Interner Bericht DESY F32-81/03 Juni 1981

SPURREKONSTRUKTION AM PLUTO-DETEKTOR

von

Cornelia Hein

Eigentum der Property of	DESY	Bibliothek Burery
Zugang: Accessions:	8. JUL 19	81
Leihfrist; Loan period;	7 d	e ⊃ys

.

DESY behält sich alle Rechte für den Fall der Schutzrechtserteilung und für die wirtschaftliche Verwertung der in diesem Bericht enthaltenen Informationen vor.

DESY reserves all rights for commercial use of information included in this report, especially in case of filing application for or grant of patents.

"Die Verantwortung für den Inhalt dieses Internen Berichtes liegt ausschließlich beim Verfasser"

4

.

INHALTSVERZEICHNIS

.

-

-

- - -

. . . .

Spurrekonstruktion a	am PLUTO —	Detektor
----------------------	------------	----------

Experimentell - physikalische Diplomarbeit

vorgelegt dem Fachbereich Physik der Gesamthochschule Wuppertal

> von Cornelia Hein Wuppertal , im April 1981

I.	Emleitung	L
II.	Motivation und Gliederung	I
[1] .	Der Pluto Detektor	3
IV.	Prinzip der Spurrekonstruktion	7
V.	Elektromagnetische Wechselwirkungen in Materie	9
V.1 V.2 V.3	Berechnung des Ionisationsverlustes in Materie Beschreibung der Coulomb – Vielfachstreuung Berechnung des Streukegels für eine Blockgeometrie	9 11 13
VI.	Die Konfiguration des PLUTO-Detektors	17
VL 1 V1.2 VL 3	Die Detektorgeometrie Die Myonkammern Der Magnetfeldverlauf im PLUTO – Detektor	17 20 22
VII.	Die Spurerkennung im Innendetektor	25
VIII.	Die Spurrekonstruktion ohne Magnetfeld	30
VIII.1 VIII-2 VIII.3	Die Bestimmung der Lage der Myonkammern Methode der Positionsbestimmung Probleme bei der Durchführung	30 31 32
IX.	Die Spurrekonstruktion mit Magnetfeld	36
IX.1 IX.2 IX.3 IX.4 IX.5 IX.5.1 IX.5.2	Die bisherige Spurrekonstruktion Rekonstruktion für Spuren mit $\theta \ge \theta_1$ Die Wahl des Rückfluss-Parameters Rekonstruktion für Spuren mit $\theta < \theta_1$ Test der Spurrekonstruktion Test mit Höhenstrahlen Vereleich des Brousiumnes mit der avakton Patromulation	38 39 43 46 47 47
10.0.6	vergieren des rrogrammes mit der exakten Extrapolation	40

X	Die verbesserte Spurrekonstruktion	51
Х 1 Х.2	Spuren mit 0 > ϑ₁ Spuren mit ϑ₁ ≦ 0 ≰ϑ₂	53 56
XЗ	Spuren mit $ \Theta < \vartheta_2$	58
X.4	Test der neu entwickelten Spurrokonstruktion	60
X.4.1	Test mit Höhenstrahlen	60
X42	Vergleich des Programmes mit der iterativen	
	Extrapolation	61
XI	Extrapolationsfehler durch Meßungenauigkeiten	
	im Ortsdetektor	64
XI 1	Fehlerquelle für die extrapolierten Koordinaten	64
XLS	Theorie der Fehlerberechung	64
XI 3	Der Fehler der extrapolierten Koordinate	66
хн	Die Myonenidentifikation am PLUTO-Detektor	70
XIII	Zusammenfassung	72
Auhan	g A – Die Coulomb-Vielfachstreuung geladener Teilchen: Der mittlere Streuwinkel	73
Anhan	g B – Die Verteilungsfunktionen des Streukegels	77
Auhan	g C – Geometrietøbøllen des PLUTO-Detektors	79
LITER	ATURVERZEICHNIS	82
DANKS	SAGUNG	83

I. EINLEITUNG

Bis zum Jahr 1975 bestand zwischen den bekannten vier Leptonen und den vier Quarks eine Symmetrie, die erst durch die Entdeckung des τ -Leptons zerstört wurde.

Der Nachweis des neuen Leptons zusammen mit dem erwarteten neuch v_r führte zu dem Versuch,die bisherige Analogie zwischen den beiden Teilchengruppen durch Hinzufügen eines neuen Quarkdubletts beibehalten zu können.

Die geforderten nachzuweisenden Quarks erhielten die Namen BOTTOM und TOP,wodurch eine gewünschte Äquivalenz formal wiederhergestellt war.

(e^,	. v.)	(u,d)
(μ,	ν _μ)	(s,c)
(au ,	ν_{τ})	(b , t)

Der erste Schritt ist 1977 gelungen,als man im Ypsilon Meson den ersten gebundenen bb-Zustand identifizieren konnte Diese Entdeckung verstarkte das Bestreben, den Nachweis des t-Quarks u.a. auch am Speicherring PETRA bei DESY bei immer höheren Schwerpunktsenergien erbringen zu können.

Kobayashi und Maskawa geben eine Nachweismöglichkeit der schweren qq-Mesonen an [KOB73]. Der Zerfall dieser Mesonen zeichnet sich danach durch einen Anstieg in der Leptonenzahl gegenüber dem Zerfall der leichteren Quarkpaare aus.

Der Anstieg der Leptonenzahl und insbesondere der Myonenzahl im e*e^{*}--Annihilations-Ereignissen liefert daher ein Kriterium zur Identifikation neuer schwerer Quarks.

Eine Myonenerkennung wird durch den PLUTO Detektor, der dieser Arbeit zugrunde liegt, ermöglicht Das Prinzip der Myonenidentifikation wird im folgenden Kapitel beschrieben.

II. MOTIVATION UND GLIEDERUNG

Die Vielzahl der bei e*e -Reaktionen erzeugten Teilchen wird im Ortsdetektor des magnetischen PLUTO Detektors.der um den Strähl herungebaut ist,nachgewiesen.Durch Kammersignale längs der Teilchenbahn werden die Spuren in diesem Detektorbereich vermessen

Der sich anschließende Myondetektor ermöglicht die Selektion der Myonen aus der Gesamtheit aller Teilchenbahnen Diese beruht auf den unter schiedlichen Wechselwirkungen von Myonen und Hadronen in Materie. Als stark wechselwirkende Teilehen werden Hadronen durch Bildung hadromscher Kaskaden in einer Anordnung von Matericolocten absorbiert Myonen dagegen können diese Materieanordnung ber ausreichender Euergie durchqueren und werden anschließend in weiteren Ortsdetektoren, den Myonkammern, nachgewiesen. Allem die Tatsache, daß das Teilchen den Absorber durchquert hat, reicht i.a zur Myonenidentlifikation noch nicht aus Auch für Hadronen besteht eine gewisse Wahrscheinlichkeit, die Materieanordnung zu durchdringen

Den Anteil dieser Hadronen kann man reduzieren,wenn man die unterschiedliche Ortsverteilung der Teilchen nach dem Materiedurchgang zur Auswertung heränzieht [MAX81]. Während die Myonen aufgrund der Coulomb Vielfachstreuung nur innchlaß eines eng begrenzten Kegels aus der Materie austreten,besitzen die aus den hadronischen Schauern austretenden Teilchen eine breite Ortsverteilung nach der Materieanordnung [MAX81].

Durch geeignet gewählte Schnitte (bei PLUTO wird die Myonakzeptanz bei ± 780 des Streukegels angesetzt) wird ein guter Kompromiß gefunden, um bei geringem hadromischen Untergrund möglichst viele Myonen zu identifizieren. Daher werden nur die Spuren als Myonen akzeptiert "denen innerhalb des Myonakzeptanzkegels ein Signal der Myonkammern zugeordnet werden kann. Da der Spurverlauf nur durch den hmendetektor, aber nicht durch den Myondetektor hindurch vermessen wird, müssen die Teilchenspuren bis in die Myonkammern rekonstruert werden

Die Genauigkeit der Ortsbestimmung eines Teilchendurchgangs in diesen-Kammern ist durch zwei Faktoren gegeben:

- a) durch die Meßgenauigkeit des Ortsdetektors ('Innendetektor')
- b) durch die Kenntms der Teilchenbahn vom Ortsdetektor bis in die Myonkammern.

Das Thema dieser Arbeit ist die Rekonstruktion der Teilchenbahn bis in die Myonkammern (Punkt b). Die Schwierigkeit der Spurextrapolation besteht dabei in der richtigen Erfassung des komplizierten Detektormagnetfeldes.

Neben der Bestimmung des Teilchendurchganges in den Myonkammern nuß der Akzeptanzkegel der Spur berechnet werden,da die Akzeptanzeiner Spur als Myon anhand der Abweichung des gemessenen vom rekonstrumerten Ort des Teilchendurchgangs entschieden wird Diese Abweichung entsteht durch die Wechsetwirkungen der Teilchen in der Detektormaterie. Neben der Spurextrapolation wird daher auch der geometrie – und impulsabhängige Myonakzeptanzkegel bestimmt. Aus diesen Grunden ist die Arbeit wie folgt gegliedert:

In Kapitel III wird der Aufbau des PLUTO Detektors beschrieben.

Eine Übersicht über das Prinzip der Spurrekonstruktion wird in Kapitel IVgegeben.

Kapitel V befasst sich mit den Wechselwirkungen der Myonen in der Detektormaterie.

Die spezielle Konfiguration des PLUTO Detektors wird in Kapitel VI behandelt,wo neben der Geometrie des Myondetektors das Magnetfeld beschrieben wird.

Die Spurerkennung und ihre Genauigkeit im Ortsdetektor soll in Kapitel VII behandelt werden. Diese Kenntnis reicht aus,die genaue Lage der Myonkammern in Kapitel VIII zu bestimmen,die für die Myonenidentifikation gebraucht wird.

In Kapitel IX wird die der bisherigen Datenauswertung zugrunde liegende Spurextrapolation beschrieben und getestet. Die Ergebnisse der durchgeführten Tests sind Ausgangspunkt für ein verbessertes Verfahren.Dieses wird in Kapitel X vorgestellt und ebenfalls getestet.

Für dieses neu entwickelte Verfahren werden in Kapitel XI die Extrapolationsfehler aufgrund der Meßungenauigkeiten im Amendetektorbestimmt.

In Kapitel XII wird schließlich die Myonenidentifikation beschrieben unter Berücksichtigung des Coulomb-Streukegels sowie der berechneten Extrapolationsfehler.

Eine Zusammenfassung dieser Arbeit befindet sich in Kapitel XIII.

HI. DER PLUTO DETEKTOR

Die Anforderungen, die an einen Detektor gestellt werden müssen, sind die Bestimmung der Teilchenart, des Impulses sowie der Ladung. Außerdem muß der Detektor einen möglichst großen Raumwinkel abdecken, um alle durch e*e⁻--Kollision entstehenden Teilchen nachweisen zu können.

Mit dem magnetischen Detektor PLUTO,der nahezu den vollen 4π-Raumwinkel überdeckt,ist es möglich,Teilebenimpulse und in beschränktem Maße auch die Teilebenart zu bestimmen.

Eine Ansicht des Detektors längs und senkrecht zur Strahlachse ist aus den Abb. La,1b ersichtlich.

PLUTO bei PETRA

Abb. 1 : Der magnetische Detektor PLUTO bei PETRA :
 (a) : Schnitt parallel zur Strahlachse.
 (b) : Schnitt senkrecht zur Strahlachse.

4

Vom Wechselwirkungspunkt ausgehend sind in der Ebene senkrecht zur Strahlachse 13 konzentrisch angeordnete Proportionalkammern installiert,in denen geladene Teilchen nachgewiesen werden (die 9. und 10. Kammer sind Driftkammern,die im Proportionalbereich betrieben werden).

Um aus dem Bahnverlauf der Teilchen in diesen Kammern den Teilchenimpuls bestimmen zu können, wird in einer supraleitenden Spule ein nahezu homogenes Magnetfeld über den gesamten Kammerbereich erzeugt. Durch die Spule und das sie umgebende sechseckförmige Eisenjoch wird die Magnetfeldstärke von 1.65 TESLA erreicht. Die Feldlinien verlaufen im Bereich des Innendetektors parallel zur Strahlachse.

Neutrale Teilchen werden in Schauerzählern registriert.Es sind diese ein tonnenförmiger Schauerzähler, der sogenannte 'Barrel', der sich zwischen der 13. Kammer und der Spule befindet, sowie die an den Stirnseiten der Proportionalkammern angebrachten Endkappenschauerzähler.Neben Photonen werden auch Elektronen in diesen Zählern aufgrund der Bildung elektromagnetischer Schauer nachgewiesen.

Senkrecht zur Strahlachse ist zu beiden Seiten des Wechselwirkungspunktes ein Vorwärtsspektrometer installiert, in denen Elektronen in einem Winkelbereich von 23-260 mrad zur Strahlachse detektiert werden können.

Die Selektion der Myonen aus dem Hadronenspektrum übernimmt der sich an den Ortsdetektor anschließende Myondetektor, der im folgenden Abschnitt beschrieben wird.

Das Eisenjoch, das die Rückführung des magnetischen Flußes ermöglicht, bildet zusammen mit Barrel und Spule den ersten Teil des Hadronabsorbers. Dieser ermöglicht die Myonenidentifikation.

Beim Einsatz von PLUTO im Energiebereich der DORIS-Energien wurden Hadronen als stark wechselwirkende Teilchen in diesem Eisenblock durch Bildung hadronischer Schauer nahezu vollständig absorbiert.Myonen dagegen erleiden in diesem Materieblock nur elektromagnetische Wechselwirkungen, die in Kapitel V behandelt werden. Der Einfluß der schwachen Wechselwirkung für diese Teilchen kann vernachlässigt werden.

Durch diese unterschiedliche Wirkung des Hadronabsorbers auf die Teilchen wird dieser zum Myonenfilter.

Beim Einsatz des Detektors PLUTO an PETRA und damit entsprechend höheren Teilchenenergien aus e⁺e⁻-Reaktionen reichte die Eisenblockdicke nicht mehr aus,um die Filtereigenschaft auch für hochenergetische Myonen zu gewährleisten. Diese Schwächung entspricht einer zu geringen Absorption der Hadronen im Materieblock,wodurch diese nun teilweise als Myonen mißgedeutet werden können.Zur Beseitigung dieser störenden Effekte,die in [MAX81] diskutiert werden,wurde der bisherige Hadronabsorber weiter verstärkt. Dabei ist der Ausbau so vorgenommen worden, daß unter jeder Teilchenflugrichtung eine möglichst homogene Materiedicke vorliegt.Dies vereinfacht die Datenauswertung bei der Myonenidentifikation. Wegen verschiedener Randbedingungen wie z.B. Versorgungszuführungen zum Innendetektor,Hydraulik und Halterungen des Hadronabsorbers, konnte nur begrenzt eine vollständig gleichmäßige Verteilung realisiert werden. Diese ist in Abb.2 gezeigt,wo für im Phasenraum erzeugte Winkel alle im Detektor auftretenden auf Eisen gewichteten Materiedicken aufgetragen sind. Durch diesen zusätzlichen Ausbau steht Hadronen eine im Mittel 103 cm eisenäquivalent dicke Absorberlänge zur Verfügung.

Abb. 2 : Verteilung der Materiedicke D in Eisenäquivalent für alle Winkel

Zum Nachweis von Myonen sind an zwei verschiedenen Stellen des Hadronabsorbers weitere Ortsdetektoren installiert. Die 'Inneren Myonkammern' sind hinter den Außenjochflächen montiert. Diese sind in zwei Lagen parallel übereinander geschichtete Rohrkammern, die im Proportionalbereich betrieben werden [NEU79]. Sie sind geeignet, Myonen mit Impulsen bereits oberhalb ca. 1GeV/c nachzuweisen.

Aus jeder angesprochenen Kammer lässt sich jedoch nur eine Ortskoordinate des Teilchendurchgangs fixieren,da alle Drähte in der Kammer parallel zueinander verlaufen.

Die für diese Arbeit wichtigen "Myonkammern" befinden sich außerhalb des äußeren Hadronabsorbers.Diese in 4 Lagen geschichteten Driftkammern ermöglichen die Ortsbestimmung eines Teilchendurchganges mit einer Genauigkeit von ca. 1 mm.Die Funktionsweise dieser Kammern wird in Kap.VI.2 beschrieben.

Die Detektorbeschreibung ist die Voraussetzung für das Verständnis der Spurrekonstruktion,zu der das folgende Kapitel die prinzipiellen Ideen vermitteln soll.

IV. PRINZIP DER SPURREKONSTRUKTION

Die Teilchenbahnrekonstruktion läßt sich in drei Abschnitten beschreiben. Der erste Bahnteil verläuft in dem Ortsdetektor,wo der Spurverlauf vermessen wird.Die Spurerkennung in diesem Bereich wird in Kapitel VII beschrieben.Daran anschließend durchfliegt das Teilchen Bereiche ohne Ortsdetektoren.Daher muß die Spur durch diese Gebiete hindurch extrapoliert werden.Dabei muß man zwischen Gebieten mit und ohne Magnetfeld unterscheiden.

Im Gegensatz zur Magnetfeldkonfiguration im Innendetektor (s. dazu Kap.VI,VII) liegt in den Gebieten mit Magnetfeld außerhalb des Ortsdetektors ein dreidimensionales ortsabhängiges Feld vor:

$$\vec{B}_{in} = (0, 0, B_{in})$$

$$\vec{B}_{in} = (B_{in}', B_{j'}', B_{in}')$$
(IV 1)

z = Strahlrichtung

Ohne hier schon auf das spezielle PLUTO-Magnetfeld einzugehen, soll in diesem Kapitel die Bewegung eines geladenen Teilchens in einem mit dem Ort veränderlichen Magnetfeld beschrieben werden.Wegen der Ortsabhängigkeit des Feldes erfolgt die Extrapolation der Teilchenspur iterativ.Die jeweilige Schrittweite wird dabei so gewählt, daß das Magnetfeld auf diesen Intervallen als konstant angesehen werden kann.

Die Änderung der Teilchenflugrichtung in diesen Intervallen wird über die Lorentz'schen Bewegungsgleichungen im Magnetfeld wie folgt berechnet:

$$\frac{d(\vec{dr_i})}{ds} = \frac{Q}{c} \frac{1}{p} \cdot (\vec{dr_i} \times \vec{B})$$

 $d\vec{r}_i = (dx_i, dy_i, dz_i)$ = Richtungscosinus am Anfang des Intervalles

(IV.2)

 $\vec{B} = (B_x(\vec{r}), B_y(\vec{r}), B_z(\vec{r}))$ s = Bogenlänge p = Impuls des Teilchens Q = Ladung des Teilchensc = Lichtgeschwindigkeit $d\vec{r}_{s} = d\vec{r}_{1} + \frac{d(d\vec{r}_{1})}{ds} + s$

(17.2)

 $d\vec{r}_{a} = (dx_{a}, dy_{a}, dz_{a})$ = Richtungscosinus am Ende des Intervalles

$$\vec{\Gamma}_{a} = \vec{\Gamma}_{1} + s \cdot (d\vec{r}_{a} - d\vec{r}_{1})$$

 $\vec{r}_i = \text{Eintrittsort in das Intervall}$

 $\overline{r_a}$ = Austrittsort aus dem Intervall

Nach der Integration über alle infinitesimalen Intervalle sind der Austrittsort und die Flugrichtung aus dem Feld bekannt.

Die Extrapolation durch das sich anschließende Gebiet ohne Magnetfeld erfolgt geradlinig unter der berechneten Flugrichtung aus dem Magnetfeld.

Die beschriebene iterative Spurrekonstruktion im Magnetfeld,die den Spurverlauf nahezu exakt wiedergibt,ist in der PLUTO Datenanalyse aus CPU-Zeit Gründen nicht anwendbar.Dieses Verfahren wird jedoch zum Test der benutzten Rekonstruktionsverfahren benötigt.

Um Rechenzeit einzusparen,kann in den verwendeten Spurrekonstruktionen das Magnetfeld nur näherungsweise erfasst werden. Das dabei angesetzte Magnetfeldmodell sowie die daraus resultierende Extrapolation wird in den Kapiteln IX und X beschrieben.

Bei der Beschreibung der Teilchenflugbahn bis zu den Myonkammern sind neben dem Magnetfeldeinfluß auch die Wechselwirkungen zu berücksichtigen,denen Myonen in Materie unterliegen.Im Vergleich zu den elektromagnetischen Wechselwirkungen kann der Einfluß der schwachen Wechselwirkung vernachlässigt werden.

Von Interesse für die Myonenidentifikation sind der Energieverlust durch Ionisation sowie die Coulomb-Vielfachstreuung.Die theoretischen Grundlagen für diese Prozeße werden im folgenden Kapitel gelegt.

V. ELEKTROMAGNETISCHE WECHSELWIRKUNGEN IN MATERIE

Es soll in diesem Kapitel vor allem die elastische Streuung geladener Teilchen an den Kernen der Materie behandelt werden, da die Ortsverteilung der Teilchen nach Durchdringen der Materie für die Identifikation eines Myons wichtig ist. Ein Teilchen wird nur dann als Myon akzeptiert, wenn innerhalb der Coulomb-Streukegelbreite eines Teilchens ein Signal in den Myonkammern gefunden wird [MAX81].

Nach der Beschreibung der Coulomb-Vielfachstreuung in einem kompakten Materieblock wird die impulsabhängige Streukegelbreite für eine komplexe Blockstruktur berechnet,wie sie bei PLUTO vorliegt (s.Kap.III,Abb.1a,b).Dabei muß der Energieverlust durch lonisation berücksichtigt werden, der daher zunächst behandelt werden soll.

V.1 BERECHNUNG DES IONISATIONSVERLUSTES IN MATERIE

Der Ionisationsverlust beruht auf der Wechselwirkung geladener Teilchen mit den Hüllenelektronen der Atomkerne.Zur Berechnung des Energieverlustes "dE" auf einer infinitesimalen Weglänge "dx" dient die Bethe-Bloch-Formel:

$$\frac{dE}{dx} = z^2 - K(\beta) \left[\rho(\beta) - \ln(1) - \frac{C}{Z} - \frac{\delta}{Z} \right] \left[\frac{Mev}{g/cm^2} \right] \quad (V.1.1)$$

 $\begin{array}{l} K(\beta) \ = \ 0.307 \ / \ \beta^2 \\ \rho(\beta) \ = \ \ln \left[\ 1.022 \cdot 10^8 \cdot \beta^2 \ / (1 - \beta^2) \ \right] \ - \ \beta^2 \end{array}$

z = Ladung des Projektils

- Z = Kernladung der Materie
- A = Atommassenzahl der Materie
- $\beta = v/c$; v=Geschwindigkeit des Projektils,c=Lichtgeschwindigkeit
- $l = mittleres lonisationspotential (~ Z \cdot 10 eV)$
- C = Korrekturfaktor für Abschirmung der Elektronenhülle
- δ = Dichtekorrektur

Die Parameter C und δ sind z.B. in [RAN72] zu finden. Abb.3 zeigt den lonisationsverlust für Myonen in Abhängigkeit vom Impuls.

Abb. 3 : Ionisationsverlust -dE/dx für Myonen gegen Impuls p

Abb. 4 : Mindestimpuls P_{min} für Myonen zum Durchdringen des Eisens gegen Eisendicke D.

Aus der Bethe -Bloch-Formel wird die mittlere Reichweite eines Teilchens durch Integration über die Materiedicke "D" bestimmt:

$$R = \int_{0}^{D} (-dE/dx) dx \qquad (v+2)$$

Die Reichweite liefert direkt den Mindestimpuls,den ein geladenes Teilehen zum Durchdringen des Blockes "D" besitzen muss. Die Kenntnis dieser Grösse ist für die Myonenidentifikation und damit für die Spurextrapolation in die Myonkammern notwendig. Es werden nämlich nur Spuren berücksichtigt,deren Impuls oberhalb des Schwellenwertes für die jeweilige Dicke des Hadronabsorbers liegt (s.Abb.2). Abb.4 zeigt den Mindestimpuls in Abhängigkeit von der Materiedicke für Eisen.

V.2 BESCHREIBUNG DER COULOMB - VIELFACHSTREUUNG

Geladene Teilchen unterliegen in Materie wiederholten Rutherford streuungen mit den Atomkernen.Diese führen zu ständigen kleinen Richtungsänderungen der Teilchenflugbahn. Weil die Myonmasse etwa 207 mal grösser ist als die Elektronenmasse, kann der Einfluss der Ablenkung beim Durchdringen der Elektronenhülle eines Atoms vernachlässigt wer den.

Nach Durchdringen der Malerie liegen also Verteilungen in den auftretenden Winkelablenkungen und den lateralen Teilchenversetzungen vor. Zur Beschreibung wird der Vorgang nur zweidimensional betrachtet und in Abb.5 verdeutlicht. Als Winkel- und Ortsverteilungen ergeben sich in guter Näherung Gaußfunktionen (s.Anhang B). Die Varianzen der beiden Verteilungen beschreiben den mittleren Ablenkwinkel <0> sowie die mittlere laterale Versetzung <X> der Flugbahn bzgl. des ungestörten Teilchendurchgangs. Mit Hilfe dieser Größen,die auch in Abb.5 veranschaulicht sind, können die Grenzen der Verteilungen definiert werden.Knapp 64% der Teilchen befinden sich hinter dem Materieblock in einer Breite der Varianz <X> um den Mittelpunkt der Verteilung herum.

Für eine dünne Materieschicht kann der Ionisationsverlust der Teilchen vernachlässigt werden Dann ist der mittlere Austrittswinkel durch die folgende Gleichung gegeben:

$$\langle \Theta^2 \rangle = \left(\frac{K}{\mathbf{p}\cdot\boldsymbol{\beta}}\right)^2 \cdot \mathbf{D}$$
 (V.2.1)

K = 15 MeV/c p = Impuls [MeV/c] $\beta = p/E ; E = \text{Energie [MeV]}$ D = Streudicke in Strahlungslängen

Muß der Energieverlust berücksichtigt werden wie es für die Materiedicke des PLUTO-Hadronabsorbers notwendig ist, so wird die folgende modifizierte Gleichung für den mittleren Ablenkwinkel benutzt, die in Anhang A abgeleitet wird.

$$< \Theta^2 > = \left(-\frac{K}{m_{\mu}} \right)^2 \cdot D - \frac{\ln \left[(p_1/p_2) \cdot (1+\gamma_2)/(1+\gamma_1) \right]}{\gamma_1 + 1/\gamma_1 - (\gamma_2 + 1/\gamma_2)}$$
 (V.2.2)

 $m_{\mu} = Myonmasse$

 p_1, p_2 = Teilchenimpuls vor und nach der Streumaterie E_1, E_2 = Energie vor und nach der Streumaterie $\gamma_{1/2}$ = $E_{1/2}$ / m_{μ}

Die mittlere laterale Versetzung ist gegeben durch die Gleichung:

 $\langle x^2 \rangle = \langle \Theta^2 \rangle - \frac{t^2}{3}$

t = Materiedicke

V.3 BERECHNUNG DES STREUKEGELS FÜR EINE BLOCKGEOMETRIE

Der Aufbau des PLUTO Hadronabsorbers besteht aus einer Anordnung von Materieblöcken (s.Kap.VI.1),die durch Lufträume voneinander getrennt sind. Die Gleichungen V.2.1-V.2.3 beziehen sich jedoch nur auf die Streuverteilung unmittelbar nach einer kompakten Materieschicht und sollen nun auf eine Blockstruktur übertragen werden.

Dazu wird die Geometrie der Materie durch die Größen $\mathrm{S},\mathrm{S}_i,t_i$ in $\mathrm{Abb}.6$ erfasst.

Abb. 6 : Definition der Grössen, die zur Berechnung des Streukegels für eine Materiegeometrie benötigt werden.

Es soll zunächst nur ein Materieblock der obigen Geometrie betrachtet werden. Bei Einteilung dieses Materieblockes in weitere Materiestreifen erhält man die laterale Versetzung in der Entfernung "S" vom Ausgangspunkt durch Summation der Streubeiträge aller einzelnen Streifen.Die Summation geht in eine Integration über,wenn der Block genügend fein unterteilt wird.

(V.2.3)

Die Gleichung für die laterale Versetzung unmittelbar nach einem Block sieht dann wie folgt aus (vgl. auch Glgn.V.2.3,V.2.2)

$$< X_{1}^{2} > = A - \int_{0}^{t_{1}} t_{1}'^{2} / X_{01} dt_{1}'$$

$$(V.3.1)$$

$$A = - \left(-\frac{K}{m_{\mu}} \right)^{2} - \frac{\ln \left[-(p_{1}/p_{2}) \cdot (1+\gamma_{2}) / (1+\gamma_{1}) - \right]}{\gamma_{1} + 1/\gamma_{1} - (\gamma_{2} + 1/\gamma_{2})}$$

Mit der verwendeten Koordinatenbezeichnung befindet sich der iste Materieblock der Dicke t_1 in dem Intervall [S $S_1-t_1/2$, S $-S_1+t_1/2$]. Dannt läßt sich Glg.V.3.1 folgendermaßen schreiben:

$$< X_{i}^{2} > -\frac{A}{T} + \int_{-t_{1}/2}^{t_{1}/2} [-(S-S_{i})-t_{i}'-]^{2} dt_{i}'$$
 (V.3.2)

In dieser Notation beschreibt $\langle X_i \rangle$ jetzt auch die Versetzung in beliebiger Entfernung S vom betrachteten Materieblock

Das Integral hat die folgende Lösung:

$$< X_{1}^{2} > - \frac{A}{---} [S^{2} \cdot t_{1} + S_{1}^{2} \cdot t_{1} - 2 \cdot S \cdot S_{1} \cdot t_{1} + t_{1}^{3} / 12]$$
 (V.3.3)
 X_{01}

Diese Gleichungen gelten für jeden einzelnen Materieblock der Anordnung aus Abb.6. Um die Verteilung zu erhalten, die von allen i Materieblöcken gebildet wird, müssen nun alle Einzelbeiträge summiert werden. Die Summation ist möglich, da die Streuprozesse in den Blöcken voneinander unabhängig sind. Die laterale Versetzung an dem Ort $x \oplus S$ verursacht durchen Materiel konne wird daher wie folgt berechnet.

u – Anzahl der Materieblöcke

<

$$\begin{split} \lambda^2 > &= \sum_{i=1}^n < X_i^2 > \\ &= \frac{A}{--} \left[-S^2 \sum t_i + \sum S_i^2 t_i - -2 \cdot S \sum S_i t_i + \sum t_i^2 / 12 \right] \\ &= < \Theta^2 > + \left[-(S_i - E_i)^2 + E_2^2 \right] \end{split}$$

$$L_{i} = \frac{\sum S_{i} \cdot t_{i} / X_{0i}}{\sum t_{i} / X_{0i}} \quad \text{a.:} \quad < S_{i} > \label{eq:Linear}$$

$$L_2{}^2 = - < S_1 >^2 + < S_1{}^2 + t_1{}^2/12 >$$

Abb. 7 : Mittlere laterale Versetzung < R > für Myonen für eine feste PLUTO Geometrie. R = $\sqrt{x^2 + y^2}$ (vgl. Abb. 5.) Dabei bezieht sich <0> ebenfalls auf alte i Blöcke wie aus Glg V.3.4 erkennbar ist Jedoch ist <0> meht von der Geometrie,sondern nur von der gesamten Materiedicke abhängig. Die läterale Versetzung nach einer Materieanordnung wird also durch das Produkt eines rein geometrischen Faktors mit dem zugehörigen mittleren Ablenkwinkel gebildet.

Die Impulsabhängigkeit der nach Glg.V.3.4 berechneten lateralen Versetzung für eine feste PLUTO-Geometrie (s.Kap.VI.1) ist in Abb.7 dargestellt

Zur Myonenidentifikation (s.Kap.ll) muß für jede in der PLUTO-Analyse erkannte Spur die Streukegelbreite nach Glg.V.3.4 berechnet werden. Die Blockstruktur des Hadronabsorbers,die in Glg.V.3.4 eingeht,ist abhängig vom Flugwinkel des Teilehens Die Grössen S.L., l_e, t_i müssen daher für die komplexe PLUTO-Geometrie in Abhängigkeit von der Teilchenflugrichtung bekannt sein

Dazu wird die Konfiguration des PLUTO-Detektors im folgenden Kapiteleingehend behandelt.Darunter fällt ebenfalls die Analyse des PLUTO-Magnetfeldes,dessen Kenntnis für die Spurrekonstruktionnotwendig ist (s Kap IV).

VI. DIE KONFIGURATION DES PLUTO-DETEKTORS

VI.1 DIE DETEKTORGEOMETRIE

Zur Beschreibung des Aufbaus wird ein kartesisches Koordmatenspatem zugrunde gelegt, dessen Achsen durch Abb.8 definiert werden:

Abb. 8 : Definition des PLUTO - Koordinatensystems

Wegen der Detektorsymmetrie können Polarkoordinaten benutzt werden,deren Parametrisierung ebenfahls aus Abb.8 ersichtlich ist

Der Bereich in der r-z Ebene kann wegen der Strahlzuführungen auf Θ >25° beschränkt bleiben, da der Winkelbereich Θ <25° materiefrei ist (s Abb.1a), und deshalb keine Myonenidentifikation möglich ist.

Eine Vermessung des Detektors in seinen einzelnen Komponenten führt zu einer genauen Bestimmung der Materiedicke in Abhangigkeit des θ und φ -Winkels Die Materiedicke wurde bzgl. φ in 5° und bzgl. $\cos(\theta)$ in 0.05 Schriften tabelliert. Diese Analyse wurde von T.Azemoon und R.G.Glasser für den Innendetektor bis einschließlich Eisenjoch und für den äußeren Hadronabsorber getrennt durchgeführt.

- Abb. 9 : Geometrie der PLUTO Materie in der x y -Ebene (a) und der y - z - Ebene (b). (1) Barrel (2) Spule
 - (3) Ruckflußjoch
 - (4) äußerer Hadronabsorber
 - (5) Endkappenzähler

Eine Überarbeitung dieser Überlegungen führte zu einer genaueren Aufspaltung in die folgenden Komponenten:

Barrel , Endkappenzähler , Spule , Joch , Hadronabsorber

Die Materiedicke jedes einzelnen Blockes wird zur Veremheitlichung im Eisenäquivalent angegeben. Die Ergebnisse sind in Tabellen im Anhang (* zusammengefasst. Die Werte dieser Tabellen sind außerdem in der Abb 9 graphisch dargestellt. Weiterhin sind die geometrischen Grössen l_1 und l_2 aufgelistet, die zur Berechnung des Coulomb-Streukegels für die jeweitige Geometrie, die das Teitchen sieht, benötigt wird (s.Glg.V.3.4)

Da die Materiedicke vom Winkel abhängt,ändert sich neben dem Coulomb-Streukegel auch der Mindestimpuls für Myonen, um den Detektor unter jeder Flugrichtung durchqueren zu können.

Abb. 10 : Wahrscheinlichkeit w für Myonen,die Driftkammern unabhängig vom Flugwinkel zu erreichen als Funktion ihres Impulses p

Zur Bestimmung des Mindestimpulses wurde die Abhängigkeit der Durchdringwahrscheinlichkeit der Teilchen bei verschiedenen Impulsen untersucht und dabei über alle im Phasenraum erzeugte Flugwinkel gemittelt.

Abb 10 zeigt,daß aufgrund der nahezu homogenen Materieverteilung des Detektors (s.Abb 2) alle Spuren mit einem Impuls oberhalb 2 GEV/c für die Myonenidentifikation herungezogen werden können, da dann eine 100%-ige Durchdringwahrscheinlichkeit auch für die stärkste Dicke gegeben ist. Ob dann auch wirklich alle Teilehen mit entsprechenden Impulsen in den Driftkammern nachgewiesen werden,hängt von der Ansprechwahr schemlichkeit der Myonkammern ab. Eine entsprechende Untersuchung [LAU81] ergab für die Myönkämmern eine Ansprechwahrschemlichkeit von 86% bei der Forderung nach mindestens 3 angesprochenen Kammern

Wegen der Wichtigkeit der Myonkammern für die Myonenidentifikation soll ihre Funktionsweise im folgenden Kapitel beschrieben werden.

VI.2 DIE MYONKAMMERN

Um den Teilchendurchgang in den Myonkammern möglichst präzise bestimmen zu können,werden Driftkammern als Detektoren verwendet, die sich durch eine hohe Ortsauflösung auszeichnen.

Die prinzipielle Wirkungsweise dieser Kammern ähnelt derjenigen von Proportionalkammern.Bei den letzteren wird ein Potential zwischen Signaldraht und Kathode aufgebaut Das Kammervolumen wird mit einem teicht ionisierbaren Gas gefüllt. Abb.11 zeigt die Anordnung und Maße der PLUTO Myonkammern

Durchquert nun ein geladenes Teilchen den Kammerraum,so bilden sich längs der Teilchenbahn lonenpaare aus,die zur Kathode wandern, während die frei werdenden Elektronen zum Signaldraht hin beschleunigt werden und dort abfließen konnen

Bei entsprechend starkem Feld können die Elektronen in unmittelbarer Nähe des Signaldrahtes Sekundärelektronen auslösen. Diese Gasverstärkung ermöglicht es überhaupt,am Draht ein meßbares Signal zu erzeugen.

Erstrebenswert ist es nun,aus dem Signal den genauen Ort des Teilchendurchgangs rekonstruieren zu können Der minimale Abstand der Teilchenspur vom Draht ist mit Kenntnis der Driftgeschwindigkeit wie folgt zu berechen.

$$\begin{aligned} t & t_1 \\ x & \int v \, dt \\ t & t_0 \end{aligned}$$
 (VI 2.1)

t_o = Zeitpunkt der Primärionenerzeugung

t₁ Zeitpunkt,wo Elektronen am Signaldraht registriert werden

Unter Kenntnis der Driftgeschwindigkeit kann durch eine Driftzeitmessung der Ort des Teilchendurchgangs mit einer Genauigkeit < 1 mm bestimmt werden.

Der mathematisch einfachste und für den Experimentator am besten auszunutzende ist der Fall, daß die Driftgeschwindigkeit keine Funktion der Feldstärke oder des Druckes ist, sondern über den gesamten Driftraum konstant. Dann gilt:

$$\mathbf{x} = \mathbf{v} \quad (\mathbf{t}_1 - \mathbf{t}_0) \tag{VI 2.2}$$

Da die Myonkammern sehr große Flächen überdecken müssen (s Abb.1), und gleichzeitig große Driftwege bei gleichbleibend hoher Ortsauflösung realisierbar sind, eignet sich der Einsatz von Driftkammern.

Wegen medriger Teilchenzählraten ist die Größe der Driftwege aus der zeitlichen Begrenzung zweier (Teilchenstrahl-) Bunch Wechselwir-kungslängen auf 8 cm gewählt worden (s.Abb.11). Die Zeitinformationen von zehn Drahten konnten dabei gleichzeitig mit einem TDC gemessen werden

Die Faktoren,die zu einer Begrenzung in der Genauigkeit der Ortsauflösungführen,sind in [KRA81] erläutert.

Jede der 246 Kammern besteht aus 2-8 Drifträumen,die in 4 Ebenen angeordnet sind.Das Problem der links-rechts Doppeldeutigkeit in den Koordinaten längs und senkrecht zum Signaldraht ist durch die gegeneinander versetzte Anordnung der 1. und 2. bzw. 3. und 4. Kammerebene gelöst.Die Drähte der 3. und 4. Kammer verlaufen senkrecht zu denen der ersten beiden Lagen,um eine zweite Kammerkoordinate längs des Drahtes bestimmen zu können.

Durchquert ein geladenes Teilchen die Driftkammer, so wird i.a. mindestens ein Signaldraht angesprochen. Diese Informaton wird in speziellen Datenbanken gespeichert, die dann weiter ausgewertet werden können. So sind die Nummern (1~246) bzw. die ausgemessenen Kammerkoordinaten, die angesprochenen Drahtnummern und die zugehörige Driftzeitinformation festgehalten.

VI.3 DER MAGNETFELDVERLAUF IM PLUTO - DETEKTOR

Die Flugbahn der Teilchen im Detektor wird durch das vorhandene Magnetfeld bestimmt,da die Lorentzkraft auf die Teilchen wirkt.Die richtige Spurextrapolation setzt somit eine Kenntnis über den Verlauf der Feldlinien voraus.Umfangreiche Rechnungen von Wolf [WOL80] führten zur Bestimmung des in Abb.12 dargestellten Magnetfeldes.

Wegen der aus Abb.1 ersichtlichen φ -Symmetrie des Detektors in der x y-Ebene (bis auf geringfügige Abweichungen wegen Zuleitungen bzw. Halterungen) werden nur die y- bzw z-Komponente des Magnelfeldvektors gegen die Koordinaten selbst aufgetragen. Ans der Symmetrie folgt ein radialer Feldverlauf in der x y-Ebene, sodaß die x Komponente aus der y-Komponente bestimmt werden kann. Die Symmetrie entlang der z Achse (s Abb.1a) ermöglicht eine weitere Einschränkung auf nur eine Detektorhälfte bezüglich der z-Achse.

Die Durstellung des Magnetfeldverlaufes wurde so gewählt, daß die Pfeillange die Starke des Magnetfeldes wiedergibt, wobei die Pfeillänge im Innendetektor der vollen Feldstärke von 1.65 TESLA entspricht, und die Richtung den Feldfluß andeuten soll. Aus Gründen der Übersichtlichkeit sind die Pfeilspitzen nur mizwei ausgewählten Ausschnitten Al und B eingezeichnet

Weiterhun ist aus Abb 12 die Geschlossenheit der Feldlinien als Folge der Maxwell'schen Gesetze zu erkennen Durch das Eisenjoch wird em Vollstandiges Rückfliessen der Magnetfeldlinien erreicht, da es als Ferromagnet dem Feld praktisch keinen Widerstand entgegenbringt. Als Maß für die Stärke des Feldes dient der Vektor der magnetischen Induktion.

Das nahezu homogene Feld des Innendetektors $\vec{B}_{in} = (0,0,B_z=1.65 \text{ TESLA})$ (s.Kap III) setzt sich fast unverändert in z-Richtung bis zur innenkante des Joches und in y-Richtung bis in etwa ein drittel Tiefe der Spule fort. Von der z-Jochinnenkante aus werden die Feldlinien im Joch in die positive y-Richtung abgebogen Daber ist der unterste Jochbereich durch ein Magnetfeld nit drei nich, verschwindenden Komponenten ausgezeichnet Daran auschließend laufen die Feldlinien fast parallel zur y Achse. In diesem Bereich kann das Magnetfeld daher als Radialfeld $\vec{B} = (B_x, B_y, 0)$ interpretiert werden. Im oberen Jochteil liegt schließtich wieder ein zu z-paralleler und dem Innenfeld entgegengerichteter Feldlinienverlauf vor. Die Feldstärke ist hier etwa nur noch halb so groß wie im Innendetektor: $\vec{B}_x = (0,0,-B_z/2)$ (s.Kap X)

Zwischen dem Ende des Innenfeldes bis zur Innenkante des oberen-Jochteils liegt ein nahezu feldfreier Bereich vor. Der inateriefreie Bereich unterhalb des Joches ist,wie in Kap.III beschrieben,für die Myonenidentifikation unwichtig. Das Magnetfeld endet an den Jochaußenkanten,d.h. der Raum von dort bis in die Myonkammern ist magnetfeldfrei.

Die Kenntnis des PLUTO-Magnetfeldes ermöglicht nun die Rekonstruktion von Teilehenspuren von ihrem Enstehungsort (Wechselwirkungspunkt) aus bis in die Myonkammern. Wie bereits in Kap.IV beschrieben wurde, erfolgt die Spurrekonstruktion in drei Etappen:

a) im Innendetektor werden die Spuren durch Meßsignale erkannt.

b) Darun abschließend verlaufen die Teilchenspuren bis zur Außenkante des Joches durch ein Magnetfeld ohne Ortsdetektoren. Deinzufolge müssen die Spuren durch dieses Gebiet rekonstruiert werden. Die Grundlage hierzu hildet die im Innendetektor erkannte Spur.

c) im feldfreien Bereich verläuft die Teilchenbohn geradlinig.

Im folgenden Kapitel wird zunächst die Spurcikennung im Innendelektor (Punkt a) behandelt

VII. DIE SPURERKENNUNG IM INNENDETEKTOR

Nach der Beschreibung der PLUTO-Geometrie und des Magnetfeldes erfolgt in diesem Kapitel die Beschreibung von Teilchenbahnen im Innendetektor, die durch das dortige Magnetfeld (s.Kap.VL3) bestimmt werden Diese gemessenen Bahnen bilden die Grundlage für die spätere Spurextrapolation in die Myonkammern.

Der Innendetektor zeichnet sich durch einen längs der z-Achse nahezu homogenen Magnetfeldverlauf aus (Kap.VI.3).Für Teilchenbahnen resultiert daraus,daß nur die zu z-senkrechten Komponenten der Lorentzkraft

$$\vec{F} = \frac{q}{c} + \vec{v} \times \vec{B}$$
(VII.1)

$$q = Ladung des Teilchens
$$c = Lichtgeschwindigkeit$$$$

v = Geschwindigkeit des Teilchens

 $\vec{B} = magnetische Induktion$

die Bewegung bestimmen. Die Trajektorie einer solchen Bahn ist eine Schraubenlinie. Durch Projektion dieser dreidimensionalen Flugbahn in die x-y Ebene und r-z Ebene wird sie durch einen Kreis und einen geradlinigen Anteil beschrieben.

Zur Spurerkennung in dem Detektorbereich der Proportionalkammernwird somit in den beiden Ebenen eine entsprechende Anpassung an die Kammersignale vorgenommen.Diese Kreis- bzw. Geradenanpassung wird in einem von G. Franke entwickeltem Fortran-Programm 'PLUTOPAT' durchgeführt. Der Programmablauf ist z.B. in [BUR77,GER77] beschrieben

Ist eine Anpassung in beiden Ebenen möglich, so gehen aus dem Programmablauf die zur Spurbeschreibung verwendeten Parameter als Resultat hervor, die durch die Abb. 13a, berläutert werden und in der Datenbank 'GEOM' erfasst sind.

Abb. 13 SPURPARAMETER IM PLUTO -- KOORDINATENSYSTEM (a) Ebene senkrecht zum Magnetfeld (x - y - Ebene) (b) r - z -- Ebene , $r = \sqrt{x^2 + y^2}$

WWP	Wechselwirkungspunkt
R _{min}	Absland der Spur vom WWP in der x-y Ebene
Zo	Abstand der Spur vom WWP in der r-z Ebene
R _{rsd}	Radius der Spur im Innendetektor
$\kappa = 1/R_{rad}$	Spurkrümmung in der x-y Projektion
ΨmIt	Kreismittelpunktswinkel
0	Neigungswinket der Spur zur z-Achse
$\Delta_{zs} = dz/ds$. Steigung in z ,s≕Spurlänge in der x-y Ebene
sign	Ludungsvorzeichen der Spur

Neben diesen Größen werden ebenfalls die Fehler der Spurparameter sowie die Korrelationen der Parameter,die in derselben Ebene liegen, berechnet Die Korrelationen 2.8. zwischen dem Z_0- und $R_{min}-$ Wert und allen anderen entsprechend gebildeten Wertepaaren werden auf Null gesetzt

KOVARIANZEN	Bedeutung	
Cuk Crr Cpp Cad Czz	Fehlerquadrat in Krümmung	κ R _{min} Ψmit Δ _{ze} Ζ ₀
Ckr Ckp Crp Czd	Kovarianzen zwischen	$\kappa = R_{\min}$ $\kappa = \varphi_{\min}$ $R_{\min} = \varphi_{\min}$ $Z_0 = \Delta_{z_0}$
N. N.	Anzahl der in x-y benutzten Ka Anzahl der in r-z benutzten Kar	mmersignale – 3 minersignale – 2

Die Größen N_{ϕ} und N_{x} geben die Anzahl der Freiheitsgrade in beiden Ebenen an,d.h. die Überbestimmung der Anpassung.

Abb.14 dient zur Veranschaulichung der Spurerkennung in der x-y Ebene am Beispiel eines hadronischen Ereignisses.

Mit Hilfe der Spurparameter lassen sich für jede Spur an beliebiger Stelle des Innendetektors sowohl die Impulskomponenten als auch die Ortskoordinaten der Teilchenspur bestimmen.

Die Komponenten des Teilchenimpulses in der x - y Projektion (Transversal impuls p_t) läßt sich aus der Spurkrümmung berechnen und ist der Tangentenvektor der Bahn.Der Wert der magnetischen Induktion ist ca. 1.65 TESLA. Die Komponente in z-Richtung ist aus p_t bestimmbar:

$$p_{t} = 3 \cdot 10^{-4} \cdot B \cdot R_{rad}; \quad p_{t} = \sqrt{p_{x}^{2} + p_{y}^{2}}$$

$$p_{s} = -sign \cdot \Delta_{zs} \cdot p_{t}$$

$$[p_{t}] = [p_{x}] = GEV/c$$

$$[B] = TESLA$$

$$[R_{rad}] = MM$$

$$[sign] = \pm e \quad (Ladung des Teilchens)$$

$$(Vil.2)$$

Die Koordinaten des Spuranfangspunktes sind (s Abb.13a) :

Abb 14 Hadronisches Ereignis in der x-y Ebene : die Punkte sind die Signale der Proportionalkammern des Innendetektors (KAP. III),an die Kreise angepasst werden Die Zahlen sind ein Maß für die vorhandene neutrale Energie.

Die kartesischen Richtungskosmus an diesem Punkt werden aus den hnpulskomponenten unter Berücksichtigung des Ladungsvorzeichens ernntleft:

Alle zur Spurextrapolation bis in die Myonkammern notwendigen Parame ter sind in diesem Kapitel bereitgestellt worden.

Da dieser Spurteil die Grundlage für die weitere Rekonstruktion bildet,ist die Genaugkeit der Spurerkennung im Innendetektor für die Myonenerkennung sehr wesentlich. Es nuissen daher aus den angegebenen Kovarianzen die Unsicherheiten für den Austrittsort der Teilchen aus dem Innendetektor berechnet werden

in Abb.15 ist dieser Fehler Δ_{in} für alle impulse dargestellt. Er ergibt sich aus den Fehlern der Austrittskoordinaten x,y,z wie folgt:

 $\Delta_{\rm in} = \sqrt{\Delta x^2 + \Delta y^2 + \Delta z^2}$ (VI(5))

Der mittlere Fehler beträgt $<\Delta_{in} > \sim 3.2 \pm 0.4$ cm, d.h. der mittlere Fehler pro Koordmate beträgt nicht mehr als ~1~1.5 cm. Eine impulsabhängige Darstellung dieser Fehlerellipse erübrigt sich, da nach Abb.16 keine Korrelation dieser Fehler mit dem Impuls vorliegt.

Es ist wünschenswert,diese Genauigkeit auch in der sich anschließenden Rekonstruktion der Spur in die Myonkammern zu erreichen. Die Breite der impulsabhängigen Streukegelverteilung (Kap.V) ist ein wichtiges Entscheidungsmerkmal für die Myonenidentifikation Dabei wird die Ortsverteilung für ein Teilchen mit der Differenz aus extrapoherterund Trefferkoordinate der Myonkammern verglichen (Kap.II).Diese Methode ist jedoch nur dann sinnvoll, wenn die Trefferkoordinate genau bekannt ist.

Durch den Kammerbau (s.Kap.VI.2) sind die Positionen der Signaldrühte relativ zum Kammermittelpunkt bekannt. Ungenauigkeiten gibt es jedoch durch die Bestimmung der Koordinaten dieser Kammermittelpunkte im PLUTO-Koordinatensystem.Sie wurden durch Ausmessen nach Beendigung der Montage auf dem Hadronabsorber ermittelt und müssen nun auf ihre Genauigkeit überprüft und gegebenenfalls korrigiert werden.

Die genaue Kenntnis der Koordinaten ist nicht nur für die Myonenidentifikation wichtig,sondern auch zur Überprüfung der in den Kapiteln IX,X beschriebenen Spurextrapolationsprogramme.

VIII. DIE SPURREKONSTRUKTION OHNE MAGNETFELD

VIII.1 DIE BESTIMMUNG DER LAGE DER MYONKAMMERN

Die Spurerkennung im Innendetektor ist,wie in Kap 13 erwählt die Grundlage für die eigentliche Rekonstruktion der Teilehenbahn in die Myonkammern. Der einfachste Fall der Extrapolation ergibt sich bei ausgeschaltetem Magnetfeld.Bei der PLUTO-Analyse hadronischer Ereignisse liegt dieser Fall nicht vor,da ohne Magnetfeld keine Impulsbestimmung möglich ist.

Mit Hilfe von Spuren "die ohne Magnetfeld aufgenommen wurden, konnen jedoch die Positionen der Myönkammern bestummt werden. Diese werden zur exakten Bestimmung der Trefferkoordinaten bei einem Teilchendurchgang benötigt.

Dieser einfachste Fall der Spurrekonstruktion soll daher am Anwendungsbeispiel der Bestimmung der Lage der Myonkammern beschrieben werden.

VIII.2 METHODE DER POSITIONSBESTIMMUNG

Zur Bestimmung der Positionen der Myonkammern muß die Teilchenbahn exakt bekannt sein und dabei insbesondere die extrapolierte Koordinate.

Bisher ist nur der Bahnausschnitt im Innendetektor in Kapitel VII beschrieben worden,der aber auch schon Ungenauigkeiten in den Spurparametern enthält. Um den Einfluß dieser Meßfehler zu unterdrücken, und außerdem Unsicherheiten bei der Berücksichtigung des Magnetfeldes zu vermeiden, werden zur Positionsbestimmung der Kammerlage Höhenstrahlen benutzt, die ohne Magnetfeld aufgenommen sind. Die Bahn dieser Myonen verläuft geradlinig durch den Detektor und wird nur durch die Vielfachstreuung unter Berücksichtigung des Energieverlustes durch lonisation beeinflußt.

Bei geradliniger Extrapolation der innen erkannten Höhenstrahlspur ist somit die Extrapolationskoordinate in den Myonkammern genau bekannt. Die Differenz dieser berechneten Koordinate mit der Signeldrahtkoordinate der angesprochenen Kammer gibt die Streukegelbreite wieder Für jede Kammer wird diese Differenz über alle zugehörigen Signeldrähte gebildet.Der gegen Null verschobene Mittelwert Δ_{0rt} dieser Gaußverteilung (s.Abb.17) ist die Abweichung der ausgemessenen Kammerkoordinate von der richtigen Position.

VIIL3 PROBLEME BEI DER DURCHFÜHRUNG

Die Auswertung der durch kosinische Strahlen gesetzten Kammersignale erfolgt im Innendetektor auf die gleiche Weise wie für die aus e'er Reaktionen stammenden Teilchenspuren

ba das Spurerkennungsprogramm 'PLUTOPAT' (s.Kap.VII) vom Detektormittelpunkt aus nach Spuren sucht,erscheinen kosmische Spuren im Innendetektor als zwei zueinander kollineare Bahnen.Das Pregramm unterscheidet dabei nicht zwischen Daten bei ein - bzw ausgeschaltetem Magnetfeld.Das bedeutet,daß auch an Höhenstrahlen ohne Magnetfeld im Innendetektor Kreise (x. y. Ebene) bzw. Geräden (r. z-Ebene) angepasst werden.

Nach den Überlegungen aus den Kap IV und VI-3 würden diese Spuren ohne Magnetfeld vom Austrittsort aus dem Innendetektor und mit der dortigen Austrittsrichtung bis in die Myönkämmern gerädlinig extrapohert.

Abb. 18 : Kosmisches Myon im PLUTO-Innendetektor bei ausgeschaltetem Magnetfeld Die Tangente an der Mitte des "Kreisbogens" ist die beste Losung zur geradlinigen Extrapolation in die Myonkammern

Da der reale Teilchenbahnverlauf im Innendetektor nicht mit dem angepäßten übereinstimmt,stellt der Austrittsort aus dem Innendetektor jedoch keine zuverlässige Grundlage für die weitere Extrapolation dar Aus einfachen Geometriegründen folgt daher als Wahl für den besten Ausgangspunkt der Extrapolation der Mittelpunkt der erkannten Spur Diese Überlegung wird durch Abb.18 verdeutlicht Von diesem Mittelpunkt aus mit den dort ermittelten Richtungskosinus erzielt man zuverlassige Extrapolationsergebnisse für die eigentlich geradling verlaufende Teilchenbahn.

Für die Positionsbestimmung der Myonkammern müssen zusätzliche Kriterien von den Höhenstrahlen erfüllt sein. Um eine möglichst schmale Streukegelbreite zur Bestimmung der Mittelpunktsverschiebung zu erhalten,werden niedrige Teilchenimpulse ausgeschlossen.Jedoch ist eine Impulsbestimmung aus der Kenntnis der Kreisradien (s.Kap VII) nicht möglich,da ohne Magnetfeld die Radien keine physikalische Bedeutung besitzen.

Eine Impulsauswahl wird daher nur auf indirektem Weg erzielt; Myönen,die den Detektor vollständig durchqueren und somit bei Ein- und Austritt aus dem Detektor Myönkammern ansprechen,besitzen einen Mindestunpuls von etwa 2.6 GEV/c wie für die zweifache Materiedicke des Hadronabsorbers aus Abb.4 ersichtlich ist. Es werden daher nur solche Höhenstrählen zur

Positionsbestimmung benutzt, die den gesamten Detektor durchquert haben.

Damit der angepasste Kreisausschnitt möglichst gut verträglich mit der geradlinigen Spur wird,werden für die Bestimmung der Lage der Myonkanmern nur Radien zugelassen,deren Wert oberhalb des in Abb.19 eingezeichneten Mindestwertes R_{out} liegt.

Nach der beschriebenen Datenselektion standen etwa 21000 kosmische Spuren zur Verfügung. Dabei wurde darauf geachtet, daß genügend viele der benutzten Höhenstrahlen unter kleinen Neigungswinkeln zur Strahlache auf den Detektor auftreffen, sodaß nicht nur für die oben und unten liegenden Myonkammern ("top, bottom"-Kammern) eine ausreichende Statistik vorliegt.

Die beschriebene Bestimmung der Kammerpositionen erzielte Verbesserungen der ausgemessenen Kammerkoordinaten um etwa 1-1.5 cm.Die Ergebnisse sind in den Abb.20 und 21 dargestellt. In allen folgenden Kapiteln werden diese korrigierten Koordinaten benutzt.

Abb. 20 : Abweichung der Kammerkoordinaten Δ_{ort} vom ausgemessenen Wert für alle Kammern

Abb. 21 : Abweichung der Kammerkoordinaten Δ_{ort} vom ausgemessenen Wert gegen Kammernummer.

Die richtige Bestimmung des Teilchendurchgangs aus den Signaldrahtinformationen in den Myonkammern ist nach der Korrektur der Kammerpositionen gewährleistet. Die Berechnung des Coulomb-Streukegels für Myonen im PLUTO-Detektor ist ebenfalls behandelt worden.

Als Jetzte Voraussetzung für die Myonenidentifikation fehlen nun noch die extrapolierten Spurkoordinaten in den Myonkammern für Spuren im Magnetfeld. Diese erhält man durch die Rekonstruktion der im Inneudetektor erkannten Spur bis in die Myonkammern,die in den folgenden Kapiteln beschrieben wird.

IX. DIE SPURREKONSTRUKTION MIT MAGNETFELD

Die exakte Rekonstruktion einer Teilchenbahn im PLUTO-Magnetfeld (s.Abb.12) wird,wie in Kap.IV beschrieben,durch eine iterative Verfolgung der Spur erreicht. Durch den magnetfeldfreien Raum von den äußeren Kanten des Rückflußjoches bis in die Myonkammern wird die Teilchenbahn dann geradlinig extrapoliert.

Da die Extrapolation durch Bereiche ohne Magnetfeld unkompliziert ist,wird im folgenden die Beschreibung der Spurextrapolation auf den Raum zwischen Innendetektor und der Außenkante des Joches beschränkt. Das Ziel der Rekonstruktion ist somit die Bestimmung des Austrittsortes und der Flugrichtung aus dem Rückflußjoch.

Die iterative Spurverfolgung ist jedoch in der PLUTO-Datenanalyse zu zeitaufwendig.Zur Einsparung von CPU-Zeit müssen Näherungen für den Magnetfeldverlauf gefunden werden, die eine ähnlich schnelle Behandlung der Spur wie im Innendetektor (Kap.VII) zulassen.

Bisher wurde ein sehr einfaches Magnetfeldmodell benutzt,das in Abb.22 dargestellt ist und im nächsten Kapitel näher erläutert wird.Das daraus resultierende Rekonstruktionsverfahren wurde für die PLUTO Konfiguration während des Einsatzes am DORIS-Ring entwickelt.

Zur Myonenidentifikation standen dort nur die 'Inneren Myonkammern' außerhalb des Joches zur Verfügung (s. Kap.III),sodaß man hauptsächlich am Austrittsort der Teilchen aus dem Joch interessiert war Zur Myonenerkennung mit der PLUTO Konfiguration am Speicherring PETRA (s.Abb.1) ist jedoch die Kenntnis der Austrittsrichtung entscheidend für die richtige Bestimmung des 'Durchstoßpunktes in den ca. 80 cm weiter entformten Myonkammern.

Wegen der Wichtigkeit der Austrittsrichtung aus dem Joch wird daher in Kapitel X eine Rekonstruktion entwickelt,der eine bessere Beschreibung des Magnetfeldes zugrunde liegt.

Um Vergleiche anstellen zu können,soll im folgenden Abschnitt das bisherige Verfahren eingehend beschrieben werden.

Abb. 22 : Das bei dem bisherigen Spurrekonstruktions erfahren benutzte Magnetfeldmodell.Die Pfeillänge act ein Maß für die Starke des Feldes (vgl. Abb 12)

37

IX.1 DIE BISHERIGE SPURREKONSTRUKTION

Das Magnetfeld, das dieser Rekonstruktion zugrunde liegt, ist in Abb 22 dargestellt.Die starken Näherungen dieses Feldlinienverlaufes gegenüber dem tatsächlichen werden im Vergleich mit Abb.12 deutlich.

Das angenommene Magnetfeld wird in Abhängigkeit von der Teilchenflugrichtung zur z-Achse in zwei Bereiche unterteilt:

1) Spuren mit $|\Theta| \ge \Theta_1$

Teilchen mit einem Flugwinkel $|\Theta| > \Theta_1$ zur Strahlachse durchfliegen im Anschluß an das Innenfeld $\overline{B}_{in} = (0,0,1.65 \text{ TESLA})$ ein ebenfalls zu z-paralleles Außenfeld.Die Proportionalität zwischen den beiden Feldern wird durch den Rückfluss-Parameter b(Θ) in der folgenden Gleichung beschrieben:

$$\overrightarrow{B}_{a} = -b(\Theta) \cdot \overrightarrow{B}_{tn}$$
(IX.1.1)

 \vec{B}_{a} = Aussenfeld

 $\vec{B}_{in} = Innenfeld$

Der Rückfluss-Parameter $b(\theta)$ ist nur in dem Winkelbereich $\Delta \Theta$ (s.Abb.22) eine Funktion von θ (s.Abb.23),in dem übrigen Winkelbereich ist $b(\theta)$ eine Konstante mit $b(\theta) = 0.31$.

Der konstante Parameter wird in Kap.IX.3 diskutiert.

2) Spuren unter $|\Theta| < \Theta_1$

Für diese Spuren erstreckt sich das Innenfeld \vec{B}_{in} in z-Richtung bis z=48.5 cm (Ende der Proportionalkammern in z-Richtung, s. auch Abb.1a).In dem sich anschließenden Raum wird kein Magnetfeld mehr angesetzt.

Entsprechend den unterschiedlichen Magnetfeldbereichen 1) und 2) muß auch die Spurrekonstruktion nach diesen Bereichen getrennt durchgeführt werden.Im folgenden Kap.IX.2 wird zunächst die Rekonstruktion für Spuren mit Flugwinkeln $|\Theta| \ge \Theta_1$ durchgeführt.

IX.2 REKONSTRUKTION FÜR SPUREN MIT $|\Theta| \ge \Theta_1$

In Abb.24a,b sind alle zur Spurextrapolation benötigen Spurparameter dargestellt. Die im Innendetektor erkannte Spur (s.Kap.VII) wird zunächst in der x-y Ebene bis zum Ende des Magnetfeldes \vec{B}_{in} bei $r_b=78$ cm (s.auch Abb.22) weitergeführt.

Zur Berechnung der Schnittpunktskoordinaten x_b, y_b und der Richtungscosinus der Spur mit dem Zylinder r_b werden zunächst die Koordinaten x_m und y_m des Mittelpunktes der im Innendetektor erkannten Spur benötigt, die durch folgende Gleichungen gegeben sind (zur Definition der Parameter s. auch Kap.VII):

$$\mathbf{x}_{\mathbf{m}} = (\mathbf{R}_{rad} + \mathbf{R}_{min}) \cdot \cos \varphi_{mit}$$

$$\mathbf{y}_{\mathbf{m}} = (\mathbf{R}_{rad} + \mathbf{R}_{min}) \cdot \sin \varphi_{mit}$$

$$(IX.2.1)$$

Durch Anwendung des Cosinussatzes auf das Dreieck "ABM" (s.Abb.24a) erhält man die gewünschten Koordinaten:

Abb. 24a – Spurrekonstruktion in der $x \oplus y$ Ebene für Spuren mit $[\Theta] \geqslant \Theta_1$

 $y_b = y_m + R_{rad} + \sin \beta$ Die Gleichungen der Richtungscosinus stimmen mit Glg VII 4 überein, wenn der dortige Winkel - φ_{mit} durch den neuen Winkel 3 erset 4 wird

$$dx_{h} \approx sign + sin\Theta + sin\beta$$

$$dy_{b} = sign + sin\Theta + cos\beta$$

$$dz_{h} = cos\Theta$$

$$(1X.2.3)$$

Die Flugrichtung bzgl. der z – Achse ist durch $\cos(\theta)$ bestimmt,da das Magnetfeld in dem gesamten Bereich parallel zu dieser Achse verläuft. Die z-Koordinate des Schnittpunktes wird aus der folgenden Gleichung bestimmt(Abb.24b):

$$z_{\mathbf{b}} = Z_{\mathbf{0}} + \mathbf{r}_{\mathbf{b}} + \cot \Theta \qquad (IX.2.4)$$

Die Weglänge der Spur bis zu dem Punkt (x_b, y_b, z_b) ist gegeben durch (s.Abb.24a, b):

$$\mathbf{s}_{\mathbf{h}} = \mathbf{R}_{\mathbf{rad}} \cdot \mathbf{\alpha} / \sin \mathbf{\theta} \tag{1X.2.5}$$

Der sich anschließende Magnetfeldbereich bis $r_J=150$ cm beschreibt im Anschluß an das betrachtete innenfeld von 1.65 TESLA ein vollständiges Rückfliessen der Linien (s.Abb.22). Für dieses Feld gilt die Beziehung IX.1.1.

Die Beschreibung der Spur im Feld \vec{B}_{e} geschieht völlig analog zu der im Innenfeld \vec{B}_{in} .Der neue Kreisbogen der Spur vom Punkt $(\mathbf{x}_{b}, \mathbf{y}_{b})$ bis $(\mathbf{x}_{J}, \mathbf{y}_{J})$ verläuft bis zu dem angesetzten Magnetfeldende bei einem weiteren Zylinderschnitt mit r_{J} =150 cm. Entsprechend dem Feldlinienverlauf ist der Drehsinn der Spur entgegengesetzt zu der Innenspur.

Zu berechnen sind die Koordinaten x_J und y_J der Spur in dem bezeichneten Schnittpunkt sowie die Richtungscosinus.Diese Berechnung geschieht analog zu der Koordinatenbestimmung des Punktes (x_b, y_b) . Die Analogie der sich entsprechenden Spurparameter auf beiden Spurabschnitten wird in der folgenden Tabelle dargestellt.Die Grössen selbst sind in Abb.24 dargestellt.

TABELLE 1

Innenspur	Aussenspur
R _{rad}	$ \rho_{\rm rad} = R_{\rm rad}/b(\theta) $
R _{min}	ρ _{min} : aus Cosinussatz in ΔΑΜC
<i></i> Рmit	$\Phi_{mit} = \arctan(\eta_m/\zeta_m)$
г _ь	rı
x _m ,y _m	$\zeta_{m}.\eta_{m}$
a	$\Delta + \Omega$

Die Koordinaten und Richtungscosinus am Magnelfeldende um Punkte (x_i, y_i) werden durch Ersetzen der in der Tabelle links stehenden worte durch die neuen rechts stehenden in den Gleichungen für den Punkt (x_b, y_b) gebildet.

Die Ergebnisse dieses Rekonstruktionsverfahrens hängen entscheiden twon der Wahl des Rückfluß-Parameters "b(θ)" ab Die Feldstärke in dem Bereich mit dem konstanten Rückfluß-Parameter b(θ) = 0.31 kann durch den tatsachlichen Feldinienverlauf (Abb.12) nicht motiviert werden.Der Parameter muß so gewählt werden, daß die Näherungen des Magnetfeldes zu möglichst genauen Extrapolationsergebnissen führen Zur Rechtfertigung des Wertes wird im folgenden Kapitel der Einfluß von b(θ) auf die Rekonstruktionsergebnisse untersucht.

IX.3 DIE WAHL DES RÜCKFLUSS-PARAMETERS

Um das Magnetfeldmodell und damit die Grösse des Rückfluß Parameters zu bestätigen,wurde der Einfluß verschiedener Magnetfeldstärken auf die Güte der Extrapolation untersucht. Als Maß für die Güte kann dabei die auftretende Streukegelbreite für Höhenstrahlen, die mit eingeschaltetem Magnetfeld aufgenommen wurden, verwendet werden

Wie bereits im Zusammenhang mit der Positionsbestimmung der Myonkammern (Kap.VIII) gesagt wurde, liefert die Differenz der extrapolierten mit der aus den Signalen ermittelten Myonkammertrefferkoordinate bei exakter Extrapolation die für den entsprechenden Impuls berechnete Streukegelbreite (Kap.V). Die benutzten Höhenstrahlen sollten kleine Impulse besitzen, da diese empfindlicher auf die Spurrekonstruktion reagieren als hochenergetische.Es wurden daher Spuren mit einem Impuls p zwischen 2 und 3 GEV/c gewählt Der Rückfluß--Parameter wird nun im Rekonstruktionsprogramm variiert und die Streukegelverteilung gemessen.

Anschließend wird der Streukegel in ein Koordinatensystem senkrecht zur Spur transformiert,da nur in diesem System eine Gaußverteilung vorliegt (s.Abb.25).

Die Spurrekonstruktion wird für Werte des Rückfluß-Parameters von 0.1 bis 0.8 in 0.1 Schritten vorgenommen . An die Verteilungen werden dann Gaussverteilungen angepasst und so die Varianzen berechnet.

Die Streukegetverteilung mit der angepassten Gaussfunktion ist für den Rückfluß Parameterwert $b(\theta)=0.30$ in Abb.26 dargestellt.

 Abb. 25 : PLUTO Koordinatensystem und Koordinatensystem senkrecht zur Spur.
 Δ _{xyz},Δ _{uvw} = Differenz zwischen extrapolierter ("E") und Trefferkoordinate ("T").

Die Untersuchung konnte auf den maximalen Ruckfluß-Wert von 0.8 beschränkt bleiben, da grössere Werte aus Gründen der Flußerhaltung micht möglich sind. Der beste Wert des Rückfluß-Parameters ist derjemge, bei dem die Varianz minimal wird.

Eine graphische Darstellung der jeweilig ermittelten. Streukegelbreite m. Abhängigkeit vom Rückfluß- Parameter zeigt Abb.27.

Abb. 27 : Mittlere laterale Versetzung < X > gegen Rückflußparameter b(θ).Die eingezeichnete Parabel ist eine Anpassung an die Daten.

An die gewonnenen Ergebnisse läßt sich eine Parabel zweiter Ordnung anpassen,deren Schwerpunkt (minimale Varianz) bei $b(\theta) = 0.30 + 0.02$ liegt

Diese Untersuchung kann keine Aussagen über die Güte der Rekonstruktion in dem Magnetfeldbereich mit konstantem Rückfluß-Parameter machen.Dieses wäre durch einen Vergleich der gemessenen mit der theoretischen Streukegelbreite möglich.

Um genügende Statistik zu erhalten,wurden jedoch zur Messung des Streukegels Spuren in dem Impulsbereich 2-3 GeV/c benutzt. In diesem Bereich ändert sich die theoretische Streukegelbreite schr stark (s.Abb 7),sodaß ein Vergleich nicht möglich ist. Es ist lediglich die Aussage gerechtfertigt, daß beide Streukegel größenordnungsmäßig übereinstimmen. Die Güte der Rekonstruktion wird in Kap.IX.5 untersucht. Dieser Test umfasst die Rekonstruktion der Teilchenbahnen in allen Bereichen des Detektors.

Im folgenden Kapitel IX.4 wird daher zunächst die Rekonstruktion für Spuren mit $|\Theta| < \Theta_1$ (s. Abb.24) behandelt.

IX.4 REKONSTRUKTION FÜR SPUREN MIT |0|<01

Die Teilchenbahnen in diesem Bereich durchfliegen die Endkappenzähler. Für diese Flugbahnen setzt das Programm kein Magnetfeld im Joch an (s. Kap.IX.1). Die Spurrekonstruktion unterscheidet sich daher von dem in Kap.IX.1 beschriebenen Verfahren.

Statt die im Innendetektor erkannte Spur in der x-y-Ebene fortzuführen, werden nun die Spuren in der r-z-Ebene bis an das Magnetfeldende bei $z_8=48.5$ cm weitergeführt.Die Koordinaten und Richtungskosinus dieses Schnittpunktes (x_{B,y_B,z_B}) müssen nun bestimmt werden.

Die hierzu benötigten Gleichungen stimmen mit den Glgn.IX.2.2 und IX.2.3 überein, wenn der dortige Winkel α durch den folgenden Winkel α' ersetzt wird:

$$\alpha' = (z_{\rm E} - Z_0) / (\cot \Theta \cdot R_{\rm rad}) \tag{IX.4.1}$$

Die Extrapolation bis an das Jochende erfolgt geradlinig.

.

Wie in Kapitel IX.1 erwähnt wurde die hier beschriebene Spurrekonstruktion zur Auswertung der 'Inneren Myonkammern' entwickelt. In dieser Arbeit sollen jedoch die Teilchenbahnen bis in die ca. 80 cm weiter entfernt liegenden Myonkammern extrapoliert werden.

Wegen der starken Näherungen des Magnetfeldes besteht die Möglichkeit, daß zumindest die Austrittsrichtung der Teilchen aus dem Magnetfeld nicht mit genügender Genauigkeit berechnet wird. Daher muß die Güte des Programmes an Hand von Testuntersuchungen, die im folgenden Kapitel beschrieben werden, bestimmt werden.

IX.5 TEST DER SPURREKONSTRUKTION

IX.5.1 TEST MIT HÖHENSTRAHLEN

Die Genauigkeit der in Kap.IX.2 und IX.4 beschriebenen Extrapolationsmethode wird durch Anwendung auf Höhenstrahlen im Magnetfeld untersucht. Die in Kap.VIII ermittelten Positionen der Myonkammern sollten bei einer exakten Rekonstruktion dieser Spuren reproduziert werden können.

Im Anschluß an die Rekonstruktion der Spur wird wie bei der Positionsbestimmung der Myonkammern in Kap.VIII für jede Kammer die Abweichung der extrapolierten von der Trefferkoordinate gebildet.wobei über alle Signaldrähte der jeweiligen Kammer gemittelt wird.Die Berech nung der Kammerkoordinaten aus diesen Abweichungen erfolgt wie im Kap.VIII.

Die Ergebnisse der Höhenstrahluntersuchung sind in Abb.28 dargestellt.

Abb.28 : Δ_{Koord} = Differenz der exakten Kammerkoordinate (aus Kap.VIII) und der mit dem Rekonstruktions-programm bestimmten Koordinate für alle Kammern mit genügender Statistik.

Die in diesem Kapitel beschriebene Spurextrapolation reproduziert danach die Kammerkoordinaten in den Grenzen von ca. \pm 8 mm.

Mit dieser Untersuchung kann jedoch nur die im Kap.IX-2 beschriebene Extrapolation getestet werden da die Mehrzahl der lichenstrahlen unter großen Neigungswinkeln θ zur Strahlachse den Delektor durchquert.Für das im Kap.IX-4 beschriebene Verfahren liegt keine ausreichende Statistik vor

Grobe Extrapolationsfehler können aufgrund dieses Tests für den genannten Bereich ausgeschlossen werden.

lm folgenden Abschnitt wird ein weiterer Test durchgeführt,der im gesamten Detektorbereich effizient ist.

1X.5.2 VERGLEICH DES PROGRAMMES MIT DER EXAKTEN EXTRAPOLATION

Zur Überprüfung des Rekonstruktionsprogrammes in allen Detektorbereichen werden in diesem Kapitel die exakten Durchstoßpunkte von Teilchenbahnen in den Myonkammern bestimmt. Dazu werden Teilchenspuren mit beliebigen Flugwinkeln Θ zur Strahlachse (Abb.13) benutzt.

Die Verfolgung der Spuren durch den Detektor geschieht in infinitesimalen Schritten mit einer Weglänge von ca.5 mm nach der iterativen Methode (Kap IV),wobei das exakte Magnetfeld aus Abb.12 ohne Nanerungen benutzt wird. Die so erzielten Ortskoordinaten in den Myonkammern werden mit den Koordinaten,welche die beschriebene Extrapolation liefert,verglichen. Abb.29 zeigt die Resultate dieser Untersuchung.

Abb 29a,b zeigen die Differenzen der Durchstoßkoordinaten beider Verfahren für einen Teilchemmpuls von p = 2GeV/c. Dargestellt ist die in folgender Gleichung definierte Ellipse:

$$\Delta = \sqrt{(x_{EXA} - x_{REK})^{2} + (y_{EXA} - y_{NEK})^{2} + (z_{EXA} - z_{REK})^{2}}$$

x,y,z_{EXA} == Koordinaten des iterativen Verfahrens x,y,z_{EKK} == Koordinaten des Rekonstruktionsverfahrens

Dabei bezieht sich Abb.29a auf das in IX.2 beschriebene Verfahren und Abb.29b auf das in IX.4 beschriebene Die impulsabhängigen Resultate für beide Methoden,die im Folgenden diskutiert werden, zeigt Abb.29c.

Abb 29 · Differenz Δ der exakten und der mit den Rekonstruktionsprogrammen (Kap. IX) bestimmten Durchstosspunkte in den Myonkammern (a) Spuren mit $|\theta| \ge \Theta_1$ (b) Spuren mit $|\theta| < \Theta_1$ und einem Impuls von p = 2 GeV/c (c) Mittlere Differenz < Δ > gegen Impuls

(IX.5.1)

In Kap.VII wurde die Ungenauigkeit des Austrittsortes der Spur aus dem Innendetektor mit $< \Delta_{in} > \sim 3.2$ cm (Abb.15) berechnet.

Der zusätzliche Fehler der sich anschließenden Spurrekonstruktion (Abb.29), der durch die Näherungen des Magnetfeldes zustande kommt,sollte diesen Wert nicht übersteigen.

Die folgende Diskussion der Testergebnisse in Abb.29 wird auf den Impulsbereich zwischen 1.3 GeV/c (Mindestimpuls eines Myons zum Durchdringen des Hadronabsorbers (Abb.4)) und 3 GeV/c beschränkt,da die Rekonstruktion für niedrige Teilchenenergien besonders empfindlich ist.Höher energetische Spuren werden durch das Magnetfeld weniger stark beeinflußt (s.dazu GLIV.2).

Aus Abb.29 ergibt sich deutlich, daß der Fehler aufgrund der Magnetfeldnäherungen der beschriebenen Rekonstruktionsmethode größer ist als der geforderte Maximalwert.

Während für Spuren mit $|\theta| \ge \theta_1$ (Abb.22) der Fehler gerade noch innerhalb der Toleranzgrenzen liegt, ist er für Spuren mit $|\theta| < \theta_1$ um einen Faktor 2-3 zu hoch. Die Näherung des Außenfeldes $\overline{B}_{\mathbf{a}} = 0$ in diesem Bereich ist für die Anwendung der Rekonstruktion bis in die Myonkammern offenbar nicht geeignet.

Als Fazit dieser Testergebnisse stellt sich die Forderung nach einer exakteren Rekonstruktion, bei der insbesondere Wert auf die richtige Bestimmung der Teilchenflugrichtung aus dem Magnetfeld gelegt wird. Dies kann nur durch eine stärkere Anlehnung des zur Rekonstruktion verwendeten Magnetfeldmodells an den tatsächlichen Verlauf (Abb.12) erreicht werden.

Im folgenden Kapitel soll daher eine Rekonstruktion entwickelt werden, die diesen Bedingungen genügt.

X. DIE VERBESSERTE SPURREKONSTRUKTION

Zur Einsparung von CPU-Zeit enthält auch diese im Folgenden entwickelte und verbesserte Spurextrapolation Näherungen über das Magnetfeld.Eine Verbesserung gegenüber der in Kap.IX beschriebenen Methode wird durch eine weitgehendere Übereinstimmung zwischen dem Magnetfeldmodell und dem wirklichen Feldverlauf erzielt.

Wegen der unterschiedlichen Magnetfeldstruktur in den verschiedenen Detektorbereichen werden auch hier in Abhängigkeit des Neigungswinkels einer Spur zur z-Achse verschiedene Durchführungen für die Rekonstruktion gewählt.

Zur Erklärung der verschiedenen Rekonstruktionsmethoden ist in Abb.30 nochmals der Magnetfeldverlauf aus Abb.12 gezeigt. Zusätzlich sind die Grenzen "welche die Wahl der Durchführung in der Spurextrapolation festlegen,eingezeichnet.

Die Rekonstruktion der Teilehenspuren wird in die drei folgenden Gruppen eingeteilt:

a) Spuren mit $|\Theta| > \vartheta_1$

b) Spuren mit $\vartheta_1 \leq |\Theta| \leq \vartheta_2$

c) Spuren mit $|\Theta| < \vartheta_2$

Die obigen Definitionen beziehen sich auf Abb.30,in der nur die rechte obere Hälfte des symmetrischen Detektors (Abb.1) dargestellt ist.Die restlichen Bereiche des Detektors erhält man durch Spiegelung.Auch die Beschreibung der Spurrekonstruktion kann wegen der Symmetrie auf diesen Teil des Detektors beschränkt bleiben.

Für den jeweiligen Bereich wird in den folgenden Abschnitten zuerst das Feld und die daraus resultierende Rekonstruktion beschrieben.

X.1 SPUREN MIT 101> 3,

Zur Verdeutlichung des Magnetfeldes,welches diese Spuren durchfliegen,wird das Feld in Abb.31 analysiert.

Diese Abbildung zeigt das Feld in Abhängigkeit von der y -Koordinate,wie es annähernd in dem genannten Θ – Bereich gegeben ist

Es existieren drei aufeinanderfolgende nahezu homogene Feldbereiche Der erste Bereich beschreibt das zu z-parallele Innenfeld \overline{B}_{in} =(0,0,1.65 TESIA),an welches sich ein fast feldfreier Raum bis zur Innenkante des Ruckflussjoches anschließt.

Als Ende des Innenfeldes wird nach Abb 31 die y Koordmate y_{Bm} #81 cm definiert,wo die Feldstärke auf die Hälfte ihres Wertes abgesunken ist.

Im kückflussjoch hegt wieder ein zu z-paralleles und dem Innenfeld entgegengerichtetes Feld \vec{B}_{a} vor. Die Proportionalität zwischen \vec{B}_{in} und \vec{B}_{a} kann also wie in Kap.IX.1 über die Größe des Rückfluss-Parameters be schrieben werden,der jetzt von Θ unabhängig ist:

$$\overrightarrow{B}_{\mathbf{k}} = -0.507 \cdot \overrightarrow{B}_{\mathbf{m}} \tag{X.1.1}$$

Der Wert 0.507 für den "Rückfluss-Parameter" ergibt sich durch Mittelung über alle Feldstärken im Jochbereich, die sich in den Grenzen 0.81 - 0.88 TESLA bewegen (Abb.31, Abb30).

Für die Spurextrapolation ist weiterhin die Kenntnis der Feldbegrenzung im Joch notwendig. Aus Abb.30 ergibt sich, duß in den Jochecken das Feld nahezu verschwindet, was durch den kreisähnlichen Verlauf auch verständlich ist. Dasselbe Feldverhalten ist daher auch in der x-y Ebene zu erwarten.

Die magnetfeldfreien Gebiete des Rückflussjoches in der x-y Ebene sind in Abb.32 als schraffierte Bereiche gekennzeichnet. Gleichzeitig zeigt diese Abbildung die Spurextrapolation, die noch erläutert wird.

Abb. 32 : Magnetfeldbegrenzung und Spurverlauf in der x-y-Ebene für Spuren mit $|\Theta| = \vartheta_1$

Man erhält die Feldbegrenzung in der $x \circ y$ Ebene durch Überlegungen zur Flußerhaltung.

Der Fluß im Innendetektor (bis y_{Bin} -81 cm) muß gleich gibß sem wie der Fluß durch die Jochfläche.Dieser Sachverhalt wird in den folgendem Gleichungen verdeutlicht:

$$\oint \vec{B} \cdot d\vec{F} = 0$$

$$B_{in} - \pi \cdot y_{Bin}^2 = B_{\mu} \cdot F_{B}$$

$$F_{B} = \frac{B_{in} - \pi \cdot r_{b}^2}{0.507 \cdot B_{in}}$$

$$(X.1.2)$$

$$F_{B} = 40655 \text{ cm}^2$$

 F_{B} bezeichnet die vom Feld ausgefüllte Jochfläche Die geometrische Jochfläche Fj in dieser Ebene ist:

$$F_{1} = 42778 \text{ cm}^{2}$$

 F_{4} ist also um 2123 cm² grösser als F_{8} . Es werden daher nur ~95% der Jochfläche von den Feldinien gefüllt.Es liegt nahe,die fehlenden 5% auf die sechs Jochecken zu verteilen,um so einen möglichst glatten Feldlinienverlauf zu ermöglichen.Dies führt auf die Begrenzung des Aussenfeldes \vec{B}_{a} in der x. y- Ebene, wie sie in Abb.32 dargestellt ist

Aus dem beschriebenen Magnetfeldverlauf ergibt sich die folgende Rekonstruktionsmethode:

Analog zu Kapitel IX wird die im Innendetektor erkannte Spur in der x-y Ebene bis zum Ende des Feldes \vec{B}_{in} bei $y_{Bin} \otimes 81$ cm weitergeführt.bie Berechnung der Schnittpunktskoordmaten und Richtungscosinus im Punkt ($x_{Bin}, y_{Bin}, z_{Bin}$) (Abb.32) wird nach GLIX.2.5 durchgeführt.

Von dem errechneten Schnittpunkt aus wird die Spur bis zu den Innenkanten des Joches geradlinig weiter extrapoliert (Abb.32).

Die Beschreibung der Spur im Aussenfeld $\overrightarrow{B_n}$ des Joches geschieht analog zu der Rückbiegung der Teilchenbahn in Kap IX.2.Der Austrittsort (x_n, y_n, z_n) entspricht dabei dem Punkt (x_1, y_1, z_2) aus Abb.24a

Von dieser Stelle aus wird die Spur mit der berechneten Austrittsrichtung durch den magnetfeldfreien Bereich bis in die Myonkømmern-geradlinig extrapoliert.

X.2 SPUREN MIT $\vartheta_1 \leq |\Theta| \leq \vartheta_2$

Es soll zunächst wieder das Magnetfeld erläutert werden, welches die genannten Teilchensporen durchqueren.

Abb.30 zeigt.daß sich das Feld des Innendetektors bis zur Innenkante des Joches bei z.=78 cm in nahezu der vollen Stärke fortsetzt.

Das sich daran anschließende Außenfeld im Rückflussjoch ist in Abb 33 genauer analysiert. Es sind darin die Komponenten By und B, des Feldstärkevektors in Abhängigkeit von der y-Koordinate über annähernd den gesamten z-Bereich des Joches aufgetragen.

Abb. 33 : By und B_x in Abhängigkeit von y

B_x ist nach dieser Abbildung gegenüber B_y vernachlässigbar. Die y-Komponente der magnetischen Induktion B_y ist über den gesamten y Bereich nahezu konstant mit einem Wert von elwa 1.2 TESLA.

Es ist daher naheliegend (s.auch Kap.VI.3),ein in der x-y Ebene radiałes. Feld mit $B_{\rm g}{\simeq}0$ anzusetzen

Die Spurrekonstruktion, die auf diesem Verlauf basiert, soll nun beschrieben werden. Im Gegensatz zu Kap.X.1 wird die im Ortsdetektor erkannte Spur in der y z Ebene behandelt Sie wird zunächst bis zur Innenkante des Joches weitergeführt. Der Schnittpunkt der Spur mit dieser Kante wird nach GLIX 4.1 berechnet,wobei für z_8 in dieser Globelang der Wert $z_{*}=78$ cm eingesetzt werden muß

Die Spurbeschreibung in dem radialen Feld des Rückflussjoches kann nach den bisher benutzten Methoden durchgeführt werden,wenn man die Spurin einem gedrehten Koordinatensystem betrachtet. Diese Transformation wird in Abb. 34 gezeigt

Das transformierte Koordinatensystem (x',y',z') wird so gewählt daß die z'-Achse in Richtung des radialen Feldes $B_r \cdot (B_x, B_y, 0)$ zeigt Durch Transformation der Koordinaten sowie der Richtung der Spur im Punkt (x_s, y_s, z_s) erfolgt die Extrapolation durch das Joch in dem gedrehten System völlig analog zur Spurbeschreibung wie beispielsweise im Kap VII

Abb. 34 : Transformation der Spur von $(x,y,z) \longrightarrow (x',y',z')$

x,y,zSystem
$$x',y',z' = System$$
 p_x $p_x' = p_t - sin\delta$ p_y $p_{y'} = p_z$ $p_t = \sqrt{p_x^2 + p_y^2}$ $p_{t'} = \sqrt{p_{x'}^2 + p_{y'}^2}$ p_z $p_{t'} = \sqrt{p_{t'}^2 + p_{z'}^2}$ $p = \sqrt{p_{t'}^2 + p_{z'}^2}$ $p' = \sqrt{p_{t'}^2 + p_{z'}^2}$ $\vec{B} = (0,0,B_z)$ $\vec{B}_r = (B_x,B_y,B_z)$

Die Spur wird in dem neuen System bis an das Jochende bei z=110 cm (s.Abb.30) extrapoliert. Die Koordinaten und Richtungscosi us im Schnittpunkt des Jochendes müssen anschließend wieder 14 das PLUTO-Koordinatensystem zurücktransformiert werden, um die Extrupolation in die Myonkammern durchführen zu können.

X.3 SPUREN MIT 101 < 32

Wie für Spuren,die in X.2 rekonstruiert wurden,setzt sich auch für diese Teilchenbahnen das Magnetfeld des Innendetektors bis zur Innenkante des Jochs in nahezu der vollen Stärke fort.

Während jedoch in den bisher diskutierten Bereichen zumindest eine Komponente des Magnetfeldes im Rückflußjoch vernachlässigt werden konnte,besitzt das Feld in dem hier vorliegenden Jochbereich jedoch drei nicht verschwindende Komponenten.

In Abb.35 sind die Magnetfeldkomponenten B_{y}, B_{z} in drei verschiedenen Tiefen des Jochs dargestellt.

Es ergibt sich aus dieser Abbildung eine nahezu lineare Ablibngigkeit der Feldkomponenten von der y-Koordinate. B_z zeigt mit wachsendem y einen linearen Abfall, B_y dagegen einen Anstieg.

Für die Spurextrapolation kann daher folgendes Magnetfeldmodell benutzt werden.

Die Jochdicke wird dazu in z-Richtung in drei Abschnitte unterteilt:

a)	80	em	≦	z	<	90 cm	;	$B_{y,z}(y,z) = B_{y,z}(y,z=80cm)$
b)	90	em	≦	z	<	100 cm	:	$B_{y,z}(y,z) = B_{y,z}(y,z=90cm)$
c)	100) cn	1 :	1	z <	< 110 cm	:	$B_{y,z}(y,z) = B_{y,z}(y,z=100 \text{ cm})$

Zur Einsparung von CPU-Zeit wird das Feld auf diesen Intervallen als z-unabhängig angesetzt. Die jeweilige Größe der Komponenten B_y und B_z in diesen Bereichen wird aus den Anpassungsgeraden (Abb.35) berechnet.

Abb. 35 : (a) B_y gegen y für z = 80,90,100 cm (b) B_z gegen y für z = 80,90,100 cm

Bei der Spurrekonstruktion wird zunächst in der y-z Ebene der Schnittpunkt der Innenspur mit der Jochinnenkante wie in X.2 berechnet. Da das Modell im Joch ein dreidimensionales Feld ansetzt, kann das bisherige Prinzip der Spurextrapolation nicht angewandt werden. Die Fortführung der Teilchenbahn muß über die elementaren Bewegungsgleichungen im Magnetfeld beschrieben werden,wie auch mi Falle der iterativen Spurverfolgung in Kap.IV (Glg.IV.2)

Die Schrittweite entspricht hier der unter (a - c) vorgenommenen Jochaufteilung (ab z -78 cm in Intervallen von jeweils ~10 cm bis zum Jochende bei z-110cm). Nach jedem Teilabschnitt werden die neuen Richtungscosmus und Koordinaten berechnet.Der Wert des Magnetfeldes an jeder Stelle des Intervalles ergibt sich wie beschrieben aus den Anpassungsgeraden der Abb.35.

Spuren in dem materiefreien Bereich unterhalb des Joches (Abb.30) werden nicht rekonstruiert,da sie für die Myonenidentifikation nicht therangezogen werden können.

Zusammen mit den in Kap X.1 und X.2 beschriebenen Methoden ermöglicht das zuletzt behandelte Verfahren die Rekonstruktion jeder im Ortsdetektor ("Innendetektor") vermessenen Spur bis in die Myonkammern.

Wie exakt diese Rekonstruktion trotz der vorgenommenen Magnetfeldnäherungen den tatsachlichen Teilchendurchgang in den Myonkammern reproduziert, soll im folgenden Kapitel untersucht werden.

X.4 TEST DER NEU ENTWICKELTEN SPURREKONSTRUKTION

Fur das neu entwickelte Verfahren werden dieselben Tests wie bei der bisherigen Rekonstruktion in Kep.1X.5 durchgeführt.

X.4.1 TEST MIT HÖHENSTRAHLEN

Bei exakter Teilchenspurverfolgung sollten aus der Rekonstruktion der im Ortsdetektor vermessenen Höhenstrahlen die korrigierten Koordinaton der Myonkammern reproduziert werden können

Abb 36 zeigt die Abweichung der mit der Rekonstruktion erzielten Kammerkoordinaten von den in Kap VIII verbesserten Werten.

Der Vergleich dieser Abbildung mit Abb 28 macht deutlich, daß dieses neue Verfahren zu besseren Ergebnissen als das bisher benutzte Verfahren aus Kap IX führt da es die Kammerkoordmaten bis auf ± 5 mm reproduziert (das bisherige Programm heferte die Grenzen ± 8 mm). Dieses Ergebnis

Abb.36 : A_{koord} = Differenz der exakten Kammerkoordinate (aus Kap.VIII) und der mit dem Rekonstruktionsprogramm bestimmten Koordinate für alle Kammern mit genügender Statistik.

gilt jedoch nur für die in 1X.2 und X.1 beschriebenen Methoden (vgl Kap.1X.5).

Zur Überprüfung der Rekonstruktion im gesamten Detektorbereich wirddaher im folgenden Kapitel ein Vergleich mit der iterativen Verfolgungdurchgeführt.

X.4.2 VERGLEICH DES PROGRAMMES MIT DER ITERATIVEN EXTRAPOLATION

Es wird derselbe Test wie in Kap.IX.5 durchgeführt. Abb.37 zeigt in Analogie zu Abb.29 die Ergebnisse dieses Vergleichs,wobei wiederum die in Glg IX.5.1 definierte Größe Δ dargestellt ist:

$$\Delta = \sqrt{(x_{BXA} - x_{REK})^2 + (y_{EXA} - y_{REK})^2 + (z_{EXA} - z_{REK})^2}$$
(X.4.1)

x,y,z_{EXA} ~ Koordinaten des iterativen Verfahrens x,y,z_{REK} ~ Koordinaten des neuen Rekonstruktionsverfahrens

Beim Vergleich ist auf die unterschiedlich gewählten Mafstabe in beiden Abbildungen zu achteu:

Abb. 37 Differenz Δ der exakten und der mit dem neuen Rekonstruktionsprogramm bestunmten Durchstosspunkte in den Myonkammern . (a) Spuren mit $|\Theta| > \vartheta_1$ (b) Spuren mit $|\Theta| \le \vartheta_1$ und einem Impuls von p = 2 GeV/c . (c) Mittlere Differenz $< \Delta > \text{ gegen Impuls}$. Alle Spuren mit $|\Theta| \ge \vartheta_1$ sind für diese Fehleranalyse in einer Gruppe zusammengefaßt worden, um einen direkten Vergleich mit Abb 29 zu ermöglichen.

Es wird deutlich, daß das neu entwickelte Verfahren über den gesamten Detektorbereich eine wesentliche Verbesserung der Spurrekonstruktion darstellt. Der Fehler aufgrund der Magnetfeldnäherungen konnte gegenüber dem früheren Verfahren etwa um einen Faktor 3 unterdrückt werden und liegt somit für Impulse von 1.3-2 GeV/c innerholb der un Kap.VII geforderten Toleranzgrenze von etwa 3.2 cm, und für höhere Impulse weit darunter.

Die Rekonstruktion für Spuren mit $|\Theta| > \vartheta_1$ zeichnet sich in diesem Test durch eine besondere Genauigkeit aus.Dieses Ergebnis war zu erwarten, da gerade in diesem Bereich das angesetzte Magnetfeldmodell mit dem tatsächlichen Verlauf fast identisch ist. Aber auch in den anderen Bereichen ist eine zufriedenstellende Genauigkeit erreicht worden.

Die durch die Magnetfeldnäherungen bedingten Unsicherheiten des Spurverlaufs (Abb.37) müssen bei der Myonenidenfrikation, die im Kap XII diskutiert wird, berücksichtigt werden.

Eine weitere Spurungenauigkeit wird durch die Meßfehler der Spur im Ortsdetektor verursacht,die schon in Kap.VII zu einer Unsicherheit in der Kenntnis des Austrittsortes der Spur aus dem Ortsdetektor führte

Die Auswirkung dieser Fehler auf die Spurrekonstruktion bis in die Myonkammern wird im folgenden Kapitel diskutiert

XI ENTRAPOLATIONSFEILLER DURCH MEDUNGENAUIGKLITEN IM OKTSDETEKTOR

XI.1 FEHLERQUELLE FÜR DIE EXTRAPOLIERTEN KOORDINATEN

Die Grundlage für die Spurextrapolation in die Myonkammern ist die im PLUTO-Innendetektor erkännte Spur. Wie in Kapitel VII beschrieben,ist diese Spurerkeinung mit Meßfehlern behaftet,die zu einem mittleren Fehler von 1-15 cm pro Koordinate im Austrittsort aus dem Innendetek for (Abb 15) führen. Die Flügrichtung aus dem Ortsdetektor ist ebenfalls int einem Fehler behaftet.

Bei der Spurrekonstruktion wirkt sich dieser Fehler nach dem Fehlerfort pflanzungsgesetz auf die Genauigkeit der Ortsbestimmung des Teilehendurchganges in den Myonkammern aus. Die Kenntnis dieses Fehlers ist für die Myonenidentifikation notwendig (Kap.XII).

hn Folgenden werden deshalb die Extrapolationsfehler aufgrund der Meßungenauigkeiten im Ortsdetektor berechnet.

X1.2 THEORIE DER FEHLERBERECHUNG

Eine Diskussion der Spurfehler im Innendetektor ist in [BUR77] zu finden Die Fehler der Spurparameter im Innendetektor werden in der "Kovarianzmatrix C" angeordnet,die wie folgt aufgebaut ist:

 $\mathbf{i}_1 = \mathbf{k}_1 \mathbf{r}_1 \mathbf{p}_2 \mathbf{d}_1$

p(i,j) = Korrelationskoeffizient zwischen i und j

 $C_{il} = \sigma_{ii}^{2}$

 $C_{ij} = \rho(i,j) - \sigma_i - \sigma_j$

Auf der Diagonalen stehen die Quadrate der Fehler der einzelnen opurparameter.Die übrigen Elemente beschreiben die Kovarianzen der Parameteruntereinander (Kap VII).

Da diese Matrix symmetrisch zur Diagonalen aufgebaut ist,wurde nur die obere Hälfte beschriftet:die untere kann durch Spiegelung unmittelbar gebildet werden.Aus dieser Matrix wird auch noch einmal klar,daß keine Korrelationen zwischen Parametern verschiedener Ebenen (x- y Ebene/r· z-Ebene) bestehen.

Zu bestimmen ist nun die Varianzen-Kovarianzen Matrix "D" für den Satz der extrapolierten Koordinaten x,y,z sowie der Richtungscosmus dx.dv.dz in den Myonkammern, die analog zur "C-Matrix" aufgebaut ist

Die komplizierte Abhängigkeit des Satzes (x,y,z,dx,dy,dz) von den Spurparametern ist aus den Bestimmungsgleichungen dieser Großen (z,B, GLIX,2,2) ersichtlich

Dieser Zusammenhang zwischen den beiden Parametersätzen läßt sich vereinfacht so ausdrücken

W	Ξ	$(\mathbf{x},\mathbf{y},\mathbf{z},\mathbf{d}\mathbf{x},\mathbf{d}\mathbf{y},\mathbf{d}\mathbf{z})$	
v		$(\mathbf{A};\mathbf{R_{min}}, \boldsymbol{\varphi}_{mit}, \mathbf{Z_0}, \boldsymbol{\Delta}_{\mathbf{zs}})$	(XI 2 1)
W	-	₩(V)	

Durch Differenzierung von GLXI.2.1 erhält man ein lineares Gleichungssystem zwischen beiden Parametersätzen: $\mathbf{d} \mathbf{W} = \mathbf{A} + \mathbf{d} \mathbf{V}$

(XI.2.2)

A = Ableitungsinatrix von W nach V

Das Fehlerfortpflanzungsgesetz liefert die gesuchte Matrix "D" [BRA75] :

$$\mathbf{D} = -\mathbf{A} + \mathbf{C} + \mathbf{A'}$$

A = Ableitungsmatrix (s.o.)

A' zu A transponierte Matrix (XL2.3)

C = Kovarianzniatrix der Spurparameter

Die Ergebnisse dieser Fehlerberechnung sollen nun im folgenden Kapitel diskutiert werden.

XL3 DER FEHLER DER EXTRAPOLIERTEN KOORDINATE

Für die Berechnung des Fehlers der extrapolierten Koordinaten in den Myonkammern aufgrund der Messfehler im PLUTO-Innendetektor werden Spuren verwendet, die mit Magnetfeld gemessen werden. Die Fehler der Koordinaten und der Richtungskosinus sind die Wurzeln der Diagonalelemente der Matrix D (s.Kap.XI.2).

Für jede extrapolierte Spur sind jeweils nur zwei Koordinatenfehler in der Ebene der Myonkammern definiert;die dritte Koordinate ist die Entfernung der Kammer bzgl. des Wechselwirkungspunktes und hat folglich keinen Fehler.

$$\Delta_{\rm M} = \sqrt{\Delta_{\rm i}^2 + \Delta_{\rm j}^2}$$
; k = Trefferebene

 $\Delta_{i} \Delta_{j}$ = Fehler der Koordinaten i,j in der Kammerebene (XI.3.1)

i.j.k = x,y,z - Koordinate (+Permutationen)

Interessant sind jedoch nur die Fehler im dem Koordinatensystem senkrecht zur Teitchenspur ("u,v,w"-System,s.Abb.25), da in diesem System die Myonenidentifikation vorgenommen wird. Durch Transformation der "Fehlerellipse" aus dem PLUTO-System (Kammerebene) in das neue u-v-w-System erhält man die gesuchten Fehler,die in Abb.38 dargestellt sind

 Abb. 38 :
 Fehlerellipse Δ_M der extrapolierten Koordinaten im u-v-w~System (Koordinatensystem senkrecht zur Spur) (a) Spuren mit |θ| > ϑ₁
 (s.Abb 30)

 (b) Spuren mit |θ| \$ϑ₁
 (s.Abb 30)

 Wegen der unterschiedlichen Methoden der Spurextrapolation in den verschiedenen Detektorbereichen müssen auch die Fehler nach Bereichen getreinnt bestimmt werden.

Abb 38a bezieht sich dabei auf die Extrapolationsfehler von Teilchenspuren $|\operatorname{Int}||\Theta| > \vartheta$, (Abb 30). Der mittlere Fehler der gebildeten Fehlerellipse im diesem Bereich beträgt ~5 cm. Abb.38b bezieht sich auf Spuren mit 10 - Midie sich durch starkere Magnetfeldnäherungen gegenüber dem vorhergehenden Bereich abgrenzen lassen. Spuren in diesen Bereichen haben im Innendetektor weniger Freiheitsgrade (s.Kap.VII) für die gesetzten Signale สบ die der Annassung der Spur Proportionalkammern.Der mittlere Fehler beträgt für diese Spuren ~ 6.7 cm

Abb 39 Extrapolationsfehler Δ_M gegen Impuls. Der Korrelationskoeffizient beträgt +0.02.

bie Fehlerelhpse in Abb.38 umfasst alle auftretenden Teilchenimpulse.Eine Impulsunterscheidung ist moht notwendig,da der Extrapolationsfehler nicht mit dem Impuls korreliert ist (Abb.39).

Schon der Vergleich der Abbildungen 37 und 38 zeigt,daß der Extrapolationsfehler aufgrund der Meßfehler im Innendetektor (= Δ_M) weit großer ist als die Unsicherheit Δ_B ,die aus den Magnetfeldnäherungen des Rekonstruktionsprogrammes resultiert. In Abb.40 ist das Verhaltms der beiden

Der Fehler $< \Delta_M >$ überwiegt $< \Delta_H >$ danach um einen Faktor $\sim 3-5$ bei Impulsen zwischen 2-3 GeV/c bzw. um einen Faktor $\sim 5-30$ bei Impulsen vom 3-10 GeV/c. Der Einfluß der Magnetfeldnäherungen in dem Spurrekonstruktionsprogramm (Kap.X) ist also gegenüber den Meßfehlern im PLUTO-Innendetektor stark unterdrückt.Es wird dadurch nochmals bestätigt,daß das in Kap.X entwickelte Programm die Spurrekonstruktion mit genügender Genauigkeit durchführt.

Nach der Bestimmung des Extrapolationsfehlers in den Myonkammern ist es nun möglich,die Rekonstruktionsergebnisse für die Myonenidentifikation am PLUTO-Detektor zu verwerten. Im Anschluß an die Teilchenspurrekonstruktion muß untersucht werden,ob es sich bei dem Teilchen um ein Myon handelt.

Das Prinzip der Myonerkennung wurde in Kap.H sowie in Kap.VIII bereits diskutiert und für die Auswertung herangezogen. Es beruht auf der Zuordnung eines Myonkammersignals innerhalb des impulsabhängigen Coulomb-Streukegels. In diesem Kapitel hat es sich jedoch gezeigt, daß die Meßunsicherheiten im Innendetektor zu Ungenauigkeiten in der Extrapolation führen Diese sowie die Fehler aufgrund der Mägnetfeldnaherungen in der Rekonstruktion müssen nun in die Akzeptanzbreite für die Myonenidentifikation mit embezogen werden.

im abschließenden Kapitel soll diese Myonenidentifikation beschrieben werden

XIL DIE MYONENIDENTIFIKATION AM PLUTO - DETEKTOR

In der PLUTO Analyse wird eine Spur nur dann als Myon akzeptiert,wenn die Abweichung des extrapolierten Durchstoßpunktes vom Trefferpunkt dieser Spur in den Myonkammern innerhalb der Toleranzbreite von 1700 [MAX81] des impulsabhängigen Coulomb-Streukegels liegt,der in Kap V bestimmt wurde. Dies ist nur dann richtig,wenn die extrapolierte Durchstoßkoordinale in den Myonkammern exakt bekannt wäre.

Es sind jedoch zwei Ursachen zu neunen,die eine Ungenauigkeit in der Bestimmung des extrapolierten Durchstoßpunktes bewirken bie hauptsächliche Fehlerquelle liefern die Meßfehler der Spur im Innendetektor (Abb 38,Abb 39) Zusätzlich ist auch noch der (allerdings wesentlich kleinere) Fehler in der Spurrekonstruktion zu berücksichtigen,der durch die Magnetfeldnäherungen verursacht wird (Abb.37).

Erst die Berücksichtigung der Fehlerbeiträge zum Coulomb-Streukegel liefert den vollständigen Myonakzeptanzkegel Δ_{0} , der in Abb.41 dargestellt ist

$$\Delta_{\rm G} = \sqrt{\Delta_{\rm C}({\rm p})^2 + \Delta_{\rm M}^2 + \Delta_{\rm B}({\rm p})^2}$$

$$\Delta_{\rm C} = 1.78 \cdot \sigma_{\rm p} = (-\sigma_{\rm p} \text{ s.Abb.7})$$

(XIL.I)

- $\Delta_{\rm H} \sim {\rm Extrapolationsfehler}$ durch die Mcßungenäuigkeiten mit unendetektor (Abb 38.)
- A_B = Fehler aufgrund der Magnelfeldnäherungen in der Spurrekonstruktion (Abb. 37)

Abb.42 zeigt das Verhältnis Δ_G/Δ_C . Hieraus ergibt sich, daß der Akzeptanzkegel bei niedrigen Teilchenimpulsen von Δ_C und bei hohen Impulsen von den Extrapolationsfehlern und dabei insbesondere von dem umpulsunabhängigen (Abb.38, Glg XI.3.1) Term Δ_M bestimmt wird.

XIII. ZUSAMMENFASSUNG

Eine Nachweismöglichkeit neuer schwerer Quarks und Leptonen besteht in der Bestimmung der Myonenzahl in hadronischen e⁺e⁻-Ereignissen. Nebenvielen anderen Aufgaben ermöglicht der magnetische PLUTO-Detektor die dazu notwendige Myonenidentifikation.

Die im Ortsdetektor erkannten Spuren treffen auf den Hadronabsorber, hinter dem sich die Myonkammern als weitere Ortsdetektoren befinden. Während Hadronen aufgrund ihrer starken Wechselwirkung absorbiert werden, können Myonen den Absorber durchdringen und Signale in den Myonkammern erzeugen. Dabei entsteht durch die Coulomb-Vielfachstreuung eine Ortsverteilung der Myonen in den Myonkammern, sodaß eine Spur nur dann als Myon akzeptiert wird, wenn ihr innerhalb des Streukegels ein Signal zugeordnet werden kann.

Diese Methode kann jedoch nur dann angewandt werden,wenn der Durchstoßpunkt und der impulsabhängige Streukegel der Spur bekannt sind

Zur Bestimmung des Durchstoßpunktes wurde ein Programm entwickelt,welches die Spuren durch die Gebiete ohne Ortsdetektoren rekonstruiert.

Die Voraussetzung dieser Spurextrapolation ist eine genaue Analyse der komplizierten Detektorgeometrie und des daraus resultierenden Magnetfeldverlaufs im Detektor. Da bei der Datenanalyse für die Myonenidentifikation nur eine begrenzte CPU-Zeit zur Verfügung steht,kann das Magnetfeld in der Rekonstruktion nur näherungsweise berücksichtigt werden. Trotz dieser notwendigen Magnetfeldnäherungen ist nut dem Programm eine gute Rekonstruktion bis in die Myonkammern erzielt worden.

Es entstehen jedoch Unsicherheiten in der Bestimmung des Durchstoßpunktes in den Myonkammern durch die Meßfehler der Spur im Innendetektor. Zur Bestimmung des Myonakzeptanzkegels muß dieser Fehlerbeitrag zum Coulomb-Streukegel addiert werden.

Die Ergebnisse dieser Arbeit ermöglichen die Bestimmung der Zahl der inklusiven Myonen in hadronischen Ereignissen. Aufgrund dieser Anzahl konnte z.B. in den Messungen im e⁺e⁺ -Schwerpunktsenergiebereich E_{cm} 12-36 GEV keine Evidenz für das t-Quark oder neuer schwerer Leptonen gefunden werden

Die Hoffnung besteht jedoch, daß durch die beschriebene Myonenidentifikation bei höheren Schwerpunktsenergien das t-Quark nachgewiesen werden kann

DER MITTLERE STREUWINKEL

Beim Durchgang durch Materie erfährt ein Teilchen viele Richtungsänderungen durch die Coulomb-Wechselwirkung mit den Atomkernen (Rutherfordstreuung). Der mittlere Streuwinkel $\langle \theta \rangle_{dx}$ nach einer infinitesimalen Materiedicke "dx" resultiert daher aus vielen unkorrelierten Einzelstreuprozessen um kleine Winkel θ Die Wahrscheinlichkeit einer elastischen Streuung am punktförmigen Kero in den Raumwinkel d ω sei $\zeta(\theta)$ d ω . Dann ist der mittlere Streuwinkel nach "d." wie folgt zu berechnen:

$$\langle \Theta^2 \rangle_{dx} = dx + \int \Theta^2 + \xi(\Theta) + 2\pi - \Theta + d\Theta \\ \Theta_{inin}$$
 (A1)

$$\xi(\theta) 2\pi\theta d\theta = \frac{N \cdot Z^2 - r_{\theta}^2 + m_{\theta}^2}{4 - A \cdot [p \cdot \beta - \sin^2(\theta/2)]^2} - 2\pi\theta d\theta$$

$$\Theta_{\min} = \lambda - Z \stackrel{1/3}{\sim} \alpha^2 / r_{\bullet}$$

$$\Theta_{\text{initx}} = \lambda / (0.57 \cdot r_{\bullet} \cdot Z^{-1/3})$$

dx = infinitesimale Dicke N = 2ahl der Kerne in dx A = Kernmassenzahl Z = Kernladungszahl $r_{\bullet} = klassischer Elektronenradius$ $m_{\bullet} = Elektronenmasse$ p = Projektil - Impuls E = Projektil - Energie f = p/E $\lambda = De Broglie Wellenlänge$ a = 1/137

 θ_{min} kommt durch die Abschirmung des Kern-Coulombfeldes durch die Hullenelektronen zustande θ_{mex} resultiert aus der nicht punktförmigen Ladungsverteilung des Kerns.

Die Lösung dieses Integrals lautet:

$$< \Theta^{2} >_{dt} = \left(\frac{E_{s}}{p-\beta}\right)^{2} dt$$

$$E_{s} = m_{s} \sqrt{4\pi \cdot 137}$$

$$\geq 21 \text{ MeV}$$

$$dt = dx/X_{0}$$

$$\frac{1}{X_{0}} = \frac{4 \text{ N} \cdot 2^{2} \cdot r_{s}^{2}}{A + 137} - \log(-181 \cdot 2^{-1/3})$$
(A.2)

.

Die Matericabhängigkeit des Streuwinkels steckt nun vollständig in der im A.2 definierten Strahlungslänge X_0 , die tabelliert ist. Es wird daher auch in den folgenden Ableitungen nur noch die auf Strahlungslängen gewichtete Materiedicke "t" verwendet.

Wegen der Unabhängigkeit der Streuungen auf den infinitesimalen Dicken "dt" erhält man den mittleren Streuwinkel auf endlicher Dicke "t" durch Integration aller infinitesimalen Beiträge:

$$t = \int_{0}^{t} dt'$$

$$< \Theta^{2} >_{t} = E_{n}^{2} + \int_{0}^{t} dt' / (p + \beta)^{2}$$

$$= \frac{E_{n}^{2}}{(p + \beta)^{2}} + t$$
(A.3)

Die Lösung des Integrals A.3 gilt jedoch nur bei Vernachlässigung des Energieverlustes Bei großen Materiedicken können β und p nicht mehr als Konstante betrachtet werden. Daher muß die Integration der GLA.3 über den Inpuls ausgeführt werden. Dies führt zu :

$$\langle \Theta^2 \rangle_1 = E_{\bullet}^2 \cdot \int_{B_1}^{B_2} \frac{1}{(p + \beta)^2} \frac{dp}{(-dp/dt')}$$
 (A.4)

-dp/dt' = Impulsverlust auf 1 Strahlungslänge $<math>p_1 = Impuls bei t' = 0$ $p_2 = Impuls bei t' = 1$ Die Änderung des Imputsvertustes ist über die bekannte Bethe-Bloch-Formet gegeben:

$$\frac{d\mathbf{p}}{d\mathbf{t}} = -\frac{\beta}{\alpha} \cdot \frac{d\mathbf{E}}{d\mathbf{x}} \times \mathbf{X}_{0}$$

$$= -\frac{2 \cdot \mathbf{C} \cdot \mathbf{m}_{\bullet} \cdot \mathbf{X}_{0}}{\beta} + \mathbf{B}$$

$$\mathbf{B} = \log \left[-\frac{4 \cdot \mathbf{m}_{\bullet}^{2} - \beta^{4}}{(1 - \beta^{2}) - 1^{2}(\mathbf{Z})} - 2\beta^{2} \right]$$

$$\mathbf{C} = -\pi \cdot \mathbf{N} - \mathbf{Z}/\mathbf{A} - \mathbf{r}_{\bullet}^{2}$$

$$= 0.15 \cdot \mathbf{Z}/\mathbf{A} \cdot [\mathbf{cm}^{2}/\mathbf{g}]$$
(A 5)

 $I(Z) = Ionisationspotential (~ Z \cdot 10 eV)$

Einsetzen von A.5 in A.4 ergibt dann:

$$\langle \Theta^2 \rangle = \frac{E_0^2}{2C \cdot m_0 \cdot X_0} \int_{\mu_z}^{\mu_z} \frac{\beta}{B - p^2} dp$$
 (A 6)

Um dieses Integral lösen zu können,wird die Abhängigkeit des Impulses in dem logarithmischen Term vernachlässigt, d.h. B=konstant Da $\beta = \beta(p), mu\beta$ eine Variablensubstitution $p \rightarrow p/m$ (m=Teilchenmasse) durchgeführt werden.

$$<\Theta^{2}> = \frac{E_{\bullet}^{2}}{2 \cdot C \cdot m_{\bullet} \cdot B \cdot X_{0}} \int \frac{d(p/m) - 1/m}{(\rho_{\bullet}/m) p/m} \sqrt{1 + (p/m)^{2}}$$
(A.7)

Mit Hilfe einer Integrationstabelle ergibt sich folgende Lösung.

.

$$<\Theta^{2}>=\frac{E_{s}^{2}}{2\cdot C\cdot m_{e}\cdot B\cdot X_{0}\cdot m} \ln \left[\frac{(1+\sqrt{1+(p_{2}/m)^{2}})\cdot (p_{1}/m)}{(1+\sqrt{1+(p_{1}/m)^{2}})\cdot (p_{2}/m)}\right]$$
(A B)

Für die Anwendung ist jedoch eine explizite Abhängigkeit in $\sim \Theta^2 >_1$ von der Materiedicke "t" erwunscht. Dazu wird die Materiedicke über die Energie-Reichweite-Beziehung als Funktion des Impulses ausgedrückt:

$$t = \int_{(p_g)_{mi}}^{(p_f/m)} \frac{d(p/m)}{(-dp/dt)} + m$$
 (A.9)

t =
$$\frac{m}{2 \cdot C \cdot m_e \cdot B \cdot X_0}$$
 ln $\left[\frac{(p_1/m)^2 + 2}{\sqrt{1 + (p_1/m)^2}} - \frac{(p_2/m)^2 + 2}{\sqrt{1 + (p_2/m)^2}} \right]$

Einsetzen dieser Lösung in A.8 führt auf die endgültige Beschreibung des mittleren Streuwinkels:

$$\langle \Theta^2 \rangle = \frac{E_*^2}{m^2} - \frac{\ln\left[(p_1/p_2)\cdot(1+\gamma_2)/(1+\gamma_1)\right]}{\gamma_1 + 1/\gamma_1 - (\gamma_2 + 1/\gamma_2)}$$
(A.10)

$$\gamma = \sqrt{1 + (p/m)^2} = \frac{E + m}{m} = \frac{\text{Gesamtenergie}}{\text{Ruheenergie}}$$

Diese Gleichung ist eine Verallgemeinerung von Gl.A.3,da in ihr der Energieverlust berücksichtigt wird.

Die gesamte Ableitung von $\langle \Theta^2 \rangle_t$ bezog sich auf die Ebene senkrecht zu der ursprünglichen Teilchenbahn. Die Projektion des Winkels auf die Achsen,die die Ebene aufspannen, ist gegeben durch:

$$< \theta^2 >_{t_1 1-dim.} = 0.5 \cdot < \theta^2 >_{t_1 2-dim.}$$
 (A.11)

ANIIANG B DIE VERTEILUNGSFUNKTIONEN DES STREUKEGELS

Neben dem mittleren Streuwinkel,der in Anhang A abgeleitet wurde, ist die Kenntnis der zugehörigen Verteilungsfunktion notwendig.

Es soll die Winkel- und laterale Verteilung eines parallelen und eng gebündelten Teilchenstrahls fester Energie beschrieben werden, die nach Durchdringen einer beliebig dicken Streumaterie vorliegt. Der Energieverlust wird nicht berücksichtigt. Zur weiteren Vereinfachung werden nur kleine Ablenkungen betrachtet.

Die dem Streuvorgang zugrunde liegende Differentialgleichung lautet [ROS41]:

$$\frac{\partial F(t,y,\Theta)}{\partial t} = -\frac{\Theta}{\Theta} \frac{\partial F}{\partial y} + \frac{\Theta_{\theta}^2}{4} \cdot \frac{\partial^2 F}{\partial \Theta^2}$$

$$\Theta_{\theta}^2 = \frac{E_{\theta}^2}{(p-\beta)^2} \frac{1}{X_0}$$
(B.1)

 $F(t,y,\theta)$ dtdyd θ ist die Wahrscheinlichkeit daß Teilchen auf der Strecke dt die laterale Versetzung y+dy und eine Ablenkung des Winkels θ +d θ erleiden.

Die Lösung der Differentialgleichung B.1 ist .

$$F(t,y,\theta)dyd\theta = \frac{2\sqrt{3}}{\pi + \theta_{*}^{2}t^{2}} - \exp\left[-\frac{4}{\theta_{*}^{2}}\left(-\frac{\theta^{2}}{t}-\frac{3y\theta}{t^{2}}+\frac{3y^{2}}{t^{3}}\right)\right] dyd\theta (B.2)$$

Aus dieser Gleichung können die Verteilungsfunktionen bestimmt werden. Ist man z.B. an der Winkelverteilung interessiert, so muß die Funktion $F(t,y,\theta)$ über alle lateralen Versetzungen integriert werden:

$$G(t,\theta) = \int_{-\infty}^{\infty} F(t,y,\theta) \, dy$$
(B.3)

77

TABELLE

Leramiduore (° des PLCTO-Padronadastrees de commen Leramiduore (° des PLCTO-Padronadastrees de commen

Die Lösung dieser Integralgleichung ist eine Gaußfunktion. Aus dieser kann unmittelbar die Varianz der Verteilung bestimmt werden.

$$G(t,\theta) = \frac{1}{\theta_s} \frac{-\left[\theta^2/(\theta_s^2 + t)\right]}{\sqrt{\pi t}} e^{-\left[\frac{\theta^2}{\theta_s^2} + t\right]}$$

$$\sigma_{\theta} = \langle \theta^2 \rangle = \theta_s^2 - t/2$$
(B.4)

Eine analoge Rechnung für die Verteilungsfunktion der lateralen Versetzung (Integration über alle Winkelbeiträge in GLB.3) führt ebenfalls auf eine Gaußfunktion :

$$P(t,y) = \sqrt{\frac{3}{\pi \cdot t^{3}}} \frac{1}{\theta_{a}} - [\frac{3}{y^{2}}/(\theta_{a}^{2} \cdot t^{3})]$$

$$\sigma_{y} = \langle X^{2} \rangle = \frac{\theta_{a}^{2} \cdot t^{3}}{6} = \langle \theta^{2} \rangle + t^{2}/3$$
(B.5)

Die laterale Versetzung ist also mit der Winkelvarianz korreliert.

Die Berücksichtigung des Energieverlustes durch Ionisation der Teilchen geht explizit nur in die Winkelablenkung $\langle \Theta \rangle^2$ ein. GLB.4 wird in diesem Fall durch GLA.11 ersetzt.

ĕ	3		8	75	6	65.	8	U.	8	ţ	5	i i	12	μ	8	UN .	1 0	!"	0	مار م	-10.	-15.	-20	-24	Ś.	- 55	đ	j.	ģ	- 55 .	ģ	55	-70.	-75.	8	8	÷ گ	9
341		Ē	1133	Ē	1171	1202	1242	1211	1125	8	8	1200	1175	1159	ŝ	1148	1	1167	1187	1167	1154	1148	5	951:	1175	1200	660	1242	1134	2	101 1	1	6511	1117	: 1102	. 294	:50:	
.04			Ĩ Î	7601	1120	ŝ	198	1069	1074	i o e e	1079	1149	1124	107	6601	1 297	:i03	115	1336	1115	ខ្ល	1097	6601	1107	1124	1149	1047	:: 90	1083	õ		7	ĩ	1066	5	140	j B	
202			1079		1117	i	8	1066	1071	1083	1076	146	1121	100	1096	1094	ī	1113	ž	1113	100	1094	i096	1105	1121	1146	ž	1,28	1080	б б б б б б	5	1114	580	1063	õ	-039	1037	
5.6	2	Ş	200	1107	≓ 30	1161	1201	1079	1083	1098	1000	1159	¥	1117		1107	1112	= 23	5	1125	1112	107	110	1117	i V	1159	1057	1201	109Z	1093	1:66	11	1097	1075	ö	1052	1049	
7601	1	3	10	2	ī	30	1221	1097	1101	1116	1107	1178	1153	136	1127	1125	1131		1165	1	3	1125	1127	1136	15	1178	1075	22	1111	111	3	1146	1116	100	1079	1070	1067	
109			2	1137	1163	1192	234	109	113	1128	8111	1191	1165	i de	1139	1137	1 1	ž	1178	38	1123	1137	974	969	1210	1040	1086	1234	1123	123	861.	ž	128	105	060:	1081	1076	
36	Ģ		63		1132	ī	1196	190	1195	210	200	1082	1139	.230	1221	1220	1225	1239	1260	1239	1225	1220	1054	049	515	1582	1766	1521	1205	1205	1245	241	1210	1187	1171	1162	1159	100
ů.	Ş			127	Ē	1176	1214	1206	101	1077	1215	1097	ŝ	1072	6901	1072	1081	1096	1114	1081	1038	380	9 07	836	15	Ē	1962	ž	1		1146	1120	1114	1094	:080	1122	1120	
7126	5.2		1137	5	1173	1170	1214	1133	1097 1997	1101	1245	1121	100	1096	1093	1096	1105	1152	025	696	944	371	1022	1098	508	ī	1596	1751	1655	1156	1.5	1110	1155	1090	1076	1167	1164	Į
1127	¥		ŝ	86.1	126	1335	120	1355	1296	1261	1362	1239	1217	1213	1225	1256	505	1374	11 1	1252	1277	1319	1381	455	2057	1919	1555	1555	ŝ	1558	.556	5	1276	1:89	173	.192	1189	1
1173	a		į	1246	ŝ	1387	1961	1577	Ē	512	146	1289	1256	1261	1275	1506	ŝ	1420	1294	1294	1294	1320	1 .196	1490	1365	1872	1705	ទី	1294	Ē	1528	ī523	Ē	1292	294	<u>1</u> 12	1319	1
:030	č				390	1202	1219	1240	1080	1192	1391	1121	1098	1186	8	1093 280	1089	1086	1085	1036	1089	1093	<u>1</u> 8	1194	9 07	1172	1699	1346	1071	1032	:023	1202	1190	1180	1174	1171	••62	
543	Ĉ			5	1065	1078	1096	153	1.85	1206	1206	1206	:: 54	- 36	1105	109 4	1087	1082	1081	1082	1087	1094	105	1136	1164	1206	123	123	1239	1286	50	380	1065	1055	õ	1064	1062	8
: 80	5 F	0		101	1221	:287	252	1287	1287	1287	:287	1287	. 287	1257	1287	287	1256	1237	1215	1237	1256	1287	1287	1287	1297	1287	287	1287	302	362		- 577		263	205	1354	352	
9	192	5		2	95	26.1	195	1195	1195	281	1.95	1195	1195	2611	5611	1195	195	1195	195	561.	195	1195	195	1195	1195	36.1	5611	123	195	1195	. 209	53	1209	1209	: 209	23	223	
: 312	1612	5			1312	13:2	1512	1391	264	205	264	191	1312	1312	1312	1312	1312	312	312	1312	1312	1312	1312	1312	1312	39	1264	1205	1264	1 29 1	312	ц 13	1312	1315	1325	325	1325	
131	243	672	12	5	1284	20	ï	ي اً:	55	33	133	1133	1133	203	1284	5	1272	ĩ	1233	1243	1272	1307	1284	1203	ະ	1133	153	ដី	1133	1133		1203	1284	307	ġ	È	1233	9
2147				117	1.1	147	1147	1147	1143	1.10	1147	1147	1147	1147	147	1147	7147	1147	1147	1147	1047	1147	1147	3147	1147	1147	1	1117	1147	1147	i.	1.17	1147	116			1047	
5	d	107	į	1	3	ġ	707	707	707	5	ģ	707	707	707	ġ	707	707	707	707	707	ğ	ğ	707	707	707	107	201	đ	707	707	117	d	707	ğ	102	ġ	101	0.90

- مولي	
ťD	
m	
۲.	
ŧ٠	
ŧn.	
د	

Jeometrischer Farameter – Li^k - Li² für den PLUTO-Hadronacsorber Li. j. mm

ž	5 9	ž	8	75	5	3 8	ħ.	8	5	8	Ĵ	ŧ	5 [1	51		8	Ū.	õ	Ç P	0	ţ,	-10	-15	8	C	έ	-35	5	ţ.	ģ	វ័ង	8:	- 65	- 7C	,	-80		56	5	1
	, ,	u U	1069	2.2	1	;;	3	2376	2449	2619	. 2				505	2 4 9 1 1 6 4 C	6	1111	1232	1166	2257	2266	. 1232	2537	2402	2491	2606	2756	o	¢,	1354	2302	1217	2-37	2062	9001	- 36	-945	: 337		3 8
Ľ	, د	0	:092 2	200		1	2773	2379	2452	2622	6	00			2610	2494	5	il de la	2235	2269	2260	2269	2295	2340	2405	2494	2610	2759	0	o	2367	2305	2:2 8	2140	1064	200	1970	-947	.940		្ត
(1076	ہٰ 8	1.17	ļ		2232	2336	2462	2632	7097	ž	Š	7760	2620		2414	2349	22	ц Н	2269	111	2304	2349	2414	2503	2620	2770	o	o	2376	2314	12	13 6	2072	1016	1977	-954 -	.942		0.10
ŝ		2089	21.5	¥017		3	2296	245	2477	2649	20.0		2026	7777	2636	23	2430	2364	2316	2292	2283	229Z	2310	2364	2430	2519	2636	2787	o	0	2391	2329	2262	2162	2085	2028	8 65	1967	656.		0. 7
1.00	3		2132	¢ 1.3	Į	1	2317	2425	2500	Z673	6607	ļ	2	2812	2660	2542	2452	2385	2239	23 3	2304	2313	60.02	2007	2452	2242	2660	2613	0	0	2413	2350	2283	2182	2104	2047	2008	1905	1977		0.20
	2125	2153	2	2		1361	2345	2454	2530	2700	Š	5	2081	2846	2692	2572	2481	2414	2367	2340	23.31	2340	1967	24.4	/ 852	246	3766	Š	0	c	2442	2378	2310	1202	21.29	2071	2032	2005	1002		0.23
	2155	1 <u>2</u> 22	5017	8		223	2321	2429	2567	110			5	2791	2677	2611	2518	2450	2403	2375	2366	12/2	į	į	į		500	3366	2000	2819	2479	2414	2326	2241	2161	2102	2062	2038	2031		8
	1141	212	212		31	2279	212	2473	2615	50.72		3	500	2042	2688	2569	2477	2410	2364	2327	5	1023		Ş	0607	2	c	5125	i i	2780	2566	24	1309	1211	21	2084	2044	2002	2002		0.35
	2189	2197	1.1			220	226	2464	2500			5	5	ŝ	2748	2625	2532	2453	2415	Š	6	• •		, c	• c) C		ic	• c	55.72	2623	2453	2320	2237	ነ የ	2115	2076	2051	2021		5
	290	2198	141			23.20	2416	2528	26/3			5	526	2981	2820	2694	2599	2528	160	t			,) (> c	į	1975	c	. 0	2511	2434	23 68	2275	2194	5	2094		2076		0.6
	2258	120/				2403	2491	2666	È	į		191	Ļ	6 <u>3</u> 4	2908	2778	2680	2607	227	220		~			1			5/55	Š			2524	2424	2364	225	2126	21.29	2149	2141		0.50 50
	2373	7557		110	2497	2569	2664	2/08	7940		ŝ	3266	3367	5188	5105	2835	5/12	2703	200	707	10						17.10	504	2		3186	2640	2514	2466	2375	5	2270	111	2220		0.55
	2521	200		ŝ	2610	2682	2781	2	ğ	5	5	ģ,	3087	3067	2905	2936	20.6	2759	2/2	10.0	1002	1645			3760							2935	2737	2616	2465	N#10	2369	1757	2318		0.60
	2654	100-		1690	2747	2615	2549	2049	0.4			2849	2849	2849	2849	2849	2049	264.9	20.5			2	5		2840			1019	9		202/	2657	2850	2792	2690	6	2003	1070	25 6		0.65
	2546	2000		2645	2646	2546	2040	7040		7445	2646	2717	2646	2646	2646	2646	2040	6					2645	2646		56		į		7646	1010	200	1000	2000		2002	200		2646		0.70
	2409	į		269	1459	2469	KOP.		3160	24.40	2626	2655	2626	2532	2459	2492	6	1009				24.60	24.59	2469	2459	24.59	2460	1120			0707	1004	109	2409	7403				2476		0.75
	510		2.12	2225	2367	2410	200				2449	2489	2459	24.09	1499	Ì	i	1017			5		2320	2335	2367	2415		1484	3480		2.407	2 04	. 409						200		0. 80
	2.2		263	2462	2402	101	202	5	5	5	2402	2402	2402	2	202			5		5	5	262	2402	2402	2402	2402	2.62	5	5	557	5	3 N 3 N 3 N	n i i		į						0.85
	ę		د	0	U	• •	• •		5	0	0	0	ι Q	o c	• c	• c			> (, ,	0	0	o	0	o	0	0	n (э.		31	ک د	5 6	, ı		, (, ,			•	09C

ueomernischen Farameter is für den PLNTO-Hadronausorber D. 1. mm. j TABELLE 2

ň	9	2	3.	1	5	65	8	ķ	ő	5	ŧ	5 1	-	5	2	20	, i	õ	UP.	ა	4	ļ	ໍ່	-20	:	ż	÷	έ	Ŀ	8	i.	\$	-55	-70		18	ġ		ŝ	€ /	
,				11	1 : 78	1113	1		. 3.	10				1.504		1.50	2225	- 2090	11.54	1255	1164	2290	1111	2400	; t .8	2604	2753	0	n	2364	136.		11135	2059	2003		-		. 315		8 5 8
۰,	•	2	2010	272	28	1170	2376	245	129	2014	, .		1	2607	:610	ы В	:327	2293	2266	2250	2266	2295	2337	2403	2491	2607	2756	0	o	2367	1304	1213	2136	2062	2000			ó	-937		5
۰,			š	5	3e	22.79	1185	2460					127	2617	1052	24:2	115	2301	2275	2266	2275	230:	2346	2412	250	2617	2767	0	o	2376	2313	2246	218	2070	0.07			·952	.945		0
2079	.050	í		2:52	11 12	2293	; <u></u>	2476	204/	2000	i		2784	2634	2517	2427	1361	2316	2290	2281	2290	2316	2361	2427	37	2634	2784	0	0	2391	2327	1280	2159	2063	0777			1965	1957		0 5
2097	۲. G		3	217.	2232	121	2422	2495	10	101		3	2810	2658	2539	2449	2383	2337	2310	2302	2310	2337	2363	2449	2539	2658	2810	0	0	24:5	2349	1180	2179	2102	1		Š	982	1975		0.20
				2.97	2259	2342	2451	2528	1.00			70 F	2843	2689	2570	2478	2411	2365	2336	2329	2338	2365	241	2396	7450	576	100	0	a	2442	2377	1.500	22	2:2/	1004	22.60	2020	2006	3661		o Li
1154	, S		73.11	2187	2237	2319	242	1066			ļ	5	2790	2676	2508	2516	2447	248	2373	2364	2373	2400	2447	1111	2517	5604	5365	ğ	2019	2476	2412	2324	1	L.	1	3	5	2036	2028		0 50
140			1.1	2216	2275	2362	2472	2015	1/00		200	5	54	2667	1368	247	2409	2363	2336	2325	2329	2342	50	2000		• c	5215	204	2//8	2		200				2	7043	ğ	2000		0.35
2017			222-	2265	232B	2362	7465	.00			5		2904	2747	2624	153	2462	2415	X	a	. 0	. c		, c	» с	, c		, c	20 ()	102	ł	1010		70.7		1	2075	2029	7021	ł	0. 6
1.04				1266	2330	Z4 : 5	120	20/0	į	ć	Ş		1980	2819	2594	2595	2527	2479	è	0) C	, c	, c			Š		5	, c	2.01		100) 		2133	2092	2082	2074		сі 3
Ē			2:32	2337	2402	249	2001	1040		2017	191	1119	3073	2907	1777	2679	2606	20	02/			, c	1/10	2.5			3/31	į				100			3	2157	2137	2147	2139		0.50
C			2432	2495	1068	7007	2100			Ş	3264	3364	3187	3014	2833	2775	2072	262	1010	7910	7970		1/02	111	177 2707			5		112	į					2312	2268	1227	2218		0.55
			2252	2608	2650	5112		2	Ş	577	580	č	2083	3062	2934	2013	00/7	2/04	10.0	2000	2010		100					5	5	ş	ŝ	35				2413	2367	2324	23.6		8
107		365	2692	2745	28.2	2000				7846	2846	2846	2846	2246	2346	20-02	(040	È		2017	1000			7845			į	3446		101			7845	5	369	2626	2575	2525	2513		0.65
1070		254	264.3	100	.040			į	ž	2643	2715	記む	264	1000	12	ì	ŝ	100		ł	į		195	2643			į			1110		3643	5	2650	5	2650	2650	202	ž		C 7C
			1457	40			j		2529	2624	2653	2624	2529	6	145		1001		1 1 1	2.40			7467	2467	2467	31.57		200	2624	2653	101	2529	7467	2467	2467	2469	2473	1473	2473		075
(ę						ŝ	2400	248	2468	2488	6	00						10	2	7117	2132	2364	2412		i,	24.17	74.97	2487	5	2467	2437	2453	2412	۲ ۲	2332	1017	23.2		0.80
		, 4 11	ţ	į			5	5		ŝ	2400	2420	Ę	2	38			ŝ	8	5	35	5		240	N N	8	ě		ě	is S	200	ð	240	2400	200	1400	2400		30		0.85
				17		۰ ۱		,	o	o	0	(1	• r	. (, c	5 6	., (.	5	5.	0	0	o	0	0	0	0	0	n	0	o	¢	ō	n	0	0	¢	o (<u>م</u> د	,	06 D

LITERATURVERZEICHNIS

- BUR77 : J Burmester, Diplomarbeit : DESY F33-77/02 (1977)
- BRA75 : S. Brandt, Statistische Methoden der Datenanalyse (1975)
- GER77 : Ch. Gerke , Diplomarbeit : DESY F33-77/01 (1977)
- KOB73 : M. Kobayashi,K. Maskawa : Progr. Theor. Phys. 49, 652 (1973)
- KRA81 : K. Kraski , Diplomarbeit , GH Wuppertal , 1981
- LAUB1 : K.H. Lau, Ph.D. Thesis, Univ. Maryland 1981, in Vorbereitung
- MAX81 : H. Maxeiner , Diplomarbeit , GH Wuppertal , in Vorbereitung
- NEU79 : B. Neumann , Diplomarbeit : DESY F33-79/01 (1979)
- RAN72 : J. Ranft : Particle Accelerators 3, 129 (1972)
- ROS41 : B. Rossi , K. Greisen : Rev. of Mod. Physics 13,241 (1941)
- WOL80 : S. Wolff , interne Mitteilung 1980

Danksagung

Ich danke Herrn Professor Dr. D. Schmidt für die Stellung des Themas sowie den Mitgliedern der Gruppe F32 bei DESY für ihre Unterstützung.

lch versichere, daß ich diese Arbeit unter Angabe aller wesentlichen aufgeführten Quellen und Hilfsmittel selbständig angefertigt habe.

1