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1. Introduction

At present we have a simple and appealing picture of nature. At

distances down to 10" cm, the smallest distances explored, experi-

ments have shown that matter i s made of two species of fundamental,

pointlike fermions, quarks and leptons. The weak, electroraagnetic

and streng force which act between these constituents is described

by gauge fields and is mediated by the exchange of gauge bosons. These

forces might result from a single force; there is strong indirect

evidence that the weak and the electromagnetic force coalesce into

a single electroweak force at center-of-mass energies above 100 GeV,

ttiis electroweak force may be um'fied with the strong force at c.m.
15energies on the order of 10 GeV.

Huch of the experimental basis for our present understanding of

nature results from deep inelastic lepton-hadron experiments. Examples

are the discovery of quarks äs physical entities, the first indirect

evidence of gluons, the carriers of the strong force, and the dis-

covery of the neutral weak current. The lepton-hadron interaction can

be studied at center-of-mass energies well above the electroweak uni-

fication energy of 100 GeV by colliding electrons and protons in a

two ring colliding beam facility.

The possibility of colliding electrons and protons was first con-

sidered by Hereward et al." and further investigated by Goldzahl and

Michaelis2' äs an Option for the ISR. The discovery of pointlike con-

stituents in deep inelastic electron proton scattering promted a

joint LBL-SLAC group ' to investigate a dedicated electron-proton

colliding beam facility in more detail. The study showed that the

- 4 -

center-of-mass energies and expected luminosities for such a faci-

lity would be sufficient to investigate deep inelastic processes in

the kinematic ränge where the electromagnetic and weak interaction

are expected to be of similar strength. This is well outside the reach

of available and proposed fixed target machines. Since then similar

studies ' have been carried out in nearly all high energy laboratories,

however, they have not led to the construction of an electron-proton

colliding beam facility.

At present several proposals to construct electron-proton facili-

ties are ready for decision.

DESY has proposed to construct HERA ', a dedicated electron-pro-

ton colliding beam facility, on a site joining the present site. HERA

is designed to collide 820 GeV protons with 30 GeV electrons in four

interaction regions yielding 314 GeV in the center of mass which is

equivalent to the kinematical region covered by a 52 TeV fixed target
2

machine. The maximum momentum transfer squared is 98400 GeV . The pre-
31 -2-1

dicted luminosity at 314 GeV in c.m. is 6-10 cm s . The project has

been submitted to the German Government and recommended for construction

by a review panel. The project can be completed late 1989 if autho-

rized in 1983.

KEK plans to construct Tristan ^ designed to collide 25 GeV elec-

trons with 300 GeV protons in three interaction regions. The maximum
4 2momentum transfer squared is 3 • 10 GeV with an expected luminosity

of 1.8 • 1(T cm" s . KEK has proposed to first construct an e+e"

colliding ring capable of reaching 60 GeV in c.m. and this part of

the project has been approved. A decision on the ep part is expected

after first Operation of the e+e" ring scheduled for 1985.
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In addition to the dedicated facilities, a group of physicists '

has proposed to collide 5 GeV electrons with the proton beam from

FNAL Tevatron. A decision on this proposal has been postponed and

will be considered at a later date. The same group has also proposed '

an ep Option for ISABELLE.

CERN has the Option8'of colliding the electrons in.LEP with

the protons in the SPS in one interaction region. This Option yields
4 2a maximum momentum transfer squared of 5.4 • 10 GeV and a predicted

29 -2 -lluminosity of 4 • 10 cm s in the parasitic mode and
31 -2 -l1.3 • 10 cm s when both LEP and SPS are operating only for ep

collisions.
In these lectures r 11 first discuss the physics Programme which

can be carried out at a large electron - proton colliding beam faci-

lity, and from this discussion we will derive some of the constraints

which physics impose on the machine Parameters.

In the main part of my talk I'll review the physical principles

of circular accelerators. Since this is perhaps a new topic to most

of you, I have tn'ed to be pedagogical and have borrowed freely from
g IQ 11 i?

the excellent literatur available. A more in depth treatment

including a complete set of references to the original work can be

found in the literature listed above and in the references listed

at the beginm'ng of each chapter.
g\s ' has given a translucent discussion of the physical prin-

ciples of an e e~ collMing ring and J.LeDuff ' has very abely re-

viewed the same subject in the previous SLAC summer school. In these

lecture we wtll therefore put more emphasis on the behaviour of the

protons and the profalems associated with colliding electrons and protons,

- 6 -

This part of the lecture begins *ith an overview of an electron-

proton colliding beam facility using HERA äs an example. The physics

of such a facility is then reviewed in more detail starting out with

the transverse and longitudinal motion of a single particle in the

magnetic guide field and the accelerating r. f. field. The influence

of the Synchrotron radiation on the single particle motion is dis-

cussed next. How to obtain transversely polarised electron and how

to transform this into a longitudinally polarised electron beam in

the interaction point is described in chapter 8. Limitations on the

stored current caused by various kinds of instabilities are reviewed

in chapter 9. HERA is discussed in more details in the last chapter»

wi'th emphasis on the layout of the interactton region and the opti-

malisation of the luminosity.

2. Electron-proton Interactions at High Energies

2̂ 1 J^roduction

It has been shown experimentally that the proton contains point-

like quarks confined by the strong interaction and that an electron

incident on a proton interacts directly with one of these quarks in

accordance with Fig. 2.1. The interaction between a lepton and a

quark is mediated by a neutral or charged spacelike current. The va-

riables and the kinematic of the process is defined in Fig. 2.1.

The physics Programme*4' at an ep collider may be summarized äs fol-

lows:

1. Determine the properties of the spacelike electroweak current at a

mass which is large compared to the characteristic mass of the weak inter-

action. Measurements with electrons and positrons in well defined heli-

city states can be used to determine the properties of both charged and
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neutral currents in detail. For examples measurements with left

handed positrons or right handed electrons are very sensitive probes

for new weak currents.

2. Use the locaf, well defined electroweak current to explore the

proton at distances down to 10" cm. Measurements of the structure

functions will pose stringent tests of our present understanding of

strong interaction. Such measurements may also reveal new constitu-

ents of the proton or they may show that quarks are composite ob-

jects.

3. Search for new phenomena. Examples are the search for free quarks,

for supersymmetric particles, and for elementary particles with com-

bined lepton and baryon numbers , the leptoquarks.

This Programme demands a large kinematical area. The kinematical

region available with HERA is equivalent to that of a 52 TeV fixed

target machine and is shown in Fig. 2.2. The scale is set by the

black dot in the left hand corner representing the region which can
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be explored using a l TeV muon or neutrino beam on a fixed target.

Lepton beams with somewhat lower energies will become avai'lable at

the Tevatron ' in 1983. It is clear that HERA opens a new kinematical

regton well outside that available with present or planned fixed tar-

get raachines.

2
The Q -value corresponding to the characteristic mass of the weak

interaction squared is shown äs the dotted line. A large kinematical
2

region is available beyond this Q -value.

The final state topology in deep inelastic electron-proton inter-

actions is striking and easy to recognize. As indicated in Fig.2.1b

and 2,lc the scattered lepton appears at a large angle with respect to

the beam axis and the corresponding transverse momentum is balanced

by the struck quark which fragroents into a jet of hadrons appearing

at large angles on the opposite side of the beam axis. The remains

of the proton give rise to a foreward jet of hadrons focused along the

proton beam axis with no net transverse momentum. Because of the im-

balance between incident electron and proton momenta the particles

will in general energe in the forward hemisphere along the proton di-

rection. The proton jet, the quark jet and the lepton defines a plane

with sinall momenta transverse to the plane and large momenta in the

plane.

The kineraattc of the final lepton and of the current jet at nomi-

nal HERA energies of 30 GeV electrons on 820 GeV protons is shown in
2

Figs.2.3a resp.2.3b. For a given Q and x, the energy and the angle of

the lepton,respectively,the current jet in the laboratory System is ob-
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Fig. 2.3a,b - The laboratory momenta of the final lepton and
2

the current jet with Q and x äs parameters. The

laboratory angles and energies can be read off directly
2

by connecting points with a given x and Q with the

origin.
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tained by joining the relevant points with the origin. Note that the la-

boratory angles of the lepton and the current jet are in general large.

Lowering the incident electron energy will focus the ffnal state partic-

1es more strongly along the proton direction until particles belong-
2

ing to the current jet are lost down the beam pipe. In this case Q

and x cannot be reconstructed from the current jet alone making it

impossible to measure the form factors of the charged current.

Simply on the basis of topology it seems unlikely to confuse a

deep inelastic electron-proton event with a background event such
2

that the accessible Q -ränge appears not to be limited by the back-

ground. Note that particles from the lepton vertex and the quark ver-

tex are kinematically well separated. In the Standard model 6' only single

neutrinos or electrons are allowed at the lepton vertex, such that

the observation of jets emerging from the lepton vertex is a clear

indication of new physics. It will therefore be possible to observe

very rare exotic processes possessing this signature.

2
The Q -ränge which can be investigated is therefore only depen-

dent on the rate - i.e. on the luminostty and the center-of-mass

energy. In Fig. 2.4 the average luminosity needed to produce 100

2 2 2charged current events a year with Q > Q is plotted versus (r for

various values of the center-of-mass energy. The year is assumed to

have 5000 hrs and the rate is evaluated in the Standard model with

10;
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2
of data taking versus Q for various center-pf-mass

energies.
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one charged vector boson. It is possible to explore Q -values up to

2 29 -2 -l
say 3000 GeV with a luminosity äs Iow äs 2 • 10 cm s . To pro-

2 2
duce 100 charged current events with Q > 10 000 GeV per year re-

quires a lurainosity of 1.5 • 10̂  cm" s - a factor of 40 below the

HERA design luminosity. To obtain the same number of events with
? 2

Q > 10 000 GeV by colliding 20 GeV electrons with 400 GeV protons re-

31 -2 -l
quires an average luminosity of 3 • 10 cm s - a factor 20 higher

than the luminosity required at HERA. Note that for a luminosity of

32 -2 -1 ? ?
10 an s we expect 100 events a year with Q > 35 000 GeV .

2.2 Iow Q2-physics

The electron beam at HERA is equivalent to a well collimated

bremsstrahlungsbeam with an endpoint energy of 52 TeV. The untagged

photon-proton luminosity is typically on the order of a few percent

of the electron-proton luminosity yielding some 10 hadronic events

per day.

The photon has a dual character, it may convert into a vector me-

son and interact like a hadron. However, it has also a pointlike part

and raay induce hard processes like deep inelastic Compton scattering

and the QCD analogues of Compton scattering and Bethe-Heitler pro-

cesses äs indicated in Fig. 2.5. Note that the QCD Bethe-Heitler pro-

cess can be used to measure the gluon structure function (q = u,d,s)

and to search for heavy quarks. A total of 10 cc pairs are expected

to be produced per day at HERA via the QCD Bethe-Heitler process and

some 20 tt pairs if m = 50 GeV.
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(a)

(b)

38141

Fig. 2-5 - Hard processes induced by the pointlike part of the

photon a) QCD Compton b) QCD Bethe-Heitler.

2.3 Properties of the currents

2.3.1 Charged Cürrents

Present data are all consistent with a left handed current which

is mediated by a single charged vector boson with a mass around

80 GeV. The observed simplicity of the charged current might well

only reflect the static limit studied so far and a rieh structure

with many vector bosons, some perhaps giving rise to right handed
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currents, might appear at high energles. From a purely experimen-

tal point HERA has sotne unique features compared to present fixed

target experiroents.

- Very high energy.

The beam is äquivalent to a monoenergetic neutrino beam with an

energy up to 52 TeV,

- Choice of helicity.

It will presumably be possible to change the helicity of the inci-

dent lepton - i.e. the cross section for left and right handed

electrons (or positrons) can be measured directly.

- Visibility.

The target is massless and can be surrounded by fine grained de-

tectors including particle Identification.

- Favourable kinematics.

The lepton, the current jet and the target fragmentation jet are

presumably well separated in space and the event is easily recog-

nized.

The x, y distribution of charged current events in bins of

dxdy = (0.2) expected after one month of data taking with an un-

polarised 30 GeV electron beam colliding with protons of 820 GeV
16)

is shown in Fig. 2.6. The rates were estimated in the Standard model

with m = 78 GeV and formfactors parametrized according to Buras and

Gaemers ' and assuming a luminosity of 10 cm" s~ . G1ven the dis-

tinct signature of charged current events it seems possible to explore

nearly the entire kinematic region.
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«~*p~»v*X,£venU ptr mnth (Mqwtiirized rtectrons)

1.0

30169

Q

Fig. 2.6 - Number of charged current events in bins of dxdy = (0.2)

produced per month of data taking assuming the Standard
32 -2 -lmodel and a luminosity of 10 cm s . To obtain the number

of events expected per year of data taking at the nominal

HERA luroinosity using left handed electrons multiply the

left plot with a factor 8 and the right hand plot with a
factor 5.

The expected number of events per year for the reaction

ef + p -»- v + x, evaluated with the assumptions listed above, is
2

plotted in Fig. 2.7 versus Q for various propagator masses. It is

clear that the mass of the propagator can be measured äs long äs it

i s below 500 GeV. The data can also be used to deteraine whether the

charged current is damped by a single vector boson äs presently be-

lieved or by several.
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Events per day for

e" + p * v + x in
2

Q bins of

5000 GeV2 with
the Standard
assumptions.

Right handed currents do not occur in the Standard model. Sensi-

tive searches for these currents may be carried out using right handed

electrons and left handed positrons. Such measurements will reveal the

existence of right handed currents if the mass of the right handed

propagator is less than 600 GeV and the longitudinal beam polari-

sation is at least SOS known to an accuracy of 12. This mass limit

is valid even if the electron is partnered with a massive neutrino

in a right handed doublet.
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At x > 0.4 only valence quarks contribute to the cross section

- i.e. e" + u -* d + x and e + d •+ u +• x are the dominant processes.

This makes it possible to study the fragmentation of a well defined

flavour. However, in principle it also opens the possibility of

measuring the Kobayashi-Maskawa mixing angles ' directly:

e~ + u -*• s + x and e~ + u •* b + x

e + d + c + x and e+ + d -*• t + x .

2.3.2 Neutral currents

One photon exchange and Z° exchange contribute coherently to

e + p •*• e'+x and both contributions are of similar strength at HERA

energies. Measurements of this process can therefore decide if in-

deed the electromagnetic and weak interactions are manifestations

of a single force and if this unification occurs äs conjectured in

the Standard raodel1"' or if a more complicated mechanism involving ma-

ny Z 's is realized in nature. The number of neutral current events
2

produced per day in a bin dxdy = (0.2) is plotted in Fig. 2.8.

Again due to the characteristic topology of deep inelastic events
2 2HERA can extend the Q ränge from the present few hundred GeV out

to some 40 000 - 50 000 GeV2.

The presence of a weak current in the araplitude has clear signa-

tures:

1) Parity violation

o{e[ + p •* e"1 + x) t o(ep + p - e"1 + x)

o(e* + p - e+l + x) t o(e* + p •* e+t + x)

This effect can only be caused by a neutral weak current.



- 19 -

Q2(K)*GeV2)

2 -

30105
0.2 0.4

Fig. 2_.j - Number of events per day for e" + p * e" + x

at s = 9.6 • 10 GeV and the Standard assumptions.

2. Appearant C-violation

ö{e[ + p •* e"1 + x) / o(ej + p •+ e+1 + x)

o(ejj + p •* e"' + x) .f a(ej + p •* e+l + x)

Two-photon exchange will also give rise to a Charge asynmetry. This

effect, however, is expected to be of order a/ir In (Q /m2) with
2

m -v 300 MeV. At large values of Q this effect is small compared to

the Charge asynmetry caused by Z° exchange and i t has furthermore
2

a different Q dependence.

3. The presence of a l - (1-y) term which is not allowed in the one

photon exchange approximation. This effect cannot be caused by two

photon exchange.

The size of these effects in the Standard model is shown in

Fig. 2.9 where the ratio

evaluated for left and right handed electrons and positrons is plot-

ted äs a solid line versus y for x = 0.25.

Standard Model sin2 0W =0.23

- SU(2)LxSU(2)RxU(1)
S = 0.7

plotted versus

y for x = 0.25.

The ratio i s

evaluated for

two different

weak inter-

action model s.

30103 0.2 0.4 0.6 0.8
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The neutral current measurements at HERA are complementary to

measurements at SLC and at LEP. For example it is easy to construct

a senario in which the Z° peak is not observed in e e~ annihilation

but propagator effects are seen in deep inelastic e + p -*• e' + x.

The most trivial explanation would be to assume that the Z° peak

is washed out by a large number of vv decays.A perhaps more exciting
ig\y has been put forward by Abbott and Fahri '. Usually

2
g-/4Tr « l, where g? is tne SU(2) coupling constant and hence SU(2) does

2
not confine. Abbott and Fahri suggest that perhaps g2/4ir is of Order

one and that SU(2) indeed does confine leading to composite fermions and

bosons. Since

GP 4

this would imply that the vector bosons in such a model are much

heavier than the vector bosons in the Standard model.

Flavour changing neutral currents like e" + d -*• T" + b may appear.

In the example above the T decay products will emerge on the lepton

side instead of a single lepton. Such events would be spectacular

and easy to observe.

2.4 Exjnoring the Proton

Measurements of the total electroweak cross section at values of

2 2 2 20}
Q between a few GeV and a few hundred GeV have revealed that

the proton is made of pointlike fermions, the quarks. At short dis-

tances the quarks behave like free particles, yet the proton cannot

be "ionized". The measurements further show that the quarks account

for about a half of the proton momentum, the other half being car-
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ried by particles with only strong Charge,

Measurements21' at increasing values of Q showed that the form

factors are enhanced at low and depleted at high values of x. This

observation is naturally explained in any field theory of strong

interactions äs shown schematically in Fig. 2.10. The resolving

power of a spacelike electroweak current increases with Q such that

the proton may be probed at shorter and shorter distances. Thus we

may "see" the quark content of the gluon, or the quark after the

emission of a gluon.

X<

^WWWWfc

gluon

gluon

gluon

Fig. 2.10 - a) A virtual photon with Q^ striking a quark.

.quark

.antiquark

33661

b) A virtual photon of higher Q resolving the quark into
a quark and a gluon.

2
c) A virtual photon with Q traversing a gluon without

interaction.
2

d) A virtual photon of higher Q resolving the gluon
into a quark-antiquark pair.
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The experimental observations led to the formulation of Quantum

Chromodynamics '. In this theory the strong interaction is mediated

by eight coloured massless vector bosons, the gluons. The strong
o

coupling constant a decreases with increasing values of Q as

,2V
as ( Q ) =

(33 - 2nf) In

where nf is the nuraber of flavours and A the characteristic mass of

the strong interaction.

2
The Q -evolution of the form factors can be unambigously com-

puted in QCD. The result of such an computation is shown schemati-

cally in Fig. 2.11. Careful measurements of the cross section over
?

wide ränge in Q are needed to distinguish the logarithmic scaling

violations inherent in QCD from a power series as would occur in a

fixed point theory.

The correction factors needed to extract the cross section from

the raw data must be small in order to determine the form factors

with the required relative precision of a few percent. The results

of a Monte Carlo calculations for charged current events are shown

in Fig. 2.12.Plotted is the ratio between the extracted formfactor

2 2
and the input form factor for values of Q between 6 and 40 000 GeV .

Note that for the HERA Parameters the ratio approaches one - i.e.

only small corrections must be applied to the raw data. This is no

longer true if the electron energy i s lowered say to 5 or 10 GeV

keeping the proton energy fixed at 800 SeV. In this case hadrons

from the current jet are lost down the beam pipe causing large cor-

rections .

t F £ Q 2 , x ) / F ( Q ?

x = 0.02

0.5 -

0.0

x = C U

ep —* e'X

V * = °-6

t 1
3 5000 10000

l L

15000

Fig. 2.11
?

The Q dependence

of the formfactors.

plotted i s the

ratio

F2(Q2)/F2(2,x)

versus Q for va-

rious values of

x = 02/2mv.

The slow Variation of the form factors with Q as predicted in

field theories makes it easy to search for new phenomena which may

show up as scaling violations. Seme possible sources of non QCD sca-

ling violations are:
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Fig. 2.12 - The correction factor which must be applied to be raw
charged current data to extract the form factor

?
F2(Q ,x). Shown are the results of a Monte Carlo calcu-
lation of the ratio F2(out)/F2(in) for various values
of x plotted versus Q .
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New constltutents in the proton. For example in supersynmetric

models ' the protons must contain, besides the normal quarks and

gluons, scalar quarks and fermion gluinos. Thus the fraction of the

momentum carried by the normal quarks will decrease at large values

of Q2 since the total proton momentum i s now shared amongst more con-

stituents. Scalar quarks will also contribute to the longitudinal

form factor FL(X, Q2) = F2(x,Q2} - ZxFjtx.Q2). Again precision
2

measurements over a wide ränge in Q are needed to extract Information

on new constituents.

Quarks and leptons may have finite size. Faced with the large num-

ber of leptons and quarks many physicists find it natural that these

particles are composite ' made of new building blocks. With HERA ,

we can probe the fermion structure down to 10" cm. If the leptons

have a size we would expect to observe a leptonic form factor and

ultimately the production of excited leptons. The cross section would
2 lbe modified by a form factor F(Q } = g—<y giving rise of a

(l + qVJT)
scaling violation which is very different from that expected in QCD.

A 10* measurement at 4 • 104 6eV2 would be sensitive to a mass of

the order of l TeV.

An excited lepton could decay into e + y, e + Z and e* + W leading

to peaks in the invariant spectrum. Note that the topology of such a

final state with several particles emerging from the lepton vertex

makes it easy to find.

The cross section would be modified in a similar manner, if the

quark has a structure - i.e. again one might probe down to distances

of {l TeV)"1. In this case the formfactors may increase or de-
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crease depending on the charges and the weak coupling constants

of the new constituents.

The colour degree of freedcm of quarks may also be excited '

at small distances, and fractionally charged quarks resolved into
integrally charged quarks of different colours:

ü - uf (e - 1), uy (e = 1), uß ( e = 0}

d -d r (e- 0), dy ( e - 0), uß (e = -1)

Thus above the threshold for colour thaw:

| ) 2 u(x )

T ) 2 d ( x )

u(x) • u(x)

( 0 4 0 + 1) d(x) =

In the valence quark approximation the electroproduction cross section

would rise by a factor of 1.7. This model also contains charged gluons.

The photon may interact with these gluons and this would contribute

to the longitudinal cross section.

2.5 New Physics

The combination of high luminosity and the opening of a large ki-

nematical region makes HERA well suited to search for new phenome-

na. Three obvious examples are discussed below:

2.5.1 New Fermions

Electron-proton collisions are ideally suited to produce electron-

like charged or neutral leptons and new heavy quarks which couple

to the u or d quarks in the proton. Such couplings are known to be

rather weak in the Standard model, however, new currents may exist.

Indeed if the basic femnons are not pointlike they must have ex-

cited states which couple to the ground state. The rate for producing

a heavy quark from a light quark is plotted in Fig. 2.13 with the

mass of the outgoing lepton äs a parameter. The rates were evaluated

with the assuraptions listed above plus the assumption that the new

current couples with the same strength äs the old one.
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Fig. 2.13 - Nuraber of events per day for e + p + L + Q + x
4 2at s = 9.6 x 10 GeV assuming left handed coupling,

unpolarised electrons, m., = 78 GeV, Buras-Gaemers

paremetrization with

of 1032

A = 0.5 GeV and a luminosity

Leptons and quarks with nasses to 150 - 200 GeV can be found in this

way. The deay of these particles leads to rather spectacular sig-

natures on the lepton side: L° -* e" Q q', i.e. the single lepton

emerging from the lepton vertex in the Standard model will be

replaced by a high multiplicity jet containing leptons.
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2.5.2 Leptoquarks

It is generally accepted that the gauge symmetry raust be sponta-

nousJy broken to give mass to the intermediate vector bosons and

to make the theory renormalizable. It has been proposed, äs an al-

ternative to the Standard Higgs mechanism, that the symnetry breaking

arlses dynaraically frora the gauge interactions themselves. In this

model a new set of unbroken non-Abelian gauge interactions26' with

a mass scale on the order of l TeV is introduced. This interaction

gives rise to a complicated spectrum of technicolourless bound sta-

tes with nasses starting around l TeV. In addition, the technicolour

interaction will result in leptoquarks, fundamental particles with

combined lepton and baryon numbers and a mass predicted around 160 GeV.

The cross section resulting from the Feynman graphs in Fig.2.14a
271has been evaluated by Rudaz and Vermaseren ' and is plotted in

Fig. 2.14 versus the mass of the leptoquark. Roughly one event per

day is expected for a leptoquark mass of 160 GeV and a suppression
2

factor sin 9et £ 0.05. The topology of such an event is remarkable

with a broad jet, resulting frora the decay of the leptoquark

(LQ) - » - e t , emerging at the lepton side.

2j.3 leptoproduction of supersymnetric particles

Gauging the isospin led to the successful unification of electro-

magnetic and weak interactions. In supersymmetric ' theories the

same story is repeated for the spin and this leads to a connection

between fermions and bosons. Indeed the fundamental feature of

s u per symnetry is that it can generate fermions from bosons and vice

versa. Thus for every particle with spin J there will in principle
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(a)

150 200

MLO <G*V>

Fig. 2.14 - a) The Feynman graph for producing a leptoquark

in deep inelastic ep reactions and the resulting

topology.

b) The cross section for ep -+ (LQ) + x evaluated
according to a).



- 31 -

be two new particles with spin J + 1/2.

281
A partial list of such new particles is given in Table 2.1.

Table 2J. - Possible supersymmetric particles

Types of conventional
particles ,

Matter

Massive Gauge
Bosons

2°

Massless
Gauge Boson

g

S p i n

1/2

quark q

lepton 2

supersyranetric
heavy lepton

photino Y

nuinos v

gluino g^

0

scalar quarks q

scalar lepton 1t

Higgs scalar

H

Electron-proton collisions at high energies are well suited to

search for supersymuetric particles:

Above threshold scalar quark and scalar leptons can be directly

produced 29)
l\, "u

e + qe -f q

e + q •* v + q .

The observable mass ränge for supersyranetric particles depends

on the signature. If the scalar leptons decay into a jet of scalar
3ß -2

particles then cross sections äs low äs 10 cm corresponding to

10 events a year may be observable. If the dominant decay modes are

of the type i + f c + G a n d q + q+G where G is the undetectable
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Goldstino, then the background will be more severe. In Standard

neutral current events, however, the direction and energies of the

scattered lepton and the current jet are strongly correlated. Since

in a supersyranetric neutral current event the electron and current

jet results from decay processes this correlation is destroyed and

the background can to a large extent be eliminated by suitable cuts.

Estiraates ' show that one may probe the mass ränge up to

100 - 150 GeV for the existance of supersyranetric quarks and leptons.

Scalar leptons can also be searched for in the process

e + p •* e + p + G + e + p + e +p + missing energy and neutrino.

The signature is very clear with only an electron and a proton in a

final state. One should be able to observe this process if the mass

of the produced supersynraetric particles are below 100 GeV.

2.6 Summary
2 4 2

To explore the Q region above 10 GeV requires center-of-raass

energies on the order of 300 GeV or above. In principle the relativ
2

electron and proton energies do not matter. However, the Q and v

values of a charged current event must be deterroined from a measure-

nent of the current jet and such a measurement can only be carried

out if the electron energy is not too sroall. 30 GeV electrons col-

liding with 800 GeV protons is acceptable ; lowering the electron

energy to 5 GeV keeping the proton energy constant is not.

32 -2 -l
The luminosity must approach 10 cm s in order to be able to
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explore the main fraction of the available kinematic region. Note

frora Fig. 2.4 that the event rate depends on both luminosity

and center-of-mass energy - i.e. one may trade luminosity and versus

center-of-mass energy.

The ability of using electrons and positrons in well defined he-

licity states is crucial for the determination of neutral current

coupling constants and in the search for right handed currents.

3. Description of an Electron-Proton Colliding Beam Facility

In this part we give an overview of an electron-proton colliding

beamfacility using HERA5' äs an example. Some of the most important

Parameters are listed in Table 3.1. HERA consists of two circular

accelerators, one for electrons (positrons) and one for protons

arranged such that the counterrotating electron and proton beams

collide in four points along the circumference. The accelerator has

a fourfold symmetry; four 360 m long straight sections are joined by

four arcs with a geometric radius of 779.2 m yielding a total cir-

cumference of 6336 m. The electrons and the protons collide in the

middle of the four long straight sections. The layout of the machine

is shown in Fig. 3.1.

Each of the circular accelerators is made of the following ele-

ments:

A guide field which bends the charged particles on a circular path

and provides the necessary focusing to keep the particles trans-

versely bunched over a distance of 10 km. Nowadays most machines

are of the separate function type - i.e. the bending by dipole fields,

1. Zunächst wurde die Drahtebene senkrecht zur Strahlachse (z-Achse)
gestellt (Abbildung ZI auf Seite 34 a ). Daa Mao) der Justierung ergab
der Vergleich der Abstände Bolzen - Magnetjoch.

X'

z- -\)

Abbildung 21. Drehachsen

2. Es folgte das Ausrichten der horizontalen Drähte in x-Richtung. Dazu
wurde eine Präzisionsmetallschiene auf jeweils zwei Bolzen gelegt und
mit Hilfe einer Wasserwaage justiert(Abbildung $1 b ).

3. Alsdann wurden Drahtebenenmittelpunkt (= Kammermittelpunkt) und
Strahlkoordinatensystem Nullpunkt (x=0, y=0) mit einem Theodolite^
möglichst genau zur Übereinstimmung gebracht (Abbildung 21 c ).
Der Theodolit war dabei auf das Strahlkoordinatensystem justiert und
es wurden die x- bzw. y-Abweichungen bzgl. des Nullpunktes zunächst
zur Korrektur benutzt (Verschieben in x- bzw. y-Richtung), zuletzt
vermessen.

Die Vermessung der z-Koordinaten der einzelnen Kammern erfolgte wie-
derum bzgl. der genau vermessenen PLUTO-Joch-Kanten (Abbildung 22 auf
Seite 35)

Driftkammerkonstruktion
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Table 3_._1 - Basic Parameters

Nonlnal energy

Luiinosity

Pol ariiiti on tiM

IkMber of interaction points

Length of straight sections

FPee space for expen'Knts

Circunference

Bending radius

Hagnetic field

Total nunber of particles

Circulating current

Energy ränge

ünttance ttx/t2)

Beta function s*/8*

Dispersion function OZ/D,

Bean-beam tune shift jQ./iQ,x z

Beaa size at crossing ax

Beaa size at crossing o

Nwnber of bunches

Bunch length

RF frtquency

HaxlM circuwfertntial voltage

Total RF power

Filling tiM

Injectlon energy

Energy loss / turn

Critit«! energy

Heat loss at 4.3 K
Lead cooling gas rate

Design refrigtration power at 4.3K

Design lead gas rate

820

98400

0.6 x IQ32

4

360

15

6336

603.8

4.53

6.3 x 10

4BO

200 * 820
0.47/0.24

3/0.3
0/0
0.0006/0.0009

0.12(0.91)**

0.027

210
9.5

208.189

100***

4-6
20
40.0
1.4 x 10
10"*

13.2
42.5
20
64

-10

20

0.013

0.93

499.667

290

13.2

15

14.0

142.3

111

unjtj

GeV

GeV2

«'
•in

540.9

0.1849

0.76 x 1013

58

10-35
1.6/0.16

3/0.15

0/0
0.008/0.014

0.22

»

T

nA
GeV
10"8«
n
m

mt

(M

Wz
m
m
•1n
GeV

HeV
keV
kU

fl/s
U
fl/s

i At the interaction point
« Including the bunch length
»M 25 m 1s foreseen InitUlly corresponding to l - 1.5 W.
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33029

The layout of HERA.
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the focusing by quadrupole fields and the corrections by higher mul-

tipole fields are provided by separate elements arranged in a re-

petitive pattern (cells).

An accelerating system made of a power source (klystron, tetrode)

and resonating cavities. Energy is transferred to the particles by

the longitudinal electric field oscillating in the cavities at a

frequency which is an integer multiple of the particle revolution

frequency. The r.f. system is used to accelerate particles from the

injection energy to the final energy and - in the case of electrons -

to compensate the average energy loss caused by Synchrotron radiation.

The r.f. system also provides longitudinal focusing of the beam.

A high vacuum system. A particle covers a distance of 10 km

during a typical storage time of 10 hrs such that a high vacuum Sys-

tem is mandatory to minimize the losses due to beam gas interactions.

A pressure on the Order of 10" torr is needed for the protons. The

Synchrotron radiation of the electron beam strikes the walls of the

vacuum chamber leading to gas desorption which makes itdifficult to
_Q

fnaintain a pressure below 10 torr in the electron ring. However,

this pressure is sufficient since the oscillation of electrons,

excited by beam-gas interactions is damped by Synchrotron radiation.

A monitor system to observe the behaviour of the particles and a

sophisticated control System to supervise the Operation of the

accelerator and to take corrective action if needed.

An injection system capable of loading the rings with electrons
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and protons in a time which is very short compared to the anticipated

storage time of several hours. Not only the peak energy but also the

minimum usuable energy of an accelerator is limited. For a machine

made of superconducting magnets this limit is probably determined

by the constant field errors caused by persistent currents in the

superconductor. The strength of these higher multipole fields relativ

to the dipole field increases with decreasing energy and they may

well limit the injection energy of the protons to some 5« of the

peak energy. The electron beam is rather stable due to the damping

caused by the Synchrotron radiation. The damping time is pro-
3

portional to l/E . Thus the operating ränge of an electron ring,

limited by instabilities at the lower end and by the available r.f.

power at the higher end, is rather small compared to the ränge

available for a proton r-ing. In the case of HERA, a chain consisting

of linear accelerators, the DESY Synchrotron and PETRA are used to

boost the energy of the protons and the electrons to 40 GeV respec-

tively 14 GeV before injecting into HERA.

An extraction System designed to eject the stored proton beam in
-4

a single turn. This is necessary since a localized loss of 10 of

the design current, or some 10 protons, in a magnet at 4.5 T will

destroy the superconducting state and lead to a quench. Thus the

proton beam must be ejected without a loss at the onset of an in-

stabil i ty or at the end of a run.

The interaction region is presumably the most complex part of an

electron proton collider. The two beams with rather different pro-

perties must be brought into a small angle, low beta (i.e. small
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beam spot)co11ision geometry. The electron spin, which is perpendi-

cular to the orbit in the arcs, must be turned to be either parallel

or antiparallel to the beam direction in the interaction point and

then be restored to its vertical direction upon entering the arcs.

Furthermore the dispersion in the lattice raust be made to disappear

in the interaction point, and sufficient space for r.f. cavities,

injection and ejection Systems must be found.

The layout favoured for HERA is shown in Fig. 3.2. The beams

cross in the horizontal plane of the electron ring at an angle of

+ 10 mrad in middle of the 360 m long straight section. A horizon-

tal crossing is advantagous since the radial size of the electron

beam is much larger than its vertical size. The choice of a rela-

tively large crossing angle raakes it possible to design the machines

without cornnon elements such that the electron and proton energies

can be chosen and varied independently. The resulting increase in

the effective horizontal beara size can be compensated by bringing

the proton quadrupoles closer to the interaction point with a re-

sulting reduction in vertical beam size. A free distance of + 7.5 ro

around the interaction point is available for experiments. In this

design the spin is turned into the longitudinal direction by an

80 m long rotator installed at the end of the arcs and restored to

the transverse direction by a similar rotator positioned at the en-

trance to the next arc. The large distance between the interaction

point and the last bend in the rotator minimizes the amount of Syn-

chrotron radiation which reaches the detector. In each section

roughly 200 m is available for the r.f. System and the injection and
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Fig. 3.2 - Layout of the interaction region.
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ejection systero.

Energy and luminosity are obviously two factors which determine

the quality of an ep facility. The physics discussed in chapter 2
2

emphasized the importance of investigating the reglon of Q greater

4 2
than 10 GeV and showed that luminosities of the order of

31 -2 -l -32 -2 -l10 cm s to ICr cm s are needed to obtain a useful event
p

rate at such large values of Q

2
The maximum momentum transfer squared Q,v which can be obtainedTnax

in an ep colliding ring is given by

• * VP • (3.1)

The maximum energy of the proton beam is determined by the product

of the bending radius p and magnetic induction B

Thus, for a given radius, the energy is linrited by the strength

of the magnetic field. Due to the pioneering work at FNAL and BNL

superconducting accelerator magnets can be massproduced with repro-

ducible properties for an induction up to 5 T. The nominal induction

of the superconducting dipolemagnets in HERA is 4.53 T yielding a

proton energy of 820 GeV.

An electron of energy E {GeV) transversing a circle of radius

p (m) radiales an average of e U (keV) per turn:

e lUkeV) = 88.5 ^-o ' p (3.3)

This energy loss must be restored by the r.f. system and to this

end the cavities must be fed the power P . This power is the sum of
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the losses in the cavity and the energy radiated by the beam.

2
The cavity losses are given by U /2R where U is the peak voltage

in the cavity and R the total shunt impedance of the r.f. cavity

System. In principle this term can be made negligible small by

using superconducting cavities, however, the second term still re-

mains. The radiation losses are given by i-UQ. High luminosities

require a large circulating current such that the radiation term

tends to dominate. The peak electron energy is therefore not limited

by the magnetic field strength but rather by the available r.f.

power. To reach the nominal energy of 30 GeV in HERA with a stored

current of 56 mA requires 13.2 MeV of r.f. power with 4 MW needed

to establish the circumferential voltage and 8 MW to compensate

for the Synchrotron radiation. 1.2 Ml are lost in the waveguides.

The dipole field is only 0.18 T.

It is important to push the electron energy for two reasons.

Firstly the electron energy must be on the order of several percent

of the proton energy to avoid that particles from the current jet

are lost down the beampipe making it difficult to reconstruct the

final state. This point was illustrated in Fig.2.12 which shows

the corrections which must be applied to the experimental data in
2

Order to determine the formfactor F2(x,,Q ) from charged current

interactions. Uhereas the corrections in the case of 30 GeV electrons

colliding with 820 GeV protons (200 GeV) are small and presumably

managable they becoroe very large and probably unreliable in the case

of 5 G«V electrons collding with 1000 GeV protons.
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The Synchrotron radiation in the arcs will polarise the circu-

lating electrons transversely to the beam plane. The maximum pola-

risation P = 92.4X is approached äs:

P(t) = p fl -
with a build-up-time T in seconds given by:

98.7 3 , R
- - P ( p

(3.4)

(3.5)

The beam energy E is in GeV and the bending radius p, respectively

the geometric radius R in meter.

The electron energy should therefore be so large that T is very

short compared to the anticipated beam life time. At 30 GeV t is

of the order of 20 min.

The luminosity, assuming n. ounches of protons and electrons is

given by:
N H

L = ( -^-E) f0n. (3.6)
A

Here N and N are the number of electrons respectively protons per
e p

bunch, f the resolution frequency and A the effective beara cross

section.

The ultimate limit on the nunber of electrons and protons is

given by the tune shift - i.e. the effect of the electron beam on

the proton beam and opposite. However, the real limit may well be

given by the available r.f. power for the electrons or by instabili-

ties for the protons. - In HERA we expect a luminosity of
31 -? 1

6 - 1 0 cm s~ at a c.m. energy of 314 GeV,
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4. The Transverse Motion *

The magnet System of an circular accelerator is made of deflecting

and focusing elements arranged in a repetitiv pattern around the ring.

The reference particle sees only dipole fields and retraces its orbit

on every turn. The other particles traverses the magnetic elements

off axis and experiences a linear restoring force in addition to the

deflecting force. An arbitrary particle executes quasi-harmonic os-

cillation (betatron oscillation) with respect to the closed orbit

of the reference particle. In this chapter we discuss the properties

of the betatron oscillation in the linear approximation.

4.1 The Equation of Motion

We will first derive the equations of motion for a charged par-

ticle travelling in a guide field made of a deflecting dipole field

and a focusing quadrupole field. The particle motion is described

using the coordinate System defined in Fig. 4.1. The Position of

the reference particle is given by the radius p and the distance

s measured along the orbit from an arbitrary origin. The position

of an arbitrary particle is given by the vector

t = r nr + z nz (4.1)

where "n and n are unit vectors. Usually relative coordinates are

used:

x = r - p and z. (4.2)

We consider the motion in a time independent field. Along the re-

ference orbit the induction § is normal to the horizontal plane

i.e.
(4.3)
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( x . z )

Fig. 4.J. - The coordinate System.

The magnetic induction is furthermore assumed to be syimetric

with respect to the horizontal plane.

We consider particies oscillating with small amplitudes around

the reference orbit. The induction can be expanded in a power series

in x and z. Keeping only the first order terms yields:

(s. X, z) -

(s, x, z) =
98
-^
3z

(4.4)
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In the raedian plane — V x 3 = 3 = 0 - i.e.

p D 30

17' - äT ' (4'5'

It is convenient to normalize the dipole field and the gradient

field to the momentum of the reference particle:

G(S) - I . 1̂  (4.6)

l ^Ep 9X
l 3BX

(4.8)

Bp Tz t4-7)

Note that both 6(s) and K(s) are periodic functions with period L

G(s + L) = G(s)

K(s + L) = K(s)

where L is the length of one turn.

The equation of raotion of a charged particle in a magnetic field

is given by the Lorentz force

^ (m t) = e (v x t) (4.9)

We will first evaluate the left hand side. The time derivative of

the position vector t is given by:

t = rnr + rnr + zn + zn (4-10)

The differentials of the unit vectors can be obtained frorn

Fig. 4.1 by inspection.
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V • n99

dn, (4.11)

dnz = 0 •+ nz = 0

With the resultsof eqs. 4.10 and 4.11 the left hand side of eq. 4.9

yields:

3t («t) = [^m*rHrV]nr + [I^mr29)]^ + [{j^m'z}^] (4.12)

The right hand side of equation 4.9 in cylindrical coordinates is

given by:

e (v x §) = r9 (4.13)

The three components of the equation of motion can thus be

written äs:

(** - |) (r9Bz -

» ( i ) (rBe - rflBr)

Equation 4.14a can be written äs:

(4.14a)

(4.14b)

(4.14c)

(4.15)

ds
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with the magnetic induction äs defined above in eqs. 4.3 and 4.4 and

the Substitution:

d
3s - ' 3

This can be simplified using:

r p + x p

and

P P

eß.

(4.16}

(4
V

Neglecting second order terms and using the definitions given in

eqs. 4.6 and 4.7 yields the equation of motion in the horizontal

plane:

x" + (G2(s) + K(s) ) x = 6(s) ^ (4.18)

Note that in general G2(s) + K(s) = K(s) .

The equation for the motion in the vertical plane follows from

eq. 4.14c. With the approximations used above

z" - K(s) 2 = 0 . (4.19)

Evaluation of eq. 4.14b yields:

Ap = const.

The transverse particle motion is described by two independent li-

near equations. The equations are of the harraonic oscillator form

except that the restoring force K(s) is a function of the

azimuthal coordinate.
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generation of circular proton machines seeks to use superconducting

coils to produce higher inductions. In this case the induction is

determined by the current distribution and effects like persistent

currents and production tolerances make the magnets rieh in higher

order multipoles. No accelerator exploiting this technology is

operating although the FNAL Tevatron is nearly completed and long tenn

tests involving strings of more than 100 magnets have been very en-

couraging. Indeed it seenis possible to construct 5T superconducting

dipole magnets of high and reproducible quality. The coils are wound

using a Rutherford type helium transparent NbTi wire and magnets

with an induction of 8 - 10 T seem feasible using this technology.

Bending fields above 10 T require presumably a new conductor like

NbSn3.

The distribution of magnetic induction in a quadrupole lens is

shown schematically in Fig. 4.3. The induction disappear on the

axis and increases linearly with the distance from the beam axis

in both the horizontal and vertical plane.

Bv = g z

BZ = 9 x
(4.20)

3B, 3BV

with g = —i = _i .
3X 3Z

A stream of parallel particles traversing a quadrupole of length

l will be focused in one plane and defocused in the orthogonal plane

with the same focal length f. In the focusing plane:

\Z \

Fig. 4.3 - The magnetic induction pattern of a quadrupole lens.

- k l x = - (4.21)

f, the focal length is given by:

l
FT (4.22)
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A charged particle beam traversing a quadrupole magnet is focused

in one plane and defocused in the orthogonal plane. However, a pair

of quadrupole lenses spaced at a distance L will focuse the beam

in both plans provided f > L. To see thU consider the trans-

fer matrix for a quadrupole doublett in the thin lens approximation

(see 4.5):

1 °] (' LU' °]-1/f l\

\-

l/f

-i/f

-L/r

(4.23)

1+L/f

-L/f2

Comparing the element m for both matrices yields:

fx » f, = - L/f2 .

The focal length of a lens decreases with increasing momentum äs:

f -x, l/p .

Thus a machine made of only dipole and quadrupole magnets will have

a strong chromatic abberation. This can be corrected with sextupole

elements äs discussed in chapter 5.3.

A sextupole lens is shown schematically in Fig. 4.4. The field

distribution in carthesian coordinates x and z can be written äs:

\, z) .

Bz (x, z) =

X Z

(x2 - z2)
(4.24)

with B1
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I z

Fig. _4._4 - The magnetic induction pattern of a sextupole.

4.3 The Matrix Solutlon

The transverse motion in x and z for particles with Ap = 0 is

described by the solutions to the linear homogenous equation

u"(s) + K(s) u{s) = 0 (4.25)

The position ü(s) and the slope u'(s) of a particle with azimuthal

coordinate s can be written äs a vector:

(4.26)
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The value of u{s) at an arbitrary azimuth s = s, is related to its

value at the origin s by a linear transformation

(4.27)

M(s, s ) is a 2 x 2 matrix and the value of the maxtrix elements

can be determined fron the two particular solutions C(s) and S(s)

of eq. 4.25.

The particular solutions are defined by their values and deri-

vatives at the origin s = s .

g - i c'(s0) = o
(4.28)

The general solution of eq. 4.25 is then the sum of the particular

solutions:

"(s) • u{sQ) C(s) .+ u'(sQ) ${s)

u ' (s) = u(sQ) c ' ( s ) + u'(s0) S'(
(4.29)

This expression be verified for s = s using the boundary conditions

for C(s) and S(s) defined above.

The value at an arbitrary point s = s, is then given by eq. 4.27.

Written in matrix form we find;

C(S
(4.30)

The transfer matrix H(s, | s ) for a particle between the azi-

muthal positions s and s, is determined by the values of the parti-

cular solution at s = s,.
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4.3.1 Transfer matrices for Ap = 0

A separate function machine is made of dipole magnets, quadru-

pole magnets and drift distances. We will now evaluate the trans-

fermatrices for these elements, each of length L = s - s . The trans-

fermatrix for a string of elements is simply the product of the

transfer matrices for individual elements:

H<sn l so> = Mfsn l Vl' - - ' M<S2 l sl> M^sl so' (4'311

a)__Fi_e1d free region

K{s) = 0 in a field free region and particles drift with constant

slope. - The particular functions are now solutions of u"(s) = 0.

These solutions are

C(s) = l S {s )

C ' ( s ) « 0 S ' ( s ) - l

Thus the transfer matrix is- given by

s0j » l L
0 l

(4.32)

(4.33)

b)_Focusing element

The particle motion in a focusing element is given by

u"(s j + K(s) u(s) = 0

with K(s) > 0.

The resulting particular solutions are:

C = a cos/K L and S = b sin»^ L

(4.34)

(4.35)

with the values of a and b determined by the boundary conditions

above, i.e.
a = l
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The transfermatn'x for a focusing element of length L is thus

given by:

sQ) =
cosA L sin/K

cos^K L
(4.36)

c) Defocusing element

The particle motion in a defocusing element is given by:

u "(s) - K(s) u(s) = 0

The resulting particular Solutions are:

C = a cosh/K L and S = b sinh/K L

(4.37)

(4.38)

The boundary conditions yields:

a = l and b =

The transfermatrix for a defocusing element of length L is thus

given by:

cosh^R L ( — )sinhA L

/Fsinh/K L cosh/K L

(4.39)

4.3.2 JThe TMJ'SSjnatrix

The transfer matrix for a single cell or for a complete turn can

be «ritten in its most general form äs:

cosp + asinp ßsinp
T(S + L i s) = \v^n„ cosy _

l 0\p + siny = I cosp +

0 l j U -o

(4.40)
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This matrix is called the Twiss matrix and the coefficients a, ß

and y are periodic functions with the period L, The Twiss matrix must

have unit deterrainand since it is the product of unit determinand

matrices. This condition yields:

(4.41)

A particle executes stable betatron oscillation if the particular

Solutions C and S are faounded. The general stability condition can

be conveniently expressed using the Twiss matrix,

The transfer matrix for two turns M,M2 is simply the product

M.M- = (I cosp, + J siny,)(I cospp + I siny2) (4.42)

?
toltiplying and inserting the relation J = -I yields:

HjMg = I cosdij + P2) + J sin(pj + u2) (4.43)

Eq. 4.43 can be easily generalized to n turns:

cosp .sinp (4.44)n . . . n

The betatron oscillations are bounded if the phase advance

y per turn is real:

Tr 1T| = 2cosp < 2 (4.45)

4.4 The Betatron Function

The transverse" motion of a charged particle (Ap = 0) in both

planes with respect to the reference orbit is given by the solution

to the equation

u"(s) + K(s) u(s) = 0 . (4.25)

This equation is rather famous, it was first investigated by the
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astronomer Hill in conjunction with the Orbitals of the moon.

Below we sketch the solution ' to this equation.

According to the theorem of Floquet, Hills equation has two

independent particular Solutions of the form

uk{s) = pk(s) e±iM>s/L (4.47)

where p, 0(s) are periodic functions with period L:
i ,£

P l i2(s) = Pi.2(* + L) (4-48)

The solution after one ccnplete turn can be written äs:

uk(s + L) = pk(s + L) e-^Cs+LJ/L . Uk(s} e*lv (4.49)

and it can be related to the Twiss matrix for one complete turn:

u k (s)(cosp ± isinu) =(cosy +• asiny) u k (s } + ßsinu u k (s) (4.50)

This equation must be valid for all values of the phase advance

v. Equating the cosp terns yield a trivial identidy whereas equating

the siny terms yield:

±1 - a
(4.51)

Logarithmic differentiation leads to the expression:

u!
uk (4,52)

"k uk

An alternative expression for the right hand side of eq. 4.52 can

be obtained by conbining eq. 4.51 and Hill's equation.
• i

Multiply eq. 4.51 with K{s) and substitute uk = -Kuk yields
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K ß

uk ± i - a

Subtract eq. 4.51 from the equation above yield:

±i - a K ß
r* _

'k "

(4.53)

uk' uk

k ±1 - a
(4.54)

Equating the right hand sides of eq. 4.52 and eq. 4.54 yields:

(a2 + K g2 + aB1 - a'ß - 1) + i ( ß 1 + 2a) = 0 (4.55)

The real and the imaginary part must disappear independently and

this yields the relations:

o1 = K

(4.56)

Substitute a = - -*Q' in eq. 4.51 results in a relationship between

u. ,0 and their derivatives

(4.57)

(4.58)
uk(s) = a v-'ß cos(y(s) + UQ)

with p(s) = f |i (4.59)

B(s) is called the betatron function and u(s) the betatron phase.

Eq. 4.57 can be logarithmically integrated:

uk(s) = a /ße ± 1 y

uk(s) = a v-'ß cos(p(s) + UQ)

\s

The solution of Hills equation is a quasihannonic oscillation

with an instantaneous amplitude proportional to /ß and a reduced
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wave length \ ß(s). Q, the number of transverse oscillations per

turn is given by eq. 4.59 integrated over one complete turn

«•M*! (4.60)

The Twiss roatrix can be expressed using eqs. 4.41 and 4.56 äs:

cosy - -yß' sinu ß siny

T =

siny cosy + iß1 siny (4.61)

The linear optic of an accelerator is completely determined by the

knowledge of ß(s) and its derivative. Itote that the complete magnet

System contribute to the value of the betatron function at a given

Position s.

The betatron function resulting from a given magnet arrangement

is readily determined using the matrix formalism discussed above.

Let us assume that the machine is made of n elements. The transfer

matrix for a complete turn is given by the product of n individual

transfermatrices.

/ cosy C S \ / C S \ n M (4.62)

cosy - asiny/ \1 S1/ j=0 \C ' S V ,

Equating the elements m.- on both sides of the equation yields:

S(s + L, s)
0(s + L, s) = (4.63)

sin 2ir Q

The value of the betatron function at the position s is proportional

to the value of the sine like function after one revolut'ion. The
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value of sin 2-rr Q is given by the trace of the transfermatrix for

one turn:

cos 27T Q = -J Tr (C(s + L, s) + S ' ( s + L, s)). (4.64)

4.5 Off Energy Particles

The particle energy will in general differ from the design energy.

A finite energy deviation will to first Order only affect the radial

motion which is now described by the solution to eq. 4.18

x"(s) + Kx(s) x(s) = G(s)

Kx(s) = G2(s) + K(s)
(4.18)

The solution to eq. 4.18 can be written äs the sum of two functions

((s) = x_(s) + x.(s) (4.65)

xß(s) is the solution to the homogeneous equation and describe the

betatron oscillations around the closed orbit given by

x (s) = D(s) Ê , where D(s) is the unique particular solution to

the inhomogeneous equation

D"(s) + Kx(s) D(s) = 6(s)

satisfying the boundary condition

D(L) = D(0)

D'(U = D'(0)

The solutton can be written äs (see chapter 5.2.2 with the

Substitution x •*• D and 5G •* G):

(4.66)

(4.67)
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D(s) • (4.68)
2simrv

Thus with the knowledge of the betatron function one can cocnpute

the off energy function. The Variation of D(s) over a FODO cell is

plotted in Fig. 4.2.

We can also write the solution in matrix form for the various

elements which make up an accelerator.

D(s) must satisfy eq. 4.18 with constant values of K(s) and G(s).

The solution shall satisfy the boundary condition

D(0) = D'(0) = 0 (4.69)

Inspection of equation 4.62 suggest the following Ansatz

D(s) = (a + b cos/K L) (4.70)

Inserting this Ansatz into eq. 4.62 yields

l
KP

and the boundary condition in eq. 4.65 yields

-l

(4.71)

(4.72)

The particular solution of the inhomogenous equation for a

focusing element is thus given by:

D(s) = (l - cos/K L) K 0 (4.73)
Kp

Correspondingly the particular solution of eq. 4.62 for a de-

focusing element is given by

n/ \l - cosh/TKT M /. 741
s J 4'M
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The matrix formalism discussed in chapter 4.3 can be extended to

include off momentum particles

with

M(5|S0) =

= M (4.75)

The values for C, S and D are given above. The values of D and D'

can be computed from eq. 4.73 for a focusing element and from

eq. 4.74 for a defocusing element.

4.5 The FODO Cell

The commonly used FODO cell, shown in Fig. 4.2 is made of a ho-

rizontally focusing and defocusing quadrupole doublet spaced by

dipole magnets. In this chapter we will evaluate the optical pro-

perties of such a cell in the thin lens approximation. In this

approximation the length of a lens l approaches zero with
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K l •* j = constant i.e. ^ l •* 0. The transfer matrix for the

FODO cell shown in Fig. 4,2 is given by the product of matrices for the

individual elements. The transfer matrix at the entrance of a focusing

quadrupole is given by

M = M0 MDM0MF

L\, n \ , L\ ' l

-L
,~F

2f

-L

(4.77)

f is the focal length of the lens and L the cell length. This matrix

must equal the Twiss matrix T - i.e. H.. = J..

cosy + asinp

-ysiny

ßsinp \y - asiny l (4.78)

The Twiss Parameters can then easily be expressed in terms of

the focusing strength f and the cell length L using the relationship

above.

The phase advance v across the cell is obtained from:

Tr T = Tr M

2cosu = 2 - (4.79)
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The value of the ß-function at a position of a focusing quadrupole

is given by:

T12 = M12

Siny = L (l +

l L

(4.80)

The ß function at the position of a defocusing quadrupole is obtained

by interchanging the position of M., and MF in eq. 4.77. This yields:

ßn - 2f (
i - l L (4.81)

l l L

The values of the ß-functions normalized to the cell length L is

plotted in Fig. 4.6a versus the phase advance u. Note that the dif-

ference:

ßF - ßD = 4f tgj (4.82)

increases monotonically vrith the phase advance.

The value of (v is extracted from the relation

" T 22 J Mll " M22

sinU i
(4.83)
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Fig. 4^ - The extreme values of the ß-function and

the off energy function äs a function of the
phase advance u per cell.
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The value of s determined

T21 =

•Yp siny =

v •

front:

H21

-L

_J

f cosir

(4.84)

The values of an and yQ at the Position of a defocusing quadrupole

are given by interchanging Mg and Mp in eq. 4.77. This yields:

(4.85)
COS7

f cos
(4.86)

To deterraine the dispersion function D(s) we must make use of the

3 x 3 matrices defined in eq. 4.76. The computational effort can be

reduced by making use of the fact that the slopes of the dispersion

functions disappear in the middle of the quadrupoles:

(4.87)

with

/ l

¥
\

M _ u
- Hr.

0

1

0

/) H0(^L)I^(

0\l

°

0

l/ \

Jf)
1
7

1

0

\ / l
1

1 / \

0

1

0

0

0

I

(4.88)
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l - l L L
7

1 + W4f

LA
8

(1

\ k.,i

8f 2 ,
(4.89)

L and $ are respectively the length and the bending angle of the cell

This yields the equations:

(4.90)

Solving eq. 4.90 for the dispersion functions yield:

l U i
Dr

(4.91)

(4.92

The normalized dispersions T-T are plotted in Fig. 4.6b versus

phase advance.

The average value of the dispersion function is given by:

4f
P

(4.93)
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4.6 The .Courant^Snyder„Jnvarlant

The transverse motion of a charged particle in a magnetic field

including Synchrotron radiation (see chapter 7) is described by the

Solutions to the equation

u" + J(s) u1 + K(s)u = 0 . (4.94)

At present energies the Synchrotron radiation from a proton can be

neglected, i.e. J(s) = 0 and eq. 4.94 is reduced to the familiär

Hill's equation.

The Uronskian determimant is defined äs:

W(s) =
u. u.

(4.95)

(4.96)

u, and u« are Solutions of the differential equation, i.e. they

satisfy:

uj' + J(s) u[ -f K(s) Uj = 0

u- + J ( s J u2 + K(s) u2 = 0

Multiplying the first equation with u,, the second with u, and sub-

tract the two equations yield:

dU
+ J W = 0 (4.97)

with W = u,u£ - U|U2-

The solution of this equation is given by

W(s) = WQ e f 2 J ds . (4.98)

Thus in the case of an electron the Hronskian depends on s where-

as for a proton W(s) = W is a constant of motion.
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To determine the invariant W we take u, = Aß e1lJ's' and set

M- = u, i.e. u- is an arbitrary real solution of Hill's equation,

üi
WQ = (U U[ - U 1 Uj) = Uj (U — - U ' )

(4.99)

Jl

where eq. 4.51 has been used to substitute

U j i - a

Jl

With u.u? = g the equation above simplifies to:

..>2* (a u + g u'

(4.100)

(4.101)

We consider the value of WIT at a fixed azimutti s , i.e. a and ß

are constants. On each succesive turn the particles will arrive at

s = s with different values of u and u1 however the values must

satisfy eq. 4.101. Thus on successive turns the particles traces an

ellipse in u u1 space äs indicated in Fig. 4.7. The area of the

ellipse is given fay
A = w i,

(4.102)
A = TT U U*max o

with u and u' defined in Fig. 4.7.

It follows fron! eq. 4.101:

"«x -l/P" - Vl/5"

Substitute these values into eq. 4.102 yields:

A = c .

(4.103)
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Fig. 4.7

The phase ellipse.

The quantity uu1 is by definition the beam emittance - i.e.

the product of beam size and angular divergence. The Wronskian can

thus be identified with the beam emittance and it follows that the

beam emittance is a constant of motion for a proton beam, but not

for an electron beam because of the Synchrotron radiation.

The betatron motion is thus completely defined

u = ./T /J3 cos(u(s) - v0l) (4.104)

Note that for a proton beam the emittance e and hence the betatron

amplitude decreases with increasing energy äs:

P P_i_ J.
e = ir(uu') = u — = u —

P BY

where g is the normalized particle velocity 6 = f and

E

(4.105)

Y = . Usually the invariant emittance (e ß y) is quoted.
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5. Hagnet Imperfections and Resonances ' ' ^

5.1 Introduction

In the prevlous discusslon we assumed that the guide field is made

of Ideal dipole and quadrupole magnets. However, a real magnet has

imperfections, raagnets are not exactly reproducible and they can only

be installed with a certain precision. The resulting deviations from

the ideal guide field are grouped into linear and nonlinear errors.

The linear errors are caused by imperfections in the dipole and

the quadrupole components of the field and these errors cause closed

orbit deviations and tune changes. The magnitude of the linear effects

are independent of the particle amplitude.

The nonlinear errors are caused by higher multipole fields and

their effects depend on the particle amplitude. Nonlinear effects are

particular important in machines made of superconducting magnets.

Superconductlng magnets are rieh in higher multipoles since the field

is produced directly by the current distribution and not shaped by

the ironyoke. An ideal cosQ current distribution would produce a perfect

dipole field. However, the cos9 distribution in a real magnet is

only approximate and it is only possible to position the wires with a

certain precision. The relative strength of these errors are inde-

pendent of the induction. The persistent currents, caused by flux

trapped in the conductor, leads to higher multipole fields. The

strength of these multipoles are independent of excitation and they

are therefore particularly important at low fields - i.e. at injection.
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5.2 Linear Fieljl Errors

Dipole and quadrupole field errors raises the obvious question

whether a closed orbit still exists, and if so, how is the betatron

function and the tune changed in their presence. We will address

these questions in this section.

5.2.1 Dipole Errors

The ideal equilibrium orbit is no longer a possible trajectory,

however, in the case of sraall field errors we expect to find a neigh-

bouring trajectory which will close on itself. This new orbit, de-

picted in Fig. 5.1 is called the disturbed closed orbit and the par-

ticles now make betatron oscillations around this orbit.

Ax =0

Ax '=AG-As

xc(s)

ideal closed orbit

disturbed closed orbit
Fifl. 5.1 - The change in closed orbit due to an dipole error iGAs.
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The amplitude x(s} of an arbltrary particle vrith respect to the

ideal equilibrium orbit is the sum of the disturbed closed orbit

amplitude x (s) and the betatron amplitude x (s).

x(s) = xc(s) + x$(s) (5.1)

Assume that there is a disturbance ABAs located at s = 0. This dis-

turbance will change the slope of the trajectory at this point but

not its displacement.

AX' = ABAS

or I . _ AX' _ AB
= TT— = T!—

AS Bp

Thus the equation for the disturbed closed orbit is given by

x- + Kxxc = *

The general solution of eq. 5.3 can be written äs:

x „(s) = a /ß(s) cos(u(s) - y )

(5.2)

{5.3}

(5.4)

The constants a and u are determined from the condition that the
ro

orbit must close on itself after one turn:

xc(L) = xc(0) (5. Sa)

x^.(L) + AG AS = x^(0) (5.5b)

By substituting the solution eq. 5.4 into eqs. 5.5a and 5.5b we find:

M = i r Q

a .
2simrq

(5-6)

{5.7)

The disturbed closed orbit is thus given by:
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(5.8)

Assuming that the dipole errors are distributed according to

6G(s') around the ring eq. 5.8 can be generalized:

xc(s) =
2sin

cos(p(s) - - irO.) ds'
*
(5.9)

The salient features of eq. 5.9 can be sumnarized äs follows:

- The displacement of the closed orbit is everywhere proportional to

the strength of the disturbance ABAs and to the square root of the

beta function at the position of the disturbance. It is also pro-

portional to the square root of the beta function at the point of ob-

servation.

- In order for the closed orbit distortion to remain finite Q (Q )x y
must not be an integer. For integer Q values the particles will cross

the disturbance with the same phase on every turn - i.e. the partic-

les will receive a kick in the same direction on every turn leading

to an divergent amplitude.

Correction dipole magnets are installed in all machines to mini-

mize the closed orbit deviations. This is done by observing the beam

Position with monitors at say 4 positions per betatron wavelength

and adjusting the correction dipoles to minimize the closed orbit am-

plitude. Typically disturbed closed orbit amplitudes on the order of

l mm rms are obtained after corrections.



- 77 -

5.2.2 Gradient Errors

A gradient error located at s = 0 can be represented by a thin

lens of focal strength 6 = 1/f. Such an error will obviously modify

the betatron function of the undisturbed lattice and shift the tune

froro its undisturbed value. These effects can be evaluated using the

Twiss raatrix T. The Twiss matrix for a complete turn is given by

the product of a quadrupole matrix Q - representing the disturbance

and the undisturbed Twiss matrix T_

T = Q T , (5.10)

T =
cosp-txsiny/ COSVa0Sinyo

The index refers to the undisturbed orbit. Multiplying the matrices

on the right hand side and taking the trace yields:

l ö ßTr (T) = cosy = (5.11)

This expression can be simplified for small üjne changes - i.e.

y = y„ + Ay:
ö B,

or since AQ =

AQ = -
4TT

(5-12)

(5.13)

Thus the tune change AQ is directly proportional to the strength of

the disturbance and to the value of the betatron function at the

Position of the disturbance.

Next we evaluate the change in the betatron function at s = s„

caused by a gradient error at s = s..
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Ax

35224

Fi9- 5 -2 ' Change in the betatron function due to a gradient

error at s = s..

The unperturbed Twiss matrix for a single turn can be written

'all a!2 !2 (5.14)

Including the disturbance at s = s yields a Twiss matrix T:

T = (5.15)

Hence

AT = T, 0 - T'12 = 6sin{y0 -

(5.16)
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The change in T., can also be expressed äs a total differential:

= A(ß2sinu) = (5.17)

«0,up,

Equating eq. 5.16 and eq. 5.17 with the Substitution Ay = - j—

yields the change in betatron amplitude at s = s2 due to a gradient

error 6 at s = s,:

Aß2(s2) =
cos[2rt Qx - 2(y2 -

2sin 2» Qv

(5.18)

The change in the betatron function is directly proportional to the

strength of the disturbance and the product of the betatron function at

the Position of the disturbance and the position of the observation.

The beam becomes unstable if the tune approaches a half integer -

, _ « J (2n + U

The beat frequency introduced by an gradient error is twice the

beat frequency caused by an dipole error.

Uith a gradient error k(s) distributed around the ring the tune

shift and the change in betatron function can be written äs:

AQ = - k(s) ß(s) ds (5.19)

Aß(s) = k(s ' ) ß(s') cos2lTrQ + y(s ') - y(s) ]ds ' (5.20)
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5.3 Non Linear Errors

We have seen above that the betatron oscillations becarae unstable

for integer and half integer tune values in the presence of dipole

and quadrupole errors. Higher order multipole errors will drive

higher order resonances ' - i.e. the particle motion will now become

unstable for fractional tune values l/n = 1/3, 1/4, ... . In general

Q values satisfying the relation

+ m Qz = s (5.21)

with t + m = n, and a, m, s and n integers will be unstable.

The ensuing resonance pattern is shown in Fig. 5.3 and the

corresponding driving terms for the lowest order multipoles are

listed in Table 5.1.

Table 5.1 - Resonance driving terms

Multipole Order n regulär skew

Quadrupole 2

Sextupole 3

Octupole 4

Decapole 5

x4 - 6xV * /

5 , „ 3 2 r t
x - lOx y + 5xy

2xy

1 ?
y - 3x^y

3 3
4xy - 4x y

? 3 4 5Dx y -5x y-y

For example a third order resonance will yield four forbidden lines

in the resonance diagram shown above, namely 3Q = s, 3Q = s andx y

the coupling resonances Q + 2Q„ = s and 2Q + Q = s.x y x y

Indeed the order of a resonance is identical to the order of the

driving term for an ideal closed orbit. However, in the presence of

closed orbit errors a multipole of order n may excite lower orders.
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Qx+Qy=0

m 1/3 1/2 m+1

35225

Fig. 5.3 - The pattern of forbidden tune values caused by low order

resonances.
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The width of resonance lines depends not only on the strength and

the azimuthal distribution of tKe driving tertns but also on the

betatron amplitude in the case of non linear errors - i.e. sex-

tupole and higher.

Multipole errors may therefore limit the usuable aperture to

values which are sroaller than the geometric aperture gfven by the

vacuum chamber.

S.3. l The jtesonance Hechanjsm

The phase space coordinates p and x of a particle can be repre-

sented in the circle diagram {Fig. 4) äs:

p = ß x1 = a sinCje

x = x = a cosQÖ
(5.22)

a = /(ßx1) + x is the amplitude and 9 the azimuthal angle of

the particle in the machine - i.e. the particle makes Q turns in

the phase space diagram per revolution. This representation is well

suited to deroonstrate the basic resonance mechanism..

A field error ABAs change the motnentum of a particle by:

.„ o ABAs

The roomentum kick, shown in Fig. 5.4 advance the phase by

cosQe= Ap

and increase the amplitude by:

(5.24)
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- The circle diagram in normal ized phase space.

» AP (5.25)

As an example we will consider the particle motion in the plane in

the presence of a sextupole of strength B" and length 1. The magne-

tic induction resulting from this sextupole is given by:

2AB =
L.

The sextupole produces a momentum kick:

.2

(5.26)

B" I x ' 1 1 lAp = ß x' = ß( " 2B'p" ) = ß fa-^ a"- cos^Q9 (5.27)

The resulting change in phase (eq. 5.24) and amplitude {eq. 5.25) is

given by

Ap = ß a cosQ9 = ß (3cosQ6 + COS3Q9)

Aa
a — a cos2Q9 sinQ9

(5.28)

(5.29)

We are now in a position to evaluate the width of the third integer

stopband.

Let us assume that the radial tune t) is close to an 1/3 integer.

In this case cosQÖ averages to zero and we are left with the term

proportional to cos3Q9. This term varies slowly from turn to turn

modulating the unperturbed üjne Q° with an amplitude AQX given by:

AQ,
AM S B" l cos3Q9 (5.30)'x Tfr 16ir Bp

During the lifetime of the beam the tune will take all values within

the limits:
•s a R 1 ' 1 a n Q D' ' 1 i

(5.31)<« - B " ' a
l" l a

Bp l&TT
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If 3 Q = s = integer is inslde this band, the perturbed value of Qv
A X

will become equal to the integer s after several turns. From then on the

particle will lock on to the resonance and advance in phase by 2irs

per turn. The resonance thus appears to have a finite width given

by the strength of the disturbance B"l, the amplitude a and the

value of the betatron function & at the position of the disturbance.

The change in amplitude is given by:

(5.32)

Thus on every turn the particle receives a kick in the same di-

rection resulting in a monotinically growing amplitude.

It is clear from the discussion above that the motion of a

particle will be stähle if the amplituae a satisfies the condition:
16rr (Bp) AQ

a < !L (5.33)
l ß B"

where AQ is the distance between the working point and the third

integer resonance. Similar relationships can be obtained for higher

resonance. Thus non linear fields may limit the machine acceptance

to values less than the geometric acceptance.

Such fields may be caused by the magnets or they may be due to

higher order correcting fields. For example the sextupoles needed

to correct the chromaticity introduce strong non linearities.
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5.4 The Chromaticity

The focal length of a lens is inversely proportional to the

particle raomentura causing particles of different momenta to have

different tune values. A single lens of length As leads to tune

spread AQ of:

AQ - ^ß(s) Ak(s) As (5.34)

The total tune spread is obtained by substituting Ak = -k(s)Ap/p

and integrating over one revolution. This results in an expression

for the natural chroroaticfty

s ds (5-3 5>

The natural chromaticity is negativ and large. For example the natural

chromaticity of the HERA proton ring in £ = -62 and E, = -88 withx y

roughly equal contributions from the arcs and the straight section.

This corresponds to a tune spread of Q = + 0.07 and Q = + 0.09 for
A * • J —

_o
a typical nwmentum spread of + 10 . Thus - if left uncorrected - the

beara will cross low order resonances and be lost.

However, the chromaticity can be corrected by sextupoles located

adjacent to the focusing quadrupoles. At least two families of sextu-

poles are needed to correct for the chromaticity in both planes. Let

us consider the motion in the horizontal plane. The sextupole field

is given by ,

( RO (5.36)

The sextupole field can be written äs an amplitude dependent gra-
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k s ( TOT- ) * = mx

dient field with

The resuHing tune change is given by:

AQ = m ß ( s ) x(s) ds

n>ß(s ) ( x ( x ) +D(s)

(5.37)

(5.38)

The total chromaticity C of the ring is the sum of the natural

chromaticity caused by the momentum spread of the particles and

chromaticity produced by the correcting sextupole magnets.

ds (5.39)

10,32)
6. The Synchrotron Motion

6.1 Introduction

Energy is transferred to the particles by means of an accelerating

System roade of a power source and resonating cavities. The r.f.

power P is fed to the cavity and excites an longitudinally electric

field with a peak voltage V oscillating at a frequency u. The re-

quired power is given by:

(6.1)

R is the total shunt impedance of the cavities. As an example the

PETRA cavities operating at a fixed frequency of 500 Mhz have a shunt
ML!impedance of 12̂ . Ferrite loaded cavities designed to work over a

large ränge in frequencies have much lower shunt impedances.

The average energy gain per turn for the reference particle is given

by: e U = e V sin (UT (6.2)

For the reference particle to remain in phase on sucessive turns

must be an integral multiple h of the revolution frequency

- 2lt

h n. (6.3)

The Harmonie number h is the maximum number of bunches which can be

accelerated simultanously. Particles with energies and r.f. phases

different from those of the synchronous particles will execute

oscillations in energy and phase with respect to the synchronous

particle.

The relative change in revolution time n(p) for a particle with

momentum different from that of the synchronous particle is given by:

n(p) = -7 = ~ ~ j j = ^ T ~ (P '6'4'

where L denotes the machine circumference and ßc the particle velo-

city. The first term results from the change in orbit length with

momentum and the second term from the change in velocity.

The time dilatation function n(p) is in general written äs:

l
T»(P) -

l

7
(6.5)
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with:

dß _ l d£
6 " ? P

l , dL .
~r = ( n:1

(6.6)

Note that for particles wtth the transition energy Y = Ytr the re-

volution time is independent of momentum.

The transition energy Y, can be expressed using the optical para-

meters. The incremental change in orbit length for a particle travel-

ling a distance ds with a radial amplitude x, is given by:

dL = (l + G(s) x ( s ) J ds (6.7)

L = 4 dL = i (l + 6(s) x(s)J ds (6.8)

6{s) D(s) ^P-ds

The first term in eq. 6.5 is given by:

l _ _ _ , dL ^ , dp .-l ds (6.9)

The quantity o is usually called the momentum compaction. In the

case of a separate function machine only the bending magnets contri-

bute to a:
G s

(6.10)a = — i D(s) ds
L >

As a rough approximation

(6.11)
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For electrons usually Y >> Ytr and an electron with a positive ip

has longer revolution time than the synchronous particle. This is

also true for protons above the transition energy. However, below

the transition energy a particle with positive AE has a shorter re-

volution time. At Y = Ytr the revolution time is independent of mo-
mentun and there is no phase focusing.

The Synchrotron motion is illustrated in Fig. 6.1 for a particle

above the transition energy. Plotted is the energy deviation iE versus

the phase deviation 4$ both counted with respect to the synchronous

particle. Consider a particle with positive AE which traverses the

r.f. cavity at the synchronous phase 4 . After one revolution the

particle will traverse the r.f. cavity with the phase $ + 40. Thus

it will gain less energy than the synchronous particle. The particle

will continue to move away in phase untiT AE = 0. It will then start
to move towards 0 and arrive at 4> with an energy less than that of

the synchronous particle. From then on it will gain more energy than

the synchronous particle but continue to move away in phase until

its energy equals that of the synchronous particle. As soon äs the

energy is higher than that of the synchronous particle it will Start

to move towards * and arrive at 0 with an energy higher than that

of the synchronous particle. This completes one period. The aim of
this chapter is to derive and solve the equations for the Synchro-

tron oscillations and to deterroine the stable boundaries in A0 and

AE In terms of the r.f. pararaeters. The effects of the Synchrotron

radiation on the Synchrotron motion will be discussed in chapter 7.

6.2 The Equation of Hotion

The synchronous particle is accelerated at a constant radius RQ

and the magnetic induction must therefore be increased proportional

to the gain in momenturo:
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Fig. 6.1 - Longitudinal trajectories in
35222

o
W = ^|>* space for a stationary bücket $o = 180

o

and a moving bücket $ = 150 .
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(6.12)
dB

T is the revolution time T =

The relationship between energy gain and ramping speed is given by:

T r.2. OB

dE
(6.13)

we will now consider the Synchrotron motion of particles with small

energy and phase deviations with respect to the synchronous particle.

A* = d> - 4,, , dE = E - E and du - il - I2„ (6.14)
T0 0 0 * '

The change in revolution frequency for a particle with an energy

deviation AE was derived above.

dil dp dE
(l " p " R ß p

The corresponding change in phase angle is given by:

di). = - h d9 = - h Q dt

Combining eqs. 6.15 and 6.16 yields:

R

(6.15)

(6.16)

dE
S2 ( U r s > S <6-1 7 '

The energy gain of a particle arriving at a different phase will

differ from that of the synchronous particle

AE e V . , T e V

2ir R

pR =

(6.18)

16.19)

The energy gain relative to that of the synchronousparticle is given

by:
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Expanding R and p to first Order yield:

HT {Ro (sin* '

(6.20)

(6.21)

Substituting P = BÖ in the equation above and consider only small

amplitude phase oscillation yields:

d / AE , _ e V e V
W (6.22)

Combining eqs. 6.17 and 6.21 yield the equations for small amplitude

phase oscillations:

-n0 h e V cos*0K0

2* PO Ro

(6.23a)

(6.23b)

The solution for n cos$ < 0 is a sinusoidal oscillation with fre-

quency

= A sin (tu t + $ ) (6.24)

We may now distinguish two cases:

Below transition energy n < 0 and the phase * must be choosen bet-

ween 0 and ir/2 for stable acceleration and between 3/2?r and 2ir for

stable deacceleration. Above transition energy $ > O.and $ must be

between yr/2 and TT for stable acceleration and between ir and 3/2u for

stable deacceleration.
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6ĵ  Phase Space Boundary and small Amplitude Oscillations

The limitfng values in phase and energy for an assembly of par-

ticles traversing a given r.f. system can be determined usfng the

Hamiltonian formalism.

The phase angle $ and the nornalized energy

ft. (6.25)

are used äs conjugate variables. The Hamiltom'an equations expressed

in terms of these variables:

3H
'S* U

'o "o

S -

(6.26)

(6.27)

The equations above were obtained by inserting eqs. 6.17 and 6.22

into the Harailtonian equations of motion.

The Synchrotron motion is thus described by the following

Hamiltonian:

H = 0

'0 0

e V (cos* - cos<f> (6.28)

The longitudinal iwtion of the particles are represented in the

U-4 plane by trajectories of constant H. Note that the Synchrotron

motion repeat itself every ZK in phase, i.e. h times around the ring.

Within each period of 2it the motion has two fix points given by
• •
4, = M z o. Fron eqs. 6.26 and 6.27 these fix points occur at:

H = 0 , < C = 4K o r * = i r - * (6.29)
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The fix point U = o and $ = 4» are inside the stable region

and correspond to the synchronous particle. The separatrix - i.e.

the limitfng curve which separates the stable and the unstable re-

gion passes through the second fix point a t H = O a n d < } i = ' i r - $ .

Note that the particle motion in <f> and U becomes slow äs particles

approaches the fix point - i.e. the Synchrotron frequency us slows

down äs the particles approach the limit of stability.

The separatrix can be evaluated by inserting the coordinates of

the unstable fix point into the Hannltonian eq. 6.28. The maximum

energy deviation is given by

(W) sep (lr-2«o) - 2cos*0) (6.30)

To obtain the extreme in phase we equate:

H '
h n n ,2 . e V

o o sep ' cos*

(6.31)

Substituting Vr according to eq. 6.30 on the left hand side

and introducing the coordinates $ma)( and H = 0 on the right hand

side of eq. 6.31 yield the following transcendental equation for the

maximum phase:

(6.32)

= 150° are shown

in Fig. 6.1. These trajectories correspond respectively to a stored

The phase space trajectories for $ = 180° and $
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and an accelerated beam above the transition energy.

The amplitude of the longitudinal

oscillation is determined by the initial conditions of the injected

particle. Let us consider a particle which is injected at the cor-

rect r.f. phase * = $ butwitha normalized energy deviation

W - w- . If W, $_ is within the separatrix then the particle will
o

travel on a closed trajectory in 0,w space with a maximum energy de-

viation W. The maximum excursion in phase can be evaluated from the

Hannltonian:

n n £2 *« h n £"2 ^ ,, , , , /j. j. \ . \ 0 iiL. 0 0 ijL , 6 V [COSdj~COS4 l "*"[$ Y / S 111(6 )

'«K_ 'P«.'*«. ^-"^ ff ^ 1 \o ^ o o (6 .33 )

Let us consider three special cases:

H(*.H)-

a) Storage of particles with energies below the transition energy.

In this case $ = 0

eq. 6.33 for W = 0

In this case $ = 0 and the resulting value of $ is obtained from

W Ir (cos* max

'"l-V "o 1/2 **•« = 1 2 are sin ( _ °, )̂  M
rmax

e V

(6.34)

b) Storage of particles with energies above the transiton energy.

In this case * = TT and $_,v is again obtained from eq, 6.32 witho max
W = 0.

'max = + are cos 1/2

Ro e V

(6.35)
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c) A particle with y > Ytr is accelerated and we consider small

amplitude oscillations

then be simplified to:

amplitude oscillations ty = $ - 4» . The Hamiltonian in eq. 6.33 can

e"oRo 2PoRo

e V

2TT
(6.36)

The extreme amplitudes in phase for a particle withwmax = W is given

by
-2nh n n„ M7 -

W . (6.37)
V P0R0cos<}»0

6.4 Adlabatic Damping

The equation for the Synchrotron oscillation was derived assuming

time independent parameters for the synchronous particle. This is

permitted since the timescale for an accelerating cycle is very long

compared to the Synchrotron oscillation period T . The change in M

and (fr during the accelerating cycle can be evaluated using the Bolz-

mann-Ehrenfest theorem. If a non-dissipative oscillatory system is

described by the cannonical variables p and q, then, according to the

Bolzmann-Ehrenfest theorem, these parameters will change during the

cycle such that

I = 0 p dq = constant. (6.38)

where the integral extends over one period of oscillation.

We now use this theorem to investigate the time behaviour of M

and <t> for small aroplitude oscillations.
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= t H d$ = i (6.39)

Replacing -rt according to eq. 6.26 and u according to eq. 6.23b

yields:

P0Ro e V cos*o

(6.40)

The normalized energy makes sinusoidal oscillations. Averaged

2 l ~2over one turn U = 7 M where W is the peak amplitude. Then adia-

batically w will change äs:

W ~ V cos* (6.41)

- 1/4
i.e. W will grow proportional to p ' .

He can write down a similar equation for the phase oscillations:

I = (l M dW = (A* 3r) ~ (6.42)(A* )

Replacing gr according to eq. 6.27 and u according to eq. 6.28b

lead to

^"o ,1/4 (6.43)

Thus the maximum value of the pase amplitude A4> decreases with mo-

mentum äs:

A* ~p^1/4 (6.44)

Note that W A4 is an invariant.
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7. Effects of the Synchrotron Radiation on the Single Particle

Motion

7.1 Introduction

The instantaneous power p radiated by a relativistic particle of

energy E deflected in a magnetic field of induction B is given by:

-2n2e2 c3
Y

(7.1)

where

The instantaneous radiated power is proportional to the product

of beam energy and magnetic induction squared and inversely propor-

tional to the fourth power of particle mass. For given values of E

13
and B an electron will loose 10 times more energy than a proton per

turn. The motion of the protons is thus not influenced fay Synchro-

tron radiation at present energies and the equations discussed above

remain valid. On the other hand the design of an electron mach ine is

governed by Synchrotron radiation and the single particle motion is

strongly influenced by the emission of photons.

The average energy loss (eU ) of an electron of energy E moving on

the design orbit is obtained by integrating p over one turn.

(7.2)

(eU„) -
Cv E
-I_ ds
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For a seperate function machine with G = —- in the dipoles and zero
po

elsewhere:

[e U,
(.5 keV EJ (GeV)

P»
(7-3)

The Synchrotron radiation is focused within a cone of opening angle

•i- along the direction of particle motion. The electrons do not ra-

diate continously but emit discrete quanta with an energy distribu-

tion shown schematically in Fig. 7.1. A half of the total radiated

power i s

S(EY/EC)

0.5 1.0 1.5 2.0 EY/EC

Fig.7.1 - The energy distribution of the Synchrotron radiation

measured in units of the critical energy.
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carried by photons with energies above the critical energy E :

2.23 keV (GeV)
E =

P»

The raean photon energy is proportional to the critical energy

8
(7.5)

The average energy loss suffered by the electrons per turn must be

replem'shed by the r.f. system. However, both the number and the

energy of the emitted photons fluctuate from turn to turn and this

represents a source of noise which excites oscillations.

Both the betatron oscillations and the Synchrotron oscillation

are damped by the average effects of the Synchrotron radiation and

excited by its quantum fluctuations. The final beam dimensions result

from the equilibrium between the two effects.

The Synchrotron radiation also governs the design of the technical

components for HERA's electron ring.

The total power radiated by the beam is given by P. = (e U ) n .

At 30 GeV the nominal current of 56 mA radiales a total power of

7.5 MW. This radiation will strike the outer walls of the vacuum

chamber with a linear power density of max. 2.1 kW/m.
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Furthermore a certain percentage of the photons will Compton scatter

and to avoid radiation danage to equipment in the tunel the majority

of these photons must be confined within the vacuum chamber , res-

pectively with the magnet systera. A photon striking the wall of the

vacuum charaber will lead to gas desorption. In order to achieve the

vacuum needed one must use either a distributed pumping system or

closely spaced discrete pumps.

Below we will discuss the effects of the Synchrotron radiation on

the single particle raotion. This discussion will follow the excellent

account given by H.Sands in reference 9.

7.2 Radiative Damplng

7.2.1 The longitudinal motion

The instantaneous power radiated by an off energy electron differs

from that radiated by the synchronous electron since the particles

have different energies and travel through different regions of the

guide field. The average energy loss per turn (eil) for an off energy

particle is given by:

eU = e U „ + 0 AE (7.6)e U + 0 AE

,dU,where 0 = e(̂ f)c • The equation of Synchrotron motion (eq. 6.20) must
o

be modified to include the energy loss due to Synchrotron radiation:

d , AE , _ e V „„„A A$ - 0 AE (7.7)

Combining eq. 7.7 with eq. 6.15 yields the phase oscillation equation

in the presence of Synchrotron radiation.
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(A
dt'

2a (7.8)

vnth a =

For damping times T = — which are long compared to the revolution
t-

time eq. 7.8 has the solution.

A«, = A e'V* cos(u t) (7.9)

Thus, neglecting quantum fluctuations, the amplitude of the longitu-

dinal oscillation decreases expeonentially with a time constant T£.

a can be expressed in terms of the lattice parameters. To this end

we integrate the energy loss over one turn:

Y (l + £) ds (7.10)

Since we are interested in the energy loss of an off energy

AEelectron x = D

Differentiation of eq. 7.10 yields:

e dU

dE

dP

dE

,+ i l ds (7.11)

The first term evaluated according to eq. 7.1 and with the Substi-

tution:
HD UD OA i
Kf = 717 7TT ~ l

0

D dB
r: ar yields:

dP p DPV dB
Y _ 2 —t + 2 —

dE Eo EoBo dx

(7.12)
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Eq. 7.11 is written äs:

edU e U,

dE

with

(2 + AJ) (7.13)

(7.14)

The expression for AJ can be simplified using eq. 7.2 and the definition

D(S)G(S) (G*(S) + 2̂ (5)) ds

"u - '4 GZ(s) ds

Eq. 7.15 evaluated for a separate function machine yields

(7.15)

where R is the average machine radius. Note that for a separate

function machine AJ is small whereas it is large for a combined

function machine,i.e. an accelerator satisfying G(s) K(s) f 0.

The inverse damping time a£ - evaluated for a separate function

machine - is given by:
e U

EoTo

(7.17)

The characteristic damping time for longitudinal oscillations is

simply the time it takes the electron to radiate away all its energy.

Evaluated for the electron ring of HERA gives ~- = 4.5 msec at 30 GeV.

Note that the daraping time is inversely proportional to E .
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7.2.2 The vertical^ betatron oscillations

The radiative damping mechanism for the vertical betatron motion is

illustrated in Fig. 7.2. The electron emitts a photon along its di-

rection of motion - i.e. the electron suffers only a loss of energy

without a change of position or slope. However, in traversing the r.f.

cavities the electron receives a longitudinal kick compensating the

average energy loss - i.e. AE = e UQ. Thus the slope of the particle

is slightly reduced after traversing the cavity:

(a)

35233

Fig. 7.2 - The vertical motion of a particle in the arcs (aj and

in the r.f. cavities (b).
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z1 + dz1 =
P 0 + «P

= z' (l - (7.18)

dz1 M -z , dE e U(

•^
The position z and the slope z1 of the electron is given by

A
z = A cosy respectively z1 = -5 siny. (7.19)

P

The amplitude A can be written äs:

A2 = z2 + (ßz1)2 (7.20)

The change in amplitude caused by the energy loss due to Synchrotron

radiation and its replenishment by the r.f. cavities is given by:

? 3 e U
AdA = - 8 z1 dz1 = - (ßz'r ( -P-£ ) (7.21)

o
The electron emits photons with equal probability along the orbit.

Averaging ßz1 over all phase angles y yields:

<ßz'>2 = £- (7.22)

Inserting eq. 7.22 into eq. 7.21 and integrating pver t yields

z1 (7.23)A - A

with
(eU,

2E0T0

The araplitude of the transverse motion is thus exponentially damped

with a damping time twice the longitudinal damping time.

7^.2.3 Damping of^ the radial betatron motion

The damping mechanism outlined above is also effective for the ra-

dial betatron motion. However, the photon is radiated in a region
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with radial dispersion and this yields a term which is antidamping. The

basic mechanism is outlined in Fig. 7.3. The total radial diplaceraent

is a sum of the closed orbit displacement x and the betatron displace-

ment with respect to this closed orbit

x = x„ (7.24)

Fjg. 7.3 - Radial amplitude growth due to the emission of Synchro-

tron radiation at a position with dispersion.
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When the electron radiates a photon the closed orbit will suddenly

jump by dx = D -F-. However, the spatial position of the electron
o

remains unchanged such that a change in the closed orbit must be com-

pensated by a change in betatron amplitude:

dxß = -o£ (7.25)

The change in slope due to D1 is neglected.

The radial position and slope of the electron can be written äs:

This yields:

AdA = x„ dx„ = - D x, dE

(7.26)

(7.27)

The energy loss in a path length ds, is given by:

P x P
dE = - -3- da = - (l + -i) ̂  ds

The resulting change in amplitude

AdA = D x„ (l +
P ds

< ^

(7.28)

(7.29)

The expectatlon value of dA is obtained by averaging eq. 7.29 over

all phase angles

<dA>
(7.30)

For a separate function machine, e U , the total energy loss per turn,

is equal to P ~ summed over all the dipole magnets. The resulting

change in the amplitude is dA
(7.31)
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scales with energy and tune äs o. ^ E/Q.

The final emittance is the equilibrium between the damping caused

by the r. f. systero, corapensating the average radiation loss and the

growth caused by the quantum fluctuations.

< D > R

tg( ) sinZ{
(7.39)

R is the average radius in the arcs and Q is the contribution to

the tune from the arcs. Note that the factor

3

tg sin^ J

is 8 at p = 0 and varies little with the phase advance p for p less

than 90° per cell.

The emittance of an electron beam is not a constant of motion but

varies with the tune. Strong focusing, i.e. short cell length and

large phase advance per cell will lead to a small radial emittance.

Since the vertical dispersion is rather small the vertical emittance

is mainly due to the coupling of vertical and radial motion. In general

the coupling raay be äs sroall äs a few percent for a well aligned

machine.

This results in a ribbon type beam for the electrons äs compared to

a round proton beam. However, it is of course in principle possible to

deliberately increase the coupling between the radial and the verti-

cal motion by installing skewed quadrupoles.
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8. Polarisation 34

The importance of colliding electrons or positrons of well defined

helicity with protons is discussed in section 2.

Beams with a high degree of Polarisation has been observed3^J at PETRA

and the beams have been collided without destroying the initial po-

larisation. Scaling from these results it seems reasonable to expect

transversely polarized e" beams in HERA.

8.1 Transverse polarisatioTi

The spin of electrons {positrons} injected into an accelerator will

align along the direction of its vertical guide field. The spin sum

along the vertical direction is zero for an unpolarized beam, i.e.

there is the same number of electrons with spin pointing upwards äs

downwards. As the electrons are deflected in the magnetic guide field

they emit Synchrotron radiation which in part is due to a spin flip

transition. The probability of magnetic dipole emission depends on

the orientation of the initial spin. These probabilities are given by:

(8.1)

where the arrows (ti) indicate the initial and the final spin direc-

tions either parallel or antiparallel to the direction of the magnetic

induction. The circulating beam will gradually become polarized with
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the spins aligned antiparallel to direction of the guide field, The

beam Polarisation builds up exponentially:

P (t) = P 0 ( l - e - t / Tp) (8.2)

In the absence of populations effects PQl the maximum degree of

Polarisation, is given by:

P = "(+) - nft
o n(V) + n(t (8.3)

where the final Polarisation n(+) and n(t) are determined by detailed

balance:

n(t) W(-H) = n(+) H(++)

Combining eqs. 8.3 and 8.4 yields:

(8.4)

8
= = 0.92 (8.5}

5/T

T , the build up time of Polarisation is given by

-l (8.6a)
r

Using eq. 8.1 and inserting the numerical values yields:

T = 98[s) p?(m}R(m) (8.86b)
p E5(GeV)

where p is the bending and R the average radius of the machine.

The requirement that T must be short compared to the storage time

of several hrs determines the minimum electron energy. The Polarisation

time for a 30 GeV electron beam in HERA is of about 20 min.

Bargman, Michel and Telegdi36) nave written down the general equation
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for spin motion in electric and magnetic fields. For the spin motion

in a circular accelerator this expression can be simplified to:

The coordinate System, moves with the beam. n is

the direction of the spin in space and B is pointing along the ver-

tical direction z and a = = 0.0011597.

It follows immediately frora eq. 8.7 that the spin component along

the z direction is conserved whereas the radial spin component Sx or

the spin component directed along the direction of particle motion

S precesses an angle

e B.

m c
a 2?r p = 2ir ya per turn (8.8)

- 0.44065

The electrons in a bunch have different energies corresponding to

different precision frequencies ya- This destroys the Polarisation

along the x and the s direction.

The radiative Polarisation generates a vertical spin alignment in

the arcs while the experiments require a longitudinal Polarisation at

the interaction point, preferable with the Option to change from one

helicity to the other. A possible spin rotator is be discussed

in chapter 10.
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34,37)
8.2 Pepolarisation Hecnarnsms

The discussion above is valid for an ideal machine. The guide

field of a real machine, however, is not perfect and these imperfections

may depolarize the beam.

If the beams are polarized along the vertical direction then errors

in the vertical field will not affect the spin. The particles must

still turn Zi\d their spin precess by

A non vanishing radial field, however, will cause the electron spin

to precess around the S axis leading to depolarisation. Let us assume

that a quadrupole is misaligned by l mm in the vertical direction.

Using HERA parameters this corresponds to a vertical deflection:

iß =
( A B * ) 12.5 T/m (10~3 m) Im

= 0.125 mrad
BP 3.33 • 30

equivalent to a precision angle * :

<t>x = (a v) A6 = 8.6 mrad at 30 GeV.

This is a rather small angle, however, if ay = n = integer then the

effect add on successive turns leading to complete depolarization.

The depolarizing resonances y& = n are spaced 440 MeV apart and the

beam energy must be choosen such that the spin tune does not equal

an integer number. However, the electrons have a finite energy spread
2

with a rms width a growing proportional to E . At 27.5 GeV at HERA the com-

puted energy spread is 28 MeV - i.e. the spacing between adjacent

resonance is 16 o and this should be sufficient. Note that this

effect may make it difficult to achieve transverse Polarisation in

larger machines like LEP.
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The spin motion is also modulated by the Synchrotron and beta-

tron motion such that the general resonance condition can be written
äs:

(8.9)

where k and n are integers and Qv , the tune shifts.
A t 2 » 5

The importance of these side band resonances will be enhanced by

the Synchrotron radiation. To illustrate the effect let us consider

a planar machine. The electron emits a photon at a position of non-

vanishing vertical dispersion. The vertical closed orbit will Jump

and the particle Starts to make vertical oscillations which takes

it through regions of space with non vanishing radial field compo-

nents. The spin will thus precess around the radial axis away fron

the vertical spin direction. The vertical oscillations damps out

after a few msec but the spin is now pointing in a different direction.

The polarising mechanism will restore the original spin direction

with a time constant T . However, since the electron radiates some

10 times during one damping time T the spin will gradually diffuse

away from the vertical axis leading to an unpolarized beam.

The crucial quantity which determins the spin diffusion is the

so called spin diffusion coefficient or spin chromaticity:

3 = v ( 5)4 (B.W)

The spin rotators, unless very carefully designed and matched into

the lattice, will be strong sources of beam depolarisation.
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In the linear approximation, prescriptions38' exist how to design a

machine, including spin rotators, such that the spin dispersion is

zero. The beam-beam interaction will also cause depolarisation and

this effect is now being evaluated using spin tracking"programs.
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9. Current Limitations

The motion of a single particle is deterroined by the guide field,

but particles moving Mithin an assembley of particles will ex-

perience additional forces resulting frora:

- The repulsion of like sign particles moving together. In this case

the electric and magnetic force subtract resulting in a space Charge

force which decreases inversely proportional to the energy of the

particle squared. For particles moving in opposite directions the

forces add and the resulting beam-beam instability is the ultimate

Performance limit of a colliding beam machine.

- Electric and magnetic fields associated with longitudinal and

transverse oscillations of the particles interact with the surroundings

(beam pipe, cavities) and induce electro-magnetic fields which in

turn may act back on the beam. The resulting force can drive the

beam unstable if the phase of the induced force is ahead of the

oscillation and its strength is large enough to overcome the natural

daraping caused by the incoherence of the particle motion. If the

induced fields decay rapidly then only the bunch itself is affected

and we have a single bunch instability. However adjacent bunches

raay communicate by means of slowly decaying wake fields causing

collective bunch instabilities.

In this chapter we will discuss some of the instabilities which

can affect a bunched proton beam. The electron motion is in general

more stable due to the strong radiative damping.



- 119 -

iLl. LongUudlnal Instabilities

9.1.1 Introductton

As discussed below, it seems advantageous to cross the electron

and the proton beam at a finite angle. The electron bunch, due to

its radiative damping, is rauch shorter than the proton bunch and the

luminosity is therefore directly proportional to the linear Charge

density of the protons eA{s) - i.e. short, intense proton bunches

are needed to reach high luminosity. The longitudinal electron

distribution can be approximated by a Gaußian whereas the proton

line density is well represented by a parabolic function

6N, .2 2

Ms) --f ( * - - s 2 ) (9.1)
£J 4

where t is the bunch length measured at the base.

The luminosity is also directly proportional to the number of

proton bunches - i.e. we would like to störe a larger number of

bunches in HERA.

The combination of a high line density and a large number of

bunches roake HERA prone to instabilities.

Let us first consider the Situation shown in Fig. 9.1. A con-

tinous particle beara of radius a moves along the t direction with

velocity j$c in the center of circular beam pipe of radius b. A

varying longitudinal particle density gives rise to a longitudinal

space Charge force and to longitudinal wake fields produced by

currents induced in the walls of the beam pipe. The sum of both
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. 9.1 - A uniform beam of radius a moving with Fc along the

t direction in the center of a circular beam pipe of

radius b.
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effects produces a longitudinal voltage which acts on the beam.

We will now evaluate these effects.

The electric and the magnetic fields produced by moving charges

can easily be obtained by solving Maxwell's equations.

e0 div E = p(s)

= p(s)

(9.2a)

(9.2b)

The line density x(s) is assumed to vary slowly äs a function of s.

Maxwell's equations have then the Solutions:

prt e \c „e A r r < a (9.3a)

F - - R
Er - ̂ T ~ • B6

Zir
(9.3b)

The longitudinal field at the center of the beam can then be de-

termined from the relationship:

E dl = - 1̂ B dt (9.4)

•+ -+
The Integration path t and the enclosed area f are defined in Fig. 9.1,

Inserting the fields frora eqs. 9.3a, b into eq. 9.4 and eva-

luating the integrals gives the following relation for the longi-

tudinal field E at the center of the beam:
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e 9,
(9.5)

The constant g is defined äs g = (l + 2 In -) and E is the electric

field on the axis resulting frora induced wall currents.

In general the particle density fluctuates over distances which

are large compared to the diameter of the beam pipe. In this case

the beam sees an inductive resistance:

L dlw e B c' L 3X

2irR dt 2TT R 3s
(9.6)

L is the total inductance seen by the beam per turn.

The total axial electric field resulting from space Charge

and inductance is given by:

i2 c2 L \A

ZTT R

The total voltage seen by the particle per turn

\X
- n L —

° 3s

(9.7)

(9.8)

ZQ = — = 377 Ohms and n is the angular revolution frequency. Note

that only the inductive term remains at large values of y-

The fluctuations must be of the form:

T T , T i(i9 •or I a I« + Ii «

(9.9)
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for an instability to occur. Furthermore the angular frequency of the dis-
turbance u must be an integer multiple of the angular revolution
frequency fl , i.e. w = nfl . A density fluctuation of this form leads
to an effective voltage per turn:

Us = -i l. Ij el(n6 " utj (9.10)

In the case considered above the resistance is purely imaginary with

- uL) (9.11)

In general Z. will have both a real and an imaginary part:

Z , (9.12)

The interaction between the beam and the environment shifts the

frequency of the disturbance by Au. Note that instabilities can only

occur for certain values of u = n ß + Au. The frequency shift for

a general impedance Z 1s complex;

Au = Auy + 1Auj

Substitute eq. 9.13 into eq. 9.9 yields:

I = I + I e î ei(n9 ' (nflo

(9.13)

(9.14)

An imaginary frequency shift leads to exponentially growing or

decaying oscillations with a time constant 7— . Depending on initial
i

conditions (noise etc) one or both of these Solutions may be realized

- i.e. the beam is unstable.

The reactive impedance Z = i Z. considered above yields:

2
, e n n. n I Z.

(iltf)Z = ° °—l (9.15)
2ir E
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with Z. given by eq. 9.11.

An inspection of eq. 9.7 shows that an inductive impedance drives

the beam unstable at energies below the transition energy, however,

the beam is stable above the transition energy. The Situation is re-

versed for a capacitive resistance, stable particles motion below

and unstable particles motion above the transition energy. A re-

sistive impedance always drives the beam unstable.

If all the particles in the beam have the same energy, äs in the

case considered above, then they remain in phase and even a minute

disturbance is sufficient to cause an exponentially growing amplitude.

This is no longer true if the particles in the beam have a finite

energy spread. In this case the particles have different revolution

frequencies and only act coherently over a time interval which is

inversely proportional to the spread in revolution frequencies.

As long äs the frequency shift of the disturbance is smaller than

the spread in revolution frequencies energy can be transferred from

the instability and converted into incoherent motion. Thus the un-

stable motion is damped and the disturbance must exceed a certain

threshold before the particle raotion becomes unstable. This general

mechanism is called Landau damping.

In the case of a bunched beam the damping is caused by the spread

in phase oscillation frequencies S resulting from non linearities

in the r.f. potential. For a bunch which is somewhat smaller than

the r.f. bücket:
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16 'RF (9.16)

$Rp is the bunch length measured in RF phase angle.

The particle motion will be stable äs long äs:

S > 4Au1 (9.17)

He will discuss some of the instabilities which may occur for a

bunched beam in more detail.

9.1.2 The microwave i'nstabilj^ty (turbulence)

This instability involves high frequencies corresponding to wave

lengths which are short corapared to the bunch length and in this

case the theory developed for a continous beam may be applied. Above

threshold the momentum spread and the bunch length are blown up to

values which are large compared to the equilibrium values determined

by the r.f. parameters and the injected bücket area.

To avoid this instability the longitudinal impedance Z divided

by the mode number n = !~~ must satisfy the condition
o

.

e I
(9.18)

For a parabolic current distribution F -^ 0.65. It is clear that the

beampipe must be designed to minimize Z. At the SPS ^ is around

30fl and we should be able to do better at HERA. Note that I is theo
peak current i.e. about 60 am p in HERA at 820 GeV and a parabolic
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current distribution. The HERA parameters demand |-| < 60fi at

the peak energy of 820 GeV and [-] < lOfl at injectlon energy of

40 GeV to avoid this instability.

9.1.3 The inductive wall impedance

The reactive impedance seen by a bunched beam will in general be

inductiv for low and medium frequencies. As shown in Fig. 9.1,

the induced voltage U , will distort the circumferential r.f. voltage

seen by the particle and hence affect the particle motion within

the bunch. In particular, the induced voltage U will shift the in-

coherent phase oscillation frequency and change the bunch length.

The inconerent frequency shift, for a parabolic line density dis-

tribution is given by:

2Tr R

us 2ir h M V cos$Q t
(9.19)

I is the total current, L the inductance integrated around the ring,

n the revolution frequency i.e.

"o ~ l n 'ind

h is the harmonic nuraber, M is the number of bunches and R is the

geometric radius.

The frequency shift will reduce the Landau damping - indeed the

Landau damping disappears completely if the incoherent frequency

distribution is shifted so far that this is outside the frequency

of the disturbance. Note that the frequency shift is inversely

proportional to the third power of the bunch length - i.e. the beam
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can be stabil ized by an increase in bunch length and a corresponding

reduction in luminosity.

The bunch length is increased above the transition energy and

decreased below. For protons

Au)M
t

l ~S
2" u (9.20)

The inductive impedance j-rL-j depends strongly on the detailed

layout of the vacuum charaber and the cavities. At the ISR

In'lind ** 20 otuTIS was measured> at tne sps i^i-ind w 10 ohms' At the

peak energy of 820 GeV the estimated frequency shift in HERA is

Aü)
—- = -0.04 with an accelerating peak voltage of 100 MV and
"s

'n'ind = 10 ohms.

Coupled bunch mode instabilities

A single bunch may execute different types of oscillations

characterized by a raode number m - i.e. a dipole roode with fre-

quency u , a quadrupole mode with frequency 2u> . a sextupole mode
S •>

with frequency 3u and so on. These modes are in general excited

by narrow band, high Q resonators like the cavities. However,

if several equidistant bunches are stored along the circumference

of the machine, then these bunches may be coupled together by

broad band, low Q resonators and execute additional coupled mode

oscillations. The number of independent oscillation modes are

equal to the numbers of bunches.
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The strength of these instabilities are difficult to estimate,

however, several methods are available to stabilize the beam.

a) Identify and damp the resonator which couples the bunches.

b) Increase the Landau damping either by a blow up of the

o>s *0
bunch area (S = —«•—) or by operating a cavity at a harmonic

of the r.f. frequency.

c) Decouple the bunch by using a cavity which operates on a sub-

harmonic of the r.f. frequency. In this case different bunches

have different Synchrotron frequencies.

d) Use a feed back system.

9.2 RF Noise

The r.f. system contains a white noise spectrum. The part of the

noise spectrum with frequencies around n u - where n is an integer

will lead to a slow build up the rms phase oscillation ampli-

tudes - i.e. to a dilution of longitudinal phase space density.

This effect has been sucessfully compensated at the SPS collider

using a very low noise feed back system.

9.3 Trans versg__ins tab i l i t i es

9.3.1 Transverse space Charge effects

As discussed in chapter 4 the transverse motion of a single

particle in the guide field of a circular accelerator is described

by the solution to Hill's euqation:
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u"(s) +K0{s) u(s) = 0 (4.25)

This equation is valid for both the radial (x) and the vertical (z)

motion provided Ap = 0.

The space Charge force acting between non relatlvtstic particles

moving together will modify the focusing strength

(9.21)

Frora eq. 5.34 a gradient change 6K will lead to a spread in tune

values:

(5.34)

K(s) = K0(s) + OK .

AQ = . 6*»

To avoid beam losses resuHing front crossing a half integer reso-

nances:

AQ < 0.25 .

We will now estimate the limit on the current imposed by the space

Charge force. To this purpose we assume a uniform beam of radius a

moving along the positive s direction with a uniform velocity ßc

äs considered above.

The electric and the magnetic fields for r<a produced by the

moving charges are given by eq. 9.3a.

The resulting force on a particle travelling a distance x fron

the center of the beam is given by
- * • - > - - > -

F = e (E + v x B)

Fr = (^} 7

(9.22)
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i.e. the space Charge force has only a radial conponent which

disappears at relativistic energies.

The force is equivalent to an acceleration:

2 d2x e p x
{V) ( 0 ) -(ßc)

d
(9.23)

The particle density ^ can be expressed by the total number of

particles stored along the circumference 2ivR of the ring:

N

(2?rR)
T (9.24)

This leads to the equation:

(9.25)

Frora a comparison with eq. 4.25 we see that the total change is

focusing power per turn i s given by

6K = -
n aZßV R

(9,26)

The corresponding tune shift is obtained by combining eq. 9.26 with

eq. 5.34:
(9-27)

Thus the beam is stable if:

Z Q l & Q l Q r a ) (9.28)

The space Charge limits the amount of current which can be stored
2

in a machine with a aperture (rra ). This is the basic liraitation

at Iow energies.
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9.3.2 Transverse head tail instabilUy

This instability, first observed at AOOME, was explained by

Pellegrini and Sands äs due to the following mechanism: The

particles moving in the head of a bunch makes betatron oscillations

which induce strong, rapidly decaying transverse electroraagnetic

fields. These fields will interact with the particles in the tail

of the bunch and will increase their betatron oscillations. After

half a Synchrotron oscillation period the particles in the head and

the particles in the tail have changed place and the feed back

loop is now closed if the betatron phase of the particles in the new

head is ahead of the betatron phase of the particles in the new

tail. This will occur if the chromaticity is negative.

To see this let us evaluate the difference in betatron phase

between particles in the head and the tail of a bunch. This phase

shift is obtained by integrating AtoD over half a Synchrotron period:

All) dt (9.29)

The betatron phase depends on Q and the revolution frequency fl .

(9.30)

The change in tune AQ is given by the chromaticity:

*n c AP - ^ dE
AQ = £ -£ = -7 -r (5.35)
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The change Afl in revolution frequency is given by the time di-

lation factor n(p)- We consider a proton with an energy well

above the transition energy

n

Combining both terms yield:

a dE
7? T

dE

(6.5)

(9.31)

dE

T -

Substituting eq. 9.31 into the integral of eq. 9.29 yields:

- (jR r HF
Ap = ? t T:— ) ( TT ) ~r (9.32)

Since the uncorrected natural chromaticity is negative the beta-

tron phase advance Ay will be positive. Thus the fundamental head-

tail mode is unstable.

Note that sextupoles can be used to cancel the natural chroma-

ticity - i.e. £ = 0. In this case no phase relation exists between

particles in the head and in the tail of the bunch and the funda-

mental head-tail instability does not occur. However, it is dif-

ficult to cancel the chromaticity exactiy. Furtherraore higher order

single bunch head tail modes can occur for positive values of the

chromaticity.
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If the transverse impedance has a sufficiently long memory

H may also couple head tail oscillations of adjacent bunches.

Both the single and coupied head tail modes may be corrected

by using an octupole roagnet to induce a tune spread. However, re-

member that an octupole ts a non linear element which. drtves re-

sonance lines and raay by itself limit the acceptance.

g.3.4 The jejm-beam tune shjft

The electric and magnetic force between interacting bunches

moving in opposite direction add resulting in a strong direct

space Charge force which persists at higher energies. For bunches of

opposite Charge the forces are attractive - i.e. one bunch acts

äs a focusing lens in both planes. For like sign bunches the force

is repulsive and equivalent to a defocusing lens. For particles

travelling close to the axis the lens will be nearly linear while it

is strongly non linear for particles with a large displacement.

This interaction affects the particle motion in several ways:

- it excites coherent transverse oscillations

- it introduces a non linear coupling of vertical and horizontal

motion

- it excites higher Order resonances.

Although the beam-beam interaction is strongly non-linear it

is coranonly parametrized fay the tune shift aQ induced by its linear
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part. We will here estimate the tune shift suffered by a proton

of normalized energy y traversing a bunch containfng N electrons

Gaußian distributed transversely to the beam axes with rms size

o and a .

The focal length of such a "space Charge" lens can be written äs:

7F - <k < • . 2"e. . £ <9-">
u * ex ez' eu p

The stars indicate that beam sizes are evaluated at the crossing

point, u = x or y.

The tune shift caused by a lens of focal strength f = -j-y lo-

cated at a position where the amplitude function has the value ß

is given by:

(5.13)

Introduce the strength of the lens from eq. 9.27 yields:

f =*u

^To find the effect of the electron beam on the proton beam one may

to first order simply replace p by e in the formulae above.

It is clear that the ultimate tune shift limit must depend on

the details of the machine and the tune advance between crossings.

However, it has been found experimentally at the high energy

electron machines that a tune shift of AQe < 0.025 is acceptable
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for electrons. At the CERN SPS pp collider a tune shift of 0.003

has been obtained for bunched proton beams. The factor ten dif-

ference between the electron and the proton tune shift Hmits is

presumably due to the radiative damping of the electron beam.
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10. Layout and Performance of HERA

In this last chapter we briefly discuss the choice of the main

Parameters for HERA ' and evaluate the luminosity.

10.1 The Lattice

The present choice of lattice for the electron and the proton ring

are shown in Fig. 10.1. Both machines have a periodic FODO cell

structure conststfng of equidistant focusing and defocustng qua-

drupoles with äs much äs possible of the intervening space filled

with bending magnets. The main lattice parameters are listed in

Table 10.1. They can be derived to a good approximation using the

formulas listed in chapter 4.5.

h — • —— 23538

Bwiding ongl* a =-ÄT-= 1.007-10'1 1 100. [ -1 20 131 IM l

o. Hin'
-MHC-

Fig 1 HERA normal cell lattice

Fig. 10.1 - Lattice for the electron and the proton ring HERA.
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Fig. 10.2 shows a cross section through the tunnel in the arcs

with the proton machine installed above the electron ring.

In the e e~ mode of HERA the cell length is a free parameter which,

for a given emittance and hence luminosity, may be chosen for raini-

mum cost. In the ep case, the proton cell length should be an inte-

gral multiple of the electron cell length. The electron emittance

and hence the focal length should be chosen such that it is possible

to match the electron and the proton beam sizes at the interaction

point for a given horizontal/vertical coupling of the electron beam.

It can be shown that the Optimum cell length is around 10 m for an

aperture limited e+e" design luminosity of 4 • 10 m" s" at

2 • 25 GeV. Since the minimum is rather flat we have chosen a cell

length of 15.692 m for mechanical reasons. In an octant of the elec-

tron ring there are 34 1/2 periodic cells and 2 dispersion sup-

pressing cells in the arcs and 2 1/2 cells are incorporated into the

spin rotator.

The l arge number of electron cells per octant reflects the need

to have a dense focusrng structure for the electrons. In the electron

ring the beam emittance is determined by the equilibrium of Synchro-

tron radiation and focusitig strength (eq. 7.39). A dense focusing

structure leads to a small beam emittance, low Synchrotron frequency

and a lower r.f. voltage. It is also possible to match the vertical

electron beam size to that of the proton in the interaction point

by varyitig the emittance.

- 138 -

Table 10.I - HERA lattice parameters

p-ring

Circumference (m)

Number of superpen'ods

Lattice

Straight section length

Normal cells /octant

Dispersion suppressing cells/
octant

Number of dipoles / cell

Magnetic length of dipole (m)

Aperture of bending magnet (mm)

Bending radius (m)

Bending angle (mrad)

Magnet i c length of
quadrupole (m)

Aperture of quadrupole (mm)

Betatron phase advance/cell

Mcraentum compaction

Transition energy (GeV}

Horking point QX/Q2

Cell quadrupole focal
length (m}

Cell quadrupole gradient (T/m)

Amplitude function^ jjjj

**•*'"' Q3

6336

4

FODO

360 m

9

4

6

6.08

60.0 t>
603.8

10.07

1.90

60.0 i

90°

1.315-10"3

25.9
32.15/35.19

16.6

91.2

80.4
13.8

1.9
0.92

34.5*

2

2

5.446

70 x 40

540.9

1.00

50.0 *

60°
0.495-10"3

48.3/48.2

7.8

12.7

27.2
9.1

0.39
0.24

• The horizontal bend of each spinrotator is equivalent to that

of 2.5 normal cells.
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The chromaticlty is compensated using two farallies of sextupoles

located adjacent to the focusing quadnjpoles.

The useful aperture of the proton ring is presumably liraited by

non linearities rather than the geometric aperture:

These non linearities result fron:

- The sextupoles needed to coropensate the natural chromaticity. At

HERA

Fig. 10.g - A cross section through the beam tunnel in the arcs.
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least two farallies are needed and their strength can be written äs

i . i,
D

(10.1)

" UD r

£IR is the chromaticfty resulting from the straight sections and

N is the number of cells.

- The higher field harmonics caused by the approximation to a cos8

current distribution in the dipole magnets and by positioning errors

of the wires. The field can be written äs a sum of the harmonic co-

efficients b for normal multipole fields and a for skew multipole

fields. These coefficients are obtained from the Fourier expansion

of the azimuthal field component.

(r,9) - B Z ( -
n=l o

(b cosn9 - ansin nG) (10.2)

B is the induction on the axis and r = 2.5 cm is the reference radius,

The tolerances on the field components were taken to be the same

äs those imposed on the FHAL magnets:

Normal and skewed qgadrupole: a-, b- = 2.5-10

-4
Sextupole : bg = 6-10

Skewed sextupole and all higher multipoles.
including the 18-pole = 2-10"

-4
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This distribution was assuroed to be a Gaußian centered at zero

with a rms value a third of the tolerances listed above. A cold iron

magnet has much higher values of the multipole components and their

relative strength also changes with current due to iron Saturation,

- Persistent currents. These currents induce mainly a constant se-

tupole field with a strength proportional to the filament diameter.

For the lOpm filaments used in the HERA cables the relative strength

of the persistent current sextupole relation to the dipole field

is -2 • 10" at the injection energy of 40 GeV. If left uncorrected

these sextupoles would introduce a chromaticity of ?,, = -181 and

£y = 143. We assume that the mean value of the persistent current

sextupoles are compensated by a bucking field such that only the

+ 10% fluctuations must be included in the computations must be in-

cluded in the computations.

The resulting nonlinear aperture was investigated using a fast

tracking programne '. The particles, with a given initial amplitude

are tracked around the ring and their amplitude checked after each

sextupole. If at least one particle is found outside the goemetric

aperture then the amplitude is unstable, if all particles (in ge-

neral 16} survived 100 turns then the amplitude was called stable.

The stable amplitude for the cell depicted in Fig. 10.1 is plotted

versus momentum in Ftg. 10.3, The computation was done at the in-

jectfon energy of 40 GeV for a phase advance of 60° and 40° per cell.
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A (mm)

20-

10-

,'-f---~J u=60° „_. ,elliptical
'-K. "N—±.bt«n

rectangular
beam

11=90°

=90°

beam aze at 40 GeV

at 820 GeV

AP,.,
35419

Fig. 10.3 - The stable amplitude limits at the injection energy

of 40 GeV are plotted versus momentum for a phase ad-

vance of 60° corresponding to QX/QZ = 33.15 / 35.18

and a phase advance of 90° yielding Qx/Qz = 25.16 / 29.23

The limits are evaluated for a rectangular and an

elliptical phase space distribution. The maximum

horizontal beam size (2.2ox) at 40 GeV and 820 GeV

are shown for comparison.

Hithin the accuracy of the coraputation the non linear aperture is

the same for 60° and 90° phase advance. For a rectangular beam phase

space and c = e the non linear aperture is on the order of 14 mm.

It might be raore realistic to assume an elliptical phase space and

in this case the aperture is around 18 mm, The aperture at 820 GeV

is slightly larger since persistant current effects can be neglected
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at high energies. The values should be compared to the geometric

aperture of + 28 mm. Measureraents at the ISR found a beam lifetiroe

on the order of 18.5 hours wlth the vertical collimators set at

2.2a, This aperture is indicated at the injection energy of 40 GeV

and at 820 GeV, This aperture, even at 40 GeV, is comfortably smaller

than the non linear aperture determined by the tracking progranme.

The eroittance growth due to beam-gas and tntra beam scattering has

been evaluated and found to be negligible for injection times

on the order of half an hour.

At present the computation time is about 5000 times longer than

the natural revolution tiffle such that only short storage times may

be investigated. We are now building a dedicated Computer which

will enable us to investigate storage times on the order of several

hours.

10.2 The r.f. System

The r.f. system for the electron ring is based on the 500 Mhz

System used in PETRA. Indeed r.f. equipment like klystrons, cavities,

waveguides and other components will be transferred from PETRA to

HERA.

At the nominal energy of 30 GeV the parttcle loose 142.3 MeV

per turn in Synchrotron radiation, For a phase advance of 60° the

peak voltage must be 166.7 MV per turn to ensure a beam life of

24 hours due to quantum fluctuations. The stable r,f. phase is 58.6°,

The number of Synchrotron oscillation per turn is 0.038 and the

r.m.s. bunch length is 9.3 mm.
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The injection system for the protons is designed to fill HERA

with 210 bunches of protons with 3 • 10 protons per bunch using

the following sequency of accelerators:

Proton Linac {50 MeV) •* DESY (7.6 GeV) •* PETRA (40 GeV) * HERA

The bunches wtth the ffnal number of particles per bunch are formed

i'n DESY such that a complicated stacking procedure, which may lead

to an emittance growth, is avoided. To reach the highest luminosity

the proton r.f. System must be designed not only to accelerate but

also to produce a short proton bunch with a high line density.

The stable bunch length shrinks from about 100 m at low energies to

a fraction of l m at the peak energy of HERA. Some of the shrinkage is

provided by the natural evolution of the bunch length during ac-

celeration but in addition the frequency is increased twice during

the acceleration sequence.

These frequency changes are done at transfer. The f\rst Step is

from 2.8 MHz in DESY to 10.37 MHz in PETRA äs the beam is transferred.

The second step from 10.4 MHz to 208 MHz occurs between PETRA and

HERA, In order for the PETRA bunch to fit into the much shorter HERA

bücket a bunch rotation is applied to the bunch before transfer.

We now give some of the parameters for the r.f. Systems äs pre-

sently planned. We assume that adiabatic capture works with

an efffciency of 70? and that 10* of the protons are lost during eacK

transfer. To reach the design value of 3 -10 protons/bunch a total

of 1.6 • 10 protons are injected from the Linac in a single turn
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into DESY. At DESY the protons are captured into three 100 m long
_3

bunches. The momentum spread is 1.2 • 10 corresponding to a bunch

area of 0.005 rad. A peak voltage of 1,43 kV at a frequency of

0.891MHZ (h=3) is needed at injection.The protons are accelerated

through transftion (Y tr = 5.680} and transferred bunch by bunch into

PETRA. Note that the protons are injected at 7.6 GeV which is above the

the transition energy (Y t r=f^0) in PETRA. The frequency at injection

is 2.817 MHz and the peak voltage is 11.22 kV. Such a System can

easily be realized using ferrite loaded cavities. Longitudinal in-

stabilities do not appear to be a problem - the laslet Q shift is

-0.103 at injection and (Z/n) must be less than 40S2 to avoid the mi-

crowave instafaility.

PETRA is loaded with 18 out of 20 possible bunches spaced 384 ns

apart. PETRA wi l l then accelerate the protons to 40 GeV, limited by

the Saturation of tKe dipole magnets. At injection the r.f. frequency

is 10.33 mz with a peak voltage of 19.8 kV. At the end of the ac-

celerating cycle the r.f. frequency is 10.41 Wz and a peak voltage

of 8.35 kV. The Laslet Q shift is only -0.040 at injection and

(Z/n) raust be less than 14.4 Ohm at 40 GeV.

Since the required frequency swinq is only 0.6J cheap re-

entrant r.f. cavities can be used instead of ferrite loaded cavities.

At 40 GeV the bunches can be made short without creating a large

Q-shtft and U is therefore possible to go directly to the final r .f .

frequency of 208 MHz in HERA. At 40 GeV in PETRA the bunch is 10 m
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long. Clearly the bunches must be compressed to about 1.3 m before
they are transferred to HERA. The simplest way to do this is to per-
form a one quarter bunch rotation in an abruptly increased bücket.
This requires rauch less voltage than adiabatic cowpression of the
bunch and the voltage is only required during the short t1me of one
quarter Synchrotron oscillation. The bunches must then be trans-
ferred between PETRA and HERA in one go and this is possible sinee
the ratio of the circumference is 80 to 220. The bunch rotation can
be done by simply pulsing the accelerating cavities to some 500 kV
for about a msec.

The PETRA cycle is repeated 12 times until HERA is loaded with
210 bunches spaced uniformly by 96 ns except for a notch l us long.
The notch is needed for the risetime of the beam abort kickers.

There are several reasons for choosing a rather low r.f. fre-
quency in HERA.

Firstly we have seen that a low frequency makes the final bunch
compression in PETRA easier.

The inductive wall impedance shift the coherent Synchrotron fre-
quency according to eq. 9.19. Landau damping breaks down if this
shift exceeds the incoherent frequency spread of the particles in
the bunch. The voltage required to prevent this (eq. 9.19) is pro-

2
portional to w*. , for a given ratio of bunch length to bücket length.
Even for a (Z/n) äs low äs 5 n the r.f. peak voltage must be
100 MV for a r.f. frequency of 208 MHz and a bunch length of 38 cm.
Lower frequency r.f. cavities are difficult to fit into the ring
due to their larger diameter.

10.3 Interaction Region

The interaction region in an electron-proton collider is complex.

It raust bring the two different beams into a small angle low beta
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collision geometry and H must turn the electron spin to be either

parallel or antiparallel to the beara direction at the interaction

point. Furthermore, the dispersion in the lattice must fae made to

disappear in the straight section, and sufficient space for r.f.

cavities, injection and ejection System must be found.

In the design we must first decide whether to use a head on col-

lision geometry, or to opt for a crossing angle. Since luroinosfty

and beam-beam tune shift vary in the same manner with crossing angle,

a larger angle would simply achieve the same conditions äs a head

on collisions but requires more protons and electrons. To optimize

the lunrinosity, the interactton region must be designed to produce a

small value of the betatron function at the interaction point. The

minimum value of the betatron function is presumably limited by the

maximum chromaticity introduced by the vertically focusing quadru-

poles. The vertical chromaticity introduced by the eight vertically

focusing quadrupoles is given by:

.IP 8 f (10.3)
-y 4* ß*

f is the focal length and g* the value of the betatron function at

the interaction point. The quadrupoles must thus be positioned äs

close äs possible to the interaction point, To set the scale, the

arcs contribute £a = 30 to the vertical chromaticity. The arbitrary

assumption that the interaction region should make a sroaller contri-

bution yield the inequality £ < 45ß .
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Rather strong quadrupole fields are needed to focus the proton

beam and it therefore seems advfsable not to pass the electrons

through the field of the proton quadrupoles.

In the head on collision geometry the electron and the proton

beam must be separated by a dipole magnet. In Order not to flood

the interaction region with Synchrotron radiation this bend must

be rather gentle and the vertically focusing proton quadrupole will

therefore be located rather far frorn the interaction point.

In the present layout (Fig. 3.2) we have chosen to cross the

beams at an angle of + 10 mrad in the horizontal plane. A horizontal

crossing is advantagous since the width of the electron beam is much

larger than its height. The large crossing angle makes it possible

to install the proton quadrupoles directly following the electron

quadrupole. In the present layout the front face of the vertically

focusing quadrupoles are positioned at + 7.5 m and at + 10 m with

respect to the IP for electrons and protons respectively. It is pos-

sible to detect particles down to 13 (32) mrad. This is more than

sufficient (Fig. 2.12) to roeasure the formfactors with high preci-
2

sion at values of Q which overlap with present data. Note that the

two machines are totally independent. It is thus possible to inject

into one ring while leaving the other at high energy. It is also pos-

sible to vary the center of mass energy by changing the proton energy

and keeping the electron fixed at 27,5 GeV where Polarisation is ex-

pected to occur.
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The next problem is to incorporate the spin rotators. Several

possible designs exist. The solution presently adoped is shown

schematically in Fig. 10.4.

HERA spin_rptgtor
(schematicl

spin arianlotion

Fig. 10.4 - Principal layout of the spin rotators.

The essential part of the rotator is a horizontal bending magnet

which causes the spin to precess by 7t around the vertical axis

and is surrounded by two vertical bending magnets of opposite sign

that generate a spin rotation of + ir/4 about the radial axis. A

pair of vertical bending magnets restores the original beam direction

without changing the spin direction. There is again one such rotator

at each end of the straight section; the first turns the spin lon-

gitudinal and the second restores the transverse Polarisation. For
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opposite helicity at the interaction point, all vertical bends are

inverted, while the horizontal bends remain unchanged. Since these

horizontal bends are rather strong, they are designed to be a part

of the normal bending in the are. In the HERA design each horizontal

rotator magnet replaces exactly 5 of the 78 normal cell bending

magnets per octant.

The horizontal bending raagnets must thus deflect the particles

through a well defined angle, a = 50.32 mrad and precess the spin

around the vertical direction by $ = ir. Since $ = (ya) a, both

conditions can only be satisfied for a single energy E = 27.8 GeV

corresponding to a spin tune v = (ya) = 62.4 GeV.

To operate the rotator at a different energy requires two cor-

rection bends to feed the beam band into its nominal position in

the arcs. With such correctors it is possible to properly operate

the rotators in an energy ränge of, say 0.5 GeV around E and ex-

plore the Optimum between depolarising resonances.

The final layout of the Interaction regions is shown in Fig. 3,2.

The spin rotators are located at the ends of the + 180 m long

straight sections. Hith the expections of the vertical spin rotator

bends the electron ring stays in the plane. Note that the Ist

bending magnet is located nearly 120 m from the IP. Detailed calcu-

lations show that it is possible to position detector elements
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withi n a few cm of the beam without being swamped by Synchrotron

radiation.

10.4 Luminosity

The luminosity of an electron - proton colliding beam machine with

the beams crossing in the horizontal plane at an angle 2$ is given

by:
fo nb Ne Np

xp.eff + V>

In this forrnula f is the revolution frequency, n. the number of

bunches in the ring, N and N the number of electrons and protons

per bunch respectively, 0 „ff = (a +• {o $) } /2 with o
Xp,cl l bJJ i(J jp

denoting the proton bunch length, o is the width of the electron

beam and o and o the heights of the proton and the electron

beam respectively. The beam sizes are all defined in the interaction

point and are calculated from the beam emittances and the values of

the. amplitude function at the interaction point. The emittance of

the proton beam is determined by the injectors, whereas the emittance

of the electron beam is given by the electron energy and the phase

advance per cell,

We will now discuss the choice of the various Parameters which

enter the luminosity computation.

The ultimate limit to the luminosity is given by the maximum

allowed value of the beam-beam tune shifts. The tune shifts, derived
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in chapter 9, can be expressed for the vertical direction äs:

8* r N
ze e p

AQ,
3*
zp

zp> CTzp

Here Y and y are respectively the electron and the proton energy

measured in units of the rest energy and S* and ß- are the values of

the amplitude function at the origin. AQ is quoted per interaction

region.

For head-on collisions a tune shift limit of 0.025 has been ob-

served at high energy e*e" colliders compared to approximately 0.003

observed at the CERN pp collider. We will use AQ = O.Q25 and

AQ = 0.0025 äs the limiting values also in the case of a finite

crossing angle.

The luminosity was evaluated with ß* = 0.15 m, ß* = 3.0 m,

ß 2p = 0.30 m and ßxp = 3.0 m. The vertical chromaticities evaluated

according to eq. 10.3 yields:

4ee 3 1 '8 4p = 21'2 '
The effective horizontal beam size is detenm'ned by the crossing

angle and the length of the proton bunch. With the 100 MV r.f. sys-

tem äs proposed the bunch is 9,5 m long (og) at 820 GeV.
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The vertical emittance for the electron beam is determined by the

vertical and horizontal coupling. Couplings äs small äs IX have been

observed at PETRA. The spinrotator w i l l increase the vertical coupling

and with the present rotator we find a value of 103!. This can be

reduced and we assume a coupling of 4% for the calculations here. To

maxinrize the luminosity the phase advance per cell is adjusted in

discrete Steps of 30°, 45°, 60° and 90°.

The luminosity is also proportional to the number of bunches per

beam. In the case of a erossing geometry the number of bunches is

a free parameter. In the present design we have limited the number.

of bunches to 210 corresponding to a spacing of 28.8 m between ad-

jacent bunches.

The electron current at high energy is limited by the avai lable

r .f . power. At HERA we assume that at raost 12 MW is available at

the r.f. cavities. It takes about 4.0 MW to establish the required

circumferential voltage of 166.7 MV at 30 GeV. Wi th an average

energy loss of 142.3 MeV per turn the remaining 8 MW is sufficient

to accelerate a current of 56 mA.

For the protons we assume a limit of 3 • 1011 protons per bunch.

As a coroparison IQ11 protons per bunch have been stored at the SPS

collider. The hope for increase in protons is based on a very smooth

beam pipe with a low (Z/n), a high r.f. peak voltage to produce a

I l l ! l l l T

200 300 400 500 600 TO 800 Ep [GeV)

Lumi-nosUy äs a-function of proton energy for various

electron energtes. The luminosity Hmiting parameters

are inditated.
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high line density and the use of octupoles and feed back Systems to

stabiltze the beam.

The luroinosity is plotted in Fig. 10.5 versus tKe proton energy

for electron energies of 10, 20, 27.5 and 30 GeV. Listed in the

brackets is the phase advance per cell in the electron beam which

with the parameter in the proton respectively in the electron beam which

linrits the luminosity. Note that at 30 GeV the luminosity is liraited

by the avaüable currents - i.e. the luminosity can be increased

by either storing a higher current or by moving thequadrupoles

closer and lower the vertical ß function. Indeed at 30 GeV and

820 GeV the tune shifts are rather low Qxe/Q2e = 0.008/0.014 and

Qxp/Qzp « 0.0006/0.0009.

At E = 20 GeV sufficient electron current can be stored to

reach the proton tune shift limit. In this case a peak luminosity

of 3 • 1032 cnf V1 iä realistic.

With the luminosity predicted at HERA we should thus be able
2 2to explore the kinematical region Q > 10000 GeV where surprizes

are expected to occur. Hith some luck this may happen before the

end of the decade.
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