Regions II and III) out-
side of a 4 s.d. window around (c/v)ß^ = l, which is the expected value for annihilation
events. This cut keeps about 99.9% ofe+e~ —> fi+yr events.

Chamber Information

7.) The event vertex is required to lie on the beam axis with a TAGTRK on-axis
significance (cf. Section 3.4) K > —0.2.
This cut in the on-axis significance keeps more than 99.9% of events originating from
the beam axis [85], but is still effective in finding ofF-axis events. For more than 70% of
the eN events in Region IV we detect off-axis vertices. Cosmic ray events with impact
Parameters to the beam axis of larger than l cm can be detected with more than 95%
efficiency.

8.) The particle directions are measured to be back-to-back within 12 degree.
For exactly back-to-back particles (£ — 180°) this corresponds to about 3.5 times the
experiniental resolution. The real acollinearity due to photon radiation is small for most
/j-pair events, since TT — £ < x holds for small photon energy fractions x. (A 100 MeV
photon (z=0.02) induces an acollinearity of (180° - C)£l° . )

Applying the above cuts, we select 26.6xl03 events from 45.8 pb^1 of data taken on and
around the T(1S), I7.5xl03 events from 37.2 pb"1 taken on and around the T(2S), and
31.9xl03 eveuts from 72.2 pb"1 of data collected on and below the T{4S). As will be shown
in detail below, most of these events are from the continuum process e4e~ —t //4 ^ ~ .

Our selection cuts on acollinearity, deposited energy, and lateral pattern reduce the two-
photon background to levels of 20%, 2%., and 0.2% for 70 —* /J + ̂ ~ , 77 —* TT+TT" , and
77 —» e+e~, respectively, measured in terms of the observed continuum cross-sectiou for
e+e~ —> /J~V~. This corresponds to suppression factors of 300, 300, and 20000 for these three

channels, respectively.
The T+T~ background is, similar to the two-photon background, suppressed by the cuts

on acollinearity, deposited energy in the calorimeter, and lateral pattern. Our cuts reduce it
to about 0.45%> of the observed e4e~ —> fj + n~ continuum cross-sectjon. Including all T + T~
decay channels this corresponds to a reduction by a factor 200. (If we only consider decays
of both taus to one charged particle plus neutrinos, the reduction factor is still about 50.)

The cosmic ray background is efficiently rejected by the selection criteria (5)-(7), based on
vertex and tiiuing information. A residual cosmic ray background of about 2% corresponds
to a reduction factor of aboui 100 compared to preselected ^-pair events.

Fiiially, the eTs backgrouud is rejected by cuts (1), (4), and (6)-(8) on calorimeter, cham-
ber, and ToF information. From our background determination below we find a typical eN
background of 0.1%. in our selected sample. This corresponds to a reductioii by a factor of
about 300 compared to our preselected //-pair sample.

Altogether, our selection cuts reduce all background sources other than the continuum
process e^e~ —> / / " * / ' " by at least a factor 100. The fraction of p-pairs from T decays in our
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final sample, however, is still relatively s m all. As will be shownbelow, it is 21% of the observed
continuum cross-section on the T(1S) resonance and only 4.4% on the T(2S) resonance. The
observed continuum cross-section is in turn mainly composed of e+e~ —> //+//~ events, but
has a sizable contribution of 77 —* / J 4 / J~ events.

As can be coucluded from the short discussions of each cut, the selection eriteria were
designed to cut a few Standard deviations away from the inost probable values for genuine
e+e~ —* fi+[i~ events. This leads to a high selection efficiency and minimizes rundependent
changes in acceptance, which can for example be introduced by a Variation of the widths of
these distributions witli time.



Chapter 5

Background Determination

"Alice laughed. 'There is no use trying\e sajd.
'One c&nnot beJieve impossible things\ dare say you haven't had much practice\ the Queen...

'.. . sometimes I have believed äs many äs
six impossible things before breakfast !' "

L. Carroll, "Alice in Wonderland"

In the preceding chapter we have identified various background processes to e+e~ —> T —>
/i+//~. We have shown t hat backgrounds other than the continuum process e+e~ —-> p +ß~
can be effectively suppressed. The residual background from these sources plus the proper
continuum e+e~ —> / /"^ß~ has now to be subtracted from the number of //-pair events from
on-resonance data in order to extract the observed number of T-resonance decays to muons.

Since the muonic Signals from T decays rise only marginally above the total continuum
background, it is not sufficient to scale off-resonance data merely by lumiiiosity times the
theoretical W-dependence of the cross-section, and to subtract then the scaled off-resonance
numbers from on-resonance data, Any fractional error on the subtracted continuum back-
ground will cause a much larger fractional error on the observed number of resonant muons,
since the latter number is sniall compared to the coiitinuuni background. Time dependent
changes in the detector acceptance, the selection efficiency for jj-pairs, or the background
level may thus play an important role.

For a precision measuremeiit we have iustead to determine the continuum background
specific for the given on-resonaiice runiiing conditions. For example, variations in the eN
background, cosnüc ray background, tube chamber performance, size and position of the e+e~
intersectiou region must be monitored and taken into account. If possible, the continuum
background will be determined separately for each of the 45 data sets of different c.m. energy,
which result.ed from our determination of the DORIS beam energy described in Section 4.2
and Appendix C.

For the determination of background not originating from e4e~ interactions, i.e. cosmic
ray and eN events, we exploit the plot of the mean hit pulse height {dE/dx} versus the inverse
particle velocity (C/T)BBU, äs described in Section 5.1.

Yet, the main background to resonant /j-pairs stems from e + e~ interactions. We use a
MC snuulation to predict the observed cross-sections and their time dependeiice for all back-
grounds from e^e" interactions äs detailed in Section 5.2. This background prediction covers

a twofold dependence of the observed e+e~ cross-section on the c.m. energy W. the pliysical
Variation of cross-sections <?(n r) ^ ^(\/Ä), and the Variation of the selection efficiency e(W,)

for earh of oiir data sets. Our MC Simulation is designed to reproduce both dependences,

82
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Figure 5.1: Correlation between (dE/dx} and (c/ r)Baii
of events.

all selection cuts for a subsample

since time dependent changes in beam-related background, tube chamber perforniance, posi-
tion and size of the e+e intersection regioii have beeil included (cf. Section 3.5).

These MC predictions for each of OUT 45 data sets still do not yield a precise enough
prediction for the continuum background from e+e" interactions. Even if they perfectly
reproduce the acceptance variations. the inean MC prediction for the observed cross-sections
may systematically deviate by a few percent from the data due to inaccuracies in the event
generators. the detector Simulation, or the luminosity determination. This would spoil a
precision measurement for T — * j/ + /i~ f°r tne same reasons, which prevented us to sirnply
subtract off-resonance data. Thus neither the MC prediction. nor the continuum cross-section
observed ofF-resonance is accurate enough to serve äs a decent prediction for the background.
Only by combining both mformations \ve are able to predict the background cross-section for
each data set precisely enough. The way of combining data and MC and the estimation of
its systematic error will be explained in Section 5.3.

5.1 Backgrounds other than e^e -Interactions

The correlation plot of mean pulse lieight (dE/dx} versus iiiverse particle velocity (C/V)B«U
serves äs a key to determine the amount of cosmic ray and eN background. Fig. 5.1 shows

this correlation plot for a subsample of our T(4S) data. Besides the cut which is based on
this plot (cut (6) in Section 4.5.2) all other selection criteria have already been applied.

5.1.1 Cosmic Ray Events

As discussed in Section 4.5.1. cosmic ray events are flatly distributed in (c/r)ß«u- Tlieir mean
pulse hei gilt (dE/dx} is similar to t hat of high-energy niuons. In Fig. 5.1 the cosmic ray
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background thus populates a horizontal band around (dE/dx) % 0.6. The t wo Sideband
Regions II and III together are spanning a ränge of (c/r)Bau values which is at each value of
(dE/dx} exactly twice äs large äs the corresponding ränge in the Signal Region I. By counting
the number of events in the sidebancl regions and dividing by two we determine the residual
cosmic ray background in the signal region for each of the 45 data sets. It typically amounts
to about 2% of the selected events.

The feedthrough of aiinihilation events into the sideband regions is negligible, since their
borders at (c/v)^^=~l and (c/t')ßaii = 3 are more than 4 Standard deviations away from the
signal at (c/r)Bau — 1. Misidentifications due to bad timing Hardware have been excluded. This
renders the determination of the amount of cosmic ray background and its time dependence
very reliable and its systematic error negligible.

5.1.2 eN Events

The estimation of the residual eN background is more difficult, since its distribution in the
(dE/dx} vs. (c/r'JßaU plane is not known a priori and may moreover depend on the beam
conditions and thus on time. Evidence for a small eN contamination in the final sample
comes from a few events visible in Region IV of Fig. 5.1. These events c anno t be explained
from annihilation and/or cosmic ray sources, since a comparable number of events should
then also appear in the Symmetrie Region IV (dotted boundaries) on the left side of Fig. 5.1.

To estimate the number of eN events in the Signal Region I we exploit the fact, that we
have two independent criteria to identify eN events (cf. Section 4.5.1). The first criterion is
au entry in Region IV in the (dE/dx} vs. (c/rjßau plane. The second is an ofT-axis vertex, if a
cosmic ray event can be excluded by the Roof-Tof measurement. As sketched in Table 5.1, we
count the numbers A, B, and C of events, which fulfill certain combinations of both criteria.

Table 5.1: Definition of evenf numbers for the estimation of the residual eN background.

Region Number
in Fig. 5.1

IV
I

Off-Axis and On-Axis
no Cosmic Ray

C B
A X

We have corrected for noii-eN "contaminations'' in these eN event samples, so that the
numbers A, 5, and C really refer to eN events, only. A small cosmic ray contribution1 1o
the number A has been subtracted with the help of the (c/r)ßau sidebands. Similarly, we
subtracted a small number of events found in Region IV from the numbers B and C.

Since the two criteria for eN events are independent, we can assume that the ratios of
on-axis and off-axis eN events (XjA — B/C} are identical in Regions I and IV, or, equivalently,
the ratios of eN events in Regions I and IV (X/B — A/C) are identical for on-axis and ofT-axis
events. In any case we find the residual eN background X in our final data sets by

(5.1)

However, even if we combine all data sets around the respective T resonances, the numbers A.

ß, and C after all cuts are so small (-- 10). that their statistical errors reiider the calculation

The cosniir ray contaminalion would have been overwlielmingly largc. if we had not restrirted ourselves to
the solid angle of the Roof-ToF counters , where the rosinir ray events can he ef l ic ien t ly suppressed.
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of X very unreliable. We thus rewrite Eq. (5.1) äs

and determine the ratios Bc = B/C respectively Ac = A/C with larger statistics: This larger
statistics of eN events is gaiiied by temporarily loosening two cuts and thereby increasing
the eN background in the selected data samples. The maximum £d«bris was loosened from
30 MeV to 60 MeV, and the minimum Major Triangle energy from 160 MeV to 110 MeV (cf.
Figs. 4.13(a) and (d)). This procedure was chosen to keep the cuts applied for the background
estimation äs close äs possible to our final selection criteria. To allow for a time dependence
of the eN background we combined the continuum data samples below each T resonaiice and
the data samples on and around each resonance, respectively. We find both ratios, AC and
BC to be of the order of one in all combined data samples.

With the help of these ratios we derive estimates for the residual eN background after all

cuts via

XA = ABC and (5.3)

XB = BAC.

The estimates XA and XB slightly differ from each other, because for XA we combine the
number A after all cuts with BC = B/C deduced from the loosened cuts, whereas XB is
composed of the number B after all cuts aiid AC — A/C from the loosened cuts. We take
the mean value of the numbers XA and XB äs an estimation X for the eN background and
their difference äs a measure of the systematic error according to

A' - 1(XA + XB) and (5.4)

AA - \\XA-XB. (5.5)
Zj

The numbers of residual eN events from Eq. (5.4) are listed in Table 5.2 together with their
statistical errors aud the systematic errors from Eq. (5.5). The resulting background level
corresponds to an e4e~ cross-section of less t h an l pb for all periods. This is £0.2% of the
observed continuum cross-section for e^e" —* /; + / / ~ .

Table 5.2: Residual eN background in the fdml dfita s&mple.s. We list the number ofe.N events
for each 10 pb"1 of data.

Comb. Data Set
# of Data Sets

£/pb->
eN Evts./lOpb-1

Below IS
1
8

< 3 (90% CL)

On IS
27
38

9 ± 2 ±4

Below 2 S
1
2

9 ± 7 ± 2

On2S
12
35

8± 2± 2

Below 4S
3
16

5i 3± 1

On4S
1

57
2 ± l ± 0.5

5.2 Continuum Backgrounds from e+e -Interactions

All backgrounds from e"1 e~ interactions are simulated with MC methods. The geiierated
events are passed through a complete detectoi Simulation, reconstructed, and subjected to
the same cuts äs real data. For the two most prominent backgrouiids from e+e~ interac-
tions, namelv e ^ e " —• fi + ( i ~ and e"* e" —» o"* e" / /"* ft~ , we simulate each of the 45 data sets
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separately. As explained in Section 3.5 we use for each data set input of tube chamber per-
formance, beam spot parameters and beani related background specific to the contributing
runs to model systematic acceptance variations. For the less prominent e+e~ background
sources the statistical MC errors would largely dominate, if each data set was simulated
separately. Therefore we combined their MC Simulation for all energies around the 'Y(lS),
T(2S), and T{4S), respectively. The Simulation of time dependeiices in these three samples
is still included, but is combined for all runs contributing.

5.2.1 The Continuum Process e+e —>//+/*

A prediction for the observed continuum cross-section 0-**-*w has been derived from our
modified DYMU2 generator äs described in Section 2.3.4. For each data set we have created
a number of MC events which corresponds to about 6 times the data luininosity amounting
to a total of more than 106 MC events. The generated cross-sections are 1.293 nb, 1.157 nb,
and 1.042 nb at c.m. energies of 9.461 GeV, 10.024 GeV, and 10.580 GeV, respectively. They
have to be compared to tlie Born cross-sections of 0.970 nb, 0.864 nb, and 0.776 nb for the
same c.m. energies. The events around the T(2S) were generated with a traiisverse beam
polarization of 75%, which is observed in the data [95].

The result for aff~*vv after the selection cuts is plotted äs dots in Fig. 5.2. As expected
we observe significant point-to-point variations of this prediction.

A selection efficiency for the continuum process cannot be given, since we did not generate
the complete phase space of initial state radiation, but restricted the i'-parameter below
v\ 0.99 {see Section 2.3.4). A number for the selection efficiency would thus be specific for
our value of r]. It would be meaningless to compare such a ill-defined continuum selection
efficiency to other experiments, which usually apply difTerent cuts on v or equivalent quantities
in their MC generators. The only fixed reference cross-section for all experiments is the Born
cross-section <7B0m- The fraction er*'"''''1 /<7Bom, however, cannot be called "efficiency".
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Figure 5.2: Monte Carlo prediction for the observed cross-section from e+e~ —> fi + n~~ (dots)
and e+e~ —» e4 e~ f.r f.t~ (triangles) for eacli of our data set s äff er applying all selection critena.
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4 ~
5.2.2 The Two-Photon Process e4 e

The prediction for the observed background cross-section ö-ee-f«w1 from two photon /j-pairs
has beeil calculated from events e4e~ — > (7)e+e~^ + / j~ , generated according to Ref. [97]. This
generator simulates the two "multiperipheral" diagranis of Fig. 4.4, but allows in addition
for initial state radiation of one photon. Since the total cross-section for e4e~ — + e 4 e~/^+/ /~
is much larger then for e4e~ — » /J~V~, we already exclude on the generator level events
from a fürt her Simulation, which are in phase space regions where our acceptance is zero.
Applying cuts on the invariant 77 mass of M* > 20m * and angular cuts on the muons of
j c o s Ö j < 0.90 for the polar angles and cos( < —0.87 (= £<:150°) for the acollinearity angle
of the muon pair, the generated cross-sections are 1.381(3) nb, 1.417(4) nb, and 1.450(3) nb
for the c.m. energies 9.461 GeV, 10.024 GeV, and 10.580 GeV, respectively. The figure in
parentheses gives the statistical MC error on the last digit. These cross-sections are still
larger than the continuum cross-section for e4e~ — * ß+ fi~ .

Initial state photons were created down to k, — £7/£beam = 6 x 10~4 (= 3 MeV) with
a fc0 parameter [97] of 10~2. About 24% of the generated events have a photon above this
cutoff. However, only about 0.5% of these photons are emitted under large enough angles
with respect to the beams so that they appear in the Crystal Ball calorimeter.

For each data set we create a number of MC eveuts, which corresponds to about 4 times
the data luminosity amounting to a total of 0.6xl06 MC events. The prediction for the
observed background cross-section o-««-*«««* after our selection cuts is plotted äs triangles in
Fig. 5.2. As a function of c.m. energy the contribution of e4e~ — * e4e~^z4/i~ events ranges
from 18% to 24% of the observed cross-section for e+e" — + z 4 / " .

5.2.3 The Two-Photon Process e+e-->e+e-7r+7r-

Our generator [98] for e 4 e~ —+ e4e~7T47r~ sums the continuum process 77 —> TT+TT" and the
resonant process 77 —> /2(1270) —t TT + TT". We again apply cuts on the generator level to
reduce the amount of simulated events. These cuts are cos#| < 0.90 for both pions and
cos< < -0.70 ( = (£135°). We find correspondiiig cross-sections of 0.670(2) nb, 0.687(2) nb,
and 0.696(3) nb for the c.m. energies 9.461 GeV, 10.024 GeV, and 10.580 GeV, respectively.
We create about 75,000 events for each of these c.m. energies corresponding to about twice the
data luminosity. After applying the selection cuts we find a contribution of e+e~ —» e+e~7r4 TT~
events rauging from 1.4% to 1.9% of the observed cross-section for e+e~ —» / i4 / j~, depending
on W. The values for 0-"^"™ are listed in Table 5.3.

5.2.4 The Two-Photon Process e+e —+e4e e+e

The process e+e~ —* e4e~e4e~ was generated according to the Equivaleiit Photon Approxima-
tion [99]. The huge total cross-section of about 400 nb was reduced on the generator level by
cuts on the electron energy Ef > 140 MeV, | cos Q\ 0.90 for both electrons, and cos ( < —0.92
(= C > 157°) to 2.585(13) nb, 2.635(13) nb, aiid 2.690(13) nb at W = 9.461 GeV, 10.024 GeV,
and 10.580 GeV, respectively. Since this background is efficiently reduced by our cuts, wo
only generated 25,000 events for each of these c.m. energies, corresponding to about one fifth
of the data luminosity. The residual background from this source ranges from 0.15% to 0.19%
of 0-**—'*"J after the selection cuts. The resulting values of <r"~"'*'*'*' are also listed in Table 5.3.
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Table 5.3: Monte Carlo prediction for the observed cross-sections from the less prominent
sources of continuum background.

W

<7"^e"
ff«-*"

(GeV)

r (Pb)
(Pb)
(Pb)

9.461
5.4 ±0.2
0.6 ± 0.2
1.8 ±0.2

10.024
5.7 ±0.2
0.6 ± 0.2
1.6 ± 0.2

10.580
6.6 ±0.3
0.6 ± 0.2
1.5 ±0.2

5.2.5 The Continuum Process e+e •r+r

Tau-pair events are simulated according to Ref. (100). No cuts were applied on the generator
level. One initial or final state photon was generated explicitely, if £7 > 3 MeV. The
generated cross-section corresponds to 1.13 nb, 1.01 nb, and 0.90 nb at W — 9.461 GeV,
10.024 GeV, and 10.580 GeV, respectively. We simulated the detector behaviour at these
c.m. energies for 50,000 events, each, which is about the number expected from the data
luminosity. The resulting predictions for the observed cross-section <r**~'rT are again listed in
Table 5.3. They correspond to a level of 0.45% of <r"^^.

5.3 Continuum Background Subtraction

Since the T resonances rise only marginally above the continuum background, the precision
of the background reproduction constitutes the dominant systematic error in our analysis.
The only background which can be reliably subtracted with a negligible systematic error is
that from cosmic rays. We thus subtract the cosmic ray events according to Section 5.1.1

before further studying the background.
Fig. 5.3(a) shows the resulting observed ^-pair cross-section a?" after our selection for

each of the 45 values Wif The dotted lines shows a typical behaviour of the observed cross-
section, which would be expected if the detector acceptance was a constant in time. We
observe significant point-to-point variations deviating by typically 10% from such a smooth

cross-section.
Fig. 5.3(b) shows the background prediction <r,BG for the same data points. It has been

obtained by summing the MC predictions of Fig. 5.2 and Table 5.32 and the estimations of
the eN background from Table 5.2. Like Fig. 5.3(a), this prediction also reveals significant
point-to-point variations. In the following we study the accuracy of the mean amplitude of
this prediction äs well äs its ability to reproduce the background variations.

The systematic errors of the mean amplitudes of the observed cross-section a^ in Fig. 5.3(a]
and of the background prediction in Fig. 5.3(b) are both 2.5%. The former arises from the
luminosity measurement (see Section 4.4) and the latter is dominated by the accuracy of
event generators and detector Simulation (see Section 6.1). Directly subtracting v?G from
o-J"' would thus result in a systematic error of 3.5%. As already emphasized in the begiii-
ning of Chapter 5, such an error would spoil a precisioii measurement of T(1S)—>(i n~ and
eveii render a siguificaut measurement of T{2S)—»/J 4 ^~ impossible. since the latter resonance
eiihanceuient rises only 4.4% above the continuum (see below).

We instead combine the Information from off-resonance data and background prediction

2 A slight R"-dependence of the cross-sections for the backgrounds from Table 5.3 across the respective

resonancf regions has been taken in to account.
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by defining a scaling factor
/ ~w \- ^ \1

~ VfG/^/
where "off" denotes the average over the off-resonaiice c.m. energies WJf Since er***1 should
be equal to tr^G off resonance. the resulting value of C has to be equal to one withiii its
systematic error of 3.5(7c. It thus represents a crucial consistency check of our analysis.

In addition. this scaling factor considerably reduces our systematic error on the back-
ground subtraction. By multiplyiiig each point of the background prediction with the same
factor C, obtained from Eq. (5.6), we fix the mean amplitude of the subtracted background to
that level which has been observed in the data. The main systematic error on the background
subtraction then arises from the reproduction of the point-to-point variations. This caii be
proven by rewriting Eq. (5.6) äs

Nolj

where N^, is the number of observed /j-pair events summed over the off-resonance c.rn. en-
ergies, C0fj is the s u m of the corresponding luminosities, and cr^P, = (frfG } ,, is the mean

predicted off-resoiiance (background) cross-section. We obtain the observed number A*5 — MM

of reboiiaiice decays to muons for each W, by

(5.8)

BGfT

This way of background subtraction no longer depends on the absolute values of C, and <T,- '.
Their systematic errors are thus eliminated. Instead we see from Eq. (5.9) that now the errors
on the ratios C,/Coff and <r?G j 0%Gj äs well äs the error on the nieasured number N^'f are
relevant. These errors are all smaller than the 2.5% uncertainties of £, and crBC alone.

In the following we first determine the value of C (Section 5.3.1) and then investigate the
errors on the luminosity ratios (Section 5.3.2) and 011 the ratios of the background predictions
(Section 5.3.3). Special emphasis has been layed on a thorough calculation of bot h errors.
Since we subtract in Eq. (5.8) t wo large numbers from each other. an error on the subtracted

~f~

background N7BG ~ CC,fr?G has a strong impact on the result for AT, ^M". Fractional errors

on C t f C 0 j j and tr?G i (*„;} cause a fractional error on the number JV, ~*MM which is larger

by a factor of A - A",ßG '/A"7~*^ • Summing over c.m. energies IV, wilhin ±10 MeV of the
resonance peaks in Fig. 5.3. we find the values A( lS)-4 .8 and A(2S)-23. This means that the
resonances rise only by l /A(lS)=21/( and 1/A(2S )— 4.4(/( above the contiimum background
(cf. also Table C.3 in Section 6.2.2). A combined error of only 1% from the two ratios C,/C0jj
and (*!*G /(rffj would for examplr affect our result of j V T ~ ' M ' J by already 4.8C/I and 23(/c for the
T(1S) and the T(2S), respectively.

For the estimation of A(£ , - / jC 0 / / ) and A(o-fG/>rf^) we thus study all efFects. which poten-
tially could introduce variations of more than 0.1(7( (one per mil) in the detector acceptance
or the amouni of background.

5.3.1 The Scaling Factor C

We determine C from Eq. (5.6) and Fig. 5.4 by averaging over G off-resonance pomth. usmg
the data sets of S pb~ ' at the lowesl continuum c.m. energy l>elow the T(1S). 2 pb~ a t the
lowest continuum c.m. energy below thr T(2S) . and 9 p b ~ ] . 3 pb"1, 4 pb"1. and 57 pljT1
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Figure 5,4: Determination of the scaling factor C by a fit to 6 off-resonance data sets.

at the c.m. energies below and on the T(4S). (As has been shown in Section 2.3.1, the
muonic branching ratio of the T(4S) is small enough that the latter data can be regarded äs
continuum.)

A fit to the ratios a^ /'OBG for these 6 points to a coiistant C has a confidence level of
44%o and results in

C - 0.999 ±0.006.

The error of this number is dominated by the data statistics. It. contains in addition small
contributions from MC statistics. from the statistics of luminosity events, and from the un-
certainty All7 = 15 MeV at W - 10580 MeV, which enters through the T(4S) interference
with the continuum3 (cf. Fig. 2.11).

The fit result shows that our prediction for the amplitude of the observed cross-section is
in excellent agreement with the off-resonance data. The prediction eveii turns out to reckon
the data much better than expected from its systematic uncertainty of 3.5%.

We stress that C and its error are no measures for the precision in predicting the point-
to-point variations in the amount of background, because they express the precision of the
mean prediction for the off-resoiiance data. Nevertheless, the good confidence level of the fit
over 6 different points may be taken äs a first hint on the smallness of point-to-point errors.
The statistical errors of the 6 points included in the fit, however, restrict its seiisitivity to
point-to-point errors of Z 2%.

With the help of the scaling factor C we obtain the observed cross-section (7**1^T"'i'' for

both the T(1S) and the T(2S) äs a function of W by subtracting the background spectrum
from Fig. 5.3(b), scaled by C, from the observed /j-pair cross-section o^ in Fig. 5.3(a)

(5.10)

3Tlie interference effects froin the other 5 points have been corrected for. They influence the resulting C by
\ess than 0.00l.
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Figure 5.5: The "ra\v" observed cross-section spectrum for e~^e~ — * T
ergy regions of the 1(1$) (a) and of the T (25) (b). It has beeil obrained by subtracting

the background prediction of Fig. 5.3(b), scaled with C - 0.999, from the observed fi-pair

cross-section of Fig. 5.3(a). It is not yet corrected for selection efficiency.

The result is shown in Fig. 5.5. In the subtracted spectrum the point-to-point Variation» are

largely reduced. This fact also mdicates a good correlation between data and background

prediction, which will be finally confirmed by our fits to this cross-section (after efficiency

correction). which have confidence levels of 99% and 65%. respectively (see Section G. 3. l
and Figs. 6.2 and 6.3). Quantitative estimates for the point-to-point errors on £,/£„// and

o-f'/Vf// can Ilot ke deduced from any of these arguments, however. They will be determined

in the following from detailed studies of possible error sources.

5.3.2 The Systematic Error on the Luminosity Ratio

The lunlinosity ratio £,/£„// is affected by the Variation of the cos 0 acceptance for Bhabha
events due to the Variation of the vertex spread / wi th time. by the non-leading energy
dependence of the Bhabha cross-section. by the amount of T — » e'e~ decays coiitributing to
the number of observed electron pairs 011 resonance, by a period of non-linear performance of
the electromc crystal readout in the T( lS) data. and by the stat ist ics of lunlinosity eventb.

The contributions of these error sources to the error on the lunlinosity ratio are collected in

Table 5.4.
They sum to errors of A(£T(1S)/X ( , / /) = 0.24(Ä and A(£T (2S) /£0// )-0.18(Ä ., which propa-

gate into errors of

and

on the amount of observed T — » /r /r -decays. Th<- smallness of A( C, '£„// ) reflect? t ho fart
tha t we have explicitely corrected our himinosity measuremenl (see Srction 4 .4 ) for rffects
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Tablo 5.4: Coiifri/>ufioiis fo the error 011 luniinosit ratlos.

e e 0.15% ; 0.10%
Bad Readont 1 0.12% --

Statistics 0.10

A(£,/£o,/)
^ AATT-^M

0.24%

1.2%

0,18%

4.1%

froni a Variation of t he vertex spread /, for the T —> e+e contribution, and for the bad crystal
readout. We brieflv discuss each error source of Table 5.4 below.

/, — l<>}fi The residual error from the vertex spread / along the beani axis bases on the

assumption that we riiodel / and its tiine dependence with an accuracy of A/ ~ 0.15 nun

(cf. Fig. 3.7). This leads to A(/; - I0jf) = 0.21 mm which in turn results in the listed

error on £,/£0// by inserting this number into Eq. (4.7) . We checked that the Variation

of the mean vertex position ( (x) , (y) , ( z ) ) influence the selection efficienry of Bhabha
events bv less than 0.1%.

oc l/s: The deviation of the Bhabha cross-section frorn a l/s dependence is much

smaller than that of e*e~ —> ^ + ̂ ~ for two reasons. First, the s-channel annihilation

diagram, which is influenced by vacuum polarization and interference with the T res-

ouances, contributes only 5% to the cross-section. Second, the f-channel scattering

diagram is doimnated by very small moinentum transfers q', where deviations froni l / Ä

are negligible. Our estiiuate of an 0.05% deviation froni rrcr~'"' ex l/s is an educated

guess based on the rorrespoiiding deviation of 0.5%. in <7ee^^^ if v-e change y/js from
9.46 GeV to 10.58 GeV (see Section 2.3.1).

T —*e^e : The error from the subtraction of T

Section 4.4.
has alreadv been discussed in

Bad Readout: The eifect of the nonlinear crystal readout o n the efficieiicy for the luminosity

event selection was obtained from simulating the iionlinearity for each single crystal by

MC methods [101 on the one hand, and from investigating inclusive features of the

selected events J83! on the other hand. For those 40% of our T(1S) data. which are
affected by this iioiihm-arity, we find from these two indepeiident methods a reduction
of the Bhabha efficiency by 2.4% and 2.7%, respectively. The difference l)etween these

estimates. multiplied with the fraction of data affected, is taken äs systematic error.

Statistics: We regard the (s ta t i s t ica l ) error on the ratio of Bhabha events on- and off-
resonance äs svstematic error and combine it with the other errors4.

4 As statistical errors for our aiialvsis wt- only repard Ih r errors on the number of muons and niul t i -hadrons.
which enter direclly in I.q. ( 4 . 1 ) . Olher statistiral errors from luminosity events and Monte Carlo events are
more convenientlv inchided in our svsteniatic error
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Calorimeter Calibration: The only cut in the selection of luminosity events. wlüch is
sensitive to the calorimeter calibration is Edep > 0.7JEbcam for both electromagnetic
showers (cf. Section 4.4). Since the energy resolution for 5 GeV showers is only 1.5%,
this cut is about 20 Standard deviations away from the peak. Changes in the resolution
can thus not affect the selection efficiency for luminosity events.

The shower energy distribution, however, exhibits a tail towards lower energies due
to initial (and final) state photon radiation. Changes in the peak position -Epeak, i.e.
variations of £>«.k/.Ebc«m, may therefore influence the fraction of the tail which is above
°-7-Ebeain. We have estimated that this effect is less than 0.1%. We thus neglect this
error.

5.3.3 The Systematic Error on the Background Ratio

" 'What are You currently working on?\. K. was asied.
, /'m very busy. J'm preparing my next error. ' "

B. Brecht

The contributions to the systematic error on the ratio af° / 0of} can ke grouped into
uncertainties of the cross-section dependence on s, into inaccuracies in reproducing variations
of the detector acceptance, and in the error from MC statistics. The amount of errors from
these sources, which will be derived in detail below, are listed in Table 5.5.

Table 5.5: Contributions to the error on background ratios.

Source

Cross-Section(s{)

Detector Acceptance (H^)

MC Statistics

AKÖG/<^)
= AATT-"P

T(1S)

0.19%

0.44%

0.41%

0.63%

3.0%

T(2S)

0.16%

0.45%

0.41%

0.63%

14.5%

They sum to an error of A(alBG/af^)-0.63% for both, the T(1S) and the T(2S) data.
This errors, together with the errors on Cj/C0jf in Table 5.4, mean that we are able to
reproduce the observed point-to-point variations of 0^(Wi) in Fig. 5.3(a) with a precisioii
of better than 0.7%. Given point-to-point variations of O(10%) this is a remarkably high
precision, which is mainly owing to our rundependent MC Simulation (see Section 3.5) of
beam-related background, of length and position of the e+e~ intersection region, aiid of the
chamber performance.

Just like the errors A(£,/£0 / /) the errors Afof^/trf/ /) have to be muhiplied with A(1S)^4.*
and A(2S)—23 in order to derive their influence on the observed number of resonance decays
to uiuoiis. This results in errors of

.BG

and
A(2S)A((j- r (2Sj/CT t ) /^) — 14.5%,

which are the dominant systematic errors in our analysis. Therefore they deserve an (even

more) detailed description which is given below.
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The s-Dependence of the Background Cross-Section

This item encloses the precision in modeling all genuine variations of the background cross-
sections with W,-, i.e. those variations which are not due to detector acceptance effects.

T(4S) Interference: The genuine cross-section uncertainty for e+e — > //+/A is dominated
by the interference effect of the (rare) decay T(4S)— >^ + /i~with the continuum. It has
a maximum of ±0.30% x 0%^ ~ ±0.24% x aBG at W = mT(4S) ± 20 MeV (see dotted

line5 in Fig. 2.11). Giveii an error of A PF = 15 MeV for data taken on the T(4S), which
represent about 70% of our continuum sample, the interference correction may change

<rf/J by 0.13%.

We note, that all 1-loop corrections to e+e~ — » fj + yT , even those with initial state pho-
tons, are modeled by our modiüed DYMU2 generator. They innuence the s-dependence
of the continuum background from e+e~ — * ̂  i±~ by about 0.5% (cf. Fig. 2.12). Higher
order corrections are suppressed by 0 and should thus be negligible.

C*i 7^ C*ai As we saw from Eq. (5.8) the scaling factor C eliminates the error on the mean
amplitude of the background prediction er . However, the systematic MC error on the
two-photon background may (due to generator, energy loss, lateral pattern) be slightly
different from that of one-photon annihilation. To eliminate the MC error we would

in fact need two scaling factors, C\r one-photon annihilation and C2 for two-photon
processes. Here it is important, that we model bot h the detector signatures for low-
energy and high-energy inuons with comparably good precision. A precision of about
2% for our set of cuts (cf. Section 6.1.2) has been obtained through our Upgrade of the
GHEISHA Simulation of particle interactions (see Appendix A).

Since the fractioiial abundaiices fi and /2 of one- and two-photon processes are different
at different c.m. energies, the scaling factor C — /iC5 + JiCi acquires a U'-dependence

if Ci / C2. From Section G. 1.2 we conclude that Ci and C2 may differ by about 2.5%
from each other. Our determination of C in Fig. 5.4 mainly relies on T(4S) data. A
short calculation shows that we liave to estimate the error of using this C for all data
by the expression /i(4S) - f^nS) \C^ - C2 . It yields 0.10% for the T(1S) and 0.05%.
for the T(2S) data.

eN Variations: As determined in Section 5.1.2, also the "cross-section" for eN events varies
with W. These variations are due to different beam conditioiis at different c.m. en-
ergies W,. From the systematic errors of the eN background listed in Table 5.2, we
find a contribution to A(<rf G/<rf^) of 0.08% and 0.04%, for the T(1S) and the T(2S),
respectively.

eMA^gj. ^ further error source is the amount of increase of a f f ^ f e t f l J ( s ) from \/* =

and \/Ä— 7?iT(2S) to ^/s = i"T(4S)- It is predicted for our cuts on generator level to be
5.0 ± 0.3% and 2.3 ± 0.4%, respectively. by our two-photon generator in Section 5.2.
We use the (statistical) errors of this increase to estimate its accuracy. (With a more
detailed generator [102] we have checked that systeiuatic errors like omission of diagrams

'The amplitude of 0.35% of (his curve is reduced hy radialive corrections to the 0.30% cited
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like

or

are of negligible influence.) Given the amount of about 16% two-photon muons in <JBC

we find contributionsto A(0-fG/<rf^)ofO. 16x0.3% = 0.05% and of 0.16x0.4% = 0.06%,

for the T(1S) and the Y(2S), respectively. Since the contributions of other processes
(e+e~ —» e+e~7r+TT~, . . . ) to crBG are much smaller than 16%, their corresponding errors
are negligible.

Summarizing the above errors in Table 5.6, we find a combined error of 0.19%. for the
T(1S) and 0.16% for the T(2S).

Table 5.6: (Sub-)Contributions to the error on the s-dependence of the background
cross-section.

Source

T(4S) Interference

d / C 2

eN Variations

ff"^«^(s)

Cross-Sectionf s, )

T(1S)

0.13%

0.10%

0.08%

0.05%

0.19%

T(2S)

0.13%

0.05%

0.04%

0.06%

0.16%

The Variation of the Detector Acceptance

The sources of acceptance variations for the background are the relative positions of the

detector and the event vertices, the calorimeter calibration. the beam-related background

in each event, the detector resolution and the triggers. In the following we discuss, why
these sources can lead to changes in the detector acceptance and estimate their influence on
,\i „BG I„BG \e Relative Position of Detector and Event Vertex The probability that a /j-pair

event passes our data selection depends on the relative positiou of its event vertex with
respect to the calorimeter. The farther the event vertex is away from the ball center at
(x,y,z)=(0,0.0), the more events are missed by the Triangle Triggers. The reason for this is

that the ball coordinat.es of the energy depositions are not identical to the particle directions
for (x.y.z)^(O.O.O). First, back-to-back muoiis may thus appear in calorimeter triangles wliich
are iiol back-to-back. Second. om* of the muons may not end up in the Main Ball, even if bot h
momentum directions are within jcos# | < 0.84. A s mall additional effect on our selection
efriciency is iiitroduced by the fact that muons from (x.y.z)^(O.O.O) do not traverse a crystal

along its axis. Thus, the probability of crossing crystal boundaries and widening the lateral
energy pattern increases. However, by cutting in the F"2 pattern fraction rather than in F^
we coiisiderably lower our sensitivitv to this effect 85l.
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Figure 5.6: Dependence of the selection efficiency on the z-vertex, vrhere a given //-paj'r was
created.

Variations in the distributioii of tlie relative positions of event vertex and calorimeter

between different times of data taking can change the selection acceptance for the above

reasons. These variations may be due to shifts of either vertex or detector. In our MC

Simulation we have modeled the Variation of the mean relative coordinates ( (x ) , (y), (z) ) of

the event vertices with respect to the ball center and the Variation of the vertex spread

/ along the beam. From Fig. 3.7 we estimate residual uncertainties of A{x) = 1.0 mm,
A(y) = 0.2 mm, A(z) = 0.4 mm, and A/ = 0.15 mm.

The Variation of the air gap g between the upper and the lower ball heiiiisphere6 is another

error source. It was not larger than Ag — l mm arouud its mean value of (g) — 6 mm {103J.

For our error A(<rt- G/^T0/</) w^ used the uncertainties of the differcnces between on- and
off-resonance data, which are then A(x) — 1.4 mm, A(y) = 0.3 mm, A(z) = O.C mm,

A/ — 0.21 mm, and A (g) — 1.4 mm. Note that systematic errors comrnou for on- and

off-resoiiance data drop out by forming differcnces.

Fig. 5.6 demonstrates the strong dependence of the selection efficiency £ for each single

event äs a function of its z-vertex. Thr efficiency has been normalized to that at z = 0. The

overall selection efficiency depeiids on the distributioii of z-vertices p(z)cx exp — ( z — (z}) 2 /2 / 2

i.e. ou / p ( z ) e ( z } d z . From Figs. 5.6 and 3.7(d) we find an impact of A/ on A(crtÖG/ö"^) of

A
,BG\ l

o f f /

- 1.3% x
A/

mm
- 0.27%

where we have inserted A/ — 0.21 mm.

6The two calorimeter hemispheres were frequently nioved apart in order to shield them wi th lead during
beam injection or high-inlensity DORIS running for the HAmhurg SYnrhrotron LABoratory. The abrasion of
the mechanical opening mechanism may result in a Var ia t ion of the gap between the homisphercs.
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Figure 5.7: T wo of the fits to Major Triangle energies to determine thc Variation in (he

calorimeter calibratioii.

Analogously we obtain with = (A(x))2 + (A(y)) 2 -h (A(z>) 2 - 2.4 mm

(T.
BG

(T BG = 0.055% x = 0.13%.
mnr

(In contrast to the vertex spread /. the vertex position enters quadratically in this error, since
the efficiency e(p) — e ( r ) caii be approximatecl by a parabolic curve arouiid c — 0.)

The influence of the gap Variation is more involved. We re-simulated our complete MC
datasets for the T(1S) and the Y(2S) of about 0.5 x 106 events with a different detector
geometry. where we have enlarged the gap by 3 mm. The results of the tube chamber
Simulation of the original events were left completely unchanged. The (marginally significant)
changes in efficiency were scaled to A (ff) — 1.4 mm resulting in

.BG

BG l
o f f /

0.12% for the T(1S) data
0.16% for the T(2S) data.

*

(For the T(2S) we expect a larger effect due to the 75% beam polarization creating more
^/-pairs near the plane of the equator, where the efficiency is more sensitive to the gap size

9.)
Calorimeter Calibration Time variations in the calorimeter calibration may slightly
change the position and width of the measured energy loss distribution. The cut, which
is most sensitive to such changes is the requirement of more t hau 100 MeV deposited in
bot h Major Triangles hit by the muons. We selected the s maller oiie of both Major Tri angle
energies from each event and fitted their distribution for several subperiods of data, äs shown

for two examples in Fig. 5.7.
The mean peak position of £pcak = 202.0 MeV (for T(4S) data) was found to vary by only

0.2 MeV (= 0.1%) from period to period and the mean Gaussian width frE - 22.2 MeV varied
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Figure 5.8: Distribution of de bris energy in subsamples of Y(4S) data (a,) and T(2S) data
(b). The crosses are data, and tjie histogram shows the corresponding MC prediction.

by typically 0.5 MeV (^ 2%). Our cut at 160 MeV is about 1.9a£ below £peak. From the
variations of width and peak position we deduce for such a cut

and
.BG

.BG = 0.05%.
ff°"/£P«

These errors are conservative estimates, since the variations of
statistical origiii.

and CTE are partiall y of

Background Energy As can be seeu from Fig. 5.8, which shows the distributiou of the
debris euergy in a subperiod of the T(4S) data (a ) , and a subperiod of the T(2S) data (b) ,
the Variation in the amount of this euergy is well reproduced by the MC Simulation. Most of
t bis debris euergy is comiiig from the beam-related background, which is included in the MC
Simulation by mergiug background events obtained with the DBM trigger {cf. Section 3.5).
We estimate the systematic error on this Simulation by repeating the merging process with
independent samples of DBM background events, still take« from the same runperiod. We
obtain variations of

A
rfc

TBG
roff

= 0.10%.

Chamber resolutioii Our selection cut 011 the measured acolliiiearity ( > 180° — 12° cor-

responds to 3.6 times the resolutioii «r^ = y^lc "*" ^A -5 wlie^^ ^AC and <J&^ are the resolutions
for thp projected opeiiing angles Aö and A^ (see Fig. B.21(a) and (bJJ . Due to our loose



100 CHAPTER 5. BACKGROUND DETERMINATION

Trigger bit efficiency Trigger bit efficiency Veto bit efficiency
J .W

0.8

0.6

0.4

0.2

n n

. ' 1 ' 1 ' 1 ' 1 !_ h- ' 1 ' 1 ' .

: a) ~ :
— -

-

— !

-

, ! . ^_|—, 1 . 1 . 1 , 1 , 1 , "

. ' 1 ' 1 ' 1 ' 1 ' 1 ' 1 '_J-̂ 1 ' 1 ' .

: b) _~ :

_

" . t— r-. 1 . 1 , 1 . 1 . 1 , 1 . 1 , '

f 1 ' 1 ' 1 J-_ "h- - T .

- C> / - ^
*

*

*" 4

4

-

•*

*

_u--", 1 , 1 , 1 . 1 "

1 .U

0.8

0.6

0.4

0.2

n n
60 80 100 120 100 120 140 160 180 30 40 50 60 70

ÜMinor (MeV) EMajor (MeV) ETunnci (MeV)
Figure 5.9: ThreslioJd rurves for the Minor Triangle Bit (aj, the Major TriangJe Bit (b), and
the Tunnel Veto Bit (c).

cut we are fairly inseiisitive to small inaccuracies in modeling the time dependence of
and <rAv. Varying these resolutions by the expected E.T.MC accuracy of 4% (Eq. (B.41))
and 7.5% (Eq. (B.42)), we find from Fig. B.21(c) an influence on our ratio of background
cross-sections of

A 0.04%.

Both the 0 and 9? errors contribute about equally. The time dependent tube chamber Simu-
lation considerably lielped to achieve such a small error.

Trigger Efficiencies The threshold curves for the Crystal Ball trigger bits are rather steep
and approach an efficiency of 100% very soon above the nominal threshold. In Fig. 5.9 we
bave plotted typical threshold curves for the Minor Triangle and the Major Triaiigle bit and
for the Tunnel veto bit (cf. Section 3.2). Our Software thresholds of more than 120 MeV
and 160 MeV in both Minor and Major Triangles, hit by the muons (see Section 4.5.2),
respectively, and less than 30 MeV in each of both Tunnel Regions, are already well above
(below) the nominal trigger thresholds. We obtaiii trigger efficiencies of above 99.95% for
the Minor Triangle Trigger and efficiencies ranging from 99.0% to 100.0% for the Major
Triangle Trigger depending on the data sample. They have beeil obtained by weighting for
each data sample the corresponding threshold curves wjth tbe energy distributions of the
/j-pair events. The 'OR' of both trigger s thus misses less than each 10"5th event which
would pass our selection cuts. Changes in the trigger efficiency from period to period are
therefore negligible. Exceptions are 13 pb'1 of T(lS) data where only the Major Triangle
Trigger was enabled with an efficiency of (99.7 ± 0.1)%, and 8 pb'1 of T(2S) data, where t wo
Minor Triangles were not properly included in both triggers, resultiiig in an 'OR' efficiency
of (97.2 ± 0.2)%:. The systematic errors for these periods contribute

.BG

(T BG
- 0.05%

to the error of our detector acccptaiice ratio.
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Other Sources We have checked, that the systematic error on detector acceptance ratios
induced from all other cuts are negligible even on the 0.1% level. Our cut in the (c/v)BaU vs.
(dE/dx) plane rejects oiily about 0.1% of events from e+e" interactions. Since the variations
of (dE/dx) with time of data taking are properly included in the E.T.MC, the residual error

is well below 0.1%.
Below 0.1%, likewise, is the probability that for an event from e+e~ interactions a Roof-

Tirning of (£)R0 0f ^ —l consistent with a cosmic ray event is found, e.g. due to a malfunctioii
of a Roof-ToF counter. This has been achieved by surveying each of the 94 Roof-Tof counters
for all our data and excluding the timing Information of those counters, which are found to
be unreliable7. The cosmic rays passing through bad counters are properly subtracted via

the (C/W)B«U sidebands. A similar survey was performed for the Ball-Timing.
Finally, the faking of off-axis vertices by the TAGTRK program was also found to be less

than 0.1% for our cut in the "on-axis significance".
All errors from detector acceptance variations contributing to A(O-,ÖG/^/) are collected

in Table 5.7. Their quadratic sum amounts to 0.44% for the T(lS) data and to 0.45% for the

T(2S) data.

Table 5.7: (Sub-)Contributions to the error on the reproduction of variations of tlie detector
acceptance.

Source

/-Vertex

(x,y,z)-Vertex

Hemisphere Gap

(Tf'-Calibration

-Epeak-Calibration

•Edebris

#, y?-Resolution

Triggers

Detector Acceptauce (W,)

T(1S) T(2S)

0.27 %

0.13 %

0.12% 0.16%

0.27%

0.05 %

0.10 %

0.04 %

0.05 %

0.44%, 0.45%

Monte Carlo Statistics

The last contribution to the error 011 <^^G/^oft *s *^e statistic of MC eveiits. With the large
amount of — 2 x 106 MC events we eiid up with statistical errors of 0.34% for the on-resonance
MC data and 0.23% for the off-resonance MC data. They combine to an error of 0.41%t, which
is a factor of 2.5 less than the corresponding statistical error from the real data.

5.4 Resonant Background from T M"

Before Fig. 5.5. where the coiitinumn backgrouiid has be subtracted. can be corrected for
the selectioii efriciency for T —» / / 4 / / ~ , we have to accouiit for possible resonant backgrouiid.
There are two sources for such a background. the decay T ( 2 S ) — » X T ( l S ) — ^ X / ; 4 / / ~ , where
X~(-)-).7T7r,.. . ), and the decay T(1S,2S)—»T + T ~ . We will see that both resonant background

on the data sample wt- found 0-4 of sucli had counters.
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sources are small and lead to corrections for JVT-w* of only 0.45% on the T(1S) and 2.3%

on the T(2S). (Such a correction on the continuum subtracted spectrum changes JVT~"MM by
about the same amount äs an 0.1% increase in the subtracted continuum would do.)

5.4.1 The Process T— »r+r~

In Section 5.2 we have found that the continuum background from e4e~ — t r"4 r~ is 0.45%
of our observed continuum cross-section for e+e~ — + fj.+ yC~ . Due to the large tau mass there
are differences between /j-pairs and r-pairs wheii we scale the continuum process, which
includes initial state radiation, to the resonant, process, which is lacking all high-energy initial
state radiation. However, this differences occur for initial state photou energies of E^ ^

[l — (2mT/7T?Y )2]-Ebcan. — 0.86£bcano where our acceptance for e + e ~ — » (7)^+^" is zero. Thus
we conclude that the process T— »r4 r~also contributes 0.45% to our observed resonance peaks.

5.4.2 The Process Y(2S)^T(1S)X

The process T(2S)— >XT(1S)— >X^ + ̂ ~ can "feed down" into our ^-pair sample if the particles
X=(77, or 7r+7r~, or 7r°7r° — » 47) are all not observed in the calorimeter but escape under
angles cos0| > 0.93. From 160 events of this process (contained in a MC sample of about
20,000 T(2S) decays) only 2 events pass our selection cuts. With the measured branchiiig
ratios of the T(2S) from Ref. [22] and our T — » ^4 fi~ selection efficiency from Section 6.1
below we convert this nurnber to a resonant background of (1.8±1.3)% in the continuum
subtracted T(2S) sample.



Chapter 6

Results for the Decay T

After correcting for the selection efficiency for T —* /j"1" fj (Section 6.1) we determine t wo
quantities from the observed cross-section ^""^""^(W) in Fig. 5.5. First, the area >i under
the excitation curves of the T resonances is coniiected via Eq. (2.126) with the quantity

r r iA MI'-*- f- 2

r 67T2
m\A. (6.1

The product F^B„ — rMMr„/F is thus dete.rmined froin a fit to the cross-section äs a function
of K* in Section 6.3.

Second. the /^-pair hranching ratios J5MXJ(1S) and BM M(2S) are obtained by dividing the
number of resonant ^/-pairs by the total nuniber of produced T resonances (Section 6.2). As
has been alreadv discussed in Section 4.2, we have to account for the fact that the cross-section
for resonance decays to muoiis and thr total nuniber of produced T decays are differeiitly
afTected by the interference of resonance and coiitinuum. För each c.in. energy T1, we cor-

rect the cross-section of resonance decays to /j-pairs by the interference term <rf and the T

production cross-section by (3 -f ß)<r/. The factor 3 accounts for the three leptonic decay
niodes and R. the ratio of the hadromc contiiiuuin cross-section over thr Born cross-section
of //-pair production, relates the qq decay of the T to its leptonic decays. The value of

er' mainly depends 011 JT^Tfr and the o.m. energy spread «-. It was calculated froin the
modified DYMU2 generator äs the difference betweeii the cross-sectioiis generated witli and
without interference, äs explained in Section 2.3.4. We then obtain 5M;j from

.YT
tA£,*,

~f

where ? runs over all c.iu. energies 1T, within 10 MrV of the resoiiancr ]>eak. -V, '"' is the
number f>f observed T decays to irmcms. and f , ~^t'1' is their detection erhciency. The observed
number _V jT~'had of T decays t o hadrons and the frartion 5^ '"a U of all T decays. which ]jass our
multi-hadroii selector. will be derived in Section G.2.1. \Ve first describe the determination

f
of ? ( M M . which is needed for bot h the B^t, and thr T^^Bet- measureiueiit.

103



104 CHAPTER 6. RESULTS FOR THE DECAY T -> ;;4/(~

6.1 The Selection Efficiency for T —> ̂  n~

"Siehst Du den Mond dort stehen?
Er ist nur halb zu sehen,
Und ist doch rund und schön:
So ist 's mit manchen Sachen.
Die wir getrost belachen,

Weil unsere Augen sie nicht seil'n."

'Efficiencies' ä la M. Claudius

6.1.1 The Efficiency Dependence on the C.M. Energy

The selection efficiency for /i-pairs from resonance decays has been determined for each
c.m. energy value W{ separately. The dependence of fT~*****(Wi) is again twofold. First,
there is the same time dependence due to detector acceptance Variation s, which we have
already discussed in Section 5.3.3.

Second, there is a genuine dependence on W, due to the allowed energy ränge of initial
state photons in the process e 4e~ —•* (77...)T —* (77 .. .)//+//~{7 ,. .). Siiice the c.m. energy
spread w is much larger than the total resonance widths F(1S) and F(2S), the distributiou of
c.m. energies W above m? determines the ränge of the energy sum Sinitial statt EI f°r initial
state pliotons. Resonance production is only possible if the e+e~ c.m. energy ^/s^ after initial
state radiation is ^J~sl ^ my ± F.

For c.m. energies W ^ m-f the ränge of this energy sum is thus approximately deter-
mined by w ~ 8 MeV. For W — n?T > tr, on the other hand, initial state photon energies

are distributed around a mean value of 53iiuii«i n«i* EI ~ W ~ rn^ with a typical width w.
These higher photon eiiergies influence our selection efficiency äs soon äs they amount to
Hiiütiai statc £-, - 30 MeV, because we allow for at inost 30 MeV deposited apart from the
niuon clusters in the calorimeter (see Section 4.5.2). The eßect should be perceptible for our
largest T(1S) energies, which ränge up to 46.3 MeV above the T(1S) mass. This is confirmed
by studying the efficiency behaviour, if W is varied in our MC Simulation (Section 2.3.4)
of e 4 e~ -4 (77)Y —» ( i ~ f ) u + ^"(7). All time dependent quantities (beam Spot paraineters,
chambers, beam related background), which further influence the acceptance, are left con-
stant in this study. The result in Fig. 6.1 shows a clear decrease of the selection efficieucy
eT~'("J around W - 7777- % 25 MeV. For W - mT < 22 MeV we observe no signirlcant Variation
of £r-w(W).

This helps to overcome a cumbersome technical difficulty. For the generation of e 4e~ —+
(77)T —t (l7)^/'~("y) in our modified DYMU2 generator we did not adjust the samphng
of the initial state photon spectrum to a sharply peaking resouance behaviour. Instead, we
simply drop the bulk of events, namely all those which do not lead to T production. The
CPU time coiisumption for generatiiig a sufficient amount of e+e~ —> (77)T —» (77)^ + ^ ~ ( " j )
events to calculate the selection efficiency for each of our c.m. energies W, -would thus have
been very large. We instead use for the efficiency calculatjon at each W, t hat subsample of
our corresponding continuum MC events e4e~ —» (77 ) f i ^ ( t ~ (7), which has an energy sum of
Simüai st»tr E^ < Iti MeV. We cross-checked t hat. efficiencies obtained with this method agree
with those from proper resonance generation within their statistical errors of — 1%. Only
for W — nif > 22 MeV we explicitly generaie events e 4e~ —» (7^)T —» (7";')/'"1 t l ~ ( ~ l ) - The
Simulation of time depeiidences in the detector acceptance was included specific for each H ,
äs usual.
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Figure 6.1: Dependence of the selection efficiency for resonant muons on the c.m. energy W,
äs predicted by MC for a constant set of all other beam- and detector-related parameters.

Note that the final state photons have to be generated over t hei r complete energy spec-
trum, since B^ is defined äs the branching ratio to //"*"/*" plus an arbitrary number of
photons with arbitrary energies. Any other definition would be of no use, since due to the
Bloch-Nordsieck Theorem (Section 2.3.2) the branching ratio for T —> n*n~ -f 0-) is exactly
zero. Since our /i-pair selection is very sensitive to additional photons in the event, our
selection efficiency is lowered by ~- 10% due to final state radiation.

Averaged over either resonance region we obtain selection efficiencies of

(eT< lSH"<) = 44.6%, ±1.1%

and
/ ^ T ( 2 S ) — ' U U \ A A l 07 _l_ 1 1 W
{E ' M^ ) — 44. l /o ± l. l /O.

The cited systematic errors on these efficiencies are determined below.

6.1.2 The Systematic error on the Efficiency

The systematic error on the mean amplitudeof our selection efficiency et- ~"MM has three sources,
namely the uucertainty in the MC generator, the Simulation of the detector response, and
the statistics of MC events. We discuss them in turn.

The generator uucertainty is dominated by the uncertaiuty in modeling the final state
photoii radiation. In absence of a better generator for final state radiation1 we conservatively
estimate the uncertaiiity by comparing the yield of final state photons between the first or-

der exponentiated spectrum of DYMU2 and the noii-exponentiated spectrum of the MMGl

generator [5l] (see Section 2.3.3). After modeling the angular acceptance of our cuts on the

generator level we observe that the MMGl program generates about 25%. more final state pho-

tons above 30 MeV t h an the DYMU2 generator. Since an exponentiated spectrum is clearly
closer to the reality thaii any non-exponentiated spectrum (cf. Fig. 2.15 and the discussion

in Section 2.3.2), we estimate the systematic error on the generator by half of the observed

1Tlu' K O H A L Z generator [*iS] (rf. Section 2.3.3) was not yet availablc at t l ie tinie of our analysis.
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difference. Given the ~ 10% sensitivity of the selection efficiency to final state radiation, the
generator tlius contributes an error of 1.3% to the fractional error A£T~^"/£T~*'J''.

The error on the detect or acceptance was estimated frora a comparison of MC distributions
and data for all variables used in our selection cuts. Such comparisons are for example
plotted in Figs. 5.8, A.3, A.6, and B.21. We find a combined fractional error of 2.1%-, where
the dominant sources are an 1.2% error from the inaccuracy in reproducing the debris energy
(Fig. 5.8), and a 1.0% error of the pattern fraction efficiency (Fig. A.3) for a cut at F2 > 0.945.

Finally, the MC statistics, combined over either resoiiance, contributes 0.5% to the error
on the mean amplitude of £i ""^.

The errors add up to a total fractional error of 2.5% (Table 6.1) corresponding to the
absolute error of 1.1% on our selection efficiency, which was cited above.

Table 6.1: Contributions to the fractional error on the selection efficiency for resonant muons.

Source

Generator

Detector Simulation

MC Statistics

^T-^^T-^

fractional error

1.3%

2.1%

0.5%

2.5%

6.2 The Determination of B^

Figures 6.2(b) and 6.3(b) present our final spectra for the efficiency corrected cross-section
(T**-'T-./i/j^/-^ which have been obtained by dividing for each W, the observed cross-section

from Fig. 5.5 by e - ~M". They are listed in numerical form in Appendix D. The fits to the
spectra are explaiued in Section 6.3. For the determiuation of B^ß we oiily use the numbers
of resonant /j-pairs which are the basis of this measured cross-section.

From the efficency corrected number of resonant ^-pairs measured witllin 10 MeV of the
resonance peaks, and the corresponding number of T decays we determine B^ according to
Eq. (6.2). The number of T decays within 10 MeV of the resonance peaks is in turn derived
from the observed hadronic cross-section, shown in Figs. 6.2(a) and 6.3(a), äs detailed below.

6.2.1 The Number of T Resonances

Continuum Subtraction

The observed hadronic cross-sections in Fig. 6.2(a) and Fig. 6.3(a) are based on 447xl03

and 253xl03 multi-hadron events in the energy regioiis of the T(1S) and T(2S), respectively.
The data are identical to those which have beeil utihzed to determine the c.m. energy in
Appendix C. The observed hadronic cross-section is now plotted for each of the combined
c.m. energies W,, which resulted from this determination (see Sections 4.2 and C.5). In
addition. we have now corrected the cross-section at each Ur, for the contribution of decays
T—»e^e" to the number of luminosity events (cf. Section 4.4).

To the observed hadronic cross-section we fit a continuum

•q<u
["2

(6.3)
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Figure 6.2: a) Observed hadronic cross-section in the region of the f(lS) resoiiance.. The
solid line is a fit result. with the parameters Hsted in Table 6.2. The dotted line shoivs the
continuum contribution a"'~'qq to the fit.
b) Measured cross-section ofee —* T —» nfj, in the region oftheT(lS) resonance. It has been
obtained by correcting the observed cross-section from Fig. 5.5(a) point-by-point with the
detection efficiency E, ̂ ^^ - The lines are fitted to the cross-section äs deschbed in Section 6.3.
The dashed line is a fit without, the solid line is a fit with interference.
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Figure 6.3: a] Observed hadronic cross-section in the region of the Y(2S) resonance. The
solid line is a fit result with the parameters listed in Tahle 6.2. The dotted line shows the
continuum rontribution a""'*1'' to the fit.
b) Measured cross-section of ee —t T —t //p in the region of the T(2S) resoiiancf. It ha.s been
obtojned by correcting the observed cross-section frorn Fig. 5.5(b) poinf-bv-poj'nf with the
detcction efficiency s, ~^l'>'. The lines are fitted to the cros$-section itt described in Section 6.3.
The dashed line is a fit \\~ithout, the solid line is a fit with interference.
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plus a radiatively corrected resonance shape with free peak position Wpn-k, peak height
o-T-*had(W ^j, and c.m. energy spread w, The small interference effect between hadronic
resonance decays and continuum production was not included in the fit, because its innuence
on the fit results can be neglected. The parameters obtained froni the fit procedure are listed
in Table 6.2.

Table 6.2: Resulting parameters from the fit to the observed hadronic cross-section in
Figs. 6.2(a) and 6.3(a).

W

(MeV/c2)
(MeV)

>~0 (pb)
~k) (pb)

T(1S)
9460.3 ± 0.2

7.9 ± 0.2
9566 ± 58
3544 ± 22

T(2S)
10023.2 ± 0.3

8.2 ± 0.3
3263 ± 51
3267 ± 47

Note, that the T masses derived from TOT = Wrpeak - 1.0 MeV {Eq. (4.3)) have to agree
with the PDG values [22] of mT(lS) = 9460.3 MeV and mT(2S) = 10023.3 MeV, since these
were put in the determination of W^. Our values for the c.m. energy spread w are in good
agreemeut with those obtained in Ref. [96].

The observed number 7VT*~'had of T decays to hadrons is evaluated by subtracting the
continuum contribution from the total number JV!had of multi-hadron events observed at each
c.m. energy Wt according to

N T—had
(6.4;

where o-"^qq(W,) was derived from Eq. (6.3) inserting the fit results from Table 6.2. This
results in a total number of observed hadronic T decays of JVT~"h*d(lS) = (272.3 ± 1.0)xlOs

and ATT-had(2S) = (110.4 ± 1.7)xl03 for the data points within i 10 MeV of the resouaiice
peaks. The errors are statistical only.

Efficiency Determination

Tö obtain the total number of produced T decays, we have to divide jv"r~*h*d by the frac-
tion e?"*^ of all T decays which pass our multi-hadron selection. This fraction is calcu-
lated from the relative abundanc.es of all T decay channcls together with the efficiency of
the multi-hadron selector for each cliannel. The branching fraction for decays to fermion-
antifermion (ff) pairs is given by Bff — (3 -+ R)B^. The branching fraction to all other chan-
nels (ggg, 7gg, transitions to lower lying bb stat.es) is then ßoth = l - Bff. The abundance

of ff events in JV^~'hBd is modified to Bff(l 4- ff* /tr?) by the interference with the continuum

productioii of ff. Here, tr//^, is the ratio of the (muonic) interference cross-section to the
(rnuoiiic) resonance cross-section at each c.m. eiiergy W,. We t hu s find

l +
(6.5

where the denominator restores the normalization of the branching fractions. The efriciencies
£oth and £ff of the hadron selector have been determined from a MC Simulation of T decays
with an appropriate mixture of decay channels. The hadronic decays were geiierated wilh the
LUKD program and subjected to a complete detector Simulation. We averaged the efficiencies
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obtained with the sträng fragmentation in the JETSET 6.2 version [104] and those from the
JETSET 6.3 program modeling parton shower fragmentation 105]. The resulting values are

= 94.3%, £ f f( lS) - 45.7%

and

£oth(2S) - 92.1%, £ f f(2S) - 45.1%.

The ff efficiencies include all fermionic decay chaniiels with respective efficiencies of £qq ^ 81%,
CTT ^ 11%, and e„ = eM(J = 0%. The branching fraction to fermion pairs was determined
from R^3.48 [96] together with our final results for B^ (Eq.( 6.6)) äs B f f ( l S ) = 15.0% and

.Bff(2S) = 7.9%. Finally, the interference cross-section <rI//<Tf was derived from the DYMU2
generator äs described in Section 2.3.4 and plotted in Fig. 2.16.

For the various c.m. energies W we find efficiencies ê ""111 ranging from 85.7% to 88.5% for
the T(1S) data, and from 87.3% to 89.8% for the T(2S) data. Dividing the observed numbers
^T— had Of nadronic T decays point-by-point by the efficiency e*"*"11 we obtain total numbers
of produced T decays of (312.7 ± I.l)xl03 and (124.8 ± 1.9)xl03 for the data sets within
± 10 MeV of the T(1S) and the T(2S), respectively. This corresponds to mean efficiencies of

= 87.1% ±1.2%

and
eT— "(2S) -88.5% ±1.5%.

These mean values are very close to the values of 87.0% and 88.4%, which would have been
obtained without correcting for interference. The interference correction is so s mall, becanse
only fermionic T decays contribute, and because the interference effects below and above the
resonances essentially cancel. The systematic errors cited for these efficiencies are determined
below.

Systematic Errors and Results

The quantity £j~"^ in Eq. (6.5) is constructed such that N? ̂ h*d / e? -**1 is the^number of

produced T resonauces #(T) plus a (positive or negative) contribution £;(3 + -R)ff, of fermion
pairs, which comes from the interference effect. This contribution has still to be subtracted

(cf. Eq. (6.2)). With o/ again obtained from the DYMU2 generator we find a total interference
contribution of -(0.5 ± 0.5)xl03 and -(0.2 ± 0.2) xlO3 resonances. summed over the data
sets within ± 10 MeV of the T(1S) and the T(2S) resonances, respectively. This correction
is again very small and moreover partially compensated by the interference efTect on c "* .
Its systematic error arises from the error of AW~ 0.5 MeV on our c.m. energy measurement
in Appendix C.

The dominant systematic error on #(T), however. arises from the systematic uncertainty
AeT jaU. It has contributions from the observed diflerences between the LUND hadronizatiou
models (0.4%), from uncertainties in tlie detector response to hadrons (0.7%), and from the
error on our final B^ value (0.5% and 1.0% for the T(lS) and the T(2S)n respectively). The
error 011 the modeling of the detector response was obtained from varying the parametrization
of light quenching, negative particle absorption, and energy loss in our upgraded GHEISHA
program. Since some of our GHEISHA Upgrades (especially that of light quenching in sciii-
tillators) have beeil verified by comparing MC eveiits from the LUND program to Crystal
Ball data, we account for possible correlatioiis between the first t wo errors by addiiig theni
liiiearly. The errors on B^;i are tlieu added in quadrature resulting in systematic errors of
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A£T^aU(lS) = 1.2% and AeT~<Bll(2S) = 1.5%, which were cited above. With these errors and
the interference correction we obtain numbers of produced T resonances of

#(T(1S)) = (313.2 i 1.1 ± 4.4) x 103

and
#(T(2S)) = (125.0 ± 1.9 ± 2.1) x 103.

The fractional systematic errors A(#(T) ) /# (T) are thus 1.4% and 1.7%, for the T(1S) and
the T(2S), respectively.

6.2.2 The Number of Resonant /x-Pairs

The procedure of calculating the number of resonant /j-pairs #(T —* fj.+p~ ) follows the same
line äs the calculation of #(T) above. An overview is given in Table 6.3, where always the
sum over the data samples within 10 MeV of the resonance peaks is given.

We first subtract the scaled continuum prediction C Y, £iff?G ano^ the resouant background
Y, Nj ~*MPJ , which have beeil determined in Sections 5.3 aiid 5.4, respectively, from the total
number V Nf of observed //-pair events. (As in Fig. 5.3(a) we have already subtracted the
cosmicray background in N?».) We are left with (3.19 ± 0.16 ± 0.10) xlO3 and (0.66 ± 0.15 f
0.10)xl03 ^-pair events from T(1S) and T(2S) decays, respectively. Their systematic errors
arise mainly from A(£,/£0 / /) and &(tr?G/<?*£). Following Eq. (6.2) the numbers ATT^M are

•y

corrected for each W, by the detection efficiency et- ~*'JM1 which has beeil deterrnined together
with its systematic error in Section 6.1.

Given our systematic error on the c.ni. energy of AM7 = 0.5 MeV, we are able to deter-

mine the interference correction Y Ci&[ to the resulting iiumber V A7, ""^/^i ""^ of niuonic
resonance decays with a precision2 of about 1% for the T(1S) and about 2% for the Y(2S) .

The total correction V£,(T I /, however, is not, significantly different from zero, because we se-
lected the data in a Symmetrie ränge of 10 MeV around the resonances, cancelling out most
of the interference effect. Omitting a precise determination of W on the other hand, the dis-
tribution of the c.m. energies with respect to the resonance peak would have been unknowii.
In this case we would have h ad to allow for an error of at least All7" — w/3 — 2.7 MeV
(cf. Section 4.2), which would have increased tho corresponding error on B^^ by more t hau a
factor five. The resulting errors of at. least 5% and 10% for B f l f J ( l S ) and .E?MM(2S). respectively,
would have been one of our dominant systematic error sources (see Table 6.4).

After the small interference correction we end up with a total number of resonant p-
pairs of (7.22 ± 0.36 ± 0.30)xl03 and (1.52 ± 0.35 ± 0.23)xl03 for the T(1S) and T(2S),
respectively. Dividing these numbers by the total numbers of produced resonances, we obtain
for the two lowest lyiiig T states values of

(2.31 ± 0.12 ±0.10)%
(6.6)

(1.22 ± 0.28 ±0.19)%,.

The relative iiifluences of (he various error sources are collected in Table 6.4.

2This precision is obtained froni Eq. (4.5) if we allow to shifl all values of U'; by O.Ii MeV up or down. U

is conservative, sinre such a shi f t would create a 2 s.d. discrepancy of the fittcd niy values in Table 6.2 away

froni their PDC values !22l.
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Table 6.3: Surnmary of results for the calculation of B,

E*r
- CE£,<7fG

- T, N?"14"*
EJVT^

^Nf^/eJ-»*

- E-0,7
#(T->^)

: #(T) /10 3

BMM / %

T(1S)

18680 ± 140

15477 ± 82 ± 104

14 ± 0 ± 2

3189 ± 162 ± 104

7143 ± 364 ± 295

-80 ± 0 ± 72

7223 ± 364 ± 304

313.2 ± 1.1 ± 4.4

2.31 ±0.12 ±0.10

T(2S)

16076 ± 130

15404 ± 82 ± 101

15 ± 0± 9

657 ± 154 ± 101

1491 ± 350 ± 232

-29 ± 0 ± 30

1520 ± 350 ± 234

125.0 ± 1.9 ± 2.1

1.22 ±0.28 ±0.19

Table 6.4: Contnbutions of the various error sources (o the fractional error on our
measuremenLs.

statistical errors
AjVT-h*d

AA7"o//
AA^
total AßMM/B^

systematic errors
AjVT-^A"

Ar7-*"

AM'"

Af7-""

A(£,/£0 / /)

AKBG/<T#J)
total Aß„„/ß^

T(1S)

0.4%

2.5%

4.3%

5.0%

T(1S)

0.1%
1.4%

1.0%

2.5%

1.2%
3.0%

4.4%

T(2S)

1.6%

12.3%

19.5%

23.1%

T(2S)

1.3%
1.7%

1.9%

2.5%

4.1%
14.5%.
15.5%



6.3. THE DETERMINATION OF T^B^ 113

6.3 The Determination of YP^B€C

6.3.1 The Fit to the Muonic Cross-Section

As we have already noted in Eq. (6.1) the quantity

r r
? _ ^ ce T R (P. 7 AA = ^ - r^.0« ( G . t )

is connected with the area A = J <ree^^^^(W)dW under the xmionic resonance cross-section.

Ä can thus be obtained from a fit of <rR(W) + (TI(W) (Fig. 2.16) to the measured cross-
section <7e*^T^MM(M7) (Figs. 6.2(b) and 6.3(b)). The fit function is a convolution of the non-
radiative cross-section <TO (Eq. (2.90)) with the Gaussian distribution of the c.m. energy and
a Bremsstrahlung spectrum accounting for initial state photon radiation. As we have shown
in Section 2.3.1 the non-radiative cross-section <70 includes vacuum polarization, resonance,
and interference terms. Since the resulting convoluted fit function is not analytic, we employ
the DYMU2 generator (Section 2.3.4) to predict the cross-section crce~ tT~ t* i / i(mT,Bü,«j,J4) for
each single c.m. energy W; encountered in our data.

The parameter set (nt?,Bt(,w,A) is sufficient to describe this process, since we can write
the resonant and interference terms of the non-radiative cross-section (Eqs. (2.84)- (2.86)) äs

. „ „ ^ 5 5 —
7

„ „
o- oc 2Keßn = 2

R l rt 1

" =

(S - m\)* + m {Q >

5

where we have assumed lepton universality Bt( = B^ = Btf. Initial state radiation and c.m. en-

ergy spread w are properly folded onto these noii-radiative cross-sections by the DYMU2

generator. This leads to the predicted behaviour of <rct~>T—'J'J — o-R + a} , which has been

already plotted in Fig. 2.16 for the PDG values äs input parameters.

We now vary A äs the only free parameter3 in fitting the DYMU2 prediction to the

measured data in Figs. 6.2(b) and C.3(b). The values for m-f and B(t have been fixed to their

table values [22], and the c.m. energy spread ic has been fixed to the values from Table G. 2,

which were obtained from our hadronic cross-section.
The fit results to our muonic cross-section are shown äs solid lines in Figs. 6.2(b) and

6.3(b). They have confidence levels of 99% and 65% for the T(1S) and T(2S) data, respec-

tively. From these fits we obtaiu

= (31.2 ± 1.6 ± 1.7) eV

- (6.5±1.5±1.0)eV.

(6.9)

Sources and size of the systematic errors for this measuremeiit are essentially the same äs for

our determiiiation of B^^ (see Table 6.4). Only the statistical error AATT~"had on the uuinber

of multi-hadroii eveiits and the systematic error Ae ~"^ 011 the hadron selection efficiency

do not enter. An additioiial error of 2.5% originates from the lumiiiosity iiieasurement. Tho

3Actually, A is guessed once, such that the predicted cross-section descnbes the data fairly weil. We then fit
a constant to the ratio of the measured and the predicted cross-section and obtain our final A by multiplying
the guessed ,4 w i t h th is constant.
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uncertainty of 0.5 MeV in the c.m. energy of each data point has been taken into account
in the fit by increasing the errors on the measured cross-section accordingly. This covers the
error induced from fixing TT?T in the fit.

The errors from fixing w and B u are more difficult to estimate. Since the amplitude R of
the fit curve is governed by the high statistics points on top of the resonance, this amplitude
will not change, when we slightly vary w. From Eqs. (6.1), (2.127), and (2.129) we deduce
that Ä oc Rwl~ßl, where /3e=0.087 was defined in Eq. (2.97). Regarding R äs a constant, the
errors on w from Table 6.2 contribute a fractional error of &Ä/A — (l - ßf}Aw/w yielding
2.3% and 3.4% for the T(lS) and the T(2S), respectively.

The error induced from fixing B u is negligibly small. This can be understood from the
fact, that B u enters only via the shape of the fit function. This shape depeiids on the relative
amplitudes \J / R\a \Io/Ro = o/3B« of interference and resonance cross-section (Eqs. (2.87)
and (2.88)). As we have shown in Section 2.3.5, the ratio \I/R\s completely insensitive
to r=A/#w2, äs long äs F -C w. Actually, the fit results do only weakly depend on the
ratio |//.R|, since our high-statistics data points are taken at c.m. energies, where the net
interference effect is small. We find a change of only 1% for A, if we modify Btt, and thus
\I/R\, by 40%. The errors on BU from Ref. [22] therefore induce negligible errors of 0.1% for
A(13) and 0.5% for Ä(2S).

Note that this also meaus, that our determinatiou of A is esseiitially indepeiideiit from
the assumption of lepton universality in Eq. (6.8). All Ba terms in this formulae arise from

setting B«B^ = Bu. Since 1.4B« - (2B«)B = xBe e(2BM M), a violatioii of lepton

universality by a factor of 2 has the same 1% effect on A äs a change of 40% in BK-

6.3.2 Evidence for Interference

By omitting the interference term in the generation of the /A-pair cross-section, we can study,
whether this term is really iiecessary to describe our data. The corresponding fit results are
shown äs dashed lines in Figs. 6.2(b) and 6.3(b). From the product, of the probability densities
for the deviationsof each datapoint from the fits, weform a likelihood ratio for the hypotheses
with and without interference. On the T(2S) resonance our data have not sufficient statistics
to discriminate between the two hypotheses, which is expressed in a likelihood ratio of 51:49
in favor of interference. However, on the T(1S) the interference is favored by a likelihood ratio
of 98:2, showing the first evidence for the expected interference between muonic T decays and
the continuum process ee— » fifi. Following the arguments already made for the J/V1 [106], we
thus confirm the assignment of Jpc = l" for the T(1S).

This evidence crucially depends on the size of the error bars in Fig. 6.2(b). We have
included all errors in this plot, which can vary from point to point, for example all data and
MC statistics, the 0.5 MeV error on each W,, äs well äs the 0.44% x A(1S) = 2.1% systematic
error in reproducing the changes in the detector acceptance between each data point and the
subtracted continuum (Table 5.7). Overall scaling errors, which are identical and correlated
for all points, like A£T~"MM, A£, or AA7^ (entering via the continuum subtraction) are not
included. Those common scaling errors go into the same direction (up or down) on the left-
hand side and on the right-hand side of the resonance (cf. Appendix D). They therefore must
not be included if possible evidence for interference is to be tested. However, eveii includiiig
these errors, the evidence for interfereiice would survive4, since they are considerably smaller
than each of the error bars plotted in Fig. 6.2(b).

In contrast to that, an uiicertainty AT1r of a few MeV would destroy the siginficance of

4The likelihood ratio from above would change to 97:3-
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the measured interference. However, the fact that the fit to the hadronic cross-section fixes
the T(lS) mass with a precision of 0.2 MeV (see Table 6.2), together with the fact that this
fit does not allow to shift the two high statistics data points at 9448.4 MeV and 9471.2 MeV
by more than 0.5 MeV to lower values of W7, additionally supports our determination of the
energy scale.



Chapter 7

Discussion of the Results

7.1 The Leptonic Branching Ratios of T(1S) and T(2S)

7.1.1 The New "World Averages

We average our values of

BMM(1S) - (2.31*0.16)%, (7.1)

BMM(2S) - (1.22 ±0.34)%, (7.2)

with previous measurements of B^ äs displayed in Fig. 7.1 and listed in Table 7.1. Not
iiicluding the preliminary MD-1 result [117] on BMM(1S) we obtain new world averages of

- (2.52 ± 0.07)%, (7.3)

- (1.30 ± 0.21)%, (7.4)

where statistical and systematic errors have been added in quadrature. We note, that our
result for B^(1S) is about 1.3 s.d. below the new world average (continuing an apparent
trend of BM^(1S) measurements decreasing with time). Our value of BM(J{2S) is the second
signincant measurement of this quantity. The previous number from CUSB [120] agrees well

with our result.
Our determiiiations of B^(lS) and BMP(2S) are the first measurements, which take into

accoTint the interference between resonaiit and nonresoiiant p-pair production. In Sections 4.2
and 6.2.2 we have shown that without a precise eiiough knowledge of the DORIS beam energy
this eifert would have introduced considerable systematic errors. Basically independent from
interference effects are only measurements from the ratio of exclusive (1(n'S} — » 7r?rT(nS) — »
TTTT^/i) and inclusive (T(rj'S) — * 7T7rT(nS) — » TnrX) pionic transitions to lower lyiiig T states,
like the CLEO [112] and ARGUS [114] measurements of B„M(1S).

Assumiiig lepton uiiiversality we average the value of B^^(lS) from Eq. (7.3) with mea-
surements [22] of B„(1S) = (2.52±0.17)% and2 BTT(1S) = (2.94±0.35)% to a leptonic branching
ratio of

Btt(lS) = (2.53 ± O.OG)%. (7.5)

Apart from B^, 110 other leptonic branching ratios of the T(2S) have yet been signincantly
measured3.

1Other storage rings l ike C 'KSR and \'EPP-4 inay have less prohlcins in innni tor ing tlieir beani energy.
2We rescaled BTr after Ref. [22,.
3 Thr value for B„(2S) listed in [22] h äs been dcrived by ß«. — F^/F. and F has been caloulated from Trf/B//-

wliere Bt( isslrongly dominated by t h c value of B^^. Thus Bet and /^M are not independent measurcments |121].

116
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Figure 7.1: Graphical representation of B^ measurements äs listed in Table 7.1. The in-
ner error bars show the statistical errors, only. The outer error bars are the quadratic
sum of statistical and systematic errors. The new world average is shown äs the solid
vertical Jine, the previous average äs the dashed line. The preliminary measurement
Bf.tt(lS)=(2.12±0.21±0.11)% 1117] from MD-1 is included in neither of the t wo averages.
It would change the new average to B^(lS) = (2.49±0.06)%.

Table 7.1: Measurements of B^ (in%). We disentangled the CLEO value ofBtt(lS) = (2.84
± 0.18 ± 0.20) % from [112] in t o a value for B^(lS) - (2.77 ± 0.25 ± 0.20) % and the
listed value for B^(lS). The ARGUS T(2S) value is scaled from the average 1(1S) value
with B^(2S) = 1.57 ± 0.59 ± 0.55 + 2.1(B^(lS)-2.9) (in %) J119].

Ref. Exp. Year
[107] PLUTO 79
[108] DESY-HD 80
[109] LENA 82
[110] DASP 82
[111] CLEO 83
[112] CLEO 84
[113] CUSB 87
(114) ARGUS 87
[115] CUSB 89
[116] CLEO 89

Prev. Average

This Experiment
New Average

2.2
1.4
3.8
3.2
2.7
2.90
2.70

2.30
2.61
2.52

2.57
2.31
2.52

B*
±
1
±
±
±
±
±
±
±
±

±
±
±

, ( lS)in
2.0
3.4
1.4

1.5

1.3
0.3
0.25
0.28

0.25
0.09
0.07

0.07
0.12
0.07

%

±
±
±
±
±
±
±

±

±

0.2
0.3
0.3
0.20
0.14
0.13
0.11
0.07

0.10

Ref.
[118]
[119]
[120]

Prev
This
New

Exp. Year
CLEO 84
ARGUS 85
CUSB 89

Average
Experiment
Average

1.8

0.77
1.38

1.35
1.22
1.30

BW
±
±
±

±
±
i

( 2S ) in %
0.8 i
0.59 ±
0.25 ±

0.26
0.28 ±
0.21

0.5
0.55
0.15

0.19
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7.1.2 Consistency of Bfttl Values of Different Resonances

The widths for T decays via l»f> annihilatiou ((L qq. -\gp, ggg) are all proportional to

l i . % ( 0 ) ' ' 7 J / - J . where i ' t ' O ) is the (nonrelat ivist ir) w&ve funrtioii at zero quark-antiquark sep-

aration ist-^ f . g. Eqs. (2.07'i and ( 2 . G S ) } . The normalizrd muonic brauching ratios ßllt, =

BM> Bai»,; HIT thus near]y ideiitical for all T resonances. The Variation of i ( / ' ( 0 ) | and mT with

the radial quantuui number is canotrlled in the ab o-, r ratio tu Bamu. which is the sum uver all

bb aiiuihilatiou chamiels. Correciions arise from the ruiming coupliiig constant(s) a, (and

a f„, |, ancl from relativi?tic effects. In principle. a scaliiig of B^, to othrr quarkonia families.

likr t he J , L\s also possible. \\e theii liave to account for the aforeinentioned corrections

and for the quark charge Q (.i-2/3 compared to j ( ^ b | = l / 3 .

In Tttble 7.2 we have listed the branching ratio? of the quark-antiquark aiinihilation

decay channels in unils of the muonic branching ratio of the T(1S|. t l ie T(2S) . and the

J /V ' (1S ) . We used äs an input the precisely rueasured value of 5 M / , (T(1S)) = (2.52^:0.07)%

from Eq. (7.3) and |^fT(lS)) - (2.77 - 0.15 )(/< f !22". The values J?(mT ) = 3.5 ± 0.1
ÖKFE

and P(rnj;y) ~ 2.2 i 0.2 are taken from a synopsis of 7? measuremritts !123 . The ratio

Bggg( Y(1S)) /Z? M M ( Y(1S)) was deterinined such t hat Banni = 1. (With the exceptioii of a yet

unmeasured decay T(1S) — * T W IS) with a branching ratio of less than 0.5(7( the T(1S)

can only decay via bb aiinihilation.) The ratio B7gg/BMM was scaled to other resonances

by multiplication with ^(fj^^/o^ft^ ), where |icff denotes the (unknown) effective scale

(cf. Eq. (2.60)) for evaluating a, for the gluonic decays of X=(T(2S). J/i/'(lS)) and of the

T(1S). Accordingly we scaled the ratio B^/B^ with [o^p^J/a^p^1^)] x (Qj /Qj ) , where

x=(b,c). The running of as was calculated from (ser Eq. (2.44))

T ( i S ) v a X
'fff ) PO , f^

For the ralculatioii we set / ' J f f / / ' f f l ' = «»x /m T ( l S ) in Eq. (7.6). To covcr the scale ambiguity

we used thewide ränge 0.14 L a,(^^ lS)) L 0.22. This yielded4 o2a(fiJf^' )/a](^lS)) = 1.6*0.2

and " ^ ( / ^ f f V ) / o J ( ^ J f f 1 S ) ) = 2.0 ± 0.3. Naturally, a mucli s maller running of

Q ] ( v ? f f 2 * ] l / ( l * \ t ' * f f l * ] ) = °-9c - °-01 «nerges withm the T System.
To obtain BM,, we have to nmltiply the resulting values for BMf, with the fraction Banlü

of resonance decays which proceed via quark-antiquark aiinihilation. \\ find from Ref. 22

that (44.9±2.1)('( of all T(2S) decays- are transitions to lower lying bb lionnd states. For

the J / r ( lS ) oiily one such transition exists. namcly J/r — * ~)ijf with a branching fraction of

(1.3-0.4)%.

Using this input^ we predict B^fl(T(2S}) = (1.43±0.07)%, where thr error is dominated

by the 2. l / t error on B.mü- The prediction agrees well with the world average value of

B„M (T(2S)) - (1.30±0.21)%. Let us mention, that a scaling of B M ( , f T ( l S ) ) to B M M ( T ( 3 S ) (

(not listed in Table 7.2) also leads to good agreement with the measurements.

For the J /v ( lS ) we find BP(1- (4.5i0.o)%. This differs by 2.3 Standard deviations from

the measured value 22; in Table 7.2. Since the nieasurement of B^ M (J , ' t " ) is supported by a
(however. partially correlate<l) iiieasureinent of B r r ( J / t ' ) . the most probable source for tliis

- niorc exact proredurf of u s inp t l i« 1 ^fcond ordcr expression for tlic running roupl ini ; r u n s t a i i l . w i t l i
additional tcr ins i3f*i nrcounting for the opcning of ihe c-flavor thresl iold bctween t)n- J / i 1 aiul t l i ^ T. a.grt-f-
well w i t h thesi1 resulis.

r'An input of nur resuli for B ^ ^ C T l l S ) ) from Kq. ( 7 . 1 ) would have led to a j i r t -d ic t ion of
( l .S l z rO .K) )^ in romparably good agreenieiit wi th our measurt-nienl of t h i s q u a i i t u v f t t j . ( 7 . 2 ) ) .
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Table 7.2:
BtAtl(T(lSf

chaimel

q(i

ggg

Predirtions for B^^(

R / n•^«•liannel/ *-* w

ntt

B^"1 - (n« -r R)- B

v R-^ •'-'aniu

B^p predicted

BW measured

t(2S)) auJ B^(,l>v) ob

T(1S)

3.0

3.5 d 0.1

0.9 i 0.1

^gg/5^ 32. 3 d 1.1

39.7-1.1

(2.52 i 0.07)%

1.00

— input —
j (2.52 ±0.07)%

tained by scaling

T(2S)

3.0

3.5 r. 0.1

0.9-0.1

31.0 i 1.1

38.4 ± 1.1

(2.60 ± 0.08)%

0.551 ± 0.021

(1.43 ± 0.07)%

(1.30 i 0.21 )(/i

the measuret

J / v ( l S )

2.0

2.2 ± 0.2

1.4 - 0.2

16.1 ± 2.5

21. 7 ±2.5

(4.6 ±0.5)%

0.987 - 0.004

(4.5 = 0.5)%

(6.9 = 0.9)%

disagreement are relativistic r2/c2 corrections [49,124,125] for the J / i /% which we have not
included. The disagreement cannot be due to the running of a f m , which vrould even lower
our prediction by 0.1%. On the other hand oiie might try to increase the ränge of values for
a«(/*eff ) *n order to reduce the difference to the measured value to l Standard deviation.
This would require to iiisert os(//rf[ ) = 0.08, which is clearly beyond the ränge of sensible

values. since then fjfff — O(l TeV) ! Higher order a, corrections are mainly identical for
rg g g(J/V') and rg g g(T) and should thus not create problems äs long äs both quantities can
be calculated within perturbative OCD. Siiice this has beeil already called into question for
the T(see, however, Section 7.4.1). it is even more uncertain for the J/V'-

Smiimarizing wc get good agreement in scaling BßlJ within the T System. A scaling to the
J/f fails 011 the 2.3 s.d. level. however. The reason for that cannot be found without more
work on both, the experimeiital and the theoretical side. (A successful attempt to include
v2je2 corrections in a linear parametrizatioii (i.e. without an explicit calculatioii) has beeil
performed in Ref. [125:. It is. however. based 011 an older value of ß^( Y(1S) ) = (2.8±0.2)%
which soniewhat reduces the discrepancy between the T and the J / i - . )

7.2 The Leptonic Widths of T(lS) and T(2S)

7.2.1 Measurement of r,,/;(lS)

In Section 6.3.1 we have measured the quanti ty A — T^tlTfr/T from fitting the energy dej)eii-
deiice of the cross-sectioii for (jff~~*—w resultiiig in

,4(15) - (31.2 rt 2.3) eV,

-4(25) - (6.5 ± 1.8) eV.

( 7 . 7 )

(7 ,8)

where we have now added the errors in quadrature. This are the first direct measureinents
of these quantities from such a f i t . Since

" — A mi-Dee — &m.1*- n '.9



120 CHAPTER 7. DISCUSSION OF THE RESULTS

we can compare our measurements with the product of tlie world averages for r« [22] and
B^ (Eqs. (7.3) and (7.4)) . This product yields

.4(15) = (33.8-1.4) eV, (7.10)
1(2S) - ( 7 . 6 ± 1 . 3 » e V . (7.11)

in good agreement with our results.

By inserting B f f . B^, or F« in Eq. (7.9) we can deterniine in principle F M M . Tff. or B^
from our measurement of A. However, by writing Tff = Ä/Butl and inserting our B^ mea-
surement we would essentially calculate (A'Y^^/£)/(A'T^^/A*T-h a d) - A*T^had/£. Hence.
this way of measuring F« would be exclusively based on the hadronic cross-section <TT jhad,
whereas the number of/x-pairs together with its errors would drop out. It would just repeat
the F„ determination from <rT-htld. which has been already published by the Crystal Ball
Experiment 96].

Likewise. calculating B^^ — A I T f r and inserting the world average values for Fcr would yield
no new Information. Comparing this method to our determination of ButJ in Section 6.2.2 we
notice that most of the errors are completely correlated. Those errors exclusively entering
the above method (Air. A£, AF„) are more than a factor of 2.5 larger t h an the errors
(AA"T~*h & d , Ae1^*11) which are bound to the B^ determination in Section 6.2.2. Averaging
the results from both methods would therefore not reduce the overall error on ß^, and not
even perceptibly change the values of Eq. (6.6). We have checked. that both methods agree
within their uncorrelateö1 errors.

By dividing our measured -A(lS) by B«(1S), however, we measure for the first time the
niuonic width of the T(1S) from a fit to the muonic resonance cross-section. We obtain

= (1.24 ±0.06 ±0.11) keV, : (7-12

where the systematic error is dominated by the error on SC(.(lS) = (2 .52±0. l7) /< 22 . It is
important to note that ß^^(lS) has been measured independently from BIJ(1(lS). If this were
not the case. we would obtain a mixture of FMM and F«. since A/B^^ — Tef.. For the T(2S) we
cannot derive FMA, from our analysis, since Bee(2S) has not yet been measured (cf. footnote 3
on page 116).

Our result for F^^lS) is in good agreement with

r M P ( lS ) - F«(1S)BMM(1S)/B„(1S) - 1.34 ±0.11 keV. (7.13)

calculated from the current world averages of each quantity. It is independent from F<. r( lS)
and Z?> l f V ( lS) , however. We also note that the error on F^M(1S) in Eq. (7.13). which is deduced
from averaging many experiments. is oiily marginally smaller than the error of our single
measurement,

7.2.2 The New World Averages of T a

Our arguments from Section 6.3.1. showing that our measurement of -4 is essentially mde-
pendcnt from the assumption of lepton universality. are also valid for our iiK-asuremnii of
r^ ( lS) - (1.24±0.12) keV, since it has been directly deduced from .4(15). A comparison
with the world average of F^lS) - (1.34 — 0.04) keV 122^ therefore represenT? a succrssful
te.st of lepton universality.

Assumine lepton universality 011 the other hand. we can combine both values to a leptonic
width of

5) -- (1.33 ± 0.04) keV. (7 .14)
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For the T(2S) only Fe, = (0.586i0.029) keY 22 is known. which has been obtained from
measurements of F„ - 5had- where 5had - (l - 3B,,,,). We Update this value with the new

world average for BM f I(2Sl from Eq. ( 7 . 4 ) yielding

F„(2S) -- (0.584 -- 0.028) keY. (7.15)

7.3 The Total Widths of T(1S) and T(2S)

Combining all new averages of leptonic widths and branching ratios from above we determine

the total widths of the T resonances äs

T(1S) - ^4^ = (52.5x1.9) keY and (7.16)
B«( lb )

= ^4?~ -(45.0 ±7 .5} keY. (7.17)

The widths correspond to a mean lifetinie of about 1.3 x 10 20 s. Both calculations assume
lepton universality. The total wjdth of the T(1S) can also be calculated separately from the
ee and fjfi channels yielding

F(1S) --- •—->•—'- = (53.2 ± 3.9) keY and (7.18)

F(1S) --- R * . = (49-2 ± 5-°) keV- (7-l9)

Thoy are in good agreement with each other.
The total widths of the T resonances are the basis for deriving partial decay widths other

than Tff from the measured branching ratios. Partial decay widths are in turn the only
quantities which can be predicted by theory. A precise knowledge of F for the T states is
thus essential for a comparison of theory and experiment.

7.4 The Determination of af and A

We have alreadv shown in Eq. (2.70) in Section 2.2.3 that the ratio

r-

/^•"(Y-»/r /r ) - F_—
A vv
^ ^ ( ( / ) \  F o ^ l t , }  /  3  m-r \

. (7.20)
7T

where

F = "7 , T ^ = 6-01 x 10~e for o~i( r"T)=132.1 (see Table 2.6). (7.21

has the Standard form of a perturbative expansion in as. From measuring rg g R /rM A ( —
-ßggjj''-ß,JM and inserting the result in Eq. (7.20) we can therefore derive a value of the strong

coujjliiig coiistant o', or. alternatively. for the OCD scale ]>arameter A . which is connected

t o o"s via Eqs. (2.36) or (2.38). The evaluntioii of n*1s is performed a t the (arb i t rary) renor-
malizalion scale ^. In Eqs. (2.51) and (2.52) we have shown tha t in next-to-leading order in
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as all dependences on the renormalization scheme RS = (RC,^ ) can be absorbed in the depen-
dence on /i. Without restricting the general validity we can thus limit our discussion on the
study of the //-dependence in a single renormalization conveiition ( R C ) . For ccmvenience we
choose the MS convention.

Since p is in principle a completely arbitrary scale parameter without any physical meaniiig
(beside the fact t hat we calculate a, at this scale / / ) . our result should not depend ou p at
all. This means that a f l runs with ;/ as expected from the 1-loop level Equation (2.44),
respectively from corresponding equations in higher loop Orders. Equivalently, the parameter
A, calculated from a s ( ^ ) following e.g. the 2-loop level Equation (2.36). should be a constant
for a given number np of accessible flavors, and should thus not depend on fj. Because the
latter can be checked more easily, it is more convenient to plot A versus // than to plot Q^/J).
Clearly, since the calculation of the perturbative expansion stops at fmite order, we will not
find A being constant, but (artificially) depending on ^.

The basic problem is therefore, how to select a "sensible" (ränge of) ^-value(s). where A
is to be calculated. We have discussed this question already in some detail in Section (2.2.2).
There we have also indicated that for the ratio BKKK/ BUIJ the dependence of A on // is dramatic.
We will now discuss the scale dependence of the a, determination from 5ggg/ßMM in more
detail.

We base our discussion on the value

CBP ( T ( 1 S )

= 6.01 x 10~6 • (35.9 ± 3.0) = (2.16 ± 0.18) x W~\2

which has been derived from our Crystal Ball (CB) ineasureinent of 5^(15) in Eq. ( V . l ) via
(cf. Table 7.2)

ßggg

Analogous studies can be based on our T(2S) value of

P C B (T(2S) _> / , + / J-) = f . (37.8 ± 12.7) - (2.27 i 0.76) * 10~4 . (7.24)

or on values derived from the respective world averages (WA) of B / l f J ( lS ) and BM,,(2S). These

are
PWA(T(1S) -»,,>-) = F- (32. 3 zt 1.1) = (1.94- 0.07) > 10~4 (7.25)

and
PW A(T(2S) -* / / ' / / " ) - P -(35.0- 7.0) - (2.10 - 0.42) > 10^4. (7.26)

7.4.1 Study of the Renormalization Scheme Dependence

In Fig. 7.2 we have plotted the solution for Aj is versus the scale p obtained fr*mi insertiiig
PCB(T(1S) -» n + v ~ ) into Eq. (7.20) and solving the resulting equation for a^(fi). The
QCD scale parameter Aj15 is extracted from o^s(/0 according to Eq. (2.36). Actually, the
MS convention for n F would require us to use 7i r^5 f0r // , - T7(b -- 4.8 Ge\ cf . page 1

The exact proccdure to derive A^s for ;/ > mt would therefore l>e to replace in Eq. (7.20)

tf0(7jr = 4) by J0(?)F^0) and -14.1 by -14.1 J |(5 - 4)(2.78 - ? lu(7»T '»M.H = - l--9- so that

the expression is unchanged ar //-r^,. We then could derive A£ I S analogously to al>ove and

could afterwards convert it into Aj*s according to Ref. [38,. The resulting values for A4 s

would be lower by only about 10 Me\ at / /T_ . IO GeV, and by a)>ou1 30 MeY at //^20 GeV.
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Figure 7.2: Solution for A4 ' versus reiiormalizafion scale p obtained fron] our naeasuremeuf
of Bpn(lS). The dotted Une gives the second solution below }i — 4.6 GeV. Also indicated are
some values for a a ( p j aJoiig the curve.

These differeiices are sniall compared to the overall theoretical uncertaiiity 011 A (see below).
We thus ignore all correctious from b-quark loops in the following by utilizing Eq. (7.20).
which is strictly valicl ouly for /j •-. rn\j. also for larger values of /j.

In Fig. 7.2 we find below // = ̂ ^s(.- 4.C GeV no unique solution for Ajis. Tliis is remarkable.

but perhaps tolerable. since it is clear from Fig. 7.2 that the smaller of both Solutions for AMS

should be taken in the ränge 2.4 GeV /*•--. 4. 6 GeV. The larger solution generally corresponds
to values of Q S . wliich are nnich too large to insert theui in a perturbative QCD expression.
Morc disturbing for some authors 45.32 was the fact that there is no solution al all below
fi— 2.4 GeV. Since choosiiig the scale at /; — 1.5 GeV is recommended by the renormalization
scliemes (MS,/jAVp) and (MOM(3g),/;^AT ) (cf. Sectkm 2.2.3). this has cast doubt on the
reliability of calculating a, and A from the next-to-leading order expression of T g g K / T^M.

However, it pays to study more closely the origin of the strong scale dependeuce. For that
we rewrite Eq. (7.20) äs

,MS. "(T Tl -
7T

^>_k
v

where //p\, ^ s *lial ^falf where the first order correction vanishes f c f . Section 2.2.3). For

0.15 •__ ojp •_ 0.25 the factor in front of the logarithui raiiges from 0.60 to 1.00. This large
coefficient is the origin of the strong scale dependence. If we want \o assure tha t the first
order correction is clearly smaller than the lowest order. we can vary ^ only in a small ränge
around /'p1^. Since /*. on the other hand, is in principle arbitrary. this creates an inconsistent
Situation.
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In Eqs. (2.44)-(2.47) we have shown that the term

„jy ^ _1_—p—jn / — j (7.28)
TT 2 V v '

in Eqs. (7 .20) and (7 .27) originales from the runningof a, with p. The factor p—3 is the power
of a., i 11 the lowest order process. This, however, uieaus that the strong scale dependence
of the ratio rggg/FM/J is not connected to any details of higher order corrections, specific for
Fggg. 1t merely emerges from the fact that the leading order of Fggg/rMt, is p=3 ! In fact,
any other process oc a^ would have the same problem, since any process of that kind can be
written in the form'of Eq. (7.27). The only process dependent quaiitity is /Jp^c-

This clearly reveals. why processes oc a*, like rggg/r^gg. are niuch less sensitive to the
choice of scale. To create__the same change in the first orderte o efficient that is created for
Tggg/F^ by going from /Jp^c *° Mpjfc//' we have to go to /J^fc//3 f°r a process oc 0]. Or,
in other words, by slightly varying p in a process oc Q^, the higher order corrections change
rapidly. Explicitely calculating additional higher order corrections for Fggg is a cumbersome
task. Instead, one probably has to find a resummation procedure of the leading higher order
terms, which has beeu successfully applied in QED (see for example the exponentiation of
the Bremsstrahlung spectrum in Section 2.3.2).

In the following we will show. what might happen if we include higher order terms in
Fggg/FMM. For that we rewrite Eq. (7.27) äs

_ i
MS |

(T.29)
7T 7T

This expression is equivalent to Eq. (7.27) up to next-to-leadiiig order in a5. On the first
view it even looks physically better motivated. since it contains ihe correct scaling of a.,
according to Eq. (2.44). From that equation we see that originally the term l + pv was in the
denominator. The deeper reason for that is the resummation of higher orders in the gluon
propagator (Eq. (2.25)) analogously to the QED photon propagator (Eq. (2.17)).

However, this statement bases on the fact that we started out at f/ = /J^Asc- H we bad
started at ^=mT the above expression would be equivalent to writing the complete first
order correction [l 4- (a, /7r)( . . .)] from Eq. (7.20) into the denominator. This would imply
assumptions on the resummation of higher order corrections to rggg/rMM which cannot be
justified. Actually, we do know from the Renormaljzation Group Equation (2.32) and from
its solution (2.35) and (2.36) that the term l 4 (a s /7r) ( /3 0 /2) ln(^/ / / ) must go into the de-
nominator if all higher orders are included, but we do not know about all the other terms
which t heu appear in addition. In this sense the "inverted" Equation (7.29) can merely serve
äs an Illustration what might happen by including higher orders.

Looking more closely at the inverted Equation (7.29) it is evident that the problem of a
/j-range without a solution for A will not appear, since the first order correction for small
fj is positive. In contrast to that. the term in brackets in our original Equation (7.27)
becomes negative below // — 2.4 GeV. In addition, we expect that the inverted expression is
less sensitive to the scale p. since we have approximated the running of as. which reads with
v from Eq. ( 7.28)

.« 3/ / w , o L------- - --- — - -- =r a. ( i i ) l - 3i^ -f-
l -4 3 i> - 3i/2 - i'3 '

h
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In i he original expression the approximatioii is

7.32

which neglects higher order terms with larger coefficients.
This is confirmed by Fig. 7.3. where the Solutions from the original Equation (7.27) (solid)

and from the inverted Equation (7.29) (dashed} are plotted versus the scale //. Also indicated
is the ränge of Variation due to the experimental error on Twg/T^. The dashed solution
is defined everywhere and reveals a weaker dependeiice 011 f_i. However. we also notice that
the ränge of ^ values covered by the dashed curves is partially not contained in the ränge
of Solutions for the solid line. (Values of A •- 180 MeV are not covered there.) This means
that the Variation of A with p is not the whole story. Higher order corrections (like those
effectively included in the dashed lines) may still extend the ränge of possible Solutions for A
perceptibly.

AJIS (MeV
400.0

350.0

300.0 -

250.0

200.0

150.0 --

100.0 '-

50.0 :

0.0
l 6 7 8 9 10 11 12 13 14 15

// (GeV)
Figure 7.3: Solution for Ajls versus renormahzation scale / / ohtained from OUT nieasurenieiir
of B^(lS). The solid hnes are front the original expression for P(T --> p~ t*~ }. whereas the
dashed lines are an illustrative example for the possible effects of higher order corrections. The
hands indicate the experimental error on P. The second solution of the original expression

}.>= 4.6 GeV is not shown.

This is, strictly spokeii, true for every perturbative expression truncated at finite order.
Even if the /j-depeiidence of A is marginal. äs e.g. for the ratio ßggg/^-,gg (see Fig. 2.6 and
Ref. 122 ) which is linear in u.,, one can in pnnciple not V»e sure that higher order correction;-
do not change this j>irture. The true reason behind all this is clearly that o, is a relatively
largr quan t i ty in the Ge\.

\Vhat ran we Icarn from tha t? How can we test QCD äs a theory for strong interactions if
therc are such sovere ainbiguities in conipariiig theoretical results with experimental measure-
mrnts'.' The aiiswer is: Not from mir procest ahmt:. Each prorrss, Ulfe T^^ T/M. rgKt;/T^^
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uvers— or, better, completely independent quantities^ äs discussed in the next section — del ivt__
a solution for Ajls. The theoretical error on Aj*s from a single process can basically not be
quantified since the optimal choice for p is unknowii in fiuite order of perturbation theory.
All refined "guessworks" of choosing the optimal scale /J(,pl for a Riven process, which have
been discussed in Section 2.2.3, can not exclude t hat there are large higher order correctioiis
at their favorite scale j/o p t .

The only way out is to calculate Ajis from many independent processes allowing // to vary

in a sensible ränge (see Eqs. (2.58) and (2.59)). If the resulting values of A^ cluster around

a certain value this would mean a successful test of QCD. If few results for A*ls signiricaiitly
deviate from this "mean value", it might be an indication for large higher order correctioiis
in those special processes at the chosen scale //.

In this sense the determination of ös and A from the ratio rggg/rMfJ is äs appropriate äs
from any other process. There are no indications that this measurement leads to questionable
values of the free QCD parameter. The only difference to other processes is that the sensible
ränge of fj values is somewhat sinailer because of the power p=3 in leading order. In the
following we deterniine Aj15 and a, from our measurement of rggg/T,1M for the T(1S). and
compare it to results from other methods in Section 7.4.2.

From studying Figures 7.2 and 7.3 we select uour" sensible ränge for choices of fi äs to
be 5 GeV i / j < 15 GeV. The fact that there is no uuique solution below /j=/(jS?Asc=4.6 GeV
prevents us to use lower values for /j. To ''compensate" this restriction, we allow fi to go äs
high äs 15 GeV (corresponding to a MOM(3g) scale of 2.16x15 GeV = 32 GeV). We deterniine

our central value for AMS at 5 GeV. where the solid and dashed lines coincide. and estimate
the theoretical error by the difference to the Solutions of solid and dashed lines at ;/ = 15 GeV.
We note that this ränge covers also the solution of the inverted expression (dashed) at the
'"famous"1 scale /./ = !.o GeV. where the original expression (solid) failed completely6. The
experimental error is obtained from the mean width of the l s.d. band between 5 GeV and
15 GeV. From this procedure we get

= (210 ± 25lJä°) MeV = (210!if) MeV, '.33

where the first error is experimental and the second is theoretical. Their conibmed error is
obtained from a linear sum, because the theoretical error snrely does not follow a Ganssian
distribution, This result corresponds to a value of the st roiig coupling constant of

GeV) = 0.184 -

It compares well with the value op(5 GeV) = 0.19r0.03 (cf. Table 2.4) derived in Ref. '22,.
(In principle we could have evaluated o, at any ^cale fi from Eq. (7.33) and Eqs. (2.30) or
(2.38). The scale of 5 GeV was chosen just because the central value of A was detemiiiied at
this scaJe.)

We also calculate Aj s from our measurement of 5M / , (2S). In this case the experimental
error is still large. From Eq. (7 .24) and an analogous procedure we obtaiii

* M» / o o - ^ ^ ^ ' l • ; u l ^ T ' \  /  no" * -•'*" i h il \A4 — ( 2 o o r 1 1 0 _ 5 o ) Me\ ( 2 3 o _ ] t l o l ]\le\

'A lways keeping in niind t l iat the invcrt t -d rxpression is sort of art i f icial .
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Figure 7.4: SoJutioii for A}1S versus miormulization scaJe ^ obfained from the worJd average
va/ues ofB^(lS) (a) and B^(2S)(b). For a (Jescnph'oii of the curves see Fig. 7.3.

For completeness we lisl the results for Ajls derived from the vrorld averages of BgKK/B^

of the T(1S) (Fig. 7.4(a)) and of the T(2S) (Fig. 7 .4(b)) . They have considerably smaller
experimental errors and read. utilizing Eq. (7.25) for the T( lS ) ,

*?* =

and, utilizing Eq. (7.26) for the T(2S).

-!20\V t «V f l Q r - 1 3 0 v i, T - t-
50 ) Me\ I lö5_ 6 0 ) Me\ls - (215 ± 60lJ-°) MeV = (215:"?) MeV.(7.36)

(7.37)

All results agree well within iheir experimental errors. The experimemal errors on A^1b from

Eq. (7.30) are by far the smallest of any determination of AM S(see next section). Here. the
large power / '—3 of n,, in the leading order of rggg/TMAJ is a clear advautage.

7.4.2 Comparison to Results for A frorn Other Methods

Basically different inethods Io deterniine a, or A are measuremeiits of Ihc structure fuiictions
in deep inolastic lepton-hadron scattering (DIS). of the pliotoii structure function F' in -•--).
- — q . or -; - g collisioiis. of the ratio /?(.^) in r"* e annihilatioii and of the rate of 2-.3-. or 4-
jet events in e^e" collisions A'ia energy-energy correlations (EEC) or via other tools of jet
identification. A discussion of all these inethods leads beyond the scope of ihis work. A
concise review with a comprehensivr list of references can be found in the Review of Particle
Properties '22,. In Fig. 7.5 we compare our result on Ajls from ihe ratio Bmf.,'B^, of the T(1S)
(Eq. ( 7 . 33 ) ) to vahie^ obtained froni the other inethods äs collected in Ref. 22j. The two

errors giveii in Ref. 22 are added in qnadrature. We also list a result of A^ ls —(150- 90) MeV
obtained receiitly by the Crysial Ball collaboration 122 froiu the ratio B-, ~ BKKK/B^Kf. Its
error does not inchule scale dependences or unrertainties of higher ordrr QCD corrections.
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Figure 7.5: SoJutioii for Aj15 from different methods äs explained in the text. The largcr
error bars indicate estimates for additional uncertainties from scale ambiguities or higher order
QCD corrections. For convenience, the top scale gives the value of a^s(5 GeV") coxresponding
to the vaJues of Aj*s a t tJie bottom.

We linearly add an error of 30 MeV, estimatecl from the scale dcpendeuce of the dashed line
in Fig. 2.G.

All determinations of A}*s compare favorably among each other. They are all within one
Standard deviation consistent with a value of Aj15 between 135 MeV and 270 MeV (corre-
sponding to A.™* in the ränge from 90 MeV to 180 MeV). In spite of the large uncertainties
of each single measurcment their agreement is a clear^success of perturbative QCD.

Note that for a more precise determiiiation of Aj15 it is not eiiough to reduce the error
on only one of these methods7. Since for a single quantity the higher order corrections are
in principle uiiknown, one always needs a bunch of methods agreeing with each other within
comparably small errors. Because the theoretical crrors are large for most methods collected
in Figure 7.5, an overall reduction of all errors is not possible without more work on the
theoretical side.

7This is possible for ßggB/ß-,gg by avcraging Ihe Cryslal Ball nieasurenienl with prcvious results J 1 2 G ] froin
ARGUS, CLEO, and CUSB. Such an avcrage is not straightforward since all cxpcriiiienls have parlially corro-
laled errors, e.g. from the shapo of the pholon sportruni.



Chapter 8

Summary

We were able to extract three types of quantities from studying the //-pair decay of the T(1S)
and the T(2S) resonances.

First, the observed number of muon pairs and their cross-section led to measurements of
the muonic branching ratio B^ß and of the product of electronic branching ratio and mtionic
width B^T^^ for both resonances. From the latter quantity we could deduce FMM for the
T(lS) resonance.

Second, we obtained values for the total widths of the T(1S) and the T(2S) resonances
from the leptonic widths and branching ratios. These total widths are the basis for converting
theoretical predictioiis for partial widths into measurable branching ratios of the T stat.es.

Third, and most fundamental, we calculated the only free parameter of QCD. its coupling
constant QS, respectively its scale parameter A, from the ratio of the muonic branching
fraction and the branching fraction to three gluons.

We summarize the essential ingredients for these measurements below. The observation of
a small excess of /j-pairs from resonance decays above a large continuum background required
a thorough understanding of systematic difFerences between on-resonance and off-resouance
data samples. This triggered coiisiderable effort to improve the Monte Carlo Simulation of
our data and the reproduction of variations with time. This effort led to distinct improve-
ments in two program packages for the detector Simulation, one for the calorimeter. and the
other for the tube chambers. The reproduction of muonic energy depositions in the calorime-
ter was clearly improved by upgrading the Simulation of particle interactions in the widely
used GHEISHA program package. A bunch of correctious was introduced which should also
improve the GHEISHA Simulation of other detectors. Besides corrections of energy loss pa-
rameters and ^-electron production we deduced an expression for the restricted energy loss
with an extended ränge of validity. On the other h and the Crystal Ball tube chamber Monte
Carlo was amended by modeling the time dependent behaviour of essentially each single tube.

Other systematic time dependences in the experiment. like length and position of the

e4 e~-intersection region or the amount of beam-related background Signals in the detector
had to be monitored to fiiially reproduce ~- 10% changes in the detector acceptance with a
precision of less t h an 0.7(>(. To calculate tliis number. more than 20 systematic effects were

studied. which potentially iiifluence the acceptance by O.l'/c or more.

A not her valuable ingredient to our analysis was the DYMIT2 program for generating

radiative //-pair events. We modified tliis generator such that it could be used äs a efficient

and flexible tool for calculatiiig cross-sections and generating eveuls for a variety of ''boundary

conditions**.
In addition we iioticed. that a precision measurement of the c.m. energy was maudatory to

control effects which are introduced by interfereiice between contiimum and resonant //-pair
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production. The precise determination of the DORIS beam energy finally enabled us not
only to correct for this interference, but to present the first evidence for this interference in
the T system. It. further opened the possibility to determine for the first time the product of
electronic branching ratio and muonic width from a fit to the resonant /j-pair cross-sections.
Our values for B^ are the first measurements, wliich take this interference into account.
They are consistent with previous determinations of B^.

More than 13 years after the discovery of the T system the world average value for BMM(1S)
has gained a high precision with an error of less than 3%. The leptonic branching ratios of
the other narrow T states, however, have somewhat larger errors of 10% (T(3S)) and 16%
(T(2S)}. In fact, our ineasurement of I?MM(2S) with a combined statistical and systematic
significance of 3.6 Standard deviations is up to now only the second measurement with an
accuracy of better than two Standard deviations. The precision of the 5^(25) and 5^(35)
measurements should thus still be considerably improved, e.g. at a future T/B-factory.

We have shown that a (straightforward) scaling of BM(J(T(lS)) to the J/^ resonance does
not result in a branching ratio which is in good agreement with the measuremeiit of B^( J/V')-
Improving the yet poor experimental precision of B^(3/i}>) together with theoretical work
may give information about the source of this deviation. This would be of interest also for the
determination of aa from T decays, since higher order QS and t?2/c2 corrections to quarkonia
decay widths are obvious candidates for causing trouble in the scaling from the T to the J/V'-

The determination of the QCD coupling constant as, respectively of its scale parameter
A, from the ratio BSKK/B^ exhibits a strong dependence on the renormalization scale fj.. We
argued that this is not due to details of higher order corrections specific for this ratio. Thus,
there is no indication that this ratio leads to questionable results for as aiid A. A comparison
to other methods of determining A in fact reveals a good agreement among all results. This
represents a successful test of Quantum Chromo Dynamics as the theory of strong interaction.
The uncertainty of the QCD scale parameter A, however, is still considerable. It can only be
reduced with more work on the theoretical side, perhaps by a resummation of leading tenns
in higher Orders of the perturbation series.



Appendix A

A Verified Upgrade of the GHEISHA
Simulation of Particle Interactions

Comparing the GHEISHA 6/7 Simulation of particle interactions [90] to experimental and
theoretical knowledge, we were able to propose substantial improvements for the GHEISHA
code [89], which have been already partially implemented in the recent Update GHEISHA 8.
Our changes concern the Simulation of energy loss of charged particles, £-rays, multiple scat-
tering, negative particle absorption, light quenching in scintillators, and neutron capture.
They are supported by coxnparing the resulting detector Simulation to Crystal Ball data.
Below we will summarize those fields, which are most important for this analysis, namely the
changes in the 6-ray and energy loss Simulation1. More details can be found in Ref. [89].

Due to the momentum dependence of energy loss, 6-ray production, and multiple scatter-
ing, there are differences in the amount and the lateral pattern of the deposited energy for
low and high energy muons. Our studies were triggered by the observation, that the default
GHEISHA Simulation was not able to reasonably describe these differences (see Figs. A.6 and
A.3 below). With the help of our GHEISHA improvements we have been able to reduce that
systematic error of our analysis, which is connected with the reproduction of dependences of
the detector response on the incident muoii energy (cf. Section 5.3.3 on page 95).

A.l Changes in the <5-Ray and Energy Loss Simulation

1. Produce ^-rays in solids, too,
GHEISHA 7 generates them only in gases and liquids, GHEISHA 6 exclusively in cham-
ber gas. For a finely segmented detector like the Crystal Ball, the lateral energy pattern
of charged particles cannot be described without an explicit Simulation of £-rays, since
these knock-on-electrons may easily extend their electromagnetic showers into the ad-
jacent crystals. The effeci of this change is large for 5 GeV muons, which create £-rays
up to a maximum electroii energy of J^"101 — 1.4 GeV. and still perceptible for 500 MeV
muons, which have T™1 = 25 MeV (cf. Eq. (A. l ) ) .

2. Subtract the £-ray energy from the energy of the tracked particle.
This was simply forgotten in GHEISHA 6/7. However, the energies Te of most £-rays
are much less t hau the niaxinium eiiergy transfcr T™ax, which is in turn smaller than
T/2 for incident particles with kinetic energy T. mass m. and momentum ßy < r»/2r»<.
(cf. Eq. (A.l)). Siiice one would expect sizable effects only for ^-rays with Tc — T,

"All formula refer lo incident particles other than electrons. \Ve use Gaussian units throughout this chapter,
i .e. 47T£ ( I — l so lliat a — * 2 / / i r .
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this fix induces only marginal changes to the energy loss distribution of muons in the
Crystal Ball.

3. Use the correct relativistic formula for T™ax.
The maximum kinetic energy of kiiock-on electrons is given by

°~ " *~ , (A.l)

which can be deduced from Eq. (A.6) by setting cos# — 1. GHEISHA 6/7 uses the
approximation

17" = 2mec20V, (A.2)

wlüch is only valid in the Umit 7 <C m/2mf. The correction of the T™ax formula is very
small for low-energy muons. Yet, for ß^f — 45 it reduces Tcmax by 30% from 2.0 GeV
to 1,4 GeV. For ßj > m/2me, e.g. for muons with 11 GeV or more, the GHEISHA
formula (A.2) would even violate energy conservation, since then T™aT > T.

4. Use the exact £-ray production rate.
The number Ne of ä-rays produced with energy Tf in a given thickness dx is given
by [127]

^ J^ma:

where Q is the electric charge of the incident particle in units of e and D is proportional
to the electron density nt of the traversed medium according to

D - ̂ - ne = 0.1536 MeV/cm ( —^-r - ) . (A.4)
mcc2 \m A]

Here, p is the density and Z/A is the ratio of the charge to the mass number of the
medium.

The production rate of 6-rays in GHEISHA is described by

J2 \T f\t -l

m"

which misses the factor (l - ß2Tf/T™x) compared to Equation (A.3). This has a big
influence on the £-ray production rate near T4T1<IX.

5. Use the correct relativistic ejection angle.
The i-ray electrons are ejected under an angle 9 with respect to the incident particle
direction which we obtain from 4-momentum conservation äs

7777 / ß

l / " Te

ß

(A.6)
!

Tims, for iion-relativistic particle momenta (/?•> ^ ß <C 1) Te <£ 2T77fc2 holds for all Tr.
and we get in the low mouieiitum l i mit in agreement with the result of Reference [128]

( A . 7 )
N '
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COSÖ

ic ic lo io2 io3
Te (MeV)

Figure A.l: Theoretical ejection angle for 6-rays. The broken lines result from the nonrel-
ativistic approximation (A.7), the solid lines show the prediction of the correct relativistic
formula (A.6).

This nonrelativistic limit is used in GHEISHA 6/7.

The application of the correct formula for the 6-ray ejection angle is the most important
fix of the GHEISHA £-ray Simulation. This can be seen from Figure A.l, where cosö is
plotted versus Te for both the relativistic (A.6), and the nonrelativistic formula (A.7)
indicated by solid and dashed lines, respectively. For a 20 MeV 6-ray, one finds e.g. for
ß~Y — 45 almost orthogonal 8 values of cos# = 0.10 (nonrelativistic), and cosÖ =•- 0.98
(relativistic).

6. Fluctuate the energy loss below the limit T° for explicit £-ray generation
with a Gaussiaii distribution.
Simulating the energy loss in a given detector component, GHEISHA adds up smeared
niean eiiergy losses A.E in a couple of steps. The shape of the probability distribution
p for the fluctuations in the single steps does neither depend 011 the step size, nor
on the incident particle momentum, but is fixed to an approximation of the Landau
distribution accordiiig to

n
(A.8)

'

with a — l (0.85) for A < 0 (> 0). The oiily step size depeiidence lies in the \vidth
parameter o, which is given by

(T

In (l + .DA.r/7.5 eV
(A.9)
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Since the shape of the energy loss fluctuations of Eq. (A. 8) is fixed, the energy loss
distribution over a finite length, subdivided in several steps, depends on the number
of these steps and not only on the overall length. Covering the whole distance with a
single step would result in the Landau distribution of Eq. (A. 8). But already for the
about 20 steps of a high energy niuon tracked through the NaI crystals of the Crystal
Ball, GHEISHA cannot generate the proper Landau tail of the energy loss distribution.
Instead, the result from summiug the single Landau distributions from each step is a
Gaussian distribution around the sum of the mean values of the single distributions, äs
follows from the central limit theorem (see dotted line in Fig. A. 6).

In addition, these mean values (A£)mean = Af 4- 0.66<7 are systematically higher thau
the initial A.E. Thus, the mean value of the energy loss over a nnite length composed
of several steps comes out too large. GHEISHA 7 tries to avoid this inc.orrectness by
multiplying the smeared AE with a fixed correction factor PARMAT(material, l) for
each material. Its default values ränge from 0,86 to 1.00 for solids, from 0.92 to 0.98
for liquids, and from 0.33 to 0.68 for gases.

Explicitely generating £-rays above a limit T/, äs done through our chaiiges (l)-(5),
results in a correct Simulation of the Landau tail and of its dependence on the incident
particle momentum. We even can find a peak correction factor of PARMAT(NaI,l)
= 0.745, which reproduces the peak positions of low and high energy muoiis in the
Crystal Ball. This result, however, is based on a purely fortuitous coincidence of several
Parameters in our given case (see below). It depends on the chosen step size äs well äs on
the £-ray threshold T° . Since the GHEISHA step size can vary by more than two Orders
of magnitude for different materials, diflerent particles, or even for the same particle
type at difTerent momenta, it is impossible, to get a satisfactory description of the energy
loss for all particles at all momenta with a fixed correction factor P ARMAT (material, 1).
Both unwanted dependences on the step size and on the i-ray threshold are removed
by applying our corrected energy loss Simulation, äs described below.

As we saw, the dependence of the mean energy loss over a finite length on the step size
Ax, in which this length is subdivided, is introduced in GHEISHA by an inadequate
step size dependence of the distribution of energy loss fluctuations in Eq. (A. 8). We
correct the step size dependence by choosing Gaussian fluctuations for the energy loss
below T° according to

v2?r

Then the mean value of energy losses below T° in single steps becomes
and depends no longer on the width a. The larger energy losses get the proper step
size dependence via the explicit ^-ray Simulation. In addition the shape of the energy
loss in each step is correct, äs long äs T° is not much larger than the width er of the
Gaussian. (We have used T° — a — 2 MeV for a step size of 2 cm in the NaI crystals.)

7. Use a correct formula for the restricted energy loss.
If energy losses above T° are explicitely snnulated via ^-rays, the remaining mean energy
loss A.E restricted to energy traiisfers below T* in a step Ax is given by [891

l - " ' e < - J - - , 2 2 \? J Jr \ / . , -. i
In ^~/?V - ß U + r~- - *L {A.11)Q^

/^2

where / is the mean ioiiization potential of the medium, and 6 is the deiisity effect cor-
rection. It describes ihr effect of the polarizatioii of the traversed medium, which causes
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a Saturation of the restricted energy loss for high particle momenta. With the help of the
material dependent Sternheimer parameters2 C,fc, n,y0, and YI it is expressed äs [129]

6 = 0 for #7 < y0

6 = ln/3272 - C + 6(ln^)" for y0 < ß~t < Y^ - (A.12)

£> = ln/3272-C " for Yl < ß-y

The exponent n is close to 3 for most materials. The bouiidary momenta of the traiisi-
tion ränge between the uncorrected energy loss without density effect and the Saturation
value are formed by the parameters Y0 and YI. The boundary condition at ß~y = Y0

fixes the parameter 6 to

b = (C-l*Y,') In-M . (A.13)
V IQ/

Finally, the parameter C is given by the fact, that for very high energies the energy
loss no longer depends on the mean ionization potential / but merely on the electron
density ne [130], expressed in terms of the electron plasma frequency a;p. The theory
yields the following expression for C which cancels the I dependence of Eq. (A.11) for

— / I \ = 2ln -— +1, (A-14)

y fru'p j
where hup is given by

i / 2\
hwp = (2m,c2Dft0) 2 = 28.8 eV —^ - , (A.15)

x ! Vg/cm A)

and a-o = ft jf^f^t is the Bohr radius.

Formula (A.11) is usually cited [22] in the limit T° <C T™a* äs it was found by
Bethe [131]. Compared to the result of Bethe our derivation of the restricted energy
loss reveals an additional factor (l -H T°]T™ax), which exteiids the validity of Equa-
tion (A.ll) to all T° < Temax. The factor reduces for T? <T™X the calculated value for
the restricted energy loss by up to —5%. In addition, it creates a smooth continuation
of the restricted energy loss into the mean energy loss (Eq. (A.20)) at T° = >p™a:t. This
is needed for MC simulations of low energetic particles, whose values of Temaz are close
to the values, which are typically chosen for Tec.

The fact, that the GHEISHA energy loss Simulation with explicit 6-rays described our
muons reasonably well, is due to the cancellation of four errors. This can be seen by
confronting the GHEISHA energy loss Simulation

l)D^AT In l c ß2f M -23* - 26\ (A.16)

with the theoretically correct formula (A.11). The use of T™ar = 2mec2/3272 instead

of T° -- 2 MeV together with the doubled density correction ^ from Equation (A.12)

resulted in a plateau value for high momenta äs expected from the correct formula. The

resulting error in the amount of the relativistic rise was approximately cancelled by a

wrong density effect parameter C(Nal) = 3.40 instead of the measured value C(Nal) —

2In
«•1er set

comparison to the original Sternheimer parametrization using Ihe parameters C, o. m, A'o, --Y] our param-
t r , f c , n ,>" , „>" i is defined by C = -C,6= a / f l n 10)"1, n = m,Y0 = lOXa,andYl = 1QX>.
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Table A.l: Density effect parameters for JVaJ.

general expression

material fit s

C
6.06
6.06

n
3.00
3.04

Y0

2.86
1.32

Yi
1.00 -103

3.91 - 103

b
1.97 -10~ 2

0.99 - IQ- 2

6.06 [132]. The overall amount ofdE/dx was corrected by PARMAT(NaI,l). As pointed

out above, this approximate cancellation happened just by chance, given our special Tc°

parameter choice, and detector setup.

The application of formula (A. 11) guarantees the independence of the amount of energy

loss from T°. In addition it introduces the theoretically correct depeiidence of dE/dx on
the particle momentum. This brings the peak correction factor PARMAT(material,l)

to the expected value of about l for all materials, given the right material parameters

(see next changes for our case of NaI).

Use the measured mean ionization potentials.
GHEISHA uses the approximation from Ref. [133] for the mean ionization potential I

of materials with Z > 13

/ = 9.76 • Z + ~ eV. (A.17)

The results of this expression match very well with the measured values from Ref. [132]
äs far äs pure elements are concerned. However, there may be substantial differences
for compounds. Siiice the measured values of 7 and C are related via Equation (A.14),

we calculate I from C according to

r + (C-l)/2 / A T Q\ = hi^p€ . \A.io)

The correction of the mean ionization potential for NaI affects the total amount of
dE/dx by about 2%, but has neghgible effect 011 the momentum dependence of dE/dx.

9. Use the density effect parameters from "material fits".
Our final change is the replacement of the density effect parameters for NaI from the
"general expression" [134], used by GHEISHA, by those from "material fits" [132], äs

listed in Table A.l. Note, that the parameters n, Y"0l Vi, and b are highly correlated, and
that even a large Variation of these parameters may change the result only marginally.

In our case the modification results in a decrease of the simulated relativistic rise of

the energy loss between muon samples of /?7 ^ 3.5 and ßj = 45 from 10.4% to 7.8%.
The size of the decrease is consistent with the expected uncertainty of the "general

expression" for the density effect.

Altogether the changes (l)-(9) generate a consistent Simulation of 6-rays, dE/dx, and
its fluctuations, with no additional correction factors dependent on particle, momentum, or
material. The Simulation describes the energy loss distribution correctly independent of the
actual Simulation step sizes. This is confirmed by a comparisoii with our data.

A.2 Verification with Crystal Ball Data

The various changes of the GHEISHA Simulation of the energy loss of charged particles in
NaI have beeil verified with the help of t wo Crystal Ball /;4 / / ~ data samples of different muon
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energies. The high-energy //-pair sample comes from the annihilation process e+e~ —» p+fi~
at beam energies around 5 GeV. The low-energy sample consists of jz-pairs produced in the
two-photon reaction e+e~ —> e + e~/ / + ̂ ~ where the final state electrons escape the detector
under small angles. Here the muon energy typically lies in the ränge from 200 MeV to
500 MeV. The selection criteria were desigued to give unbiased distributioiis of the muon
energy depositions in the calorimeter [135]. The low energy muons were separated from the
high energy muons by the requirement not to reach the Roof-ToF counters.

A.2.1 The Lateral Energy Pattern

A useful test of our changes to the GHEISHA detector Simulation is to compare the measured
lateral energy pattern of the muons with those of the Monte Carlo. Besides the event vertex
distribution along the beam axis, there are two major reasons why the deposited energy is
generally not restricted to one single crystal: multiple scattering and 6-ray production. While
multiple scattering is the dominant effect for low-energy muons, the 6-rays govern the lateral
pattern distributions for the high-energy muons.

Figure A.2 shows various measured distributions of pattern fractions for both samples.
They have been defined in Sectioii 3.4. A general feature is, that the low energetic muons
tend to extend their energy depositious over more crystals, which results in a tail to lower

pattern fractions.

Integrating these distributions from right to left, we get the probability (or cut efficiency)
for a muon, having at least a certain fraction of its deposited energy distributed among l,
2, or 4 crystals (see crosses in Figure A.3). These integrated pattern distributions from the
data are coinpared to the results of the GHEISHA Simulation without 6-rays (dotted) and
with default GHEISHA 6-rays (dashed). Especially for the high-energy muons the Simulation
without 6-rays cannot describe the data and largely overestimates the cut efficiency. On
the other hand, the default GHEISHA 6-rays tend to underestimate the efficiency for the
high-energy muons by ~5% in the most commonly used ränge of cut values between 0.90 and
0.95.

After applyiug our changes to the GHEISHA £~ray Simulation we observe a very good
agreement of 1% to 2% between the integrated pattern fraction distributions of MC (solid
line in Figure A.3) and data (crosses) below 0.96. Only for pattern fraction values near l
deviations up to 15% for the low-energy and 5% for the high-energy muoiis still remain. These
regions correspond to energy depositions of less than 8 MeV outside the considered crystals,
which may be caused by photons radiated off by the final state muons. We estiiuate, that
an appreciable part of the difierence for the low-energy muons can be explained by this fact,
since only the event generator for the high-energy muon sample includes final state radiation.
The remaining differences in both samples may be attributed to inaccuracies in the event
generators, in the EGS 3 shower Simulation, the ball geoinetry code, or other error sources.

However, altogether Figure A.3 justifies and coiifirrns the correctness of our changes by
clearly showiiig an improvement over the default GHEISHA pattern Simulation with aiid
without 6-ia.ys through our corrected £-ray Simulation.

A.2.2 The Energy Loss Distribution

Having two muon samples with low- and high-energy nruons, respectively, we are able to
determine the relativistic rise of the energy loss peak positions between the two samples. The
high-energy sample contains monoenergetic muons with ß-y — 45, whereas the low energy
muons, accordiiig to a Monte Carlo prediction, are distributed essentially between ß-, = 2
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Figure A.5: Predictj'on for energy loss pea.k positions of muons in the Crystal Ball. The
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the curves are relevant for the energy loss peak position. The dots are the observed peak
vaJues of Edfp and their statistical errors.
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and 07 = 5. The measured distributions of the deposited energy Edep for both samples are
displayed in Fig. A. 4.

The theoretical prediction for the energy loss peak position (A-E)^* of muons in the
Crystal Ball, äs shown in Fig. A. 5, reveals three momenta ranges, which have to be described
by different expressions. Each of them has a counterpart in our muon samples. -

• The muons with ß-j i 3 stop in the ball and deposit all their kinetic energy T, so that

fc = T = mc2

for any given value of £7, äs depicted in curve #1. This part of the low-energy muons,
creates the broad distribution below the Gaussian peak in Fig. A. 4.

The Gaussian peak in the deposited energy distribution of the low-eiiergy sample arises
from the more energetic muons, which manage to traverse the ball. For these muons
•with 3 £ ß-f £ 5 a Gaussian approximation for the energy loss fluctuations is appropriate
in the Crystal Ball, since their marimum 6-ray energy of 10 MeV < T™01 £ 25 MeV is
of the same order äs the width v of their energy loss distribution. Their mean energy
loss including all energy transfers Te to the atomic electrons up to the kinematic limit
Temaiis given äs [131,136,129]

dx

/2m c2Tmaxl -t-111**- J- _ „n <> i

In -^TT^— £V - (A.20)

The peak position of their energy loss distribution is then obtained by integrating this
mean energy loss along their path through the crystals

= /
JO

0.6cm

'Ocm \o

yielding curve #2.

In thin material layers the energy loss distribution is not Gaussian, and the energy
loss peak position differs from f(dE/dx)mearidx. According to Landau [137] the most
probable energy loss in t hin layers is approximately given by the restricted energy loss
of Equation (A.11), if the cutoff parameter T° is chosen to be

T: = ̂ D^^x. (A.22)

The conditions for having a thin layer are (/T;710* < 0.05 and (AE)peat, ^ T. The most
probable energy loss is then given äs

0-198 (A.23)

where the contributions of energy transfers greater than ^ are accounted for by the
numerical correction term 0.198 [138], which raises the peak position generally by about
1%.

The Crystal Ball calorimeter fulfills both conditions for a thin layer for incident particles
of ß~f Z 15. Then the energy loss peak position is given by curve #3 obtained from
Eq. (A.23). In the iiilerinediate ränge 5 X fi-, ̂ 15 none of our forinulae i s accurale.
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The observed peak values lie at Edfp = 202.9 ±1.0 MeV for those of the low-energy muons,
which traverse the ball, and at Edep = 217.2 ± 0.4 MeV for the high-eiiergy muons. Since
Edep includes the final state photon radiation, an increase in Az due to the finite vertex
distribution, and the detector calibration, which alone may give rise to systematic errors of
a few percent, their agreement with the predictions is excellent.

The essential quantity to test a detector MC, however, is the diiference between the peak
positions, since most systematic errors mentioned above cancel in the subtraction. The sen-
sitivity of this test can be seen from the fact, that not only the three parts of the energy
loss distributions are described by three different expressions, but also that the predicted
(A-EJpeafc of the muons of ßf ^ 3.5 lies on a curve with a steeply falling slope. Therefore
small inaccuracies in the detector Simulation and its dE/dx parametrization, (but also in the
underlying momentum distribution from the generator for e+e~ —» e+e~//4/i~,) can change
the simulated peak value appreciably. To reproduce the relativistic rise of oiily 7% in the
energy loss peak position from ßf = 3.5 to ß*y = 45 correctly, it is crucial to exactly pre-
dict differences between dE/dx values for different uiomenta. Thus the use of an accurate

expression for the energy loss is important, including a proper choice of the deiisity effect
Parameters, which govern the momentum dependence of the energy loss in the relativistic
ränge.

For the following comparisons we first adjusted the peak position and width for the energy
loss distribution of the high-energy sample to match with the data. This was done with the

help of PARMAT(NaI,l) for AE, and by appending a correction factor PARMAT(material,5)
to a in Equation (A.9). Thus, the high-energy sample acts äs a reference for the peak position
and the width of the Gaussian pari of the energy loss distribution of the low-energy muons.

For a correct dE/dx Simulation, the factor PARMAT(material,l) should be very close
to l, and deviations, e.g. due to systematic detector calibration errors, should be less than a
few percent. Having eliminated this overall systematic errors via PARMAT(raaterial, 1), the
peak positioii of the low-energy sample can be studied with high enough accuracy to test, if
the Simulation reproduces the 7% relativistic rise in the energy loss peak position between

the two samples.

Fig. A.6 compares the data energy loss distributions (crosses) from Fig. A.4 to various
versions of the MC Simulation. The dotted line describes the default GHEISHA Simulation
without explicit />-rays, the dashed and dashed-dotted lines show iutermediate stages of the

MC Simulation, and the füll line is from our final Simulation after all changes.
Fig. A.6 confirms, that our modified GHEISHA Simulation can predict the momentum

dependence of the energy loss distributiou of charged particles in the Crystal Ball with high
accuracy. The measured peak position, width, and shape of the energy loss distribution for
both, the high and the low energy sample, are consistently described by our final Simulation.
The final value of the parameter for the peak adjustment, PARMAT(NaI, 1) = 0.995, clearly
iudicates the correctness of our changes. The parameter PARMAT(NaI ,5) for the width ad-
justment has the value 1.9. It accounts for inaccuracies in the amount of the simulated dE/dx
fluctuations äs well äs for the detector resolution of the NaI crystals for ionizing particles. (We
caimot test the validity of Equation (A.9) for dE/dx fluctuations, since the energy resolution
for ionizing particles in the Crystal Ball is not known.)
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Figure A. 6: Simulation of muon energy depositions in the Crystal Ball. The results for the
low-cnergy muons axe shown in the upper plot, Uiose for the high-energy muons in the Jower
plot. Crosses are data, Jines represent Gaussi a« nts to the re.sults of various versions of
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Appendix B

The Erlangen Tube Chamber MC

For a realistic MC Simulation of the Crystal Ball tube chamber it is not enough to cover
the three different Setups with their differeiit modes of Operation (cf. Section 3.1). Even
within each setup there were large variations in the chamber performance. The old streamer
tubes kept degrading through the growing of orgamc molecules on the wires, which forced the
oollaboration to lower the high voltage in order to prevent sparks. This made their response
efficiency and their pulse height distribution time dependent.

After the replacernent of the streamer tubes by new proportional tubes in a two-step
upgrading process the efficiency was greatly improved. However, still a distinct time depen-
dence of both, efficiency and pulse height, was observed, which also led to a Variation of the
z-resolution with time. The time dependences were introduced by repeated damage of the
hybrid amplifiers through sparks, by changes in the high voltage setting in order to minimize
sparking, and by other effects like pressure and temperature variations.

The Erlangen Tube chamber Monte Carlo (E.T.MC) is designed to model the chamber
performance by thoroughly reproducing differential distributions and their time dependence.
These distributions cover the interdependences between pulse heights, c-resolutioii, efficien-
cies, particle momenta, and directions. The E.T.MC replaces an older Crystal Ball tube
chamber MC [139], which simulated only one typical snapshot of each chamber setup with-
out a detailed reproduction of the above meiitioned interdependences. The old code was
adopted äs a basis of our Simulation aud partially rewritten or extended.

In order to properly model the time-dependence of the tube chamber performance, we
subdivided the Crystal Ball data sample iiito a total of 220 periods. Most period boundaries
were defined by perceptible changes in the mean pulse height or in the efficieucy of at least
one of the double layers. In additiou, new periods were started at any major change of beam
energy or trigger setting. On an average, each period corresponds to about 50 runs (fills of
the DORIS ring) equivalent to about 2 days of data taking. The actual size of a siiigle period
varies from 7 ruus to 450 runs.

The E.T,MC input parameters, which are suited to uiodel the pulse height distributions,
r-resolution, and efficiency, and their dependences 011 particle momenta and directions, have
to be extracted for each period from measured data. As a reference data set we select
Bhabha events and perform a track reconstructioii (i.e. assignment of hits and fitting of
directions) with the help of the TAGTRK routine |85i. In order to obtaiii complete pulse
height distributions we retrieve all hits down to pulse heights of 10 mV and 200 mV for the
proportional and streamer tubes, respectively. from the raw data (cf. Section 3,4). This is
well below the pulse height cuts applied in the Crystal Ball eveiit reconstruction,

In the following we discuss in detail, how the E.T.MC input parameters have beeil ex-
tracted from the sclected reference data, aiid how the parameters are employed to model the

144
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complete performance of the tube chambers for arbitrary particle momenta and directions.
A short summary of these details caii be found in Section B.4. The results of the Simulation
are illustrated by distributions for the old setup, consisting of three double layers of streamer
tubes, and for the new setup, composed of four double layers of proportional tubes. (The
intermediate setup was composed of double layers #1 and #2 from the new setup and dou-
ble layer #3 from the old one.) We use the Symbols for various geometrical parameters äs

depicted in Fig. B.l.

l = l _ L / s i n 6
l = l - cotO

Figure B.l: Definition of various geometric parameters for the tube chamber Simulation. The
figure shows a single tube, traversed by a charged particle (dashed-dotted line). The z-axis
is the. beam line. The relative sizes of the tube length 2L, the tube diameter 2r, and the
distance R to the beam line are not on scale.

B.l The Pulse Height Distributions

The basic Output signal of each tube chamber hit are the pulse heights 5,, (i—1,2), at both
ends of the tube. They emerge from amplifyiiig the charge signals Q, at the ends of the
resistive wire resulting in the respective measured pulse heights S* (Fig. B.l) given by

where g, are the gain factors (of dimeiision 1/capacitance) and P, are the pedestal voltages.
The pulse heights S, are deierniined from the measured pulse heights S" by subtractiug the
mean pedestal voltages (P,)

•v — *?* — (P-\ nO /R f>\* J *-. \* I / 1̂ ~' Wl W T • l U ••— 1
I 1 \ f J I + * \

The total pulse height S is t hon defined äs the sum

5 = 5 1.3)
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To separate genuine chamber hits of charged particles froni noise or background, only those
hits are used in the Crystal Ball event reconstructioii, whose total pulse heights S exceed
a (run-dependent) pulse height cut Scvt. The efficiency for chamber hits thus depends on
the distribution of S for a given particle. Also the precision of extracting the c-position of
a hit from its charge division into 53 and S2 is a fuiiction of S, äs described in Sectkm B. 2
below. The correct modeling of pulse height distributions is thus an unconditional basis for
reproducing the resolution of the ^-position äs well äs the efnciencies with meaiis of a MC
Simulation.

The pulse height measured for a charged particle traversing a proportional tube depends
on its specinc ionization d E / d l ( ß - f ) , on the path length /(#, d) inside the tube, and in addition
on some "edge effects" es(z) in the vicinity of z = l

S=Spropo(/?7,M,?). (B.4)

The pulse height in streamer tubes is in principle independent on the primary ionization (i.e.
on dE/dl and /). It is thus identical for all particles and particle momenta. We empirically
observe, however, an approximate 1/sinö dependence, which may arise from the larger gas
volume available for the formation of streamers at sinailer values of sin 0. Thus. 5 is a function

S = S,treomfr(e,z), (B.5)

where the z dependence again arises from edge effects at \z\ 1.

We model the chamber pulse heights and their Variation with time by simulating the pulse
heights S startiug froni reference pulse height distributions S/,ic. These refereuce distributions
are obtained from our Bhabha event sample for each Simulation period and each layer. They
are partitioned in about 50 bins, and recorded on. the E. T. MC input file.

To serve äs a reference, Sjue must not be sampled over the füll ränge of /37,0,<f, and
z encountered in the Bhabha events. Instead, Sjnf should refer to fixed reference values

dE/dl(ßifnf), l f l t l , ( 6 , d ) , and es,/;/c(z), so that the dependence of 5 on these variables can be
properly introduced afterwards. This condition is trivially fulfilled for

dE dE
(10000),.,

dl dt

siiice dE/dl changes only very weakly from beam-energy electrons (ß-) ^ 10000) to lower

energetic electrons in radiative Bhabha events (see Fig. B.4 below). The edge effects es(z)

can be eliminated by requiring z < 0.8 yielding (cf. Eq. (B. 9) below)

csjllt = es( ~ < 0.8) - 1.

Thus, only the dependences of the observed pulse heights on / for the proportional tubes
and on 1/sinÖ for the streamer tubes are left. Since the total path length 1(0, d) inside the

tube is given by / — l±(d)/ siu9 (see Fig. B.l) we can remove the 0-dependence for both, the

proportional and the streamer tubes, by multiplying the measured electron pulse height Se

for each hit with the corresponding value of sinö. For the proportional chambers this multi-

plication scales the pulse height to a reference path length lfnf = l±(d], which still depends

on d. To fiiially remove also this dependence, we collect only those hits, where the electron
track intersects the tube within \d\ 0.4. i.e. where /± =; IT. A precise enough measurement

°f ^il^) for each hit in order to explicitely remove the d dependence analogously to the 0-
dependence is not possible. The effectlve reference path length is then //,;, = ( / i ( d\ 0.4)},
which can be expressed with the help of a scale factor / slightly larger t hau l äs



B.l. THE PULSE HEIGHT DISTRIBUTIONS 147

5 mV dN
N dSfile

0.08

50 mV dN

0.06

0.04

0.02

0.0

T 1 r r

0

~i 1 1 1 1 1 r

1000 2000 0 100 200

filfL
0.08

0.06

0.04

0.02

0.0

Figure B.2: Reference distributions Sfne ofthe chamber puJse heights for streamer tubes (left)
and proportional tubes (right) for one layer in one of the 220 E.T.MC Simulation periods.

If d could be measured exactly, our cut in \d\d correspond to / = 1.03. Without a cut
in d — or, equivalently, for a very poor resolution Ad ^> r — we would have to average over
all possible /j_ values resulting in / — 4/?r — 1.27. Practically, the finite (p resolution A^ of
the track reconstruction procedure1 implies a finite resolutiou Ad = R&p. The factors / will
thus depend on the layer radii R. We find values ranging from / — 1.12 for the innermost
double layer to / — 1.18 for the outermost double layer of tubes.

Summarizing, we collect reference pulse height distributions S/,/«, by recording the product
of pulse height Sc and sinö for those hits in Bhabha events, which have been assigned to an
electron track and fulfill the above constraints, i.e.

= sin0-S,(/37 = 10000, < 0.4], z < 0.8), 1.6)

where the constraint in squared brackets is applied for proportional chambers, only. We show
one example for the resulting distribution of S/u* for a layer of streamer tubes and a layer
of proportional tubes in Fig. B.2. The streamer pulse heights are by niore than a factor 10
larger than those from the proportional tubes.

In our MC Simulation these distributions are used äs a probability density for gener-
atiiig a pulse height So for each tube hit iu the given layer and dat.a takiug period. For
the proportional tubes the final simulated pulse height is then obtained by scaling S0 with
the ratio of path lengths l/ljtu = (l±f sin 0)/{2r//), with the ratio of specific ionizations

^f (10000), and by correcting for edge efTects yielding

So
(B.'

't^ is measured from a fit through all tube hits associated with a given track. We use only tracks with a
large enough number of hits so that d of the hit under study is determined accurately enough from all other

assocvated hits.
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For the streamer tubes this reduces to

g
$,treamfr = -T—^5(2)- (B-8)

sin p

The functional form of the edge efTect has been obtained by plotting (SsinÖ) versus. ~\e
find, that we can describe the data with

l?-0.8

1-0.8

for

for

< 0.8

> 0.8
(B.9)

Figure B.3 confirms this ansatz by a comparison of tube hits from Bhabha electrons with
their MC Simulation according to Eqs. (B.7),(B.8), and (B.9). Away from the edges in z we
observe the expected flat behaviour of (Ssinö). The magnitude of the MC prediction agrees
very well with the data. (The ränge of z values plotted for each layer is dictated by the
layer geometry and the ränge of possible B angles for the corresponding energy clusters in the

calorimeter via z — R cot 6/L.)

For the proportional chambers the pulse height dependence on the primary ionization

dE/dl(ß-y) is modeled according to Eq. (A.23). The resulting specific energy loss dE/dl(ß~y)
for the gas mixture in the proportional chambers is shown in Fig. B.4 together with the curves
for pure Ar and pure CO2. We check the correctness of the pulse height Simulation and its
dependence on /?7 with 5 GeV electrons from Bhabha events (ßf— 10000), 5 GeV muons
from e+e~ —> /i+/x~ events (ßj ^ 50), and muons from the two-photon process ee —» ee^//j
with energies typically ranging from 0.25 to 0.5 GeV (2 Ä ß-y £ 5). The measured distributions
of hit pulse heights (collected without restrictions in z, 0, and d) for these particles are shown
in Fig. B.5 together with their E.T.MC predictions. We observe a good reproduction of the
data behaviour.

Figure B.6 shows the reproduction of the changes in the mean pulse height with time for
Bhabha events from the T(2S) data. The data are averaged over 5 runs each, whereas the
E.T.MC prediction is plotted for the ränge of runs corresponding to each Simulation period.

B.2 The ^-Resolution

The z position of the hit along the wire can be obtained from charge division by

01^02 ( B 1 Q )

Qi + Q2

which can be expressed in terms of the pedestal subtracted measured pulse heights (Eq. (B.2))
äs

where £ — (91/92) is the mean gain ratio, which changes from tube to tube and ranges
typically from 0.8 to 1.2. In Eq. (B.11) we have neglected small effects introduced by the
fmite amplifier impedances (cf. Ref. [83]). The experimental error of the measuremeiit of z is
iutroduced by the finite variations A<7,/<;, of gains and AP, of pedestal voltages arouiid their
uiean values for i = 1,2. From Eqs. (B.l) and (B.2) we find

(AS,-)3 =

* (AP,)2 + (S,=^. (B.12)



B.2. THE Z-RESOLVTION 149

(SsinO)
2000 i i . . ' i

1500 -

1000 -

-0.4 -0.2 0.0 0.2 0.4-1.0 -0.5 0.0 0.5 1.0

Figure B.3: Mean (S sin 6} distributions for Bhabha electrons in the streamer tubes (upper
plots) and the proportional tubes (lower plots) along the z-axis of the tubes. Open circles are
data, crosses are E. T.MC, and the dashed line is the prediction of the older Crystal Ball tubc
ch amber MC. The left-hand side is plotted for one of the innermost Jayers, tJie right-hand
side for one of the outermost Javers. With the exception of the outennost streamer layers,
our ansatz for 5(0, z) is confirmed.
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Figure B. 4: Specific energy loss d E f d l ( ß - y ) in the proportional tubes, normed to that of
p&rticles with ßi = 10000. The dotted line is for pure Ar, the dashed line describes pure
CO2, and the solid liue is valid for a 80:20 mixture of both components.
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Figure B.5: PuJse height distributions SshiO for electrons with ß~i ~ 20000 (data: solid,
E.T.MC: open circles), for muons \\~ilh ß-, ^ 50 (data: dashed, E.T.MC: crossesj, and for
muons with 2<ß~v<b (data: dotted, E.T.MC: open squares). The old Crystal Ball tube
cjiamber MC did not simnlate any ß~;-dependcnce of 5.
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Figure B. 6: Meau puJse heights of Bhabha electrons from data (dots) versus run number and
their reproduction by the E.T.MC (crosses). The old Crystal Ball tube ch amber MC did not
siniulate a run dependence within each ch amber sefup.

Since the 5 resolution is roughly the same for all tubes in a layer2. we do not parametrize the
signal smearing AS; for each tube separately. but insert average values APj — AP2 = AP
and Ag] = Afl2 ^ Ap for all tubes in a layer. In additioii. already the initial charge Qi + Q2

is smeared OUT on the wire over a fiiiite length 1\\ \ cot 9 (cf. Fig. B.l). To accouiit for the
propagation oi this smearing into the measured signals 5, we add a term oc ( S\h 52 ) cot 0 to
the expression for AS,. It will be proven beloiv 10 be justified. Thus we have

B.13(AS,)2 - (AP) 2 - (S,--f - (cScot f l ) ,

where the constants AP. A<?/<J, and c have to be determined for each layer in each Simulation

period.

Averaging over -\vhole layers we find to good approximation £ == 1. The experimental error

on z =; (Si — S2)/(Si 4 S2) t heil becomes

(AS, (AS2)2

45

45?
AP

A<? 2

- ) - (cS col

1t pays to study the behaviour of this expression a.t F ^ 0 and 5! = l. In the middle of the

2\Vith the exception of efi'ccts indur t -d by the DORIS Synchrotron radiation discussed helow
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tubes we find with 5, - 52 = 5/2 and cot 0 - 0

, * - ,2 JAP):

52 2 V 9

At the end of the tubes the expression (B. 14) becoines with 53

52 - 0

(B.15)

— 0. 52 - 5, or 5j — 5,

Both expressions show a 1/52 dependence for small 5 approaching a constant for large enough
5. If we h ad omitted the terni oc cot 0 in Eq. (B.13), we would have found (AS)2 —* 0 for
S —> oc and z —* 1. Such a behaviour is not observed in the data (see Fig. B.7).
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Figure B.7: Mean squared z deviation from the f i t t e d track versus total pulse height S for
tube hits in Bhabha events. The open circles are for z ^ 0 and the filled circles are for

For large pulse heights 5 we find instead the resolution (A?)2 for |~ — > l to be even larger
than around ~ ^r 0. From the ratio of both curves in Fig. B.7 and Eqs. (B.15) and (B. 16} we
find for the two outermost double layers a value ot c zz QA&g/g stable for all run periods.
We assuiue that the inner double layers can be described with the same value of c. (For these
layers we cannot determine c from the resolution at 5 ^ l, since the tracks of all particles
entering the Main Ball intersect the chambers within \~ £0.35 and (5JÄ0.45, respectively.)

Beyoud \z — 0.8 the resolution is again influenced by edge effects. We parametrize

c = 0.4max |5| - 0.795) ,

so that c - 0.4A^/fl is valid for at least all \~ < 0.795. The fuiictioual dei)eiidence for
has been deduced froni the data.

(B. 17)

* l
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There are two more effects, which call for a rnodification of Eq. (B.13). First, AS is
roughly ideiitical for all tubes only within each of the outer double layers. For the two
innermost double layers it reveals Spikes around ^ = 0 and (f> = 180° (see Fig. B.13), which
originate from small additional background charge deposits somewhere aloiig the wire. They
are caused by photo-electrons from Synchrotron radiation, which is preferably emitted in
the plane of the storage ring. These background charges are even too low to be sufficiently
modeled by adding hits from background events to each MC event (cf. Section 3.5). They
instead have to be put in by hand by parametriziiig the <^-depeiidence of the simulated Az
resolution äs

A£(y) = A2(90°)(sin9)-°-35 for layers #1 - #4. (B.18)

Second, the shape of the AS distribution is not Gaussi an, but reveals tails both for the
proportional and the streamer tubes (see Fig. B.10). The tails are more pronounced for the
inner layers indicating also a beam-related origin. In the MC Simulation we include both
effects most easily by modifying the Si&g/g term in Eq. (B.13) äs described below.

Summarizing, we obtain the smeared rueasured pulse heights Sj and S^ in the following
way. First, according to the z position of the hit, the total pulse height S is divided into 5]
and S2, which are esseiitially given by

and ..-4 (B.19)

In fact, all corrections from finite amplifier impedances and gain ratios £ ^ l are properly
included in the program. The values of these parameters are taken from the data calibration
files.

Second, the pulse heights are smeared by adding three randomly chosen quantities

5; = S, 4- SQ + Sg + P„-, (B.20)

each corresponding to a term in Eq. (B.13). The initial charge smeariiig SQ is modeled äs a
Gaussian with a probability distribution of

2-7TO-Q
dS,

<JQ —

B.21)

B.22)

where c is given in Eq. (B.17). The gain smearing Sg is described by a Gaussian with smoothly
attaclied power tails according to

p(Sg}dSg = k(rt)e dS for

for layers #1

for layers ^5 - #8.

(B.23)

B.24

where k ( r i ) is a normalization coiistaiit. For the power n we find

7! = <

1.5
1.6
2.0
3.0

for layers
for layers
for layers
for layers

streamer
1.2
3.4
5 ;G

proportional

1,2
3.4

5. G, 7, S.

;B.25)
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Finally, the pedestals are added at each end via

p(P,)dPi = -4-—exp (B.26)

<rp = AP, "(B.27)

where the mean pedestals (P,) are taken from the data calibration files.

The resulting pulse heights S* can then be treated like real data, i.e. pedestal subtraction
(Eq. (B.2)) and 2-reconstruction (Eq. (B.11)) are done by the same programs using the data
calibration files.

Since c and &g/g are related via Eq. (B.17), the basic parameters for the Simulation of
the pulse height smearing are &g/g for the streamer tubes, and both Ap/p and AP for the
proportional tubes. (The pulse heights of the streamer tubes (Fig. B.2) are so large that the
£-resolution has already approached a constant value iiidependent from S (Fig. B.7), and
thus from AP (Eqs. (B.15) and (B.16)).) These input parameters have to be deterniined
from the data separately for each layer and each Simulation period.

The extraction from the measured resolutions, like those in Fig. B.7. is not straight for-
ward. First, the measured (Az)2 in a given layer is calculated äs the mean square distaiice
of the hits to the fitted tracks. It thus includes the resolution of the TAGTRK tracking
routine, which in turn depends 011 the z-resolution in all other layers. Secoud, eveu for ideal
resolution, the observed (Az)2 at high pulse heights S and 5^0 (Eq. (B.15)) is actually not
equal to (A<7/</ ) 2 /2 , but is increased due to the power tails in p($s) in Eq. (B.23).

In order to extract A<?/<? and AP, we fit the measured (&z(S))i_0 (e.g. the open circles
in Fig. B.7) with the function

(A-)i „ = 2^- + h* (B.28)=0

where a and b are free parameters (compare Eq. (B.15)). These parameters are a measure for
AP and Ag/#. We now search for that pair of values (AP,A#/g), which has to be plugged
into the MC Simulation, so that the MC output is described by the same values ( 0 , 6 ) äs
the data. For each chamber setup and each layer we put 4 values of AP and &g/g into a
MC Simulation of e+e~ —» e+e~ and aiialyze the MC output like our Bhabha eveuts. Fitting
the above function (B.28) to the plot (AS(5))2 obtained from our MC events. we find the
relations a( AP) and b(Ag/g). An example for oiie layer of the proportional chamber setup
is shown in Fig. B.8. These dependences are fitted for each layer with the empirical function

, & r> gj^s/g , R o q ^and -r = B < ———. m.J9
mV " V mV %

Depending on the layer mimber we find A=0.8-1.0, p=l.C and 5—4-7, <? = 2-3 for the pro-
portional tubes and slightly larger values of g = 3-5 for the streamer tubes.

The parameters AP and &g/g for each layer in each of the 220 Simulation periods are now
obtained by fitting the function (B.28) to the measured distributions {A5(S))~__ 0 äs described
above. We then convert the fit results a and b into the corresponding parameters AP(«) and
Ag/g(b) with the help of Eq. (B.29).

The distribution of these final input parameters for all layers in all periods is shown in
Fig. B.9. We find typical values of AP = 0.6 mV and £g/g^ 0.5/5 considerably varying.
however, from period to period. The pedestal voltuges span a smaller region t hau the gain



B.2. THE Z-RESOLUTION 155

(a/mV)2

1.0 i ' i - i

0.8

0.6

0.4

0.2

20 -

10 -

Q Q l i l L l i L_J l , L_i l L. l .j l i l i l Q l .... l . . . . l . . . . l . . . . l . , . l . , , . l , , , .

0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.5 1.0 1,5 2.0 2.5 3.0 3.5 4.0

(AP/mV)2 (lOOAcj/t,)2

Figure B.8: Typical relation between the measured z-resolution parameters (a, 6) and the
charge smearing parameters (AP, Ag/g) in the E.T.MC Simulation.
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Figure B.9: The diatributlOD of the charge smearing parameters AP, and Ag/g entering the
E.T.MC Simulation.
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widths. The ränge of gain widths even continues outside of Fig. B.9 up to ~ 8% for 8 Simu-
lation periods (= 15 pb-1of data), where the tube chamber ADC was nonlinear3.

With theseinput parameters and Equations (B.20)-(B.27) and (B.17) above, we can now
simulate the shape of the z-resolution and its depeiidence 011 S, <^, z, and tiine. Typical
examples of these dependences are shown in figs B.10 to B.14. The "microscopic" treatment
of the charge sinearing together with the correct charge distribution enables us to predict the
z-resolution for any particle momentum, direction, and running conditions.

0.5% dN

0.0
0.002

0.001

-20 -10 0 10 20 -20 -10 0 10 20

A5/% A5/%
Figure B.10: Distribution of AS for BJiabha electrons. Open circJes are data, crosses are
E.T.MC, and the dashed Jine is the prediction of the oJder CrystaJ BaJJ tube chamber MC.
TJie Jeff-Jiaud pJots are obtaiiied from one Jayer of streamer tubes, tJie right-haiid pJots
are from one Jayer of proportionaJ tubes. TJie Jower plots show the reproduction of tJie
nou-Gau.ssjan tails.

3DHaiIed systematir effects of t l i is had ADC, l ike nonlincari ty only for certain valiu-s of 5,, corresponding

to certain ranges in S, are not inodelcd. liowever.
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Figure B.12: Alean squared ~ deviation front the fitted track versus z for Bhabha electrons.
Open circles are data, crosses are E.T.MC, and the dashed line is the prediction of the older
Crystal Ball tub? chamber MC. The left-hand plot is obtained from one layer of streamer
tubes. the right-hand plot is from one layer of proportional tubes.
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Figure B.14: Mean sc/uarec/ ~ deviation of hits in layer #1 from the fitted electron tracks
for run periods in the setup of streamer tubes (a) and proportional tubes (b). Open circles
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Crystal Ball tube chamber MC. Not all periods were included in the E.T.MC Simulation. In
runs 13872 to 14566 a bad tube chamber ADC \vas installed.
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B.3 The Hit Efflciencies

The tube chamber Simulation of pulse height and charge smearing is completed by the Simu-
lation of the hit efficiency £hlt, i.e. the probability that we will find a tube hit from a charged
particle traversing a tube chamber layer. This probability is a function of tube geometry,
pulse height cut 5cu(l and of hardware features like edge effects c e ( d } . ff(z] or hardware
inefKciencies of single tubes

The tube geometry is implemented with tube positions taken from the <^> calibration files,
tube radii p ~ 5.6 min and 6.1 mm, and tube wall thicknesses of p — r ~ 0.08 mm and
0.18 mm for the streamer and proportional tubes, respectively. (The streamer tubes in the
innermost double layer had radii of p — 4.8 mm, only.) Having simulated the tube geometry
and the pulse height distributions correctly, a proper efficiency reproduction is obtained for
those hits which are not. influenced by edge effects or by bad hardware. We account for
possible hardware faults (bad or broken amplifiers, bad or broken wires) by a factor etubf for
each single tube. This factor ranges from zero for dead tubes to one for fully efficient tubes,
It is obtained for each tube in each of the 220 periods from monitoring tracks of Bhablia
electrons, which intersect the respective tube in a large enough distance from its edges, i.e.
at \d\ 0.4 and z < 0.8. In contrast to the proportional tubes, where values below one are
found for few tubes, only, considerable hardware inefficiencies are encountered for most of
the streamer tubes. They were connected with the growth of organic molecules on the wires
äs mentioned in the beginning. Examples of etu^ values in one Simulation period are plotted
for one layer of streamer and proportional tubes, respectively, in Fig. B.15.

1.0

0.8

0.6

0.4

0.2

0.0
10 40 70 10 40 70

tube number tube number

Figure B.15: Example for c.iu^ parameters entering tlw E.T.MC Simulation. The left-hand
side is for a htyer of streamer tubes, the right-hand side for a layrr of proportional tubes.
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Additional inefficiencies arise at the end of the tubes and near their walls. We find that
the decrease of efficiency at the end of the tubes cannot be completely attributed to the
decrease in pulse height (cf. Eq. (B.9)). Instead, we have to introduce an additional edge
correction ec(z)

UI-0.83

0.93-0.83

for |~

for 15

: 0.83

> 0.83
(B.31)

Beyond z\ 0.93 the tubes seem not to be active at all. This parametrization reproduces
the functional dependence e(5), which is found in the data (Fig. B.16).

1.0 -

0.8 -

-0.4 -0.2 0.0 0.2 0.4-1.0 -0.5 0.0

Figure B.16: The Int efficiency äs a function of the measured 5 for sfreainer f.ubes (upper
plots) and proportional fubes (ioiver plots) fdong the z-axis of the tubes. Open circles are
data. crosses are E. T.MO, and the dashed line is the prediction of the older CrystaJ Ball tube
chamber MC. The left-hand side is plotted for one of the innermost Jayers, the right-hand
side for one of the outennost layers.
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A success of our pulse height Simulation is, that we do not need any edge correction ff(d]
for the proportional tubes. Instead. the functional dependence is fully explained by the pulse
height cut Scvt rejecting more hit s at large ,<f. since the path length / decreases äs a function
of \dr For the streamer tubes. however. we havc to mtroduce an edge function ( f ( d ) . which
has a width of — O.lr. i.e. at d ~ 0.9 we model a 50% inefficiency. The reason for an
inefficiency near the tube wall s may be connected with a higher recombination probability of
the ionized gas atoms. The resulting MC reproduction of c h , t ( \ d \  is shown in Fig. B.17.

-hit
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Figure B.17: The hit efficiency äs a function of Üie nieasured \d\r streamer tube.« (Jefr-iiand

s i d f ) and proportional fubes (right-jjaiid side). Due to fiie fiju'fe resolution i\d the nieasured

eflicieucv at j r f , = J i? not zero. Open circles are data. crosses are E.T.MC. and the da.shed

hne is the prediction of the öl der Crystal Ball tube chamber MC.

In the E.T.MC Simulation, we simulate a hit for a traversed tube with a probability

thardwart obtaiiied froin the product of the f-factors derived above

Ehardwart = * tub, t c ( = ) \ c ( d )] . (B.32)

The factor in brackets is for streamer tubes. only. Together with the efFect froin the pulse
height cut Scut thib Simulation correctly reproduces the hit efficiency ^h„ (Eq. B.30)) for each

tube together \vith its time dependence.

B.4 Short Sumrnary

We obtain a comprehensive reproduction of the tube chamber performance and its time de-
pendence by extracting basic Simulation parameters froin Bhabha events. For each of 220 data
T\*»T-1 fH"l t Q Tl /•! *» fj /^ l l J \ - f 4 T h *» (X f W l l *fc T*iT~ C 1I-*i /"l*if<iT'tT"llT1**periods and each of ihe 0 ( 8 ) layers we de-termine

hardware tube eff.
pulse height dist.
gam widths
pedcstal widths
other constants

--100 tubes/ layer
--50 b i n s . l a e r

6(8) layers
G(8 | layers
G ( S ) layers
6(8) layers

22(1 periods
220 periods
220 periods
220 periods

100.000 parameters
70.000 parameter>

1.500 parameters
1.500 parameters

30 parametei-h.
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For each charged particle these parameters are employed äs follows.

• Find the tubes intersected by the particle track.

• Calculate the hardware efficiency

ffh«i-dtt«re(tube,*,d,layer, period) from Eq. (B. 32),

and decide, if a hit is simulated,

• Generate a pulse height

S(/37,M,2,layer, period) from Eqs. (B.7) and (B.8).

• Perform a charge division (Eq. (B. 19)) and smear the divided charges Si and S2 by

from Eqs. (B.20) - (B.27).

For photons we model the conversion before each layer j according to its probability pconv
induced by the traversed material thickness i = tj/sin9

. (B.33)

X0 is the radiation length of the material, and tj is the summed material thickness before layer
j including the beaxn pipe and the tube support structure. E. g. in our three different chamber
Setups the summed material before the outermost layer is t& — 0.047X0, te = 0.063A'0, and
<8 = 0,088A~0 for the old and intermediate Setups with 3 double layers and the new setup
with 4 double layers, respectively. The functjon K(E^) is plotted in Fig. B. 18. For the pulse
height Simulation in proportional tubes, a converted photon is treated äs t wo electrons with

E< = £,/2.
The application of the E. T. MC in the frame of the Crystal Ball MC is very comfortable.

An arbitrary subsample of the 220 periods can be selected for the Simulation. The number of
eveiits simulated according to each selected period is determined from the integrated luminos-
ity in each period. Background hits in the tube chambers are merged on the MC events from
those DBM background events (sections 3.2 and 3.5), which have beeil collected exactly in
the simulated data period. We are thus able to create a realistic picture of the tube chamber
perfonnance for any subsample of Crystal Ball data.

B. 5 Systematic Errors

To calculate systematic errors of Crystal Ball data analyses, the systematic errors of the
E. T. MC for the description of inclusive quantities have to be known rather t h au the precision
for single hits. These inclusive quantities are the efficiency to ideiitify charged particles
("tagging efficiency" ), the probability that enough hits are found to perform a fit of the track
("tracking efficiency"), the precision of this direction measurement, and the probabihty for
taggmg photons due to photon conversion. These items äs well äs errors for their ratios in
differeut run periods are discussed in the followiiig. We derive the errors from a comparison
of the simulated events for e4e~ — > fj + ft~ with their E. T. MC prediction. Since the E. T. MC
Simulation relies on input from Bhabha events e^e" — * e+e~only, such a comparison tests
also the precision of the momentum depeiideiice of the Simulation between ß~i— 10000 and
07=50.
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Figure B.18: The dependence of the conversion probability on the photon energy.

B.5.l Efficiencies

Most of the following plots show examples of inclusive efficiencies for the intermediate cham-
ber setup, which was characterized by a proper performance of the two double layers of
proportional tubes and a steady degradation of the streamer tube double layer. The plotted
runs coincide essentially with our T(2S) data sample.

There are two most widely used defmitions for tagging and trackiiig of charged par-
ticles, the Standard Crystal Ball reconstruction routines, and the TAGTRK program (see
Section 3.4). The tagging efficiency for 5 GeV muons obtained by the Standard Crystal Ball
routines is plotted in Fig. B.19(b) together with the E.T.MC prediction. Since for the setup
with 3 double layers only one hit is required by the Standard tagging (similar to the TAGTRK
tagging), we observe very high efficiencies of Etag>99% for the intermediate tube chamber
setup. Considerably lower efficiencies were only observed for the old streamer tube setup
(Fig. B.19(a)), which is not used in this analysis. From Fig. B.19 we derive a systematic
uncertainty of the E.T.MC of

(B.34)

where the lower error is valid for high efficiencies Z 90%.
The probabilities etracki that a track fitting can be performed for a charged particle, are

plotted in Fig. B.20 for the Standard tracking and the TAGTRK tracking for runs from the
intermediate chamber setup. Large difTerences are observed between the two efficiencies,
which arise from the miiiimum number of hits required for track fitting. Whereas Standard

tracking needs at least 3 hits correlated with the energy deposition in the ball, TAGTRK can
perform a straight liiie fit with already two hits, because the energy deposition in the ball

is included in the fit. (A large difTerence in the hit efficiency for 2 and 3 hits resulted from

the deterioration of the double layer of streamer tubes in the runs plotted, so that only two

double layers were operating properlv.) Both tracking efficiencies and thcir run dependcnces
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are well reproduced by the E.T.MC Simulation with a typical systematic error of

Ar f ro r, - 2(7( -3%, (B.35)

where the lower error is again valid for higli efficiencies .: 90 ( '<.

B.5.2 Precision of Direction Measurements

To ineasure, how accurate the resolution of track directions in 0 and ^ are reproduced with
the E.T.MC, we study the distribution of the projected opening angles Ay? and A# äs well äs
the total opening angle C for our muons from e~* e~ —» fj + (j~ , both for data and E.T.MC. The
particle tracks have been fitted with the TAGTRK program. We determine the precision
A*TA« and A«?^ of the reproduction of the width o of the distribution for the projected
opening angles A^ and A0. Fig. B.21 shows examples for a relatively good and a relatively
bad data reproduction. respectively. From corresponding plots for a series of data periods we
obtain typical accuracies in reproducing the widths of the projected opening angles of

- 8% and ^ = 15%. (B.36)

It has to be inentioned, that both numbers depend on the length and position of the inter-
section region of the beams, which is plugged into the MC Simulation. We tried to reproduce
äs far äs possible the measured vertex parameters (see Section 3.5). Especially the error for
(TA^, mainly reflects the residual systematic error in (x)-vertex. The reproduction of cr^f from
the E.T.MC alone is much better.

B.5.3 Photon Conversion Probability

Photon conversion in the beam pipe or the tube chanibers plays no role in our analysis. We
treat the corresponding E.T.MC Simulation only for completeness äs a reference for other
analyses. The thickness / of the tube chamber and beam pipe material is known with a
precision of A / / / = 10(/<. This constitutes the dominant error for the reproduction of "neutral
efficiencies". Neutral efficiencies are defined äs the fraction

Tl

\^ / D o"-\ ntui ?T.N (-Q.O l )

j-0

of events with JY photons. where at most 7? photons convert in the inner cletector and are
detected äs charged particles. Here £,^ is the fraction of events with exactly ? "charged"
photons. The systematic error on £n r w t , äs determined from the E.T.MC, can be found äs
follows.

• Find from
' N

the probability f u for each single photon to be identifieo! äs charged.

This ])robability ij- uncertain by A?/f due to the error in the thickness of convertinp;

material. We define

E - f , . , ( l - A f / f ) .
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E. T.MC Simulation (füll dots). The MC prediction is a sum of e*e~ —> p~ / / ~ (solid histogr&xn)
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reproc/urtiojj. the right-hand side is an example for a relatively bad reproduction.



168 APPENDIX B. THE ERLANGEN TUBE CHAMBER MC

• Recalculate a modified neutral efficiency

• Take the difFerence
^'-•neut ':=- ~nevt - neut

as the systematic error for the neutral efficiency.

For the special case with r> — 0 this procedure reduces to

A£neu( - eneut - }(1 + A f / f ) y^t - &t/t]N. (B.38)

As an example we would find from a predicted neutral efficiency for no "charged photon" in
a 4-photon event snnt — e0,4 — 75.0% an error of Afneu , — 2.2%.

B.5.4 Time Dependence of Chamber Measurements

For analyses like ours, where event numbers obtained from difFerent running periods, A and
B, have to be subtracted from each other, the ratio or the difFerence of E.T.MC accuracies is
relevant. Due to our time-dependent modeling of the tube chamber behaviour we are able to
predict these ratios by about a factor of two better than the single quantities. We thus find

= 0.5%-1% (B.39)

= 1%-1.5% (B.40)

- 4% (B.41)

= 7.5%. (B.42)



Appendix C

The Determination of the Beam
Energy

C.l The Method

In the following we show dctails of the fits to the observed hadronic cross-section äs a function
of the magnetic field B in a storage ring bending rnagnet, which yielded a determination
of the beam energy for our on-resoiiance data. Perforiuiug these fits we iiitroduced three
simplifications, which led to — 1% inaccuracies for bot h, the cross-sectioii subjected t o the
fit, and for the fitting function. Such inaccuracies change our result on the c.m. energy \V
by only 0.1 - 0.2 MeV.

First, we calculated the observed hadronic cross-section without correcting for the contri-
bution of T —> e^e" in the luminosity events (cf. Sectioii 4.4). Such a correction would have
been oiily feasible in an iterative procedure, since it needs the c.ni. energy, which we actually

just want to deterrnme.
Second, the fits should have been performed with a coiitinuum terin ex l/.s oc l/B2 plus a

Breit-Wigner resonance, corrected for initial state photon radiation and beam energy spread,
plus a terin accounting for the interference between qq production froin T decays aud in the
continiiuin. Since the interference terin contributes at most 1% of the observed hadronic peak
cross-section (cf. Sectioii G.2.1) it can be safely iieglected.

Third, to achieve an even simpler (and analytic) fitting function, we approximate the
resonance sliape by a Gaussian with appended power tail on the high-energy side, which
deviates froin the exact curve again by at most 1% of the peak cross-sectiou. It can cou-
veniently be parametrized by the peak position -Bpcain the observed coiitinuum cross-section
(Tcont = ^c'^*qq(-^pcak)- * be observed resonance peak cross-section crres H (TT~*hl'd(5peÄi(), the
peak width 6 and the exponeiit n ^ 1.8 according to

„had/ T? \ I — H«» l | _ J - l * \ /] ' - • < /"• l
(T (£) - <TCOTI, —— 4 CTr,3 ^ L J (C.l

•ßpcok ifi related by Eqs. (4.4) and (4.3) to the nominal T mass by

mT = corfcj(Bpettk - (1.0 i 0.1) MeV. (C.2)

For the relation between the peak width t, which contains coiitributions froin initial state
radiation. and the true Gaussi an width tr of the c.ni. energy we find for w zz 8 MeV

tr •--- c„rbttb - (0.4 ± 0.1) MeV. (C.3)

169
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The fits according to Eq. (C.l) were performed wilh BpeBk äs the only free parameter. The
Parameters <7conl, <7rea. and 6 were fixed to the averages of values froni fits to the same data,
where all parameter s have been left free. This ensures, t hat changes in Bpf.*y a-re not due to
statistical changes in the parameters o-t(tnt, <rrfs, and b. which all should be constant in time.

Froni the fitted values of 5peak f°r each data period with constant cOT^t we obtain cor(,,(
from Eq. (C.2) äs

1.0MeV
~ (c-4)

by inserting the PDG values 22] mT(lS) = 94C0.3 MeV and r»T(2s) == 10023.3 MeV. Each
data point (B,<rhad} was selected by scanning the data taking logbook1 and grouping the
runs of constant B, which are adjacent in time. to one point each. At breaks in the DORIS
Operation a new point was started to allow for a shift in corbit- We used the offline hadron
selection, described in Section 4.1, for measuring <rhad, and divided the number of resulting
multi-hadron events by the corresponding lurninosity.

C.2 Application to the T(2S) Data

The NMR reading was available for 29.6 pb-'out of the sample of 37.2 pb~Jof T(2S) data,
which we have based our analysis on. For 7.6 pb^öf T(2S) data, taken before a regulär NMR
reading existed at DORIS, we äpplied different procedures to determine their c.m. energy K*.

During the 1983 T(2S) scan (runs 11014 - 11065, corresponding to £=2.3 pb^1) the
beam energy was directly determined with high precision by resonance depolarization mea-
surements in the DORIS II ring [95,96] . This procedure resulted in 12 data points, for which
we (conservatively) estimate a precision of AVI" — 0.5 MeV.

The c.m. energy of the data taken directly before and after this scan (runs 10951 - 11013
and 11066 - 11078, corresponding to £ — 1.8 pb"1) was determined from their difference in
the nominal beam energy to the data of the depolarization scan2. (We fürt her corrected
the resulting c.m. energy for some runs by 0.5 MeV to accommodate changes in the high
frequency of the Klystrons.) From this data we got 5 points with an estimated precision of

Finally, for an older on-resonance period without NMR reading (runs 10486 - 10777,
corresponding to £=6.7 pb""1 ) we grouped runs between breaks of the DORIS Operation and
monitored their observed hadronic cross-section. For our analysis we selected a subset of
groups (£=3.5 pb"1), so that their mean observed cross-section (trhad) = 6.57 ± 0.05 nb was
equal to the expected peak value of Ppeak — <rcont + ares — 6.53 ± 0.02 nb (see Table 6.2). We
thus assumed their c.m. energy to be W = H'peak- The error on this assignment was estimated
to be AtV=2.0 MeV, which is supported by a resonance depolarization measurement in one
of these runs.

For the bulk of our T(2S) data. however, we could apply the initially introduced procedure
of collecting data points (B.ahad] and fitting their functional dependence «n B. For the T(2S)
runs between number 11650 and 13230. acquired in the years 1983 and 1984. we collected
a total of 29 data points. Few runs with unknowu B. and some runs taken with a different

'The h a n d w r i t t e n values for B in th i s logbook wert- ihr only sourre for the NMR measurement for most of
our data.

2The nominal DORIS heani energy is dircctlv ralculated froin the niagnet currents. Differences in this beam
energy are a rellable measuremenl for c.m. energy differe-nces for runt- directly adjarcnt in time. Breaks in
the DORIS Operation alter the relation betwren current and magnetic field (= beam energy) dur to hysleresis
effects in the magnets.
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Figure C.l: Fit for the determination of the c.m. energy in our T(2Sj data.

beam optic in begin of 1984 were neglected. All 29 data points could be consistently fitted
with a single conversion factor

= (7344.0 i 0.2)
MeV

(C.5)

where the error is only statistical. The corresponding fit is showii in Fig. C.l. We observe,
that there were some (so called uon-resonance") runs, where the c.m. energy was too high by
about 5 MeV. If cor(,;, has been proven to be constant, äs in the case of our Y(2S) data, such
an offset can be reliably iioticed by moiiitoring B, only.

C.3 Application to the T(1S) Data

In all of our - 50 pb~Jof T(lS) data, taken in the years 1984 and 1986, an NMR reading
of B was available. We collected 158 data points of (B,vhad) and grouped them to 19
periods between DORIS breaks, so that within each period the conversion factor cor(>t, could
be regarded äs a constant.

Some of these 19 periods contained 110 scan data, but only (so called) on-resonauce data.
For these periods a left-right ambiguity arises. Even, if the peak height ffpeak and width b in
Eq. {C.l) are kiiown, äs in our case, it is not possible to decide from a single point (B,<rHad),
whether this point lies 011 the left-hand or the right-hand side of the peak. A deteruiination
of corblt is not possible in this case. Luckily, most of our periods comprised a large enough
ränge of B values3 together with sufficient statistics, so that a clear rise or fall of erhad äs
a function of B was visible (cf. Fig. C.3(d)) and resolved the left-right ambiguity. Only 2

3Tlie clianges of B inay arisr from the magnets' warming up with time, even though all machine parametcrs

are not changed in on-resonancf running.
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Figure C.2: AU single fits to the 19 data periods for the determination of the c.m. energy in
our Y(1S) data.

periods with £ = 3.4 pb'Mid not yield a conclusive result and were thus not further used in
the analysis.

The fit rcsults for all 19 periods are shown in Fig. C.2. The most important message of
this figure is, that c^it really changes in steps. At least 5 groups of fits are visible, which
appear to have resonance fits consistent with each other. By closer looking at the respective
errors of -ßprftk we found that \ve actually have to combine the 17 periods. left after rejecting
those periods with unresolved left-right ambiguity, into 0 groups. The fit results for these
combined periods are shown in Fig. C.3.

Table C.l: The conversion factors for the determination of the c.m. cnergy \V from B for the
6 combined periods off(lS) data. Only the last 5 values enter our analysis, since the data
from the runs 14207 - 14566 were not used due to a nonlinear tube chamber ADC.

Fig. C.3

W
(b)

(0
(d)
(e)
(f)

Runs -Bpeak (mT)
14207 -
14316 -
17903 -

18396 -
18496 -
19003 -

14315
14934
18391
18479
18731
19073

1290
1289
1293
1293
1293
1294

.54 ±

.19 ±

.15 ±

.57 ±

.79 ±

.32 ±

0.04
0,02
0.02
0,02
0.01
0.03

cOPK((MeV/T) \1

7339

7316
7314
7312
7309

.3 ±

.0 ±

.5 ±

.1 ±

.9 ±

.9 ±

0
0
0
0
0
0

o

1
1
1
1
2

r (MeV)
16.4
6
35
38
40
44

5

6

6
2
2

The nurnerical results for the conversion factors are given in Table C.l. The last cohimn
in this table gives the offset V in the T(1S) c.m. enorgy compared to that value, which
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Figure C.3: The final nts to G combnied data periods for the determination ofthe c.m. energy
in OUT T(lSj data..
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have been obtained by utilizing the T{2S) conversion factor from Eq. (C.5), i.e.

\l l - (C-6)

The resulting offsets V are substantial, if they are compared to the c.m. energy spread of
w ?z S MeV at DORIS. Tliis result shows, that the c.m. energy W cannot be measured
reliably in the T(1S) energy region by only monitoring B in a DORIS ring bending magnet.
Identical values of B may belong to c.m. energies, which differ by considerable fractions (or
even multiples) of w. Besides B the monitoring of a second variable, in our case a , was
thus mandatory to determine W .

C.4 Systematic Errors

All errors listed above are statistical errors äs obtained from the fits. The systematic error
on our deterrnination of W was estimated from the Variation of the Bpf^ results of each
of the 17 single periods around the -öpcak values from the combined fits in Table C.l. We
find a r.m.s. Variation of 0.10 mT (= 0.7 MeV). From pure statistics we expect 0.07 mT
(= 0.5 MeV). We attribute the quadratic diiference between these values to systematic error
sources , resultiiig in an systematic error of our c.m. energy determination of

AW - ̂ (0.7 MeV)2 - (0.5 MeV)2 = 0.5 MeV. (C.7)

This error was used for the c.m. energy determination of the T{2S) data according to
Eq. (C.5), likewise.

We note, that the fractional precision of a single B rneasureinent with the NMR effect is
5 X 10~5 and thus happens to coincide with our value of AW/W. However, this error does not
contribute to AH7. Relevant for &W are the errors of differences between the mean values
of repeated measurements of B. These are much smaller and thus negligible.

C.5 Combining the Data Points

After having determined W for each of the data points in each of the 6 combined periods, we
have grouped data with nearby values of W from different periods together in order to obtain
a clearer visualization of our analysis results äs a function of W (see See t km 4.2). To each

such data set we assigned a luminosity weighted average c.m. energy \Vt — */V £^'2/ "^ C.
The number of difFerent W values was thereby reduced from 47 to 13 and from 109 to 28 for
the T(2S) and the T(1S) data, respectively. (49 data points from our initial number of 158
around the T(lS) were not used in the analysis due to a bad tube chamber ADC (42 points)
or due to the unresolved left-right ambiguity (7 points).)
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Appendix D

The Efficiency Corrected Cross-Section

Table D.l: The spectrum of the efficiency corrected cross-section for e+e~ —> T(1S) —> p* ft~
and e+e~ —* T(2S) —* n+p~ äs measured in this analysis at the DORIS II storage ring äs a
function of the c.m. energy W (Figs. 6.2(b) and 6.3(b)). The errors listed on the cross-section
are onJy those combined statisticaJ and systematic errors, which are essentiaJJy independent
from point to point. They indude the errors on W, converted to an error on <r**~* ~*MM(WJ.
They do not incJude, however, systematic errors common to all points. These common errors
are fractional errors of 3.6% and 4.2%, dominated from the errors on seJection efficiency and
J/uminosity, and absolute errors of 6.4 pb and 5.6 pb, mainly stemming from the nuniber of
off-resonance /i-pairs observed in the data. The nrst vaJue refers to the T(1S), the second to
the T(2S) resonance data.

T(1S)

W
(MeV)
9362.9
9388.3
9396.3
9407.4
9416.9
9426.1
9436.2
9444.3
9448.4
9452.5
9455.4
9457.5
9459.1
9459.5
9460.1
9460.4
9460.6
9461.3
9467.5
9471.2
9473.6
9478.0
9481.8
9486.1
9490.0
9493.6
9497.6
9506.6

AW

(MeV)
2.0
0.5
0.5
0.5
0.5
0.5
0.5
0.5
0.5
0.5
0.5
0.5
0.5
0.5
0.5
0.5
0.5
0.5
0.5
0.5
0.5
0.5
0.5
0.5

0.5

0.5
0.5
0.5

(Pb)
19.5

186.4
-148.5
-50.8

-328.5
-208.5

-3.5
14.7
22.4
57.0

100.2
198.7
218.1
274.3
256.6
231.3
240.5
172.9
271.8
185.8
176.4

76.5
197.4
37.1
70.0
85.5

104.6
171.1

(pb)
19.7

175.5
145.7
161.5
157.9
161.0
125.1
109.4
28.5
87.3
81.2
36.5
31.5
31.9
25.0
30.3
29.0
55.7
93.6
28.9
99.0

111.0
145.7
215.4
183.5
217.9
195.0
243.1

T(2S)

W
(MeV)
9966.2
9985.4

10009.4
10014.6
10018.4
10022.1
10023.3
10023.9
10024.6
10028.2
10029.5
10033.2
10039.1

AW
(MeV)

1.0
1.0
0.5
0.5
0.5
0.5
0.5
0.5
1.0
0.5
0.5
0.5
0.5

et— »T — 'Ltu A
fj l—

(pb)
36.7

-70.9
108.6

-113.5
111.1
29.1
18.0
45.3
63.7
67.6
-4.9
29.9

-30.7

(pb)
39.0

142.3
88.6
92.7

106.5
76.7
18.8
17.0
17.3
32.6
47.9
52.2

110.3
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