Interner Bericht DESY F35-77/01 Januar 1977

> DESY-Bibliother 8. FEB. 1977

> > ¥ -

Untersuchung von Bhabhastreuung und kollinearen Photonpaaren für Schwerpunktsenergien von 3.1 und 3.7 GeV und von Strahlungszerfällen der J/ψ-Resonanz in pseudoskalare Mesonen am Speicherring DORIS

von

Jens Ludwig

Untersuchung von Bhabhastreuung und kollinearen Photonpaaren für Schwerpunktsenergien von 3.1 und 3.7 GeV und von Strahlungszerfällen der J/ψ -Resonanz in pseudoskalare Mesonen am Speicherring DORIS

Dissertation

zur Erlangung des Doktorgrades des Fachbereichs Physik der Universität Hamburg

> vorgelegt von Jens Ludwig aus Neumünster/Schleswig-Holstein

Hamburg 1976

Diese Arbeit entstand im Rahmen eines Experimentes der DASP-Kollaboration am Speicherring DORIS

Gutachter der Dissertation und der Disputation: Prof.Dr. P.Schmüser Prof.Dr. H.Spitzer Datum der Disputation: 21. Januar 1977

Vorsitzender des Promotionsausschusses und Sprecher des Fachbereichs Physik: Prof.Dr. S.Refsdal

Inhalt

	S	eite
I.	Einleitung	1
II.	Speicherringparameter	2
111.	Beschreibung des Innendetektors vom Doppelarmspektrometer (DASP)	7
	 Allgemeiner Aufbau Strahlrohr und Luminositätsmonitor Szintillations- und Schauerzähler, Koinzidenzen und Innentrigger Proportionalkammer- und Rohre Dateneinlese 	7 12 16 21 23
IV.	Testmessungen 1. Testaufbau 2. Ansprechwahrscheinlichkeiten 3. Energieauflösung	26 26 26 26 31
۷.	Untersuchung von e ⁺ e ⁻ -Endzuständen 1. Bhabhastreuung für Schwerpunktsenergien	36
	W: $3 \leftarrow W \leftarrow 6 \text{ GeV}$ 2. $J/\psi \rightarrow e^+e^-$ 3. $\psi' \rightarrow e^+e^-$	36 39 50
VI.	Messung von kollinearen Photonpaaren	53
VII.	1. $g^+e^- \rightarrow \gamma\gamma$ boi 3.1 GeV 2. $e^+e^- \rightarrow \gamma\gamma$ bei 3.7 GeV Untersuchung von 3-Photonen-Endzuständen aus	53 60 5:61
	1. J/ψ → π [°] γ	65
	2. · → ¶ Y	74
	5. ' → ¶ Y	- 78

		00100
VIII.	Zusammenfassung und Diskussion der Daten	80
	1. e ⁺ e ⁻ - und γγ -Endzustände	80
	2. Zerfall der J/u -Resonanz in pseudoskalare Lesonen	82

.

A Anhang

.

1.1	Angaben zu Szintillationszählern	86
1.2	Angaben zu Proportionalkammern und -rohren	8 7
2.	Strahlungskorrekturen	91
2.1	für Bhabhastreuung mit und	
	ohne Resonanz	92
2,2	für e ⁺ e [−] → γγ	99
2.3	für die Bestimmung der Anzahl	
	von produzierten ψ- Ceilchen	101
List	e der Abbildungen	104
Refe	renzen	108
Dank	sagung	
Lebe	nslauf	

Seite

<u>Luminositätsmonitor</u>

Die Luminosität L ist definiert durch

N = Ereignisrate ciner Reaktion

 $N = L \cdot \sigma$

 σ = Wirkungsquerschnitt dieser Reaktion

Als Reaktion dient bei DASP die Kleinwinkelbhabhastreuung $(9 = 8^{\circ})$:

e⁺e[−] ____ e⁺e[−]

Die Vorteile dieser Reaktion sind die hohe Zählrate und die Gültigkeit der Quantenelektrodynamik (QED) in diesem Bereich.

Vom differentiellen Wirkungsquerschnitt:

$d\sigma_{\alpha} = a^2$	l+cos ⁴ 0/2	cos ⁴ 0/2	1+cos ² 0]
$\frac{d}{d\Omega} = \frac{1}{2E^2}$	$4\sin^4\theta/2$	$2\sin^2\theta/2$	*	

E = Strahlenergie $\Theta = Streuwinkel \neq (e^+_{ein}, e^+_{aus})$

trägt für kleine Winkel nur der erste Term (raumartiger Anteil) bei.

Eine Messung der Luminosität über Strahlströme, Kreuzungswinkel, Umlauffrequenz und Bunchdimensionen (Ref. 6)

I = Ströme
B = Anzahl der Bunche
f₀= Umlauffrequenz
σ_{x'y'l} = Ausdehnung eines
Bunches
δ = Kreuzungswinkel

ist wegen der Unsicherheit in den Bunchparametern und der erstrebten Genauigkeit von einigen Prozent nicht möglich. Der Aufbau des Luminositätsmonitors ist in Abb. 9 gezeigt.

Er besteht aus vier identischen Armen jeweils mit den Szintillationszählern V_i , K_i , G_i und dem Schauerzähler S_i (i = 1,4), die einen Winkel von 8 Grad mit der Strahlachse einschließen (Ref. 7). Der symmetrische Aufbau wurde gewählt, um in erster Näherung von der starken Winkelabhängigkeit des Bhabhawirkungsquerschnittes unabhängig zu sein. Die 4 x 6 cm² großen Zähler K_i bestimmen die Winkelakzeptanz. Die der Luminositätsbestimmung zugrunde liegende Bhabhazählrate N_{SUM} setzt sich additiv aus vier 7-fach Koinzidenzen B_i zusammen:

$$B_{1} = K_{1} \quad (V_{1} \ G_{1} \ S_{1}) \quad (V_{3} \ G_{3} \ S_{3})$$

$$B_{2} = K_{2} \quad (V_{2} \ G_{2} \ S_{2}) \quad (V_{4} \ G_{4} \ S_{4})$$

$$B_{3} = K_{3} \quad (V_{3} \ G_{3} \ S_{3}) \quad (V_{1} \ G_{1} \ S_{1})$$

$$B_{4} = K_{4} \quad (V_{4} \ G_{4} \ S_{4}) \quad (V_{2} \ G_{2} \ S_{2})$$

und $N_{SUM} = B_1 + B_2 + B_3 + B_4$

damit ergibt sich für die Luminosität L:

$$N_{SUM} = L \int_{\Omega_k} \frac{d\sigma_o}{d\Omega} d\Omega$$

$$L = .002 * E^2 * N_{SUM} \qquad (L \text{ in } nb^{-1}, E \text{ in } GeV)$$

Eine Zählratenabschätzung ergibt bei L = 3×10^{29} cm⁻²sec⁻¹ für eine Meßzeit von einer Stunde (typische Zeit für einen Lauf) ungefähr 240 Bhabhaereignisse bei E = 1.5 GeV.

III.3. <u>Szintillations- und Schauerzähler, Koinzidenzen</u> <u>und Innentrigger</u>

Als Szintillatormaterial wurde NE 110 der Firma Nuclear-Enterprise verwendet, da es im Vergleich mit anderen Szintillatoren eine größere Lichtdurchlässigkeit besitzt. (Abmessungen im Anhang A1.1)

Die Verbindung zwischen Szintillator und Photomultiplier geschieht über Lichtleiter aus Plexiglas. In diese Lichtleiter sind Fassungen für Lichtdioden (MV 52 von Monsanto) eingelassen, die zur Überwachung der Pulshöhenverstärkung dienen.

Für alle Szintillationszähler im Innendetektor werden Photomultiplier vom Typ 56 AVP (Valvo) und für die Schauerzähler welche vom Typ 4522 (RCA) verwendet. Alle Zählertypen werden mit Ausnahme der SO-Zähler (2 Photomultiplier RCA 8575) von einer Röhre ausgelesen. Die Abschirmung der Zähler besteht aus einem Weicheisenzylinder von 5 mm und einem Mumetallzylinder von 1.5 mm Stärke. Die Länge der Zylinder ist so bemessen, daß die Kathoden der Röhren von den Weicheisenzylindern um mehr als ihren Durchmesser überragt werden.

Als Spannungsteiler wurde ein Typ mit starker Progressivität der Spannungsverteilung an den letzten 6 Dynoden gewählt, um einen größeren Proportionalitätsbereich zwischen einfallender Lichtintensität und Anodenpuls zu erreichen. Da die Szintillationszähler teilweise zur Flugzeitbestimmung eingesetzt werden sollen, wurde die Spannung zwischen Kathode und erster Dynode durch Zenerdioden auf 300 Volt (für Schauerzähler auf 600 Volt) fixiert, um die Durchsatzzeitschwankungen, infolge verschiedener Gesamtspannungen, zu minimalisieren.

Alle Spannungsteiler haben zwei Anodenausgänge. Die Pulse werden mit Hilfe eines Kurzschlußkabels auf dem 2. Ausgang geclipt. Die Länge des Clipkabels beträgt für alle Zähler am Gestell (unten/oben Detektoren) 1 m, für alle Zähler an den Magneten 1.50 m. - 17 -

Da die Pulshöhen der Schauerzähler aufaddiert werden, sind zur weitgehenden Unterdrückung des durch Kurzschluß entstehenden Pulses entgegengesetzter Polarität die Kurzschlußkabel dieser Zähler mit 27 Ω abgeschlossen.

Alle Anodenpulse werden aufgeteilt, wobei 1/3 (bzw. 1/4 für 6 S) des Stromes direkt auf die ADC's führt, der andere Teil auf einen Diskriminator für die Registereinlese. Die Pulse der Schauerzähler werden dreifach aufgeteilt, weil bei ihnen für den Trigger unterschieden wird zwischen niedriger (Sch_K = 50mV) und hoher (Sch_G = 120mV) Schwelle.

Die 5 S-Zähler werden zur Flugzeitbestimmung verwendet, die vertikalen 5 SV-Zähler haben jeweils einen TDC; für die seitlichen 5 S-Zähler wird das "ODER" von vier 5 S-Zählern gebildet. In Abb. 10 ist der Elektronikaufbau schematisch dargestellt. Die Diskriminatoren befinden sich in einer Grube unterhalb des Experimentes, alle Register, ADC's und TDC's sind im DASP-Kontrollraum untergebracht. Die Übertragung erfolgt über 60 m lange Kabel (Typ RG-213/U).

Koinzidenzen und Trigger:

Die Geometrie des Innendetektors legt eine Einteilung in Oktanten (Abb. 11) nahe. Dabei werden bei der Zählung von I bis VIII auch die Gebiete I und V, die auf den Außendetektor zeigen, mit einbezogen. Für den Innentrigger sind diese Gebiete irrelevant. Die verbleibenden 6 Teile werden nach Ost und West unterschieden und damit kommt man zu einer Aufteilung in Dodekanten.

Für jeden Dodekanten wird eine Koinzidenz aufgebaut. Dafür wird zuerst das "ODER" von den 4 S, 5 S und 6 SK-Szintillationszählerlagen gebildet und dann eine Koinzidenz von zwei der drei Lagen gefordert:

$$(4, 5, 6 \text{ K})_{2/3} = (4 5) + (4 6) + (5 6)$$

Es existieren 3 Multiplizitätseinheiten, in denen die Anzahl der angesprochenen Dodekanten ("Spuren") abgefragt wird:

- 1. Multiplizitätseinheit ≥ 1 Spur
- 2. Multiplizitätseinheit ≥ 2 Spuren
- 3. Multiplizitätseinheit ≥ 3 Spuren.

Eine vierte Multiplizitätseinheit schließlich verlangt

2 Schauerdodekanten (6 S G).

Aus diesen Koinzidenzen werden drei Innentrigger definiert.

Triggerhäufigkeit

	٦.	Paartrigger	* =	2 Schauer	<u></u> 20%	
	2.	2 Spur	* ≥	2 Schauer	60%	5⁄ · I [°] ⊟
und	3.	3 Spur	*	(1 S + 0 S)	25%	W PH

Für den Paartrigger werden Ost- und Westteil eines Dodekanten zusammengefaßt und in Koinzidenz mit den in Bezug auf das Strahlrohr gegenüberliegenden Dodekanten verlangt. Der 2. Trigger beinhaltet den ersten. Er verlangt zwei Dodekanten mit großen Pulshöhen in den Schauerzählern und 2 Dodekantenkoinzidenzen. Schauer und Koinzidenzen müssen dabei räumlich nicht korreliert sein. Ereignisse ohne große Schauerpulshöhen müssen mindestens drei Dodekanten und die Ringzähler (1 S + 0 S) gesetzt haben, wobei die zweite Bedingung das Ansprechen des Detekors auf kosmische Strahlung reduziert.

III.4. Proportionalkammern und -rohre:

Alle vier Proportionalkammern bestehen aus 3 Signalebenen und vier Hochspannungsebenen. Der Signaldrahtabstand beträgt 2 mm, der Abstand Signal - Hochspannungebene 6.5 mm.

Die Rohrkammern im vertikalen Detektor (Oktant III und VII) sind aus je drei Rohrlagen mit den Orientierungen + 30, 0 und - 30 Grad bzgl. der z-Achse zusammengesetzt.

Die Kammern der Seitenarme bestehen mit Ausnahme der R3-Kammern aus jeweils zwei Lagen, deren Rohre einen Winkel von + 60 bzw. - 60 Grad mit der z-Achse einschließen.

Eine detaillierte Beschreibung des Aufbaus und der Betriebsparameter aller Kammertypen ist im Anhang A.1.2. angegeben.

Rohre und Kammern werden von einer gemeinsamen Elektronik ausgelesen (Ref. 8, 9). Während bei den Proportionalkammern die Vorverstärker direkt auf den Signalplatinen angebracht werden konnten, sind aus Platzgründen die Vorverstärker der Rohre über ein 3 m langes Flachbandkabel (Z = 48Ω) mit den Rohrkammern verbunden. Auf jeder Vorverstärkerplatine sind 8 Kanäle zusammengefaßt, je vier Vorverstärkerplatinen sind über ein gemeinsames Twisted-Pair-Kabel mit einem Hauptverstärker (CATO) verbunden (Abb. 12). Bis zu 20 Hauptverstärker sind in einem CAMAC-Überrahmen zusammengefaßt und werden über eine Kontrolleinheit (PERSEUS) ausgelesen. Die Überrahmen (bis zu 40) werden dann von einer Zentraleinheit (PERSEUS-Zentrale) angesteuert und ausgelesen. Das Auslesen der Daten beginnt nach einem START-Signal der Zentrale (Signallänge 200nsec; + 3 V an 50Ω). Die Kontrolleinheit des 1 Überrahmens gibt ein ADF (Adresse gefunden) Signal an die Zentrale und stellt die Adresse (DATEN) auf den entsprechenden Datenleitungen bereit.

Ist diese verarbeitet worden, so erfolgt von der Zentrale ein AACC (Adresse akzeptiert) und der Überrahmen stellt die nächste gefundene Adresse bereit. Sind so alle angesprochenen Kanäle eines Überrahmens verarbeitet, erfolgt ein EOR (Ende der Übertragung) Signal vom 1. Überrahmen und der nächste wird abgearbeitet.

Aufbau der Proportionalkammer und-rohrauslese : Abb.12

Adresse gefunden 100 ns		
Daten		
Adresse akzeptiert		2
Alle Daten ausgelesen		

Alle Interruptbefehle haben eine feste Länge von 200 nsec.

Die Daten stehen je nach Anzahl der gefundenen Adressen einige µs an. Logik "O"= O Volt

% "1" = + 3 Volt an 50 Ω

Zeitdiagramm der Proportionalkammer - und - rohrauslese :

III.5. Einlese der Daten:

Ist auf ein Ereignis getriggert worden, so wird ein Signal an die Elektronik-Kontrolleinheit weitergegeben.

Diese hat folgende Aufgaben:

- 1. weitere Datennahme bis zur Verarbeitung des Ereignisses stoppen,
- 2. Strobe-Signale für Proportionalrohre, -kammern und Gates für ADC's und TDC's bereitstellen,
- 3. Einlese des Rechners PDP 11/45 starten,
- 4. Totzeit für Luminositätsmonitor steuern,
- 5. nach Einlese und Verarbeitung einen Reset-Puls herausgeben und Datennahme wieder starten.

Nachdem der direkt an das Experiment angeschlossene Kleinrechner PDP 11/45 den Ereignistrigger von der Kontrolleinheit erhalten hat, beginnt er die CAMAC-Überrahmen (Abb. 14) mit den Registern der Zähler einzulesen. Gleichzeitig liest er eine Liste (PARLIS) ein, aus der er ersieht, zu welchen Registern (Zählern) ADC's und TDC's gehören und unter welchen Adressen diese zu finden sind. Durch Vergleich mit dem Bitmuster der Register liest er dann nur diejenigen TDC's und ADC's ein, deren Register gesetzt waren und fertigt außerdem für die einzelnen Gruppen (z.B. Zählerklassen) einen Lesekopf an, um die Startadresse und die Länge dieser Gruppe festzuhalten. Nach der Einlese der Zählerinformation erfolgt das Startsignal für die Proportional- und Rohrkammereinlese. Die Korrespondenz zwischen PDP und PERSEUS-Zentrale erfolgt analog zu der zwischen Überrahmen und Zentrale.

Die PDP 11/45 besitzt eine On-line Verbindung zur IBM 370/168, wo zuerst alle Ereignisse auf eine Magnetplatte geschrieben und anschließend auf Magnetbänder übertragen werden.

Blockschaltbild der Dateneinlese

Abb. 14

Über ein Supervisor-System hat man von einem zweiten Kleinrechner (PDP 11/40) direkten Zugriff zu den auf der Platte stehenden Ereignissen und kann sich diese auf einem Bildschirm darstellen lassen.

Das Supervisor-System führt gleichzeitig Listen über Luminositäten, Wirkungsquerschnitte und Lichtdiodenläufe.

IV. <u>Testmessungen:</u>

IV.1. Testaufbau

Die Messungen dienten dem Studium von detektorspezifischen Eigenschaften, wie Nachweiswahrscheinlichkeiten. Auflösungsvermögen. Winkelabhängigkeiten und Linearität in Abhängigkeit von der Teilchenenergie. Die Tests wurden an einem Strahl des Synchrotrons durchgeführt.Durch. Bremsstrahlung an einem ersten Target und Konversion an einem zweiten können Elektronen und durch nochmalige Bremsstrahlung Photonen erzeugt werden. Für Elektronen wurde als Trigger eine Koinzidenz von 4 Szintillationszählern verwendet, für Photonen existierte eine Anordnung von energiemarkierenden Zählern (Taggingsystem), die in Antikoinzidenz mit dem "ODER" der 2 S-Szintillationszählerlage als Trigger diente (Ref. 10). Getestet wurden die Oktanten III und VII (vertikaler Teil). die zur Untersuchung von Winkelabhängigkeiten drehbar gelagert waren.

IV.2. <u>Ansprechwahrscheinlichkeiten von Szintillationszählern</u> und Rohrkammern

In Abb. 15 und 16 sind die Ansprechwahrscheinlichkeiten für die einzelnen Szintillationszählerlagen 3 bis 5, des Schauerzählers (6) und die der Koinzidenzen (3 + 4 + 5 + 6 K) bzw. der Dodekantenkoinzidenz (4, 5, 6 K)_{2/3} angegeben. Bei einer Strahlungslänge von 1.07 X_o für ein Modul kommt man im relativistischen Grenzfall zu folgenden Werten für die Konversionswahrscheinlichkeit η_{SZ} , die man mit der Ansprechwahrscheinlichkeit der Zähler und Rohre vergleichen kann:

N		W	lessung bei 1	.65 GeV	mit
	"SZ	Szintil	lationszähle	r Rohrka	ammer
1	56%	(3S)	61%	(R1)	57%
2	81%	(4S)	82%	(R2)	80%
3	92%	(5S)	92%	(R3)	89%
4	96%			(R4)	93%

N = Anzahl von Moduln vor den Zählern bzw. Rohrkammern

Für die Rohrkammern wurde nur ein Funke in einer der drei Lagen verlangt (Abb. 17, 18).

Die Energieabhängigkeit der Ansprechwahrscheinlichkeiten für Szintillationszähler und Rohrkammern kann qualitativ verstanden werden, wenn man berücksichtigt, daß sich vor dem Zähler noch eine Rohrkammer mit einer zusätzlichen Strahlungslänge von .02 X_o befindet. Für hohe Energien ist die Ansprechwahrscheinlichkeit für Szintillationszähler wegen der größeren Strahlungslänge größer, für niedrige wächst dagegen die Absorptionswahrscheinlichkeit. Der Effekt sollte, wie beobachtet, für die ersten Lagen am stärksten sein.

Aus den Abb. 16 und 18 ist zu entnehmen, daß die Winkelabhängigkeit der Nachweiswahrscheinlichkeiten gering ist.

Für die Spurrekonstruktion sollen die wichtigsten Parameter kurz beschrieben werden. Die in Klammern stehenden Ausdrücke sind programminterne Definitionen (Ref. 11). Die Richtung von Photonen ist festgelegt durch die Gerade, die den nominellen Wechselwirkungs- und Konversionspunkt verbindet.

Zur Definition des Konversionspunktes ist mindestens je ein Rohr in 2 Orientierungen einer Rohrkammer erforderlich.

Zur weiteren Rekonstruktion werden die Lagen mit gleicher Orientierung (+ 30° , 0° , - 30°) getrennt betrachtet:

- Es müssen mindestens 2 der 4 Lagen Funken haben (MINSP = 2).
- Der Lateralabstand dieser Funken in zwei aufeinanderfolgenden Kammern darf nicht größer als 45 mm sein (DMAX = 45).

Sind zwischen zwei Funkenclustern 1 oder 2 Rohre nicht gesetzt, so wird trotzdem angenommen, daß alle Funken zu einem Schauer gehören (IGAPL = 3).

Anschließend werden noch die	R4		
Funkenmuster der drei Pro-	R3		_
jektionen miteinander ver-			
glichen: existieren in	R2		
mehr als zwei Rohrkammern	RI		
jeweils nur Funken in einer			
Orientierung, so wird die		kei∩e Spur	Spur
Spur verworfen (JDL0 = 3,		<u> </u>	30º Ebene
vergl. nebenstehende Skizze).		*	
			· •

Die Energieabhängigkeit der Nachweiswahrscheinlichkeit von so definierten Photonenspuren ist in der Abb. 19 festgehalten. Die Nachweiswahrscheinlichkeit ist oberhalb von 500 MeV konstant und nimmt unterhalb von 250 MeV schnell ab.

η

Ihr Verhalten ist vergleichbar mit der Ansprechwahrscheinlichkeit der Dodekantenkoinzidenz (Abb. 16). Zur Untersuchung von schauernden und nicht elektromagnetisch wechselwirkenden Teilchen wird die mittlere Anzahl von gesetzten Rohren pro angesprochener Ebene benutzt (ASPN). Die Energieabhängigkeit ist für Photonen in Abb. 20 dargestellt.

IV.3. Energieauflösung

Die Verstärkung von allen Szintillationszählern und den Schauerzählern ist so eingestellt, daß sie gleiche Pulshöhe (PH) für minimal ionisierende Spuren zeigen.

Da der Schauerzähler aber aus 8 Szintillatoren besteht, wurde bei der Addition der Pulshöhen zur Bestimmung der Schauerenergie gewichtet (Abb. 21).

 $\Sigma(Sz + Sch) = \frac{1}{8} \sum_{i=2}^{5} PH_{Szi} + PH_{Sch}$

Zum Vergleich ist in Abb. 22 die Energieabhängigkeit der Anzahl von gesetzten Rohren angegeben. Mit Hilfe dieser beiden Energieabhängigkeiten soll die für Linearität und Auflösungsvermögen beste Kombination aus Zähler- und Rohrkammerinformation gefunden werden. Für den Vergleich hinsichtlich der Linearität wurden alle Kombinationswerte für 1 GeV auf 100 normiert (Abb. 23). Da die Rohrkammern die Schauerentwicklung nur bis zu vier Strahlungslängen erfassen, sättigt die Anzahl der gesetzten Rohre als Funktion der Energie relativ früh; dergleiche Effekt, wenn auch nicht so ausgeprägt, ist in Abb. 23 für die Summe der Szintillationszählerpulshöhen zu erkennen. Die Sättigung ist durch die größere Eindringtiefe für höher energetische Primärphotonen zu verstehen. Die Lage des Schauermaximums ist proportional zum Logarithmus der Primärenergie und liegt für E = 500 MeV zwischen R3 und R4, für E = 1000 MeV bereits im Schauerzähler. Aus Abb. 23 wird deutlich, daß die beste Linearität zwischen Energie und Signal für die Addition der Zählerinformation erreicht wird.

In der Abb. 24 schließlich sind die zu erzielenden Auflösungsvermögen (FWHM) für die verschiedenen Kombinationen dargestellt.

Im Experiment wurde später nur die Zählerinformation zur Energiebestimmung verwendet.

Das Linearitätsverhalten und die Energieauflösung für Elektronen und Positronen ist vergleichbar mit den Resultaten für Photonen. Die Ansprechwahrscheinlichkeit beträgt für 50 MeV etwa 50% und ist konstant 100% oberhalb von 100 MeV.

V. Untersuchung von e⁺e⁻-Endzuständen

V.1. Bhabhastreuung für Schwerpunktsenergien W: 3 < W < 6 GeV

Diese Reaktion wurde für Schwerpunktsenergien W von 3 bis 6 GeV untersucht, wobei die Energiebereiche der Resonanzen

$$J/\psi$$
: 3087 - W_1 - 3110 MeV
und ψ ': 3677 - W_2 - 3690 MeV

ausgelassen wurden.

Die in dem angegebenen Energiebereich gewonnene Luminosität von 3.5/ub⁻¹ verteilt sich zum größten Teil auf die drei Energiewerte: 3.6, 4.03 und 4.4 GeV (Abb. 25). Datenselektion und Korrekturen sind genauso vorgenommen worden, wie für die Zerfälle $J/\psi \rightarrow e^+e^-$ und $\psi' \rightarrow e^+e^$ und sollen nur einmal bei deren Abhandlung diskutiert werden. In Abb. 26 ist der für einen Polarwinkelbereich von 50 bis 130 Grad gemessene Wirkungsquerschnitt und der von der GED erwartete Wirkungsquerschnittsverlauf eingetragen. Die Fehlerbalken beinhalten sowohl statistische als auch systematische Fehlerquellen (5%). In der Abb. 27 ist die gemessene Winkelverteilung bei einer Schwerpunktsenergie von 3.6 GeV gezeigt. Die Verteilung ist symmetrisch zu 90 Grad, da das Ladungsvorzeichen der Teilchen unbekannt ist. Es sind die von Teilchenrichtung und z-Achse eingeschlossenen Winkel beider Teilchen berücksichtigt worden. Die durchgezogene Kurve gibt die den Daten angepaßte QED-Winkelverteilung wieder.

all intert worden alle diabhachd th's a chuir fran tha chuir tha tha chuir tha chuir

Die Abb. 26 und 27 zeigen, daß die Messung innerhalb der Fehler mit der Quantenelektrodynamik verträglich sind.

Abb. 27

Für W = 3.6 GeV sind die Winkel zwischen der Teilchenrichtung und der z-Achse aufgetragen. Die durchgezogene Kurve stellt eine Anpassung der QED-Winkelverteilung an die Daten dar.

Kriterium	Klasse 1.	2.	3.
totale im Detektor nachge- wiesene Energie	≱ 1250 MeV	≥500 MeV	≥ 1250 MeV
Hemisphärenenergie *	≱ 10 MeV < 2.2 * ^E strahl	≯10 MeV <2.2 * ^E Strahl	♥ 10 MeV < 2.2 * ^B Strahl
Oktantenenergie			3 Oktanten mit E _o ≥ 100 MeV 2 Oktanten mir E _o ≥ 500 MeV
Anzahl von gesetzten Rohren	≥ 20		
Anzahl von Spuren	2 bis 6	3 bis 24	3 bis 24
		davon mindestens	
		eine PK-Spur oder	
		2 geladene Spuren	
		im vertikalen Detektor	
Akollinearitätswinkel der beiden Spuren mit	₹ 95°		
den höchsten Energien			
Anzahl der angesprochenen Ringzähler	۸ س	M 12	/A \u03cm

*Unter Hemisphärenenergie wird die Energie, wird, bezeichnet, wobei die Oktanten I und die in drei benachbarten Oktanten nachgewiesen

 \triangleleft nicht mitgezählt werden.

V.2. Untersuchung des Zerfalls $J/\psi \rightarrow e^+e^-$

Die Datenreduktion gliedert sich in zwei Schritte. Zuerst wurde eine Vorselektion der Daten mit losen Schnittbedingungen vorgenommen, um einerseits häufige Überprüfungen der Selektionsbedingungen durchführen zu können und andererseits den Rechenzeitverbrauch erträglich zu halten. Die Vorselektion klassifiziert drei Ereignistypen:

- 1. Paare $(e^+e^- \text{ und } \gamma \gamma)$
- 2. "geladene" Ereignisse mit mehr als 3 Spuren
- 3. "ungeladene" Ereignisse mit≥3 Schauern

Die Vorselektion der Daten soll hauptsächlich kosmische Strahlung und Strahl-Restgas-Ereignisse verwerfen.

Positron und Elektron aus dem Zerfall der J/ ψ -Resonanz sind wegen des Kreuzungswinkel von 24mrad und wegen Abstrahlung von Photonen nicht kollinear. Man muß deshalb einen maximalen Akollinearitätswinkel zwischen e⁻und e⁺ Richtung wählen, bis zu dem man die Ereignisse selektiert und diesen Winkelschnitt ebenfalls bei den Strahlungskorrekturen berücksichtigen.

Abb. 28 Akollinearitätswinkelverteilung von e^+e^- – Endzuständen für Schwerpunktsenergien zwischen 3070 und 3120 MeV.Durch den Schnitt von 6[°] gehen 4[°] aller erwarteten …reignisse verloren.

Der Winkel wurde auf maximal 6° festgesetzt, da so die Anzahl von nachgewiesenen Ereignissen in gegenüberliegenden Oktanten am größten ist; bei einem größeren Wert würde die ausnutzbare Akzeptanz stärker abnehmen als der Anteil von Ereignissen aus dem Strahlungsende zunehmen würde, bei kleinerem Winkelschnitt würde das entgegengesetzte Argument gelten, denn dann geht die Akzeptanz gegen einen festen Wert. Für Teilchen, deren Richtungen in die obere Hemisphäre des Detektors zeigen, wurde die Akzeptanz auf folgende Winkelbereiche beschränkt:

	im <u>Polarwinkel</u> :	50 [°] ≤ ⊖ ≤ 130 [°] (unabhängig vom Oktanten)
und	im Azimut :	1
	für Oktant II	$17.5^{\circ} \leq \phi \leq 54^{\circ}$
	für Oktant III	$78^{\circ} \leq \phi \leq 102^{\circ}$
	für Oktant IV	$126^{\circ} \leq \phi \leq 162.5^{\circ}$

insgesamt erfaßter Bereich in ϕ : 194°

Diese eingeschränkte Akzeptanz soll gewährleisten, daß auch der Schauer des zweiten Teilchens im unteren Teil des Detektors noch gut innerhalb der Akzeptanz liegt.

Im Detektor nachgewiesene Gesamtenergie für e⁺e⁻-Endzustände.

In der Abb. 31 ist die gemessene Energieverteilung für alle endgültig selektierten Ereignisse aufgetragen. Verlangt wurde dabei eine Gesamtenergie von größer als 1600 MeV. Man sieht, daß durch diese Bedingung keine guten Ereignisse verworfen sind. Außerdem wurden mindestens 35 gesetzte Rohre verlangt. Auch dieser Wert wird, wie der Energieschnitt, schon von einem einzelnen schauernden Teilchen der Strahlenergie erreicht und diskriminiert daher lediglich gegen minimal ionisierende Spuren.

Die Entscheidung, ob die beiden Teilchen geladen oder ungeladen sind, wird unter Benutzung der 1 S-und 2 S-Zählerinformation und für die Seitenarme (gerade Oktanten) noch mit Hilfe der Proportionalkammern gefällt. Von den vier möglichen 1 S-und 2 S-Zählerlagen vor den

Oktanten mit den größten nachgewiesenen Energien müssen mindestens zwei angesprochen haben.

Zusätzlich müssen für die Seitenarme mindestens 5 der 12 Proportionalkammerebenen vor den betreffenden Oktanten gesetzt sein. Da die Proportionalkammern nicht den ganzen gewählten Raumwinkel überdecken, gehen durch den zuletzt genannten Schnitt Ereignisse verloren. Der Verlust kann abgeschätzt werden durch die Azimut-Verteilung der Ereignisse (Abb. 30); sie sollte für die akzeptierten Bereiche konstant sein.

Mit Hilfe der 5 S-Zähler wird die Zeitdifferenz zwischen Innentrigger (START-Signal) und dem Durchgang der Teilchen durch die 5 S-Ebenen (STOP-Signal am TDC) gemessen. Die Zeitdifferenz zwischen den 2 Stopsignalen wird auf die Durchlaufzeit im Szintillator und die Pulshöhe korrigiert. Die Summe dieser Korrekturen ist für ein kollineares vom WWP kommendes Paar gleich Null; für ein Teilchen der kosmischen Strahlung beträgt die so gefinierte Zeit # 8nsec.

Abb. 30 ϕ -Verteilung aller akzeptierten e⁺e⁻-Ereignisse. Die Verluste in den Seitenarmen für Winkel nahe ± 90° sind auf die Anzahl der verlangten Proportionalkammerebenen zurückzuführen.

ZEITCIFFERENZ (6+ 6- NEE)

Abb. 31 Zeitdifferenz zwischen den angesprochenen 5 S-Zählern. Die Normierung ist so gewählt, daß 2 identische vom WWP kommende Teilchen $\Delta T \approx$ Onsec haben. Da für die Seitenarme jeweils vier 5 S-Zähler zusammengefaßt sind, wurden die Schnitte für Seitenarme und vertikalen Detektor getrennt

> max. erlaubte Zeitdifferenz für Paare im vertikalen Detektor (III,VII) $\Delta T_V \equiv 2nsec$ in den Seitenarmen $\Delta T_H \leq 4nsec$

Dem Spektrum in Abb. 31 ist eine Gausskurve überlagert, die mit einem Sigma von 600psec die Auflösung der Seitenarme wiedergibt.

Bestimmung der Zerfallsbreite für J/4-ee:

Zuerst soll die nachstehende Anregungskurve in Abb. 32 diskutiert werden.

Man erkennt eine deutliche Resonanzstruktur bei
W = 3090 MeV, die Breite der Resonanz entspricht etwa der erwarteten Gaussverteilung der Strahlenergien.
Die über das Magnetfeld der Ablenkmagnete ermittelte Strahlenergie wurde anhand der Anregungskurve aus multihadronischen Zerfällen der Resonanz so korrigiert, daß die Resonanzmasse immer auf einem festen Wert von 3090 MeV lag. Dieser Wert ergab sich als Mittelwert aus den ersten Experimenten.

Die waagerecht erscheinende durchgezogene Linie gibt den erwarteten strahlungskorrigierten QED-Verlauf (A.2.1.) wieder.

Die Kurve durch die Meßpunkte stellt die beste strahlungskorrigierte Anpassung der Daten dar.

Für die Bestimmung des Integrals muß man ebenfalls den Einfluß von Strahlungskorrekturen berücksichtigen. Dafür wiederum ist es notwendig, Annahmen über die Winkelverteilung (Einfluß des Spins der Resonanz) und über die Form und Größe des eigentlichen Resonanzwirkungsquerschnittes zu machen. Im weiteren soll Spin = 1 für das J/ϕ -Teilchen angenommen (Vergl. Kap. VI.1. und Ref. 12) und die Verträglichkeit dieser Annahme mit der gemessenen Winkelverteilung überprüft werden. Die in Abb. 33 gezeigte Polarwinkelverteilung verdeutlicht im Vergleich mit der bei W = 3.6 GeV (Abb. 27) eine signifikante Abweichung der QED-Verteilung, sie ist erheblich flacher.

Da die von Resonanz und QED erwartete Winkelverteilung (vergl. A.2.1.) durch Interferenz stark schwerpunktsenergieabhängig ist, bietet es sich an, die gemessene mit der erwarteten Winkelverteilung direkt auf der Resonanz zu vergleichen; sie ist in Abb. 34 dargestellt.

Abb. 33 Winkelverteilung aller e^+e^- -Paare. Es wurden alle Schwerpunktsenergien im Bereich der J/ψ -Resonanz-masse zugelassen.

Abb. 34 Winkelverteilungen auf der Resonanz J/ψ : 3089.8 \leq W \leq 3090.2. Die obere Kurve gibt den erwarteten Verlauf für QED + Resonanz an; die untere den von der reinen QED her stammenden Anteil. Die mittlere Kurve ergibt sich aus der Subtraktion: "QED + Resonanz" -"QED".

Die Daten sind mit der Annahme einer Resonanz von Spin = 1 verträglich.

Da die Daten auf den Polarwinkelbereich 50 = 0 = 130 Grad beschränkt sind, muß zur Bestimmung des Integrals auf den vollen Raumwinkel extrapoliert werden. Als Ergebnis erhält man:

$$\int \sigma (E) dE = (849.12 \pm 5.) \text{ nb MeV}$$

Resonanz

Dieser Wert kann zur Bestimmung des Verhältnisses von $\Gamma ee/\Gamma_{tot}$ direkt mit der relativistischen Breit-Wigner Wirkungsquerschnittsverteilung eines Vektormesons mit Spin = J verglichen werden (Ref. 13):

$$f = \frac{\tau(2J+1)}{s} + \frac{4m^2 r_{(ee+j)} r_{(j+f)}}{(s-m^2)^2 + m^2 r^2} \qquad m = Masse der Resonanz J = Spin der Resonanz
$$\int_{f} f = Partialbreite R f s = 2E^2$$$$

Integration über die Resonanz ergibt:

$$f = \int \cdots_{i=1}^{\infty} (W) dW = \frac{6r^2}{m^2} + \frac{f_{ee} + f_f}{f_{tot}}$$

für die Reaktion $e^+e^- \longrightarrow$ Resonanz $\longrightarrow e^+e^-$ folgt dann:

$$\int :_{v \to e^+} e^{-(w)} dw = \frac{6\pi^2}{m^2} \cdot \frac{\Gamma_{ee^2}}{\Gamma_{tot}}$$

Resonanz

unc man erhält schließlich für m = 3090 MeV;

$$\frac{\Gamma_{ee}^2}{\Gamma_{tot}} = (.35 \pm .002) \text{ keV}$$

Die Partialbreite Γ_{ee} allein kann nur bestimmt werden, wenn auch die totale Zerfallsbreite Γ_{tot} bekannt ist. Unter Benutzung des von Ref. 12 angegebenen Wertes von $\Gamma_{tot} = 69$ keV erhält man

 $\Gamma_{ee} = 4.93 \text{ keV}$

im Vergleich zu $\Gamma_{ee} = (4.8 \pm .6)$ keV von Ref. 12.

Der angegebene Fehler kommt von der Anpassung des strahlungskorrigierten Resonanzverlaufes an die Meßpunkte.

Einen Beitrag zum Wirkungsquerschnitt kann die Reaktion $e^+e^- \rightarrow \gamma \gamma$ liefern, wenn mindestens ein Photon im Strahlrohr konvertiert. Die Konversionswahrscheinlichkeit für ein Photon beträgt ungefähr 3.6%. Der Wirkungsquerschnitt der Reaktion ist etwa eine Größenordnung kleiner und nicht resonant, so daß der Beitrag zum Resonanzintegral für e^+e^- -Endzustände vernachlässigbar ist.

Aus der Abb. 34 geht hervor, daß der Detektor für Winkel nahe 50[°]und nahe 130[°] nicht die volle Nachweiswahrscheinlichkeit besitzt. Die Korrektur beträgt 14% und ist in der Anregungskurve berücksichtigt. Die Wirkungsquerschnitte außerhalb der Resonanz sind mit der QED verträglich.

V.3. Bestimmung der Zerfallsbreite für $\psi' \longrightarrow e^+e^-$

Die Ereignisselektion für die Daten im Bereich der ψ^{*} Resonanz erfolgte völlig analog zu der, die für die 3.1 GeV Daten angewandt wurde.

Lediglich die untere Grenze für die im Detektor nachgewiesene Energie wurde auf 1800 MeV hochgesetzt (Abb. 35).

Abb. 35 Gesamtenergieverteilung der selektierten e^+e^- Ereignisse für Schwerpunktsenergien in der Nähe der ψ ' Resonanz. Die angepaßte Gaussverteilung ergibt einen Mittelwert von 3805 MeV und ein Sigma von 412 MeV.

Wie aus der Abbildung ersichtlich ist, werden dadurch keine guten Breignisse verworfen. Die Breite der angepaßten Gaussverteilung ist in guter Übereinstimmung mit den früher beschriebenen Testmessungen.

In der Abb. 36 ist der gemessene Wirkungsquerschnitt in Abhängigkeit der Schwerpunktsenergie aufgetragen. Man erkennt eine leichte Erhöhung des Wirkungsquerschnittes im Bereich der Resonanzmasse von 3680 MeV. Diese und die Energiebreite der Strahlen ($\sigma_E = .94$ MeV) wurden wiederum mit Hilfe von multihadronischen Zerfällen bestimmt.

Zur Extrapolation auf den gesamten Raumwinkel wurde auch für die ψ '-Resonanz Spin = 1 (Ref. 15) angenommen. In Abb. 37 ist für die Daten auf der Resonanz (3679.6 = W = 3680.4 MeV) die gemessene Polarwinkelverteilung aufgetragen. Die durchgezogene Linie stellt die Addition von GEL- und dem aus der Anregungskurve gewonnenen Resonanzanteil dar.

Unter Benutzung diese: strahlungeherrigierten Winkelverteilung erhält man:

$$\int \sigma(E) dF = (44.54 \pm ...) V V nt$$

kesonanz

Abb. 37 Polarwinkelverteilung für e^+e^- Endzustände mit 3679.6 $\leq W \leq 3680.4$ MeV. Die durchgezogene Kurve beinhaltet QED- und Resonanzanteil. Dieser wurde aus der Anregungskurve gewonnen.

Damit ergibt sich

$$\frac{r_{0}^{2}, r_{0}^{*}}{\Gamma_{1}^{*} \rightarrow all} = (.026 \pm .0034) \text{keV}$$

mit ($r_{1}^{*} \rightarrow all$) = 228 keV (kel. 15) cohilt mar

$$\Gamma_{ee} = -2.43 \text{ keV}$$

im Vergleich zu dem von Kef. 15 gefundenen Wert von $(2.1 \pm .3)$ keV f ir $\psi' \rightarrow \mu^{+} / \mu^{-}$.

VI Messung von kollinearen Photonpaaren

VI.1. e⁺e⁻--- **y y** bei 3.1 GeV

Die Nachweiswahrscheinlichkeit für Photonen wird im wesentlichen dadurch beeinträchtigt, daß sie zu früh (Strahlrohr, 1 S-Zähler) konvertieren und als geladene Teilchen mißidentifiziert werden, oder aber bis zum 5 S-Zähler (3.21 X_0) noch nicht konvertiert sind und somit auf das Ereignis nicht getriggert wird. Ein Verlust im Ansprechvermögen, verursacht durch die hohe Schwelle der 6 S-Zähler, konnte für Photonen einer Energie von 1.5 GeV nicht festgestellt werden.

Bei der Datenselektion wurde verlangt, daß keine der Zählerlagen vor der ersten Strahlungslänge Blei gesetzt war und daß ebenfalls keine Proportionalkammerebene im Bereich der Photonenrichtung angesprochen hatte, um zu vermeiden, daß durch Ansprechverluste (der Zähler) die selektierten Daten eine Kontamination von resonanten e⁺e⁻ Paaren enthalten. Es sollen die Verluste durch diese Bedingung kurz abgeschätzt werden:

Während des ersten Teils der Messung wurde ein 1.5 mm starkes V2A-Strahlrohr von .08 Strahlungslängen verwendet, anschließend ein Aluminiumstrahlrohr von .0166 Strahlungslängen. Berücksichtigt man die zusätzliche Strahlungslänge der Szintillationszähler und Proportionalkammern und die Winkelverteilung der QED-Reaktion $e^+e^- \rightarrow \gamma \gamma$, so erhält man im Mittel .094 (bzw. .028) Strahlungslängen und damit eine Korrektur von 7 bzw.2% für die Ansprechwahrscheinlichkeit. Auf Grund der vom Innentrigger geforderten Oktantenkoinzidenz müssen beide Photonen bis zum 5 S-Zähler, also nach 3.23 X₀ (bei senkrechtem Einfall), konvertiert sein. Für die genauere Betrachtung muß wieder die Variation der Materialdicken mit Θ und ϕ , die Winkelverteilung der Reaktion (Ref. 16)

$$\frac{d_{\sigma}}{d\Omega} = \frac{r_o^2}{8\gamma^2} \left[\frac{q^{12}}{q^2} + \frac{q^2}{q^{12}} \right]$$

$$\frac{d_{\sigma}}{d\Omega} = \frac{r_o^2}{8\gamma^2} \left[\frac{q^{12}}{q^2} + \frac{q^2}{q^{12}} \right]$$

$$\frac{q^2}{2} = -4E^4 \cdot \cos^2\theta/2$$

$$q^{12} = -4E^2 \cdot \sin^2\theta/2$$

und schließlich die Geometrie des Detektors mit herangezogen werden. Es ergibt sich eine Ansprechwahrscheinlichkeit von 89% für beide Photonen.

Berücksichtigt man alle Effekte, erhält man eine Gesamtansprechwahrscheinlichkeit von 75 bzw. 85 Prozent innerhalb der schon für Bhabhastreuung beschriebenen Akzeptanz.

In der folgenden Liste werden die Kriterien für die endgültige Datenselektion angegeben:

Akollinearitätswinkel	ζ ≤ 6 ⁰	Akzeptanz: $50^{\circ} \leq$	9 ≤ 130 ⁰
Gesamtenergie	E _{tot} ≥1600) MeV 17,5 [°] ≤	e ≤ 54°
Anzahl von gesetzten Rohren	≥ 25	78 ⁰ = 126 ⁰ =	θ ≤ 102 ⁰ θ ≈ 162.5 ⁰
Anzahl von 15- und 25-		Zeitdifferenz zwischen	5 S-Zählern
Dageri	$N_{S12} = 0$	im vertikalen Detektor	∆ T _V ≤ 2nsec
Anzahl von Proportional kammerlagen	$N_{\rm PK} = 0$	in den Seitenarmen	∆T _H ≤ 4nsed

Die Schnitte werden so eng gewählt, um die Kontamination durch Elektron-Positron-Endzustände möglichst gering zu halten.

Erlaubt man in der Datenselektion, daß ein Photon bereits im Strahlrohr konvertiert ist, erhält man eine Erhöhung des Wirkungsquerschnitts im Bereich der Resonanzmasse von 3.4 nbMeV. Diese Erhöhung ist zu erklären, wenn man annimmt, daß 5°/oo der e⁺e⁻-Endzustände die oben beschriebene Signatur ergeben. Andererseits erkennt man aus dieser Abschätzung, daß eine Überlappung von e⁺e⁻- mit $\gamma\gamma$ -Endzuständen für die gewählten Kriterien vernachlässigbar ist.

Abb. 38 Gesamtenergieverteilung für Photonen aus der Reaktion $e^+e^- \rightarrow \gamma \gamma$ bei W = 3.1 GeV. Die angepaßte Gaussverteilung zeigt Übereinstimmung mit der Verteilung aus Abb. 29 für $e^+e^- \rightarrow e^+e^-$ bei derselben Schwerpunktsenergie. In Abb. 38 ist die gemessene Gesamtenergie aller selektierten Ereignisse dargestellt. Die Verteilung unterscheidet sich nur unwesentlich von der für 2-Elektronen Endzustände.

Abb. 39 Zeitdifferenz von vorselektierten Daten.2 Teilchenzustände, die vom WWP emittiert werden, bilden eine Verteilung um Onsec, Teilchen der kosmischen Strahlung haben positive Laufzeitdifferenzen mit einem Mittelwert von größer als 8nsec.

In den Abb. 39 und 40 sind die Flugzeitdifferenzen für vorselektierte und endgültig ausgewählte 2γ -Ereignisse dargestellt. Es sind deutlich 2 Verteilungen zu erkennen; eine liegt umOnsec und beinhaltet die Ereignisse, die vom Wechselwirkungspunkt kommen, die andere hat ein Maximum größer als 8nsec (11nsec) und beinhaltet daher Ereignisse, deren 5 S-Zähler "OBEN" früher angesprochen hat als der 5 S-Zähler unten.

Abb. 40 Zeitdifferenz der ausgewählten $e^+e^- \rightarrow \gamma\gamma$ Ereignisse bei W = 3.1 GeV.

Es handelt sich damit um kosmische Strahlung. Die Verteilung ist nicht exakt gaussisch, das Sigma für alle Zählerkombinationen beträgt ungefähr 600psec.

Abb. 41 Polarwinkelverteilung für $e^+e^- - \gamma \gamma$, bei W = 3.1 GeV. Die durchgezogene Linie gibt den Verlauf der QED-Winkelverteilung an.

Aus Abb. 41 ersieht man, daß die gemessene Polarwinkelverteilung mit der von der QED her erwarteten im Rahmen der statistischen Fehlergrenzen übereinstimmt. Der Wirkungsquerschnitt als Funktion der Energie ist in der Abb. 42 zusammen mit dem QED-Verlauf dargestellt. 20.0 3.1-->GAMMA GAMMA

Er ist innerhalb der statistischen Fehlergrenzen in guter Übereinstimmung mit der QED (waagerechte Gerade) und läßt keine Überhöhung für Schwerpunktsenergien in der Nähe der Resonanzmasse erkennen.

Eine obere Grenze (90% conf.level) ist durch die eingezeichnete Gausskurve (M_{o} = 3090 MeV , σ = .98 MeV) markiert:

$$\int \sigma(E) dE = .928 \text{ nb MeV}$$

Resonanz
 $50^{\circ} \neq \Theta = 130^{\circ}$
und $\Gamma_{\psi \neq \gamma\gamma} \neq 5.4 \text{ eV}$

Untergrund für innerhalb eines Raumwinkels von 6 Grad kollinare Photonen kann von zwei Zerfallskanälen herrühren:

- a) $J/\psi \longrightarrow \pi^{\circ}\gamma$
- b) $J/\psi \longrightarrow X^{0}\gamma$

wobei eines der 3 Photonen nicht im Detektor nachgewiesen wird. Der Beitrag von a) kann nach der in Kapitel VII.1 dargestellten Untersuchung mit - 1.eV abgeschätzt werden.

71.2. e⁺e⁻ --- yy boi 0.7 dof

Die Analyse von $\gamma\gamma$ -Endzuständen in der Nähe der ψ '-Resonanz wurde analog zu der Untersuchung der 3.1-GeV Daten durchgeführt.

Sowohl die Polarwinkelverteilung (Abb. 43) als auch der Wirkungsquerschnittsverlauf (Abb. 44) sind in dem Bereich der ψ '-Resonanz mit der Quantenelektrodynamik verträglich.

Ein Fit für eine Überhöhung des Wirkungsquerschnittes ergibt für das Integral folgende obere Grenze (90% conf.lev.):

$$\int_{\text{Res}} \sigma(\mathbf{E}) d\mathbf{E} \leq .79 \text{ nb MeV}$$

Res
 $50 \leq \Theta \leq 130^{\circ}$

ADD.44 WIRKUNGSQUERSCHNITT GLÜEN ENERGIE

- 61 -

VII Untersuchung von 3-Photonen-Endzuständen

Gesucht werden die Zerfälle des Typs:

wobei das X[°] ein π° , η oder η' (958 MeV/c²) sein kann. Durch Messung der 3 Öffnungswinkel ($\theta_1 < \theta_2 < \theta_3$) und Ausnutzung der Koplanarität ist die Reaktion vollständig bestimmt.

Sind die Vierer-Vektoren der 3 Photonen bekannt, dann gibt es zur Rekonstruktion der Masse des Secons drei Möglichkeiten, jeweils zwei Photonen zu kombinieren. Der minimale und wahrscheinlichste Öffnungswinkel der Zerfallsphotonen soll kurz berechnet werden:

Im Ruhsystem des $J/\psi\,$ gilt für den allgemeinen Zerfall in 2 Teilchen (i und j)

 $E_{i} = \frac{M^{2} + M_{i}^{2} - M_{j}^{2}}{\frac{2M_{i}}{2}}$ $E_{i} = \text{Energie von Teilchen i}$ $M_{\psi}, M_{i}, M_{j} = \text{Massen}$

und speziell für den Strahlungszerfall $J/\psi \rightarrow X^{O}\gamma$ mit $M_{i} = 0$:

$$p_{\gamma_3} = p_x = \frac{M_{\psi}^2 - M_x^2}{2M_{\psi}}$$
 $|p_{\pi^o}| = 1.54 \text{ GeV/c}$
 $|p_{\eta}| = 1.49 \text{ GeV/c}$
 $|p_{\eta'}| = 1.39 \text{ GeV/c}$

Für den minimalen Öffnungswinkel Θ (p_{V2}, p_{V1}) von X[°]

$$\stackrel{\leftarrow}{\leftarrow} (\stackrel{\rightarrow}{p}_{x}, \stackrel{\rightarrow}{p}_{\gamma 1}) = (\stackrel{\rightarrow}{p}_{x}, \stackrel{\rightarrow}{p}_{\gamma 2}) = 90^{\circ} \text{ in cms-System.}$$

Im Laborsystem erhält man unter Ausnutzung der symmetrischen Zerfallsbedingung:

$$2E_{\gamma}\cos\theta/2 = |p_{\chi}| \text{ mit } 2E_{\gamma} = \sqrt{M_{\chi}^2 + p_{\chi}^2}$$

$$\theta_{\min} = 2 \arccos \left(\frac{|\mathbf{p}_x|}{|\mathbf{M}_x^2 + \mathbf{p}_x^2|} \right)$$

Danach betragen die minimalen und wahrscheinlichsten Öffnungswinkel 10° für $\pi^{0} \rightarrow \gamma \gamma$, 40° für $\eta \rightarrow \gamma \gamma$ und 68° für $\eta' \rightarrow \gamma \gamma$.

Man kennt zur Untersuchung der 3-Photonen-Endzustände von den auslaufenden Teilchen 6 Winkel (Θ, ϕ) und 3 Massen, vom einlaufenden Teilchen ist der Vierervektor bekannt ($p_x = p_z = 0, p_y = -37 \text{ MeV/c}, M = 3090 \text{ MeV/c}^2$).

Da die wahren Konversionspunkte zusammen mit dem Wechselwirkungspunkt in einer Ebene liegen müssen, wird für jedes Ereignis eine Anpassung an eine Ebene versucht. Sie wird so lange verändert, bis das χ^2 für die Summe aller Abstände von ihr minimal wird. Durch die um $\pm 30^{\circ}$ zueinander gekreuzten Rohrkammerlagen und den Winkel zwischen Reaktions- und Rohrkammerebene ist die Auflösung in z und y verschieden gut und muß bei der Festlegung der Reaktionsebene berücksichtigt werden. Die Konversionspunkte liegen auf der Schnittgeraden von Reaktionsund Rohrkammerebene.

Die Funktion:

$$\mathbf{F} = \frac{4}{\sum_{i=1}^{n}} \left[-\left(\frac{\Delta z_i}{c_{zi}}\right)^2 + \left(\frac{\Delta y_i}{c_{yi}}\right)^2 \right]$$

Abb. 45 Skizzen zur Anpassung von 3-Photonen Ereignissen an eine Ebene.

Anschließend werden die Vierervektoren der Photonen bestimmt; die drei Massenkombinationen von je 2 Photonen findet man dann folgendermaßen:

Man definiert eine Konstante K: $K = \frac{K_i}{\sin \theta_i} \quad \begin{array}{l} K_i = \text{Impuls des i-ten Photons} \\ \theta_i = \text{Öffnungswinkel der} \\ \text{anderen beiden Photonen} \end{array}$

für die Schwerpunktsenergie W gilt dann:

$$W = K_1 + K_2 + K_3 = K(\sin\theta_1 + \sin\theta_2 + \sin\theta_3)$$

somit erhält man: $K = W / \sum_{i=1}^{3} \sin \Theta_i$

und damit die invarianten Massenkombinationen:

x.**B**.:
$$m_{12} = W^2 - 2WK_3 = W(W - 2K_3)$$

Es wird verlangt, daß genau 3 Photonen im Innendetektor nachgewiesen werden.

Als Photon wird nur dann eine Spur erkannt, wenn in dem betreffenden Oktanten keine 1 S- und 2 S-Zähler angesprochen haben und keine Proportionalkammerebenen gesetzt sind.

Abb. 46 Öffnungsverteilung Θ_1 der Photonen vom π° -Zerfall. Die Verteilung besitzt ein ausgeprägtes Maximum bei 10°. Die Monte-Carlo Rechnung zeigt, daß der Schnitt 5.- $\Theta_1 = 30^{\circ}$ keine guten Ereignisse verwirft.

Da die Photonen aus dem π^{0} -Zerfall (Abb 46) Öffnungswinkel kleiner als 20 Grad bilden (98%), wurde verlangt, daß die Richtungen von zwei Photonen auf einen Oktanten zeigen. Damit werden Mißinterpretationen durch Einzelphotonen, deren Schauer sich auf zwei Oktanten erstreckt und von den Spursuchroutinen als zwei Photonen registriert wird, ausgeschlossen. Als Koplanaritätskriterium wurde bei der Analyse verlangt, daß die Summe aller Öffnungswinkel $>359^{\circ}$ ist.

Abb. 47 Summe der drei Öffnungswinkel aus Monte-Carlo-Simulationen des Strahlungszerfalls $J/\psi \rightarrow \pi^0 \gamma$. Bei der Datenselektion wurde später verlangt:

$$\Sigma_{\Theta_1} \ge 359$$
 Grad.

Aus der Abb. 47 ist zu entnehmen, daß durch diese Bedingung etwa 10% von guten Ereignissen verloren gehen. Ein großer Teil des Untergrundes wird durch die Reaktion $e^+e^- \rightarrow \gamma \gamma$ hervorgerufen, wobei die Spursuche aus einem Schauer zwei Spuren macht. Die Richtung des einen Schauers wird dann durch den wirklichen Konversionspunkt des Photons bestimmt, der andere Schauer stellt einen kleineren separaten Sekundärschauer dar. Dadurch hat diese Ereignisklasse eine klare Signatur, nämlich einen maximalen Öffnungswinkel von nahezu 180° . Solche Ereignisse werden durch die Forderung, daß der größte der drei Öffnungswinkel eines Ereignisses < 178[°] sein muß, abgetrennt.

Mit Hilfe des Monte-Carlo-Programms wurde die zu erwartende Massenauflösung (Abb. 48) nach diesen Schnitten für das π^{0} geprüft; das Sigma einer an die Verteilung angepaßten Gausskurve beträgt 17 MeV/c².

Abb. 48 Invariante minimale Masse von 2 Photonen aus $J/\psi \longrightarrow \pi^0 \gamma \longrightarrow \gamma \gamma \gamma$. Die Auflösung für die π^0 -Masse beträgt 17 MeV/c². (Monte-Carlo Rechnung)

Die Nachweiswahrscheinlichkeit des Detektors von Photonen mit einem Öffnungswinkel von ungefähr 10[°] wurde außerdem anhand der Reaktion $J/\psi \rightarrow \pi^{\circ} \rho^{\circ}$ untersucht. Die Datenselektion der Ereignisse, deren χ^2 aus dem Ebenenfit in der Abb. 49 gezeigt ist, wird in der folgenden Tabelle noch einmal kurz zusammengefaßt:

Abb. 49 χ ²-Verteilung aus dem Ebenenfit nach der im Text beschriebenen Datenselektion.

Die Monte-Carlo Rechnung zeigte, daß 3 Photonen-Endzustände zu 95% ein $\chi^2 < 3$ haben. Es wurde ein loser Schnitt von $\chi^2 < 5$ gewählt und zusätzlich die Summe der 3 Öffnungswinkel von den übriggebliebenen Ereignissen betrachtet (Abb. 50).

Abb. 50 Summe der Öffnungswinkel. Bilden die 3 Konversionspunkte mit den WWP keine Ebene, so wird die Winkelsumme kleiner als 360° . Schnitt: $\theta_{\text{SUM}} \ge 359^{\circ}$

Nicht koplanare 3-Photonenereignisse haben Öffnungswinkelsummen von kleiner als 360°. Solche Ereignisse stammen von Reaktionen mit mehr als 3 Teilchen im Endzustand, von denen nur 3 Photonen in die Akzeptanz des Detektors fallen. Als nächstes soll Abb. 51 diskutiert werden, in der für alle übriggebliebenen Ereignisse der jeweils größte der drei Öffnungswinkel aufgetragen ist. Es ist (trotz des Maßstabes) eine deutliche Anhäufung zwischen 178 und 180 Grad zu erkennen. Diese Ereignisse stammen von den schon erwähnten mißinterpretierten 2-Photon-Endzuständen und werden durch die Bedingung: $\theta_{max} < 178^{\circ}$ abgetrennt.

MAXIMALER DEFENUNGSWINKEL

Abb. 51 θ_3 -Verteilung. Ereignisse mit $\theta_3 < 178^\circ$ können durch falsch interpretierte 2-Photonenendzustände verursacht werden.

Von den 30 verbleibenden Ereignissen ist die minimale invariante 2-Photonenmasse in Abb. 52 aufgetragen. Es ist eine Anhäufung von Ereignissen mit Massen zwischen 100 und 200 MeV/c² zu erkennen. Der genaue Verlauf des Untergrundes ist schwer abzuschätzen.

Abb. 52 Minimale invariante 2-Photonenmasse nach allen im Text beschriebenen Schnitten. Die eingezeichnete Gausskurve gibt die erwartete π^{0} -Massenauflösung wieder.

Von der QED-Reaktion $e^+e^- \rightarrow \gamma\gamma\gamma$ werden für die insgesamt genommene Luminosität nur 3 Ereignisse erwartet. Die durchgezogene Linie gibt eine Gaussverteilung mit der erwarteten π° -Massenauflösung wieder auf einem gleichmäßig verteilten Untergrund von 1.3 Ereignissen pro 20 MeV/c² Intervall.

Die Frage in wieweit Massenauflösung, Selektionskriterien und Detektoreigenschaften ein π° -Signal simulieren können, wurde an Hand der bei einer Schwerpunktsenergie von 3.6 GeV genommenen Daten untersucht. Die bei 3.6 GeV genommene Luminosität ist etwa halb so groß wie die bei 3.1 GeV. Die mit denselben Kriterien erzielten Ergebnisse sind in den Abb. 53-55 dargestellt.

Es bleiben 7 Ereignisse übrig; Es ist keine Anhäufung von Ereignissenin der Nähe der no-Masse zu erkennen.

CHIXX2 VEELE UNG

Zur Bestimmung der Zerfallsbreite wurden die Machweiswahrscheinlichkeiten für die Reaktion $J/\psi \longrightarrow \pi^{o} \gamma$ aus dem Monte-Carlo-Programm genommen. Die Triggeransprechwahrscheinlichkeit von 54% ist im wesentlichen bestimmt von der geometrischen akzeptanz (.7 · 4 π) und dem Triggerbedingungen (Kap. III.3).

Nachweiswahrscheinlichkeiten und Verzwei	gungsverhältnis
für $J/\psi \longrightarrow \pi^{0}\gamma$;	
Triggeransprechwahrscheinlichkeit	.54
3 Photonen im Detektor nachgewiesen	.32
2 Photonen in einem Oktanten	.995
$\sum_{i=1}^{3} \Theta_{i} > 359 \text{ Grad}$.92
$5^{\circ} < \theta_{1}^{\circ} < 30^{\circ}$ (kleinster Öffnungswinkel)	.98
θ ₃ < 178 ⁰	.75
Spurrekonstruktion	.80
Zeitdifferenzschnitte	.94
Ansprechverluste des Detektors	.90
totale Nachweiswahrscheinlichkeit (ɛ): Anzahl der Ereignisse für 100-M-200 Ma	.0787
Intergrund	: 9
$\frac{\Gamma_{(\psi \to \pi^{\circ} \gamma)}}{\Gamma_{(\psi \to \alpha 1)}} = \frac{\aleph_{\psi \to \pi^{\circ} \gamma}}{\varepsilon_{\pi^{\circ} \gamma} \cdot \aleph_{\psi}^{*}} = \frac{9}{.0787 \cdot 1.56 \cdot 10^{5}}$	(.73 ±.41) 10 ⁻⁴
* zur Bestimmung von N _{ψ} vergleiche Anhar und mit $\Gamma(\psi \rightarrow all) = 69$ keV ergibt si $\Gamma(\psi \rightarrow \pi^{\circ}\gamma) = (.73 \pm .41) * 10^{-4} * 6$	hg A.2.3. ich 59 keV = (5.1 ± 2.8)

- 74 -

VII.2. J/ Ф → Л Y → Y Y Y

Die Auswahlkriterien für diese Reaktion sind denen, die für die Suche nach $J/\psi \rightarrow \pi^2 \gamma$ angewandt wurden, sehr ähnlich. Auf Grund des minimal möglichen Öffnungswinkels von 40° und einer Winkelauflösung von ± 1° wurden die Ereignisse untersucht, bei denen alle Öffnungswinkel größer als 35° waren (Abb. 56).

MINIMALER WINKEL ZOROD

Abb. 56 Öffnungswinkelverteilung der η -Zerfallsphotonen (Monte-Carlo). Bei der Datenselektion wurde ein minimaler Öffnungswinkel von 35 Grad verlangt.

Da die Wahrscheinlichkeit, daß der Schauer eines γ -Quants von 1.5 GeV zwei Schauer mit einem Öffnungswinkel von größer als 20 Grad simuliert, äußerst gering ist, stammt der Hauptteil des Untergrundes nicht aus 2-Photonen-Ereignissen, sondern von der QED-Reaktion e⁺e⁻ $\rightarrow \gamma\gamma\gamma$. - 75 -

Bestimmt man für diese Reaktion ($\sigma = .489$ nb für W = 3.1 GeV) die minimale invariante Masse aus 2 Photonen, so ergibt sich in dem betrachteten Massenintervall von 300 bis 800 MeV/c² die in Abb. 60 flache schraffiert gezeichnete Massenverteilung. Die Daten, die ebenfalls in Abb. 60 eingetragen sind, lassen einen deutlichen Exzeß von Ereignissen an der Stelle der 🐧 -Masse erkennen, dessen Breite mit der von der M.-C. Rechnung erwarteten ($\sigma = 15 \text{ MeV/c}^2$, Abb. 59) übereinstimmt. Die Anzahl von Ereignissen außerhalb dieses Bereiches kann allein durch den QED-Prozeß $e^+e^- \rightarrow \gamma \gamma \gamma$ nicht erklärt werden. Der Überschuß wird auf Reflektionen vom X^O (Masse = 2.83 GeV/c^2) zurückgeführt (Ref. 18). In dem Bereich von 500-600 MeV/c² wurden 36 Ereignisse über einem Untergrund von ~8 gefunden. Mit den nachstehenden Nachweiswahrscheinlichkeiten kann das Verzweigungsverhältnis gefunden werden:

Triggeransprechwahrscheinlichkeit	.358
3 Photonen im Detektor nachgewiesen	.265
$\sum_{i=1}^{2} \Theta_i > 359 \text{ Grad}$.987
$\Theta_1 > 35$ Grad	•995
$\Theta_3 < 178$ Grad	.984
Spurrekonstruktion	.80
Zeitdifferenzschnitte	.94
Ansprechverluste des Detektors	.90
Verzweigungsverhältnis ٦→ΥΥ	.38

Abb. 58 Summe der Öffnungswinkel der 3 γ -Daten mit einem minimalen Öffnungswinkel \Rightarrow 35°. (Schnitt: > 359°)

Abb. 59 Minimale Massenverteilung für die Zerfallsphotonen aus $J/\psi \rightarrow \eta \gamma$ vom M.-C. Programm.

Abb. 60 Minimale $\gamma\gamma$ - Massenverteilung der 3-Photonen-Daten. Es ist ein deutliches η -Signal zu erkennen. Der schraffierte Anteil stammt von der QED-Reaktion e⁺e⁻ $\rightarrow \gamma\gamma\gamma$.

Т

Anzahl von Ereignissen für
$$500 < M < 600 \text{ MeV/c}^2$$
: 36
Untergrund : 8

$$\frac{\Gamma(\psi - \eta \gamma)}{\Gamma(\psi \rightarrow \mathfrak{all})} = \frac{28}{.0236 \times 1.56 \times 10^6} = (.76 \pm .14) \times 10^{-3}$$
und $\Gamma(\phi \rightarrow \eta \gamma) = (.76 \pm .14) \times 10^{-3} \times 69 \text{ keV} = (52.4 \pm 10) \text{eV}$

- 76 -

- 79 -

VII.3. $J/\psi \rightarrow \eta' \gamma \rightarrow \gamma \gamma \gamma$

Das Verzweigungsverhältnis für $\eta \to \gamma \gamma$ beträgt nur (2 ± 0.3)%. Der minimale öffnungswinkel liegt bei 67°; im Vergleich mit den Zerfällen $\psi \to \pi^{*}\gamma$ und $\psi \to \eta \gamma$ ist die Winkelverteilung sehr viel flacher. Dieses Verhalten hat zur Folge, daß alle $\eta'\gamma$ Ereignisse mit einem Öffnungswinkel der Zerfallsphotonen des η' größer als 96° (78%) falsch interpretiert werden. Denn dann ist der Winkel eines Zerfallsphotons mit dem Rückstoßphoton kleiner als der Öffnungswinkel und es wird bei der Berechnung der minimalen Masse die falsche Photonenkombination gewählt:

Anzahl von Ereignissen

Daher werden bei der Simulation der Reaktion auch Öffnungswinkel kleiner als 78⁰ (Abb. 61) und in der Massenverteilung ein dah in zu kleinen Massen festgestellt werden (Abb. 61). Das Verzweigungsverhältnis, abgeleitet aus den 7 Ereignissen, die zwischen 900 und 1000 MeV/c² beobachtet wurden, ist aus der nachfolgenden Tabelle zu ersehen.

<u>→ ή΄γ</u>
.274
.45
•997
.923
1.
.8
.94
.9
.02
.0015
7
1.8
22 ± .84) * 10 ⁻³

Г

ANZAHL/15 MEV/CXX2

In den Abb.61 und 62 sind Monte Carlo Ergebnisse für die Zerfalls= photonen des ¶ dargestellt.

- VIII Zusammenfassung und Diskussion der Daten:
- VIII.1. e⁺e⁻- und YY-Endzustände

Die für die betrachteten Zerfälle bestimmten Verzweigungsverhältnisse sind aus der nachstehenden Tabelle zu entnehmen:

Zerfallskanal f	Γ _f /Γt	ot	۲ _f	
J/ψ → e ⁺ e ⁻	7.14	• 10 ⁻²	4.93	(keV)
ψ	1.07	* 10 ⁻²	2.43	
				(eV)
J/ψ ─→ ץץ	~ 7.8	* 10 ⁻⁵	< 5.4	
ψ'• γγ	~ 1.9	* 10 ⁻⁴	< 43.	

$$\Gamma (J/\psi \rightarrow all) = 69 \text{ keV (Ref. 12)}$$

$$\Gamma (J/\psi \rightarrow all) = 228 \text{ keV (Ref. 15)}$$

Die Ergebnisse der Reaktion $J/\psi \rightarrow e^+e^-$ sind innerhalb der angegebenen Fehlergrenzen in guter Übereinstimmung mit Ref. 12.

Wenn der im folgenden abgebildete Graph den Prozeß

beschreibt, erwartet man gleichgroße Zerfallsbreiten für e⁺e⁻- und $\mu^+ \mu^-$ -Endzustände. Ein Vergleich der in dieser Arbeit beschriebenen Ergebnisse mit Ref. 12 und 15 unterstreicht die e- μ -Universalität. Aus der Tatsache $\lceil (\psi^{i} \rightarrow e^{+}e^{-}) < \lceil (\psi \rightarrow e^{+}e^{-})$ kann man schließen, daß die ψ^{i} -Resonanz angeregt ist. Da mit dem DASP-Innendetektor das Ladungsvorzeichen der Endzustände nicht bestimmt werden kann und der ausnutzbare Polarwinkelbereich nur 80° betrug, sind Winkelabhängigkeiten nur erschwert zu untersuchen.

Die Ergebnisse der 2-Photonenendzustände für Schwerpunktsenergien der Resonanz lassen den Schluß zu, daß beide Resonanzen nicht in 2 Photonen zerfallen und sichern damit die Festlegung des Spins (= 1) beider Resonanzen. Der Zerfall eines Spin = 1 Teilchens in 2 Photonen ist durch Eichinvarianz und Bose-Statistik verboten.

VIII.2. Strahlungszerfälle der J/4 -Resonanz in pseudoskalare Mesonon

In der nachfolgenden Tabelle sind die Verzweigungsverhältnisse der in dieser Arbeit untersuchten Strahlungszerfälle im Vergleich mit dem hadronischen Zerfall $J/\psi \rightarrow \pi^0 \rho^0$ aufgeführt:

Zerfallskanal f	^Γ f/ ^Γ tot		「ſ (eV)
π°γ	(.73 ± .4	I)* 10 ⁻⁴	5.1 ± 2.8
ηγ	(.76 ± .14)* 10 ⁻³	52.4 ± 10.
) ท ั ¥	(2.2 ± .8)	* 10 ⁻³	153.0 ± 58
η'γ *(Ref.21)	(2.2 ± .17	')* 10 ⁻³	152.0 <u>+</u> 12.
π°ρ° (Ref.21)	(4.3 + .24	•)* 10 ⁻³	297.0 ± 16.7
Γ(η'γ) / Γ(ηγ)≊2.9		Γ(π°р°)/Γ(η'γ) ≊1.9

* aus dem Zerfall
$$J/\psi \rightarrow \eta^{*}\gamma \rightarrow \rho^{0}\gamma\gamma \rightarrow \pi^{+}\pi^{-}\gamma\gamma$$

 $\Gamma_{tot} = 69 \text{ keV} (\text{Ref. 12})$

In der SU(3) Klassifikation kommt man zu folgenden drei Basiszuständen für $I_3 = 0$ und S = 0 im Mesonennonett:

$$\tau^{0} = \frac{1}{2} (n\overline{n} - p\overline{p}) \qquad I = 1$$

$$r_{18} = \frac{1}{2} (n\overline{n} + p\overline{p} - 2\sqrt{3}) \qquad I = 0$$

$$r_{11} = \frac{1}{3} (n\overline{n} + p\overline{p} + \lambda\overline{\lambda}) \qquad I = 0$$

ntor los and laß die boolantitten **¶ - und ¶** Leopher als finglet - ind basestanteilen gemischte Teilchen sini,gela gt man zu der barstast g:

$$r_i' = r_{lg} \sin \theta + \eta' \cos \theta$$

mit einem experimentell bestimmten Mischungswinkel von $\Theta \approx 10^{\circ}$.

Wird die J/ ψ Resonanz im Charm-Modell durch einen cc-Zustand beschrieben, so sind ihre Strahlungszerfälle durch die zwei nachfolgenden Graphen zu beschreiben:

(b)

Im ersten Teil kann das Photon wegen Isospinerhaltung nur an den Oktettanteil des q \tilde{q} -Systems über 3-Gluonen-Austausch koppeln.

Werden π , η und η' durch ihre Quark-Wellenfunktion ausgedrückt und berücksichtigt man eine Proportionalität der $\gamma - q$ Kopplung zur Quarkladung, dann kann das Verhältnis zwischen den Strahlungszerfällen abgeschätzt werden, wobei Phasenraumkorrekturen vernachlässigt werden.

$$\Gamma({}^{3}S_{1} \rightarrow \gamma \pi^{0}) \sim |\frac{1}{\sqrt{2}} (\frac{2}{3} + \frac{1}{3})|^{2} = \frac{1}{2}$$

$$\Gamma({}^{3}S_{1} \rightarrow \gamma \pi) \sim \cos^{2}\theta |\frac{1}{\sqrt{6}} (2(-\frac{1}{3}) - (\frac{2}{3} - \frac{1}{3}))|^{2} = \cos^{2}\theta + \frac{1}{6}$$

$$\Gamma({}^{3}S_{1} \rightarrow \gamma \pi^{1}) \sim \sin^{2}\theta |\frac{1}{\sqrt{6}} (2(-\frac{1}{3}) - (\frac{2}{3} - \frac{1}{3}))|^{2} = \sin^{2}\theta + \frac{1}{6}$$

$$\text{und damit} \quad \Gamma(\pi^{0}\gamma) : \Gamma(\pi\gamma) : (\pi^{1}\gamma) = 3 : \cos^{2}\theta : \sin^{2}\theta$$

$$\frac{1}{6} = 3 : .97 : .03$$

Dieses Resultat steht im Widerspruch zur den Messungen, wo eine starke Unterdrückung des $J/\psi \rightarrow \pi^{0}\gamma$ Zerfalls im Vergleich mit den anderen beiden Zerfällen festgestellt wurde. Das Verhältnis von $\Gamma(n\gamma)$: $\Gamma(n'\gamma)$ ist ebenfalls um Größenordnungen falsch.

Im zweiten Fall wird das Photon von einem c-Quark emittiert. Da das cc-System ein Singlett bildet, muß auch (Isospinerhaltung) das $q\bar{q}$ -System ein Singlettzustand sein. Daraus folgt für Graph B: $\Gamma(\pi^{e}\gamma) = 0$ und insgesamt:

$$\Gamma(\pi^{0}\gamma)$$
 : $\Gamma(\eta\gamma)$: $\Gamma(\eta^{1}\gamma) = 0$: $\sin^{2}\theta$: $\cos^{2}\theta$

Abgesehen davon, daß dieser Graph den Zerfall $J/\psi \rightarrow \pi^0 \gamma$ unterdrückt, wird das Verzweigungsverhältnis für die anderen Zerfälle ebenfalls nicht richtig wiedergegeben:

 $\frac{\Gamma(\eta\gamma)}{\Gamma(\eta'\gamma)} = \frac{.03}{.97}$ (Daten: 1/3)

- 85 -

Als mögliche Erklärung für diese Diskrepanzen könnten folgende Modifikationen herangezogen werden:

- 1. J/ψ ist kein reines cč Singlett
- Die Kopplung cc q q hängt stark von der Masse der Mesonen ab.
- 3. η und η' haben einen Anteil von schweren c-Quarks.

Die Konsequenzen, die sich aus der dritten Möglichkeit ergeben, sollen näher diskutiert werden (Ref. 22): Es wird angenommen, daß η und η' einen $\eta_c = c\bar{c}$ -Anteil haben. Die Größe dieses Anteils wird wieder durch einen Mischungswinkel α (bzw. β für η')charakterisiert:

- $\eta = \eta_{\rm R}\cos\theta + \eta_{\rm I}^{\dagger}\sin\theta \cos \theta + \eta_{\rm C}^{\dagger}\sin\theta$
- $\eta' = -\eta_8 \sin\theta + \eta_1^2 \cos\theta \cos\beta + \eta_8 \sin\beta$

In diesem Fall erlaubt die OZI-Regel (Ref. 23-25) den Zerfall der Resonanzen in pseudoskalare Hesonen:

Das Verhältnis der Mischungswinkel findet man unter Berücksichtigung der experimentell gemessenen Verzweigungsverhältnisse und der Phasenräume $\sim P^{+3}$:

$$\frac{\sin^2 \beta}{\sin^2 \alpha} = \frac{\Gamma(\eta^{\dagger} \gamma) P_{\eta}^3}{\Gamma(\eta \gamma) P_{\eta^{\dagger}}^3} = 3.56$$

mit
$$\frac{\Gamma(\eta^{\dagger} \gamma)}{\Gamma(\eta \gamma)} = 2.9 \text{ und } \frac{P_{\eta}^3}{P_{\eta^{\dagger}}^3} = \frac{1.493^3}{1.397^3}$$

Anhang A1.1 Angaben zu Szintillationszählern

Material: NE 110 (Nuclear Enterprise)

Abmessungen: (Alle Angaben in Millimetern)

Bezeichnung	Breite	Länge	Dicke	Anzahl	Entfernung der Lage vom WWP
2 S	199	786		32	392
2 SV	60	668		8	232
3 S	300	912		24	468
3 SV	120	419		8	292
4 S	257	1014		32	531
4 SV	120	504	10	8	352
5 S	282	1144		32	595
5 SV	240	589		4	412
65	310.5	1450		32(256) 737
6 SV	240	826		4(32)	472

Die Entfernung der Seitenlängen vom WWP ist durch das Auffahren der Magnete nur auf einige mm reproduzierbar; deshalb werden die Seitendetektoren mit kosmischer Strahlung justiert.

Anhang A1.2 Angaben zu Proportionalkammern und

-rohren	

<u>Geometrie der</u> <u>Kammern</u>	Proportionalkammern	<u>Rohrkammern</u>
Empfindliche Fläche	1030 x 800 mm ²	Seiten:(mm) Vertikal
	(für y- und z-Ebene)	R1:870x1594 220x760
		R2:990x1975 220x964
Signaldraht- abstand	2 mm	R3:1045x2127 220x1124
Hochspannungs- drahtabstand	1 mm	R4:1150x2425 220x1284
Abstand HV- Signalebene	6.5 mm	Rohre: Ø 10(15) mm
Hochspannungs- drähte Q	100 µ Cu-Be	Wandstärke .25 mm Material Messing
Signaldrähte:		
Material Q	20 µ	30μ Wolfram, vergoldet
Spannung	55 gr	50 gr
Betriebsparamet	er:	
Gas	64% Argon	$CH_{L}/CO_{2} = 1/1$
	18% CH ₁	4% Methylalbeimischung
	18% CO2	
Hochspannung	4.1 kV	3.1 kV für 1 cm Ø
		3.3 kV für 1.5 cm Ø
Plateau	3.9 - 4.4 kV	2.9 - 3.4 kV
Anzahl von Kanälen	5328	6088

Das Prinzipschaltbild der verwendeten Vor- und Hauptverstärker ist in Abb. 67 dargestellt. Der Verstärkungsfaktor beider Stufen beträgt ungefähr 6. Die Schwelle ist auf 13mV eingestellt.

Hauptverstärker

Elektronik für Proportionalkammern und ~ rohre : Abb. 67

I

- 89

Anhang A.2. Strahlungskorrekturen

Das Kapitel gliedert sich in drei Hauptabschnitte. In den ersten beiden Teilen werden Strahlungskorrekturen für Bhabhastreuung in Anwesenheit einer Resonanz und für die Reaktion $e^+e^- \rightarrow \gamma \gamma$ diskutiert, im dritten Abschnitt soll ein Verfahren besprochen werden, welches nur die in allen Zerfallskanälen gemeinsamen Strahlungskorrekturen im e^+e^- -Anfangszustand berücksichtigt und immer dann angewendet werden kann, wenn nur wenige Ereignisse des untersuchten Endzustandes gefunden worden sind.

Anhang A2.1 <u>Strahlungskorrekturen für</u> <u>Bhabhastreuung</u>

Will man den experimentell mit einer Genauigkeit von einigen Prozent gemessenen Wirkungsquerschnitt von

e⁺e[−] → e⁺e[−]

mit den von der Theorie her erwarteten QED-Werten vergleichen, so muß der QED-Wirkungsquerschnitt bis zu einer Ordnung von a 3 berechnet werden.

Dazu müssen virtuelle Korrekturen und die Bremsstrahlungsreaktion $e^+e^- \longrightarrow e^+e^- \gamma$.

- 1. max. erlaubter Akollinearitätswinkel von Elektronen- und Positronenrichtung im Endzustand $\zeta < 6^{\circ}$.
- Die Energie von e⁺ und e⁻ müssen größer als 750 MeV sein.

Bezeichnetman mit $\frac{d\sigma}{d\Omega}$ den bis zu Termen von α^3 korrigierten und mit $\frac{d\sigma}{d\Omega}$ den differentiellen Bhabhawirkungsquerschnitt ohne Strahlungskorrekturen, so lassen sich alle Korrekturen in einem Term δ_{τ} zusammenfassen:

$$\frac{d\sigma}{d\Omega} = \frac{d\sigma}{d\Omega} (1 + \delta_{\rm T})$$

Da die Unterscheidung zwischen Elektron und Positron nicht möglich war, wird für einen Polarwinkel Θ die Addition der beiden Anteile:

$$\frac{d\sigma(\Theta)}{d\phi} = \frac{d\sigma(\Theta)}{d\phi} + \frac{d\sigma(\neg -\Theta)}{d\phi}$$

- 94 -

gemessen und der differentielle Wirkungsquerschnitt wird symmetrisch zu $\theta = 90^{\circ}$:

	$\frac{d\sigma}{d\varphi}$ ($\Delta \Theta$) $/ \frac{nb}{ster}$.		
$\Delta \Theta = \Theta_2^- \Theta_1$	W = 3090 MeV	<u>= 3680 MeV</u>	
10 - 20	396	283	
20 - 30	68	49	
30 - 40	22	15	
40 - 50	9.1	6.4	
50 - 60	4.5	3.2	
60 - 70	2.6	1.8	
70 - 80	1.7	1.2	
80 - 90	1.3	.95	

Bhabhastreuung in Anwesenheit einer Resonanz:

Den Berechnungen liegt ein Programm von Berends und Komen (Ref. 27) zu Grunde. An dieser Stelle sollen nur einige wichtige Auswirkungen der Strahlungskorrekturen diskutiert werden.

Der Wirkungsquerschnitt für Bhabhastreuung unter Berücksichtigung einer Resonanz im s-Kanal läßt sich schreiben:

$$\frac{d\sigma_{o}}{d\Omega} = \frac{\alpha^{2}}{s\chi^{2}} - \frac{1}{2}(2-2\chi+\chi^{2})+\frac{1}{2}\chi^{2}(1-2\chi+2\chi^{2})|R|^{2}-\chi(1-\chi)^{2}ReR$$

$$|R|^{2}=1+2Re|B(s)+|B(s)| - B(s)=\frac{\beta s}{s-M^{2}+iM\Gamma}$$

$$Re|R|=1 + Re|B(s)$$

$$\chi = \sin^{2}\frac{\theta}{2}$$

$$s = 2E^{2}, E = Strahlenergie$$

$$M = Resonanzmasse$$

Der erste Term ist der t-Kanal, der zweite der s-Kanal Beitrag und der dritte stellt die Interferenz zwischen s- und t-Kanal dar.

Alle Strahlungskorrekturen werden wieder in einem Faktor δ_{T} zusammengefaßt, so daß sich für den zu korrigierenden Wirkungsquerschnitt die Beziehung:

$$\frac{\mathrm{d}\sigma}{\mathrm{d}\Omega} \simeq \frac{\mathrm{d}\sigma_{\mathrm{o}}}{\mathrm{d}\Omega} (1 + \delta_{\mathrm{T}})$$

ergibt.

Die Abhängigkeit dieser Korrektur von Energie und Streuwinkel Θ ist in Abb. 68 dargestellt.

Danach bewirkt die Strahlungskorrektur eine starke Interferenzstruktur in der Nähe der Resonanz.

Strahlungskorrektur für Bhabhastreuung+Resonanz

- 96 -

Diese destruktive bzw. konstruktive Interferenz bewirkt in der Winkelabhängigkeit des Resonanzwirkungsquerschnittes ein völliges Verschwinden der eigentlichen $1 + \cos^2 \theta$ Abhängigkeit (Abb. 69).

Deshalb mußte die gemessene Winkelverteilung auf der Resonanz mit der strahlungskorrigierten Verteilung innerhalb von $50^{\circ} = 0 = 130^{\circ}$ verglichen werden. Bei der Extrapolation auf den ganzen Raumwinkel wurde ebenfalls die strahlungskorrigierte Form benutzt.

Zur Anpassung an die Daten (Kap. V.2., Abb. 32) war es erforderlich, die Resonanzkurve mit einer Gaussverteilung der Strahlenergie (σ_F = .48 MeV) zu falten.

Der differentielle Wirkungsquerschnitt in niedrigster Ordnung von a für den Prozeß $e^+e^- \rightarrow \gamma \gamma$ läßt sich folgendermaßen schreiben:

$$\frac{d\sigma^{0}}{dt} = \frac{r^{2}}{sB} \left[\frac{1+\beta^{2}(1+\sin^{2}\theta)}{1-\beta^{2}\cos^{2}\theta} - \frac{2\beta^{4}\sin^{4}\theta}{(1-\beta^{2}\cos^{2}\theta)^{2}} \right]$$

Für die Strahlungskorrekturen werden zusätzlich der Einfluß der Graphen (Ref. 28) (virtuell)

und der Prozeß e⁺e⁻ --- 3 y berücksichtigt:

Für einen maximalen Akollinearitätswinkel von 6° und einer max. Photonenergie von 750 MeV kommt man für die Resonanzenergien zu folgenden Ergebnissen:

- 100 -

0 - 0	_dor		Δθ = 50°-130°	
1 2	E = 154	5 1840 MeV	E/GeV	<u>d or</u> d o
40 - 50	.74	.52	1.0	4.58
50 - 60	.56	• 39	1.5	1.83
60 - 70	.44	.31	2.0	1.15
70 - 80	. 38	.26	2.5	.73
80 - 90	.35	.24	3.0	.51
			3.5	.37

Anhang A.2.3. <u>Strahlungskorrekturen für die Bestimmung</u> <u>der Anzahl der produzierten Resonanz-</u> <u>teilchen</u>

Hat man bei der Untersuchung eines Zerfallskanals $N(\psi \rightarrow f)$ Ereignisse gefunden und kennt die Nachweiswahrscheinlichkeit η ($\psi \rightarrow f$) für diesen Prozeß im Detektor, kann man das Verzweigungsverhältnis unter Benutzung der Anzahl der produzierten ψ 's : N_{dt} wie folgt angeben:

$$\frac{\Gamma(\psi \to f)}{\Gamma(\psi \to all)} = \frac{N(\psi \to f)}{\eta(\psi \to f) \cdot N}$$

 N_{ψ} wird bestimmt über das Faltungsintegral des strahlungskorrigierten Resonanzwirkungsquerschnittes $\sigma_{\psi rc}$ (E) mit der Strahlenergieverteilung $\Gamma(E,E_{o})$ und wird schließlich über alle Strahlungsenergiesetzungen (E_{oi}) mit der Luminosität gewichtet summiert:

$$N_{\psi} = \Sigma \qquad L_{i} \qquad \int_{dE} dE \cdot \Gamma(E_{j}E_{oi}) c_{\psi}rc(E)$$

Läufe i Resonanz

L_i = über einen Lauf summierte Luminosität gemessen von dem Luminositätsmonitor

$$\Gamma(E_{1}E_{oi}) = \frac{1}{\sqrt{2\tau^{1}c}} \exp\left[\frac{1}{2}\left(\frac{E-E_{oi}}{c}\right)^{2}\right]$$

angenommene Gaussverteilung der Strahlenergie mit dem Sollwert E_{oi} und der Breite σ , die über multihadronische Zerfälle der Resonanz ermittelt wird.

k = Energie eines emittierten Photons

strahlungskorrigierter Resonanzwirkungsquerschnitt mit:

$$\sigma_{\psi}(E) = \frac{12r M_{\psi}^{2} \Gamma_{all} \Gamma_{ee}}{E^{2} (E^{2}-M_{\chi}^{2})^{2} + \Gamma_{all}^{2}M_{\psi}^{2}} \qquad M = \text{Resonanzmasse}$$

$$\Gamma_{all} = \text{totale Breite}$$

$$\Gamma_{ee} = \text{Breite für } e^{+e^{2}}$$

λ(k): Wahrscheinlichkeit, daß ein Elektron im Anfangszustand ein Photon der Energie k abstrahlt (Ref. 29, 30)

$$\lambda(k) = \frac{\lambda A}{k} \left[\frac{2k}{M_{\downarrow}} \right]^{\Delta A} \cdot \left[1 + \frac{13}{12} \alpha A + \frac{\alpha}{\pi} \left(\frac{\pi^2}{3} - \frac{17}{18} \right) \right]$$

 $A = \frac{2}{r} \left[2 \ln \left(\frac{M_{j}}{M_{e}} \right) - 1 \right]$ $A = 7.63 \cdot 10^{-2}$

Die so erhaltenen N ψ - bzw N ψ '-Verteilungen sind in Abhängigkeit von der nominellen Schwerpunktsenergie zusammen mit der Luminosi= tätsverteilung in Abb. 70 dargestellt. Die Anzahl der produzierten ψ -Teilchen betrug 1.56x 0⁶.

In Abb. 7 sind die strahlungskorrigierten Resonanzkurven zum Vergleich mit den Strahlenergieverteilungen gezeigt.

Für das ψ - und ψ '-Teilchen sind jeweils die strahlungskorrigierten Resonanzkurven und die Strahlenergieverteilungen gezeigt.

Luminositäts- und N_U-Verteilungen für die Daten bei 3.1 und 3.7 GeV

Liste der Abbildungen:

- 1. Beschleunigeranlage von DESY
- 2. Abnahme von Strahlströmen und Luminosität nach einer Füllung
- 3. Wechselwirkungspunktkoordinaten Y, Z für X = 0
- 4. Innendetektor, Schnitt senkrecht zur Strahlachse durch den WWP
- 5. Innendetektor, horizontaler Schnitt in Höhe der Strahlen
- 6. Aufbau eines Moduls
- 7. Bezeichnung von Szintillationszählern und Rohrkammern
- 8. Strahlrohr
- 9. Luminositätsmonitor
- 10. Zählerelektronik
- 11. Innentrigger, Aufteilung des Detektors in Dodekanten
- 12. Aufbau der Proportionalkammern und -rohrauslese
- 13. Zeitdiagramm der Auslesesignale
- 14. Blockschaltbild der Einlese
- 15. Ansprechwahrscheinlichkeiten für Szintillationszählerlagen
- 16. Ansprechwahrscheinlichkeiten und Winkelabhängigkeit von Szintillationszählerkoinzidenzen
- 17. Ansprechwahrscheinlichkeiten für die Rohrkammern R1, R2, R3, R4
- 18. Ansprechwahrscheinlichkeiten und Winkelabhängigkeit von allen Rohrkammern zusammen.

- 19. Spurrekonstruktionswahrscheinlichkeit
- 20. Energieabhängigkeit der mittleren Anzahl der gesetzten Rohre pro angesprochener Ebene (ASPN)
- 21. Pulshöhenverteilung der Szintillationszähler: Σ (Sz + Sch)
- 22. Anzahl der gesetzten Rohre in Abhängigkeit der Photonenenergie
- 23. Linearität
- 24. Energieauflösungsvermögen
- 25. Luminosität gegen Energie
- 26. Bhabhawirkungsquerschnitt gegen Energie
- 27. Polarwinkel (Thela) in Grad für Bhabhastreuung bei W = 3.6 GeV
- 28. Akollinearitätswinkel für $e^+e^- e^+e^-$ bei W = 3.1 GeV
- 29. Im Detektor nachgewiesene Gesamtenergie für e^+e^- -Endzustände bei W = 3.1 GeV
- 30. Θ -Verteilung für e⁺e⁻-Endzustände bei W = 3.1 GeV
- 31. Zeitdifferenzspektrum für e⁺e⁻-Endzustände
 bei W = 3.1 GeV
- 32. Anregungskurve der J/ -Resonanz für e⁺e⁻-Endzustände
- 33. Winkelverteilung aller e^+e^- -Paare im Bereich der J/ ψ -Resonanz
- 34. Winkelverteilung aller e⁺e⁻-Paare für Schwer-Punktsenergien 3089.8≤W≤3090.2 MeV
- 35. Gesamtenergie für e⁺e⁻-Endzustände bei W = 3.7 GeV
- 36. Anregungskurve der u'-Resonanz für e⁺e⁻-Endzustände
- 37. Folarwinkelverteilung aller e⁺e⁻-Paare auf der ψ'-Resonanz
- 38. Gesamtenergieverteilung für e⁺e⁻→yy bei W = 3.1 GeV
- 39. Zeitdifferenz von vorselektierten Daten $(e^+e^- \rightarrow \gamma\gamma)$, W = 3.1 GeV)

- 40. Zeitdifferenz von endgültig selektierten Daten $(e^+e^- \rightarrow \gamma \gamma, W = 3.1 \text{ GeV})$
- 41. Polarwinkelverteilung für $e^+e^- \gamma \gamma$, W = 3.1 GeV
- 42. Energieabhängigkeit des Wirkungsquerschnittes für $e^+e^- \gamma \gamma$ bei W = 3.1 GeV

1

- 43. Polarwinkel
- 44. Energieabhängigkeit des Wirkungsquerschnittes für $e^+e^- \gamma \gamma$ bei W = 3.7 GeV
- 45. Skizzen zum Ebenenfit für 3 Photonenendzustände
- 46. Öffnungswinkelverteilung für $\pi^o{\to}\gamma\gamma$ aus dem Zerfall $J/\psi{\to}\pi^o\!\gamma$, Monte-Carlo
- 47. Summe der Öffnungswinkel für $J/\psi { \rightarrow } \pi^o \, \gamma$, Monte-Carlo
- 48. Minimale Massenverteilung aus $J/\psi \longrightarrow \pi^{\mathbf{o}} \gamma$, Monte-Carlo
- 49. χ^2 -Verteilung des Ebenenfit für 3 Photonenereignisse
- 50. Summe der Öffnungswinkel von 3 γ-Ereignissen
- 51. Verteilung des maximalen Öffnungswinkels für 3 γ -Ereignisse
- 52. Minimale Massenverteilung von 3-Photon Ereignissen
- 53. χ ²-Verteilung von 3 γ -Ereignissen bei W = 3.6 GeV
- 54. Maximale Öffnungswinkelverteilung der 3γ Ereignisse bei W = 3.6 GeV
- 55. Minimale Massenverteilung der 3.6 GeV Daten
- 56. Öffnungswinkelverteilung für $\eta \rightarrow \gamma \gamma$ aus der Reaktion $J/\psi \rightarrow \eta \gamma$, Monte-Carlo
- 57. Invariante minimale Masse für $J/\psi \rightarrow \eta \gamma \rightarrow \gamma \gamma \gamma$ aus Monte-Carlo
- 58. Summe der Öffnungswinkel für J/ $\psi \rightarrow \eta \gamma \rightarrow \gamma \gamma \gamma$
- 59. Minimale Massenverteilung von 3γ Ereignissen mit $\theta_{min} > 35^{\circ}$, Monte-Carlo
- 60. Minimale Massenverteilung von 3γ Ereignissen mit $\theta_{min} > 35^{\circ}$ Daten
- 61. Öffnungswinkelverteilung der Zerfallsphotonen von $J/\psi \rightarrow \eta \gamma$, Monte-Carlo

- 62. Invariante minimele Masse für J/ $\psi \rightarrow \eta' \gamma \rightarrow \gamma \gamma \gamma$ Monte-Carlo
- 63. Invariante minimale Masse für J/ $\psi \rightarrow \eta \gamma \rightarrow \gamma \gamma \gamma$ Deten
- 64. Strahlungszerfälle des J/ ψ -Zustandes im Charm-Modell
- 65. Aufbau der Proportionalrohre
- 66. Aufbau der Proportionalkammern
- 67. Vor- und Hauptverstärker der Proportionalrohreund Kammerelektronik
- 68. Strahlungskorrekturfaktor δ_{T} für Bhabhastreuung und Resonanz
- 69. Winkelabhängigkeit für $J/\psi \rightarrow e^+e^-$ nahe der Resonanzmasse
- 70. Luminositäts- und N $_{\psi}^{o}$ -Verteilungen bei 3.1 und 3.7 GeV
- 71. Strahlungskorrigierte Resonanzkurven und Strahlenergieverteilungen für Scwerpunktsenergien von 3.1 und 3 7 GeV

- 108 -

Referenzen:

- 1. J.J. Aubert et al., Phys.Rev.Lett. 33 (1974), 1404
- 2. J.E. Augustin et al., Phys.Rev.Lett. 33 (1974), 1406
- 3. G.S. Abrams et al., Phys.Rev.Lett. 33 (1974), 1453
- 4. DASP-Kollaboration:
 - W. Braunschweig, H.-U. Martyn, H.G. Sander,
 - D. Schmitz, W. Sturm und W. Wallraff,
 - I. Physikalisches Institut der RWTH-Aachen
 - K. Berkelmann, D. Cords, R. Felst, E. Gadermann,
 - B. Gittelmann, H. Hultsching, P. Joos, W. Koch,
 - U. Kötz, H. Krehbiel, D. Kreinick, W.A. McNeely,
 - K.C. Moffeit, A. Pe tersen, B.H. Wiik und G. Wolf,
 - Deutsches Elektronen-Synchrotron DESY, Hamburg
 - G. Grindhammer, J. Ludwig, K.-H. Meß, G. Poelz,
 - J. Ringel, K. Sauerberg und P. Schmüser,
 - II. Institut für Experimentalphysik der Universität Hamburg
 - W. de Boer, G. Buschhorn, B. Gunderson, R. Kotthaus, U.E. Kruse, H. Lierl, H. Oberlack, K. Pretz 1 und M. Schliwa,

Max-Planck-Institut für Physik und Astrophysik, München

- S. Orito, T. Suda, Y. Totsuka und S. Yamada, University of Tokyo, Tokyo (Stand Mai 1976)
- 5. J. Haissinski, Experiments with e-e and e-e colliding beams, Herbstschule für Hochenergiephysik, Maria Laach 5 (1971)
- H. Wiedemann, Einführung in die Physik der e⁻e⁺-Speicherringe, Herbstschule für Hochenergiephysik, Maria Laach 24, 30 (1973)
- 7. K. Sauerberg, Untersuchung zur Meßgenauigkeit eines Monitorsystems am e⁺e⁻ Speicherring DORIS, Int. Bericht DESY F22-74/2, März 1974

- W. Neff et al., CATO: Ein Verstärker-Logik-System für Charpakkammern mit 32 Kanälen auf einer CAMAC-Karte, Int. Bericht DESY F56-72/2, Nov. 1972
- 9. H. Brechtel, H.J. Stuckenberg, PERSEUS: Ein neues, sehr schnelles Auslesesystem für Charpak-Kammern und Hodoskope, Int. Bericht DESY F56-72/1, Okt. 1972
- 10. The Caravane Collaboration, A tagged γ -ray beam for the calibration of instruments for γ -rayastrenomy
- S. Yamada, The structure of the parameter common for inner track search programm, DASP-Note No. 77, 1976
- A.M. Boyarski et al., The quantum numbers and decay widths of the ψ(3095) SLAC-PUB-1572, LBL-3695, April 76 (E) und Phys.Rev.Lett. 34 (1975). 1357
- G.J. Feldmann, M.L. Perl, Electron-positron annihilation above 2 GeV and the new particles, Physics reports, Vol. 19 C, No. 5, Aug. 75
- 15. V. Lüth et al., The quantum numbers and decay widths of the $\psi'(3684)$ SLAC-PUB-1617, LBL 4211, Aug. 75 (/E)
- D. Schildknecht, H.J. Willutzki, G. Wolf, Experimente am e⁺e⁻-Speicherring, Feb. 71
- 17. S. Yamada, private Mitteilung
- 18. DASP-Collaboration, Evidence for a new heavy meson state of 2.83 GeV/ c^2 , wird veröffentlicht
- 19. DASP-Collaboration, A measurement of large angle e⁺e⁻ scattering at the 3100 MeV Resonance, Phys.Lett. 53B (1974), 393
- 20. DASP-Collaboration, A measurement of collinear and nearly collinear photon pairs produced by e⁺e⁻annihilation at the 3100 MeV Resonance, Phys.Lett. 53B (1975), 491
- 21. W. Bartel et al., Measurement of the branching ratios for the decay $J/\psi \rightarrow \rho \pi$ and $J/\psi \rightarrow \eta' \gamma$, DESY 75/40, Aug. 76

- 22. H. Harari, Experimental consequences of a small mixture of $c\bar{c}$ in the η and η Mesons, WIS-75/39 Ph
- 23. S. Okubo, Phys.Lett. 5 (1963), 105
- 24. G. Zweig, CERN report TH 401, 412 (1964) unpublished
- 25. J. Iizuka, K. Okada and O. Shito, Prog.Theo.Phys. 35 (1966), 1061
- 26. F.A. Berends et al., Hard photon corrections for Bhabha scattering, Nucl. Phys. B68 (1974), 541-550
- 27. F.A. Berends, Komen, Soft and hard photon corrections for/u-Pair production and Bhabha scattering in presence of a resonance, May 76, unpublished
- 28. F.A. Berends, Gastmans, hard photon corrections for $e^+e^- \gamma \gamma$, Nucl.Phys. B61 (1973), 414-428
- 29. D.R. Yennie, Phys.Rev.Lett. 34 (1975), 239
- 30. J.D. Yackson, D.L. Sharre, initial-state radiative and resolution corrections and resonance parameters in e⁺e⁻ annihilation, Nucl.Instr. and Meth. 128 (1975) 13-23

Danksagung:

Die vorliegende Arbeit wurde im Rahmen der Experimente der DASP-Kollaboration angefertigt.

Allen Mitarbeitern dieser Kollaboration möchte ich für die vielen wertvollen Hilfen während der Durchführung und Auswertung danken.

Insbesondere danke ich Herrn Prof. Dr. Schmüser und Herrn Dr. Wiik für die Ermöglichung und Förderung der Arbeit.

Für zahlreiche Diskussionen und die Überlassung von Auswerteprogrammen bin ich Herrn Dr. Yamada von der Universität Tokyo zu Dank verpflichtet.

Frau D. Laudahn danke ich für das Schreiben der Arbeit und Frau Dinges für die Herstellung eines großen Teiles der Zeichnungen.

Im übrigen versichere ich, daß ich diese Arbeit selbständig angefertigt habe. Alle verwendeten Quellen sind angegeben.

Hamburg, den 23.12.1976

Lebenslauf	Jens Ludwig
22.7.1946	geboren in Neumünster (Schleswig Holstein als Sohn des Ingenieurs Kurt Ludwig und seiner Ehefrau Gerda
1953-1966	Besuch der Volksschule und des huma- nistischen Kaiser-Wilhelms Gymnasium in Hannover
Februar 1966	Abitur
1966–1967	Wehrdienst, letzter Dienstgrad Leutnant zur See
1967-1969	Studium der Physik an der Technischen Universität Clausthal
Oktober 1969	Vordiplom
1969–1971	Fortsetzung des Studiums an der Universität Hamburg
1971–1973	Diplomarbeit Titel: Rückwärtsspektrometer zur Untersuchung von Photoproduk- tionsprozessen bei hohen Energien
Februar 1973	Diplomhauptoräfung
1973–1976	wissenschaftlicher Angestellter am II. Institut für Experimentalphysik

Im Februar 1973 heiratete ich die Studienrätin Birgit Fuchs. Im Mai 1975 wurde unser Sohn Lars Duncan geboren.